JP2013069866A - 半導体装置 - Google Patents

半導体装置 Download PDF

Info

Publication number
JP2013069866A
JP2013069866A JP2011207393A JP2011207393A JP2013069866A JP 2013069866 A JP2013069866 A JP 2013069866A JP 2011207393 A JP2011207393 A JP 2011207393A JP 2011207393 A JP2011207393 A JP 2011207393A JP 2013069866 A JP2013069866 A JP 2013069866A
Authority
JP
Japan
Prior art keywords
layer
trench
region
trenches
semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011207393A
Other languages
English (en)
Inventor
Kentaro Ichinoseki
健太郎 一関
Nobuyuki Sato
信幸 佐藤
Takeru Matsuoka
長 松岡
Shigeaki Hayase
茂昭 早瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2011207393A priority Critical patent/JP2013069866A/ja
Publication of JP2013069866A publication Critical patent/JP2013069866A/ja
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Electrodes Of Semiconductors (AREA)

Abstract

【課題】耐圧を向上させ、オン抵抗を下げることが可能な半導体装置を提供する。
【解決手段】一態様に係る半導体装置は、MOSFETとして機能する第1領域、及び第1領域に隣接する第2領域を有する。第2領域は、第1半導体層、複数の第2トレンチ、第2絶縁層、及びフローティング電極層を有する。複数の第2トレンチは、第1半導体層の上面側から第1半導体層内に延びる。第2絶縁層は、第2トレンチの内壁に沿って形成される。フローティング電極層は、第2絶縁層を介して第2トレンチを埋めるように形成され且つフローティングとされる。
【選択図】図1

Description

本明細書に記載の実施の形態は、半導体装置に関する。
近年、大電流、高耐圧のスイッチング電源の市場に加え、ノート型PCをはじめとする移動体通信機器等の省エネルギー用スイッチング電源の市場において、パワーMOSFETの需要が高まっている。パワーMOSFETは、DC−DCコンバータや同期整流用途に使用される。よって、低電圧駆動化、低オン抵抗化、及びスイッチング損失低減のため、パワーMOSFETのゲートドレイン間容量やゲートソース間容量の低減が求められる。
ここで、パワーMOSFETのオン抵抗を低減させる技術として、トレンチMOS構造のMOSFETが知られている。このトレンチMOS構造のMOSFETは、チャネル領域となる半導体層に所定の間隔で複数のトレンチを有する。このトレンチの内壁には、ゲート絶縁膜となる絶縁膜が形成され、この絶縁膜を介して、ゲート電極となる導電膜がトレンチ内に埋め込まれる。このトレンチの幅やトレンチ間の半導体層の幅を微細化することにより、素子内部でのチャネル密度を向上させることができる。
MOSFETのオン抵抗を小さくする場合、上記のようなトレンチMOS構造が設けられた素子領域と共にそれに隣接する終端領域の耐圧を確保しなければならない。
特開2009−135360
本発明は、耐圧を向上させ、オン抵抗を下げることが可能な半導体装置を提供する。
一態様に係る半導体装置は、MOSFETとして機能する第1領域、及び第1領域に隣接する第2領域を有する。第1領域は、MOSFETのドレイン電極、半導体基板、第1導電型の第1半導体層、複数の第1トレンチ、第2導電型の第2半導体層、第1導電型の第3半導体層、第1絶縁層、ゲート電極層、トレンチソース電極層、及びMOSFETのソース電極を有する。半導体基板は、ドレイン電極と電気的に接続されると共に第1の不純物濃度を有する。第1半導体層は、半導体基板上に形成され第1の不純物濃度よりも小さい第2の不純物濃度を有する。複数の第1トレンチは、第1半導体層の上面側から第1半導体層内に延びる。第2半導体層は、第1半導体層の表面に形成され第1トレンチに隣接する。第3半導体層は、第2半導体層の表面に形成され第1トレンチに隣接する。第1絶縁層は、第1トレンチの内壁に沿って形成される。ゲート電極層は、第1絶縁層中に設けられて第1絶縁層を介して第2半導体層に対向し、MOSFETのゲート電極として機能する。トレンチソース電極層は、第1絶縁層を介して第1トレンチを埋めるように形成される。ソース電極は、第3半導体層に接し且つトレンチソース電極層に電気的に接続される。第2領域は、第1半導体層、複数の第2トレンチ、第2絶縁層、及びフローティング電極層を有する。複数の第2トレンチは、第1半導体層の上面側から第1半導体層内に延びる。第2絶縁層は、第2トレンチの内壁に沿って形成される。フローティング電極層は、第2絶縁層を介して第2トレンチを埋めるように形成され且つフローティングとされる。
第1の実施の形態に係る半導体装置の断面図である。 比較例に係る半導体装置の断面図である。 第2の実施の形態に係る半導体装置の断面図である。 第3の実施の形態に係る半導体装置の断面図である。 第4の実施の形態に係る半導体装置の断面図である。 第5の実施の形態に係る半導体装置の断面図である。 第6の実施の形態に係る半導体装置の断面図である。 第7の実施の形態に係る半導体装置の断面図である。 第8の実施の形態に係る半導体装置の断面図である。
以下、図面を参照して、実施の形態に係る半導体装置について説明する。
[第1の実施の形態]
図1を参照して、第1の実施の形態に係る半導体装置を説明する。図1に示すように、第1の実施の形態に係る半導体装置は、MOSFETとして機能する素子領域AR1、及びその素子領域AR1に隣接する終端領域AR2を有する。
先ず、素子領域AR1について説明する。図1に示すように、素子領域AR1は、ドレイン電極11、n+型半導体基板12、n−型エピタキシャル層13、及びトレンチ14(1)〜(3)を有する。なお、図1においては、3つのトレンチ14(1)〜(3)を一例として示しているが、その数は3つに限定されるものではない。
n+型半導体基板12は、ドレイン電極11上に設けられ、ドレイン電極11と電気的に接続される。n+型半導体基板12は、例えば、1×1019〜1×1021cm−3程度の不純物濃度を有する。n−型エピタキシャル層13は、n+型半導体基板12上に形成される。n−型エピタキシャル層13は、n+型半導体基板12よりも小さい、例えば、1×1013〜1×1016cm−3程度の不純物濃度を有する。トレンチ14(1)〜(3)は、各々n−型エピタキシャル層13の上面側から底面側に延びる。
また、図1に示すように、素子領域AR1は、p型ベース層15、n+型ソース層16、及びp+型コンタクト層17を有する。
p型ベース層15は、トレンチ14(1)〜(3)に隣接し、n−型エピタキシャル層13上に形成される。p型ベース層15は、例えば、1×1013〜1×1016cm−3程度の不純物濃度を有する。p型ベース層15は、MOSFETのチャネルとして機能する。n+型ソース層16は、トレンチ14(1)、(2)に隣接し、p型ベース層15上に形成される。ただし、最も終端領域AR2に近いp型ベース層15F上には、n+型ソース層16は形成されない。n+型ソース層16は、例えば、1×1019〜1×1021cm−3程度の不純物濃度を有する。p+型コンタクト層17は、p型ベース層15上に形成される。p型コンタクト層17は、トレンチ14(1)、(2)間においてn+型ソース層16に隣接する。p+型コンタクト層17は、p型ベース層15よりも大きい、例えば、1×1019〜1×1021cm−3程度の不純物濃度を有する。
また、図1に示すように、素子領域AR1は、絶縁層18、ゲート電極層19、トレンチソース電極層20、及びソース電極21を有する。
絶縁層18は、例えば、酸化シリコン(SiO)を材料として、各トレンチ14(1)〜(3)の内壁に沿って形成される。ゲート電極層19は、絶縁層18中に設けられ、絶縁層18を介してp型ベース層15の側面に接する。ただし、終端領域AR2に最も近いトレンチ14(3)内の終端領域AR2側に、ゲート電極層19は設けられない。ゲート電極層19は、MOSFETのゲートとして機能する。ゲート電極層19は、例えば、ポリシリコンにて構成されている。トレンチソース電極層20は、絶縁層18を介して各トレンチ14(1)〜(3)を埋めるように形成される。トレンチソース電極層20の上面は、絶縁層18により覆われている。トレンチソース電極層20は、例えば、ポリシリコンにて構成されている。ソース電極21は、n+型ソース層16の上面及びp+型コンタクト層17の上面に接する。ソース電極21は、トレンチソース電極層20に電気的に接続される(図示略)。すなわち、トレンチソース電極層20は、ソース電極21と同電位とされる。これにより、電界集中が緩和されて素子領域AR1の耐圧は向上する。
次に、終端領域AR2について説明する。図1に示すように、終端領域AR2は、素子領域AR1から延びるドレイン電極11、n+型半導体基板12、及びn−型エピタキシャル層13を有する。さらに、終端領域AR2は、トレンチ31(1)〜(3)、絶縁層32、及びフローティング電極層33を有する。なお、図1において、3つのトレンチ31(1)〜(3)を一例として示しているが、その数は3つに限定されるものではない。
トレンチ31(1)〜(3)は、n−型エピタキシャル層13の上面側から底面側に延びる。絶縁層32は、例えば、酸化シリコン(SiO)を材料として、各トレンチ31(1)〜(3)の内壁に沿って形成される。絶縁層32は、トレンチ14(3)内の絶縁層18と連続的に形成される。フローティング電極層33は、絶縁層32を介して各トレンチ31(1)〜(3)を埋めるように形成される。フローティング電極層33は、他の電極には接続されず、フローティング状態に維持される。フローティング電極層33は、例えば、ポリシリコンにて構成される。なお、フローティング電極層33の上部には、ソース電極21は設けられない。
次に、図2に示す比較例と第1の実施の形態とを比較する。図2に示すように、比較例は、第1の実施の形態と異なり、終端領域AR2にトレンチ31(1)〜(3)、絶縁層32、及びフローティング電極層33を有さない。
ここで、MOSFETのオン抵抗は、主にチャネル抵抗(p型ベース層15の抵抗)とドリフト抵抗(n−型エピタキシャル層13の抵抗)に依存する。よって、MOSFETのオン抵抗(ドリフト抵抗)を低減させるためには、n−型エピタキシャル層13の不純物濃度を上げる必要がある。
比較例において、等電位線はトレンチ14(3)付近で高い曲率を持つため、トレンチ14(3)付近で電界が集中する。よって、比較例においては、終端領域AR2の耐圧を保つため、n−型エピタキシャル層13の不純物濃度を上げることはできず、オン抵抗を下げることはできない。
これに対し、第1の実施の形態において、フローティング電極層33の底面及び側面から空乏層が延び、終端領域AR2において空乏層は、比較例よりも基板11と平行な方向に延び易くなる。すなわち、トレンチ14(3)付近における等電位線の曲率は比較例よりも小さくなる。よって、第1の実施の形態は、比較例よりも終端領域AR2の電界集中を緩和する構造を持ち、比較例よりも高い耐圧を有する。したがって、第1の実施の形態は、n−型エピタキシャル層13の不純物濃度を上げることができ、オン抵抗を下げることができる。
[第2の実施の形態]
次に、図3を参照して、第2の実施の形態について説明する。図3に示すように、第2の実施の形態は、終端領域AR2の構成のみが第1の実施の形態と異なる。よって、図3に示す第2の実施の形態において、素子領域AR1については第1の実施の形態と同一の符号を付し、その説明を省略する。
第2の実施の形態において、フローティング電極層33aは、図3に示す断面でL字状の形状をもつ。すなわち、フローティング電極層33aは、埋め込み部331、及び平坦部332を有する。埋め込み部331は、第1の実施の形態と同様に、絶縁層32を介して各トレンチ31(1)〜(3)を埋める。平坦部332は、埋め込み部331の上端に接する。平坦部332は、絶縁層32を介してn−型エピタキシャル層13上に設けられ、n−型エピタキシャル層13の上面と平行な方向に平坦に延びる。具体的に、平坦部332は、素子領域AR1から離れる方向に延びる。このフローティング電極層33a(平坦部332)により、第2の実施の形態は、終端領域AR2においてn−型エピタキシャル層13の表面近傍の電界集中を第1の実施の形態よりも緩和する。よって、第2の実施の形態は、第1の実施の形態よりも終端領域AR2の耐圧を向上させ、オン抵抗を下げることができる。
[第3の実施の形態]
次に、図4を参照して、第3の実施の形態について説明する。図4に示すように、第3の実施の形態は、終端領域AR2の構成のみが第1の実施の形態と異なる。よって、図4に示す第3の実施の形態において、素子領域AR1については第1の実施の形態と同一の符号を付し、その説明を省略する。
図4に示すように、第3の実施の形態において、隣接するトレンチ31(1)とトレンチ14(3)の間の間隔L1、隣接するトレンチ31(1)〜(3)の間の間隔L2、L3は各々異なる。素子領域AR1から遠く離れて位置するトレンチ31(1)〜(3)ほど、それらとトレンチ14(3)、31(1)、31(2)との間の間隔L1〜L3は広い。具体的に、最も素子領域AR1に近いトレンチ31(1)とトレンチ14(3)とは間隔L1をもって形成される。2番目に素子領域AR1に近いトレンチ31(2)とトレンチ31(1)とは間隔L1より広い間隔L2をもって形成される。3番目に素子領域AR1に近いトレンチ31(3)とトレンチ31(2)とは間隔L2より広い間隔L3をもって形成される。これら間隔L1〜L3により、各トレンチ31(1)〜(3)近傍の電界集中のバランスが第1の実施の形態よりも改善される。よって、第3の実施の形態は、第1の実施の形態よりも終端領域AR2の耐圧を向上させ、オン抵抗を下げることができる。
[第4の実施の形態]
次に、図5を参照して、第4の実施の形態について説明する。図5に示すように、第4の実施の形態は、トレンチ14(3)の底部、及び終端領域AR2の構成が第1の実施の形態と異なる。よって、図5に示す第4の実施の形態において、トレンチ14(3)の底部を除いて、素子領域AR1については第1の実施の形態と同一の符号を付し、その説明を省略する。
図5に示すように、第4の実施の形態は、第1の実施の形態に係る構成に加えて、更に複数のp−型拡散層34を有する。複数のp−型拡散層34は、各々、トレンチ14(3)、31(1)〜(3)の底部に位置するn−型エピタキシャル層13上に設けられる。p−型拡散層34は、例えば、1×1015〜1×1019cm−3程度の不純物濃度を有する。このp−型拡散層34により、トレンチ14(3)、31(1)〜(3)の底部近傍の電界集中が第1の実施の形態よりも緩和される。よって、第4の実施の形態は、第1の実施の形態よりも終端領域AR2の耐圧を向上させ、オン抵抗を下げることができる。
[第5の実施の形態]
次に、図6を参照して、第5の実施の形態について説明する。図6に示すように、第5の実施の形態は、終端領域AR2の構成のみが第1の実施の形態と異なる。よって、図6に示す第5の実施の形態において、素子領域AR1については第1の実施の形態と同一の符号を付し、その説明を省略する。
図6に示すように、第5の実施の形態において、トレンチ14(3)の深さD1、31(1)〜(3)の深さD2〜D4は、各々異なる。素子領域AR1から遠く離れて位置するトレンチ31(1)〜(3)ほど、その深さD2〜D4は浅い。具体的に、トレンチ31(1)の深さD2は、トレンチ14(1)〜(3)の深さD1よりも浅い。トレンチ31(2)の深さD3は、トレンチ31(1)の深さD2よりも浅い。トレンチ31(3)の深さD4は、トレンチ31(2)の深さD3よりも浅い。これら深さD2〜D4により、終端領域AR2の静電ポテンシャルの曲率が第1の実施の形態よりも緩やかになる。よって、第5の実施の形態は、第1の実施の形態よりも終端領域AR2の耐圧を向上させ、オン抵抗を下げることができる。
[第6の実施の形態]
次に、図7を参照して、第6の実施の形態について説明する。図7に示すように、第6の実施の形態は、終端領域AR2の構成のみが第1の実施の形態と異なる。よって、図7に示す第6の実施の形態において、素子領域AR1については第1の実施の形態と同一の符号を付し、その説明を省略する。
図7に示すように、第6の実施の形態は、第3及び第5の実施の形態の特徴を有する。すなわち、第3の実施の形態と同様に、素子領域AR1から遠く離れて位置するトレンチ31(1)〜(3)ほど、それらとトレンチ14(3)、31(1)、31(2)との間の間隔L1〜L3は広い。また、第5の実施の形態と同様に、素子領域AR1から遠く離れて位置するトレンチ31(1)〜(3)ほど、その深さD2〜D4は浅い。これにより、第6の実施の形態は、第3及び第5の実施の形態と同様の効果を奏する。
[第7の実施の形態]
次に、図8を参照して、第7の実施の形態について説明する。図8に示すように、第7の実施の形態は、終端領域AR2の構成のみが第1の実施の形態と異なる。よって、図8に示す第7の実施の形態において、素子領域AR1については第1の実施の形態と同一の符号を付し、その説明を省略する。
図8に示すように、第7の実施の形態は、第5の実施の形態の特徴を有する。すなわち、第5の実施の形態と同様に、素子領域AR1から遠く離れて位置するトレンチ31(1)〜(3)ほど、その深さD2〜D4は浅い。
更に、第7の実施の形態において、トレンチ14(1)〜(3)の幅W1、トレンチ31(1)〜(3)の幅W2〜W4は、各々異なる。素子領域AR1から遠く離れて位置するトレンチ31(1)〜(3)ほど、その幅W2〜W4は狭い。具体的に、トレンチ31(1)の幅W2は、トレンチ14(1)〜(3)の幅W1よりも狭い。トレンチ31(2)の幅W3は、トレンチ31(1)の幅W2よりも狭い。トレンチ31(3)の幅W4は、トレンチ31(2)の幅W3よりも狭い。ここで、同一のエッチング条件でトレンチを形成する場合、幅が広いトレンチほどその深さは深く、幅が狭いトレンチほどその深さは浅い。よって、上記の深さD2〜D4及び幅W2〜W4により、第7の実施の形態は、同一のエッチング条件でトレンチ14(1)〜(3)、31(1)〜(3)を一度に形成することができ、製造工程を削減することができる。
[第8の実施の形態]
次に、図9を参照して、第8の実施の形態について説明する。図9に示すように、第8の実施の形態は、トレンチ14(3)の底部、及び終端領域AR2の構成のみが第1の実施の形態と異なる。よって、図9に示す第8の実施の形態において、トレンチ14(3)の底部を除いて、素子領域AR1については第1の実施の形態と同一の符号を付し、その説明を省略する。
図9に示すように、第8の実施の形態は、第4及び第5の実施の形態の特徴を有する。すなわち、第4の実施の形態と同様に、トレンチ14(3)、31(1)〜(3)の底部に位置するn−型エピタキシャル層13上にp−型拡散層34が設けられる。また、第5の実施の形態と同様に、素子領域AR1から遠く離れて位置するトレンチ31(1)〜(3)ほど、その深さD2〜D4は浅い。これにより、第8の実施の形態は、第4及び第5の実施の形態と同様の効果を奏する。
[その他]
本発明のいくつかの実施の形態を説明したが、これらの実施の形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施の形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施の形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。
AR1…素子領域、 AR2…終端領域、 11…ドレイン電極、 12…n+型半導体基板、 13…n−型エピタキシャル層、 14(1)〜(3)、31(1)〜(3)…トレンチ、 15…p型ベース層、 16…n+型ソース層、 17…p+型コンタクト層、 18、32…絶縁層、 19…ゲート電極層、 20…トレンチソース電極層、 21…ソース電極、 33、33a…フローティング電極層、 34…p−型拡散層。

Claims (7)

  1. MOSFETとして機能する第1領域と、前記第1領域に隣接する第2領域とを備え、
    前記第1領域は、
    前記MOSFETのドレイン電極と、
    前記ドレイン電極と電気的に接続されると共に第1の不純物濃度を有する第1導電型の半導体基板と、
    前記半導体基板上に形成され前記第1の不純物濃度よりも小さい第2の不純物濃度を有する第1導電型の第1半導体層と、
    前記第1半導体層の上面側から前記第1半導体層内に延びる複数の第1トレンチと、
    前記第1半導体層の表面に形成され前記第1トレンチに隣接する第2導電型の第2半導体層と、
    前記第2半導体層の表面に形成され前記第1トレンチに隣接する第1導電型の第3半導体層と、
    前記第1トレンチの内壁に沿って形成された第1絶縁層と、
    前記第1絶縁層中に設けられて前記第1絶縁層を介して前記第2半導体層に対向し、前記MOSFETのゲート電極として機能するゲート電極層と、
    前記第1絶縁層を介して前記第1トレンチを埋めるように形成されたトレンチソース電極層と、
    前記第3半導体層に接し且つ前記トレンチソース電極層に電気的に接続された前記MOSFETのソース電極とを備え、
    前記第2領域は、
    前記第1半導体層と、
    前記第1半導体層の上面側から前記第1半導体層内に延びる複数の第2トレンチと、
    前記第2トレンチの内壁に沿って形成された第2絶縁層と、
    前記第2絶縁層を介して前記第2トレンチを埋めるように形成され且つフローティングとされたフローティング電極層とを備える
    ことを特徴とする半導体装置。
  2. 前記フローティング電極層は、前記第2絶縁層を介して前記第1半導体層上に設けられ前記第1半導体層の上面と平行な方向に延びる平坦部を備える
    ことを特徴とする請求項1記載の半導体装置。
  3. 隣接する前記第2トレンチの間の間隔は、各々異なる
    ことを特徴とする請求項1又は請求項2記載の半導体装置。
  4. 前記第1領域から遠く離れて位置する前記第2トレンチほど、隣接する前記第2トレンチの間の間隔は広い
    ことを特徴とする請求項1又は請求項2記載の半導体装置。
  5. 複数の前記第2トレンチの底部に位置する前記第1半導体層上に位置する第2導電型の拡散層を更に備える
    ことを特徴とする請求項1乃至請求項4のいずれか1項記載の半導体装置。
  6. 前記第1領域から遠く離れて位置する前記第2トレンチほど、前記第2トレンチの深さは浅い
    ことを特徴とする請求項1乃至請求項5のいずれか1項記載の半導体装置。
  7. 前記第1領域から遠く離れて位置する前記第2トレンチほど、前記第2トレンチの幅は狭い
    ことを特徴とする請求項1乃至請求項6のいずれか1項記載の半導体装置。
JP2011207393A 2011-09-22 2011-09-22 半導体装置 Withdrawn JP2013069866A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011207393A JP2013069866A (ja) 2011-09-22 2011-09-22 半導体装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011207393A JP2013069866A (ja) 2011-09-22 2011-09-22 半導体装置

Publications (1)

Publication Number Publication Date
JP2013069866A true JP2013069866A (ja) 2013-04-18

Family

ID=48475206

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011207393A Withdrawn JP2013069866A (ja) 2011-09-22 2011-09-22 半導体装置

Country Status (1)

Country Link
JP (1) JP2013069866A (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015056643A (ja) * 2013-09-13 2015-03-23 株式会社東芝 半導体装置の製造方法
JP2016189368A (ja) * 2015-03-30 2016-11-04 サンケン電気株式会社 半導体装置
JP2016189369A (ja) * 2015-03-30 2016-11-04 サンケン電気株式会社 半導体装置
JP2017038016A (ja) * 2015-08-12 2017-02-16 サンケン電気株式会社 半導体装置
JP2017069464A (ja) * 2015-09-30 2017-04-06 サンケン電気株式会社 半導体装置
JP2018046139A (ja) * 2016-09-14 2018-03-22 三菱電機株式会社 半導体装置、および、半導体装置の製造方法
US10763352B2 (en) 2018-02-20 2020-09-01 Kabushiki Kaisha Toshiba Semiconductor device
JP2020202271A (ja) * 2019-06-07 2020-12-17 新電元工業株式会社 半導体装置及び半導体装置の製造方法
CN113937150A (zh) * 2020-07-13 2022-01-14 苏州东微半导体股份有限公司 半导体功率器件及其制造方法
WO2023112619A1 (ja) * 2021-12-19 2023-06-22 新電元工業株式会社 半導体装置

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015056643A (ja) * 2013-09-13 2015-03-23 株式会社東芝 半導体装置の製造方法
CN104465391A (zh) * 2013-09-13 2015-03-25 株式会社东芝 半导体器件的制造方法
JP2016189368A (ja) * 2015-03-30 2016-11-04 サンケン電気株式会社 半導体装置
JP2016189369A (ja) * 2015-03-30 2016-11-04 サンケン電気株式会社 半導体装置
JP2017038016A (ja) * 2015-08-12 2017-02-16 サンケン電気株式会社 半導体装置
JP2017069464A (ja) * 2015-09-30 2017-04-06 サンケン電気株式会社 半導体装置
JP2018046139A (ja) * 2016-09-14 2018-03-22 三菱電機株式会社 半導体装置、および、半導体装置の製造方法
US10763352B2 (en) 2018-02-20 2020-09-01 Kabushiki Kaisha Toshiba Semiconductor device
JP2020202271A (ja) * 2019-06-07 2020-12-17 新電元工業株式会社 半導体装置及び半導体装置の製造方法
US11626479B2 (en) 2019-06-07 2023-04-11 Shindengen Electric Manufacturing Co., Ltd. Semiconductor device and method of manufacturing semiconductor device
CN113937150A (zh) * 2020-07-13 2022-01-14 苏州东微半导体股份有限公司 半导体功率器件及其制造方法
WO2022011835A1 (zh) * 2020-07-13 2022-01-20 苏州东微半导体有限公司 半导体功率器件及其制造方法
WO2023112619A1 (ja) * 2021-12-19 2023-06-22 新電元工業株式会社 半導体装置

Similar Documents

Publication Publication Date Title
US9947779B2 (en) Power MOSFET having lateral channel, vertical current path, and P-region under gate for increasing breakdown voltage
JP2013069866A (ja) 半導体装置
US9368617B2 (en) Superjunction device and semiconductor structure comprising the same
US9041098B2 (en) Semiconductor device
CN102610643B (zh) 沟槽金属氧化物半导体场效应晶体管器件
KR101371517B1 (ko) 전계집중 감소용 플로팅영역을 구비한 고전압 반도체 소자
JP6356803B2 (ja) 絶縁ゲートバイポーラトランジスタ
JP2008108962A (ja) 半導体装置
US9818743B2 (en) Power semiconductor device with contiguous gate trenches and offset source trenches
JP6576926B2 (ja) 半導体装置のエッジ終端および対応する製造方法
JP2013065749A (ja) 半導体装置
WO2015141212A1 (ja) 半導体装置
US8482066B2 (en) Semiconductor device
JP2008277352A (ja) 半導体装置
JP2013069852A (ja) 半導体装置
WO2018034818A1 (en) Power mosfet having planar channel, vertical current path, and top drain electrode
JP2011055017A (ja) 半導体装置
CN107546274B (zh) 一种具有阶梯型沟槽的ldmos器件
US20160079350A1 (en) Semiconductor device and manufacturing method thereof
JP2017038016A (ja) 半導体装置
JP2006120894A (ja) 半導体装置
US9196717B2 (en) High voltage metal-oxide-semiconductor transistor device
US9082842B2 (en) Semiconductor device
JP5238866B2 (ja) 電力用半導体装置
JP7326991B2 (ja) スイッチング素子

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20130221

A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20141202