JP2013051676A - 水晶発振器 - Google Patents

水晶発振器 Download PDF

Info

Publication number
JP2013051676A
JP2013051676A JP2012166021A JP2012166021A JP2013051676A JP 2013051676 A JP2013051676 A JP 2013051676A JP 2012166021 A JP2012166021 A JP 2012166021A JP 2012166021 A JP2012166021 A JP 2012166021A JP 2013051676 A JP2013051676 A JP 2013051676A
Authority
JP
Japan
Prior art keywords
oscillation
temperature
frequency
unit
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012166021A
Other languages
English (en)
Other versions
JP5931628B2 (ja
Inventor
Kazuo Akaike
和男 赤池
Kaoru Kobayashi
薫 小林
Tsukasa Furuhata
司 古幡
Tomoya Yoda
友也 依田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nihon Dempa Kogyo Co Ltd
Original Assignee
Nihon Dempa Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Dempa Kogyo Co Ltd filed Critical Nihon Dempa Kogyo Co Ltd
Priority to JP2012166021A priority Critical patent/JP5931628B2/ja
Priority to US13/562,270 priority patent/US8729978B2/en
Priority to TW101127626A priority patent/TWI509978B/zh
Priority to CN201210272235.7A priority patent/CN102916652B/zh
Publication of JP2013051676A publication Critical patent/JP2013051676A/ja
Application granted granted Critical
Publication of JP5931628B2 publication Critical patent/JP5931628B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Oscillators With Electromechanical Resonators (AREA)
  • Stabilization Of Oscillater, Synchronisation, Frequency Synthesizers (AREA)

Abstract

【課題】OCXOにおいて、水晶振動子及び発振回路の置かれている雰囲気温度を高い精度でコントロールし、出力周波数について高い安定度が得られること。
【解決手段】第1及び第2の水晶振動子10、20の発振出力をf1、f2とし、基準温度における前記発振出力の発振周波数を夫々f1r、f2rとすると、周波数差検出部3により、{(f2−f1)/f1}−{(f2r−f1r)/f1r}を演算する。この値を34ビットのディジタル値で表わすことにより温度に対応してディジタル値を得ることができる。従ってこの値を温度検出値として取り扱い、温度設定値との差分をループフィルタ61に供給し、ここからのディジタル値を直流電圧に変換し、ヒータ5を制御する。更に前記温度検出値に基づいて、OCXOの設定周波数を補正し、雰囲気温度が基準温度からずれたことによる周波数の変動分を補償するようにする。
【選択図】図1

Description

本発明は、水晶振動子が置かれる雰囲気の温度を検出し、温度の検出結果に基づいて加熱部を制御して前記雰囲気の温度を一定にする発振装置に関する。
携帯電話の基地局では、ほとんどの発振器としてOCXO(オーブンコントロール付き発振器)が用いられている。温度と水晶振動子の周波数偏差との関係を示す周波数−温度特性は、通常3次曲線により表される。周波数偏差とは、基準温度、例えば25℃における周波数に対する当該周波数からの周波数変化分である。OCXOにおける水晶振動子の加熱温度は、温度の変動による周波数の変動を極力抑えるために、前記3次曲線の山部分の頂点あるいは谷部分の底部の温度(これらのポイントはZTCと呼ばれる)に合わせることが好ましいとされている。OCXOの使用温度範囲が例えば−10℃〜70℃であれば、水晶振動子の加熱温度は前記使用温度範囲の上限温度以上とすることが望ましい。
一方市場では、OCXOの使用温度範囲を拡大することが要求されている。この要求に対応するためには、水晶振動子の加熱温度である前記ZTCが高くなるように水晶振動子の切断角度を調整することで対応できる。しかしヒータ回路の規模が大きくなることから、製品が大型化し、またヒータの消費電力が大きくなるという問題がある。
特許文献1の図2及び図3には、共通の水晶片に2対の電極を設けて2つの水晶振動子(水晶共振子)を構成することが記載されている。また段落0018には、温度変化に応じて2つの水晶振動子の間で周波数差が現れるので、この周波数差を計測することにより温度を計測することと同じになると記載されている。そしてこの周波数差Δfと補正すべき周波数の量との関係をROMに記憶させ、Δfに基づいて周波数補正量を読み出している。
しかしながらこの手法は、温度検出に基づいて発振周波数を補正するTCXOに関するものであり、OCXOに関するものではない。
特開2001−292030号
本発明はこのような事情の下になされたものであり、その目的は、OCXOにおいて、ヒータの設定温度を大きく上げることなく、製品の使用温度範囲を広げ、周波数の安定度の高い発振出力を得ることができる発振装置を提供することにある。
本発明は、発振出力用の水晶振動子に接続された発振回路の発振出力に基づいて発振装置の出力信号を得る発振装置において、
前記水晶振動子が置かれる雰囲気の温度の一定化を図るための加熱部と、
水晶片に第1の電極を設けて構成した第1の水晶振動子と、
水晶片に第2の電極を設けて構成した第2の水晶振動子と、
これら第1の水晶振動子及び第2の水晶振動子に夫々接続された第1の発振回路及び第2の発振回路と、
第1の発振回路の発振周波数をf1、基準温度における第1の発振回路の発振周波数をf1r、第2の発振回路の発振周波数をf2、基準温度における第2の発振回路の発振周波数をf2rとすると、f1とf1rとの差分に対応する値と、f2とf2rとの差分に対応する値と、の差分値に対応する値を温度検出値として求める周波数差検出部と、
水晶振動子が置かれる雰囲気の温度の温度設定値と前記温度検出値との偏差分を取り出す加算部と、
この加算部にて取り出された偏差分に基づいて前記加熱部に供給される電力を制御する回路部と、
水晶振動子が置かれる雰囲気の温度を検出する温度検出部と、
この温度検出部にて検出された温度検出値と、前記温度検出値と前記発振出力用の水晶振動子に接続された発振回路の発振出力の周波数補正値との関係と、に基づいて、前記出力信号の周波数の設定値を補正する手段と、を備えたことを特徴とする。
前記温度検出部は、例えば前記第1の水晶振動子、前記第2の水晶振動子、前記第1の発振回路、前記第2の発振回路及び前記周波数差検出部からなる。この場合、出力信号の周波数の設定値を補正する手段で用いられる温度検出値は、前記周波数差検出部にて検出された温度検出値となる。
前記偏差回路部にて取り出された偏差分は、例えば積分回路部にて積分して温度制御部に出力される。
第1の発振回路及び第2の発振回路は例えば各々オーバートーンを発振出力とする。
f1とf1rとの差分に対応する値と、f2とf2rとの差分に対応する値と、の差分値に対応する値は、例えば{(f2−f2r)/f2r}−{(f1−f1r)/f1r}]である。なお、この値を直接検出する代りに、この値と同等の結果が得られる{(f2−f1)/f1}−{(f2r−f1r)/f1r}を検出する場合も含まれる。
水晶発振器の発振出力は、例えば第1の発振回路及び第2の発振回路の一方の発振出力とすることができるが、第1の水晶振動子及び第2の水晶振動子とは異なる、前記雰囲気に置かれる第3の水晶振動子を設け、この第3の水晶振動子に接続される第3の発振回路からの発振出力を水晶発振器の発振出力としてもよい。
他の発明は、水晶振動子に接続された発振回路の発振出力に基づいて発振装置の出力信号を得る発振装置において、
前記水晶振動子が置かれる雰囲気の温度の一定化を図るための加熱部と、
前記水晶振動子が置かれる雰囲気の温度を検出する第1の温度検出部と、
この第1の温度検出部の温度検出値と温度設定値とに基づいて前記加熱部に供給される電力を制御する回路部と、
前記水晶振動子が置かれる雰囲気の温度を検出する第2の温度検出部と、
この第2の温度検出部の温度検出値と基準温度との偏差に対応する信号に基づいて、当該周波数の設定信号を補正する手段と、を備えたことを特徴とする。
本発明は、水晶振動子に接続された発振回路の発振出力に基づいてその出力信号を得る発振装置において、加熱部により水晶振動子が置かれる雰囲気の温度の一定化を図ると共に、当該雰囲気温度の温度を検出し、温度検出値に基づいて、前記出力信号の周波数の設定信号を補正するようにしている。従って、加熱部により一定化すべき温度の設定値である設定温度、即ちOCXOの設定温度よりも高い温度雰囲気で発振装置を使用した場合にも、出力信号である発振周波数が安定化する。このためヒータの設定温度を大きく上げることなく、即ち消費電力を抑えて、製品の使用温度範囲を広げ、周波数の安定度の高い発振出力を得ることができる。
本発明の実施形態の全体構成を示すブロック図である。 本発明の実施形態の一部を示すブロック図である。 図2に示す一部の出力の波形図である。 図2に示す、DDS回路部を含むループにおいてロックしていない状態を模式的に示す各部の波形図である。 図2に示す、DDS回路部を含むループにおいてロックしている状態を模式的に示す各部の波形図である。 上記の実施形態に対応する実際の装置について前記ループにおける各部の波形図である。 第1の発振回路の周波数f1及び第2の発振回路の周波数f2と温度との関係を示す周波数温度特性図である。 f1の変化率及びf2の変化率の各々を基準温度における値で.正規化した値と温度との関係を示す周波数温度特性図である。 周波数差検出部のディジタル出力値と温度との関係を示す特性図である。 加熱部の制御回路を示す回路図である。 上記実施形態にかかる発振装置の構造を示す概略縦断側面図である。 f1の変化率を基準温度の値で正規化した値と温度との関係、及びf1の変化率を基準温度の値で正規化した値とf2の変化率を基準温度の値で正規化した値との差分ΔFと温度との関係を示す周波数温度特性図である。 図12の縦軸を正規化した値と、周波数補正値との関係を示す特性図である。 補正値演算部を示すブロック図である。 温度による周波数変化の特性と製品の使用温度範囲と設定温度とを対応付けて示す説明図である。 図15に示す温度−周波数特性図において周波数温度補償範囲を加えた様子を示す説明図である。 本発明の他の実施形態の全体構成を示すブロック図である。
図1は本発明の実施形態にかかる発振装置の全体を示すブロック図である。この発振装置は、設定された周波数の周波数信号を出力する周波数シンセサイザとして構成され、水晶振動子を用いた電圧制御発振器100と、この電圧制御発振器100におけるPLLを構成する制御回路部200と、前記PLLの参照信号を生成するためのDDS201を動作させるためのクロック信号を生成する水晶発振器(符号は付していない)と、この水晶発振器における水晶振動子10、20の置かれる雰囲気の温度を調整するための加熱部であるヒータ5と、を備えている。従って発振装置はOCXOである。
またこの発振装置は、制御回路部200に入力される基準クロックの温度補償を行う温度補償部も備えている。温度補償部については符号を付していないが、図1における制御回路部200よりも左側部分に相当し、前記ヒータ5を制御するための回路部分と共用化している。
制御回路部200は、DDS(Direct Digital Synthesizer)回路部201から出力するリファレンス(参照用)クロックと、電圧制御発振器100の出力を分周器204で分周したクロックの位相とを位相周波数比較部205にて比較し、その比較結果である位相差がチャージポンプ204によりアナログ化される。アナログ化された信号はループフィルタ206に入力され、PLL(Phase locked loop)が安定するように制御される。従って制御回路部200は、PLL部であると言うこともできる。ここでDDS回路部201は、後述の第1の発振回路1から出力される周波数信号を基準クロックとして用い、目的とする周波数の信号を出力するための周波数データ(ディジタル値)が入力されている。
しかし前記基準クロックの周波数が温度特性をもっているため、この温度特性をキャンセルするためにDDS回路部201に入力される前記周波数データに後述の周波数補正値に対応する信号を加算部60にて加算している。DDS回路部201に入力される周波数データを補正することで、基準クロックの温度特性変動分に基づくDDS回路部201の出力周波数の温度変動分がキャンセルされ、結果として温度変動に対して参照用クロックの周波数が安定し、以って電圧制御発振器100からの出力周波数が安定することになる。
この実施の形態は、以下に述べるように基準クロックを作成する水晶発振器がOCXOとして構成されており、このため基準クロックの周波数は安定しているので、当該基準クロックの温度特性は見えてこないといえる。しかしヒータの不具合などが起こったときには、基準クロックの温度特性変動分に基づくDDS回路部201の出力周波数の温度変動分を補償するように構成しておくことにより、極めて信頼性の高い周波数シンセサイザを構成することができる利点がある。
次に本発明の水晶発振器に相当するOCXOの部分について説明する。この水晶発振器は、第1の水晶振動子10及び第2の水晶振動子20を備えており、これら第1の水晶振動子10及び第2の水晶振動子20は、共通の水晶片Xbを用いて構成されている。即ち例えば短冊状の水晶片Xbの領域を長さ方向に2分割し、各分割領域(振動領域)の表裏両面に励振用の電極を設ける。従って一方の分割領域と一対の電極11、12とにより第1の水晶振動子10が構成され、他方の分割領域と一対の電極21、22とにより第2の水晶振動子20が構成される。このため第1の水晶振動子10及び第2の水晶振動子20は熱的に結合されたものということができる。
第1の水晶振動子10及び第2の水晶振動子20には夫々第1の発振回路1及び第2の発振回路2が接続されている。これら発振回路1、2の出力は、いずれについても例えば水晶振動子10、20のオーバートーン(高調波)であってもよいし、基本波であってもよい。オーバートーンの出力を得る場合には、例えば水晶振動子と増幅器とからなる発振ループ内にオーバートーンの同調回路を設けて、発振ループをオーバートーンで発振させてもよい。あるいは発振ループについては基本波で発振させ、発振段の後段、例えばコルピッツ回路の一部である増幅器の後段にC級増幅器を設けてこのC級増幅器により基本波を歪ませると共にC級増幅器の後段にオーバートーンに同調する同調回路を設けて、結果として発振回路1、2からいずれも例えば3次オーバートーンの発振周波数を出力するようにしてもよい。
ここで便宜上、第1の発振回路1から周波数f1の周波数信号が出力され、第2の発振回路2から周波数f2の周波数信号が出力されるものとすると、周波数f1の周波数信号は、前記制御回路部200に基準クロックとして供給される。3は周波数差検出部であり、この周波数差検出部3は概略的な言い方をすれば、f1とf2との差分と、Δfrとの差分である、f2−f1−Δfrを取り出すための回路部である。Δfrは、基準温度例えば25℃におけるf1(f1r)とf2(f2r)との差分である。f1とf2との差分の一例を挙げれば、例えば数MHzである。本発明は、周波数差検出部3によりf1とf2との差分に対応する値と、基準温度例えば25℃におけるf1とf2との差分に対応する値との差分であるΔFを計算することにより成り立つ。この実施形態の場合、より詳しく言えば、周波数差検出部3で得られる値は、{(f2−f1)/f1}−{(f2r−f1r)/f1r}である。ただし、図面では周波数差検出部3の出力の表示は略記している。
図2は、周波数差検出部3の具体例を示している。31はフリップフロップ回路(F/F回路)であり、このフリップフロップ回路31の一方の入力端に第1の発振回路1からの周波数f1の周波数信号が入力され、他方の入力端に第2の発振回路2から周波数f2の周波数信号が入力され、第1の発振回路1からの周波数f1の周波数信号により第2の発振回路2からの周波数f2の周波数信号をラッチする。以下において記載の冗長を避けるために、f1、f2は、周波数あるいは周波数信号そのものを表しているとして取り扱う。フリップフロップ回路31は、f1とf2との周波数差に対応する値である(f2−f1)/f1の周波数をもつ信号が出力される。
フリップフロップ回路31の後段には、ワンショット回路32が設けられ、ワンショット回路32では、フリップフロップ回路31から得られたパルス信号における立ち上がりにてワンショットのパルスを出力する。図3(a)〜(d)はここまでの一連の信号を示したタイムチャートである。
ワンショット回路32の後段にはPLL(Phase Locked Loop)が設けられ、このPLLは、ラッチ回路33、積分機能を有するループフィルタ34、加算部35及びDDS回路部36により構成されている。ラッチ回路33はDDS回路部36から出力された鋸波をワンショット回路32から出力されるパルスによりラッチするためのものであり、ラッチ回路33の出力は、前記パルスが出力されるタイミングにおける前記鋸波の信号レベルである。ループフィルタ34は、この信号レベルである直流電圧を積分し、加算部35はこの直流電圧とΔfr(基準温度例えば25℃におけるf1とf2との差分)に対応する直流電圧と加算する。Δfrに対応する直流電圧のデータは図2に示すメモリ30に格納されている。
この例では加算部35における符号は、Δfrに対応する直流電圧の入力側が「+」であり、ループフィルタ34の出力電圧の入力側が「−」となっている。DDS回路部36には、加算部35にて演算された直流電圧、即ちΔfrに対応する直流電圧からループフィルタ34の出力電圧を差し引いた電圧が入力され、この電圧値に応じた周波数の鋸波が出力される。PLLの動作の理解を容易にするために図4に極めて模式的に各部の出力の様子を示し、かつ直感的に把握できるようにするために極めて模式的な説明をしておく。装置の立ち上げ時には、Δfrに対応する直流電圧が加算部35を通じてDDS回路部36に入力され、例えばΔfrが5MHzであるとすると、この周波数に応じた周波数の鋸波がDDL36から出力される。
前記鋸波がラッチ回路33により(f2−f1)に対応する周波数のパルスでラッチされるが、(f2−f1)が例えば6MHzであるとすると、鋸波よりもラッチ用のパルスの周期が短いことから、鋸波のラッチポイントは図4(a)に示すように徐々に下がっていき、ラッチ回路33の出力及びループフィルタ34の出力は図4(b)、(c)に示すように−側に徐々に下がっていく。加算部35におけるループフィルタ34の出力側の符号が「−」であることから、加算部35からDDS回路部36に入力される直流電圧が上昇する。このためDDS回路部36から出力される鋸波の周波数が高くなり、DDS回路部36に6MHzに対応する直流電圧が入力されたときに、鋸波の周波数が6MHzとなって図5(a)〜(c)に示すようにPLLがロックされる。このときにループフィルタ34から出力される直流電圧は、Δfr−(f2−f1)=−1MHzに対応した値となる。つまりループフィルタ34の積分値は、5MHzから6MHzへ鋸波が変化するときの1MHzの変化分の積分値に相当するということができる。
この例とは逆に、Δfrが6MHz、(f2−f1)が5MHzの場合には、鋸波よりもラッチ用のパルスの周期が長いためにことから、図4(a)に示すラッチポイントは徐々に高くなり、これに伴い、ラッチ回路33の出力及びループフィルタ34の出力も上昇する。このため加算部35において差し引かれる値が大きくなるので、鋸波の周波数が徐々に下がり、やがて(f2−f1)と同じ5MHzとなったときにPLLがロックされる。このときにループフィルタ34から出力される直流電圧は、Δfr−(f2−f1)=1MHzに対応した値となる。なお、図6は実測データであり、この例では時刻t0にてPLLがロックしている。
ところで既述のように実際には周波数差検出部3の出力、即ち図2に示す平均化回路37の出力は、{(f2−f1)/f1}−{(f2r−f1r)/f1r}の値を34ビットのディジタル値で表した値である。−50℃付近から100℃付近までのこの値の集合は、(f1−f1r)/f1=OSC1(単位はppmあるいはppb)、(f2−f2r)/f2r=OSC2(単位はppmあるいはppb)とすると、温度に対する変化はOSC2−OSC1と実質同じカーブとなる。従って周波数差検出部3の出力は、OSC2−OSC1=温度データとして取り扱うことができる。
またフリップフロップ31においてf2をf1によりラッチする動作は非同期であることから、メタステーブル(入力データをクロックのエッジでラッチする際、ラッチするエッジの前後一定時間は入力データを保持する必要があるが、クロックと入力データとがほぼ同時に変化することで出力が不安定になる状態)など不定区間が生じる可能性もあり、ループフィルタ34の出力には瞬間誤差が含まれる可能性がある。このためループフィルタ34の出力側に、予め設定した時間における入力値の移動平均を求める平均化回路37を設け、前記瞬間誤差が生じても取り除くようにしている。平均化回路37を設けることにより、最終的に変動温度分の周波数ずれ情報を高精度に取得することができるが、平均化回路37を設けない構成としてもよい。
ここでPLLのループフィルタ34にて得られた変動温度分の周波数ずれ情報であるOSC2−OSC1に関して図7から図10を参照して説明する。図7は、f1及びf2を基準温度で正規化し、温度と周波数との関係を示す特性図である。ここでいう正規化とは、例えば25℃を基準温度とし、温度と周波数との関係について基準温度における周波数をゼロとし、基準温度における周波数からの周波数のずれ分と温度との関係を求めることを意味している。第1の発振回路1における25℃のときの周波数をf1r、第2の発振回路2における25℃のときの周波数をf2rとすると、つまり25℃におけるf1、f2の値を夫々f1r、f2rとすると、図7の縦軸の値は(f1−f1r)及び(f2−f2r)ということになる。
また図8は、図7に示した各温度の周波数について、基準温度(25℃)における周波数に対する変化率を表わしている。従って図8の縦軸の値は、(f1−f1r)/f1r及び(f2−f2r)/f2rであり、即ち既述のようにOSC1及びOSC2である。なお図8の縦軸の値の単位はppmである。
図9は、OSC1と温度との関係(図8と同じである)、及び(OSC2−OSC1)と温度との関係を示しており、(OSC2−OSC1)が温度に対して直線関係にあることが分かる。従って(OSC2−OSC1)は基準温度からの温度変動ずれ分に対応していることが分かる。
図1に説明を戻すと、周波数差検出部3の出力値は、実質(OSC2−OSC1)であり、この値は図9に示したように水晶振動子10、20が置かれている温度検出値ということができる。そこで周波数差検出部3の後段に加算器(偏差分取り出し回路)6を設け、ディジタル信号である温度設定値(設定温度におけるOSC2−OSC1の34ビットのディジタル値)と周波数差検出部3の出力であるOSC2−OSC1との差分を取り出すようにしている。温度設定値は、水晶発振器の出力を得るための第1の水晶振動子10に対応するOSC1の値が温度変化により変動しにくい温度を選択することが好ましい。この温度は図8に示すOSC1と温度との関係カーブにおいて例えばボトム部分に対応する50℃が選択される。なお、OSC1の値が温度変化により変動しにくい温度という観点では10度を設定温度としてもよく、この場合には室温よりも低い場合もあるので、加熱部及びペルチェ素子などの冷却部と組み合わせた温調部を設けることになる。
そして加算器6の後段には積分回路部に相当するループフィルタ61が設けられている。
更にループフィルタ61の後段には、PWM内挿部62が設けられている。PWM内挿部62は、14ビットのディジタル信号(−213から+213 までの2の補数)を一定時間のパルス信号で表現する変換を行う。例えば最小Hパルス幅が10nsecの場合には、214 *10−9 =16.384msecを一定時間とし、その間のパルス数ディジタル信号を表現する。具体的には次のように表される。14ビットのディジタル値がゼロのときには、16.384msec間のHパルス数は213 個である。14ビットのディジタル値が−213のときには、16.384msec間のHパルス数はゼロ個である。14ビットのディジタル値が213 −1のときには、16.384msec間のHパルス数は214 −1個である。
PWM内挿部62の後段には、ローパスフィルタ(LPF)63が設けられ、PWM内挿部62からの出力を平均化して当該出力であるパルス数に応じた直流電圧を出力する。即ち、この例ではPWM内挿部62及びローパスフィルタ63は、ディジタル値をアナログ値に変換するためのものであり、これらを用いることに代えてディジタル/アナログ変換器を用いてもよい。
ローパスフィルタ(LPF)63の後段には、加熱部に相当するヒータ回路5が設けられている。このヒータ回路5は、図10に示すようにローパスフィルタ63の出力端がベースに接続されると共に電源部Vcからコレクタに電圧が供給されるトランジスタ64とこのトランジスタ64のエミッタとアースとの間に接続された抵抗65とからなる。トランジスタ64のベースに供給される電圧と、トランジスタ64の消費電力及び抵抗65の消費電力との合計電力と、の関係は直線関係になっており、このため既述の温度データと温度設定値との差分に応じて発熱温度が直線的に制御される。この例では、トランジスタ64も発熱部の一部であることから、ヒータとヒータ制御回路とが兼用されたヒータ回路5という表現を用いている。
図11は、図1に示す発振装置の概略構造を示す図である。51は容器、52は容器51内に設けられたプリント基板である。プリント基板52の上面側には、水晶振動子10、20と、発振回路1、2及び周波数差検出部3などを含むディジタル処理を行う回路をワンチップ化した集積回路部300及び制御回路部200などが設けられている。またプリント基板52の下面側には、例えば水晶振動子10、20と対向する位置にヒータ5が設けられ、このヒータ5の発熱により、水晶振動子10、20が設定温度に維持されている。
またこの実施の形態に係る発振装置は、既述のように制御回路部200に入力される基準クロックの温度補償を行う温度補償部も備えている。即ちこの例の発振装置は、OCXOとTCXOとを組み合わせたものである。この温度補償部は、水晶振動子10、20、発振回路1、2、周波数差検出部3及び補正値演算部4からなる。即ち、周波数差検出部3は、ヒータ5の温度制御を行う部分の一部であるが、前記温度補償部の一部でもある。
PLLのループフィルタ34にて得られた変動温度分の周波数ずれ情報は、図1に示す補正値取得部である補正値演算部4に入力され、ここで周波数の補正値が演算される。周波数ずれ情報については既に述べたとおりである。
図12は、OSC1と温度との関係(図8と同じである)、及び(OSC2−OSC1)と温度との関係を示しており、(OSC2−OSC1)が温度に対して直線関係にあることが分かる。従って(OSC2−OSC1)は基準温度からの温度変動ずれ分に対応していることが分かる。そして一般的には水晶振動子の周波数温度特性は3次関数で表わされると言われていることから、この3次関数による周波数変動分を相殺する周波数補正値と(OSC2−OSC1)との関係を求めておけば、(OSC2−OSC1)の検出値に基づいて周波数補正値が求まることになる。
この実施形態の発振装置は、既述のように第1の発振回路1から得られる周波数信号(f1)を図1に示す制御回路部200の基準クロックとして用いており、この基準クロックに周波数温度特性が存在することから、基準クロックの周波数に対して温度補正を行おうとしている。このため先ず基準温度で正規化した、温度とf1との関係を示す関数を予め求めておき、この関数によるf1の周波数変動分を相殺するための関数を図13のように求めておく。なお詳しくは、前記関数のf1は、基準温度における周波数の変動率である(f1−f1r)/f1r=OSC1である。従って図13の縦軸は−OSC1である。この例では温度補正を高精度に行うために前記関数を例えば9次関数として定めている。
既述のように温度と(OSC2−OSC1)とが直線関係にあることから、図13の横軸は、(OSC2−OSC1)の値としているが、(OSC2−OSC1)の値をそのまま用いると、この値を特定するためのデータ量が多くなることから、次のようにして(OSC2−OSC1)の値を正規化している。即ち、発振装置が実際に使用されるであろう上限温度及び下限温度を定めておき、上限温度のときの(OSC2−OSC1)の値を+1、下限温度のときの(OSC2−OSC1)の値を−1として取り扱っている。この例では図13に示すように−30ppmを+1とし、+30ppmを−1としている。
水晶振動子における温度に対する周波数特性は、この例では9次の多項近似式として取り扱っている。具体的には、水晶振動子の生産時に(OSC2−OSC1)と温度との関係を実測により取得し、この実測データから、温度に対する周波数変動分を相殺する、温度と−OSC1との関係を示す補正周波数曲線を導き出し、最小二乗法により9次の多項近似式係数を導き出している。そして多項近似式係数を予めメモリ30(図1参照)に記憶しておき、補正値演算部4は、これら多項近似式係数を用いて(1)式の演算処理を行う。
Y=P1・X +P2・X +P3・X +P4・X +P5・X +P6・X +P7・X +P8・X +P9・X ………(1)
(1)式においてXは周波数差検出情報、Yは補正データ、P1〜P9は多項近似式係数である。
ここで、Xは図1に示す周波数差検出部3により得られた値、即ち図2に示す平均化回路37により得られた値(OSC2−OSC1)である。
補正値演算部4にて演算を実行するためのブロック図の一例を図11に示す。図14中、401〜409は(1)式の各項の演算を行う演算部、400は加算部、410は丸め処理を行う回路である。なお、補正値演算部4は、例えば1個の掛け算部を用い、この掛け算部にて9乗項の値を求め、次に当該掛け算部にて8乗項の値を求めるといった具合に、当該掛け算部をいわば使いまわして最終的に各乗項の値を加算するようにしてもよい。また補正値の演算式は9次の多項近似式を用いることに限定されるものではなく、要求される精度に応じた次数の近似式を用いてもよい。
次に上述の実施の形態の全体の動作についてまとめる。この発振装置の水晶発振器に着目すると、水晶発振器の出力は第1の発振回路1から出力される周波数信号に相当する。そしてヒータ5により水晶振動子10、20の置かれる雰囲気が設定温度になるように加熱されている。第1の水晶振動子10及び第1の発振回路1は、水晶発振器の出力である周波数信号を生成するものであるが、第2の水晶振動子20及び第2の発振回路2と共に温度検出部としての役割を持っている。これら発振回路1、2から各々得られる周波数信号の周波数差に対応する値OSC2−OSC1は、既述のように温度に対応し、加算部にて温度設定値(例えば50℃におけるOSC2−OSC1の値)との差分が取り出される。
この差分はループフィルタ61で積分され、その後直流電圧に変換されてヒータ5の制御電力が調整される。図9に示す特性図からわかるように、50℃のときのOSC1の値を−1.5×10とすると、加算器6の出力は、温度が50℃よりも低いときには正の値であって、温度が下がるに従って大きくなる。従って水晶振動子10、20が置かれている雰囲気温度が50℃よりも低くなるほど、ヒータ5の制御電力が大きくなるように作用する。また雰囲気温度が50℃よりも高いときには負の値になり、温度が上がるにつれてその絶対値が大きくなる。従って温度が50℃よりも高くなるほど、ヒータの供給電力が小さくなるように作用する。このため水晶振動子10、20が置かれる雰囲気の温度は設定温度である50℃に維持されようとするので、発振出力である第1の発振器1からの出力周波数が安定する。この結果、第1の発振器1からの出力をクロック信号として用いている制御回路部200において、位相比較部205に供給される参照信号の周波数が安定するので、発振装置(周波数シンセサイザ)の出力である電圧制御発振器100からの出力周波数も安定する。
一方、周波数差検出部3からの出力(OSC2−OSC1)は補正値演算部4に入力され、既述の(1)式の演算が実行されて温度補正データである周波数補正分が得られる。(1)式の演算は、例えば図13に示す特性図において、周波数差検出部3の出力値に基づいて得られた値に対応する補正周波数曲線の縦軸の値を求める処理である。
図1に示すように第1の水晶振動子11及び第2の水晶振動子12は共通の水晶片Xbを用いて構成され、互いに熱的に結合されていることから、発振回路11、12の周波数差は、環境温度に極めて正確に対応した値であり、従って周波数差検出部3の出力は、環境温度と基準温度(この例では25℃)との温度差情報である。第1の発振回路11の出力される周波数信号f1は制御部200のメインクロックとして使用されるものであることから、補正値演算部4にて得られた補正値は、温度が25℃からずれたことによるf1の周波数ずれ分に基づく制御部200の動作への影響を相殺するために制御部200の動作を補償するための信号として用いられる。この結果、本実施形態の発振装置1の出力である電圧制御発振器100の出力周波数が温度変動にかかわらず安定したものとなる。
以上のように上述実施の形態によれば、水晶振動子10、20の各々から得られる周波数信号の周波数差に相当する値の両者の差分を温度検出値として用い、水晶振動子10、20の雰囲気温度を管理しているヒータ5を前記温度検出値に基づいて制御している。このため雰囲気温度を設定温度に高精度に維持することができ、水晶発振器の出力(第1の発振器1の出力)が安定する。
更にこの実施の形態では水晶発振器の出力を発振装置である周波数シンセサイザの発振出力を作成する制御回路部200にクロック信号として供給し、そして周波数差に相当する値を用いて前記クロック信号を補正している。即ち、周波数シンセサイザは、補正値演算部4にて得られた補正値を、DDS201の周波数設定値に加算して、DDS201に入力されるメインクロック(f1)の温度補償を行っている。このように周波数シンセサイザがOCXOとTCXOとの両方の機能を備えることにより次の利点がある。メーカは周波数シンセサイザの使用温度範囲を定めているが、ユーザが使用温度範囲から外れた環境で周波数シンセサイザを使用した場合でも、出力周波数が安定している。またヒータによる温度設定値を高くして、使用温度範囲の上限値を高くしようとする場合には、ヒータの消費電力が大きくなりヒータ回路の規模も大きくなるが、TCXOの機能を用いることにより、ヒータの消費電力を抑えることができる利点がある。
図15及び図16は、温度と周波数偏差(基準温度における周波数に対する周波数変化分の割合)との関係を示す周波数温度特性のグラフを示しており、ZTC(頂点の温度、この例ではボトムの温度)を、ヒータ回路5による雰囲気の設定温度としている例に対応する。この例ではZTCが80℃であり、ヒータ回路5による温度制御範囲は80±5℃であり、製品の使用温度範囲は70℃である。この場合、OCXOだけの機能に頼って製品の使用温度範囲を85℃まで広げようとすると、例えばZTCが95℃である水晶片を用い、95℃を設定温度とすればよい。しかしこのようにすると、ヒータ回路5の規模が大きくなり、また消費電力も大きくなる。
これに対して上述実施の形態のようにTCXOの機能を備えていれば、雰囲気温度が85℃を越えても、図15に示すように周波数設定値の温度補正がされることから、ヒータ回路5の規模を大きくすることが避けられる利点がある。
ここでループフィルタ61はループゲイン及びダンピングを決定するための回路であり、ループゲイン及びダンピングは夫々ディジタル値によって係数を調整できる。ループ係数をディジタル化することで構造変更による熱伝達係数が変わっても、構造ごとに係数を容易に調整することが可能である。
上述の例では、水晶振動子10、20の各々の3次オーバートンを出力周波数として取り出しており、オーバートーンの周波数温度特性は温度変化が大きいことから、これらの差分に対応する値は、温度に対して感度がよいということができ、好ましい態様である。しかし水晶振動子10、20の各基本波を出力周波数として取り出してこれらの差分に対応する値を温度値として用いてもよい。あるいは水晶振動子10、20の一方及び他方から夫々基本波、オーバートーンを取り出し、これらの差分に対応する値を温度値として取り扱ってもよい。
また周波数差検出情報を求めるために、f1とf2との差分周波数に対応するパルスを作成し、DDS回路部から出力された鋸波信号を前記パルスによりラッチ回路でラッチし、ラッチされた信号値を積分してその積分値を前記周波数差として出力すると共に、この出力とf1rとf2rとの差分に対応する値との差分を取り出して、前記DDS回路部に入力してPLLを構成している。特許文献1のようにf1、f2をカウントしてその差分を取得する場合には、カウント時間が検出精度に直接影響するが、このような構成では、このような問題がないため検出精度が高い。実際に両者の方式をシミュレーションにより比較し、周波数をカウントする方式においては200msのカウント時間を設定したところ、検出精度について本実施形態の方式の方が約50倍高いという結果を得た。
周波数差検出部3は、f1とf1rとの差分に対応する値と、f2とf2rとの差分に対応する値と、の差分値に対応する値として、(f1−f1r)と(f2−f2r)との差分値そのものを用いてもよく、この場合には、図7のグラフが活用されて温度が求められることになる。
上述の実施形態において、図8から図10の説明では、周波数の変化分を「ppm」単位で表示しているが、実際のデジタル回路では全て2進数での扱いとなるため、DDS回路36の周波数設定精度は構成ビット数で計算され、例えば34ビットである。一例を挙げると、図1に示す制御回路部200に含まれるDDS回路部201に10MHzのクロックを供給する場合においてこのクロックの変動周波数が100Hzの場合
〔変動比率計算〕
100Hz/10MHz=0.00001
〔ppm換算〕
0.00001*1e6=10〔ppm〕
〔DDS設定精度換算〕
0.00001*2^34≒171,799〔ratio−34bit(仮称)〕となる。
上記の構成の場合、前記周波数設定精度は次の(2)式で表わされる。
1×〔ratio−34bit〕=10M〔Hz〕/2^34≒0.58m〔Hz/bit〕 ……(2)
従って100〔Hz〕/0.58m〔Hz/bit〕≒171,799〔bit(ratio−34bit)〕となる。
また、0.58mHzは10MHzに対して、次の(3)式のように計算できる。
0.58m〔Hz〕/10M〔Hz〕*1e9≒0.058〔ppb〕…(3)
従って(2)、(3)式から、(4)式の関係が成り立つ。
1e9/2^34=0.058〔ppb/ratio−34bit〕…(4)
即ちDDS回路36で処理した周波数は消え、ビット数のみの関係となる。
更にまた上述の例では第1の水晶振動子10及び第2の水晶振動子20とは共通の水晶片Xbを用いているが、水晶片Xbが共通化されていなくてもよい。この場合、例えば共通の筐体の中に第1の水晶振動子10及び第2の水晶振動子20を配置する例を挙げることができる。このような構成によれば、実質同一の温度環境下に置かれるため、同様の効果が得られる。
周波数差検出部3のDDS回路部36の出力信号は、鋸波に限ることなく、時間と共に信号値が増加、減少を繰り返す周波数信号であればよく、例えば正弦波であってもよい。 また周波数差検出部3としては、f1とf2とをカウンタによりカウントし、そのカウント値の差分値からΔfrに相当する値を差し引いて、得られたカウント値に対応する値を出力するようにしてもよい。
以上の実施の形態では、第1の水晶振動子10及び第1の発振回路1は温度検出値を取り出す役割と水晶発振器の出力を作成する役割とを持っている。即ち発振回路1は温度検出のための発振回路と、水晶発振器の出力用の発振回路とを共用している。しかし本発明は、例えば水晶振動子を3個用意すると共に発振回路を3個用意し、例えば図1の構成において、第3の水晶振動子と当該水晶振動子に接続された第3の発振回路とを用意し、第3の発振回路の出力を水晶発振器の出力とし、残りの第1の発振回路及び第2の発振回路の発振出力を周波数差検出部に入力し温度検出値を得るようにしてもよい。この場合、OCXOとTCXOとを組み合わせたものとするならば、第3の水晶発振回路の出力がDDS201のクロックとして使用されることになる。
図1及び図15に示す発振装置である周波数シンセサイザは、水晶振動子10、20、発振回路1、2、周波数差検出部3、加算部6〜ヒータ回路5に至る部分からなる、本発明の実施形態である水晶発振器を利用して構成されている。しかし、本発明は、周波数シンセサイザとして構成することに限られず、第1の発振回路1の発振出力を、本発明の水晶発振器の出力とする構成、つまり制御回路部200を用いない構成としてもよい。
即ち、図1の実施形態では、発振出力用の水晶振動子10に接続された発振回路1の発振出力に基づいて、つまり当該発振回路1の発振出力を、本体回路部に相当する制御回路部200のDDS201のクロックとして使用し、発振装置の出力信号としては、VCXO100の出力が相当する。しかし本発明は、発振出力用の水晶振動子10に接続された発振回路1の発振出力がそのまま発振装置の出力信号としてもよいということである。
また本発明は、加熱部に相当するヒータ回路5の電力制御を行うにあたって、第2の水晶振動子20、周波数差検出部3を用いる代わりにサーミスタなどの温度検出部を用い、この温度検出部の温度検出値と温度設定値との偏差分に基づいて電力制御を行うようにしてもよい。そしてこの場合には、補正値演算部4に相当する演算部では、図13に相当するアルゴリズムの横軸が当該温度検出部の温度検出値となる。なお、OCXOにおけるヒータ回路5を制御するための温度検出部と、TCXOの機能部分の一部である温度検出部とは、異なっていてもよい。
そして発振装置は、周波数シンセサイザとして構成せずに、図17に示すように発振出力用の水晶振動子10の第1の発振回路1の出力f1を発振装置の出力とする場合には、周波数設定信号は、例えば第1の発振回路1に供給される制御電圧に相当するので、補正値演算部にて求められた補正値は、制御電圧の補正量として加算される。例えばコルピッツ発振回路であれば、可変容量素子に供給する制御電圧に応じて当該可変容量素子の容量が決まり、これにより共振点が決まることから、図13に対応するデータに基づいて、雰囲気温度が基準温度からずれたことによる発振周波数の変動分を制御電圧側で補償することになる。
1 第1の発振回路
2 第2の発振回路
10 第1の水晶振動子
20 第2の水晶振動子
3 周波数差検出部
31 フリップフロップ回路
32 ワンショット回路
33 ラッチ回路
34 ループフィルタ
35 加算部
36 DDS回路部
4 補正値演算部(補正値取得部)
5 ヒータ回路
6 加算部
100 電圧制御発振器
200 制御回路部

Claims (9)

  1. 発振出力用の水晶振動子に接続された発振回路の発振出力に基づいて発振装置の出力信号を得る発振装置において、
    前記水晶振動子が置かれる雰囲気の温度の一定化を図るための加熱部と、
    水晶片に第1の電極を設けて構成した第1の水晶振動子と、
    水晶片に第2の電極を設けて構成した第2の水晶振動子と、
    これら第1の水晶振動子及び第2の水晶振動子に夫々接続された第1の発振回路及び第2の発振回路と、
    第1の発振回路の発振周波数をf1、基準温度における第1の発振回路の発振周波数をf1r、第2の発振回路の発振周波数をf2、基準温度における第2の発振回路の発振周波数をf2rとすると、f1とf1rとの差分に対応する値と、f2とf2rとの差分に対応する値と、の差分値に対応する値を温度検出値として求める周波数差検出部と、
    水晶振動子が置かれる雰囲気の温度の温度設定値と前記温度検出値との偏差分を取り出す加算部と、
    この加算部にて取り出された偏差分に基づいて前記加熱部に供給される電力を制御する回路部と、
    水晶振動子が置かれる雰囲気の温度を検出する温度検出部と、
    この温度検出部にて検出された温度検出値と、前記温度検出値と前記発振出力用の水晶振動子に接続された発振回路の発振出力の周波数補正値との関係と、に基づいて、前記出力信号の周波数の設定値を補正する手段と、を備えたことを特徴とする発振装置。
  2. 前記温度検出部は、前記第1の水晶振動子、前記第2の水晶振動子、前記第1の発振回路、前記第2の発振回路及び前記周波数差検出部からなることを特徴とする請求項1記載の発振装置。
  3. f1とf1rとの差分に対応する値と、f2とf2rとの差分に対応する値と、の差分値に対応する値は、{(f2−f2r)/f2r}−{(f1−f1r)/f1r}であることを特徴とする請求項1または2に記載の発振装置。
  4. 前記発振出力用の水晶振動子と、第1の水晶振動子及び第2の水晶振動子の一方と、が共用されていることを特徴とする請求項1ないし3のいずれか一項に記載の水晶発振器。
  5. 第1の発振回路及び第2の発振回路は各々オーバートーンを発振出力とすることを特徴とする請求項1ないし4のいずれか一項に記載の発振装置。
  6. 前記周波数差検出部は、
    前記f1とf2との差分に対応する周波数のパルスを作成するパルス作成部と、入力された直流電圧の大きさに応じた周波数で時間と共に信号値が増加、減少を繰り返す周波数信号を出力するDDS回路部と、このDDS回路部から出力された周波数信号を前記パルス作成部にて作成されたパルスによりラッチするラッチ回路と、このラッチ回路にてラッチされた信号値を積分してその積分値を前記差分値に対応する値として出力するループフィルタと、このループフィルタの出力とf1rとf2rとの差分に対応する値との差分を取り出して、前記DDS回路部に入力値とする加算部と、を備えたことを特徴とする請求項1ないし5のいずれか一項に記載の発振装置。
  7. 発振出力用の水晶振動子に接続された発振回路の発振出力をクロック信号とし、PLLを含む発振装置の本体回路部と、を備え、
    前記出力信号の周波数の設定値を補正する手段は、前記本体回路部に入力される周波数設定信号を補正するように構成されていることを特徴とする発振装置。
  8. 水晶振動子に接続された発振回路の発振出力に基づいて発振装置の出力信号を得る発振装置において、
    前記水晶振動子が置かれる雰囲気の温度の一定化を図るための加熱部と、
    前記水晶振動子が置かれる雰囲気の温度を検出する第1の温度検出部と、
    この第1の温度検出部の温度検出値と温度設定値とに基づいて前記加熱部に供給される電力を制御する回路部と、
    前記水晶振動子が置かれる雰囲気の温度を検出する第2の温度検出部と、
    この第2の温度検出部の温度検出値と基準温度との偏差に対応する信号に基づいて、当該周波数の設定信号を補正する手段と、を備えたことを特徴とする発振装置。
  9. 前記第1の温度検出部は第2の温度検出部を共用していることを特徴とする請求項8記載の発振装置。
JP2012166021A 2011-08-01 2012-07-26 水晶発振器 Active JP5931628B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2012166021A JP5931628B2 (ja) 2011-08-01 2012-07-26 水晶発振器
US13/562,270 US8729978B2 (en) 2011-08-01 2012-07-30 Quartz-crystal controlled oscillator
TW101127626A TWI509978B (zh) 2011-08-01 2012-07-31 晶體控制振盪器以及震盪裝置
CN201210272235.7A CN102916652B (zh) 2011-08-01 2012-08-01 晶体振荡器

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011168764 2011-08-01
JP2011168764 2011-08-01
JP2012166021A JP5931628B2 (ja) 2011-08-01 2012-07-26 水晶発振器

Publications (2)

Publication Number Publication Date
JP2013051676A true JP2013051676A (ja) 2013-03-14
JP5931628B2 JP5931628B2 (ja) 2016-06-08

Family

ID=48013358

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2012166032A Active JP6092540B2 (ja) 2011-08-01 2012-07-26 水晶発振器
JP2012166021A Active JP5931628B2 (ja) 2011-08-01 2012-07-26 水晶発振器

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2012166032A Active JP6092540B2 (ja) 2011-08-01 2012-07-26 水晶発振器

Country Status (2)

Country Link
JP (2) JP6092540B2 (ja)
TW (1) TWI509978B (ja)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014017804A (ja) * 2012-06-13 2014-01-30 Toshiba Corp 発振周波数調整回路
JP2014200011A (ja) * 2013-03-29 2014-10-23 日本電波工業株式会社 発振装置
US9019027B2 (en) 2012-09-27 2015-04-28 Nihon Dempa Kogyo Co., Ltd. Oscillation device
JP2015119378A (ja) * 2013-12-19 2015-06-25 日本電波工業株式会社 高安定発振器
US9100023B2 (en) 2013-03-29 2015-08-04 Nihon Dempa Kogyo Co., Ltd. Piece-crystal oscillator and oscillation device
US9154139B2 (en) 2013-01-31 2015-10-06 Nihon Dempa Kogyo Co., Ltd. Crystal controlled oscillator and oscillating device
WO2015151870A1 (ja) * 2014-03-31 2015-10-08 日本電波工業株式会社 発振装置
US9160343B2 (en) 2012-11-15 2015-10-13 Nihon Dempa Kogyo Co., Ltd. Heater device and oscillation apparatus
US9231599B2 (en) 2012-12-10 2016-01-05 Nihon Dempa Kogyo Co., Ltd. Oscillation apparatus
US9252781B2 (en) 2013-07-29 2016-02-02 Nihon Dempa Kogyo Co., Ltd. Oscillator
US10305491B2 (en) 2015-05-28 2019-05-28 Nihon Dempa Kogyo Co., Ltd. Oscillator
US10447205B2 (en) 2014-08-20 2019-10-15 Nihon Dempa Kogyo Co., Ltd. Oscillation device and method for manufacturing the oscillation device

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015061171A (ja) 2013-09-18 2015-03-30 日本電波工業株式会社 発振装置
JP6288777B2 (ja) * 2014-06-25 2018-03-07 日本電波工業株式会社 発振装置
JP6567403B2 (ja) 2015-12-09 2019-08-28 株式会社メガチップス 周波数校正回路および周波数校正方法
JP2020145528A (ja) * 2019-03-05 2020-09-10 セイコーエプソン株式会社 発振器、電子機器及び移動体

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04363913A (ja) * 1990-09-28 1992-12-16 Nec Corp 温度補償発振器および温度検出装置
JPH098551A (ja) * 1995-06-20 1997-01-10 Fujitsu Ltd 高安定発振回路
JPH09270706A (ja) * 1996-04-03 1997-10-14 Yaesu Musen Co Ltd Pll回路
JP2002261604A (ja) * 2000-12-22 2002-09-13 Ando Electric Co Ltd Pll回路、及びpll回路の制御方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5643806A (en) * 1979-09-17 1981-04-22 Seikosha Co Ltd Thermoregulator
JPS63312704A (ja) * 1987-06-15 1988-12-21 Kinseki Kk ディジタル温度補償水晶発振器
JPH02170607A (ja) * 1988-12-22 1990-07-02 Nippon Dempa Kogyo Co Ltd 周波数温度補償水晶発振器
JPH0468903A (ja) * 1990-07-07 1992-03-04 Asahi Denpa Kk 温度検知機能を有する発振器および水晶発振素子並びに温度検出方法
US5604468A (en) * 1996-04-22 1997-02-18 Motorola, Inc. Frequency synthesizer with temperature compensation and frequency multiplication and method of providing the same
JP4796414B2 (ja) * 2006-03-14 2011-10-19 日本電波工業株式会社 水晶発振器
WO2008048563A2 (en) * 2006-10-17 2008-04-24 Marvell World Trade Ltd. Crystal oscillator emulator
CN201113979Y (zh) * 2007-09-26 2008-09-10 东莞市金振电子有限公司 高频高精度锁相恒温晶体振荡器
ATE531124T1 (de) * 2009-04-07 2011-11-15 Swatch Group Res & Dev Ltd Verstärkerschaltkreis mit schwachem phasengeräusch
CN101610081B (zh) * 2009-07-16 2012-05-09 广东大普通信技术有限公司 温度补偿晶体振荡器
CN101777870B (zh) * 2009-12-24 2012-06-27 广东大普通信技术有限公司 恒温控温晶体振荡器

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04363913A (ja) * 1990-09-28 1992-12-16 Nec Corp 温度補償発振器および温度検出装置
JPH098551A (ja) * 1995-06-20 1997-01-10 Fujitsu Ltd 高安定発振回路
JPH09270706A (ja) * 1996-04-03 1997-10-14 Yaesu Musen Co Ltd Pll回路
JP2002261604A (ja) * 2000-12-22 2002-09-13 Ando Electric Co Ltd Pll回路、及びpll回路の制御方法

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014017804A (ja) * 2012-06-13 2014-01-30 Toshiba Corp 発振周波数調整回路
US9019027B2 (en) 2012-09-27 2015-04-28 Nihon Dempa Kogyo Co., Ltd. Oscillation device
US9160343B2 (en) 2012-11-15 2015-10-13 Nihon Dempa Kogyo Co., Ltd. Heater device and oscillation apparatus
US9231599B2 (en) 2012-12-10 2016-01-05 Nihon Dempa Kogyo Co., Ltd. Oscillation apparatus
US9154139B2 (en) 2013-01-31 2015-10-06 Nihon Dempa Kogyo Co., Ltd. Crystal controlled oscillator and oscillating device
US9225342B2 (en) 2013-03-29 2015-12-29 Nihon Dempa Kogyo Co., Ltd. Oscillation device
JP2014200011A (ja) * 2013-03-29 2014-10-23 日本電波工業株式会社 発振装置
US9100023B2 (en) 2013-03-29 2015-08-04 Nihon Dempa Kogyo Co., Ltd. Piece-crystal oscillator and oscillation device
TWI566515B (zh) * 2013-07-29 2017-01-11 日本電波工業股份有限公司 振盪裝置
US9252781B2 (en) 2013-07-29 2016-02-02 Nihon Dempa Kogyo Co., Ltd. Oscillator
JP2015119378A (ja) * 2013-12-19 2015-06-25 日本電波工業株式会社 高安定発振器
JP2015201840A (ja) * 2014-03-31 2015-11-12 日本電波工業株式会社 発振装置
WO2015151870A1 (ja) * 2014-03-31 2015-10-08 日本電波工業株式会社 発振装置
US10361704B2 (en) 2014-03-31 2019-07-23 Nihon Dempa Kogyo Co., Ltd. Oscillator
US10447205B2 (en) 2014-08-20 2019-10-15 Nihon Dempa Kogyo Co., Ltd. Oscillation device and method for manufacturing the oscillation device
US10305491B2 (en) 2015-05-28 2019-05-28 Nihon Dempa Kogyo Co., Ltd. Oscillator

Also Published As

Publication number Publication date
TWI509978B (zh) 2015-11-21
JP5931628B2 (ja) 2016-06-08
TW201308877A (zh) 2013-02-16
JP2013051677A (ja) 2013-03-14
JP6092540B2 (ja) 2017-03-08

Similar Documents

Publication Publication Date Title
JP5931628B2 (ja) 水晶発振器
JP5893924B2 (ja) 発振装置
JP5946737B2 (ja) 発振装置
JP5782724B2 (ja) 発振装置
JP6045961B2 (ja) 水晶発振器及び発振装置
JP5863394B2 (ja) 発振装置
CN102916652B (zh) 晶体振荡器
TWI533594B (zh) 振盪裝置
JP2014068316A5 (ja)
JP2013232836A (ja) 発振装置
JP6055708B2 (ja) 水晶発振器及び発振装置
JP2013143601A (ja) 発振装置
JP6033156B2 (ja) 発振装置
JP2016167889A (ja) 発振装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150413

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151222

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160329

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160427

R150 Certificate of patent or registration of utility model

Ref document number: 5931628

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250