JP2012162506A - フラーレン誘導体並びにその溶液及びその膜 - Google Patents

フラーレン誘導体並びにその溶液及びその膜 Download PDF

Info

Publication number
JP2012162506A
JP2012162506A JP2011026156A JP2011026156A JP2012162506A JP 2012162506 A JP2012162506 A JP 2012162506A JP 2011026156 A JP2011026156 A JP 2011026156A JP 2011026156 A JP2011026156 A JP 2011026156A JP 2012162506 A JP2012162506 A JP 2012162506A
Authority
JP
Japan
Prior art keywords
fullerene
group
fullerene derivative
solvent
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011026156A
Other languages
English (en)
Other versions
JP5792964B2 (ja
Inventor
Hiroyuki Hayashi
寛幸 林
Kimitoku Kawakami
公徳 川上
Masahiko Hashiguchi
昌彦 橋口
Ken Kokubo
研 小久保
Naohiko Ikuma
直彦 伊熊
Miyato Kashiwabara
宮人 柏原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP2011026156A priority Critical patent/JP5792964B2/ja
Publication of JP2012162506A publication Critical patent/JP2012162506A/ja
Application granted granted Critical
Publication of JP5792964B2 publication Critical patent/JP5792964B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

【課題】エステル溶媒に対する高い溶解性に加えて、アルカリ溶媒への溶解性を有しているとともに、安価な原料のみで簡便に製造できるフラーレン誘導体、その溶液、及びその膜を提供する。
【解決手段】下式(I)で表わされるフラーレン誘導体。
Figure 2012162506

(式中、Rは1以上3以下の水酸基を含み且つ水酸基以外の置換基を有していてもよい炭素数6〜18の芳香族性を有する炭化水素基を表し、aは1以上15以下のRの平均付加数を表し、bは0以上4以下の水素原子(H)の平均付加数を表し、かつa>bを満たし、丸で示される構造はフラーレン骨格を表す。)
【選択図】なし

Description

本発明は、新規のフラーレン誘導体並びにその溶液、及びその膜に関する。
1990年にC60の大量合成法が確立されて以来、フラーレンに関する研究が精力的に展開されている。その結果、溶解性や電子受容性、光吸収特性などを制御した数多くのフラーレン誘導体が合成され、その多様な機能が明らかにされてきた。それに伴い、有機半導体等の電子材料、機能性光学材料、従来のアモルファス系炭化水素膜に代わるコーティング材料等、様々な用途向けに開発が進められている。
ところで、フラーレン誘導体を電子材料や光学材料、金属錯体の配位子等に利用したり、他のフラーレン誘導体の中間体として使用するためには、フラーレン誘導体が有機溶媒に対して高溶解性を示すことが好ましい。
フラーレンに溶解性を付与するために、炭化水素類などの有機基を付加する反応がいくつか報告されている。例えば、非特許文献1には、フラーレン骨格にアリール基を付加する反応として、グリニャール(Grignard)試薬等の有機金属試薬と銅錯体とを用いる方法が提案されている。
また、非特許文献1記載の反応を応用して、トルエン等の芳香族炭化水素系溶媒、クロロホルム等のハロゲン系溶媒、ヘキサン等の脂肪族炭化水素系溶媒等に溶解性を示すフラーレン誘導体が開発されている。
さらには、安全面や揮発性等の観点から、取扱が容易で、一般に工業用途で使用されている、プロピレングリコール−1−モノメチルエーテル−2−アセテート(以下適宜「PGMEA」という場合がある。)等に代表されるエステル溶媒に高い溶解性を示すフラーレン誘導体も開発されている(特許文献1参照)。
また、安価な試薬のみを用いたフラーレン誘導体の合成方法として、ベンゼン溶液中で塩化アルミニウムを作用させることにより、フラーレン骨格に複数のフェニル基を付加させることができる手法がオラー等によって報告され(非特許文献2)、中村等によってその反応の改良及び構造決定が為されている(非特許文献3)。さらに、この反応を改良することで、PGMEA等のエステル溶媒に対する高い溶解性に加えて、アルカリ溶媒への溶解性を有しているとともに、安価な原料のみで簡便に製造できるフラーレン誘導体並びにその溶液、及びその膜を提供することを可能とした(特許文献2)。
また、他の安価な試薬のみを用いたフラーレン合成法として、塩化鉄(III)を作用さ
せることにより、フラーレン骨格にハロゲン化アリールを付加させることができる手法が報告されている(特許文献3)。
特開2006−56878号公報 特開2010−59110号公報 特開2009−132680号公報
J.Am.Chem.Soc.,1996, 118, 12850−12851 J.Am.Chem.Soc.,1991, 113, 9387−9388 Angew.Chem.Int.Ed,2007, 46, 3513
しかしながら、特許文献1に記載の方法では、グリニャール(Grignard)試薬の調製を含めた煩雑な工程があり、また高価な原料を大量に使用するため、製造コストの観点で十分ではなかった。また、特許文献2に記載の方法では、エステル溶媒やアルカリ溶媒に高い溶解性を示すものの、フラーレン誘導体に付加したプロトンが酸化されやすいという性質を有するため、空気下での安定性に問題がある。また、特許文献3の記載の方法では、フラーレン誘導体にハロゲン原子が導入されるが、有機半導体等の電子材料分野の応用においてはハロゲン原子の存在が化学的汚染(コンタミネーション)の原因となりうるため、ハロゲン原子を含まないフラーレン誘導体の開発が望まれている。更に、特許文献3記載の方法を用いて、ハロゲン置換されていない芳香族炭化水素を導入する場合には、後述する金属化合物との相互作用があり、生成物の精製・単離が困難であった。
本発明は、上述の課題に鑑みてなされたものである。即ち、PGMEAなどのエステル溶媒、アルカリ溶媒中でも高い酸化耐性を示すとともに、ハロゲン置換されていない芳香族炭化水素においても適用可能であり、かつ、安価な原料のみで簡便に製造できるフラーレン誘導体並びにその溶液、及びその膜を提供することを目的とする。
本発明者らは、上記課題を解決するべく鋭意検討した結果、特定の金属化合物と、ハロゲン置換されておらず、水酸基もしくは水酸基保護体を有する芳香族炭化水素を作用させ、酸化耐性の低いプロトンの導入を低減化させることに成功した。本発明のフラーレン誘導体は、ハロゲン原子が導入されず、PGMEA等のエステル溶媒、アルカリ溶媒に対して高い溶解性を示すだけでなく、高い酸化耐性を有している。さらに、このフラーレン誘導体は、安価な原料のみで、簡便に製造でき、反応後にキレート剤を用いることでハロゲンに置換されてない芳香族炭化水素にも適用できることを見出し、本発明を完成させた。
即ち、本発明の要旨は、下記式(I)で表わされることを特徴とするフラーレン誘導体に存する(請求項1)。
Figure 2012162506
(式(I)において、
は1以上3以下の水酸基を含み、且つ水酸基以外の置換基を有していてもよい炭素数6〜18の芳香族性を有する炭化水素基を表し、
aは1以上15以下のRの平均付加数を表し、
bは0以上4以下のH(水素原子)の平均付加数を表し、
かつa>bを満たし、
丸で示される構造はフラーレン骨格を表す。)
前記式(I)中の各Rが、1以上2以下の置換基を有することが好ましい(請求項2)
前記式(I)中の各Rに含まれる置換基が、炭素数1以上20以下の有機基を有することが好ましい(請求項3)
前記式(I)中の各Rにおける芳香族性を有する炭化水素基が、フェニル基であることが好ましい(請求項4)
前記式(I)中の、aが4以上12以下であることが好ましい(請求項5)
前記式(I)中のフラーレン骨格が、フラーレンC60及び/又はフラーレンC70であることが好ましい(請求項6)
前記式(I)中のフラーレン骨格が、フラーレンC60及び/又はフラーレンC70であるフラーレン誘導体と、前記式(I)中のフラーレン骨格が、フラーレンC60及びフラーレンC70以外のフラーレンであるフラーレン誘導体とを含むことが好ましい(請求項7)
本発明の別の要旨は、上述したフラーレン誘導体が溶媒に溶解してなることを特徴とする、フラーレン誘導体溶液に存する(請求項8)。
このとき、該溶媒が、エステル溶媒であることが好ましい(請求項9)
また、本発明の別の要旨は、上述したフラーレン誘導体を含むことを特徴とする、フラーレン誘導体膜に存する(請求項10)。
また、本発明の別の要旨は、フラーレン類と、周期律表8、9又は10族中の少なくとも1種の金属化合物と、H−R1で表される化合物を作用させた後、反応溶液に、アミノ
基またはカルボキシル基を少なくとも1つ以上有するキレート剤を添加することにより、作用させた金属化合物を除去することを特徴とする請求項1〜7記載のフラーレン誘導体の製造方法に存する(請求項11)。
本発明によれば、PGMEA等のエステル溶媒、アルカリ溶媒に対して高い溶解性を示すだけでなく、高い酸化耐性を有すると共に、安価な原料のみで簡便に製造できるフラーレン誘導体並びにその溶液及びその膜を提供することができる。
以下、本発明の実施の形態について詳細に説明するが、本発明は以下の実施の形態に限定されるものではなく、その要旨を逸脱しない範囲内で任意に変更して実施することができる。
[1.フラーレン誘導体]
[1−1.フラーレン誘導体の構造]
(フラーレン骨格)
本発明のフラーレン誘導体は、式(1)で表される。
Figure 2012162506
ここで、式(1)中において丸で表される「フラーレン骨格」とは、閉殻構造を有する炭素クラスターである。フラーレン骨格の炭素数は、通常60以上、130以下の偶数である。
フラーレン骨格の具体例としては、C60、C70、C76、C78、C82、C84、C90、C94、C96及びこれらよりも多くの炭素を有する高次の炭素クラスター等が挙げられる。
なお、本明細書では、炭素数i(ここでiは任意の自然数を表わす。)のフラーレン骨格を適宜、一般式「C」で表わす。
また、「フラーレン誘導体」とは、フラーレン骨格を有する化合物又は組成物の総称である。即ち、フラーレン誘導体には、フラーレン骨格上に置換基を有したものの他、フラーレン骨格の内部に金属や化合物等を内包するもの及び他の金属原子や化合物と錯体を形成したもの等も含まれる。また、フラーレン誘導体中には、上記式(1)で表される化合物が1種のみ含まれていてもよく、また上記(1)で表される化合物が2種以上、任意の比率及び組み合わせで含まれていてもよい。
本発明のフラーレン誘導体が有するフラーレン骨格は制限されないが、中でもフラーレンC60又はフラーレンC70が好ましく、フラーレンC60がより好ましい。フラーレンC60及びフラーレンC70はフラーレンの製造時に主生成物として得られるので、入手が容易であるという利点がある。即ち、本発明のフラーレン誘導体は、フラーレンC60又はフラーレンC70の誘導体であることが好ましく、フラーレンC60の誘導体であることがより好ましい。
また、フラーレン誘導体の製造コストの観点から、本発明のフラーレン誘導体は、式(I)中のフラーレン骨格が、フラーレンC60及び/又はフラーレンC70であるフラーレン誘導体と、式(I)中のフラーレン骨格が、フラーレンC60又はフラーレンC70以外であるフラーレン誘導体との組成物であることが好ましい。この場合、フラーレンC60誘導体、フラーレンC70誘導体、及びフラーレンC60及びフラーレンC70以外のフラーレン骨格の誘導体の混合比は任意であり、本発明のフラーレン誘導体の用途に応じて決定すれば良い。
フラーレン誘導体が上記組成物である場合の、前記式(I)におけるフラーレンC60及びフラーレンC70以外のフラーレン骨格としては、例えばC76、C78、C82、C84、C90、C94、C96等が挙げられる。フラーレンC60及びフラーレンC70以外のフラーレン骨格の誘導体は、本発明のフラーレン誘導体中に、1種のみ含有されていてもよく、また2種以上が任意の比率及び組み合わせで含有されていてもよい。
(炭化水素基R及びその平均付加数a)
式(I)において、Rは1以上3以下の水酸基を含み、且つ水酸基以外の置換基を有
していてもよい炭素数6以上、18以下の芳香族性を有する炭化水素基を表す。このRはフラーレン骨格に結合している。R内でのフラーレン骨格との結合位置は、特に制限がなく、用いる原料の反応性によって好ましい結合位置を各々決めることができる。例えば、R導入のための原料として2,6−ジメチルフェノールを用いた場合は、水酸基のパラ位の位置でフラーレン骨格と結合するもの等とすることができる。
上記、芳香族性を有する炭化水素基の炭素数としては、通常6以上であれば良く、また通常18以下、好ましくは16以下、より好ましくは12以下である。
芳香族性を有する炭化水素基の具体的な例としては、フェニル基;ビニルフェニル基、ジビニルフェニル基、トリビニルフェニル基等のビニルフェニル基;ペンタレニル基、インデニル基、ナフチル基、アズレニル基、ヘプタレニル基、ビフェニレニル基、as−インダセニル基、s−インダセニル基、アセナフチレニル基、フルオレニル基、フェナレニル基、フェナントレニル基、アントラセニル基、フルオラセニル基、アセフェナンチレニル基、アセアンチレニル基、トリフェニレニル基、ピレニル基、クリセニル基、テトラセニル基等の縮合多環炭化水素基が挙げられる。
これらの中で、原料調達の観点から、フェニル基、ナフチル基、アントラセニル基、フェナレニル基、ピレニル基が好ましく、合成の容易さから、フェニル基及びナフチル基が特に好ましい。
また上記芳香族性を有する炭化水素基と結合している水酸基の数は1以上3以下の整数である。中でも、更なる反応を行う際の反応制御が容易である観点ならびに、合成の容易さから水酸基の数は1であることが好ましい。
水酸基は、上記芳香族性を有する炭化水素基のいずれの位置に結合していてもよく、通常、結合位置は原料等に応じて適宜決定される。
また、本発明のフラーレン誘導体を安価に、より簡便に製造するためには、製造の際に後述する脱保護工程を省略することが好ましい。したがって、原料となる塩化鉄(III)
と水酸基との相互作用が低いことが好ましく、上記水酸基に加えて、水酸基以外の置換基を有していることが好ましい。
この置換基の種類としては、本発明に係るフラーレン誘導体の優れた物性を大幅に損なうものでなければ特に制限はないが、通常、有機基であることが好ましい。また芳香族性を有する炭化水素基に対する置換基の結合位置については特に制限はないが、特に、芳香族性を有する炭化水素基中において、水酸基と置換基との位置関係が、オルト位であることが好ましい。また、2種類以上の置換基がある場合は、水酸基の両オルト位にそれぞれ置換基が結合していることが好ましい。
置換基が有機基である場合、その炭素数は本発明の効果を著しく損なわない限り任意であるが、通常1以上であればよく、またその上限は、通常20以下、好ましくは10以下である。炭素数が多すぎる場合、原料入手が困難となる可能性がある。
また、置換基である有機基は、直鎖であってもよく、分岐を有していてもよい。また、該有機基は鎖状であっても環状であってもよい。さらに、該有機基は飽和結合のみを有していても良く、不飽和結合を有していてもよい。
置換基が有機基である場合の置換基の具体例としては、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、イソプロピル基、sec−ブチル基、iso−ブチル基、tert−ブチル基、tert−アミル基、2−メチルブチル基、3−メチルブチル基等の直鎖又は分岐状の鎖状アルキル基;シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基,シクロヘプチル基、ノルボニル基、トリシクロデカニル基、アダマンチル基等の環状アルキ
ル基;アリル基、クロチル基、シンナミル基等のアルケニル基;フェニル基、ビフェニル基、ナフチル基等のアリール基、メトキシ基、エトキシ基等のアルコキシ基;フェノキシ基等のアリーロキシ基等が挙げられる。
また、上記置換基が有機基である場合、上記置換基はさらに置換基を有していてもよい。ただし、上記置換基がさらに置換基を有する場合、置換基を含んだ上記置換基における全ての炭素数の合計が、上記条件を満たすことが好ましい。また、これらの置換基が更に一以上の置換基によって多重に置換されていてもよい。
これらの中でも、原料調達の観点及び環境負荷の観点から、上記置換基は直鎖又は分岐鎖状のアルキル基、環状アルキル基、アリール基であることが好ましく、特に、メチル基が好ましい。
各Rにおける置換基の数、すなわち芳香族性を有する炭化水素基に結合している置換基の数は任意であるが、原料調達の観点から通常1以上2以下であることが好ましい。なお、2以上の置換基を有する場合は、置換基の種類は1種類でもよく、また2種類以上の置換基が任意の組み合わせ及び比率で置換していてもよい。
の具体的な例としては、ヒドロキシフェニル基;メチルヒドロキシフェニル基、エチルヒドロキシフェニル基、プロピルヒドロキシフェニル基、ブチルヒドロキシフェニル基、イソプロピルヒドロキシフェニル基、tert-ブチルヒドロキシフェニル基等のア
ルキルヒドロキシフェニル基;シクロヘキシルヒドロキシフェニル基、ノルボニルヒドロキシフェニル基、アダマンチルヒドロキシフェニル基等の環状アルキルヒドロキシフェニル基;ジメチルヒドロキシフェニル基、ジエチルヒドロキシフェニル基、ジプロピルヒドロキシフェニル基、ジブチルヒドロキシフェニル基、ジイソプロピルヒドロキシフェニル基、ジtert-ブチルヒドロキシフェニル基等のジアルキルヒドロキシフェニル基;ジ
シクロヘキシルヒドロキシフェニル基、ジノルボニルヒドロキシフェニル基、ジアダマンチルヒドロキシフェニル基等の環状ジアルキルヒドロキシフェニル基;フェニルヒドロキシフェニル基、ナフチルヒドロキシフェニル基、ジフェニルヒドロキシフェニル基、ジナフチルヒドロキシフェニル基等のアリールヒドロキシフェニル基;メトキシヒドロキシフェニル基、エトキシヒドロキシフェニル基、ジメトキシヒドロキシフェニル基、ジエトキシヒドロキシフェニル基等のアルコキシヒドロキシフェニル基;フェノキシヒドロキシフェニル基、ジフェノキシヒドロキシフェニル基等のアリーロキシヒドロキシフェニル基等が挙げられる。
また、ヒドロキシナフチル基;メチルヒドロキシナフチル基、エチルヒドロキシナフチル基、プロピルヒドロキシナフチル基、ブチルヒドロキシナフチル基、イソプロピルヒドロキシナフチル基、tert−ブチルヒドロキシナフチル基等のアルキルヒドロキシナフチル基;シクロヘキシルヒドロキシナフチル基、ノルボニルヒドロキシナフチル基、アダマンチルヒドロキシナフチル基等の環状アルキルヒドロキシナフチル基;フェニルヒドロキシナフチル基、ナフチルヒドロキシナフチル基等のアリールヒドロキシナフチル基;メトキシヒドロキシナフチル基、エトキシヒドロキシナフチル基等のアルコキシヒドロキシナフチル基;フェノキシヒドロキシナフチル基等のアリーロキシヒドロキシナフチル基等も挙げられる。
上記の中でも、原料調達の観点から、ヒドロキシフェニル基、アルキルヒドロキシフェニル基、ジアルキルヒドロキシフェニル基、環状アルキルヒドロキシフェニル基、アリールヒドロキシフェニル基、ヒドロキシナフチル基、アルキルヒドロキシナフチル基が好ましい。
なお、Rがフラーレン骨格に2個以上結合している場合には、各Rは同一でもよくまた異なっていてもよい。
式(I)において、aはRの平均付加数を表す。エステル溶媒への溶解性の観点から、aは通常1以上、好ましくは4以上、更に好ましくは6以上であり、またフラーレン本来の性質を維持する観点から、通常15以下、好ましくは12以下の数を表す。
ここで、平均付加数aとは、ある系に存在するフラーレン誘導体が有するフラーレン骨格1つに対するRの付加数の平均値のことを表す。本発明のフラーレン誘導体の分子組成式を元素分析等によって測定し、MS、LC−MS等のデータから導きだすことができる。
は、フラーレン骨格にランダムに付加する場合があり、フラーレン誘導体において同じ付加数でも付加位置の異なる異性体として得られることがある。
(水素原子H及びその平均付加数b)
式(I)において、水素原子(即ち水素基もしくはヒドロ基)Hはフラーレン骨格に結合している。この際、水素原子がフラーレンと結合する位置は限定されず、任意である。
式(I)において、bはH(水素原子)の平均付加数を表す。平均付加数bとは、ある系に存在するフラーレン誘導体が有するフラーレン骨格1つに対するHの付加数の平均値のことを表す。平均付加数bは、平均付加数aと同様にして算出することができる。
溶液中での耐酸化性の観点から、aとbの数はa>bの関係であり、bは通常4以下、好ましくは3以下であり、2以下であることがより好ましい。水素基(プロトン)の存在は安定性を低下させるため、bの数が少ないほど、耐酸化性が向上する。また、水素基(プロトン)は各種塩基を作用させた後、別の置換基に変換することが可能であることから、更なる誘導体製造の中間体という観点では、耐酸化性を有する範囲において水素基があることが好ましい。
なお、フラーレン誘導体が単一化合物である場合は、平均付加数a及びbはその単一化合物の各付加数を示す。
[1−2.フラーレン誘導体の性質]
本発明のフラーレン誘導体は、エステル溶媒に可溶、即ち、エステル溶媒に対する溶解性が高い。
なお、本明細書において、フラーレン誘導体が「エステル溶媒に可溶」であるとは、フラーレン誘導体をエステル溶媒に混合し、超音波照射を10分かけた後、目視で沈殿物や不溶分が検出されないことを意味する。具体的には、25℃、常圧(通常は1気圧)下において、プロピレングリコール−1−モノメチルエーテル−2−アセテート(即ち、PGMEA)又は乳酸エチルの何れかのエステル溶媒に対して、エステル溶媒の単位体積(1mL)あたり、フラーレン誘導体が通常10mg以上溶解する場合に、そのフラーレン誘導体はエステル溶媒に対して可溶、即ち、エステル溶媒に対する溶解性が高いと判断する。
本発明のフラーレン誘導体をエステル溶媒に溶解させて用いる場合、エステル溶媒の種類は、本発明のフラーレン誘導体が溶解するものであれば制限されない。エステル溶媒の例としては、酢酸メチル、酢酸エチル、酢酸プロピル、酢酸フェニル、プロピオン酸メチル、プロピオン酸エチル、プロピオン酸プロピル、プロピオン酸フェニル、3−メトキシプロピオン酸メチル、3−エトキシプロピオン酸メチル、乳酸メチル、乳酸エチル等の直鎖状のエステル類;γ―ブチロラクトン、カプロラクトン等の環状エステル類;エチレングリコールモノメチルエーテルアセテート、エチレングリコールモノエチルエーテルアセテート、エチレングリコールモノブチルエーテルアセテート、プロピレングリコール−1−モノメチルエーテルアセテート、プロピレングリコール−1−モノエチルエーテルアセテート等のエーテルエステル類等が挙げられる。
中でも、直鎖状のエステル類やエーテルエステル類が好ましく、具体的にはプロピレングリコール−1−モノメチルエーテル−2−アセテート(即ち、PGMEA)、乳酸エチルが好ましい。
なお、エステル溶媒は、何れか1種のみを用いてもよく、2種類以上を任意の組み合わせ及び比率で併用しても構わない。
これらのエステル溶媒は、DVD、CD等の光ディスク材料の製造、半導体集積回路の作製、半導体集積回路作製用マスクの製造、液晶用集積回路の作製、液晶画面製造用レジスト材料用等の溶媒として一般的に使用されているエステル溶媒である。また、前記のエステル溶媒は、特に、従来開発されているKrFエキシマレーザー、ArFエキシマレーザーに加えて、EUV(極端紫外光)やEB(電子ビーム)などの光源短波長化に適応したフォトレジスト、反射防止膜の機能を有した下層膜材料としてのフォトレジスト、ナノインプリント及び層間絶縁膜用として好適に用いられる溶媒である。
したがって、前記のエステル溶媒に可溶であること、即ち、前記のエステル溶媒に対する溶解性が高いことは、本発明のフラーレン誘導体を、上記のような産業上広く使用されている溶媒に溶解することが可能であることを示している。また、フラーレン誘導体が前記のエステル溶媒に溶解する場合、そのフラーレン誘導体は同様に他の有機溶媒に可溶である場合が多い。
従って、本発明のフラーレン誘導体のエステル溶媒に対する溶解性が高いことは、本発明のフラーレン誘導体を、例えば、色素増感太陽電池、有機薄膜太陽電池等の有機太陽電池、有機トランジスタ・ダイオード、有機電界発光素子(有機EL素子)、非線形光学材等の有機デバイス全般;樹脂添加剤;潤滑剤;絶縁膜、Li2次電池・燃料電池・キャパシター等の電池における電池基材及びその添加剤・表面修飾等のコーティング材、その他セパレータ等の部材を構成する材料及び添加剤;金属・セラミクス添加剤;固体潤滑剤及び潤滑油添加剤等摺動用途への添加剤、触媒用、更には塗料・インク・医薬・化粧品・診断薬など、多方面での産業分野に適用可能であることを示している。
また、上述のエステル溶媒に対するフラーレン誘導体の好ましい溶解度の値は、フラーレン誘導体の用途によって異なる。例えば、半導体集積回路作製、半導体集積回路作製用マスクの製造、液晶用集積回路作製及び液晶画面製造用レジスト材料用途の塗膜を本発明のフラーレン誘導体を用いて形成するためには、本発明のフラーレン誘導体はエステル溶媒に対して、通常10mg/mL以上、好ましくは50mg/mL以上、より好ましくは100mg/mL以上の溶解度を有することが望ましい。
本発明のフラーレン誘導体がエステル溶媒に対する高い溶解性を有する理由は定かでは無いが、本発明者が推察するところによると、Rが有する水酸基の酸性度に加え、Rのフラーレン骨格への付加による分子の対称性低下による非結晶化効果との相乗効果が生じているものと推察される。したがって、これらの要因により、本発明のフラーレン誘導体は予想を上回るエステル溶媒への高い溶解性を発現しているものと考えられる。
また、本発明のフラーレン誘導体は、通常、アルカリ溶媒に可溶、即ち、アルカリ溶媒に対する溶解性が高い。
なお、本明細書において、フラーレン誘導体が「アルカリ溶媒に可溶」であるとは、フラーレン誘導体をアルカリ溶媒に混合し、超音波照射を10分かけた後、目視で沈殿物や不溶分が検出されないことを意味する。具体的には、25℃、常圧下において、1Nの水酸化ナトリウム水溶液に対して、水酸化ナトリウム水溶液の単位体積(1mL)あたり、フラーレン誘導体が50mg以上溶解する場合には、そのフラーレン誘導体はアルカリ溶媒に対して可溶、即ち、アルカリ溶媒に対する溶解性が高いと判断する。
本発明のフラーレン誘導体をアルカリ溶媒に溶解させて用いる場合、アルカリ溶媒の種類は、本発明のフラーレン誘導体が溶解するものであれば制限されない。アルカリ溶媒の例としては、ピリジン、ピペリジン、トリエチルアミン、トリ−n−プロピルアミン、メチルジエチルアミン、1,8−ジアザビシクロ−(5,4,0)−7−ウンデセン、ジメチルエタノールアミン等のアルカリ有機溶媒や、水酸化ナトリウム水溶液、水酸化リチウム水溶液、水酸化カルシウム水溶液、炭酸ナトリウム水溶液、炭酸リチウム水溶液、炭酸カルシウム水溶液、アンモニア水溶液、テトラメチルアンモニウムヒドロキシド水溶液等のアルカリ水溶液等が挙げられる。また、アルカリ水溶液の場合、その溶質の濃度は任意である。
中でもアルカリ溶媒としては、アルカリ水溶液が好ましく、製品への金属混入を避けることが望ましい用途に関しては、非金属系のアルカリ水溶液であるアンモニア水溶液やテトラメチルアンモニウムヒドロキシド水溶液等の水溶液が好ましい。
なお、これらのアルカリ溶媒は、何れか1種のみを用いてもよく、2種類以上を任意の組み合わせ及び比率で併用しても構わない。
また、上述のアルカリ溶媒に対するフラーレン誘導体の好ましい溶解度の値は、フラーレン誘導体の用途によって異なるが、アルカリ溶媒に対して、通常50mg/mL以上、好ましくは100mg/mL以上、より好ましくは200mg/mL以上の溶解度を有することが望ましい。
本発明のフラーレン誘導体がアルカリ溶媒に対する高い溶解性を有する理由は定かではないが、本発明者が推察するところによると、Rがフラーレン骨格への付加による分子の対称性低下による非結晶化効果とフェノール性の水酸基を含む基であるRがフラーレン骨格に結合していることとの相乗効果により、疎水性のフラーレン骨格を有していながらアルカリ溶媒に対する親和性が上がっているためと考えられる。
また、本発明のフラーレン誘導体は、熱的安定性が非常に高い。これは、本発明のフラーレン誘導体がフラーレン骨格のπ電子共役を大量に保持しているうえ、炭素−炭素結合で上記芳香族性を有する炭化水素基が結合しているためであり、通常の有機物では熱分解が始まる温度においても、分解することなく安定に存在することができる。そのため、通常の有機物では分解して用いることができない耐熱性を要する用途に関しても、本発明のフラーレン誘導体を好適に用いることができる。
なお、本発明のフラーレン誘導体の熱安定性に関する評価は、高温による耐熱性試験を行ってもよいし、迅速に測定できるTG−DTA(示差熱熱重量同時測定)を用いて評価してもかまわない。なお、TG−DTAで評価する場合、流通させるガスの種類や量、パンの種類、昇温速度や測定上限温度、サンプル量などは測定したい物性に併せて、任意に選択することができる。
[2.フラーレン誘導体の製造方法]
本発明のフラーレン誘導体を製造する方法には制限は無く、任意の方法により製造することができる。
従来、フラーレン骨格に芳香族性を有する炭化水素基及び水素を有するフラーレン誘導体の一般的な製造方法は既に確立されていた。例えば、特許文献3に記載されている方法等を参照することができる。
しかしながら、フラーレン骨格に、式(I)において本発明のRで表される基を結合させる場合、後述する金属化合物との相互作用があり、生成物を精製、単離することができない場合がある。金属化合物との反応後にキレート剤を用いることで、金属化合物と水
酸基との相互作用を弱め、ハロゲン置換されてない芳香族炭化水素でも上記文献記載の方法で製造すること等も可能である。また、水酸基をメチル基等で保護した原料を用いてフラーレン骨格へと付加した後、脱保護して本発明のフラーレン誘導体を製造することもできる。
その場合の反応温度、溶媒の種類、試薬の混合順序、反応時間等の諸条件としては、上記文献に記載の条件を採用することもできる。
本発明に係るフラーレン誘導体は、以下に例示する製造方法により製造することが好ましい。ただし、以下に例示する製造方法は、本発明のフラーレン誘導体の製造方法の一例であり、以下の例に限定されるものではない。
本発明に係るフラーレン誘導体の製造方法においては、フラーレン;金属化合物;及びH−Rで表される水酸基を有し、炭素数6以上18以下の、少なくとも1つの水素基を含む芳香族性を有する炭化水素化合物(以下、適宜「原料炭化水素化合物」という。)を用意する。この原料炭化水素化合物とフラーレンとを反応させた後、キレート剤を用いることで、金属化合物と水酸基との相互作用を弱め、本発明のフラーレン誘導体を得ることができる。なお、キレート剤を用いてもこのフラーレン誘導体の精製が困難である場合は、水酸基を保護した、炭素数6以上18以下の少なくとも1つの水素基を含む芳香族性を有する炭化水素化合物(以下、適宜「保護化した原料炭化水素化合物」という。)を原料炭化水素化合物のかわりに反応させた後、脱保護剤と反応させて、本発明のフラーレン誘導体を得る。なお、この際、反応溶媒を別途用いることもできるが、原料炭化水素化合物、もしくは保護化した原料炭化水素化合物を上記反応溶媒の代替として用い、反応を進行させることもできる。
[2−1.フラーレン]
フラーレンとしては、上記[1.フラーレン誘導体]の欄でフラーレン骨格の例として挙げた各種のフラーレンを用いることができる。なお、フラーレンは何れか1種のみを使用してもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
[2−2.金属化合物]
ここで使用する金属化合物は、周期律表の8、9又は10族に属する遷移金属(具体的には、Fe、Co、Ni、Ru、Pd)を、少なくとも1つ含む(以下、これらを単に「金属化合物」という)。
該金属化合物として、好ましくは入手の容易さとコスト面で有利である第4周期の金属化合物、例えば、塩化鉄(III)、臭化鉄(III)などに代表される酸化剤として用いられる金属化合物であるのが好ましい。より好ましくは塩化鉄(III)、臭化鉄(III)といった鉄のハロゲン化物を使用するのがよい。
また、この金属化合物は、周期律表の8、9又は10族に属する遷移金属とハロゲンからなる構造に限定されない。例えば、酸化鉄(III)、硝酸鉄(III)、硫酸鉄(III)、
硫化鉄(III)、ヘキサシアノ鉄(III)酸カリウムなどを用いることもできる。また、アルキル基やアリール基を1つあるいは複数有していてもよいし、二種類以上の金属を含む錯体を用いてもよい。又は、これらを混合して用いても良い。これらの金属化合物として、好ましくはハロゲン原子を含むもの、より好ましくは入手のし易さとコスト面から金属ハロゲン化物を用いるのがよい。
反応系中の金属化合物の含有量は、前記の反応が進行する限り任意であるが、フラーレンに対する比率で、通常1倍モル以上、好ましくは3倍モル以上、より好ましくは10倍モル以上、また、通常200倍モル以下、好ましくは100倍モル以下、より好ましくは50倍モル以下とすることが望ましい。金属化合物の含有量が多過ぎると製造上コストが増大するうえ、フラーレン誘導体との分離が困難となる場合があり、少な過ぎると反応が
完結しない場合がある。なお、二種以上の金属化合物を併用する場合には、それらの合計量が上記範囲を満たすようにすることが望ましい。
[2−3.原料炭化水素化合物]
本例の製造方法では、反応系に水酸基を有する、炭素数6〜18の、少なくとも1つの水素基を含む、芳香族性を有する炭化水素化合物H−R(即ち、原料炭化水素化合物)を存在させる。原料炭化水素化合物の種類は、製造しようとするフラーレン誘導体の構造に応じて適切なものを任意に選択すればよい。
なお、反応系に存在させる原料炭化水素化合物としては、何れか1種類のみを使用して
も良く、2種類以上を任意の組み合わせ及び比率で併用してもよい。
原料炭化水素化合物H−Rの例としては、フェノール、クレゾール、エチルフェノール、プロピルフェノール、ブチルフェノール、イソプロピルフェノール、tert−ブチルフェノール等のアルキルフェノール類;シクロヘキシルフェノール、ノルボニルフェノール、アダマンチルフェノール等の環状アルキルフェノール類;ジメチルフェノール、ジエチルフェノール、ジプロピルフェノール、ジブチルフェノール、ジイソプロピルフェノール、ジtert-ブチルフェノール等のジアルキルフェノール類;ジシクロヘキシルフ
ェノール、ジノルボニルフェノール、ジアダマンチルフェノール等の環状ジアルキルフェノール類;フェニルフェノール、ナフチルフェノール、ジフェニルフェノール、ジナフチルフェノール等のアリールフェノール類;メトキシフェノール、エトキシフェノール、ジメトキシフェノール、ジエトキシフェノール等のアルコキシフェノール類;フェノキシフェノール、ジフェノキシフェノール等のアリーロキシフェノール類;メチルジヒドロキシベンゼン等のアルキルジヒドロキシベンゼン等が挙げられる。
また、メチルナフトール、エチルナフトール、プロピルナフトール、ブチルナフトール、イソプロピルナフトール、tert−ブチルナフトール等のアルキルナフトール類;シクロヘキシルナフトール、ノルボニルナフトール、アダマンチルナフトール等の環状アルキルナフトール類;フェニルナフトール、ナフチルナフトール等のアリールナフトール類;メトキシナフトール、エトキシナフトール等のアルコキシナフトール類;フェノキシナフトール等のアリーロキシナフトール類;メチルジヒドロキシナフタレン等のアルキルジヒドロキシナフタレン等が挙げられる。
なかでも、原料調達の観点から、フェノール、アルキルフェノール類、ジアルキルフェノール類、環状アルキルフェノール類、アリールフェノール類、アルキルナフトール類が好ましい。具体的にはフェノール、オルトクレゾール、2,6−ジメチルフェノールが特に好ましい。
原料炭化水素化合物の含有量は、前記の反応が進行する限り任意であるが、フラーレンに対する比率で、通常10倍モル以上、好ましくは20倍モル以上、また通常4000倍モル以下、好ましくは1000倍モル以下、さらに好ましくは100倍モル以下とすることが好ましい。原料炭化水素化合物の含有量が多過ぎると製造コストが増大するうえ、フラーレン誘導体のとの分離が困難となる場合があり、少なすぎると反応が完結しない場合がある。
[2−4.保護化した原料炭化水素化合物]
本例の製造方法では、製造コストの観点から、直接原料炭化水素化合物とフラーレンとを反応させることが好ましいが、上記反応の進行が著しく阻害される場合やキレート剤を用いても精製、単離が困難な場合は、原料炭化水素化合物中の水酸基を塩化鉄等の金属化合物に耐性のある保護基(例えばメチル基)等で保護した原料(即ち、保護化した原料炭化水素化合物)を用いればよい。
なお、反応系に存在させる保護化した原料炭化水素化合物としては、何れか1種類のみを使用しても良く、2種類以上を任意の組み合わせ及び比率で併用してもよい。
具体的な保護化した原料炭化水素化合物の例としては、アニソール、メトキシナフタレン、メトキシアントラセン、メトキシピレン等に加え、前述の原料炭化水素化合物中の水酸基を保護基で保護した化合物等が挙げられる。なかでも、反応性の観点から、アニソール、メトキシナフタレンが好ましい。
保護化した原料炭化水素化合物の含有量は、前記の反応が進行する限り任意であるが、フラーレンに対する比率で、通常10倍モル以上、好ましくは20倍モル以上、また通常4000倍モル以下、好ましくは1000倍モル以下、さらに好ましくは100倍モル以下とすることが好ましい。保護化した原料炭化水素化合物の含有量が多過ぎると製造コストが増大するうえ、フラーレン誘導体のとの分離が困難となる場合があり、少なすぎると反応が完結しない場合がある。
なお、反応系には、原料炭化水素化合物と保護化した原料炭化水素化合物との両方を任意の組み合わせ及び比率で併用してもよい。
[2−5.反応溶媒]
本例の製造方法では、例えば原料炭化水素化合物並びに保護化した原料炭化水素化合物が常温で固体状態の場合等においては、反応溶媒を使用してもよい。反応溶媒を使用する場合、上述のフラーレン、金属化合物、及び原料炭化水素化合物又は保護化した原料炭化水素化合物を好適に溶解及び/又は分散させることが可能な溶媒であれば、その種類は任
意である。
溶媒の例を挙げると有機溶媒が挙げられる。なかでも、フラーレン誘導体が可溶である溶媒が好ましい。その例をあげると、ハロゲン置換芳香族炭化水素、脂肪族炭化水素、塩素化炭化水素等が挙げられる。なお、これらは環状式でもよく、また非環状式でもよい。
ハロゲン置換芳香族炭化水素としては、例えば、オルトジクロロベンゼン(ODCB)、トリクロロベンゼン等が挙げられる。
脂肪族炭化水素としては、環状式、非環状式のいずれも使用できる。環状式脂肪族炭化水素としては、例えばシクロペンタン、シクロヘキサン、シクロヘプタン、シクロオクタン等の単環状式脂肪族炭化水素;その誘導体であるメチルシクロペンタン、エチルシクロペンタン、メチルシクロヘキサン、エチルシクロヘキサン、1,2−ジメチルシクロヘキサン、1,3−ジメチルシクロヘキサン、1,4−ジメチルシクロヘキサン、イソプロピルシクロヘキサン、n−プロピルシクロヘキサン、tert−ブチルシクロヘキサン、n−ブチルシクロヘキサン、イソブチルシクロヘキサン、1,2,4−トリメチルシクロヘキサン、1,3,5−トリメチルシクロヘキサン等;デカリン等の多環状式脂肪族炭化水素;n−ペンタン、n−ヘキサン、n−ヘプタン、n−オクタン、イソオクタン、n−ノナン、n−デカン、n−ドデカン、n−テトラデカン等の非環状式脂肪族炭化水素が挙げられる。
塩素化炭化水素としては、例えば、ジクロロメタン、クロロホルム、四塩化炭素、トリクロロエチレン、テトラクロロエチレン、1,2−ジクロロエタン、1,1,2,2−テトラクロロエタン(TCE)等が挙げられる。
その他の溶媒としては、ジエチルエーテル、ジブチルエーテル、テトラヒドロフラン、1,4−ジオキサン、メチルシクロペンチルエーテル等のエーテル類が挙げられる。
なかでも、フラーレンを好適に溶解させることができる観点から、ハロゲン置換芳香族炭化水素及び塩素化炭化水素が好ましく、またTCEが特に好ましい。
なお、反応溶媒は、何れか1種のみを使用してもよく、2種以上を任意の組み合わせ及
び比率で併用してもよい。
反応溶媒を使用する場合、その使用量は、フラーレンに対する比率で、通常1mg/mL以上、好ましくは5mg/mL以上、また、通常100mg/mL以下、好ましくは50mg/mL以下とすることが望ましい。反応溶媒の使用量が多過ぎると原料濃度が薄くなり、反応速度が遅くなる場合があり、少な過ぎると原料並びに生成物が溶解できず、反応が完全に進行しない場合がある。
なお、2種以上の反応溶媒を併用する場合には、それらの合計量が上記範囲を満たすようにすることが望ましい。
なお、本例の製造方法では少なくとも、上述のフラーレン、金属化合物及び原料炭化水素化合物又は保護化した原料炭化水素化合物を反応させることができればよい。したがって、原料炭化水素化合物又は保護化した原料炭化水素化合物が反応温度、圧力において液体であれば、原料炭化水素化合物又は保護化した原料炭化水素化合物を反応溶媒として用いることができる。
[2−6.キレート剤]
本例の製造方法では、金属化合物を用いて原料炭化水素化合物とフラーレンとを反応させた後に、フラーレン誘導体の水酸基と金属化合物の相互作用があり、精製が困難である場合においては、キレート剤を用いて金属化合物の除去を行ってもよい。キレート剤を使用する場合、金属化合物を好適に除去することが可能なキレート剤であれば、その種類は任意であるが、アミノ基またはカルボキシル基を少なくとも1つ以上有するキレート剤が好ましい。
具体的なキレート剤の例としては、ピリジン、トリフェニルホスフィン、アンモニア、エチレンジアミン、テトラメチルエチレンジアミン(TMEDA)、ビピリジン、フェナントロリン、アセチルアセトン(acac)、ヘキサフルオロアセチルアセトン(hfac)、カテコール、ターピリジン、エチレンジアミン四酢酸(EDTA)とその塩類、ジエチエントリアミン五酢酸(DTPA)とその塩類、テトラアザシクロドデカン四酢酸(DOTAとその塩類)、ポルフィリン類、サイクラム、サレン類、クラウンエーテル類等が挙げられる。
なかでも、原料調達の観点から、ピリジン、トリフェニルホスフィン、アンモニア、エチレンジアミン、テトラメチルエチレンジアミン(TMEDA)、ビピリジン、アセチルアセトン(acac)、エチレンジアミン四酢酸(EDTA)とその塩類が好ましい。また、金属化合物との親和性の観点から、多座配位子が好ましく、具体的にはテトラメチルエチレンジアミン(TMEDA)、エチレンジアミン四酢酸(EDTA)とその塩類が特に好ましい。
なお、金属化合物の除去に用いるキレート剤としては、何れか1種のみを単独で使用してもよく、二種以上を任意の組み合わせ及び比率で併用してもよい。
キレート剤の使用量は、反応終了後に金属化合物を除去することができる限り任意であるが、フラーレンに対する比率で、通常1倍モル以上、好ましくは5倍モル以上、より好ましくは10倍モル以上、また、通常200倍モル以下、好ましくは100倍モル以下、より好ましくは50倍モル以下とすることが望ましい。キレート剤の含有量が多過ぎると製造上コストが増大するうえ、フラーレン誘導体との分離が困難となる場合があり、少な過ぎるとフラーレン誘導体から金属化合物を除去できない場合がある。
なお、2種以上のキレート剤を併用する場合には、それらの合計量が上記範囲を満たすようにすることが望ましい。
[2−6.操作及び反応条件]
上述のフラーレン、金属化合物及び原料炭化水素化合物又は保護化した原料炭化水素化合物、並びに、必要に応じて用いられる反応溶媒等を混合する順序や反応条件は、本発明のフラーレン誘導体が製造できる限り任意であり、これらの試薬の使用量を適宜調整することで炭化水素基Rの付加数を任意に設定することができる。また、反応系には、反応の進行を阻害しない限り上述したもの以外の成分を含有させても良い。
例えば反応溶媒を使用する場合は、反応溶媒中にフラーレンが溶解/懸濁している状態
で金属化合物を混合した後に、原料炭化水素化合物又は保護化した原料炭化水素化合物を混合することができる。また、例えば反応溶媒を使用しない場合は、原料炭化水素化合物又は保護化した原料炭化水素化合物中にフラーレンが溶解/懸濁している状態で金属化合
物を混合することができる。
反応時の温度条件は、反応が進行する限り制限されないが、原料炭化水素化合物又は保護化した原料炭化水素化合物を混合した後の反応系の温度を、通常10℃以上、好ましくは20℃以上、また通常150℃以下、好ましくは80℃以下とすることが好ましい。
反応時間も制限されないが、原料炭化水素化合物又は保護化した原料炭化水素化合物を混合した後、通常5分以上、好ましくは2時間以上、また通常5日以内、好ましくは24時間以内、さらに好ましくは12時間以内にわたって反応させることが好ましい。
反応終了後、通常は、生成した本発明のフラーレン誘導体を反応液から常法により単離する。また、上述のキレート剤を用いた後処理方法を行うこともある。単離操作は、各原料の種類によって異なるが、例えば、反応液をそのままヘキサン等の貧溶媒で晶析したり、反応液にイオン交換水等を加えて反応を停止させ、適当な溶媒で抽出した後、分液し溶媒を留去、晶析することにより、生成物を単離する方法が挙げられる。
また、上述の反応において、保護化した原料炭化水素化合物を用いた場合、反応により生成する本発明のフラーレン誘導体は、Rの水酸基に保護基が導入された状態となっている(これを以下適宜「水酸基保護フラーレン誘導体」という場合がある)。よって、この場合は、得られた水酸基保護フラーレン誘導体に対し、保護基の種類に対応した脱保護剤を作用させ、保護基を脱離させる(この反応を「脱保護反応」という場合がある。)ことで、目的とする本発明のフラーレン誘導体を製造することができる。この際、脱保護剤は、1種のみを用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
例えば、保護基がメチル基である場合、脱保護剤の例としては、三臭化ホウ素、三塩化ホウ素、トリメチルシリルヨージド等が挙げられる。中でも、反応性の観点から、三臭化ホウ素、トリメチルシリルヨージドが好ましい。なお、これらの脱保護剤の取扱が困難な場合は、in situで発生させる方法を用いても構わない。
これらの脱保護剤の使用量は前記の保護基を脱離させることができる限り任意であるが、対応する保護基(メチル基)に対する割合で、通常1倍モル以上、好ましくは1.2倍モル以上、より好ましくは1.4倍モル以上、また、通常10倍モル以下、好ましくは5倍モル以下、より好ましくは3倍モル以下とすることが望ましい。脱保護剤の使用量が多過ぎると、製造コストの点で不利となる場合があり、脱保護剤の使用量が少な過ぎると、反応が完結しない場合がある。なお、脱保護剤を2種以上併用する場合、それらの合計量が上記範囲を満たすようにすることが望ましい。
上記の脱保護反応は、通常、水酸基保護フラーレン誘導体を有機溶媒に溶解又は懸濁させた状態で行う。反応に使用する有機溶媒は、脱保護反応を阻害したり、好ましからぬ反応を生じるものでない限り、任意に選択して構わない。有機溶媒の具体例としては、クロロベンゼン、オルトジクロロベンゼン、トリクロロベンゼン、塩化メチレン等のハロゲン系炭化水素;トルエン、キシレン、トリメチルベンゼン等の芳香族炭化水素;アセトニト
リル、ベンゾニトリル等のニトリル系溶媒;等が挙げられる。これらの有機溶媒は、何れか1種のみを用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
水酸基保護フラーレン誘導体に対して使用する有機溶媒の量は任意であるが、有機溶媒中における水酸基保護フラーレン誘導体の濃度が、通常1mg/mL以上、好ましくは10mg/mL以上、より好ましくは15mg/mL以上、また、通常1000mg/mL以下、好ましくは500mg/mL以下、より好ましくは100mg/mL以下となるようにすることが望ましい。
また、何れの脱保護反応に関しても、反応が進行すれば、水酸基保護フラーレン誘導体、脱保護剤、有機溶媒等の混合順序は問わない。さらに、脱保護反応が進行すれば、反応条件も任意である。
ただし、その温度条件は、脱保護反応の種類によって大きく異なるが、通常0℃以上、好ましくは15℃以上、また、通常180℃以下、好ましくは120℃以下とすることが望ましい。
また、反応時間は、通常30分以上、好ましくは2時間以上、また、通常数十時間以下、好ましくは10時間以下とすることが望ましい。
反応終了後、通常は、生成した本発明のフラーレン誘導体を反応液から常法により単離する。単離操作は、各反応の種類によって異なるが、例えば、反応液をそのままヘキサン等の貧溶媒で晶析したり、反応液にイオン交換水や亜硫酸水溶液等を加えて反応を停止させ、そのまま適当な溶媒で抽出した後、分液し溶媒を留去することにより、生成物を単離することができる。
得られた本発明のフラーレン誘導体は、必要に応じて適宜、高速液体クロマトグラフィー(HPLC)、シリカゲルカラムクロマトグラフィー、アルミナカラムクロマトグラフィー、再結晶等の手法で精製してもよい。
なお、本発明のフラーレン誘導体は、通常、プロトン核磁気共鳴スペクトル法(以下適宜「H−NMR」という場合がある。)、カーボン核磁気共鳴スペクトル法(以下適宜「13C−NMR」という場合がある。)、赤外線吸収スペクトル法(以下適宜、「IR」という場合がある。)、質量分析法(以下適宜「MS」という場合がある。)、元素分析等の一般的な有機分析により、その構造を確認することができる。この他、フラーレン誘導体の結晶性がよい場合は、X線結晶回折法によって構造を確認できる場合もある。
[3.本発明のフラーレン誘導体の実施形態及び用途]
本発明のフラーレン誘導体は、公知の任意の実施形態で、任意の用途に用いることができる。なかでも、本発明のフラーレン誘導体は、溶媒に溶解してフラーレン誘導体溶液(以下、適宜「本発明の溶液」と言う。)として用いたり、本発明のフラーレン誘導体を含むフラーレン誘導体膜(以下、適宜「本発明の膜」と言う。)として用いたりすることが好ましい。
以下、本発明のフラーレン誘導体を、フラーレン誘導体溶液及びフラーレン誘導体膜として用いることを例に、本発明のフラーレン誘導体の実施形態及び用途を具体的に説明するが、本発明のフラーレン誘導体の実施形態及び用途は以下の内容に限定されるものではない。
[3−1.フラーレン誘導体溶液]
本発明のフラーレン誘導体は、適切な溶媒に溶解させてフラーレン誘導体溶液とすることにより、様々な用途に用いることができる。
本発明の溶液における溶媒の種類は任意であるが、溶媒として有機溶媒を用いることが
好ましい。有機溶媒として任意の有機溶媒を用いることができるが、中でも、本発明のフラーレン誘導体は水酸基を有し、エステル溶媒等の極性有機溶媒に対して高い溶解性を示すので、極性を有する有機溶媒(極性有機溶媒)を使用することが好ましい。なお、溶媒は、1種を単独で用いてもよく、2種以上を任意の比率及び組み合わせで用いてもよい。
極性有機溶媒の種類は制限されないが、例えば、メタノール、エタノール、イソプロピルアルコール等のアルコール(アルコール溶媒);アセトン、メチルエチルケトン、メチルイソアミルケトン、メチルアミルケトン、シクロヘキサノン等のケトン;酢酸メチル、酢酸エチル、酢酸プロピル、酢酸ブチル、プロピオン酸メチル、3−メトキシプロピオン酸メチル、3−エトキシプロピオン酸エチル、乳酸メチル、乳酸エチル、γ−ブチロラクトン等のエステル(エステル溶媒);テトラヒドロフラン、ジオキサン、アニソール、エチレングリコールジメチルエーテル、ジエチレングリコールジメチルエーテル等のエーテル;エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノブチルエーテル、プロピレングリコールモノメチルエーテル、3−メトキシ−3−メチル−1−ブタノール等のエーテルアルコール;PGMEA等の上記エーテルアルコール類と酢酸等の酸とのエステル化合物であるエーテルエステル(エステル溶媒);N,N−ジメチルホルムアミド、N−メチルピロリドン等のアミド;アセトニトリル、ベンゾニトリル等のニトリル;ジメチルスルホキシド等が挙げられる。
中でも、工業的な用途で用いられることが多い観点から、本発明の溶液における溶媒として、メチルアミルケトン、シクロヘキサノン等のケトン、エステル溶媒を用いることが好ましく、特に、プロピレングリコール−1−モノメチルエーテル−2−アセテート(PGMEA)、乳酸エチル等のエステル溶媒を用いることが好ましい。
また、本発明の溶液における溶媒として、アルカリ溶媒も好ましく用いられる。アルカリ溶媒の種類は、本発明のフラーレン誘導体が溶解するものであれば制限されないが、例えば、ピリジン、ピペリジン、トリエチルアミン、トリ−n−プロピルアミン、メチルジエチルアミン、1,8−ジアザビシクロ−(5,4,0)−7−ウンデセン、ジメチルエタノールアミン等のアルカリ有機溶媒;水酸化ナトリウム水溶液、水酸化リチウム水溶液、水酸化カルシウム水溶液、炭酸ナトリウム水溶液、炭酸リチウム水溶液、炭酸カルシウム水溶液、アンモニア水溶液、テトラメチルアンモニウムヒドロキシド水溶液等のアルカリ水溶液等が挙げられる。なお、アルカリ水溶液の場合、その溶質の濃度は任意である。
さらに、本発明の溶液における本発明のフラーレン誘導体の濃度は任意である。また、本発明の溶液中、本発明のフラーレン誘導体は溶媒に完全溶解していることが好ましいが、一部溶解できずに懸濁していてもよく、又は沈殿していても構わない。
本発明のフラーレン誘導体の優れた物性を大幅に損ねるものでなければ、本発明の溶液は、本発明のフラーレン誘導体及び溶媒に加えて、その他の成分を含有していてもよい。その他の成分は1種のみを含有していてもよく、2種以上を任意の組み合わせ及び比率で含有していてもよい。
本発明のフラーレン誘導体を溶媒に溶解させることができれば、本発明の溶液の調製方法に制限はないが、通常、所定の装置で攪拌しながら溶解させる手法、超音波を照射する手法等により調製することができる。また、本発明のフラーレン誘導体及び溶媒、並びに必要に応じて用いられるその他の成分の混合順序も、特に制限はない。
本発明の溶液は、安定性、操作性等の観点から通常25℃で調製されるが、溶媒の沸点以下であれば、加熱しながら溶解させ、保管することができる。また、本発明のフラーレン誘導体が析出する可能性があるが、25℃以下の低温下で調製、保管することもできる。
[3−2.フラーレン誘導体膜]
本発明のフラーレン誘導体は、エステル溶媒に高溶解性を示すため、通常は、本発明の溶液を塗布し、溶媒を除去(例えば加熱乾燥等)することでフラーレン誘導体膜を製造することができる。この際用いる溶液には、フラーレン誘導体、溶媒のほか、本発明のフラーレン誘導体が有する優れた物性を大幅に損ねるものでなければ、他の任意の化合物が含有されていてもよい。なお、その他の成分は1種類のみを含有していてもよく、2種類以上を任意の組み合わせ及び比率で含有していてもよい。
また、本発明のフラーレン誘導体膜は、同一組成であってもよく、異なる組成を有する構成膜が2層以上積層された多層膜であってもよい。
塗布方法としては、例えばスプレー法、スピンコート法、ディップコート法、ロールコート法など任意の方法を選択することができる。複数の方法を組み合わせて行ってもよい。また、塗布する基板にも制限はなく、例えば、有機被膜、シリコン基板、ポリシリコン膜、酸化シリコン膜、窒化シリコン膜などのシリコン被膜、金属配線などの無機被膜が挙げられる。この際、1種の基板を単独で用いてもよく、2種以上の基盤を任意に組み合わせて用いてもよい。
溶液の塗布後、溶媒を除去するための方法は任意であるが、通常は塗布膜の加熱乾燥処理を行って溶媒を除去する。加熱乾燥処理は、通常80℃以上300℃以下で、通常10秒以上300秒以下の範囲で加熱を行うことが好ましい。本発明のフラーレン誘導体は、通常の有機化合物に比べて熱安定性に優れるため、熱分解することなく安定な膜を形成することができる。また、加熱は、大気下、又はアルゴン、窒素等の不活性ガス雰囲気下で行うことが好ましい。なお、不活性ガスは、1種を単独で用いてもよく、2種以上を任意の比率及び組み合わせで用いてもよい。
本発明の膜における膜厚は、用途によって大きく異なり一律に限定することはできないが、通常10nm以上であり、好ましくは30nm以上であり、また通常1000nm以下、好ましくは500nm以下であり、より好ましくは300nm以下である。
均一な膜を形成することで、例えば分光エリプソメーター等を用いて本発明の膜の屈折率(n値)及び消衰係数(k値)(以下、これらをまとめて、適宜「光学定数」と言う。)を測定することができる。また、これらの測定値を用い、本発明の膜の誘電率、反射率等を計算することができる。これらの光学定数は、そのフラーレン誘導体膜の用途によって、また同じ用途でもプロセスの種類、フラーレン誘導体膜に含有される他の成分の種類及び量等によって求められる数値が大きく異なる。従って、本発明の膜が有する優れた物性を効果的に活用できる用途に、本発明の膜を用いることが好ましい。なかでも、本発明の膜は、その成分であるフラーレン誘導体が、フラーレン骨格のπ電子共役を保持しているうえ、芳香族性を有する炭化水素基が導入されているため、高エッチング耐性が期待できることから、フォトレジスト用途に特に好適に用いられる。
[3−3.用途]
本発明のフラーレン誘導体、本発明の溶液、及び本発明の膜は、前述した用途に用いることができる。以下に、いくつかの用途の例に関してより具体的に説明するが、本発明のフラーレン誘導体の機能が発揮できる用途に関しては、以下の記載に限定されるものではない。
[3−3−1.フォトレジスト用途]
従来、フォトレジストは、被膜形成成分として(メタ)アクリル系、ポリヒドロキシスチレン系またはノボラック系の樹脂等の樹脂成分と、露光により酸を発生する酸発生剤、感光剤等とを組み合わせた組成物が広く用いられている。本発明のフラーレン誘導体は、通常、フォトレジストに使用される溶媒への溶解度が高いことにより、特殊な溶媒を用いることなく、より高濃度でフォトレジストに複合化が可能である。また、フラーレン誘導
体単独でもレジスト膜を形成することが可能である。なお、フォトレジストの露光源としては、従来開発されているKrFエキシマレーザー、ArFエキシマレーザーに加えて、EUV(極端紫外光)やEB(電子ビーム)なども適応が可能である。
このように本発明のフラーレン誘導体をフォトレジストの分野に用いた場合、フラーレン骨格を有する事により、超芳香族分子としての高耐熱性、高エッチング耐性を有し、エッジラフネスの低減が可能であり、高解像度のフォトレジストの再現ができる。また、本発明のフラーレン誘導体又は本発明の溶液を用いて形成したレジスト膜は、吸収スペクトルから明らかな様に反射防止膜としての機能も有することより、多層膜の一層として、特に反射防止膜や塗布型のマスク材(ハードマスク)としても優れた機能を発揮することが期待される。
[3−3−2.半導体製造用途]
半導体製造等の分野では、例えば500μm以下の微細パターンを生産効率良く形成する方法としてナノインプリント法が検討されている。ナノインプリント法とは、微細パターンを有するモールドのパターンを転写層に転写する微細パターンの形成方法である。
このようなナノインプリント法としては、例えば、熱可塑性重合体からなる転写層を加熱して軟化させる工程と、転写層とモールドとを圧着してモールドのパターンを転写層に形成する工程と、モールドを転写層から離脱させる工程とを順次行なう方法;硬化性単量体からなる転写層をモールドに接触させる工程と、硬化性単量体を硬化させる工程と、硬化性単量体の硬化物からモールドを離脱させる工程とを順次行なう方法;などが知られている。本発明のフラーレン誘導体は、通常、上記の熱可塑性重合体、硬化性物質等に使用される溶媒への溶解度が高いことにより、特殊な溶媒を用いることなく、上記熱可塑性重合体に高濃度で充填することが可能である。
このように本発明のフラーレン誘導体をナノインプリント法に用いた場合、溶媒に対する本発明のフラーレン誘導体の溶解性が高いことから、本発明のフラーレン誘導体の熱可塑性重合体中での凝集が抑制され、分子状分散となる。このため、高解像度を実現することが可能である。さらに、本発明のフラーレン誘導体又は本発明の溶液をナノインプリント法に用いることにより、転写層の機械的強度、耐熱性及びエッチング耐性を向上させることが可能であることから、従来のナノインプリント材料の特性を大幅に改善することが可能となる。
[3−3−3.低誘電率絶縁材料用途]
近年、コンピュータの中央処理装置(CPU)用回路基盤には、樹脂薄膜を層間絶縁膜とする高密度かつ微細な多層配線に適した樹脂薄膜配線が適用されるようになってきた。将来のより高速な処理能力を有するコンピュータを実現するには、高密度かつ繊細な多層配線を活かし、かつ信号の高速伝播に適した低誘電率絶縁材料の開発が求められている。本発明のフラーレン誘導体は、通常、上記用途に使用される溶媒への溶解度が高いことより、特殊な溶媒を用いることなく、より高濃度で他の材料と複合化することが可能である。また、フラーレン誘導体単独で成膜することも可能である。この際、本発明のフラーレン誘導体は、フラーレン構造が本質的に有する高抵抗、低誘電率の性質を保持しており、複合化して用いる際にはフィラーとしての機械的強度の向上効果を有することができ、これにより、従来無かった優れた性能の低誘電率の層間絶縁膜の実現が可能となる。
[3−3−4.太陽電池用途]
有機太陽電池は、シリコン系の無機太陽電池と比較して、優位な点が多数あるものの、エネルギー変換効率が低く、実用レベルに十分には達していないことが多い。この点を克服するためのものとして、最近、電子供与体である導電性高分子と、電子受容体であるフラーレン並びにフラーレン誘導体とを混合した活性層を有するバルクヘテロ接合型有機太
陽電池が提案されている。このバルクヘテロ接合型有機太陽電池では、導電性高分子とフラーレン誘導体それぞれとが分子レベルで混じり合い、その結果非常に大きな界面を作り出すことに成功し、変換効率の大幅な向上が実現されている。
本発明のフラーレン誘導体は、上記用途で使用される溶媒への溶解度が高いため、p型半導体と効率的なバルクへテロ接合構造を構成することが容易である。また、本発明のフラーレン誘導体は、本質的にn型半導体としてのフラーレンの性質を有している。従って、本発明のフラーレン誘導体又は本発明の溶液を用いることで、極めて高性能な有機太陽電池の実現が可能となる。さらにこの高溶解性を利用し、導電性高分子等の電子供与体層との層分離制御や誘導体分子の整列配向性・細密充填性などのモルフォロジー制御を可能にし、これにより特性の向上が実現できる上、デバイス設計において高い柔軟性を与える。また、製造上も通常の印刷法やインクジェットによる印刷、更にはスプレー法等により、低コストで容易に大面積化を実現する事が可能である。
[3−3−5.半導体用途]
光センサー、整流素子等への応用が期待できる電界効果トランジスタの有機材料として、フラーレン及びフラーレン誘導体を使用することが研究されている。一般的に、フラーレン及びフラーレン誘導体を半導体に用いて電界効果トランジスタを作製した場合、当該電界効果トランジスタはn型のトランジスタとして機能することが知られている。
本発明のフラーレン誘導体は、上記用途で使用される溶媒への溶解度が高いことにより、塗布による成膜が容易であり、また、n型半導体としてのフラーレンの本質的な性質は保持している。これにより、本発明のフラーレン誘導体は、低コスト、高性能な有機半導体として利用されることが期待できる。
[3−3−6.原料中間体としての用途]
本発明のフラーレン誘導体を出発原料として、上記式(I)におけるR中の水酸基に特定の有機基を導入する工程を経て、新たな機能を有するフラーレン誘導体を製造することができる。以下、その有機基の導入方法に関して代表例を記すが、以下の例に限定されるものではない。
具体的な有機基の導入方法は、導入する有機基の種類に応じて様々である。その例を挙げると、以下のようなものが挙げられる。
(1)本発明のフラーレン誘導体をエステル化剤と反応させて、エステル化する。
(2)本発明のフラーレン誘導体をカーボネート化剤と反応させて、カーボネート化する。
(3)本発明のフラーレン誘導体をエーテル化剤と反応させて、エーテル化する。
(4)本発明のフラーレン誘導体をウレタン化剤と反応させて、ウレタン化する
さらに、上記(1)〜(4)の方法のほかにも、本発明のフラーレン誘導体に有機基を導入する条件は、例えば特開2006−56878号公報等に記載の方法を参照することができる。
以下、実施例を示して本発明を更に説明するが、本発明は以下の実施例に何ら制限されるものではなく、本発明の要旨を逸脱しない範囲において任意に変形して実施することができる。なお、本明細書の記載において、TCEは1,1,2,2−テトラクロロエタンを表わし、DMSOはジメチルスルホキシドを表わす。さらに、Meはメチル基を表わし、Phはフェニル基をそれぞれ表す。
[実施例1:C60(COH)aの製造]
(フラーレン:C60; R:COH; H:Hの製造)
フラーレンC60(2.0g、2.78mmol)とフェノール(13.05g、138.7mmol)とを加え、脱気したTCE(50mL)及び三塩化鉄(無水)(22.5g、138.7mmol)を加え、25℃で1日間攪拌した。そこに飽和炭酸水素ナトリウム水溶液(200mL)を加え反応を停止した後、酢酸エチル(200ml)、エチレンジアミン四酢酸(8.12g、27.8mmol)を加え、30分撹拌した。その後、セライトろ過を行い、分液漏斗にて抽出を行った。有機層を飽和炭酸水素ナトリウム水溶液で1回、飽和食塩水で3回洗浄し、硫酸マグネシウムで乾燥させた後、シリカゲルショートパスを行なった。
溶液を濃縮し、酢酸エチル(10ml)とトルエン(200ml)で晶析を行ない、さらにもう一度、酢酸エチル(10ml)とトルエン(200ml)で晶析を行った後、50℃真空乾燥を3時間行なった結果、茶色固体の生成物として1.45g得た。
得られた生成物に関してH−NMR、HPLC、LC−MSを測定した。なお、H−NMRはDMSO−d6を溶媒とし、400MHzにて測定した。また、HPLC、LC−MSは、500ppmのメタノール溶液を調製し、以下の測定条件で測定した。
[HPLC、LC−MS条件]
カラム種類:オクタデシルシリル(ODS)カラム
カラムサイズ:150mm×4.6mmφ
温度:40℃
溶離液:メタノール
流速:1.0ml/min
注入量:1μl
検出器:UV290nm
[LC−MS条件]
イオン化法:ESI(neg)
HPLC測定の結果、リテンションタイム1.61minに、96.9(Area%)で観測された。
LC−MSの測定結果は、以下の通りであった。
Figure 2012162506
[平均付加数(a,b)の算出]
LCMSの測定結果より、各ピークの付加数と面積%より平均付加数の算出を行った。一つのピークにn個の分子量が観測される場合には、それぞれが等しく存在していると仮定し、面積%を1/nすることで見積もった。
よってフラーレン骨格にヒドロキシフェニル基(a)が9.2個、H(b)が2.9個付加していると見積もられ、確かにa>bであることが確認された。
また、H−NMRの測定結果は、以下の通りであった。
H−NMR(DMSO−d6,400MHz)]
9.9〜8.5ppm(br,OH)、8.0〜5.5ppm(br,Ph)が1:4の積分比で観測されたことより、フラーレン骨格に、ヒドロキシフェニル基が付加した構造
であることが確認された。C60に結合したプロトンはブロードニングが激しく観測できなかった。
以上の結果から、得られた生成物がC60(COH)H(フラーレン:C
; R:COH; H:H; a=9.2; b=2.9)であることが確認
された。
更に、得られた生成物を、25℃、常圧下において、プロピレングリコール−1−モノメチルエーテル−2−アセテート(PGMEA)に10重量%溶解させ、溶解性を目視で判断した。その結果を下記表1に示す。
また、PGMEAの溶解性試験と同様の方法で、アルカリ現像液(2.3重量%テトラメチルアンモニウムヒドロキシド(TMAH)水溶液)に対する溶解性試験を行った。その結果を下記表1に示す。
[実施例2:C60(CH−COH)の製造]
(フラーレン:C60; R:CH−COH; H:Hの製造)
フラーレンC60(1.0g、1.39mmol)とオルトクレゾール(3.0g、27.8mmol)とを加え、脱気したTCE(25mL)及び三塩化鉄(無水)(4.51g、27.8mmol)を加え、25℃で24時間攪拌した。そこにメタノール(40mL)を加え反応を停止した後、その溶液を水(150ml)に滴下し、吸引ろ過を行った。得られた粗生成物を酢酸エチル(100ml)に溶解させ、飽和食塩水で3回洗浄し、硫酸マグネシウムで乾燥させた。溶液を濃縮し、酢酸エチル(30ml)とトルエン(200ml)を加え、溶液量を100mlまで減圧留去し、吸引ろ過後、50℃真空乾燥を3時間行なった結果、茶色固体の生成物(2−1)として1.69g得た。
さらに、吸引ろ過後のろ液を減圧留去し、酢酸エチル(20ml)とヘキサン(200ml)で晶析を行い、50℃真空乾燥を3時間行なった結果、茶色固体の生成物(2−2)として0.72g得た。
実施例1と同様にして、得られた生成物をHPLC、LC−MS、H−NMR(400MHz)にて測定した。
HPLC、LC−MSに関しては溶離液をトルエン/メタノール=20/80に変更した以外は実施例1と同様にして測定を行った。
[生成物(2−1)]
HPLC測定の結果、リテンションタイム1.59minに、85.4(Area%)、2.10minに、13.2(Area%)、3.96minに、0.34(Area%)、4.82minに、0.32(Area%)で観測された。
生成物(2−2)のLC−MSの結果より、同じリテンションタイムのピークは同一化合物であるとみなし、実施例1と同様にして平均付加数(a,b)を見積もると、フラーレン骨格にメチルヒドロキシフェニル基(a)が8.1個、H(b)が2.0個付加し、かつa>bであることが確認された。
また、H−NMRの測定結果は、以下の通りであった。
H−NMR(DMSO−d6,400MHz)]
9.6〜8.5ppm(br,OH)、7.6〜5.6ppm(br,Ph)、2.4〜1.1ppm(br,Me)が1:3:3の積分比で観測されたことより、フラーレン骨格に、メチルヒドロキシフェニル基が付加した構造であることが確認された。C60に結合したプロトンはブロードニングが激しく観測できなかった。
以上の結果から、得られた生成物(2−1)は、C60(CH−COH)(フラーレン:C60; R:CH−COH; H:H; a=8.1;
b=2.0)であることが確認された。
[生成物2−2]
HPLC測定の結果、リテンションタイム1.59minに、59.2(Area%)、2.10minに、33.8(Area%)、3.96minに、1.88(Area%)、4.82minに、2.40(Area%)、4.99minに、0.87(Area%)で観測された。
LC−MSの測定結果は、以下の通りであった。
Figure 2012162506
実施例1と同様にして平均付加数(a,b)を見積もると、フラーレン骨格にメチルヒドロキシフェニル基(a)が7.5個、H(b)が2.1個付加し、かつa>bであることが確認された。
また、H−NMRの測定結果は、以下の通りであった。
H−NMR(DMSO−d6,400MHz)]
9.6〜8.5ppm(br,OH)、7.6〜5.6ppm(br,Ph)、2.4〜1.1ppm(br,Me)が1:3:3の積分比で観測されたことより、フラーレン骨格に、メチルヒドロキシフェニル基が付加した構造であることが確認された。C60に結合したプロトンはブロードニングが激しく観測できなかった。
以上の結果から、得られた生成物(2−2)は、C60(CH−COH)(フラーレン:C60; R:CH−COH; H:H; a=7.5; b=2.1)であることが確認された。
更に、得られた生成物について、実施例1と同様にして、溶解性を目視で判断した。
結果を下記表1に示す。
[実施例3:C60(CH−COH)の製造]
(フラーレン:C60; R:CH−COH; H:Hの製造)
フラーレンC60(2.0g、2.78mmol)とオルトクレゾール(6.0g、55.6mmol)とを加え、脱気したTCE(50mL)及び三塩化鉄(無水)(13.5g、85.5mmol)を加え、25℃で12時間攪拌した。そこに飽和炭酸水素ナトリウム水溶液(200mL)を加え反応を停止した後、酢酸エチル(200ml)、エチレンジアミン四酢酸(16.5g、55.6mmol)を加え、30分撹拌した。その後、セライトろ過を行い、分液漏斗にて抽出を行った。有機層を飽和炭酸水素ナトリウム水溶液で1回、飽和食塩水で3回洗浄し、硫酸マグネシウムで乾燥させた後、シリカゲルショートパスを行なった。
溶液を濃縮し、酢酸エチル(10ml)とトルエン(200ml)で晶析を行ない、5
0℃真空乾燥を3時間行なった結果、茶色固体の生成物として2.63g得た。
実施例2と同様にして、得られた生成物をHPLC、LC−MS、H−NMR(400MHz)にて測定した。
HPLC測定の結果、リテンションタイム1.59minに、86.2(Area%)、2.10minに、12.1(Area%)、3.96minに、0.55(Area%)で観測された。
生成物(2−2)のLC−MSの結果より、同じリテンションタイムのピークは同一化合物であるとみなし、実施例1と同様にして平均付加数(a,b)を見積もると、フラーレン骨格にメチルヒドロキシフェニル基(a)が8.1個、H(b)が2.0個付加し、かつa>bであることが確認された。
また、H−NMRの測定結果は、以下の通りであった。
H−NMR(DMSO−d6,400MHz)]
9.7〜8.3ppm(br,OH)、8.0〜5.5ppm(br,Ph)、2.5〜1.0ppm(br,Me)が1:3:3の積分比で観測されたことより、フラーレン骨格に、メチルヒドロキシフェニル基が付加した構造であることが確認された。C60に結合したプロトンはブロードニングが激しく観測できなかった。
以上の結果から、得られた生成物がC60(CH−COH)(フラーレン:C60; R:CH−COH; H:Hの生成物; a=8.1; b=2.0)であることが確認された。
更に、得られた生成物について、実施例1と同様にして、溶解性を目視で判断した。
結果を下記表1に示す。
[実施例4:C60((CH−COH)の製造]
(フラーレン:C60; R:(CH−COH; H:Hの製造)
フラーレンC60(1.0g、1.39mmol)と2,6−ジメチルフェノール(3.40g、27.8mmol)とを加え、脱気したTCE(25mL)及び三塩化鉄(無
水)(4.51g、27.8mmol)を加え、25℃で1日攪拌した。そこに飽和食塩
水(100mL)を加え反応を停止した後、酢酸エチル(200ml)を加え、分液漏斗にて抽出を行った。さらに、TMEDA(テトラメチルエチレンジアミン)(2ml)を加えた後、飽和食塩水で2回、1Nの希塩酸で1回、飽和食塩水で2回洗浄し、硫酸マグネシウムで乾燥させた後、シリカゲルショートパスを行なった。
溶液を濃縮し、酢酸エチル(20ml)とトルエン(300ml)で晶析を行なった結果、茶色固体の生成物として2.41g得た。
実施例1と同様にして、得られた生成物をHPLC、LC−MS、H−NMR(400MHz)にて測定した。
HPLC、LC−MSに関しては溶離液をメタノールに変更した以外は実施例1と同様にして測定を行った。
HPLC測定の結果、リテンションタイム1.64minに、97.2(Area%)で観測された。
LC−MSの測定結果は、以下の通りであった。
Figure 2012162506
実施例1と同様にして平均付加数(a,b)を見積もると、フラーレン骨格にジメチルヒドロキシフェニル基(a)が9.2個、H(b)が2.4個付加し、かつa>bであることが確認された。
また、H−NMRの測定結果は、以下の通りであった。
H−NMR(DMSO−d6,400MHz)]
8.9〜7.1ppm(br,OH)、7.1〜6.2ppm(br,Ph)、2.5〜1.0ppm(br,Me)が1:2:6の積分比で観測されたことより、フラーレン骨格に、ジメチルヒドロキシフェニル基が付加した構造であることが確認された。C60に結合したプロトンはブロードニングが激しく観測できなかった。
以上の結果から、得られた生成物がC60((CH−COH)(フラーレン:C60; R:(CH−COH; H:H; a=9.2; b=2.4)であることが確認された。
更に、得られた生成物について、実施例1と同様にして、溶解性を目視で判断した。
結果を下記表1に示す。
[実施例5:C60(COH)の製造]
(フラーレン:C60; R:COH; H:Hの製造)
フラーレンC60(1.0g、1.39mmol)とアニソール(3.0g、27.8mmol)とを加え、脱気したTCE(25mL)及び三塩化鉄(無水)(6.76g、41.7mmol)を加え、25℃で10時間攪拌した。そこにイオン交換水(100mL)を加え反応を停止した後、トルエン(100ml)を加え、セライトろ過を行い、分液漏斗にて抽出を行った。有機層をイオン交換水で3回洗浄し、硫酸マグネシウムで乾燥させた後、シリカゲルショートパスを行なった。
溶液を濃縮し、酢酸エチル(10ml)とヘキサン(200ml)で晶析を行ない、50℃真空乾燥を3時間行なった結果、茶色固体の生成物として1.09g得た。この生成物をH−NMRにて測定したところ、フラーレン骨格に、メトキシフェニル基と水素が付加した構造(C60(COMe)(フラーレン:C60; R:COMe; H:Hの生成物))であることが確認された。
次に、C60(COMe)(フラーレン:C60; R:COMe; H:Hの生成物)(1.0g)のODCB溶液(25mL)を調製し、5℃まで冷
却したのち、BBr−塩化メチレン溶液(1.0mol/L、6.1mL)を加え、25℃まで昇温した。室温下で9時間攪拌した後、イオン交換水(14mL)で反応を停止させ、酢酸エチル(14mL)を加え、分液漏斗にて抽出した。有機層をイオン交換水で2回洗浄し、硫酸マグネシウムで乾燥させた後、濾過を行った。溶液を濃縮しヘキサン(100mL)で晶析を行った。また、残留溶媒であるODCBを効果的に除去するため、再度酢酸エチル(5mL)に溶解させ、ヘキサン(100mL)で晶析を行い、50℃真空乾燥を3時間行なった結果、オレンジ色固体(0.71g)の生成物として得た。
実施例1と同様にして、得られた生成物をHPLC、LC−MS、H−NMR(400MHz)にて測定した。
HPLC測定の結果、リテンションタイム1.61minに、98.2(Area%)
で観測された。
実施例1のLC−MSの結果より、同じリテンションタイムのピークは同一化合物であるとみなし、実施例1と同様にして平均付加数(a,b)を見積もると、フラーレン骨格にヒドロキシフェニル基(a)が9.3個、H(b)が2.9個付加し、かつa>bであることが確認された。
また、H−NMRの測定結果は、以下の通りであった。
H−NMR(DMSO−d6,400MHz)]
9.9〜8.5ppm(br,OH)、8.0〜5.5ppm(br,Ph)が1:4の積分比で観測されたことより、フラーレン骨格に、ヒドロキシフェニル基が付加した構造であることが確認された。C60に結合したプロトンはブロードニングが激しく観測できなかった。
以上の結果から、得られた生成物がC60(COH)(フラーレン:C60; R:COH; H:Hの生成物; a=9.3; b=2.9)であることが確認された。
更に、得られた生成物について、実施例1と同様にして、溶解性を目視で判断した。
結果を下記表1に示す。
[比較例1:C60(COH)の製造]
(フラーレン:C60; R:COH; H:Hの製造)
フラーレンC60(3.0g、4.17mmol)と三塩化アルミニウム(無水)(5.56g、41.7mmol)とを加え、脱気したODCB(75mL)及びアニソール(9.00mL、83.4mmol)を加え、25℃で2日間攪拌した。そこにイオン交換水150mLを加え反応を停止した後、酢酸エチルを加え、分液漏斗にて抽出した。有機層をイオン交換水で2回洗浄し、硫酸マグネシウムで乾燥させた後、濾過を行なった。
溶液を濃縮しメタノール(600mL)で晶析を行ない、50℃真空乾燥を3時間行なうことで、C60(COMe)(フラーレン:C60; R:COMe; H:Hの生成物)を茶色固体の生成物として6.18g得た。
次に、C60(COMe)(フラーレン:C60; R:COMe; H:Hの生成物)(3.00g)のODCB溶液(75mL)を調製し、5℃まで
冷却したのち、BBr−塩化メチレン溶液(1.0mol/L、18.2mL)を加え、25℃まで昇温した。室温下で6時間攪拌した後、イオン交換水(42mL)で反応を停止させ、酢酸エチル(42mL)を加え、分液漏斗にて抽出した。有機層をイオン交換水で2回洗浄し、硫酸マグネシウムで乾燥させた後、濾過を行った。溶液を濃縮しヘキサン(300mL)で晶析を行った。
また、残留溶媒であるODCBを効果的に除去するため、再度酢酸エチル(10mL)に溶解させ、ヘキサン(300mL)で晶析を行い、50℃真空乾燥を3時間行なった結果、オレンジ色固体(2.63g;収率93.5%)の生成物を得た。
実施例1と同様にして、得られた生成物をH−NMR(400MHz)にて測定した。
HPLC、LC−MSに関しては溶離液をトルエン/メタノール=5/95に変更した以外は実施例1と同様にして測定を行った。
HPLC測定の結果、リテンションタイム1.71minに、59.24(Area%)、2.62〜7.40minに、37.0(Area%)で観測された。
LC−MSの測定結果は、以下の通りであった。
Figure 2012162506
実施例1と同様にして平均付加数(a,b)を見積もると、フラーレン骨格にヒドロキシフェニル基(a)が7.6個、H(b)が7.6個付加し、かつa=bであることが確認された。
また、H−NMRの測定結果は、以下の通りであった。
H−NMR(DMSO−d6,400MHz)]
9.8〜9.0ppm(br,OH)、7.8〜6.0ppm(br,Ph)、5.0〜3.8ppm(br,C60−H)が1:4:1の積分比で観測されたことより、フラーレン骨格に、ヒドロキシフェニル基と水素が付加した構造であることが確認された。
以上の結果から、得られた生成物がC60(COH)(フラーレン:C60; R:COH; H:H; 平均付加数a,b=7.6の生成物)であることが確認された。
更に、得られた生成物について、実施例1と同様にして、溶解性を目視で判断した。
結果を下記表1に示す。
なお、下記表1において、PGMEAはプロピレングリコール−1−モノメチルエーテル−2−アセテートを表し、アルカリ現像液は2.3重量%TMAH(テトラメチルアン
モニウムヒドロキシド)水溶液をあらわす。また、○は目視で完全に溶解したことを示し
、×はフラーレン誘導体の溶媒への溶解性が低く、完全に溶解しなかったことを示す。
[元素分析を用いたフラーレン誘導体の溶液中での酸化耐性の評価]
実施例1及び比較例1で得られたフラーレン誘導体を用いて、以下の手順で溶液中における酸化耐性を評価した。
(i)フラーレン誘導体を酢酸エチル15gに対して0.66重量%となるように添
加し、スターラーにて常圧、空気下で2日間攪拌した。
(ii)そのフラーレン誘導体溶液中の酢酸エチルを減圧留去し、50℃で5時間真空乾燥を行った。
(iii)酢酸エチル中で撹拌を行った試料(空気暴露した試料)と窒素雰囲気下で保
存しておいた試料の両方の元素分析を行い、空気暴露前後の試料中の酸素の重量%の増加率から酸化耐性の評価を行った。
[C、H、Nの元素分析]
CHN計:Perkin Elmer社2400II
[Oの元素分析]
ON計:LECO社 酸素窒素分析装置 TC600
(不活性ガス雰囲気下インパルス炉加熱抽出−IR検出法)
以上の結果を下記にまとめる。
<実施例1のフラーレン誘導体>
Figure 2012162506
空気暴露前後で酸素の重量%が0.2%増加しているものの、酸素の元素分析の誤差範囲内であり、有意差はないと考えられる。
<比較例1のフラーレン誘導体>
Figure 2012162506
空気暴露前後で酸素の重量%が12.1%から13.7%へと1.6%増加しており、空気下、酢酸エチル中で撹拌することで酸素が付加していると予想される。
上記の元素分析結果より明らかなように、本発明のフラーレン誘導体のエステル溶液の場合は、比較例1と比較して、溶液中でも安定で高い酸化耐性を示した。
Figure 2012162506
本発明のフラーレン誘導体は、任意の分野で使用することが可能である。中でも、本発明のフラーレン誘導体はPGMEA等のエステル溶媒に対して高い溶解性と高い酸化耐性を有し、且つ、低コストで容易に製造可能であるという特徴を有することから、例えば、DVD、CD等の光ディスク材料の製造、半導体集積回路の作製、半導体集積回路作製用マスクの製造、液晶用集積回路の作製、液晶画面製造用レジスト材料等の用途に好ましく使用することができる。また、KrFエキシマレーザー、ArFエキシマレーザーに加えて、EUV(極端紫外光)やEB(電子ビーム)などの光源短波長化に適応したフォトレジストや反射防止膜の機能を有した下層膜材料としてのフォトレジスト、ナノインプリント及び層間絶縁膜の用途に特に好ましく使用することができる。

Claims (11)

  1. 下記式(I)で表わされることを特徴とするフラーレン誘導体。
    Figure 2012162506
    (式(I)において、
    は1以上3以下の水酸基を含み、且つ水酸基以外の置換基を有していてもよい炭素数6〜18の芳香族性を有する炭化水素基を表し、
    aは1以上15以下のRの平均付加数を表し、
    bは0以上4以下のH(水素原子)の平均付加数を表し、
    かつa>bを満たし、
    丸で示される構造はフラーレン骨格を表す。)
  2. 前記式(I)中の各Rが、1以上2以下の置換基を有することを特徴とする、請求項1に記載のフラーレン誘導体。
  3. 前記式(I)中の各Rに含まれる置換基が、炭素数1以上20以下の有機基を有することを特徴とする、請求項1又は2に記載のフラーレン誘導体。
  4. 前記式(I)中の各Rにおける芳香族性を有する炭化水素基が、フェニル基であることを特徴とする請求項1〜3の何れか1項に記載のフラーレン誘導体。
  5. 前記式(I)中の、aが4以上12以下であることを特徴とする請求項1〜4の何れか1項に記載のフラーレン誘導体。
  6. 前記式(I)中のフラーレン骨格が、フラーレンC60及び/又はフラーレンC70であることを特徴とする請求項1〜5の何れか1項に記載のフラーレン誘導体。
  7. 前記式(I)中のフラーレン骨格が、フラーレンC60及び/又はフラーレンC70であるフラーレン誘導体と、前記式(I)中のフラーレン骨格が、フラーレンC60及びフラーレンC70以外のフラーレンであるフラーレン誘導体とを含むことを特徴とする請求項6に記載のフラーレン誘導体。
  8. 請求項1〜7の何れか一項に記載のフラーレン誘導体が溶媒に溶解してなることを特徴とする、フラーレン誘導体溶液。
  9. 該溶媒が、エステル溶媒であることを特徴とする、請求項8に記載のフラーレン誘導体溶液。
  10. 請求項1〜7の何れか一項に記載のフラーレン誘導体を含むことを特徴とする、フラーレン誘導体膜。
  11. フラーレン類と、周期律表8、9又は10族中の少なくとも1種の金属化合物と、H−
    1で表される化合物を作用させた後、反応溶液に、アミノ基またはカルボキシル基を少
    なくとも1つ以上有するキレート剤を添加することにより、作用させた金属化合物を除去することを特徴とする請求項1〜7記載のフラーレン誘導体の製造方法。
JP2011026156A 2011-02-09 2011-02-09 フラーレン誘導体の製造方法 Active JP5792964B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011026156A JP5792964B2 (ja) 2011-02-09 2011-02-09 フラーレン誘導体の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011026156A JP5792964B2 (ja) 2011-02-09 2011-02-09 フラーレン誘導体の製造方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2014254851A Division JP2015071640A (ja) 2014-12-17 2014-12-17 フラーレン誘導体溶液及びフラーレン誘導体膜

Publications (2)

Publication Number Publication Date
JP2012162506A true JP2012162506A (ja) 2012-08-30
JP5792964B2 JP5792964B2 (ja) 2015-10-14

Family

ID=46842292

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011026156A Active JP5792964B2 (ja) 2011-02-09 2011-02-09 フラーレン誘導体の製造方法

Country Status (1)

Country Link
JP (1) JP5792964B2 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014097949A (ja) * 2012-11-14 2014-05-29 Mitsubishi Corp フラーレンc60誘導体、並びに極紫外線光又は電子ビーム露光用レジスト組成物
JP2015024931A (ja) * 2013-07-24 2015-02-05 紀本電子工業株式会社 フラーレン溶液およびその製造方法ならびにフラーレン溶液を用いた電池
WO2015167284A1 (ko) * 2014-04-30 2015-11-05 주식회사 엘지화학 유기 태양 전지 및 이의 제조방법
JP2017224820A (ja) * 2013-05-16 2017-12-21 ダイキン工業株式会社 フラーレン誘導体、及びn型半導体材料

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003146915A (ja) * 2001-11-09 2003-05-21 Eiichi Nakamura 炭素クラスター誘導体
JP2005232165A (ja) * 2004-01-22 2005-09-02 Mitsubishi Chemicals Corp フラーレン誘導体及びフラーレン金属錯体、並びにそれらの製造方法
JP2006227398A (ja) * 2005-02-18 2006-08-31 Shin Etsu Chem Co Ltd レジスト材料並びにこれを用いたパターン形成方法
JP2006227391A (ja) * 2005-02-18 2006-08-31 Shin Etsu Chem Co Ltd フォトレジスト下層膜形成材料及びパターン形成方法
JP2008033102A (ja) * 2006-07-31 2008-02-14 Tokyo Ohka Kogyo Co Ltd レジスト組成物およびレジストパターン形成方法
JP2008280324A (ja) * 2007-04-13 2008-11-20 Mitsubishi Chemicals Corp フラーレン誘導体並びにその溶液及び膜
JP2009132680A (ja) * 2007-10-29 2009-06-18 Frontier Carbon Corp フラーレン誘導体の製造方法及びフラーレン誘導体
JP2009185014A (ja) * 2007-05-17 2009-08-20 Mitsubishi Chemicals Corp フラーレン誘導体並びにその溶液及びその膜
JP2010024221A (ja) * 2008-06-20 2010-02-04 Mitsubishi Chemicals Corp フラーレン誘導体並びにその溶液及びその膜
JP2010059110A (ja) * 2008-09-04 2010-03-18 Mitsubishi Chemicals Corp フラーレン誘導体並びにその溶液、及びその膜

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003146915A (ja) * 2001-11-09 2003-05-21 Eiichi Nakamura 炭素クラスター誘導体
JP2005232165A (ja) * 2004-01-22 2005-09-02 Mitsubishi Chemicals Corp フラーレン誘導体及びフラーレン金属錯体、並びにそれらの製造方法
JP2006227398A (ja) * 2005-02-18 2006-08-31 Shin Etsu Chem Co Ltd レジスト材料並びにこれを用いたパターン形成方法
JP2006227391A (ja) * 2005-02-18 2006-08-31 Shin Etsu Chem Co Ltd フォトレジスト下層膜形成材料及びパターン形成方法
JP2008033102A (ja) * 2006-07-31 2008-02-14 Tokyo Ohka Kogyo Co Ltd レジスト組成物およびレジストパターン形成方法
JP2008280324A (ja) * 2007-04-13 2008-11-20 Mitsubishi Chemicals Corp フラーレン誘導体並びにその溶液及び膜
JP2009185014A (ja) * 2007-05-17 2009-08-20 Mitsubishi Chemicals Corp フラーレン誘導体並びにその溶液及びその膜
JP2009132680A (ja) * 2007-10-29 2009-06-18 Frontier Carbon Corp フラーレン誘導体の製造方法及びフラーレン誘導体
JP2010024221A (ja) * 2008-06-20 2010-02-04 Mitsubishi Chemicals Corp フラーレン誘導体並びにその溶液及びその膜
JP2010059110A (ja) * 2008-09-04 2010-03-18 Mitsubishi Chemicals Corp フラーレン誘導体並びにその溶液、及びその膜

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6014046760; SHI Zhiqiang, et al.: 'Synthesis and antioxidative properties of polyphenolfullerenes' Chinese Science Bulletin vol.46 no.21, 200111, p.1790-1792 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014097949A (ja) * 2012-11-14 2014-05-29 Mitsubishi Corp フラーレンc60誘導体、並びに極紫外線光又は電子ビーム露光用レジスト組成物
JP2017224820A (ja) * 2013-05-16 2017-12-21 ダイキン工業株式会社 フラーレン誘導体、及びn型半導体材料
US10388878B2 (en) 2013-05-16 2019-08-20 Daikin Industries, Ltd. Fullerene derivative and N-type semiconductor material
JP2020021942A (ja) * 2013-05-16 2020-02-06 ダイキン工業株式会社 フラーレン誘導体、及びn型半導体材料
JP7195546B2 (ja) 2013-05-16 2022-12-26 ダイキン工業株式会社 フラーレン誘導体、及びn型半導体材料
JP2015024931A (ja) * 2013-07-24 2015-02-05 紀本電子工業株式会社 フラーレン溶液およびその製造方法ならびにフラーレン溶液を用いた電池
WO2015167284A1 (ko) * 2014-04-30 2015-11-05 주식회사 엘지화학 유기 태양 전지 및 이의 제조방법
US10439142B2 (en) 2014-04-30 2019-10-08 Lg Chem, Ltd. Organic solar cell and manufacturing method therefor

Also Published As

Publication number Publication date
JP5792964B2 (ja) 2015-10-14

Similar Documents

Publication Publication Date Title
CN102667625B (zh) 正型感光性树脂组合物、由该组合物形成的固化膜及具有固化膜的元件
EP1886989A1 (en) Calixresorcinarene compound, photoresist base comprising the same, and composition thereof
JPWO2008153154A1 (ja) 環状化合物、フォトレジスト基材及びフォトレジスト組成物
JP5658434B2 (ja) フラーレン誘導体並びにその溶液及びその膜
WO2005097725A1 (ja) カリックスレゾルシナレン化合物、フォトレジスト基材及びその組成物
JP2008308433A (ja) トリプチセン構造を有する化合物、フォトレジスト基材及びフォトレジスト組成物
JP5792964B2 (ja) フラーレン誘導体の製造方法
KR20170008488A (ko) 신규한 레지스트 하층막 형성용 중합체, 이를 포함하는 레지스트 하층막 형성용 조성물 및 이를 이용한 레지스트 패턴의 형성 방법
KR20170008038A (ko) 신규한 레지스트 하층막 형성용 중합체, 이를 포함하는 레지스트 하층막 형성용 조성물 및 이를 이용한 레지스트 패턴의 형성 방법
Wang et al. Molecular glass resists based on tetraphenylsilane derivatives: Effect of protecting ratios on advanced lithography
JPWO2009075308A1 (ja) 環状化合物、フォトレジスト基材、フォトレジスト組成物、微細加工方法及び半導体装置
JP5332302B2 (ja) フラーレン誘導体並びにその溶液及びその膜
JP5394702B2 (ja) フラーレン誘導体並びにその溶液及び膜
JP5119792B2 (ja) フラーレン誘導体並びにその溶液及び膜
JP2008280324A (ja) フラーレン誘導体並びにその溶液及び膜
JPWO2008136372A1 (ja) フォトレジスト基材、及びそれを含んでなるフォトレジスト組成物
JP5530084B2 (ja) フラーレン誘導体並びにその溶液、及びその膜
JP5194626B2 (ja) フラーレン誘導体並びにその溶液、製造方法及び膜
JP7126344B2 (ja) 硬化性組成物及びそれを用いた光学素子
JP2015071640A (ja) フラーレン誘導体溶液及びフラーレン誘導体膜
JP5690043B2 (ja) フラーレン誘導体溶液、フラーレン誘導体膜及びフラーレン誘導体
JP2009067724A (ja) 環状化合物、フォトレジスト基材及びフォトレジスト組成物
KR102148772B1 (ko) 신규한 중합체, 이를 포함하는 하층막 형성용 조성물 및 이를 이용한 방법
JP2009134020A (ja) レジスト組成物及びパターン形成方法
JP5292771B2 (ja) フラーレン誘導体並びにその溶液及び膜

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20121128

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131205

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141030

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150630

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150717

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150804

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150807

R150 Certificate of patent or registration of utility model

Ref document number: 5792964

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250