JP2011526091A - クロック・ゲーティング・システム及び方法 - Google Patents

クロック・ゲーティング・システム及び方法 Download PDF

Info

Publication number
JP2011526091A
JP2011526091A JP2011507719A JP2011507719A JP2011526091A JP 2011526091 A JP2011526091 A JP 2011526091A JP 2011507719 A JP2011507719 A JP 2011507719A JP 2011507719 A JP2011507719 A JP 2011507719A JP 2011526091 A JP2011526091 A JP 2011526091A
Authority
JP
Japan
Prior art keywords
coupled
input
clock signal
terminal
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011507719A
Other languages
English (en)
Other versions
JP5199458B2 (ja
Inventor
サン−ローレン、マーチン
モード、バッサム・ジャミル
バセット、ポール
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qualcomm Inc
Original Assignee
Qualcomm Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Inc filed Critical Qualcomm Inc
Publication of JP2011526091A publication Critical patent/JP2011526091A/ja
Application granted granted Critical
Publication of JP5199458B2 publication Critical patent/JP5199458B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K19/00Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
    • H03K19/0008Arrangements for reducing power consumption
    • H03K19/0016Arrangements for reducing power consumption by using a control or a clock signal, e.g. in order to apply power supply
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/04Generating or distributing clock signals or signals derived directly therefrom

Abstract

【解決手段】クロック・ゲーティング・システム及び方法が開示される。具体的な実施形態では、システムは、少なくとも一つの入力信号を受信する少なくとも一つの入力を有し、内部イネーブルノードに結合された出力を有する入力論理回路を含む。保持回路は、ゲートされたクロック信号に応答する少なくとも一つのスイッチング素子を含み、内部イネーブルノードの論理電圧レベルを選択的に保持するように結合される。このシステムは、入力クロック信号、並びに内部イネーブルノードの論理電圧レベルに応答して、ゲートされたクロック信号を生成するゲーティング素子を更に含む。
【選択図】図1

Description

関連出願の表示
本開示は、本明細書内に参照によりその全てが組み込まれ、優先権を主張する2008年4月29日に出願された米国仮出願番号61/048,661の利益を主張する。
本開示は概してクロックをゲーティングすることに関する。
技術の進歩により、パーソナルコンピューティングデバイスはより小さくなり、より高性能になってきた。例えば、現在、種々の携帯型パーソナルコンピューティングデバイスがあり、そこには携帯型無線電話、携帯情報端末(PDA)、及びページングデバイスのような無線コンピューティングデバイスが含まれ、それらは小さく、軽く、そしてユーザによって容易に持ち運びできる。より具体的には、携帯電話やインターネットプロトコル電話のような携帯型無線電話は、無線ネットワーク上で音声及びデータパケットを通信出来る。更に、多くのそのような無線電話は、そこに組み込まれるその他の種類のデバイスを含む。例えば無線電話はまた、デジタルスチルカメラ、デジタルビデオカメラ、デジタルレコーダ、及びオーディオファイルプレーヤを含み得る。また、そのような無線電話は、インターネットにアクセスするために使用され得るウェブブラウザアプリケーションのようなソフトウェアアプリケーションを含む、実行可能な命令を処理し得る。しかしながら、そのような携帯型デバイスの電力消費は、バッテリを急速に消耗させ、ユーザのエクスペリエンスを損なうことがあり得る。
電力を節約する一つの機構は、一つまたはそれ以上のクロックツリー(clock tree)にクロック・ゲーティング(clock gating)を使用することである。クロックツリー、すなわちクロック分配ネットワークは、共通のポイントから、クロック信号を受信する他の回路素子に、一つまたはそれ以上のクロック信号を分配する。クロックツリーはしばしば、半導体デバイスによって消費される電力のかなりの部分を消費し、そして分岐の出力が必要でない際に、クロックの分岐で不要な電力消費が生じ得る。電力を節約するため、クロック・ゲーティングと呼ばれる方法がしばしば使用され、ある領域が使用されていない際に、論理ゲート及びクロック・ゲーティング・セルが、クロックツリーのその領域をオフさせるために使用される。しかしながら、クロック・ゲーティングを実行するために使用されるクロック・ゲーティング・セルもまた、電力を消費する。
具体的な実施形態では、クロック・ゲーティング・システムは、クロック・ゲーティング回路でイネーブル信号を保持するため、従来のパスゲートラッチの代わりに、セット/リセットラッチとして機能する回路を組み込む。セット/リセットラッチは、クロスカップルされたNOT−AND(NAND)ゲートの組を含む。NANDゲートの一つは、クロックをブロックするNANDゲートと結合(merge)される。クロック・ゲーティング・システムは、パスゲートラッチを用いたセルに比べてより小さな面積を有し、そしてトランジスタの数を減らすことができる。クロック・ゲーティング・システムはまた、クロック信号がトグルした際にいつもトグルするトランジスタの数を減らすことができ、これにより従来のクロック・ゲーティング・セルに比べて動的な電力消費量を低減できる。
具体的な実施形態では、少なくとも一つの入力信号を受信する少なくとも一つの入力を有し、内部イネーブルノードに結合された出力を有する入力論理回路を含むクロック・ゲーティング回路が開示される。クロック・ゲーティング回路はまた、内部イネーブルノードの論理電圧レベルを選択的に保持するように結合された保持回路を含む。保持回路は、ゲートされたクロック信号に応答する少なくとも一つのスイッチング素子を含む。クロック・ゲーティング回路はまた、入力クロック信号、並びに内部イネーブルノードの論理電圧レベルに応答して、ゲートされたクロック信号を生成するゲーティング素子を含む。
別の具体的な実施形態では、クロック信号を受信するように結合された第1入力を有し、ゲートされたクロック信号を供給するように結合された出力を有するNAND論理回路を含むシステムが開示される。このシステムは、NAND論理回路の第2入力にイネーブル信号を供給するように結合された保持回路を含む。9個未満で4個以上のトランジスタが、各クロック信号遷移でトグルする。
別の具体的な実施形態では、少なくとも一つの入力と、内部イネーブルノードに結合された出力とを有する入力論理回路で、少なくとも一つの入力信号を受信すること、を含む方法が開示される。この方法はまた、入力クロック信号、並びに内部イネーブルノードの論理電圧レベルに応答するゲーティング素子で、ゲートされたクロック信号を生成すること、を含む。本方法は更に、ゲートされたクロック信号に応答して、内部イネーブルノードの論理電圧レベルを選択的に保持すること、を含む。
具体的な実施形態では、方法は、第1保持回路を有する第1クロック・ゲーティング・セルまたは第2保持回路を有する第2クロック・ゲーティング・セルの一つを選択すること、を含み、この選択は少なくとも一つの設計基準に基づく。実施形態では、第1クロック・ゲーティング・セルは、各クロック信号のトグルに応答してトグルする9個のトランジスタを含み得る。別の実施形態では、第2保持回路のトランジスタの半分未満が、各クロック信号のトグルに応答してトグルする。別の実施形態では、設計基準は、電力消費量、動作速度、第1クロック・ゲーティング・セルまたは第2クロック・ゲーティング・セルの面積、またはこれらのあらゆる組み合わせを含む。
開示された実施形態の少なくとも一つにより与えられる一つの具体的な利点は、クロック・ゲーティング回路の電力消費量が削減されることである。開示された実施形態の少なくとも一つにより与えられる別の具体的な利点は、クロック・ゲーティング回路の設置面積が削減されることである。開示された実施形態の少なくとも一つにより与えられる別の具体的な利点は、各クロックサイクルにつきスイッチするトランジスタ数が削減されることである。
本開示のその他の側面、利点、及び特長が、以下のセクションの図面の簡単な説明、詳細な説明、及び特許請求の範囲を含む出願のすべてのレビューの後で、明らかになるだろう。
図1は、クロック・ゲーティング・システムの具体的な例示的な実施形態のブロック図である。 図2は、クロック・ゲーティング・システムで使用するクロック・ゲーティング・セルの第1の例示的な実施形態の回路図である。 図3は、クロック・ゲーティング・システムで使用するクロック・ゲーティング・セルの第2の例示的な実施形態の回路図である。 図4は、ゲートされたクロック信号を生成する方法の具体的で例示的な実施形態のフローチャートである。 図5は、4つのトランジスタがトグル動作するクロック・ゲーティング回路を含む例示的な通信デバイスのブロック図である。 図6は、4つのトグルするトランジスタを有するクロック・ゲーティング回路を含む製造プロセスの例示的な実施形態のブロック図である。
図1を参照して、ゲートされたクロック信号(gated clock signal)を生成するシステムの例示的な実施形態が示され、全体として100で指定される。システム100は、ゲートされた回路(gated circuit)104に結合されたクロック・ゲーティング・セル(clock gating cell)102を含む。クロック・ゲーティング・セル102は、クロック入力106及び第1入力108を受信する。クロック・ゲーティング・セル102はまた、第2入力110のような、一つまたはそれ以上の追加の入力を受信しても良い。クロック・ゲーティング・セル102は、ゲートされたクロック信号(gated clock signal)112をゲートされた回路104に供給する。クロック・ゲーティング・セル102は、クロック・ゲーティング回路(clock gating circuit)128を含む。
クロック・ゲーティング回路128は、内部イネーブルノード107に結合された入力論理回路114を含む。保持回路120及びゲーティング素子(gating element)122はまた、内部イネーブルノード107に結合される。保持回路120は、ゲートされたクロック信号112に応答する少なくとも一つのスイッチング素子128を含む。スイッチング素子128はクロック入力106で受信された入力クロック信号の代わりに、ゲートされたクロック信号112に応答するので、スイッチング素子128は、入力クロック信号に応答する他の素子よりも低い頻度でスイッチし得る(より少ないトグルを示し得る)。
入力論理回路114は、一つまたはそれ以上の入力の値に基づいて出力を生成する任意の論理回路として機能出来る。これに限定しない例の実例として、入力論理回路114は、インバータ、NOT OR(NOR)ゲート、NOT AND(NAND)ゲート、AND OR INVERT(AOI)ゲート、OR AND INVERT(OAI)ゲート、マルチプレクサ、排他的ORゲート(XOR)ゲート、またはその他のタイプのあらゆる論理回路として機能できる。具体的な実施形態では、入力論理回路114は、第1論理関数(f)を実行する第1回路116を含み、これは第2論理関数(not(f))を実行する第2回路118に結合され、第2論理関数は第1論理関数の反転を提供する。第1回路116はpチャネル金属・酸化物・半導体(PMOS)素子で形成され、第2回路118はnチャネル金属・酸化物・半導体(NMOS)素子で形成され得る。入力論理回路116は、内部イネーブルノード107に結合される出力126を有する。入力論理回路114は、一つまたはそれ以上の入力信号108〜110の第1及び第2論理関数に応答して、論理“0”レベルまたは論理“1”レベルのような論理電圧レベルで、内部イネーブルノード107をバイアスするように構成され得る。
具体的な実施形態では、保持回路120は、セット/リセットラッチまたはパスゲートラッチとして実質的に動作する。保持回路120は、入力クロック信号106及びゲートされたクロック信号112に応答して、入力イネーブルノード107の論理電圧レベルを選択的に保持し、または入力論理回路114が内部イネーブルノード107の論理電圧レベルを制御することを許可する。保持回路120は、ゲートされたクロック信号112に応答するスイッチング素子128を含む。スイッチング素子128はゲートされたクロック信号112に応答するので、スイッチング素子128は、入力クロック信号に応答するスイッチング素子よりもより低い頻度でスイッチし、これによりシステム100の動的電力消費量が低減される。例えば、システム100は、入力クロック信号がトグルする際にトグルする9個のトランジスタを有する従来のクロック・ゲーティング・セルに替わる、より低い電源を提供する。例示のため、システム100では4個以下のトランジスタが、各クロック信号の遷移によりトグルし得る。
ゲーティング素子122は、入力クロック信号106を受信するように結合された第1入力を有する。ゲーティング素子122はまた、内部イネーブルノード107の論理電圧レベルにより駆動されるイネーブル信号124を受信するように結合された第2入力を有する。ゲーティング素子122は、内部クロック信号106及び内部イネーブルノード107の論理電圧レベルに応答して、ゲートされたクロック信号112を生成する。図示するように、ゲーティング素子122は、第1及び第2入力の論理関数として、選択的に入力クロック信号106を伝搬するかまたは入力信号106をブロックすることにより、ゲートされたクロック出力(gated clock output)を生成するように構成されたANDゲートのような回路を含み得る。
内部イネーブルノード107からの内部イネーブル信号124が論理“0”状態(すなわち論理lowの値を示す電圧にバイアスされている)である第1動作モードでは、ゲーティング素子122のゲートされたクロック信号112出力は、その他の入力にかかわらず論理“0”状態のような論理状態に保持される。内部イネーブルノード107からの内部イネーブル信号124が論理“1”状態(すなわち論理highの値を示す電圧にバイアスされている)である第2動作モードでは、ゲートされたクロック信号112の値はクロック入力106に依存し、そして論理“0”または論理“1”状態のいずれかとなる。入力論理回路114への一つまたはそれ以上の入力108〜110は、入力クロック信号106がlow(すなわち、論理“0”状態)である際に、内部イネーブルノード107の論理状態を変化させるために使用される。具体的には、これらの入力は、テストモードの期間にイネーブルノード107を強制的に特定の値にする一つまたは複数の信号を含む。入力クロック信号106がhigh(すなわち論理“1”状態)である際には、保持回路120は、内部イネーブル信号124の状態を論理“0”または論理“1”状態に維持する。
図2を参照すると、クロック・ゲーティング・システムの第1の例示的な実施形態が開示され、全体として200で指定される。クロック・ゲーティング・システム200は、図1のクロック・ゲーティング回路128と論理的に等価に動作し得る。システム200は、入力クロック信号208を受信するように結合された第1入力204を有するNOT−AND(NAND)論理回路202を含むゲーティング素子を含む。このNAND論理回路202は、内部イネーブルノード207からイネーブル信号を受信するように結合された第2入力206を有する。NAND論理回路202は、ノード(n)222で、ゲートされたクロック信号を供給する。ノード222のゲートされたクロック信号は、入力クロック信号208に関して反転されたものである。ノード222に結合されたインバータ236は、入力クロック信号208に関する反転でない出力信号238として、第2のゲートされたクロック信号を生成する。ノード222のゲートされたクロック信号は、出力信号238の反対の極性(opposite polarity)を有する出力信号として用いられ得る。あるいは、具体的な実施形態では、インバータ236は、出力信号238の極性を変えるバッファに置換されても良い。具体的な実施形態では、NAND論理回路202を含むゲーティング素子は、図1のゲーティング素子122に相当する。
入力論理回路は、内部イネーブルノード207を介して直列に結合されたプルアップ回路210及びプルダウン回路212を含む。具体的な実施形態では、プルアップ回路210及びプルダウン回路212を有する入力論理回路は、第1回路116及び第2回路118を有する図1の入力論理回路114に相当し得る。プルアップ回路210は、電源と内部イネーブルノード207との間に低インピーダンス経路を選択的に供給するように動作し得る。プルダウン回路212は、内部イネーブルノード207とグランドとの間に低インピーダンス経路を選択的に供給するように動作し得る。
プルアップ回路210及びプルダウン回路212は、第1分離素子234及び第2分離素子214のような、それぞれがプルアップ及びプルダウン回路210及び212を介して電流が流れることを選択的に防止するための入力論理分離素子に直列に結合され得る。分離素子214、234の少なくとも一つは、入力クロック信号208よりもむしろゲートされたクロック信号に応答し得る。例えば第1分離素子234は、プルアップ回路210が内部イネーブルノード207を論理high電圧レベルにバイアスすることを、選択的に防止するように構成され得る。第2分離素子214は、プルダウン回路が内部イネーブルノード207を論理low電圧レベルにバイアスすることを、選択的に防止するように構成され得る。
第1分離素子234は、電源に結合された第1端子と入力クロック信号208に結合された制御端子とを有するスイッチング素子として例示されている。具体的には、第1分離素子234は、pチャネル金属・酸化物・半導体(PMOS)トランジスタである。第1分離素子234は、プルアップ回路210に結合された第2端子を有する。電源に結合された第1分離素子234に直列接続されたプルアップ回路210と第1分離素子234が示されているが、その回路の機能を変えることなくプルアップ回路210及び第1分離回路234を入れ替えてもよい。具体的な実施形態では、第1分離素子234は第1電界効果トランジスタ(FET)である。
例示された実施形態では、プルアップ回路210は、内部イネーブルノード207及び第2分離素子214の第1端子に結合される。具体的な実施形態では、第2分離素子214は、内部イネーブルノード207に結合された第1端子を備え、プルダウン回路212に結合された第2端子を備えるnチャネルMOS(NMOS)トランジスタである。別の具体的な実施形態では、第2分離素子214は第2FETである。
プルアップ回路210は、第1信号216を受信するように結合された入力または制御端子を有する。プルアップ回路210はまた、第2信号218のような一つまたはそれ以上の更なる入力を受信し得る。具体的な実施形態では、第1信号216及び任意の第2信号218は、テストモードの期間、出力信号238を入力クロックに従わせる(follow)、あるいは、テストモードの期間、出力信号238をディセーブルとする信号を含む。プルダウン回路212はまた、第1信号216を受信するように結合された入力または制御端子を有する。プルダウン回路212はまた、第2信号218のような一つまたはそれ以上の更なる入力を受信しても良い。
例として、この例に限定されないが、プルアップ回路210及びプルダウン回路212を含む入力論理回路は、デュアル入力NAND論理回路として動作し得る。例えばプルアップ回路210は、第1分離素子234と第2分離素子214との間に並列に結合されたPMOSトランジスタ(図示せず)の対を含み得る。各PMOSトランジスタは、入力信号216、218に応答し得る。プルダウン回路212は、第2分離素子214とグランドとの間に直列に結合されたNMOSトランジスタ(図示せず)の対を含み得る。各NMOSトランジスタは、入力信号216、218に応答し得る。
スイッチング素子は、ゲートされたクロック信号に応答する少なくとも一つのスイッチング素子を有する保持回路で用いられ得る。例えば保持回路は、電源に結合された第1端子とイネーブルノード207に結合された第2端子とを有するPMOSトランジスタ224のような第1スイッチング素子を含み得る。PMOSトランジスタ224は、ノード222に結合された制御端子を有し、ゲートされたクロック信号に応答する。
保持回路はまた、第2分離素子214を介してPMOSトランジスタ224の第2端子に結合された第1端子を有する第1NMOSトランジスタ230を含む。インバータ228は、イネーブルノード207に結合された入力と、第1NMOSトランジスタ230の制御端子に結合された出力とを有する。第1NMOSトランジスタ230は、第2NMOSトランジスタ232の第1端子に結合された第2端子を有する。第2NMOSトランジスタ232は、グランドに結合された第2端子を有する。第2NMOSトランジスタ232の制御端子は、クロック信号208に応答するように結合される。特定の順序で直列接続された第1NMOSトランジスタ230及び第2NMOSトランジスタ232が示されているが、別の実施形態では、保持回路の機能を変えることなく、第1NMOSトランジスタ230及び第2NMOSトランジスタ232の直列順序を変えることが出来る。
インバータ228及び第1NMOSトランジスタ230は、入力クロック信号208がlow論理レベルからhigh論理レベルに遷移する際に、ゲーティング素子に関する遅延の期間に保持回路を流れる電流による内部イネーブルノード207の論理電圧レベルの変化を防止するように構成された保持分離素子(keeper isolation element)を構成する。例示のため、内部イネーブルノード207論理highレベルにバイアスされ、入力クロック信号208がhigh論理レベルに遷移した際、短い期間、NAND論理回路202への入力(inputs)と、またNAND論理回路202の出力の両方が、high論理レベルになることがある。この状態は、NAND論理回路202の遅延の期間、NAND論理回路202の出力がlow論理レベルに遷移するまで続く。この遅延期間の間、第2分離素子214及び第2NMOSトランジスタ232は共にオンとなり得る。しかしながら、第1NMOSトランジスタ230はオフ状態を維持し、これにより内部イネーブルノードから保持回路を介して電流が流れるのを防止し、よって内部イネーブルノード207の放電を防止する。
動作の間、入力クロック信号208が論理“0”状態であれば、NAND論理回路202の演算によりノード222は論理“1”状態である。第1分離素子234はオンであり第2分離素子214はオンであり、これによりプルアップ回路210及びプルダウン回路212は、内部イネーブルノード207の論理電圧レベルを設定可能とされる。更に、PMOSトランジスタ224及び第2NMOSトランジスタ232はオフである。よって、イネーブルノード207は、一つまたはそれ以上の信号216〜218の値の関数としてプルアップ及びプルダウン回路210及び212によって実行された論理関数の結果を示す論理レベルにバイアスされ得る。しかし、NAND論理回路202はノード222を論理“1”状態に保持し、インバータ236は出力信号238を論理“0”状態に保持する。
入力クロック信号208が論理“1”状態である際、イネーブルノード207の電圧は論理“0”状態または論理“1”状態のいずれかに保持され、第1分離素子234はオフし、そして第2NMOSトランジスタ232はオンされる。イネーブルノード207が論理“1”状態である際、ノード222は論理“0”状態とされ、PMOSトランジスタ224はオンされ、他方で第2分離素子214はオフされ、これによりイネーブルノード207を論理“1”状態に保持する。イネーブルノード207が論理“0”状態である際、ノード222は論理“1”状態であり、PMOSトランジスタ224はオフされ、他方で第2分離素子214、第1NMOSトランジスタ230、及び第2NMOSトランジスタ232はオンされ、これによりイネーブルノード207を論理“0”状態に保持する。一つまたはそれ以上の信号216〜218はそれぞれ、イネーブルノード207、ノード222、及び出力信号238に悪影響を及ぼすこと(corrupt)なく論理状態を変えることが出来る。
ノード222のゲートされたクロック信号が論理“1”状態であるように入力クロック信号208が論理“0”状態である際、イネーブルノード207の電圧は、入力a〜aへのプルアップ回路210の論理応答及びプルダウン回路212の反転応答によって決定される。例えば、入力a〜aの特定の組へのプルアップ回路210の論理応答により、イネーブルノード207と電源電圧ノードとの間に低インピーダンス経路が生じ、他方でプルダウン回路212の反転応答により、グランドへの高インピーダンス経路が生じる場合、イネーブルノード207は論理“1”状態にバイアスされる。別の例としては、入力a〜aの特定の組により、プルアップ回路210が電源電圧ノードへの高インピーダンス経路を形成し、他方でプルダウン回路212がグランドへの低インピーダンス経路を形成する場合、イネーブルノード207は論理“0”状態にバイアスされ得る。イネーブルノード207が論理“1”状態にバイアスされつつ、クロック信号208が論理“0”状態から論理“1”状態へ上昇する際、ノード222のバイアスは、NAND論理回路202に関する遅延の後、論理“1”状態から論理“0”状態に遷移する。
このクロック・ゲーティング・システム200は、いくつかの利点をもたらし得る。例えば、クロック・ゲーティング・システム200は、20個から17個に、クロック・ゲーティング・セルの多くのトランジスタを削減出来る。更に、クロック・ゲーティング・システム200は、パスゲートラッチを用いる回路に比べて、より小さい領域を占め、そしてより小さいリーク電力を消費する。別の例では、クロック・ゲーティング・システム200は、入力クロック信号208がトグルする際、トグルするトランジスタは9個より少なく、これにより、パスゲートラッチ回路に比べて動的電力消費を低減する。具体的な実施形態では、クロック・ゲーティング・システム200は、入力クロック信号208がトグルする際、トグルするトランジスタは4個(PMOSトランジスタ234、第2NMOSトランジスタ232、及びNAND論理回路202の2つのトランジスタ(図示せず))以上かもしれない。
具体的な実施形態では、クロック・ゲーティング・システム200は、各入力クロックでトグルする9個のトランジスタを有するクロック・ゲーティング回路よりも、イネーブル状態では電力消費は約7%少なく、ディセーブル状態では電力消費は約3倍少ないだろう。クロック・ゲーティング・システム200は、より少ないデバイスを使用し、そして従来のクロック・ゲーティング回路の面積よりも約1/3小さい面積を占有するだろう。別の具体的な実施形態では、クロック・ゲーティング・システム200の入力容量は約1.7フェムトファラッド(fF)であり、クロック・ゲーティング・システム200の入力容量は約2.1fFである。入力216がイネーブルノード207に達するのに必要なセットアップタイムは、65nm技術において125C、1.1Vで動作中のクロック・ゲーティング・システム200につき、約200ピコ秒(ps)遅くなるかもしれない。クロック・ゲーティング・システム200は従って、面積/速度/電力のトレードオフに基づいて、設計フローを最適化または改善することを可能とし得る。
例示された実施形態では、インバータ228及び第1NMOSトランジスタ230を含む保持回路分離素子が、入力クロック信号208及びノード222が共に論理“1”状態である遅延期間の間、イネーブルノード207が放電されることを防止するが、別の実施形態では、クロック・ゲーティング・システム200は保持回路分離素子を含まなくても良い(すなわち、インバータ228、第1NMOS230、またはその両方を含まなくても良い)。例えば保持回路は、NMOSトランジスタ230及びインバータ228を含むことなくPMOSトランジスタ224及び第2NMOSトランジスタ232を含んでも良い。第2NMOSトランジスタ232は、第2分離素子214を介してPMOSトランジスタ224に結合され得る。例えば、第2NMOSトランジスタ232は、第1MOSトランジスタ230を間に介在することなく、第2分離素子214に接続されても良い。クロック・ゲーティング・システム200の残りのトランジスタは、ゲーティング素子に関連する遅延期間の間、内部イネーブルノード207で論理“1”状態を保持するため、内部イネーブルノード207の放電を遅らせるようなサイズにされ得る。
当業者は、クロック・ゲーティング・システム200と等価に機能する、クロック・ゲーティング・システム200の代替的な実施形態を認識するだろう。例えば先に議論したように、種々の直列に結合された素子は、クロック・ゲーティング・システム200の動作に影響を与えることなく、順序を入れ替えることができる。更に、入力クロック信号208を遅延させるために、それをトランジスタ232及び/またはトランジスタ234に接続する前にバッファが加えられても良い。別の例としては、クロック・ゲーティング・システム200の全PMOSトランジスタをNMOSトランジスタに置き換え、全NMOSトランジスタをPMOSトランジスタに置き換え、電源とグランドを交換することにより、クロック・ゲーティング・システム200の二元的なバージョン(dual version)を生成しても良い。そのような二元的なバージョンでは、NANDゲート202はNORゲートとなり、ノード207がhighの際には出力クロック238はhighを固定(stop)し、そして保持分離素子は、入力クロック信号208がhigh論理レベルからlow論理レベルに遷移する際に、ゲーティング素子に関連する遅延の期間、内部イネーブルノード207の充電を生じさせる保持回路を流れる電流による内部イネーブルノード207での論理電圧レベルの変化を防止する。
図3を参照すると、クロック・ゲーティング・システムの第2の具体的な例示的な実施形態が開示され、概して300で示される。クロック・ゲーティング・システム300は、図2のクロック・ゲーティング・システム200の回路素子を含み、共通の素子は共通の参照番号で示され、そして図2のクロック・ゲーティング・システム200と論理的に等価に動作する。
クロック・ゲーティング・システム300の保持回路は、第2分離素子214を介してイネーブルノード207に結合された図2の第1NMOSトランジスタ230と対照的に、イネーブルノード207に結合された第1端子を有する第1NMOSトランジスタ330を含む。具体的な実施形態では、保持回路素子は、図2に関して述べた第1NMOSトランジスタ230及びインバータ228を含む保持分離素子と実質的に同様に動作する。
図4を参照すると、ゲートされたクロック信号を生成する方法の具体的な例示的な実施形態が図示され、全体として400で示される。例示的な実施形態では、例示的な実施形態では、方法400は、図1のシステム100、図2のシステム200、または図3のシステム300で実行され得る。
具体的な実施形態では、402において、少なくとも一つの入力信号が、少なくとも一つの入力を有し、内部イネーブルノードに結合された出力を有する入力論理回路で受信される。例えば、第1入力信号216及び第2入力信号218は、図2に示すように入力プルアップ回路210及びプルダウン回路212を含む入力論理回路で受信される。404に進み、ゲートされたクロック信号が、入力クロック信号に応答し、そして内部イネーブルノードの論理電圧レベルに応答するゲーティング素子で生成される。例えば、図2のNAND論理ゲート202を含むゲーティング素子は、図2に示すように入力クロック信号208に応答し、そして内部イネーブルノード207の電圧に応答して、ノード222に、ゲートされたクロック信号を生成する。406へ移動し、論理電圧レベルが、ゲートされたクロック信号に応答して内部イネーブルノードで選択的に保持される。例えば、PMOSトランジスタ224並びにNMOSトランジスタ230及び232を含む保持回路は、図2に関して述べたように、入力クロック信号208がhigh論理レベルである際に、内部イネーブルノード207の論理電圧レベルを選択的に保持する。
具体的な実施形態では、第1保持回路を有する第1クロック・ゲーティング・セルまたは第2保持回路を有する第2クロック・ゲーティング・セルの一つが、少なくとも一つの設計基準に基づいて選択され得る。ここで、第1クロック・ゲーティング・セルは、第2クロック・ゲーティング・セルよりも、より少ない、各入力クロック信号のトグルでトグルするトランジスタを含む。具体的な実施形態では、少なくとも一つの設計基準は、電力消費量、動作速度、第1クロック・ゲーティング・セルの面積、または第2クロック・ゲーティング・セルの面積である。
別の具体的な実施形態では、第1クロック・ゲーティング・セルに含まれる、各クロック信号のトグルに応答してトグルするトランジスタは、9個より少なく、4個以上である。例えば、図2のNAND論理回路202が2つのNMOSトランジスタ及び2つのPMOSトランジスタを用いて実装された実施形態では、PMOSトランジスタ234及びNMOSトランジスタ232に加えて、NAND論理回路202のトランジスタの2つは、入力クロック信号208に応答する。すなわち、4つのトランジスタのみが、入力クロックの遷移毎に応答してトグルする。ゲートされたクロック信号に応答するPMOSトランジスタ224及び分離トランジスタ214のような他のトランジスタは、イネーブル信号が論理“0”状態である際、入力クロック信号によってトグルしない。その結果、スイッチングの低減により、電力消費量をそれに対応するだけ削減できる。
別の具体的な実施形態では、第1保持回路のトランジスタの半分未満が、入力クロック信号のトグルごとにトグルする。例えば、図2の保持回路の第2NMOSトランジスタ232のみが、入力クロック信号208の各遷移でトグルする。これに対してPMOSトランジスタ224は、ノード222のゲートされたクロック信号に応答するため、クロック信号がゲートされた際にはトグルしない。同様に、第1NMOSトランジスタ230は、入力クロック信号208ではなく内部イネーブルノード207のバイアスに基づいて制御される。
図5は、無線通信デバイスの例示的な実施形態のブロック図である。無線通信デバイス500は、クロックのトグル毎に4つのトランジスタがトグル動作を行うクロック・ゲーティング回路564を含むデジタルシグナルプロセッサ(DSP)510のようなプロセッサを含む。具体的な実施形態では、クロック・ゲーティング回路564は、図1のシステム100、図2のシステム200、図3のシステム300、またはこれらのあらゆる組み合わせを含み得る。クロック・ゲーティング回路564がDSP510内部に図示されているが、別の実施形態では、クロック・ゲーティング回路564は無線通信デバイス500の一つまたはそれ以上の要素で用いられても良い。無線通デバイス500は、携帯電話、端末、ハンドセット、携帯情報端末(PDA)、無線モデム、またはその他の無線機器であって良い。
図5はまた、ディスプレイコントローラ526がDSP510及びディスプレイ528に結合されている様子を示す。更に、メモリ532がDSP510に結合される。具体的な実施形態では、メモリ532は、少なくとも一つの入力信号に基づいて、ゲートされたクロック信号を生成するために、クロック・ゲーティング回路564のクロック・ゲーティング・セルの入力論理回路に少なくとも一つの入力信号を供給するための、DSP510のようなコンピュータによって実行可能な命令を保持するコンピュータ読みとり可能な実体のある媒体であり得る。符号化器/復号化器(CODEC)534がまた、DSP510に結合される。スピーカ536及びマイク538がCODEC534に結合される。また、無線コントローラ540が、DSP510及び無線アンテナ542に結合される。具体的な実施形態では、電源544及び入力デバイス530が、オンチップシステム522に結合される。具体的な実施形態では、図5に示すように、ディスプレイ528、入力デバイス530、スピーカ536、マイク538、無線アンテナ542、及び電源544はオンチップシステム522の外部にある。しかしながら、それぞれはオンチップシステム522の構成要素に結合される。
上記開示されたデバイス及び機能は、コンピュータ読み取り可能な媒体に記憶されたコンピュータファイル(例えばRTL、GDSII、GERBERなど)内に設計され、構成されても良い。そのようなファイルのいくつかまたは全ては、そのようなファイルに基づいてデバイスを製造する製造ハンドラ(fabrication handler)に提供され得る。結果として得られる製品は、半導体ダイにカットされて半導体チップにパッケージされる半導体ウェハを含む。このチップは、上記述べたデバイスで用いられる。図6は、電子デバイスの製造プロセス600の具体的な例示的な実施形態を示す。
物理デバイス情報602は、例えばリサーチコンピュータ606等で、製造プロセス600に受信される。この物理デバイス情報602は、図1のシステム100、図2のシステム200、図3のシステム300、またはこれらの任意の組み合わせのような半導体デバイスで使用されるシステムの少なくとも一つの物理特性を示す設計情報を含み得る。例えば、この物理デバイス情報602は、リサーチコンピュータ606に結合されたユーザインターフェース604を介して入力される構造情報、材料特性、及び物理的なパラメータを含み得る。リサーチコンピュータ606は、メモリ610のようなコンピュータ読み取り可能な媒体に結合された、一つまたはそれ以上のプロセシングコアのようなプロセッサ608を含む。メモリ610は、フォーマットに従い、ライブラリファイル612を生成するために、プロセッサ608に対して物理デバイス情報602を変換させる、実行可能なコンピュータ読み取り可能な命令を記憶し得る。
具体的な実施形態では、ライブラリファイル612は、変換された設計情報を含む少なくとも一つのデータファイルを含む。例えばライブラリファイル612は、図1のシステム100、図2のシステム200、図3のシステム300、またはこれらのあらゆる組み合わせを含む、電子設計自動化(EDA:electronic design automation)ツール620での使用のために規定された半導体デバイスのライブラリを含み得る。
ライブラリファイル612は、メモリ618に結合された、一つまたはそれ以上のプロセシングコアのようなプロセッサ616を含む設計コンピュータ614で、EDAツール620と共に使用され得る。EDAツール620は、設計コンピュータ614のユーザに、図1のシステム100、図2のシステム200、図3のシステム300、またはそれらのあらゆる組み合わせを用いた回路の設計を可能とするため、メモリ618でプロセッサ実行可能な命令として、ライブラリファイル612に記憶され得る。例えば、設計コンピュータ614のユーザは、設計コンピュータ614に結合されたユーザインターフェース624を介して、回路設計情報622を入力し得る。回路設計情報622は、図1のシステム100、図2のシステム200、図3のシステム300、またはそれらのあらゆる組み合わせの少なくとも一つの物理的特性を示す設計情報を含み得る。例示のため、回路設計特性は、特定の回路及び回路設計における他の素子との関係の識別表示(identification)、位置情報、形状情報、配線情報、または半導体デバイスの物理的特性を示すその他の情報を含み得る。設計コンピュータ614は、電力消費量、面積、動作速度、またはそれらのあらゆる組み合わせのような設計基準に基づいて、クロック・ゲーティング・システムを選択出来る。
設計コンピュータ614は、回路設計情報622を含む設計情報を、ファイルフォーマットに適合するように変換するように構成され得る。例示のため、このファイルフォーマットは、平面地理形状(planar geometric shapes)、テキストラベル、及び階層フォーマットでの回路レイアウトに関するその他の情報を示す、グラフィック・データ・システム(GDS II)・ファイルフォーマットのようなデータベース・バイナリ・ファイルフォーマットを含み得る。設計コンピュータ614は、他の回路または情報に加えて図1のシステム100、図2のシステム200、図3のシステム300、またはこれらのあらゆる組み合わせを記述する情報を含む、GDSIIのような変換された設計情報を含むデータファイルを生成するように構成され得る。例示のため、このデータファイルは、図1のシステム100、図2のシステム200、図3のシステム300、またはこれらのあらゆる組み合わせを含み、またシステムオンチップ(SOC)内の更なる電子回路及び素子を含むSOCに対応する情報を含み得る。
GDSIIファイル626は、GDSIIファイル626内の変換された情報に従って、図1のシステム100、図2のシステム200、図3のシステム300、またはそれらのあらゆる組み合わせを製造する製造プロセス628で受信され得る。例えばデバイス製造プロセスは、典型的なマスク632として例示された、フォトリソグラフィ・プロセスで使用されるマスクのような、一つまたはそれ以上のマスクを形成するためのマスク製造業者630にGDSIIファイル626を提供することを含み得る。マスク632は、テストされ、典型的なダイ636のようなダイに分離され得る一つまたはそれ以上のウェハ634を生成するための製造プロセスの間、使用され得る。ダイ636は、図1のシステム100、図2のシステム200、図3のシステム300、またはそれらのあらゆる組み合わせを含む回路を含む。
ダイ636は、ダイ636が典型的なパッケージ640に組み込まれるパッケージングプロセス638に与えられ得る。例えばパッケージ640は、システムインパッケージ(SiP)アレンジメントのように、単一のダイ636または複数のダイを含み得る。パッケージ640は、電子機器技術評議会(JEDEC)規格のような、一つまたはそれ以上の規格または仕様に準拠するように構成され得る。
パッケージ640に関する情報は、コンピュータ646に記憶されたコンポーネント・ライブラリを介する等して、様々な製品設計者に配布され得る。このコンピュータ646は、一つまたはそれ以上のプロセシングコアのような、メモリ610に結合されたプロセッサ648を含み得る。プリント基板(PCB)ツールが、ユーザインターフェース644を介してコンピュータ646のユーザから受信されたPCB設計情報642を処理するために、プロセッサ実行可能な命令としてメモリ610に記憶され得る。PCB設計情報642は、回路基板上のパッケージされた半導体デバイスの物理的な位置情報を含み得る。このパッケージされた半導体デバイスは、図1のシステム100、図2のシステム200、図3のシステム300、またはそれらのあらゆる組み合わせを含むパッケージ640に対応する。
コンピュータ646は、配線及びビアのような電気的接続のレイアウト及び回路基板上のパッケージされた半導体デバイスの物理的な位置情報を含むデータを有するGERBERファイル652のようなデータファイルを生成するために、PCB設計情報642を変換するよう構成され得る。ここでパッケージされた半導体デバイスは、図1のシステム100、図2のシステム200、図3のシステム300、またはそれらのあらゆる組み合わせを含むパッケージ640に対応する。別の実施形態では、PCB設計情報を変換して生成されたデータファイルは、GERBERフォーマットとは異なるフォーマットを有していても良い。
GERBERファイル652はボード組み立てプロセス654で受信され、GERBERファイル652内に記憶された設計情報に従って製造された典型的なPCB656のようなPCBを生成するために用いられ得る。例えば、GERBERファイル652は、PCB製造プロセスの種々のステップを実行するために、一つまたはそれ以上の機器にアップロードされ得る。PCB656は、パッケージ640を含む電子部品が装着されることで、図示するプリント回路実装品(PCA:printed circuit assembly)658が形成される。
PCA658は、製品製造プロセス660で受信され、第1の典型的な電子デバイス662及び第2の典型的な電子デバイス664のような、一つまたはそれ以上の電子デバイスに集積され得る。非限定的な例示的な例として、第1の典型的な電子デバイス662、第2の典型的な電子デバイス664、またはその両方は、セットトップボックス、音楽プレーヤ、ビデオプレーヤ、エンタテイメントユニット、ナビゲーションデバイス、通信デバイス、携帯情報端末(PDA)、固定位置データユニット、及びコンピュータのグループから選択され得る。非限定的な別の例として、電子デバイス662及び664の一つまたはそれ以上は、携帯電話のようなリモートユニット、携帯型パーソナル通信システム(PCS)ユニット、携帯情報端末のような携帯型データユニット、全地球測位システム(GPS)を利用可能なデバイス、メータ読み取り装置(meter reading equipment)のような固定位置データユニット、またはデータまたはコンピュータ命令を記憶しまたは読み出すその他のあらゆるデバイス、またはそれらのあらゆる組み合わせであっても良い。図1のシステム100、図2のシステム200、図3のシステム300、またはそれらのあらゆる組み合わせは、本開示の教示に従ってリモートユニットで実装され得るが、本開示は典型的に例示されたユニットに限定されない。本開示の実施形態は、テスト及び評価のために、メモリ及びオンチップ回路を含むアクティブな集積回路を含むあらゆるデバイスにおいて適切に使用され得る。
よって、図1のシステム100、図2のシステム200、図3のシステム300、またはそれらのあらゆる組み合わせは、例示的なプロセス600で述べられたように、製造され、処理され、電子デバイスに組み込まれ得る。図1〜5に関して開示された実施形態の一つまたはそれ以上の側面は、リサーチコンピュータ606のメモリ610、設計コンピュータ614のメモリ618、コンピュータ646のメモリ650、ボード組み立てプロセス654におけるような種々のステージで使用される一つまたはそれ以上の他のコンピュータまたはプロセッサ(図示せず)のメモリに記憶されるのと同様に、ライブラリファイル612、GDSIIファイル626、及びGERBERファイル652内のような、種々の処理ステージで含まれ、またマスク632、ダイ636、パッケージ640、PCA658、プロトタイプの回路またはデバイス(図示せず)のようなその他の製品、またはそれらの組み合わせのような一つまたはそれ以上の他の物理的な実施形態に組み込まれても良い。物理的なデバイス設計から最終製品までの製造の種々の例示的なステージが示されたが、別の実施形態では、より少ないステージが使用されても良いし、追加のステージが含まれても良い。同様に、プロセス600は、単一のエンティティ(entity)によって行われても良いし、プロセス600の様々なステージを実行する一つまたはそれ以上のエンティティによって行われても良い。
当業者は、本明細書で開示された実施形態に関連して述べられた例示的な論理ブロック、コンフィギュレーション、モジュール、回路、及びアルゴリズムステップが、電子ハードウェア、コンピュータソフトウェア、または双方の組合せとして実施され得ることを更に認識するであろう。様々な例示の要素部品、ブロック、コンフィギュレーション、モジュール、回路、及びステップは、一般にそれらの機能に関して上で述べられてきた。そのような機能がハードウェアまたはソフトウェアとして実施されるか否かは、特定のアプリケーション及びシステム全体に課せられた設計制限に依存する。当業者は、記述した機能を特定の各アプリケーションのために様々な方法で実施し得るが、そのような実施決定はこの開示から逸脱するものと解釈されるべきでない。
本明細書に開示された実施形態に関連して述べられた方法またはアルゴリズムのステップは、直接、ハードウェアにおいて、ハードウェアプロセッサによって実行されるソフトウェアモジュールにおいて、またはその二つの組合せにおいて具体化され得る。ソフトウェアモジュールは、ランダムアクセスメモリ(RAM)、磁気ランダムアクセスメモリ(MRAM)、フラッシュメモリ、読み出し専用メモリ(ROM)、書き込み可能な読み出し専用メモリ(PROM)、消去書き込み可能なROM(EPROM)、電気的に消去及び書き込み可能なROM(EEPROM)、レジスタ、ハードディスク、リムーバブルディスク、コンパクトディスク読み出し専用メモリ(CD−ROM)、または当技術分野で既知である他の形の任意の実体のある記録媒体のような、実体のあるメモリデバイス内に存在し得る。典型的な記録媒体は、プロセッサが記録媒体から情報を読出し、そして記録媒体へ情報を書込むことが出来るように、プロセッサへ結合される。これに代るものでは、記録媒体は、プロセッサへ一体化されても良い。プロセッサ及び記録媒体は、特定用途集積回路(ASIC)内にあっても良い。ASICは、コンピューティングデバイスまたはユーザ端末内にあっても良い。あるいは、プロセッサ及び記録媒体は、コンピューティングデバイスまたはユーザ端末においてディスクリート部品としてあっても良い。
開示された典型的な実施形態の上記説明は、当業者に、開示された実施形態の製造及び使用を容易にするために与えられる。これらの典型的な実施形態の種々の変形が、当業者には容易に明白であろう。そして本明細書で定義された包括的な原理は、この開示の範囲から逸脱することなく、その他の実施形態に適用され得る。よって、この開示は、本明細書に示された実施形態に限定されることを意図されないが、以下の特許請求の範囲で定義される原理及び新規な特徴に一致する最も広い範囲に許容される。

Claims (47)

  1. 少なくとも一つの入力信号を受信する少なくとも一つの入力を有し、内部イネーブルノードに結合された出力を有する入力論理回路と、
    前記内部イネーブルノードの論理電圧レベルを選択的に保持するように結合され、ゲートされたクロック信号(gated clock signal)に応答する少なくとも一つのスイッチング素子を含む保持回路と、
    入力クロック信号、並びに前記内部イネーブルノードの前記論理電圧レベルに応答して、前記ゲートされたクロック信号を生成するゲーティング素子(gating element)と
    を備えるクロック・ゲーティング回路(clock gating circuit)。
  2. 前記入力論理回路は、前記内部イネーブルノードを介してプルダウン回路に直列に結合されたプルアップ回路を含み、
    前記プルアップ回路が、前記内部イネーブルノードを論理high電圧レベルにバイアスすることを選択的に抑制するように構成された第1分離素子と、
    前記プルダウン回路が、前記内部イネーブルノードを論理low電圧レベルにバイアスすることを選択的に抑制するように構成された第2分離素子と
    を更に備え、前記第1分離素子及び前記第2分離素子の少なくとも一つは、前記ゲートされたクロック信号に応答する、請求項1のクロック・ゲーティング回路。
  3. 前記保持回路は、前記入力クロック信号が遷移した際に、前記ゲーティング素子に関連する遅延期間に前記保持回路を介して流れる電流による前記内部イネーブルノードの論理電圧レベルの変化を防止するように構成された保持分離素子を含む、請求項1のクロック・ゲーティング回路。
  4. 各入力クロック信号の遷移により、9個未満のトランジスタがトグルする、請求項1のクロック・ゲーティング回路。
  5. 前記保持回路は、
    電源に結合された第1端子、前記ゲートされたクロック信号を受信するように結合された制御端子、及び入力論理分離素子に結合された第2端子を有するpチャネル金属・酸化物・半導体(PMOS)トランジスタと、
    前記PMOSトランジスタの前記第2端子に結合された第1端子を有する第1nチャネル金属・酸化物・半導体(NMOS)トランジスタと、
    前記PMOSトランジスタの前記第2端子に結合された入力を有し、更に前記第1NMOSトランジスタの制御端子に結合された出力を有するインバータと、
    前記第1NMOSトランジスタに結合された第1端子を有し、グランドに結合された第2端子を有する第2NMOSトランジスタと
    を備え、前記第2NMOSトランジスタの制御端子は、前記入力クロック信号を受信するように結合される、請求項1のクロック・ゲーティング回路。
  6. 第1NMOSトランジスタの第1端子は、前記入力論理分離素子を介して前記PMOSトランジスタの前記第2端子に結合される、請求項5のクロック・ゲーティング回路。
  7. 前記保持回路は、
    電源に結合された第1端子、前記ゲートされたクロック信号を受信するように結合された制御端子、及び入力論理分離素子に結合された第2端子を有するpチャネル金属・酸化物・半導体(PMOS)トランジスタと、
    前記入力論理分離素子を介して前記PMOSトランジスタの前記第2端子に結合された第1端子を有し、グランドに結合された第2端子を有し、制御端子が前記入力クロック信号を受信するように結合されたnチャネル金属・酸化物・半導体(NMOS)トランジスタと
    を備える請求項1のクロック・ゲーティング回路。
  8. クロック信号を受信するように結合された第1入力を有し、ゲートされたクロック信号(gated clock signal)を供給するように結合された出力を有するNAND論理回路と、
    前記NAND論理回路の第2入力にイネーブル信号を供給するように結合された保持回路と
    を備え、9個未満で4個以上のトランジスタが、各クロック信号遷移でトグルする、システム。
  9. 前記保持回路は、
    電源に結合された第1端子を有し、前記ゲートされたクロック信号を受信するように結合された制御端子を有し、入力論理分離素子に結合された第2端子を有するpチャネル金属・酸化物・半導体(PMOS)トランジスタと、
    前記入力論理分離素子を介して前記PMOSトランジスタの前記第2端子に結合された第1端子を有する第1nチャネル金属・酸化物・半導体(NMOS)トランジスタと、
    前記PMOSトランジスタの前記第2端子に結合された入力を有し、更に前記第1NMOSトランジスタの制御端子に結合された出力を有するインバータと、
    前記第1NMOSトランジスタに結合された第1端子を有し、グランドに結合された第2端子を有する第2NMOSトランジスタと
    を備え、前記第2NMOSトランジスタの制御端子は、前記クロック信号を受信するように結合される、請求項8のシステム。
  10. 前記保持回路は、
    電源に結合された第1端子を有し、前記ゲートされたクロック信号を受信するように結合された制御端子を有するpチャネル金属・酸化物・半導体(PMOS)トランジスタと、
    前記PMOSトランジスタの第2端子に結合された第1端子を有する第1nチャネル金属・酸化物・半導体(NMOS)トランジスタと、
    前記PMOSトランジスタの前記第2端子に結合された入力を有し、更に前記第1NMOSトランジスタの制御端子に結合された出力を有するインバータと、
    前記第1NMOSトランジスタに結合された第1端子を有し、グランドに結合された第2端子を有する第2NMOSトランジスタと
    を備え、前記第2NMOSトランジスタの制御端子は、前記クロック信号を受信するように結合される、請求項8のシステム。
  11. 少なくとも一つの入力信号を受信する少なくとも一つの入力を有し、内部イネーブルノードに結合された出力を有する入力論理回路と、
    前記内部イネーブルノードの論理電圧レベルを選択的に保持するように結合され、ゲートされたクロック信号(gated clock signal)に応答する少なくとも一つのスイッチング素子を含む保持回路と、
    入力クロック信号、並びに前記内部イネーブルノードの前記論理電圧レベルに応答して、前記ゲートされたクロック信号を生成するゲーティング素子(gating element)と
    を備える半導体デバイスを備える装置。
  12. システムオンチップデバイスに集積されている、請求項11の装置。
  13. 前記入力論理回路、前記保持回路、及び前記ゲーティング素子は、前記半導体デバイスが集積されたコンピュータまたは通信デバイスに含まれる、請求項11の装置。
  14. 前記入力論理回路、前記保持回路、及び前記ゲーティング素子の4個以下のトランジスタが、各入力クロック信号の遷移によりトグルする、請求項11の装置。
  15. 前記保持回路は、
    電源に結合された第1端子を有し、前記ゲートされたクロック信号を受信するように結合された制御端子を有し、入力論理分離素子に結合された第2端子を有する第1スイッチング素子と、
    前記入力論理分離素子を介して前記第1スイッチング素子に結合された第1端子を有する第2スイッチング素子と、
    前記第1スイッチング素子の第2端子に結合された入力を有し、更に前記第2スイッチング素子の制御端子に結合された出力を有するインバータと、
    前記第2スイッチング素子に結合された第1端子を有し、グランドに結合された第2端子を有する第3スイッチング素子と
    を備え、前記第3スイッチング素子の制御端子は、前記入力クロック信号を受信するように結合される、請求項11の装置。
  16. 前記第1スイッチング素子は、pチャネル金属・酸化物・半導体(PMOS)トランジスタであり、
    前記第2スイッチング素子は、nチャネル金属・酸化物・半導体(NMOS)トランジスタであり、
    前記第3スイッチング素子は、第2NMOSトランジスタである、請求項15の装置。
  17. 前記保持回路は、
    電源に結合された第1端子を有し、前記ゲートされたクロック信号を受信するように結合された制御端子を有する第1電界効果トランジスタ(FET)と、
    入力論理分離素子を介して前記第1FETの第2端子に結合された第1端子を有する第2FETと、
    前記第1FETの前記第2端子に結合された入力を有し、更に前記第2FETの制御端子に結合された出力を有するインバータと、
    前記第2FETに結合された第1端子を有し、グランドに結合された第2端子を有する第3FETと
    を備え、前記第3FETの制御端子は、前記入力クロック信号を受信するように結合される、請求項11の装置。
  18. 前記保持回路は、
    電源に結合された第1端子を有し、前記ゲートされたクロック信号を受信するように結合された制御端子を有するpチャネル金属・酸化物・半導体(PMOS)トランジスタと、
    前記PMOSトランジスタの第2端子に結合された第1端子を有する第1nチャネル金属・酸化物・半導体(NMOS)トランジスタと、
    前記PMOSトランジスタの前記第2端子に結合された入力を有し、更に前記第1NMOSトランジスタの制御端子に結合された出力を有するインバータと、
    前記第1NMOSトランジスタに結合された第1端子を有し、グランドに結合された第2端子を有する第2NMOSトランジスタと
    を備え、前記第2NMOSトランジスタの制御端子は、前記入力クロック信号を受信するように結合される、請求項11の装置。
  19. 前記保持回路は、
    電源に結合された第1端子を有し、前記ゲートされたクロック信号を受信するように結合された制御端子を有するpチャネル金属・酸化物・半導体(PMOS)トランジスタと、
    入力論理分離素子を介して前記PMOSトランジスタの第2端子に結合された第1端子を有する第1nチャネル金属・酸化物・半導体(NMOS)トランジスタと、
    前記PMOSトランジスタの前記第2端子に結合された入力を有し、更に前記第1NMOSトランジスタの制御端子に結合された出力を有するインバータと、
    前記第1NMOSトランジスタに結合された第1端子を有し、グランドに結合された第2端子を有する第2NMOSトランジスタと
    を備え、前記第2NMOSトランジスタの制御端子は、前記入力クロック信号を受信するように結合される、請求項11の装置。
  20. 少なくとも一つの入力信号を受信し、内部イネーブルノードに結合された出力を提供する入力論理手段と、
    前記内部イネーブルノードの論理電圧レベルを選択的に保持し、ゲートされたクロック信号(gated clock signal)に応答する少なくとも一つのスイッチング素子を含む保持手段と、
    前記ゲートされたクロック信号を生成するゲーティング手段(gating means)と
    を備え、前記ゲーティング手段は、入力クロック信号、並びに前記内部イネーブルノードの前記論理電圧レベルに応答する、装置。
  21. システムオンチップデバイスに集積されている、請求項20の装置。
  22. 前記装置は、コンピュータまたは通信デバイスに集積された半導体デバイスである、請求項20の装置。
  23. 前記保持手段は、
    電源に結合された第1端子を有し、前記ゲートされたクロック信号を受信するように結合された制御端子を有する第1スイッチング手段と、
    前記第1スイッチング手段の第2端子に結合された第1端子を有する第2スイッチング手段と、
    前記第1スイッチング手段の前記第2端子に結合された入力を有し、更に前記第1スイッチング手段の制御端子に結合された出力を有する反転手段と、
    前記第1スイッチング手段に結合された第1端子を有し、グランドに結合された第2端子を有する第3スイッチング手段と
    を備え、前記第2スイッチング手段の制御端子は、前記入力クロック信号を受信するように結合される、請求項20の装置。
  24. 少なくとも一つの入力と、内部イネーブルノードに結合された出力とを有する入力論理回路で、少なくとも一つの入力信号を受信することと、
    入力クロック信号、並びに前記内部イネーブルノードの論理電圧レベルに応答するゲーティング素子(gating element)で、ゲートされたクロック信号(gated clock signal)を生成することと、
    前記ゲートされたクロック信号に応答して、前記内部イネーブルノードの前記論理電圧レベルを選択的に保持することと
    を備える方法。
  25. 前記少なくとも一つの入力信号を受信すること、前記論理電圧レベルを選択的に保持すること、及び前記ゲートされたクロック信号を生成することは、電子デバイス内に集積されたプロセッサで実行される、請求項24の方法。
  26. 少なくとも一つの設計基準に基づいて、第1保持回路を有する第1クロック・ゲーティング・セルまたは第2保持回路を有する第2クロック・ゲーティング・セルのいずれかを選択すること、を更に備え、
    前記第1クロック・ゲーティング・セルは、前記第2クロック・ゲーティング・セルよりも少ない、各入力クロック信号の遷移によりトグルするトランジスタを含む、請求項24の方法。
  27. 前記少なくとも一つの設計基準は電力消費量を含む、請求項26の方法。
  28. 前記少なくとも一つの設計基準は動作速度を含む、請求項26の方法。
  29. 前記少なくとも一つの設計基準は、前記第1クロック・ゲーティング・セルの面積または前記第2クロック・ゲーティング・セルの面積を含む、請求項26の方法。
  30. 前記第1クロック・ゲーティング・セルは、各入力クロック信号のトグルに応答してトグルする4個以下のトランジスタを含む、請求項26の方法。
  31. 前記第1保持回路の半分未満のトランジスタが、各入力クロック信号のトグルに応答してトグルする、請求項26の方法。
  32. 前記第1保持回路は、
    電源に結合された第1端子を有し、前記ゲートされたクロック信号を受信するように結合された制御端子を有する第1電界効果トランジスタ(FET)と、
    入力論理分離素子を介して前記第1FETの前記第2端子に結合された第1端子を有する第2FETと、
    前記第1FETの前記第2端子に結合された入力を有し、更に前記第2FETの制御端子に結合された出力を有するインバータと、
    前記第2FETに結合された第1端子を有し、グランドに結合された第2端子を有する第3FETと
    を備え、前記第3FETの制御端子は、前記入力クロック信号を受信するように結合される、請求項26の方法。
  33. 前記第1保持回路は、
    電源に結合された第1端子を有し、ゲートされたクロック信号を受信するように結合された制御端子を有するpチャネル金属・酸化物・半導体(PMOS)トランジスタと、
    前記PMOSトランジスタの第2端子に結合された第1端子を有する第1nチャネル金属・酸化物・半導体(NMOS)トランジスタと、
    前記PMOSトランジスタの前記第2端子に結合された入力を有し、更に前記第1NMOSトランジスタの制御端子に結合された出力を有するインバータと、
    前記第1NMOSトランジスタに結合された第1端子を有し、グランドに結合された第2端子を有する第2NMOSトランジスタと
    を備え、前記第2NMOSトランジスタの制御端子は、前記入力クロック信号を受信するように結合される、請求項26の方法。
  34. 前記第1保持回路は、
    電源に結合された第1端子を有し、ゲートされたクロック信号を受信するように結合された制御端子を有するpチャネル金属・酸化物・半導体(PMOS)トランジスタと、
    入力論理分離素子を介して前記PMOSトランジスタの第2端子に結合された第1端子を有する第1nチャネル金属・酸化物・半導体(NMOS)トランジスタと、
    前記PMOSトランジスタの前記第2端子に結合された入力を有し、更に前記第1NMOSトランジスタの制御端子に結合された出力を有するインバータと、
    前記第1NMOSトランジスタに結合された第1端子を有し、グランドに結合された第2端子を有する第2NMOSトランジスタと
    を備え、前記第2NMOSトランジスタの制御端子は、前記入力クロック信号を受信するように結合される、請求項26の方法。
  35. 少なくとも一つの入力と、内部イネーブルノードに結合された出力とを有する入力論理回路で、少なくとも一つの入力信号を受信する第1ステップと、
    入力クロック信号、並びに前記内部イネーブルノードの論理電圧レベルに応答するゲーティング素子(gating element)で、ゲートされたクロック信号(gated clock signal)を生成する第2ステップと、
    前記ゲートされたクロック信号に応答して、前記内部イネーブルノードの前記論理電圧レベルを選択的に保持する第3ステップと
    を備える方法。
  36. 前記第1ステップ、前記第2ステップ、及び前記第3ステップは、電子デバイスに集積されたプロセッサにより実行される、請求項35の方法。
  37. コンピュータにより実行可能な命令を記憶するコンピュータ読み取り可能な実体的な媒体であって、前記命令は、
    少なくとも一つの入力信号をクロック・ゲーティング・セル(clock gating cell)の入力論理回路に供給して、前記少なくとも一つの入力信号に基づいて、ゲートされたクロック信号(gated clock signal)を生成するための、前記コンピュータによって実行可能な命令を備え、
    前記入力論理回路は、内部イネーブルノードに結合された出力を有し、
    前記クロック・ゲーティング・セルは、前記ゲートされたクロック信号に応答する少なくとも一つのスイッチング素子を用いて、前記内部イネーブルノードの論理電圧レベルを選択的に保持する保持回路を含み、
    前記クロック・ゲーティング・セルは、入力クロック信号、並びに前記内部イネーブルノードの前記論理電圧レベルに応答して、前記ゲートされたクロック信号を生成するように構成されたゲーティング回路(gating circuit)を含む、コンピュータ読み取り可能な実体的な媒体。
  38. 前記命令は、通信デバイスまたはコンピュータに集積されたプロセッサにより実行可能である、請求項37のコンピュータ読み取り可能な実体的な媒体。
  39. 半導体デバイスの少なくとも一つの物理特性を与える設計情報を受信することと、
    前記設計情報をファイルフォーマットに従うように変換することと、
    前記変換された設計情報を含むデータファイルを生成することと
    を備え、前記半導体デバイスは、
    少なくとも一つの入力信号を受信する少なくとも一つの入力を有し、内部イネーブルノードに結合された出力を有する入力論理回路と、
    前記内部イネーブルノードの論理電圧レベルを選択的に保持するように結合され、ゲートされたクロック信号(gated clock signal)に応答する少なくとも一つのスイッチング素子を含む保持回路と、
    入力クロック信号、並びに前記内部イネーブルノードの前記論理電圧レベルに応答して、前記ゲートされたクロック信号を生成するゲーティング素子(gating element)と
    を備える方法。
  40. 前記データファイルはGDSIIフォーマットを含む、請求項39の方法。
  41. 前記変換された設計情報に従って前記半導体デバイスを製造すること、を更に備える請求項39の方法。
  42. 回路基板上にパッケージされた半導体デバイスの物理的な位置情報を含む設計情報を受信することと、
    前記設計情報を変換してデータファイルを生成することと
    を備え、前記パッケージされた半導体デバイスは、
    少なくとも一つの入力信号を受信する少なくとも一つの入力を有し、内部イネーブルノードに結合された出力を有する入力論理回路と、
    前記内部イネーブルノードの論理電圧レベルを選択的に保持するように結合され、ゲートされたクロック信号(gated clock signal)に応答する少なくとも一つのスイッチング素子を含む保持回路と、
    入力クロック信号、並びに前記内部イネーブルノードの前記論理電圧レベルに応答して、前記ゲートされたクロック信号を生成するゲーティング素子(gating element)と
    を備える半導体構造を含む、方法。
  43. 前記データファイルはGERBERフォーマットを有する、請求項42の方法。
  44. 前記変換された設計情報に従って、前記パッケージされた半導体デバイスを受け取るように構成された前記回路基板を製造すること、を更に備える請求項42の方法。
  45. 前記回路基板を通信デバイスまたはコンピュータに集積すること、を更に備える請求項44の方法。
  46. 少なくとも一つの入力信号を受信する少なくとも一つの入力を有し、内部イネーブルノードに結合された出力を有する、クロック・ゲーティング・セル(clock gating cell)の入力論理回路と、
    前記内部イネーブルノードの論理電圧レベルを選択的に保持するように結合され、前記クロック・ゲーティング・セルで生成された、ゲートされたクロック信号(gated clock signal)に応答する少なくとも一つのスイッチング素子を含む、前記クロック・ゲーティング・セルの保持回路と
    を備え、前記クロック・ゲーティング・セルは、各入力クロック信号の遷移によりトグルする4個以下のトランジスタを含む、システム。
  47. 前記保持回路は、
    電源に結合された第1端子を有し、前記ゲートされたクロック信号を受信するように結合された制御端子を有するpチャネル金属・酸化物・半導体(PMOS)トランジスタと、
    前記PMOSトランジスタの第2端子に結合された第1端子を有する第1nチャネル金属・酸化物・半導体(NMOS)トランジスタと、
    前記PMOSトランジスタの前記第2端子に結合された入力を有し、更に前記第1NMOSトランジスタの制御端子に結合された出力を有するインバータと、
    前記第1NMOSトランジスタに結合された第1端子を有し、グランドに結合された第2端子を有する第2NMOSトランジスタと
    を備え、前記第2NMOSトランジスタの制御端子は、前記入力クロック信号を受信するように結合される、請求項46のシステム。
JP2011507719A 2008-04-29 2009-05-14 クロック・ゲーティング・システム及び方法 Active JP5199458B2 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US4866108P 2008-04-29 2008-04-29
US12/431,992 US7902878B2 (en) 2008-04-29 2009-04-29 Clock gating system and method
US12/431,992 2009-04-29
PCT/US2009/043913 WO2009135226A2 (en) 2008-04-29 2009-05-14 Clock gating system and method

Publications (2)

Publication Number Publication Date
JP2011526091A true JP2011526091A (ja) 2011-09-29
JP5199458B2 JP5199458B2 (ja) 2013-05-15

Family

ID=41214380

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011507719A Active JP5199458B2 (ja) 2008-04-29 2009-05-14 クロック・ゲーティング・システム及び方法

Country Status (4)

Country Link
US (1) US7902878B2 (ja)
EP (2) EP2286314B1 (ja)
JP (1) JP5199458B2 (ja)
WO (1) WO2009135226A2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013511850A (ja) * 2009-11-19 2013-04-04 クアルコム,インコーポレイテッド 歪み材料を有する半導体デバイス

Families Citing this family (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7844843B2 (en) * 2008-12-22 2010-11-30 International Business Machines Corporation Implementing power savings in HSS clock-gating circuit
US8397238B2 (en) * 2009-12-08 2013-03-12 Qualcomm Incorporated Thread allocation and clock cycle adjustment in an interleaved multi-threaded processor
KR101354286B1 (ko) 2009-12-18 2014-01-23 후지쯔 가부시끼가이샤 래치 회로 및 클록 제어 회로
US8380904B2 (en) * 2010-03-09 2013-02-19 Qualcomm Incorporated Interconnect coupled to master device via at least two different bidirectional connections
US9385308B2 (en) 2010-03-26 2016-07-05 Qualcomm Incorporated Perpendicular magnetic tunnel junction structure
US8493109B2 (en) * 2010-03-31 2013-07-23 Qualcomm Incorporated System and method to control a power on reset signal
US8547736B2 (en) * 2010-08-03 2013-10-01 Qualcomm Incorporated Generating a non-reversible state at a bitcell having a first magnetic tunnel junction and a second magnetic tunnel junction
US8892924B2 (en) * 2011-05-31 2014-11-18 Intel Corporation Reducing power consumption of uncore circuitry of a processor
US8890573B2 (en) * 2012-09-07 2014-11-18 Nvidia Corporation Clock gating latch, method of operation thereof and integrated circuit employing the same
JP6039081B2 (ja) 2012-09-19 2016-12-07 クゥアルコム・インコーポレイテッドQualcomm Incorporated 動的電力を低減するためのクロックゲート回路
US8975949B2 (en) 2013-03-14 2015-03-10 Samsung Electronics Co., Ltd. Integrated clock gater (ICG) using clock cascode complimentary switch logic
US9176522B1 (en) 2014-05-02 2015-11-03 Freescale Semiconductor, Inc. Dual-edge gated clock signal generator
TWI565331B (zh) * 2014-07-21 2017-01-01 鑫創科技股份有限公司 麥克風系統以及麥克風控制方法
KR102204597B1 (ko) * 2014-11-19 2021-01-19 삼성전자주식회사 반도체 장치
US9577635B2 (en) 2015-01-15 2017-02-21 Qualcomm Incorporated Clock-gating cell with low area, low power, and low setup time
US10230373B2 (en) 2015-04-27 2019-03-12 Samsung Electronics Co., Ltd. Clock gating circuit
KR102261300B1 (ko) 2015-06-22 2021-06-09 삼성전자주식회사 고속으로 동작하는 클록 게이팅 회로
US10141916B2 (en) 2015-09-01 2018-11-27 Samsung Electronics Co., Ltd. High-speed flip-flop semiconductor device
US10581410B2 (en) 2015-09-10 2020-03-03 Samsung Electronics Co., Ltd High speed domino-based flip flop
US9564897B1 (en) 2015-10-06 2017-02-07 Samsung Electronics Co., Ltd Apparatus for low power high speed integrated clock gating cell
US9755618B1 (en) 2016-03-04 2017-09-05 Qualcomm Incorporated Low-area low clock-power flip-flop
US9940992B2 (en) * 2016-03-30 2018-04-10 Qualcomm Incorporated Leakage-aware activation control of a delayed keeper circuit for a dynamic read operation in a memory bit cell
CN107300948A (zh) 2016-04-14 2017-10-27 飞思卡尔半导体公司 具有多位时钟门控单元的集成电路
KR102465497B1 (ko) 2016-04-28 2022-11-09 삼성전자주식회사 반도체 회로
US10177765B2 (en) * 2016-08-23 2019-01-08 Intel Corporation Integrated clock gate circuit with embedded NOR
US9742408B1 (en) 2016-09-23 2017-08-22 International Business Machines Corporation Dynamic decode circuit with active glitch control
CN106371549A (zh) * 2016-09-28 2017-02-01 深圳市博巨兴实业发展有限公司 一种应用于mcu系统的超低功耗时钟控制方法
US9953687B1 (en) 2016-10-21 2018-04-24 Advanced Micro Devices, Inc. Pseudo-dynamic circuit for multi-voltage timing interlocks
US9979381B1 (en) 2016-10-28 2018-05-22 Qualcomm Incorporated Semi-data gated flop with low clock power/low internal power with minimal area overhead
US10049726B1 (en) 2017-02-03 2018-08-14 Advanced Micro Devices, Inc. Contention-free dynamic logic
US20180226968A1 (en) * 2017-02-05 2018-08-09 Advanced Micro Devices, Inc. Contention-Free Dynamic Logic
KR102446164B1 (ko) 2017-12-26 2022-09-22 삼성전자주식회사 부하 스탠다드 셀을 포함하는 집적 회로 및 그 설계 방법
US10374604B1 (en) 2018-08-12 2019-08-06 International Business Machines Corporation Dynamic decode circuit low power application
US10784864B1 (en) 2019-03-13 2020-09-22 Samsung Electronics Co., Ltd. Low power integrated clock gating system and method
KR20210037927A (ko) 2019-09-30 2021-04-07 삼성전자주식회사 집적 클럭 게이팅 셀 및 이를 포함하는 집적 회로
US11190186B2 (en) 2020-04-08 2021-11-30 Samsung Electronics Co., Ltd. Clock gating cell with low power and integrated circuit including the same
US11223351B1 (en) * 2021-01-29 2022-01-11 Xilinx, Inc. Activity-aware clock gating for switches
US11526650B1 (en) * 2021-03-31 2022-12-13 Cadence Design Systems, Inc. Switching power aware driver resizing by considering net activity in buffering algorithm
US20230179206A1 (en) * 2021-12-07 2023-06-08 Mediatek Inc. Clock gating cells

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10303736A (ja) * 1997-03-31 1998-11-13 Texas Instr Inc <Ti> 異なるしきい電圧のmosfetで形成した論理回路
US5883529A (en) * 1996-04-19 1999-03-16 Sony Corporation Function clock generation circuit and D-type flip-flop equipped with enable function and memory circuit using same
US6552572B1 (en) * 2001-10-24 2003-04-22 Lsi Logic Corporation Clock gating cell for use in a cell library
GB2420034A (en) * 2004-11-05 2006-05-10 Samsung Electronics Co Ltd A clock gating circuit for reducing power consumption in flip-flops
JP2007529100A (ja) * 2003-09-16 2007-10-18 ピー・デイ・エフ ソリユーシヨンズ インコーポレイテツド 製造性能を最適化するための集積回路設計
JP2007329586A (ja) * 2006-06-06 2007-12-20 Sanyo Electric Co Ltd 半導体集積回路装置並びにその設計装置及び設計方法
JP2011502443A (ja) * 2007-10-31 2011-01-20 クゥアルコム・インコーポレイテッド ラッチ構造及びラッチを用いる自己調整パルス生成器

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5598112A (en) * 1995-05-26 1997-01-28 National Semiconductor Corporation Circuit for generating a demand-based gated clock
US5822700A (en) * 1996-04-18 1998-10-13 Telefonaktiebolaget L M Ericsson Flow control of short message service messages in a cellular telephone network
DE19629899C1 (de) * 1996-07-24 1997-08-21 Nokia Mobile Phones Ltd TDD-Verfahren zwischen einer Basisstation und wenigstens einer Mobilstation
US5936449A (en) * 1997-09-08 1999-08-10 Winbond Electronics Corporation Dynamic CMOS register with a self-tracking clock
SE519211C2 (sv) * 1997-10-14 2003-01-28 Ericsson Telefon Ab L M Förfaranden för att initiera omkonfiguration av en cell avseende antalet signaleringskanaler i förhållande till antalet trafikkanaler
US6204695B1 (en) * 1999-06-18 2001-03-20 Xilinx, Inc. Clock-gating circuit for reducing power consumption
DE10007602A1 (de) * 2000-02-18 2001-08-30 Siemens Ag Verfahren zum Übertragen von Paketdateninformationen in einem Funk-Kommunikationssystem
TW465188B (en) * 2001-01-02 2001-11-21 Faraday Tech Corp Clock gate buffer circuit
TW530481B (en) * 2001-10-19 2003-05-01 Primax Electronics Ltd Anti-abrasion flat flexible cable structure
KR100811043B1 (ko) * 2001-11-16 2008-03-06 엘지전자 주식회사 이동 통신 시스템에서 공유 채널 (sch) 및 hi에대한 송신 전력 제어 방법
EP2621238A1 (en) * 2002-05-01 2013-07-31 InterDigital Technology Corporation Point to multi-point services using shared channels in wireless communication systems
US7068080B1 (en) * 2003-01-17 2006-06-27 Xilinx, Inc. Method and apparatus for reducing power consumption within a logic device
US7096439B2 (en) 2003-05-21 2006-08-22 Taiwan Semiconductor Manufacturing Co., Ltd. System and method for performing intellectual property merge
US7109776B2 (en) * 2004-09-23 2006-09-19 Intel Corporation Gating for dual edge-triggered clocking
US7323909B2 (en) * 2005-07-29 2008-01-29 Sequence Design, Inc. Automatic extension of clock gating technique to fine-grained power gating
US7587686B1 (en) * 2006-08-01 2009-09-08 Altera Corporation Clock gating in a structured ASIC
JP4711915B2 (ja) * 2006-09-04 2011-06-29 東芝メモリシステムズ株式会社 電子回路
US7639057B1 (en) * 2006-12-07 2009-12-29 Marvell International Ltd. Clock gater system

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5883529A (en) * 1996-04-19 1999-03-16 Sony Corporation Function clock generation circuit and D-type flip-flop equipped with enable function and memory circuit using same
JPH10303736A (ja) * 1997-03-31 1998-11-13 Texas Instr Inc <Ti> 異なるしきい電圧のmosfetで形成した論理回路
US6552572B1 (en) * 2001-10-24 2003-04-22 Lsi Logic Corporation Clock gating cell for use in a cell library
JP2007529100A (ja) * 2003-09-16 2007-10-18 ピー・デイ・エフ ソリユーシヨンズ インコーポレイテツド 製造性能を最適化するための集積回路設計
GB2420034A (en) * 2004-11-05 2006-05-10 Samsung Electronics Co Ltd A clock gating circuit for reducing power consumption in flip-flops
JP2006135960A (ja) * 2004-11-05 2006-05-25 Samsung Electronics Co Ltd 高速低電力クロックゲーテッドロジック回路
JP2007329586A (ja) * 2006-06-06 2007-12-20 Sanyo Electric Co Ltd 半導体集積回路装置並びにその設計装置及び設計方法
JP2011502443A (ja) * 2007-10-31 2011-01-20 クゥアルコム・インコーポレイテッド ラッチ構造及びラッチを用いる自己調整パルス生成器

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013511850A (ja) * 2009-11-19 2013-04-04 クアルコム,インコーポレイテッド 歪み材料を有する半導体デバイス

Also Published As

Publication number Publication date
EP2286314B1 (en) 2014-08-27
US7902878B2 (en) 2011-03-08
US20090267649A1 (en) 2009-10-29
JP5199458B2 (ja) 2013-05-15
EP2620833B1 (en) 2015-09-02
WO2009135226A2 (en) 2009-11-05
EP2620833A1 (en) 2013-07-31
EP2286314A2 (en) 2011-02-23
WO2009135226A3 (en) 2010-09-10

Similar Documents

Publication Publication Date Title
JP5199458B2 (ja) クロック・ゲーティング・システム及び方法
KR101470415B1 (ko) 래칭 회로
JP5432385B2 (ja) メモリデバイスを動作させるシステムおよび方法
KR101252698B1 (ko) 클록 게이팅 시스템 및 방법
JP6096991B2 (ja) 感知遅延が低減され感知マージンが改善されたsramリードバッファ
US20110219277A1 (en) System and Method of Test Mode Gate Operation
JP5778287B2 (ja) 選択的に電力供給されるインバータを有するセンス増幅器
US10916323B2 (en) Memory interface latch with integrated write-through and fence functions
US10229748B1 (en) Memory interface latch with integrated write-through function
KR20150093561A (ko) 반도체 회로 및 그 동작 방법

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120508

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120803

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20120803

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20120810

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20121009

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20121016

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121030

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130207

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160215

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5199458

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250