JP2011232263A - 圧電センサー、圧電センサー素子及び圧電振動片 - Google Patents

圧電センサー、圧電センサー素子及び圧電振動片 Download PDF

Info

Publication number
JP2011232263A
JP2011232263A JP2010104664A JP2010104664A JP2011232263A JP 2011232263 A JP2011232263 A JP 2011232263A JP 2010104664 A JP2010104664 A JP 2010104664A JP 2010104664 A JP2010104664 A JP 2010104664A JP 2011232263 A JP2011232263 A JP 2011232263A
Authority
JP
Japan
Prior art keywords
piezoelectric
vibrating piece
gap
fluid
sensor element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2010104664A
Other languages
English (en)
Other versions
JP2011232263A5 (ja
Inventor
Kenta Sato
健太 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2010104664A priority Critical patent/JP2011232263A/ja
Publication of JP2011232263A publication Critical patent/JP2011232263A/ja
Publication of JP2011232263A5 publication Critical patent/JP2011232263A5/ja
Withdrawn legal-status Critical Current

Links

Images

Abstract

【課題】液体の粘度や密度、気体の圧力や真空度を広い測定範囲で高感度、高精度にリアルタイムで測定できる圧電センサーを提供する。
【解決手段】圧電センサー素子11は、被測定流体を外部から導入しかつ流通可能に連通孔17を設けたパッケージ13内に音叉型圧電振動片12を備える。圧電振動片は基部18において片持ちに固定支持され、振動腕19の下側主面19aが平坦なキャビティ底面16aと平行をなしかつそれらの間に所定寸法s1の狭い隙間22を画定するように配置する。振動腕を屈曲振動させると、その下側主面が移動壁として固定壁であるキャビティ底面に対して所定の速度で往復移動し、隙間内で被測定流体が定常的な速度分布の流れを生じる。このとき振動腕が被測定流体から受ける粘性抵抗の変化を圧電振動片のCI値の変化として検出し、被測定流体の圧力等の測定対象の変化を検出する。
【選択図】図1

Description

本発明は、流体の圧力や粘性を測定するために、屈曲振動モードの圧電振動片を用いた圧電センサー素子及びそれを用いた圧電センサー、それに適した圧電振動片に関する。
従来より、液体や気体の圧力、真空度、流体の粘性を測定するために、圧電振動片を感応素子として用いた様々な圧電センサーが開発されている。一般に圧電振動片は、応力が印加されると、その大きさに対応して共振周波数が変化する性質を有する。特に屈曲振動モードの圧電振動片は、他の振動モードに比して、印加応力に対する周波数の変化率が大きい。
このような特性を利用して、平行な2本の振動腕を有する双音叉圧電振動片をその両端の基端部でダイヤフラムの表面に固定した圧力センサーが知られている(例えば、特許文献1,2を参照)。この圧力センサーは、ダイヤフラムが圧力を受けて撓むと、それに対応して圧電振動片の両基端部から振動腕に引張方向又は圧縮方向の力が作用し、その周波数が増大又は減少する。この周波数変化を検出することによって、ダイヤフラムが受けた圧力を測定することができる。
他方、圧電素子を用いて測定対象の流体の粘性又は密度を測定する様々なセンサーが提案されている。例えば、互いに板面を平行に対向させて基台に固着した2つの細長い板状振動片の一端側にそれぞれ圧電素子を貼り付けた音叉型圧電振動子を、軽油等の被測定物中に浸漬して使用する粘度センサーが知られている(特許文献3を参照)。この音叉型圧電振動子は、ウインブリッジ発振回路にこれを構成する2つのコンデンサの一方と置換して接続され、その一方の接続点から電圧変化を検出して軽油の粘度変化を測定する。
同様に被検液体の粘度及び密度を測定するために、基部で結合された1対の角柱状振動部を備えた音叉型圧電振動子を用いた液体性状センサーが知られている(例えば、特許文献4を参照)。被検液体の粘度及び密度は、振動周波数と音叉型圧電振動子の二次側出力電圧の実効値とを検出して測定する。この音叉型圧電振動子は、各振動部がそれぞれ断面方向に延長する2本のスリットで本体部とその両側の固定部とに分離されており、圧電体を接着した本体部が振動する際に液体から受ける粘性抵抗を、スリット中に侵入した液体によって増加させて、測定精度の向上を図っている。
また、厚み滑り振動モードの水晶振動片を用いて被検出液の粘性を検出する粘度センサー用水晶振動子が知られている(例えば、特許文献5を参照)。この水晶振動子を測定器の発振回路に接続してオイル中に投入し、そのCI(クリスタルインピーダンス:直列等価抵抗)値を測定することによって、予め計測されたCI値と粘性との関係からオイルの粘性を検出することができる。
同様に両面に電極を形成した厚み滑り振動モードの圧電体を被測定液体中に浸漬する粘性検出センサーにおいては、圧電体の発振周波数の変化を検出したり、圧電体から発生する出力のコンダクタンスを検出することによって、被測定液体の粘性変化を検出する方法が提案されている(例えば、特許文献6,7を参照)。更に、1対のカンチレバー部を有する音叉型振動体を、液体中に浸漬しかつ一方のカンチレバー部に固定した振動子に電圧を印加して共振周波数で振動させ、この振動を他方のカンチレバー部に固定した振動センサーから電気信号に変換して出力し、振動子の入力信号と振動センサーの出力信号との位相差に基づいて液体の粘度を検出する音叉型粘度センサーが知られている(例えば、特許文献8を参照)。
特開2007−327922号公報 特開2008−70240号公報 特開平9−257682号公報 特開平11−94726号公報 特開2004−128979号公報 特開平9−119891号公報 特開平8−261909号公報 特開平11−173967号公報
上述した従来の圧力センサーは、双音叉圧電振動片が高い周波数分解能を有することもあり、非常に高い検出精度及び直線性に優れた圧力応答特性を発揮する。しかしながら、圧電振動片における周波数の変化は、これを検出してから安定してカウントできるようになるまでに或る程度の時間を要する。そのため、実際に圧力の変化が生じてから検出されるまでに多少のタイムラグが発生する、という問題がある。このタイムラグの問題は、特許文献4,6記載のように圧電体の周波数を検出する従来の粘度センサーにおいても、同様に発生する。これに対し、圧電振動片のCI値を検出するタイプのセンサーは、かかるタイムラグが発生しないという点で有利である。
また、双音叉圧電振動片を用いた従来の圧力センサーでは、振動腕の両端の基部がダイヤフラムの支持部に接着剤や直接接合等により固定される。かかる構造は、ダイヤフラムが受けた圧力が該支持部を介して伝達されるので、その接合部分が経年劣化することによって、検出感度が低下する虞がある。更に、圧電振動片の振動が、両端基部から支持部を介してダイヤフラム側に漏洩し、容器の固有振動数と機械的結合するなどして振動特性を低下させ、検出精度及び感度の低下を招く虞がある。また、圧電振動片とダイヤフラム又は容器とで熱膨張係数が大きく異なる場合には、使用環境の温度変化が検出精度及び感度に影響を及ぼす虞がある。
他方、特許文献4に記載されるセンサーは、振動する圧電体(14)の本体部(16)がその両側を挟む固定部(18)との間のスリット(13)内に侵入する液体の粘性抵抗を受けて、振動周波数が変化する。このとき、本体部の振動面が受ける粘性抵抗Fの大きさは次式で表され、該本体部の振動面に接する液体の速度勾配dV/dzに比例し、その比例定数ηが液体の粘度になる。
F=A・η・(dV/dz)
ここで、Aは振動面の面積、zは振動面からの距離である。
更に特許文献4によれば、スリット内の液体の速度分布は、静止液体中に振動面がある場合、振動面に接する液体が振動面と同方向、同速度で運動し、振動面から離れた位置にある液体では、振動面から離れるに従って自己の粘性抵抗によって速度が低下する。従って、本体部と固定部間のスリットの幅も、本体部(16)の振動面に作用する粘性抵抗に影響を及ぼすという問題が考えられる。
本願発明者は、上述したように音叉型圧電振動子を空気や液体等の流体中に浸漬して用いる従来構造の圧電センサーについて、その圧力(気圧)の変化に対するCI値の変動を測定し評価した。この測定結果を図14に示す。同図に示すように、気圧が非常に低い即ち真空度が高い範囲では、CI値の変化が比較的急峻で高い感度が得られる。これに対し、気圧が高い即ち真空度が低い範囲では、CI値の変化が比較的滑らかであり、そのために圧力を高感度、高精度に測定することが困難になる虞がある。
そこで本発明は、上述した従来の問題点に鑑みてなされたものであり、その目的は、屈曲振動モードで振動する圧電振動片を被測定対象の流体中に配置し、該圧電振動片がその表面に接する流体から受ける粘性抵抗の変化を、圧電振動片のCI値として検出することによって、液体等の非圧縮性流体についてその粘度、密度を、気体等の圧縮性流体についてその圧力、真空度を、広い測定範囲に亘って高感度、高精度にかつ高応答で測定し得る圧電センサーを提供することにある。
更に本発明の目的は、かかる圧電センサーに使用するのに適した圧電センサー素子及び圧電振動片を提供することにある。
本発明の圧電センサー素子は、上記目的を達成するために、基部と、該基部から平行に延出する1対の振動腕と、該振動腕の両主面及び両側面に形成されて、振動腕を主面の面内方向に屈曲振動させるための励振電極とを有する圧電振動片と、
内部に圧電振動片を収容しかつその基部において固定支持し、該内部を外部の被測定流体に連通可能なパッケージとを備え、
圧電振動片がパッケージ内部に、振動腕の少なくとも一方の主面をパッケージ内部に設けられた平坦な固定面と平行に、かつそれらの間に所定寸法sの狭い隙間を画定するように配置され、該隙間の寸法sが、振動腕を主面の面内方向に屈曲振動させたとき、隙間内で被測定流体が定常的な速度分布の流れを生じるように設定されることを特徴とする。
振動腕の屈曲振動は、その一方/又は両方の主面に作用する被測定流体の粘性抵抗によって抑制されるから、振動腕の屈曲振動中に被測定流体の粘性抵抗が変化すれば、その大きさによって圧電振動片のCI値等の電気的特性は変化する。屈曲振動している圧電振動片の主面が移動壁として、それに隣接する平行な固定壁であるパッケージ内部の平坦な固定面に対して所定の速度で往復移動する際、それらの隙間を適当な大きさに設定すると、該隙間内に被測定流体の定常的な速度分布の流れが発生する。
この隙間内の流れ状態においては、被測定流体の粘度や密度の変化、それによる粘性抵抗の変化が、後述するように一定の関係をもって圧電振動片のCI値を変化させ、かつCI値の変動検出感度が良好なことを、本願発明者は見出した。従って、本発明の圧電センサー素子は、圧電振動片のCI値から被測定流体の粘度や密度、それらを変化させる圧力等の測定対象の変化を高感度かつ高精度に測定することができる。しかも、圧電振動片のCI値は、周波数のカウントのようなタイムラグを生じることなく検出できるので、応答性に優れた測定が可能である。
或る実施例では、前記隙間の寸法sが200μm以下の範囲にあることが好ましい。これにより、特に気体の圧力を測定する場合、真空度の低い範囲を含む広い測定範囲に亘って測定対象を高感度に測定できることが分かった。
或る実施例では、パッケージが、圧電振動片をその基部において固定支持するベースを有し、該ベースがパッケージ内部の平坦な固定面を形成し、振動腕の下側主面との間に前記隙間を画定する。このようにパッケージのベースを直接利用することによって、寸法sの前記隙間を画定するために別個の部材や複雑な構造を用いる必要が無いので、圧電センサー素子の構成を簡単にし、かつ従来の組立工程を利用して圧電振動片を実装することができる。
別の実施例では、パッケージが、圧電振動片を基部において固定支持するベースと、該ベースに接合されてパッケージ内部を画定するリッドとを有し、該リッドがパッケージ内部の平坦な固定面を形成し、振動腕の上側主面との間に寸法sの前記隙間を画定する。このようにパッケージのリッドを直接利用することによって、同様に寸法sの前記隙間を画定するために別個の部材や複雑な構造を用いる必要が無く、圧電センサー素子の構成を簡単にし、かつ従来の組立工程を利用して圧電振動片を実装することができる。
或る実施例では、圧電振動片が音叉型圧電振動片である。
この場合、或る実施例では、音叉型圧電振動片の振動腕が、その先端に該振動腕の延出方向に直交する平坦な端面を有し、該平坦な端面をパッケージ内部に設けられた平坦な第2固定面と平行にかつそれらの間に所定寸法s’の狭い第2隙間を画定するように、音叉型圧電振動片が配置され、第2隙間の寸法s’が、振動腕を前記主面の面内方向に屈曲振動させたとき、第2隙間内で被測定流体が定常的な速度分布の流れを生じるように設定される。被測定流体の粘性抵抗は、前記主面に加えて、移動速度が最も大きい振動腕先端の端面からも振動腕に作用するので、その変化をCI値の変化として、より高感度に検出することができる。
別の実施例では、音叉型圧電振動片が、振動腕を囲繞するように基部に結合された外枠を有し、振動腕が、その先端に該振動腕の延出方向に直交する平坦な端面を有し、前記外枠が、振動腕先端の平坦な端面と平行をなしかつ該端面との間に所定寸法s’の狭い第2隙間を画定する平坦な内側面を有し、第2隙間の寸法s’が、振動腕を前記主面の面内方向に屈曲振動させたとき、第2隙間内で被測定流体が定常的な速度分布の流れを生じるように設定され、パッケージが、前記外枠の上下各面にそれぞれ接合される上側及び下側基板からなり、該上側及び下側基板と外枠との間に音叉型圧電振動片を収容するパッケージ内部を画定する。
この外枠を有する音叉型圧電振動片は、例えば水晶ウエハからウエットエッチング等の公知方法を用いて一体に加工でき、振動腕先端の隙間を所望の寸法に高精度にかつ簡単に形成することができる。更に、かかるパッケージ構造を採用することによって、高感度の圧電センサー素子を少ない部品点数で簡単に組み立てることができる。
従って、本発明の別の側面によれば、基部と、該基部から平行に延出する1対の振動腕と、該振動腕を囲繞するように基部に結合された外枠と、振動腕の両主面及び両側面に形成されて、振動腕を前記主面の面内方向に屈曲振動させるための励振電極とを有し、振動腕が、その先端に該振動腕の延出方向に直交する平坦な端面を有し、前記外枠が、振動腕先端の平坦な端面と平行をなしかつ該端面との間に所定寸法の狭い隙間を画定する平坦な内側面を有し、該隙間の寸法が、振動腕を前記主面の面内方向に屈曲振動させたとき、隙間内で被測定流体が定常的な速度分布の流れを生じるように設定される圧電振動片が提供される。この圧電振動片は、外枠を有しない通常の音叉型圧電振動片と同様に、ベースとそれに接合されるリッドとにより画定されるパッケージの内部に実装することによっても、同様に本発明の圧電センサー素子を構成することができる。
また本発明の別の実施例による圧電センサー素子は、圧電振動片が双音叉圧電振動片である。一般に双音叉圧電振動片は、高いQ値(共振尖鋭度)、高精度、高安定性及び速い応答速度を有するので、測定対象の急激な変動をも検出し得る高い応答性が得られる。
本発明の別の側面によれば、上述した本発明の圧電センサー素子と、該圧電センサー素子の圧電振動片のCI値を検出する電気回路とを備えることにより、被測定流体の粘度、密度、圧力等の測定対象を高感度、高精度かつ高応答で測定し得る圧電センサーが提供される。
更に本発明の別の実施例による圧電センサー素子は、パッケージ内部の固定面との間で被測定流体の定常的な速度分布の流れを生じる前記圧電振動片に加えて、それと同一の第2圧電振動片を更に有し、該第2圧電振動片が、その振動腕をその主面の面内方向に屈曲振動させたとき、パッケージ内部の壁面との間で被測定流体が定常的な速度分布の流れを生じないように、該壁面から離隔して配置される。これら両圧電振動片からそれぞれ検出されるCI値の差分を取り出すことによって、それらの温度特性や外部環境からの汚染等による影響をキャンセルし、高精度な測定を行うことができる。
従って、本発明の別の側面によれば、この圧電センサー素子と、該圧電センサー素子の圧電振動片のCI値と第2圧電振動片のCI値とを検出しかつそれらの差分を取り出す電気回路とを備える圧電センサーが提供される。
(A)図は本発明による圧電センサー素子の第1実施例を示す縦断面図、(B)図はそのリッドを省略して示す平面図。 パッケージ内の隙間s1における被測定流体の流れを説明する模式図。 第1実施例及び比較例における気圧とCI値との関係を示す線図。 第1実施例において、振動腕の振動面とベースの固定面間の隙間s1とCI値変動量との関係を示す線図。 第1実施例の圧電センサー素子を組み込んだ圧電センサーの圧力検出回路を例示する回路図。 (A)〜(E)図は図5の圧力検出回路における各信号a〜eの波形図。 第1実施例の変形例の圧電センサー素子を示す縦断面図。 第1実施例の別の変形例の圧電センサー素子を示す縦断面図。 (A)図は本発明による圧電センサー素子の第2実施例を示す縦断面図、(B)図はそのリッドを省略して示す平面図。 第2実施例の変形例の圧電センサー素子を示す縦断面図。 図10の変形例に使用する圧電振動片の平面図。 本発明による圧電センサー素子の第3実施例を示す縦断面図。 (A)図は本発明による圧電センサー素子の第4実施例を示す縦断面図、(B)図はそのリッドを省略して示す平面図。 従来構造の圧電センサーにおける気圧とCI値との関係を示す線図。
以下に、添付図面を参照しつつ、本発明の好適な実施例を詳細に説明する。尚、各図において、同一又は類似の構成要素には同一又は類似の参照符号を付して表すものとする。
図1(A),(B)は、本発明による圧電センサー素子の第1実施例の構成を示している。本実施例の圧電センサー素子11は、流体の圧力や粘度、密度を測定するためのもので、音叉型圧電振動片12と、これを収容するためのパッケージ13とを備える。パッケージ13は、上部を開放した矩形箱型のベース14と、その上端に接合された矩形平板のリッド15とを有する。ベース14は、例えばセラミックス等の絶縁材料薄板を積層して形成される。リッド15は、例えばコバール、42アロイ、SUS等の金属材料や、ガラス、シリコン、水晶、セラミック等の絶縁材料で形成される。
パッケージ13内部に画定されるキャビティ16に被測定流体を外部環境から導入しかつ流通可能にするため、リッド15には連通孔17が貫設されている。連通孔17は、前記リッドではなく、ベース14に設けることもでき、前記リッド及びベースの双方に設けることもできる。この連通孔によって、圧電センサー素子11を被測定流体内に配置したとき、キャビティ16内は外部環境から被測定流体が満たされ、自在に流通可能な状態に置かれる。
音叉型圧電振動片12は、例えば水晶材料のような公知の圧電材料で形成され、基部18と、該基部から平行に延出する1対の振動腕19,19とを有する。図示しないが、前記各振動腕の上下主面及び両側面には励振電極が形成され、前記励振電極からそれぞれ引き出された1対のマウント電極が前記基部に形成されている。
圧電振動片12の実装面を構成するベース14のキャビティ底面16aは平坦で、その長手方向の一方の端部付近に1対の接続電極20,20が形成されている。圧電振動片12は、基部18において各前記マウント電極をキャビティ底面16aの対応する前記接続電極に導電性接着剤21,21で固定することにより、ベース14に電気的に接続されかつ機械的に片持ちで支持される。振動腕19,19の下側主面19aは、キャビティ底面16aと平行をなし、かつそれらの間に所定寸法s1の狭い隙間22を画定するように配置する。
キャビティ底面16aの接続電極20,20は、その上面に導電材料の支持部を所定の高さに予め形成しておくことが好ましい。例えば、この支持部を帯状やドット状のバンプで形成したりその上面に凹みを形成することにより、圧電振動片12を固定する際に余分な導電性接着剤が該支持部上に残らないので、前記圧電振動片をキャビティ底面16aに対して所望の高さにかつ平行に、より正確に配置することができる。このような圧電振動片の支持構造は、従来から当業者によく知られている。
圧電振動片12の前記励振電極に所定の電圧を印加すると、振動腕19,19は、その主面19aの面内方向に即ち前記キャビティ底面と平行に、互いに接近離反する向きに所定の周波数で屈曲振動する。前記振動腕の下側主面19aは移動壁として、固定壁であるキャビティ底面16aに対して所定の速度で往復移動する。このとき、キャビティ16内の被測定流体が隙間22内で、その速度分布が時間によって変化しない定常的な流れを生じるように、隙間の大きさs1は決定される。
別の実施例では、前記振動腕の下側主面19aとの間に隙間22を画定する固定壁として、前記ベースのキャビティ底面16aを直接利用する代わりに、別個の平坦面部材をキャビティ16内に配置することができる。また、接続電極20,20を形成した前記キャビティ底面とは異なる高さの段差等を前記ベースに形成することによって、隙間22を画定する固定壁構造を設けることもできる。
図2は、圧電振動片12の励振時にキャビティ16内の隙間22に生じる被測定流体Fの流れを模式的に説明している。図中、キャビティ底面16aから垂直上向きをy軸、該キャビティ底面と平行に右向きをx軸にとる。振動腕19がx方向に速度Uで移動するとき、その下側主面19aに接している被測定流体が同じ速度Uで動くのに対し、キャビティ底面16aに接している被測定流体の速度は0である。それらの間では、被測定流体Fが、キャビティ底面16aからの距離yにおいてその上側の部分と下側の部分とで異なる速度の層流となって互いにずれながら移動している。
隙間22内でクエット流れが発生しているとした場合、被測定流体Fのキャビティ底面16aから距離yにおけるx方向の速度uは、次式となる。
u=U×(y/s1)
即ち、図2で斜めの直線で示すように、距離yに関して0からUまで直線的に変化する速度分布となる。図中、この速度分布に沿って示す水平右向きの矢印は、速度ベクトルである。
このとき、振動腕の下側主面19aにそれに接している被測定流体から作用する単位面積当たりの摩擦力がせん断応力τ0 であり、次式で表わすことができる。
τ0 =μ×(U/s1)
隙間22内の被測定流体内部においても、x方向に異なる速度で移動している部分同士の間に摩擦力が働く。単位面積当たりの摩擦力即ちせん断応力τは、次式で表わすことができる。
τ=μ×(du/dy)
この比例定数μが、粘度又は粘性係数と呼ばれる被測定流体に固有な値である。速度勾配(du/dy)とせん断応力τとの間にμ一定の比例関係がある流体がニュートン流体、そのような比例関係が無い流体が非ニュートン流体と呼ばれている。
また、これらのせん断応力は、次式のように書き換えることができる。
τ0 =ρν×(U/s1)
τ=ρν×(du/dy)
ここで、ρは被測定流体の密度、ν=μ/ρは被測定流体の動粘性係数である。一般に、温度が上昇すると、圧縮性流体である気体の動粘性係数は大きくなり、非圧縮性流体である液体の動粘性係数は小さくなることが知られている。
実際、一般に移動壁と固定壁との間に発生する流体の流れは、クエット流れのような単純な層流ではなく、乱流である場合が多いと考えられる。その場合、振動している前記振動腕の下側主面19aにそれに接している被測定流体から作用する単位面積当たりの摩擦力即ちせん断応力τ0 は、次式で表わすことができる。
τ0 =μ×(U/s1)−ρ(u'の時間平均)(v'の時間平均)
この式の右辺第2項はレイノルズ応力と呼ばれ、u'は被測定流体のx方向の速度変動、v'は被測定流体のy方向の速度変動である。振動腕19の下側主面19aとキャビティ底面16a間の隙間22も、このような被測定流体の粘性に対応した定常的な流れが発生していると考えられる。
本明細書中、前記振動腕の表面に作用してその屈曲振動を抑制するように働く摩擦力を被測定流体の粘性抵抗と呼ぶこととする。この粘性抵抗の大きさによって、圧電振動片12の電気的特性が変化する。被測定流体が圧縮性流体の場合、圧力が上昇すると、容積が減少して密度が高くなるので、粘性抵抗が大きくなる。逆に圧力が降下すると、容積が増大して密度が低くなるので、粘性抵抗が小さくなる。被測定流体が非圧縮性流体の場合、密度は圧力に対して一定であるが、液体は温度によって密度が変化し、その結果粘性抵抗が増減する場合がある。
本実施例では、振動腕19の下側主面19aが隙間22内の被測定流体から受ける粘性抵抗の変化を、圧電振動片12のCI値の変化として検出する。これによって、振動腕への粘性抵抗を変化させる圧力等の測定対象の変化を高感度に検出することができる。しかも、CI値の検出は、周波数のカウントのようなタイムラグを発生しないので、測定対象をリアルタイムで測定できる。
第1実施例の圧電センサー素子11において、被測定流体を空気、隙間22の大きさs1を200μmに設定して、気圧に対する圧電振動片12のCI値の変化を測定した。比較例として、音叉型圧電振動片を被測定流体の空気中に置いた従来構造の圧電センサーにおいて、同様に気圧に対する圧電振動片のCI値の変化を測定した。これらの測定結果を図3に示す。同図から、圧電センサー素子11は、気圧の高い(真空度の低い)範囲においても、CI値の変化が比較例に比して十分に大きいことが分かる。これは、圧電センサー素子11が、気体の圧力変化に対して高いCI値検出感度を有することを示している。
更に第1実施例の圧電センサー素子11において、隙間22の大きさs1に関するCI値の変動量を測定した。振動腕19のサイズ及び共振周波数が異なる大小2つの音叉型圧電振動片12を用意した。大きいサイズの圧電振動片は、振動腕を腕長=5300μm、腕幅=200μm、共振周波数=40kHzに設定した。小さいサイズの圧電振動片は、振動腕を腕長=5300μm、腕幅=200μm、共振周波数=110〜220kHzに設定した。
その測定結果を図4に示す。同図から、第1実施例の場合、音叉型圧電振動片12の大きさ及び共振周波数に拘わらず、隙間22の大きさs1が200μm以下の範囲では、CI値の変化を十分に検出可能であることが分かる。このように第1実施例の圧電センサー素子11は、被測定流体を空気、測定対象を気圧とした場合に、CI値を検出することによって、気圧センサー又は真空度センサーとして十分に広い圧力範囲で高い感度を発揮することができる。
上述した隙間22における被測定流体の流れに関する考察や図3、図4の結果から、第1実施例の圧電センサー素子11が、空気以外の被測定流体、気圧以外の測定対象についても同様に適用されることは、容易に理解される。隙間22内で被測定流体が定常的な速度分布の流れを生じるように、前記隙間の大きさs1が決定されている限り、様々な圧縮性流体及び非圧縮性流体について、振動腕への粘性抵抗を変化させ得る圧力、粘度、密度等の様々な測定対象の変化を、CI値の変化として高感度に検出することができる。
図5は、第1実施例の圧電センサー素子11を組み込んだ圧電センサーの圧力検出回路の構成例を示している。この圧力検出回路30は、圧電センサー素子11の発振回路31と、互いに直列に接続されたフィルター回路32、整流回路33、積分回路34及び直流増幅回路35とを備える。これら各回路31〜35における信号a〜eを、図6に横軸を時間T、縦軸を電圧として模式的に表す。
発振回路31は、圧電センサー素子11の圧電振動片12を発振させるための増幅器として、前記圧電振動片の両端子間に直列に接続されたインバーターINV1〜3を有する。1段目のインバーターINV1は入力端子を圧電振動片12の一方の端子に、出力端子を2段目のインバーターINV2の入力端子に接続し、2段目のインバーターINV2は出力端子を3段目のインバーターINV3の入力端子に接続し、3段目のインバーターINV3は出力端子を前記水晶振動片の他方の端子に接続している。インバーターINV1の入力端子と接地電位との間にコンデンサーC1が接続され、インバーターINV3の出力端子と接地電位との間にコンデンサーC2が接続されている。
更に発振回路31は、圧電振動片12の両端子間に、抵抗RA,RB,RCを直列に接続した回路からなる抵抗R1を有する。抵抗R1の一方の端子即ち抵抗RAの端子はインバーターINV1の入力端子に、抵抗R1の他方の端子即ち抵抗RCの一方の端子はインバーターINV3の出力端子に接続されている。抵抗RAと抵抗RBとの接続中点はインバーターINV1の出力端子に接続され、抵抗RBと抵抗RCとの接続中点はインバーターINV2の出力端子に接続されている。抵抗R1の他方の端子即ち抵抗RCの端子と前記水晶振動片の他方の端子との間には、位相制御用の抵抗RDが接続されている。このように構成することによって、発振回路31は、圧電振動片12を発振させた発振信号OUTをインバーターINV3の出力端子から出力する。
フィルター回路32は、インバーターINV1の入力端子及び圧電振動片12の前記一方の端子と整流回路33の入力端子との間に接続されたコンデンサーC3を有する。コンデンサーC3の前記他方の端子と接地電位との間には、抵抗R3が接続されている。
フィルター回路32には、インバーターINV1の入力端子側に接続された圧電振動片12の前記一方の端子から出力した電流である振動子電流の一部からなる、図6(A)に示す信号aが入力する。この入力信号aは、直流成分が重畳した正弦波の交流信号であり、その振幅(電圧)Vpp1は、圧電振動片12のCI値の大きさに比例して変化する。フィルター回路32は、図6(B)に示すように、入力信号aから前記直流成分を取り除いた信号bを出力する。
整流回路33は、フィルター回路32のコンデンサーC3と積分回路34との間に接続されたダイオードD1を有する。整流回路33は、フィルター回路32の出力信号bを入力し、図6(C)に示すように半波整流した信号cを出力する。
積分回路34は、整流回路33のダイオードD1の出力と直流増幅回路35との間に接続された抵抗R4を有する。抵抗R4と接地電位との間に、コンデンサーC4が接続されている。積分回路34は、整流回路33の出力信号cを入力し、図6(D)に示すように積分した信号dを出力する。
直流増幅回路35は、比較回路35aと、該比較回路のプラス端子と積分回路34の出力との間に接続された抵抗R5とを有する。比較回路35aには、そのマイナス端子と接地電位との間に抵抗R6が接続され、該マイナス端子と出力端子との間に抵抗R7が接続されている。直流増幅回路35は、積分回路34の出力信号dを入力し、図6(E)に示すように増幅した電位Voutの信号eを圧力検出信号として出力する。出力信号eの検出は、発振周波数のカウントと異なり、例えば数msecレベルの瞬時で行うことができる。
圧力検出回路30は、その全体を圧電センサー素子11の外部要素として構成することができ、又はその一部の構成要素を圧電センサー素子11のパッケージ13内部に配置することができる。また、発振回路31の増幅器を構成するインバーターは、上述した3段構成以外に、該発振回路の設計条件によって1段でも良く、又は3段以外の複数(奇数)段に構成することができる。更に、積分回路34の出力信号dが、圧力の検出に十分な大きさ(電位)を有する場合には、直流増幅回路35を省略することもできる。
図7は、第1実施例の圧電センサー素子の変形例を示している。本実施例の圧電センサー素子41は、図1の第1実施例と同じ音叉型圧電振動片12とこれを収容するためのパッケージ13とを備える。パッケージ13は、矩形箱型のベース14とキャビティ16への連通孔17を設けた矩形平板のリッド15とを有する。圧電振動片12は、基部18においてキャビティ底面16aに片持ちに固定支持されている。
本実施例では、圧電振動片12が、振動腕19の上側主面19bをリッド15の平坦な下面15aと平行に、かつそれらの間に所定寸法s2の隙間42を画定するように配置する。圧電振動片12に所定の電圧を印加すると、振動腕19は、主面19bの面内方向に即ちリッド15の下面15aと平行に、互いに接近離反する向きに所定の周波数で屈曲振動する。前記振動腕の上側主面19bは移動壁として、固定壁であるリッド下面15aに対して所定の速度で往復移動する。このとき、連通孔17からキャビティ16内に入っている被測定流体が隙間42内で定常的な速度分布の流れを生じるように、該隙間の大きさs2は決定される。
このように圧電振動片12をパッケージ13内に実装することによって、振動腕19は上側主面19bが、図2に関連して上述したように、隙間42内の被測定流体から粘性抵抗を受ける。この粘性抵抗の大きさによって、振動腕19の屈曲振動が抑制され、圧電振動片12のCI値が変化する。従って、振動腕19が受ける粘性抵抗の変化を圧電振動片12のCI値の変化として検出することによって、被測定流体の圧力等の測定対象の変化を高感度に検出することができる。
別の実施例では、前記振動腕の上側主面19bとの間に隙間42を画定する固定壁として、前記リッドの下面15aを直接利用する代わりに、別個の平坦面部材をキャビティ16内に配置することができる。また、隙間42を画定する固定壁として、前記リッド下面に段差等の突出構造を形成することもできる。
図8は、第1実施例の圧電センサー素子の別の変形例を示している。本実施例の圧電センサー素子51も、図1の第1実施例と同じ音叉型圧電振動片12とこれを収容するためのパッケージ13とを備える。パッケージ13は、矩形箱型のベース14とキャビティ16への連通孔17を設けた矩形平板のリッド15とを有する。圧電振動片12は、基部18においてキャビティ底面16aに片持ちに固定支持されている。
本実施例では、圧電振動片12が、振動腕19の下側主面19aを平坦なキャビティ底面16aと平行にかつそれらの間に所定寸法s1の隙間22を画定すると同時に、前記振動腕の上側主面19bを平坦なリッド下面15aと平行にかつそれらの間に所定寸法s2の隙間42を画定するように配置する。隙間22及び隙間42の寸法s1,s2は、上記第1及び第2実施例の場合と同様に決定する。即ち、圧電振動片12の振動腕19を上側及び下側主面19a,19bの面内方向に所定の周波数で屈曲振動させたとき、移動壁である前記上側及び下側主面と固定壁である前記キャビティ底面及びリッド下面との隙間22,42内で、それぞれキャビティ16内の被測定流体が定常的な速度分布の流れを生じるように、それらの大きさs1,s2は決定される。
このように圧電振動片12をパッケージ13内に実装することによって、振動腕19の屈曲振動は、下側及び上側主面19a,19bが、図2に関連して上述したように各隙間22,42内の被測定流体から粘性抵抗を受けることにより、抑制される。その結果、本実施例では、図1及び図7の実施例よりも大きな粘性抵抗が振動腕19に作用する。前記振動腕が受ける粘性抵抗の変化を圧電振動片12のCI値の変化として検出することによって、被測定流体の圧力等の測定対象の変化をより高感度に検出することができる。この場合、前記下側及び上側各主面に作用する粘性抵抗が等しくなるように、寸法s1,s2は同一に設定することが好ましい。それによって、図1及び図7の実施例の略2倍の高感度を得ることができる。
別の実施例では、リッド15ではなく、別個の固定部材をキャビティ16内の圧電振動片12の上方に配設することによって、振動腕19の上側主面19bに対する固定壁として、その間に隙間42と同様の狭い隙間を画定することができる。この別個の部材は、圧電センサー素子の組立時に上側主面19bとの寸法関係だけを注意すればよいので、リッド15をベース14に接合する場合よりも作業が容易である。これによって、圧電センサー素子は、図7,図8の実施例よりも寸法全体が高背化するが、キャビティ16の容積が大きくなるので、パッケージ13の外部との間で被測定流体の流通性が良くなる。
図9(A),(B)は、本発明による圧電センサー素子の第2実施例の構成を示している。本実施例の圧電センサー素子61は、図1の第1実施例の構成に加えて、音叉型圧電振動片12の両振動腕19,19とパッケージ13のキャビティ16内壁面との間に追加の隙間62を有する。前記両振動腕は、その先端即ち自由端に該振動腕の延出方向に直交する平坦な端面19c,19cを有する。ベース14は、キャビティ16の長手方向の接続電極20とは反対側の端部に、平坦かつ垂直な内側面16bを有する。圧電振動片12は、ベース14のキャビティ底面16aに実装する際に、前記両振動腕の下側主面19aが前記キャビティ底面と寸法s1の狭い隙間22をもって平行をなすと共に、その端面19c,19cが、隣接するキャビティ内側面16bと平行をなしかつそれらの間に所定寸法s3の狭い隙間62を画定するように配置する。
このように圧電振動片12をパッケージ13内に実装して前記励振電極に所定の電圧を印加すると、屈曲振動する振動腕19は、端面19c,19cが移動壁として、固定壁であるキャビティ内側面16bに対して所定の速度で往復移動する。このとき、前記キャビティ内の被測定流体が隙間62内で、定常的な速度分布の流れを生じるように、該隙間の大きさs3は決定される。
その結果、振動腕19の屈曲振動は、下側主面19a及び端面19cが各隙間22,62内の被測定流体から粘性抵抗を受けることにより、抑制される。特に振動腕19先端の端面19cは、その移動速度が最も大きいから、その面積は小さくても実質的に十分な大きさの抑制抵抗を受ける。従って、本実施例では、図1の第1実施例の場合よりも大きな粘性抵抗を振動腕19に作用させることができる。前記振動腕が受ける粘性抵抗の変化を圧電振動片12のCI値の変化として検出することにより、被測定流体の圧力等の測定対象の変化をより高感度に検出することができる。
図10は、第2実施例の圧電センサー素子の変形例を示している。本実施例の圧電センサー素子71は、音叉型圧電振動片を有する中間圧電基板72と、その上下に接合されて前記音叉型圧電振動片を収容するためのパッケージを構成する上側基板73及び下側基板74とを備える。
図11に示すように、中間圧電基板72は、全体として一様な厚さの水晶等の圧電材料薄板からなり、音叉型圧電振動片75がそれを囲繞する矩形の外枠76を有する。音叉型圧電振動片75は、その基部77から平行に延出する1対の振動腕78,78を有し、前記基部に外枠76が一体に結合されている。
振動腕78,78は、それぞれ先端即ち自由端に該振動腕の延出方向に直交する平坦な端面78c,78cを有する。外枠76は、基部77とは長手方向反対側に側辺部79を有し、該側辺部は、前記振動腕の各端面78c,78cと対向する平坦な内側面79aを有する。この内側面79aが前記振動腕の各端面78c,78cと平行をなしかつそれらの間に所定寸法s4の狭い隙間80,80を画定するように、中間圧電基板72は、例えば水晶ウエハからウエットエッチング等の公知方法により一体に成形する。そのため、前記振動腕の先端側の隙間80を、図9の第2実施例よりも、高精度にかつ簡単に調整することができる。
上側及び下側基板73,74は、それぞれ中間圧電基板72との対向面に凹部73a,74aが形成されている。前記上側及び下側基板は、凹部73a,74aを囲繞する周辺部で前記中間圧電基板の外枠76と接合され、圧電センサー素子71の内部に圧電振動片75を基部77で片持ちに保持するためのキャビティを画定している。前記キャビティに被測定流体を外部環境から導入しかつ流通可能にするため、上側基板73の凹部73aには連通孔81が貫設されている。凹部73a,74aの底面は、それぞれ隣接する圧電振動片75の前記振動腕の上側又は下側主面78a,78bと平行をなしかつそれらとの間に所定寸法s5,s6の狭い隙間82,83を画定するように平坦に形成されている。この平坦面は、少なくとも凹部73a,74aの圧電振動片75の前記振動腕と対向する領域に設ければ良い。
圧電振動片75の前記励振電極に所定の電圧を印加すると、振動腕78は、上側及び下側主面78a,78bの面内方向に即ち凹部73a,74aの平坦な底面と平行に、互いに接近離反する向きに所定の周波数で屈曲振動する。このとき、前記振動腕の上側及び下側主面78a,78bは移動壁として、固定壁である凹部73a,74a底面に対して所定の速度で往復移動する。同時に、前記振動腕の端面78c,78cが移動壁として、固定壁である外枠側辺部79の内側面79aに対して所定の速度で往復移動する。
各隙間80,82,83の寸法s4,s5,s6は、上記各実施例と同様に、連通孔81から前記キャビティ内に入っている被測定流体が前記各隙間内で定常的な速度分布の流れを生じるように決定する。その結果、振動腕78の屈曲振動は、上側及び下側主面78a,78b及び端面78cが前記各隙間内の被測定流体からの粘性抵抗を受けて抑制される。振動腕78が受ける粘性抵抗の変化を圧電振動片75のCI値の変化として検出することによって、被測定流体の圧力等の測定対象の変化をより高感度に検出することができる。
図12は、本発明による圧電センサー素子の第3実施例の構成を示している。本実施例の圧電センサー素子91は、2つの音叉型圧電振動片92,93と、これらを収容するためのパッケージ94とを備える。パッケージ94は、第1実施例と同様に、上部を開放した矩形箱型のベース95と、その上端に接合された矩形平板のリッド96とを有する。リッド96には連通孔98が貫設され、パッケージ94内部のキャビティ97に被測定流体を外部環境から導入しかつ流通可能にしている。連通孔98は、ベース95に又は前記リッド及びベースの双方に設けることもできる。
音叉型圧電振動片92は、基部99から平行に延出する1対の振動腕100を有し、音叉型圧電振動片93は、基部101から平行に延出する1対の振動腕102を有する。両圧電振動片92,93は、例えば同じ製造ロットの水晶ウエハ等の圧電材料から同一の寸法・形状に形成され、同一の発振周波数、温度特性等の振動特性をもって動作する。
ベース95のキャビティ97には、その長手方向の一方の端部に段差103が設けられている。前記キャビティの底面97aは平坦で、段差103付近には1対の接続電極104が形成されている。一方の圧電振動片92は、基部99を導電性接着剤105で接続電極104に固定して片持ちに支持される。他方の圧電振動片93は、段差103上に形成された1対の接続電極106に基部101を導電性接着剤107で固定して、圧電振動片92の上方に片持ちに支持される。
圧電振動片92は、振動腕100の下側主面100aがキャビティ底面97aと平行をなしかつその間に所定寸法s7の狭い隙間108を画定するように配置する。圧電振動片92に所定の電圧を印加して、振動腕100を下側主面100aの面内方向に即ちキャビティ底面97aと平行に、互いに接近離反する向きに所定の周波数で屈曲振動させると、該下側主面は移動壁として、固定壁である前記キャビティ底面に対して所定の速度で往復移動する。このときキャビティ97内の被測定流体が隙間108内で定常的な速度分布の流れを生じるように、該隙間の大きさs7は決定される。振動腕100の屈曲振動は、下側主面100aが隙間108内の被測定流体から粘性抵抗を受けて抑制される。前記振動腕が受ける粘性抵抗の変化は、圧電振動片92のCI値の変化として検出される。
これに対し、圧電振動片93は、振動腕102の上側及び下側主面並びに先端面がキャビティ97の内面、即ちその底面97a及び側面、リッド96の下面、並びに圧電振動片92との間に十分な間隔が確保されるように配置する。これにより、振動腕102を屈曲振動させたとき、その表面とキャビティ97の内面及び圧電振動片92との間に、隙間108におけるような被測定流体の定常的な流れが発生することはない。従って、キャビティ97内における被測定流体の密度の変化が、実質的に圧電振動片93の振動腕102への粘性抵抗を変化させてCI値に影響を及ぼすことはない。
本実施例では、圧電振動片92から検出されるCI値と圧電振動片93から検出されるCI値との差分を取り出し、その変化から圧力等の測定対象を測定する。両圧電振動片92,93が、上述したように同じ振動特性を有すると共に、同じパッケージ94のキャビティ97内に配置されて温度等の環境条件が同一であるので、それらの温度特性が測定値に及ぼす影響をキャンセルさせ、高精度な測定を行うことができる。
更に、本発明の圧電センサー素子は、被測定流体が常に外部からキャビティ内に流通可能な状態にあるので、外部環境の汚染がキャビティ内に及び、圧電振動片の動作に影響する虞がある。本実施例では、外部環境からの汚染が両圧電振動片92,93に及ぼす影響が同程度であるので、それがCI値に与える影響を略キャンセルさせることができ、より高精度な測定が可能になる。
図13(A),(B)図は、本発明による圧電センサー素子の第4実施例の構成を示している。本実施例の圧電センサー素子111は、音叉型圧電振動片に代えて、双音叉圧電振動片112を備える点において、上記各実施例と異なる。前記双音叉圧電振動片を収容するためのパッケージ113は、第1実施例と同様に、上部を開放した矩形箱型のベース114と、その上端に接合された矩形平板のリッド115とを有する。リッド115には連通孔117が貫設され、パッケージ113内部のキャビティ116に被測定流体を外部環境から導入しかつ流通可能にしている。連通孔117は、ベース113に又は前記リッド及びベースの双方に設けることもできる。
双音叉圧電振動片112は、両端の基部118,118間を平行に延長する1対の振動腕119,119を有する。図示しないが、前記振動腕の上下主面及び両側面には、励振電極が形成され、前記励振電極からそれぞれ引き出された1対のマウント電極が一方の前記基部に形成されている。ベース114のキャビティ底面116aには、長手方向の両端付近に各1対の接続電極120,120が形成されている。双音叉圧電振動片112は、各基端部118,118を対応する接続電極120,120に導電性接着剤121,121で固定して両持ちで支持される。
振動腕119,119の下側主面119aは、キャビティ底面116aと平行をなし、かつそれらの間に所定寸法s8の狭い隙間122を画定するように配置する。圧電振動片112を両持ち支持することによって、その振動腕の全長に亘って隙間122を所望の寸法に調整することが容易になる。当然ながら、前記双音叉圧電振動片は、上記実施例の音叉型圧電振動片と同様に、前記マウント電極を形成した前記一方の端部において片持ちに固定支持することもできる。
圧電振動片112に所定の電圧を印加すると、振動腕119,119は下側主面119aの面内方向に即ちキャビティ底面116aと平行に、互いに接近離反する向きに所定の周波数で屈曲振動し、該下側主面は移動壁として、固定壁である前記キャビティ底面に対して所定の速度で往復移動する。このときキャビティ116内の被測定流体が隙間122内で定常的な速度分布の流れを生じるように、該隙間の大きさs8は決定される。振動腕119,119の屈曲振動は、その下側主面が隙間122内の被測定流体から粘性抵抗を受けて抑制される。前記振動腕が受ける粘性抵抗の変化を圧電振動片112のCI値の変化として検出することによって、被測定流体の圧力等の測定対象の変化をより高感度に検出することができる。
双音叉圧電振動片は、一般に高いQ値(共振尖鋭度)を有し、高精度、高安定性及び速い応答速度という特徴を有する。これらの特長を生かして、本実施例の圧電センサー素子111は、測定対象の急激な変動をも検出し得る高い応答性が得られる。当然ながら、本実施例の双音叉圧電振動片及びその実装構造は、図7、図8、図12に示す他の実施例についても適用することができる。
本発明は、上記実施例に限定されるものでなく、その技術的範囲内で様々な変形又は変更を加えて実施することができる。例えば、圧電センサー素子のパッケージは、上記実施例以外の様々な構造が可能であり、例えば、連通孔の代わりにパッケージの上部又は側部を外部の被測定流体に開放した構造にすることもできる。更に本発明の圧電センサーにおいて、圧電センサー素子に接続する圧力検出回路には、図5以外の様々な構成の回路が考えられる。また、上記実施例では、各圧電振動片の励振電極について詳細な説明を省略したが、従来公知の様々な構造の振動腕及び電極を採用することができる。
11,41,51,61,71,91,111…圧電センサー素子、12,75,92,93…音叉型圧電振動片、13,94,113…パッケージ、14,95,114…ベース、15,96,115…リッド、15a…下面、16,97,116…キャビティ、16a,97a,116a…キャビティ底面、16b,79a…内側面、17,81,98,117…連通孔、18,77,99,101…基部、19,78,100,102,119…振動腕、19a,78b,119a…下側主面、19b,78a…上側主面、19c,78c…端面、20,104,106,120…接続電極、21,105,107,121…導電性接着剤、22,42,62,80,82,83,108,122…隙間、30…圧力検出回路、31…発振回路、32…フィルター回路、33…整流回路、34…積分回路、35…直流増幅回路、35a…比較回路、72…中間圧電基板、73…上側基板、73a,74a…凹部、74…下側基板、76…外枠、79…側辺部、103…段差、112…双音叉圧電振動片、118…基端部。

Claims (12)

  1. 基部と、前記基部から平行に延出する1対の振動腕と、前記振動腕の両主面及び両側面に形成されて、前記振動腕を前記主面の面内方向に屈曲振動させるための励振電極とを有する圧電振動片と、
    内部に前記圧電振動片を収容しかつ前記基部において固定支持し、前記内部を外部の被測定流体に連通可能なパッケージとを備え、
    前記圧電振動片が前記パッケージ内部に、前記振動腕の少なくとも一方の前記主面を前記パッケージ内部に設けられた平坦な固定面と平行に、かつそれらの間に所定寸法sの狭い隙間を画定するように配置され、前記隙間の寸法sが、前記振動腕を前記主面の面内方向に屈曲振動させたとき、前記隙間内で被測定流体が定常的な速度分布の流れを生じるように設定されることを特徴とする圧電センサー素子。
  2. 前記隙間の寸法sが200μm以下の範囲にあることを特徴とする請求項1記載の圧電センサー素子。
  3. 前記パッケージが、前記圧電振動片を前記基部において固定支持するベースを有し、前記ベースが前記パッケージ内部の前記平坦な固定面を形成し、前記振動腕の下側主面との間に前記隙間を画定することを特徴とする請求項1又は2記載の圧電センサー素子。
  4. 前記パッケージが、前記圧電振動片を前記基部において固定支持するベースと、前記ベースに接合されて前記内部を画定するリッドとを有し、前記リッドが、前記パッケージ内部の前記平坦な固定面を形成し、前記振動腕の上側主面との間に前記寸法sの前記隙間を画定することを特徴とする請求項1又は2記載の圧電センサー素子。
  5. 前記圧電振動片が音叉型圧電振動片であることを特徴とする請求項1乃至4のいずれか記載の圧電センサー素子。
  6. 前記音叉型圧電振動片の振動腕が、その先端に該振動腕の延出方向に直交する平坦な端面を有し、前記音叉型圧電振動片が、前記平坦な端面を前記パッケージ内部に設けられた平坦な第2固定面と平行に、かつそれらの間に所定寸法s’の狭い第2隙間を画定するように配置され、前記第2隙間の寸法s’が、前記振動腕を前記主面の面内方向に屈曲振動させたとき、前記第2隙間内で被測定流体が定常的な速度分布の流れを生じるように設定されることを特徴とする請求項5記載の圧電センサー素子。
  7. 前記音叉型圧電振動片が、前記振動腕を囲繞するように前記基部に結合された外枠を有し、前記振動腕が、その先端に該振動腕の延出方向に直交する平坦な端面を有し、前記外枠が、前記振動腕先端の前記平坦な端面と平行をなしかつ該端面との間に所定寸法s’の狭い第2隙間を画定する平坦な内側面を有し、前記第2隙間の寸法s’が、前記振動腕を前記主面の面内方向に屈曲振動させたとき、前記第2隙間内で被測定流体が定常的な速度分布の流れを生じるように設定され、
    前記パッケージが、前記外枠の上下各面にそれぞれ接合される上側及び下側基板からなり、前記上側及び下側基板と前記外枠との間に前記音叉型圧電振動片を収容する前記内部を画定することを特徴とする請求項5記載の圧電センサー素子。
  8. 前記圧電振動片が双音叉圧電振動片であることを特徴とする請求項1乃至4のいずれか記載の圧電センサー素子。
  9. 前記圧電振動片に加えてそれと同一の第2圧電振動片を更に有し、前記第2圧電振動片が、その振動腕をその主面の面内方向に屈曲振動させたとき、前記パッケージ内部の壁面との間で被測定流体が定常的な速度分布の流れを生じないように、該壁面から離隔して配置されることを特徴とする請求項1乃至6,8のいずれか記載の圧電センサー素子。
  10. 基部と、前記基部から平行に延出する1対の振動腕と、前記振動腕を囲繞するように前記基部に結合された外枠と、前記振動腕の両主面及び両側面に形成されて、前記振動腕を前記主面の面内方向に屈曲振動させるための励振電極とを有し、
    前記振動腕が、その先端に該振動腕の延出方向に直交する平坦な端面を有し、
    前記外枠が、前記振動腕先端の前記平坦な端面と平行をなしかつ該端面との間に所定寸法の狭い隙間を画定する平坦な内側面を有し、前記隙間の寸法が、前記振動腕を前記主面の面内方向に屈曲振動させたとき、前記隙間内で被測定流体が定常的な速度分布の流れを生じるように設定されることを特徴とする圧電振動片。
  11. 請求項1乃至8のいずれか記載の圧電センサー素子と、前記圧電センサー素子の圧電振動片のCI値を検出する電気回路とを備えることを特徴とする圧電センサー。
  12. 請求項9記載の圧電センサー素子と、前記圧電センサー素子の圧電振動片のCI値と第2圧電振動片のCI値とを検出しかつそれらの差分を取り出す電気回路とを備えることを特徴とする圧電センサー。
JP2010104664A 2010-04-29 2010-04-29 圧電センサー、圧電センサー素子及び圧電振動片 Withdrawn JP2011232263A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010104664A JP2011232263A (ja) 2010-04-29 2010-04-29 圧電センサー、圧電センサー素子及び圧電振動片

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010104664A JP2011232263A (ja) 2010-04-29 2010-04-29 圧電センサー、圧電センサー素子及び圧電振動片

Publications (2)

Publication Number Publication Date
JP2011232263A true JP2011232263A (ja) 2011-11-17
JP2011232263A5 JP2011232263A5 (ja) 2013-05-09

Family

ID=45321702

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010104664A Withdrawn JP2011232263A (ja) 2010-04-29 2010-04-29 圧電センサー、圧電センサー素子及び圧電振動片

Country Status (1)

Country Link
JP (1) JP2011232263A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109389205A (zh) * 2018-12-06 2019-02-26 四川云智慧安科技有限公司 无源振动计数器及其应用方法
CN110726498A (zh) * 2015-04-30 2020-01-24 意法半导体股份有限公司 用于检测诸如冲击、加速度、旋转力等平面内的力的集成压电传感器
JP2022159096A (ja) * 2021-03-31 2022-10-17 ティーイー コネクティビティ センサーズ フランス 音叉型機械共振器を備える、流体の特性を感知するための流体センサ

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5924230A (ja) * 1982-07-13 1984-02-07 アスラブ・ソシエテ・アノニム 検知素子
JPS6173047A (ja) * 1984-09-18 1986-04-15 Seiko Electronic Components Ltd AlPOc振動子
JP2008026064A (ja) * 2006-07-19 2008-02-07 Epson Toyocom Corp 圧力センサ
JP2008070241A (ja) * 2006-09-14 2008-03-27 Epson Toyocom Corp 圧力センサ、及びその製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5924230A (ja) * 1982-07-13 1984-02-07 アスラブ・ソシエテ・アノニム 検知素子
JPS6173047A (ja) * 1984-09-18 1986-04-15 Seiko Electronic Components Ltd AlPOc振動子
JP2008026064A (ja) * 2006-07-19 2008-02-07 Epson Toyocom Corp 圧力センサ
JP2008070241A (ja) * 2006-09-14 2008-03-27 Epson Toyocom Corp 圧力センサ、及びその製造方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110726498A (zh) * 2015-04-30 2020-01-24 意法半导体股份有限公司 用于检测诸如冲击、加速度、旋转力等平面内的力的集成压电传感器
CN110726498B (zh) * 2015-04-30 2021-12-31 意法半导体股份有限公司 用于检测诸如冲击、加速度、旋转力等平面内的力的集成压电传感器
CN109389205A (zh) * 2018-12-06 2019-02-26 四川云智慧安科技有限公司 无源振动计数器及其应用方法
CN109389205B (zh) * 2018-12-06 2024-02-13 四川云智慧安科技有限公司 无源振动计数器及其应用方法
JP2022159096A (ja) * 2021-03-31 2022-10-17 ティーイー コネクティビティ センサーズ フランス 音叉型機械共振器を備える、流体の特性を感知するための流体センサ
JP7335386B2 (ja) 2021-03-31 2023-08-29 ティーイー コネクティビティ センサーズ フランス 音叉型機械共振器を備える、流体の特性を感知するための流体センサ
US11921073B2 (en) 2021-03-31 2024-03-05 MEAS France Fluid sensor for sensing properties of a fluid comprising a tuning fork mechanical resonator

Similar Documents

Publication Publication Date Title
JP4757026B2 (ja) 加速度センサの特性調整方法
JP2011232264A (ja) 圧電センサー、圧電センサー素子及び圧電振動片
US9366687B2 (en) Angular velocity detecting device
US20110259101A1 (en) Vibration-type force detection sensor and vibration-type force detection device
JP2008232886A (ja) 圧力センサ
US20120096945A1 (en) Pressure sensor
US8850896B2 (en) Physical quantity detector
JP2007163244A (ja) 加速度センサ素子、加速度センサ
JP2011232263A (ja) 圧電センサー、圧電センサー素子及び圧電振動片
JP2010181210A (ja) 加速度センサ
JP5293413B2 (ja) 圧力センサー及びその製造方法
JP2010223666A (ja) 力センサー素子、及び力センサー装置
JP2008039662A (ja) 加速度センサ
JP4648625B2 (ja) 渦流量計
JP2008017261A (ja) 音叉型圧電振動片、センサ発振回路および音叉型圧電振動片の製造方法
JP5321812B2 (ja) 物理量センサーおよび物理量測定装置
JP4784436B2 (ja) 加速度センサ
JP5057060B2 (ja) 流体センサおよび音叉型センサ素子
JP2011133391A (ja) 圧力感知ユニット、及び圧力センサー
JPS6033057A (ja) 加速度センサ
JP2011013063A (ja) 圧力センサー及び圧力センサーの圧力検出方法
JP2010085377A (ja) 圧力センサ及び電子機器
JP2012002562A (ja) 振動型力検出センサー素子、振動型力検出センサー、および、振動型力検出センサー装置
JP2013002895A (ja) 慣性力センサ
JP2014032128A (ja) 外力検出装置

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20111227

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120726

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130325

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130325

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130807

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130827

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20131023