JP2008039662A - 加速度センサ - Google Patents

加速度センサ Download PDF

Info

Publication number
JP2008039662A
JP2008039662A JP2006216503A JP2006216503A JP2008039662A JP 2008039662 A JP2008039662 A JP 2008039662A JP 2006216503 A JP2006216503 A JP 2006216503A JP 2006216503 A JP2006216503 A JP 2006216503A JP 2008039662 A JP2008039662 A JP 2008039662A
Authority
JP
Japan
Prior art keywords
acceleration sensor
beam portion
free end
detection element
cantilever
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006216503A
Other languages
English (en)
Inventor
Yoshikuni Saito
佳邦 齋藤
Jun Watanabe
潤 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Miyazaki Epson Corp
Original Assignee
Miyazaki Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Miyazaki Epson Corp filed Critical Miyazaki Epson Corp
Priority to JP2006216503A priority Critical patent/JP2008039662A/ja
Publication of JP2008039662A publication Critical patent/JP2008039662A/ja
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Pressure Sensors (AREA)

Abstract

【課題】加速度が印加されてから検出素子による検出が成されるまでの反応性、及び検出感度が共に良好な加速度センサを提供する。
【解決手段】上記課題を解決するための加速度センサは、固定端16と自由端14との間に前記固定端16及び前記自由端14に比べて肉厚の薄い梁部18を形成した片持ち梁12と、前記梁部18の撓みに伴って付加される応力を電気信号に変換して出力可能な双音叉型圧電振動片22とを有する加速度センサであって、双音叉型圧電振動片22の基部26,24を前記固定端16と前記自由端14とのそれぞれに固定し、前記双音叉型圧電振動片22と前記梁部18との間には間隙を設け、前記梁部18は平板状として幅方向に沿った溝20を設けたことを特徴とする。
【選択図】図1

Description

本発明は加速度センサに係り、特に片持ち梁とこの片持ち梁に備えられた応力検出素子とから成る加速度センサに関する。
加速度センサの構成として一般に知られているものを大別すると、2通りに分けることができる。第1の構成としては、物体に生じた歪みを電圧として検出するものである。具体的には、図8(A)に示すように、枠部2と錘3を備え、前記枠部2と前記錘3とをそれぞれ梁部4によって接続し、前記梁部4に検出素子としての歪みゲージ5を備えたものを挙げることができる。このような構成の加速度センサ1では、例えば図8(B)中矢印Eの方向に加速度が印加されると、錘3に慣性力が作用し、梁部4には撓みや延びが生ずることとなる。検出素子である歪みゲージ5は前記梁部4に直接貼付されているため、梁部4の撓みや延びに伴ってその電気抵抗が変化する。そしてこの電気抵抗の変化を電圧に変換して出力信号としてとらえることで、加速度センサ1に印加された加速度を検出することができるのである。このような構成の加速度センサは、例えば特許文献1に開示されている。
また、第2の構成としては、振動片に応力を付与することによって生ずる共振周波数の変化を検出する振動検出型の加速度センサである。具体的には、図9に示すように、検出素子としての振動片(図9に示すのは双音叉型圧電振動片)7の一方の端部を固定端7aとし、他方の端部7bは枠部9に支持された自由端とし、自由端7aの先端には錘8を設ける構成とするものを挙げることができる。このような構成の加速度センサ6では、例えば図9中矢印Fの方向に加速度が印加されると、錘8には慣性力が作用し、自由端7bに引張りの応力が付与されることとなる。図9に示すような振動片7は、振動部に引張りまたは圧縮の応力が付与されることにより、その共振周波数が変化するという特性を有する。このため、共振周波数の変化を検出することで、加速度センサ6に印加された加速度を検出することができるのである。このような構成の加速度センサは、例えば特許文献2に開示されている。
特開平1−259264号公報 特開2000−206141号公報
上記特許文献1に開示されている電圧検出型の加速度センサ、及び特許文献2に開示されている振動検出型の加速度センサには、それぞれ次のような問題点がある。
まず、電気抵抗の変化を検出する型の加速度センサは、加速度センサに加速度が印加されてから歪みゲージの電気抵抗の変化に伴う出力信号が出力されるまでの間のタイムラグが大きく、検出感度が悪いといった問題がある。これは、検出素子である歪みゲージの特性の他、片持ち梁の梁部に直接貼付される構成が採られているために生じる問題でもある。すなわち、歪みゲージの電気抵抗に変化を生じさせるために必要な応力を梁部の曲げによって得る場合には、梁部には数十μmといったレベルの撓みが必要とされるのである。このため、加速度の印加から加速度の検出までに時間がかかり、高い感度を得ることも困難とされてきた。
これに対し、振動検出型の加速度センサは、検出素子としての振動片に直接、慣性力を得るための錘を備えることで加速度の検出感度の向上を図っているため、加速度の検出感
度は良好である。しかし、検出素子に慣性力として付与される引張りまたは圧縮の力を振動部に直接、引張りまたは圧縮の力として作用させるため、その構成は振動部の延長線上に錘を位置させる必要が生ずる。このため、感度向上のために錘の質量を大きくした場合には振動部や検出素子自体にせん断方向の負荷がかかることとなり、強度的な問題が生ずることとなる。また、強度的な問題を解消するために補助的な枠部を備えた場合には、加速度の検出感度が劣化するといった問題が生ずることとなる。
そこで本発明では、検出素子の配置形態と加速度の印加方向を工夫することで、加速度が印加されてから検出素子による検出が成されるまでの反応性が良好で、その感度も従来に比べて高くすることのできる加速度センサを提供することを目的とする。
上記目的を達成するための本発明に係る加速度センサは、固定端と自由端との間に前記固定端及び前記自由端に比べて肉厚の薄い梁部を形成した片持ち梁と、前記梁部の撓みに伴って付加される応力を電気信号に変換して出力可能な検出素子とを有する加速度センサであって、前記検出素子を構成する基板の両端部を前記固定端と前記自由端とのそれぞれに固定し、前記検出素子と前記梁部との間には間隙を設け、前記梁部は平板状として幅方向に沿った肉薄部を設けたことを特徴とする。このような特徴を有する加速度センサによれば、検出素子と梁部との間に間隙を設ける構成としたことにより、梁部の可撓性を良好に保ったまま、撓みの中心から検出素子を遠ざけることができる。これにより、検出素子に対しては、梁部の撓み量を増減させて伝達することができるようになる。すなわち、隙間を調整することで、検出素子の感度を調整することが可能となるのである。また、片持ち梁により加速度を受け、検出素子により片持ち梁の撓みを検出するという構成としていることより、加速度に対する感度は片持ち梁の自由端側質量により自由に調整すれば良いこととなり、感度調整に伴う負荷により検出素子に強度的な問題が課されることは無い。また、梁部を平板状とすることにより、撓み方向を一定に定めることができ、他の方向への撓みを抑制することが可能となる。さらに、梁部に対し、幅方向に沿った溝を設ける構成としたことにより、梁部の撓み箇所を特定することが可能となる。したがって、上記構成の加速度センサによれば、加速度が付与されてから検出素子による検出が成されるまでの反応性が良好で、その感度も従来に比べて高くすることができる。
また、上記のような特徴を有する加速度センサでは、前記肉薄部は、底部を円弧状に形成することが望ましい。肉薄部の底部を円弧状に形成することにより、梁部において円弧の頂点部分が最も肉厚の薄い箇所となる。このため、梁部の撓み部を一点に定めることができ、撓みの状態の安定性を確保することができる。
また、上記のような特徴を有する加速度センサでは、前記肉薄部は、梁部の長手方向中央に設けることが望ましい。このような構成とすることにより、梁部は中央で撓むこととなり、片持ち梁の固定端と自由端とにそれぞれ固定された検出素子の両端部に対するせん断方向の応力を等しくすることができる。
また、上記のような特徴を有する加速度センサでは、前記検出素子と前記梁部との間に設ける間隙の幅は、前記梁部に設ける溝底部から固定端または自由端と前記検出素子とが接触する点に向けて延設した直線と、前記肉薄部から梁部に平行に配した直線とによって成す鋭角θに基づいて定められる固定端及び自由端の高さにより決定し、前記θの適正範囲を30°≦θ≦60°とすることが望ましい。θの範囲を前述のようなものとすることにより、自由端の質量に対する加速度検出の感度の割合を良好な範囲とすることができ、かつ製品としての加速度センサにおける検出感度のばらつきを抑えることができる。
また、上記のような特徴を有する加速度センサでは、前記梁部を複数の帯状片により構
成しても良い。梁部をこのような構成とすることにより、梁部の幅方向の揺動は防止しつつ加速度の印加方向への可撓性を増加することが可能となる。したがって、印加された加速度に対する感度を向上させることが可能となる。
また、上記のような特徴を有する加速度センサでは、前記検出素子は振動片とし、梁部の撓みにより振動片に付加される引張りまたは圧縮の応力に伴って変化する振動片の共振周波数を電気信号として出力する構成とすることが望ましい。一般に、応力に対して変化する共振周波数の割合は、歪みゲージ等の検出素子における電気抵抗の変化よりも大きい。このため、検出素子を振動片とすることにより、加速度の検出精度を向上させることができる。
また、検出素子を振動片とした場合には、前記振動片を水晶で構成することが望ましい。水晶片はヒステリシスが小さく、応力に対する反応が速いという特性があるからである。また、温度特性が良好であり、応力の付加に伴って変化する共振周波数の変化量の温度変化に対する依存性も小さいという特徴がある。このため、水晶により振動片を構成することによれば、周囲温度の如何を問わず、高精度高感度な加速度センサとすることができる。
また、検出素子を振動片とする場合には、前記振動片を双音叉型圧電振動片とすることが望ましい。双音叉型圧電振動片は、振動部に付与される応力とこの応力に応じて変化する共振周波数の関係の直線性が高い。また、音叉型振動片よりも応力の伝播効率が高く、感度が高い。このため、共振周波数の変化に基づく加速度の測定を精密に行うことが可能となる。
以下、本発明の加速度センサに係る実施の形態について図面を参照しつつ詳細に説明する。なお、以下に示す実施の形態は、本発明に係る一部の形態であり、本発明の技術的範囲は以下に示す実施の形態のみに限定されるものでは無い。
まず、図1を参照して、本発明の加速度センサに係る第1の実施形態について説明する。なお、図1(A)は加速度センサの平面図を示し、図1(B)は同図(A)におけるA−A断面を示す図である。本実施形態の加速度センサは、片持ち梁(cantilever)12と、この片持ち梁12に取り付けられた検出素子とを基本構成とする。なお、以下に示す実施形態では、基本構成を有する加速度センサを加速度センサ本体10aと称し、これをパッケージ40へ収容したものを加速度センサ10と称する。
前記片持ち梁12は、金属(例えばアルミニウムや真鍮等)等の弾性変形可能な部材により構成されるものである。本実施形態に係る片持ち梁12は、固定端16と自由端14、及び梁部18とより構成されている。前記固定端16と前記自由端14とは、その形状について区別をする必要性は無いが、固定端16は図1(B)に示すように台座50等に固定されて支持部の役割を担う。
一方、自由端14は、固定端16(加速度センサ本体10a)に対して加速度を印加した際に、慣性力の作用を受けるための部位であり、後述する梁部18に撓みを生じさせるための錘の役割を担い、センサとして所望される感度に基づいてその質量が定められる。本実施形態の加速度センサ10に対しては、図1中におけるZ軸方向を加速度の印加方向とするため、自由端14における加速度印加方向の上下には空隙が設けられ、揺動した際に他の部材と接触することを回避することができる構成とされている。
前記梁部18は、前記固定端16と前記自由端14とを接続する要素であり、加速度セ
ンサ本体10aに加速度が印加された際に撓みを生じさせる。そして本実施形態に係る梁部18は、平板状に形成されていることより、図1中におけるY軸方向への揺動を防止しつつ、主面に直交するZ軸方向への揺動性(可撓性)は有することとなる。この関係は、曲げに対する耐性を示す断面係数Zの大きさをもって説明することができる。ここで、Z軸方向の断面係数Zz、Y軸方向の断面係数Zyはそれぞれ次のように示すことができる。
Figure 2008039662
なお、数式1において、bは梁部の幅を示し、tは梁部の肉厚(高さ)を示すものとする。このように、断面積は同一であっても、図1に示すような形態の梁部18の場合、断面係数はZ軸方向のものZzよりもY軸方向のものZyの方が大きくなるのである。したがって、梁部18はZ軸方向には容易に撓み、Y軸方向には撓み難いという特性を有するということがいえる。
本実施形態の片持ち梁12には、梁部18にその幅方向に沿って溝20(広義には肉薄部)が設けられている。このような溝20を梁部18に形成することにより、溝20形成部分の断面係数が低下することとなり、当該部分の可撓性が部分的に増加することとなる。このため、片持ち梁12の固定端16に加速度が印加された際に撓む箇所を特定することができるようになり、撓み箇所を安定させることができる。
また、溝20の形成部位は、梁部18の長手方向中央部あたりとすることが良い。梁部18に撓みが生じた場合、固定端16の上面と自由端14の上面とは互いに反対向きの傾斜を得ることとなる。ここで、詳細を後述する検出素子は梁部18の撓みに沿った変形をせず、検出素子には引張り方向の応力と曲げ方向の応力とが作用することとなる。そして、曲げ方向の応力、すなわちせん断方向の応力は、検出素子の固定形態より、検出素子の両端部に集中することとなる。したがって、溝20をいずれか一方の端部側に片寄らせた場合には、片寄らせた側の検出素子端部に過度の負荷がかかることとなってしまう。一方、溝20を梁部18の中央に形成することによれば、梁部18は中央で撓むこととなり、片持ち梁12の固定端16と自由端14とにそれぞれ固定された検出素子の両端部に対するせん断方向の応力は、両端部に等しく分散されることとなるのである。
また、上記のようにして形成される溝20の底部には、円弧形状が形成されるようにすると良い。溝20の底部を円弧形状(半円形)とすることにより、梁部18の肉厚が最も薄くなる箇所を一箇所に定めることができるからである。
また、本実施形態の片持ち梁12では、梁部18に設ける溝20は、梁部18の表裏における対応する位置(対称位置)に、それぞれ形成するようにしている。なお、溝20底部の形状形成に関しては、ボールエンドミル等を使用した機械加工の他、エッチング液を使用したケミカルエッチング等であっても良い。
前記検出素子は、振動片を用いる。振動片には、屈曲振動、縦振動、厚みすべり振動、SAW(弾性表面波)などの振動モードを使うものがあり、共振周波数が応力に対して変化することが知られている。この周波数変化を利用した検出体を用いる。ここで、屈曲振動モードを使う振動片は、応力に対する周波数変化率と温度特性との比、すなわち良好度(応力感度/温度特性)が高いため、感圧素子に適する。そこで、本実施形態の場合、屈
曲振動モードを利用した感圧素子として双音叉型圧電振動片(双音叉型振動片)22を採用することとしている。双音叉型振動片22とは、振動片基板の両端部に形成された2つの基部24,26の間に、振動部28となる2本のビーム28a,28bが形成された形態を有する振動片のことをいう。双音叉型振動片22には、一方の基部26に、振動片に対する電圧信号の入出力を行うための入出力パッド30が備えられている。そして、前記2本のビーム28a,28bにはそれぞれ励振電極32が設けられている。
図1に示すような形態の双音叉型振動片22では、入出力パッド30を介して励振電極32に交流の電圧が印加されることにより、2本のビーム28a,28bが相互に離間または近接するように撓み、これが繰り返されて振動が励起される。
上記のようにして発振が成される双音叉型振動片22は、ビーム28a,28bが屈曲する方向と交差(直交)する方向、すなわちビーム28a,28bの長手方向から、引張りまたは圧縮の応力を付加すると、励起される振動の共振周波数が変化するという特性を有する。双音叉型振動片22の共振周波数と、この双音叉型振動片22に付加される応力との関係は、弦楽器の周波数と弦楽器の弦に付加される張力との関係に類似している。すなわち、ビーム28a,28bに引張りの応力が付与された場合には、双音叉型振動片22の共振周波数は高くなり、ビーム28a,28bに圧縮の応力が付与された場合には双音叉型振動片22の共振周波数は低くなるのである。
また、本実施形態の加速度センサ10では、双音叉型振動片22の構成材料として水晶を用いることとしている。双音叉型振動片22の構成材料として水晶を使用した場合には、次のような特性を得ることができるからである。第1には、応力付加に伴って変化する共振周波数のヒステリシスを小さくすることができ、加速度の印加に対する応答速度を向上させることができるということを挙げることができる。第2に、ビーム28a,28bに付与される応力とこの応力に応じて変化する共振周波数の関係の直線性(リニアティ)を良好にすることができるということを挙げることができる。さらに第3には、無負荷状態において温度に依存して変化する共振周波数の変化量の多寡(0点温度特性)、及びビーム28a,28bに応力を付加した際に共振周波数が変化する割合の温度依存性(感度温度特性)を良好にすることができるということを挙げることができる。
本実施形態に係る加速度センサ本体10aは、上述した片持ち梁12と検出素子である双音叉型振動片22とを接合して構成される。具体的には、双音叉型振動片22の一方の端部(例えば入出力パッド30を備えた側の端部)26を片持ち梁12の固定端16の上面へ接合すると共に、双音叉型振動片22の他方の端部24を片持ち梁12の自由端14の上面へと接合するのである。片持ち梁12と双音叉型振動片22との接合は、エポキシ系の接着剤等、固着性を有する接着剤によって行うようにすれば良い。なお、片持ち梁12と双音叉型振動片22との接合状態の安定、及び接合に伴って双音叉型振動片22のビーム28a,28bにせん断応力が生ずることを防止するため、片持ち梁12における固定端16の上面と自由端14の上面とは、同一平面上に位置するように平坦に加工しておくことが望ましい。
また、本実施形態に係る加速度センサ本体10aは、図1(B)に示すように、片持ち梁12と検出素子である双音叉型振動片22とを接合した際に、片持ち梁12の梁部18と、双音叉型振動片22の振動部28との間に間隙を設ける構成とした。このような構成とすることにより、片持ち梁12における梁部18の撓みにより、双音叉型振動片22が受ける曲げ方向の力を緩和しつつ、双音叉型振動片22に引張りまたは圧縮の力を付与することが可能となる。すなわち、本実施形態に係る加速度センサ10は、曲げ方向の力を引張り方向の力に変換して、印加された加速度の検出を行うのである。
なお、間隙の幅(高さh)の適正値は、梁部18の撓みの基点となる中心点Oから、固定端16または自由端14と、双音叉型振動片22とが接触する点、すなわち固定端16または自由端14の上面角部に向かって伸ばした直線と、前記中心点Oから梁部18と平行に配した直線とによって成す鋭角θによって定めることができる。
ここで、中心点Oから双音叉型振動片22までの高さをh、片持ち梁12における梁部18の長さをl、自由端14の質量により梁部18の先端(自由端14側端部)に作用する力をFとした場合、梁部18の基端(固定端16側端部)に作用するモーメントFlとの釣り合いの関係より、数式2を導き出すことができる。
Figure 2008039662
ここで、Tは双音叉型振動片22に付加される張力とする。そして、数式2をTについて変換すると、
Figure 2008039662
と表すことができる。ここで、梁部18の撓みにおける実質的な基点は中心点Oであることより、双音叉型振動片22に実質的な引張りまたは圧縮を付加するのは中心点Oから梁部18の先端までの長さとなる。このため、中心点Oから梁部18の先端までの長さと高さhとの関係をtanθとして表すと、
Figure 2008039662
とすることができる。そして、数式4をhについて変換して数式3に代入すると、双音叉型振動片22に付加される張力Tは、
Figure 2008039662
と表すことができる。この数式5より、梁部18の先端に作用する力Fが等しければ、θが大きくなった時に張力Tは小さくなり、θが小さくなった時に張力Tが大きくなるということが理解できる。すなわち、てこの原理に照らすと、支点である中心点Oからの距離が遠くなるほど(高さhが大きくなるほど)、張力Tを得るために必要とする力が大きくなるのである。
こうした原理に従うと、θの値を0に近付けるほど張力Tの値が増大するため、自由端14の質量を小さくした場合であっても、双音叉型振動片22に大きな張力を付与することができ、効率的であるように考えられる。しかし、θを小さくしていった場合、θのずれ、すなわち高さhのずれに対する張力Tの変化が大きくなり、製造誤差に基づく製品間の感度ばらつきが大きくなってしまうといった問題が生じることがある。また、θを小さくした場合には、撓みの中心である中心点Oと双音叉型振動片22との距離が近づくことより、撓みの際に描かれる円弧が小さくなる。このため、双音叉型振動片22には、引張りまたは圧縮の応力に加え、曲げ方向の応力(せん断応力)が加えられることとなってしまう。
一方で、θの値を大きくした場合には、片持ち梁12の製造における誤差が多少大きくなった場合であっても、加速度検出における製品間の感度ばらつきは小さく抑えることができる。また、小さな撓み量であっても、大きな引張り距離を得ることができ、梁部18の撓みに対する反応速度を向上させることができる。しかしながらこの場合、自由端14の質量(F)を大きくした場合であっても、Tを大きくすることができず、十分な感度を得るために要する質量のバランスが悪くなり、デバイスの小型化という面で不向きとなる可能性が生ずる。
上記実状を鑑みた場合、θは30°≦θ≦60°の範囲を適正値と定めることが望ましいと考えられる。θの値を上記の範囲内とすることにより、製造誤差による感度のばらつき、感度と質量のバランス共に、許容範囲とすることができるからである。なお、上記θの範囲においては、上限、下限においてそれぞれプラスマイナス5°前後の許容値を持つものとする。
次に、上記パッケージ40について説明する。前記パッケージ40は、上述した加速度センサ本体10aを収容するパッケージベース42と、当該パッケージベース42の上部開口部を封止するリッド52とより成る。前記パッケージベース42は、加速度センサ本体10aを収容するためのキャビティ54を有する枡型をしている。構成材料は特に限定しないが、電子デバイス用パッケージ40のパッケージベース42として一般的なもの、例えば焼結セラミックス等であると良い。
パッケージベース42のキャビティ54内部には、少なくとも片持ち梁12の固定端16を接合(固定)するための台座50と、双音叉型振動片22の入出力パッド30と電気的に接続される実装電極44が備えられている。また、パッケージベース42の外部には、底面に、前記実装電極44と電気的に接続された外部電極46が備えられている。なお、片持ち梁12の製造時に、固定端16側に台座を一体形成した場合には、パッケージベース42のキャビティ54内部に台座50を備える必要は無い。また、台座50を片持ち梁12に接合した後に、パッケージベース42内に収容する構成としても良い。
リッド52は、パッケージベース42に設けられた開口部(上部開口部)を封止可能な形状に形成された板部材である。その構成材料は特に限定しないが、上述したパッケージベース42と熱膨張係数が近似する部材とすると良い。パッケージベース42をセラミックスにより構成した場合、リッド52を構成する材料として一般的に用いられているものは、コバール等の合金や、ソーダガラス等である。
なお、上述した材料によりパッケージベース42とリッド52を製造した場合、パッケージベース42とリッド52との接合は、図示しないシームリングを介したシーム溶接や、低融点ガラスによる接合が一般的であるが、キャビティ54を気密に封止可能であればその手段は問わない。
また、本実施形態の加速度センサ10は、検出素子として双音叉型振動片22を採用していることより、パッケージベース42のキャビティ54内部は真空として封止することが望ましい。キャビティ54内部が大気圧に保たれた場合、一般的な音叉型圧電振動片と同様に、キャビティ54内部に存在する気体により発振が妨げられたり、温度変化に伴う共振周波数の変化が大きくなってしまうからである。キャビティ54内部を真空状態にして封止を行う方法としては様々なものがあるが、例えばパッケージベース42に封止孔48が備えられているような場合には、リッド52によりパッケージベース42の上部開口部を封止した後、パッケージ40を真空チャンバ(不図示)内に配置し、キャビティ54内部の真空引きを行った後に、ハンダボール(不図示)等を用いて前記封止孔48を封止
するようにすれば良い。
本実施形態に係る加速度センサ10は、上述した加速度センサ本体10aを上記構成のパッケージ40内に収容することにより構成される。具体的には、片持ち梁12の固定端16が台座50に接合され、双音叉型振動片22の入出力パッド30とキャビティ54内部に備えられた実装電極44とが金属ワイヤ56を介して電気的に接続されれば良い。
次に、図2を参照して本実施形態に係る加速度センサ10の製造工程について説明する。まず、母材となる金属片から片持ち梁12を形成する。片持ち梁12の形成は、機械加工であっても良いし、ケミカルエッチングであっても良い。片持ち梁12の形成ではまず、図2(A)に示すように、固定端16、自由端14、及び梁部18の形成を行う。次に、予め定められた撓み位置に、溝20を形成することで図2(B)に示すような片持ち梁12を構成する。
上記のようにして形成した片持ち梁12に対して、予め製造した双音叉型振動片22を接合して、加速度センサ本体10aを構成する。片持ち梁12に対する双音叉型振動片22の接合は図2(C)に示すように、一方の基部26を固定端16上面へ、他方の基部24を自由端14上面へそれぞれ接合するようにする。
片持ち梁12と双音叉型振動片22とを接合して構成された加速度センサ本体10aは、図2(D)に示すように、パッケージベース42に収容される。パッケージベース42への収容は、片持ち梁12の固定端16をパッケージベース42のキャビティ内に備えられた台座50に接合することにより成される。台座50に対する固定端16の接合は、双音叉型振動片22と片持ち梁12との接合と同様に、固着性を有する接着剤により行うようにすれば良い。なお、台座50と固定端16との接合に際しては、前記接着剤が硬化するまでの間、自由端14が不安定な状態であると、片持ち梁12が自由端14側へ傾倒し、この状態で接合が成されてしまう可能性がある。このため、台座50に対して固定端16を接合する際には、自由端14の下部に仮台座58を配置し、片持ち梁12の傾倒を防止するようにすると良い。また、本工程では、双音叉型振動片22に設けられた入出力パッド30とキャビティ内に設けられた実装電極44との間にワイヤボンディングが施され、両者の電気的導通が図られる。
接着剤が硬化し、片持ち梁12が安定した状態で台座50に接合された後には、前記仮台座58を自由端14の下部から取り除き、図2(E)に示すように、パッケージベース42の上部開口部をリッド52を用いて封止する。なお、封止に関しては、上述したように、キャビティ内部が真空となるように成されることとする。
上記のようにして製造される加速度センサ10では、図3中矢印Aの方向に加速度が印加されると、片持ち梁12の自由端14には慣性力が作用し、その場にとどまろうとする。このため、梁部18は、表裏に形成した溝20の中点Oを基点として矢印B方向周りに撓むこととなる。そして、梁部18の撓みの影響により、固定端16の上面と自由端14の上面との間隔dは増加することとなる。この場合、固定端16の上面と自由端14の上面とのそれぞれに2つの基部26,24を接合した双音叉型振動片22の振動部28、すなわちビーム28a,28bには、引張りの応力が作用することとなる。したがって、矢印Aの方向に加速度が印加された場合には、双音叉型振動片22の共振周波数は上昇する。
一方、図3中矢印Cの方向に加速度が印加された場合には、梁部18は矢印D方向周りに撓むこととなる。この場合に、片持ち梁12の固定端16の上面と自由端14の上面との間隔dは減少することとなる。このため、双音叉型振動片22のビーム28a,28b
には、圧縮の応力が作用することとなり、共振周波数は下降する。
このように、上昇あるいは下降する共振周波数を電気信号として出力する加速度センサ10(または加速度センサ本体10a)によれば、出力された電気信号を図示しない検出部により検出することで、加速度の付与された方向、大きさ等を測定することができる。
上記のような構成の加速度センサ10によれば、片持ち梁12と検出素子である双音叉型振動片22の振動部28との間に間隙を設ける構成としたため、片持ち梁12の撓み易さを維持したまま、撓みの中心点Oから振動部28までの距離を広げることができた。このため、梁部18の僅かな撓みにより広げられ、または縮められる自由端14の上面と固定端16の上面との間隔dの割合が大きくなる。したがって、双音叉型振動片22は、梁部18の僅かな撓みにより共振周波数に大きな変化が生じることとなり、梁部12の撓みに対する反応速度を高めることが可能となる。なお、加速度の印加に対する感度の調整は、自由端14の質量を調整することによれば良い。
また、水晶により構成された振動片は、付与される応力が非常に小さい場合であっても、励起される振動の共振周波数に変化を生じさせる。このため、梁部18に撓みが生じてから共振周波数に変化が生じるまでの時間が短く、加速度検出に要する時間を短くすることができる。したがって、検出素子を水晶によって構成した振動片とした場合には、加速度の印加に対する反応速度は、上記片持ち梁と検出素子の配置形態の効果に加え、さらに向上することとなる。
さらに、上述したように水晶により構成した双音叉型振動片22は、リニアティが良好であるため、加速度の大きさ等も精密に測定することができる。
なお、上記実施形態に係る加速度センサ10では、検出可能な方向の加速度は、図中Z軸方向に対する加速度のみであった。しかしながら、上記実施形態の加速度センサは、図4に示すように、片持ち梁12を長手方向の軸周りに90°回転させることにより、Y軸方向の加速度を検出することが可能となる。
このような構成の加速度センサ10の製造は、パッケージ40に収容する際、パッケージベース42内に備えられた台座50に対して、片持ち梁12における固定端16の側面部分を台座50に接合するようにすれば良い。なお、このような形態の加速度センサ10を製造する場合、自由端14がZ軸方向へ揺動する虞が無いので、図1乃至図3に示した形態の加速度センサ10に比べて、台座50の高さを低くして、デバイスとしての低背化を図ることも可能となる。
また当然に、図4に示す形態の加速度センサ10における片持ち梁12を、固定端16を基点としてZ軸周りに90°回転させた場合には、図中X軸方向の加速度を検出することが可能となる。
また、上記のように様々な形態で配置することができる加速度センサ本体10aを複数組み合わせてパッケージへ収容することによれば、2軸、あるいは3軸方向の加速度を検出することができる加速度センサを構成することができる。なお、図5に示す形態は、3軸の加速度を検出することができる加速度センサの概略構成図である。
次に、図6を参照して本発明の加速度センサに係る第2の実施形態について説明する。なお、本実施形態に係る加速度センサの殆どの形態は、上述した第1の実施形態に係る加速度センサ10の構成と同様である。したがって本実施形態では第1の実施形態に係る加速度センサ10との相違点を有する加速度センサ本体の形態についてのみ説明する。また
、その機能を同一とする箇所には図面に100を足した符号を付して、その詳細な説明は省略することとする。なお、図6において、図6(A)は片持ち梁の平面図を示し、図6(B)は片持ち梁の正面図を示し、図6(C)は加速度センサ本体の斜視図を示す。
本実施形態の加速度センサ本体110aと第1の実施形態の加速度センサ本体10aとの相違点は、片持ち梁における梁部の形態にある。具体的には、第1の実施形態の加速度センサ本体10aでは、梁部18は単純な板状を成し、その特定部位(例えば長手方向中央部)に、溝20を形成するという構成を採っていた。これに対して本実施形態の加速度センサ本体110aでは、片持ち梁112の梁部をストリップ状にした複数(図6では2本)の帯状片119により構成し、それぞれの帯状片119を相互に離間させて配置することとしているのである。
このような構成とすることによれば、実質的に梁部断面の総面積は減少することとなる。このため、Z軸方向に対する断面係数Zzは減少することとなり、Z軸方向に対する梁部の曲げ易さは増加し、印加された加速度に対する感度が向上する。一方、Y軸方向に対する断面係数Zyも減少するものの、各帯状片119を離間させて配置していることによりその減少率は低く、Y軸方向の振れに対する耐性は十分に維持することができる。
すなわち、片持ち梁112の梁部の形態を図6に示すような形態とすることにより、Z軸方向の曲げ易さを向上させつつY軸方向の振れに対する耐性は維持することが可能となるのである。
上記以外の構成については、上述した第1の実施形態の加速度センサ本体10aと同様である。すなわち、図6(C)に示すように、片持ち梁112の固定端116と自由端114のそれぞれに、双音叉型振動片122の基部124,126のそれぞれを接合するのである。
このような構成の加速度センサ本体110aであっても、上述した第1の実施形態の加速度センサ本体10aと同様の作用効果を得ることができる。また、第1の実施形態に示した加速度センサ10と同様に、上記構成の加速度センサ本体10aをパッケージに収容しても良い。
上記第1、第2の実施形態に係る加速度センサ(加速度センサ本体)では、加速度検出の感度、精度を良好なものとするための最良の実施形態として、構成材料を水晶とした双音叉型振動片を検出素子とした例を挙げて説明した。しかしながら、本発明に係る加速度センサは、他の検出素子を採用した場合であっても、加速度の検出に際して相当の効果を得ることが可能である。好適に採用し得る検出素子としては、次のようなものを挙げることができる。
まず第1に、水晶以外の圧電材料、例えばタンタル酸リチウム(LiTaO3)やニオブ酸リチウム(LiNbO3)、圧電セラミックス等によって構成された双音叉型振動片である。このような材料によって構成された音叉型振動片は、温度特性や応力に対する感度といった面で水晶と異なる特性を有するが、振動形態を同様とすることより、加速度検出という面では同様の効果を得ることが可能である。
第2に、圧電材料によって構成された種々の振動片を挙げることができる。理論上、長手方向に対する応力の付加により共振周波数に変化が生じる振動片であれば、片持ち梁の固定端と自由端とに振動片の両端部をそれぞれ固定(接合)するという構成をとれば、上記実施形態に示した加速度センサと同様の効果を得ることができると考えられるからである。振動片の具体例としては、ATカット水晶振動片、柱状に形成された振動片、及びS
AW素子片等を挙げることができる。
第3には、圧電材料以外によって構成された振動片を挙げることができる。具体的には、シリコン材料によって構成され、静電引力等によって振動が励起される振動片である。このような部材によって構成される振動片であっても、発振方向と直交する方向の応力が付加されることにより、その共振周波数に変化が生じることは周知の事実である。よって、このような構成の振動片を上記実施形態の検出素子として採用した場合であっても、本発明の加速度センサとしてその効果を奏することができる。
第4には、振動片以外の感圧素子(応力を電気量に変換することができる素子)を挙げることができる。代表的な例としては、歪みゲージを上げることができる。背景技術の項で述べた技術には、片持ち梁の梁部に直接歪みゲージを貼付するという構成のものがあったが、本発明では、固定端上面と自由端上面とに歪みゲージの両端部をそれぞれ接合し、梁部と歪みゲージとの間には間隙を設けるという構成となる。このような構成の場合、主に引張りの応力を検出することとなるが、曲げの中心となる支点と、検出素子である歪みゲージに応力を付与する力点との距離が長くなることより、梁部の撓み量が少ない場合であっても、歪みゲージに作用する応力が大きなものとなるため、梁部の歪みに対する応答性が向上するという効果を得ることができる。
なお、上記実施形態ではいずれも、パッケージベース42の底板と片持ち梁12との間に間隙を設けるために、パッケージベース42、あるいは片持ち梁12における固定端16のいずれかに台座50を設ける旨記載した。しかしながら、図7に示すように、パッケージベース42の底板42aに凹部43、すなわち段差部を形成して、自由端の揺動幅を確保するようにすれば、パッケージベース42、あるいは片持ち梁12に、台座50を備える必要性が無くなる。このような構成の加速度センサであっても本発明の技術的範囲に含まれる。
第1の実施形態に係る加速度センサの構成を示す図である。 加速度センサの製造工程を示す図である。 加速度センサに加速度が印加された際の状態変化の様子を説明する図である。 第1の実施形態に係る加速度センサにおける応用形態を示す図である。 多軸方向に印加される加速度に対応させた加速度センサの構成を示す概略図である。 第2の実施形態に係る加速度センサの加速度センサ本体を示す図である。 台座を必要としない加速度センサの例を示す図である。 従来の加速度センサの構成を示す図である。 従来の加速度センサの他の構成を示す図である。
符号の説明
10………加速度センサ、10a………加速度センサ本体、12………片持ち梁、14………自由端、16………固定端、18………梁部、20………溝、22………双音叉型圧電振動片(双音叉型振動片)、24………基部、26………基部、28a………ビーム、28b………ビーム、30………入出力パッド、32………励振電極、40………パッケージ、42………パッケージベース、44………実装電極、46………外部電極、48………封止孔、50………台座、52………リッド、54………キャビティ、56………金属ワイヤ。

Claims (8)

  1. 固定端と自由端との間に前記固定端及び前記自由端に比べて肉厚の薄い梁部を形成した片持ち梁と、前記梁部の撓みに伴って付加される応力を電気信号に変換して出力可能な検出素子とを有する加速度センサであって、
    前記検出素子を構成する基板の両端部を前記固定端と前記自由端とのそれぞれに固定し、
    前記検出素子と前記梁部との間には間隙を設け、
    前記梁部は平板状として幅方向に沿った肉薄部を設けたことを特徴とする加速度センサ。
  2. 前記肉薄部は、底部を円弧状に形成したことを特徴とする請求項1に記載の加速度センサ。
  3. 前記肉薄部は、梁部の長手方向中央に設けたことを特徴とする請求項1または請求項2に記載の加速度センサ。
  4. 前記検出素子と前記梁部との間に設ける間隙の幅は、前記梁部に設ける肉薄部から固定端または自由端と前記検出素子とが接触する点に向けて延設した直線と、前記溝底部から梁部に平行に配した直線とによって成す鋭角θに基づいて定められる固定端及び自由端の高さにより決定し、
    前記θの適正範囲を30°≦θ≦60°としたことを特徴とする請求項3に記載の加速度センサ。
  5. 前記梁部を複数の帯状片により構成したことを特徴とする請求項1乃至請求項4のいずれかに記載の加速度センサ。
  6. 前記検出素子は振動片とし、梁部の撓みにより振動片に付加される引張りまたは圧縮の応力に伴って変化する振動片の共振周波数を電気信号として出力する構成としたことを特徴とする請求項1乃至請求項5のいずれかに記載の加速度センサ。
  7. 前記振動片を水晶で構成したことを特徴とする請求項6に記載の加速度センサ。
  8. 前記振動片を双音叉型圧電振動片としたことを特徴とする請求項6または請求項7に記載の加速度センサ。
JP2006216503A 2006-08-09 2006-08-09 加速度センサ Withdrawn JP2008039662A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006216503A JP2008039662A (ja) 2006-08-09 2006-08-09 加速度センサ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006216503A JP2008039662A (ja) 2006-08-09 2006-08-09 加速度センサ

Publications (1)

Publication Number Publication Date
JP2008039662A true JP2008039662A (ja) 2008-02-21

Family

ID=39174830

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006216503A Withdrawn JP2008039662A (ja) 2006-08-09 2006-08-09 加速度センサ

Country Status (1)

Country Link
JP (1) JP2008039662A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010071714A (ja) * 2008-09-17 2010-04-02 Seiko Epson Corp 振動型センサ
JP2010203932A (ja) * 2009-03-04 2010-09-16 Epson Toyocom Corp 物理量センサーおよび物理量測定装置
CN116143062A (zh) * 2023-04-21 2023-05-23 中北大学 一种“h”型单晶薄膜压电振动传感器及其制备方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010071714A (ja) * 2008-09-17 2010-04-02 Seiko Epson Corp 振動型センサ
JP2010203932A (ja) * 2009-03-04 2010-09-16 Epson Toyocom Corp 物理量センサーおよび物理量測定装置
CN116143062A (zh) * 2023-04-21 2023-05-23 中北大学 一种“h”型单晶薄膜压电振动传感器及其制备方法
CN116143062B (zh) * 2023-04-21 2023-06-23 中北大学 一种“h”型单晶薄膜压电振动传感器及其制备方法

Similar Documents

Publication Publication Date Title
US8297124B2 (en) Pressure sensor
JP5375624B2 (ja) 加速度センサー、及び加速度検出装置
JPWO2005012922A1 (ja) 加速度センサ
JP2011221007A (ja) 圧力検出装置
JP2008232886A (ja) 圧力センサ
JP2012093135A (ja) 圧力センサー
JP4973718B2 (ja) 圧力検出ユニット、及び圧力センサー
US20140373633A1 (en) Physical quantity detector
US20110100125A1 (en) Acceleration sensor
US7856886B2 (en) Pressure sensor having a diaphragm having a pressure-receiving portion receiving a pressure and a thick portion adjacent to the pressure-receiving portion
JP2007163244A (ja) 加速度センサ素子、加速度センサ
JP2004132913A (ja) 感圧素子、及びこれを用いた圧力センサ
JP2008039662A (ja) 加速度センサ
JP2010181210A (ja) 加速度センサ
JP4784436B2 (ja) 加速度センサ
JP4420038B2 (ja) 応力感応素子
JP2008170203A (ja) 加速度検知ユニット、及び加速度センサ
JP2008076075A (ja) 絶対圧センサ
JP2007171123A (ja) 圧力センサ及び感圧素子
JP2008196932A (ja) 絶対圧センサ
JP2008309731A (ja) 加速度検知ユニット及び加速度センサ
JP2009085808A (ja) 加速度センサ及び加速度測定装置
JP2010014572A (ja) 圧力センサ
JP5321812B2 (ja) 物理量センサーおよび物理量測定装置
JP5522351B2 (ja) 物理量センサー

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20091110