JP2011204997A - 半導体装置の製造方法及び半導体装置 - Google Patents

半導体装置の製造方法及び半導体装置 Download PDF

Info

Publication number
JP2011204997A
JP2011204997A JP2010072644A JP2010072644A JP2011204997A JP 2011204997 A JP2011204997 A JP 2011204997A JP 2010072644 A JP2010072644 A JP 2010072644A JP 2010072644 A JP2010072644 A JP 2010072644A JP 2011204997 A JP2011204997 A JP 2011204997A
Authority
JP
Japan
Prior art keywords
film
insulating film
forming
semiconductor
resistance element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010072644A
Other languages
English (en)
Other versions
JP5520102B2 (ja
Inventor
Toshiro Sakamoto
敏郎 坂本
Yuichi Furukawa
雄一 古川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Electronics Co Ltd
Original Assignee
Asahi Kasei Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Electronics Co Ltd filed Critical Asahi Kasei Electronics Co Ltd
Priority to JP2010072644A priority Critical patent/JP5520102B2/ja
Publication of JP2011204997A publication Critical patent/JP2011204997A/ja
Application granted granted Critical
Publication of JP5520102B2 publication Critical patent/JP5520102B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Semiconductor Integrated Circuits (AREA)

Abstract

【課題】半導体装置の製造における工程数を増加させることなく、抵抗素子の厚さの均一性を良好に維持できるようにした半導体装置の製造方法及び半導体装置を提供することを目的とする。
【解決手段】ポリシリコン抵抗素子20とゲート電極16とを同一基板に有する半導体装置の製造方法であって、フィールド酸化膜4を形成する工程とゲート酸化膜6を形成する工程とポリシリコン膜8を形成する工程とブロック用シリコン酸化層10を形成する工程とタングステンシリサイド膜12を形成する工程とポリシリコン抵抗素子20とゲート電極16とを形成する工程とサイドウォールスペーサー用絶縁膜26を形成する工程とサイドウォールスペーサー28を形成する工程とを含み、タングステンシリサイド層18a、18bよりもサイドウォールスペーサー用絶縁膜26の方がエッチングされ易い条件でサイドウォールスペーサー用絶縁膜26をエッチバックする。
【選択図】図11

Description

本発明は、半導体装置の製造方法及び半導体装置に関し、特に、抵抗素子と、ゲート電極を有する素子とを同一の半導体基板に有する半導体装置の製造方法及び半導体装置に関するものである。
現在のLSI(Large Scale Integration)回路はトランジスタ、キャパシタ、抵抗などの素子から構成されており、抵抗素子にはポリシリコン抵抗素子(つまり、材料としてポリシリコンを用いた抵抗素子)を用いることが一般的である。以下、従来例として、ゲート電極上にシリサイドを備えたMOS(Metal Oxide Semiconductor)トランジスタとポリシリコン抵抗素子とを同一基板上に有する半導体装置の製造工程の一例を図12から図24を用いて説明する。なお、シリサイドとは金属とシリコンとで形成された化合物のことを指す。
まず、図12に示すように、例えばLOCOS(Local oxidation of silicon)法によりWELL領域102の表面を選択的に酸化し、その表面にフィールド酸化膜104を形成する。
次に、図13に示すように、熱酸化法等によりMOSトランジスタ用のゲート酸化膜106を、WELL領域102上であってフィールド酸化膜104に囲まれた領域(つまり、MOSトランジスタが将来形成される領域)に形成する。そして、CVD法等によりポリシリコン膜108を、フィールド酸化膜104及びゲート酸化膜106の全面を覆うようにして堆積させる。なお、ここで形成したポリシリコン膜108は、その後パターニングされ、後述するゲート電極116やポリシリコン抵抗素子120となる。
次に、ポリシリコン膜108に不純物をドーピングする。このドーピングの際、前述した不純物のドーピング量を調節して、ポリシリコン抵抗素子120の抵抗値を所望の値にする。なお、ゲート電極116は低抵抗化を図るため、その表面を例えばタングステンシリサイド(つまり、金属としてタングステンを含んだシリサイド)でシリサイド化されることが一般的である。
そこで、以下、ゲート電極116の上面にタングステンシリサイド膜118を形成する場合について説明する。
まず、図14に示すように、ポリシリコン膜108上であって、タングステンシリサイド膜112との電気的接触を避けなければならない部分(つまり、将来ポリシリコン抵抗素子120となる部分)に、絶縁体であるシリコン酸化膜(以下、「ブロック用シリコン酸化膜」ともいう)110を形成する。
ブロック用シリコン酸化膜110の形成については、CVD法等によりポリシリコン膜108の全面をシリコン酸化膜(図示せず)で覆うように堆積させた後、リソグラフィーによるパターニングとエッチングとにより、シリコン酸化膜(つまり、ブロック用シリコン酸化膜110)を選択的にポリシリコン膜108上に残す方法が一般的である。
その後、図15に示すように、ポリシリコン膜108及びブロック用シリコン酸化膜110の全面を覆うようにタングステンシリサイド膜112を堆積させる。こうすることで、ポリシリコン膜108上であってブロック用シリコン酸化膜110で覆われていない部分では、タングステンシリサイド膜112とポリシリコン膜108とが接触する。従って、この接触部分における抵抗値は低抵抗化する。なお、タングステンシリサイド膜112の堆積には、例えはスパッタリング法を用いる。
次に、タングステンシリサイド膜112上をホトレジスト膜(図示せず)で覆った後、このホトレジスト膜をパターニングする。このパターニングの際、図16に示すように、将来ゲート電極116及びタングステンシリサイド膜118となる部分を覆うようにして、ホトレジスト114をタングステンシリサイド膜112上に形成する。
その後、ホトレジスト114をマスクにして異方性エッチングすることで、ホトレジスト114で覆われていなかったタングステンシリサイド膜112及びポリシリコン膜108をゲート酸化膜106上から除去する。その結果、図17に示すように、タングステンシリサイド膜118で上面を覆われたゲート電極116がゲート酸化膜106上に形成される。
また、この異方性エッチングの際、ポリシリコン膜108上に形成されたブロック用シリコン酸化膜110はストッパーとなるので、ブロック用シリコン酸化膜110で覆われた部分のポリシリコン膜108はフィールド酸化膜104上に残存する。一方、ブロック用シリコン酸化膜110で覆われていない部分のポリシリコン膜108はフィールド酸化膜104上から除去される。こうして、ポリシリコン抵抗素子120はフィールド酸化膜104上に形成される。
次に、図18に示すように、ブロック用シリコン酸化膜110及びポリシリコン抵抗素子120を、パターニングされたホトレジスト122で覆う。その後、このホトレジスト122と、タングステンシリサイド膜118で上面を覆われたゲート電極116とをマスクにして、WELL領域102の表面近傍にイオン注入し、後述する高濃度ソース・ドレイン132よりもイオン濃度の低いソース・ドレイン(つまり、低濃度ソース・ドレイン)124を形成する。
次に、ブロック用シリコン酸化膜110及びポリシリコン抵抗素子120を覆っていたホトレジスト122をフィールド酸化膜104の上方から除去する。その後、図19に示すように、ブロック用シリコン酸化膜110とタングステンシリサイド膜118とを覆うようにして、WELL領域102の上方全面にサイドウォールスペーサー用絶縁膜126を堆積させる。
次に、図20に示すように、サイドウォールスペーサー用絶縁膜126をエッチングして、ポリシリコン抵抗素子120の側面及びゲート電極116の側面をそれぞれ取り囲むようにしてサイドウォールスペーサー128を形成する。このとき、サイドウォールスペーサー128を形成する際、ブロック用シリコン酸化膜110はサイドウォールスペーサー用絶縁膜126と共にエッチングされ、ポリシリコン抵抗素子120上から除去される。
次に、図21に示すように、ゲート電極116及びその側面を囲むサイドウォールスペーサー128をマスクにして、低濃度ソース・ドレイン124と重畳する領域にイオンを注入する。これにより、低濃度ソース・ドレイン124よりもイオン濃度の高いソース・ドレイン(つまり、高濃度ソース・ドレイン)132を形成する。なお、このイオン注入を行う前に、ポリシリコン抵抗素子120及びその側面を取り囲むサイドウォールスペーサー128を、パターニングされたホトレジスト130で覆うことで、それらをイオン注入から保護する。
次に、図22に示すように、WELL領域102の上方全面に層間絶縁膜134を形成し、この層間絶縁膜134を選択的にエッチングし、層間絶縁膜134内にポリシリコン抵抗素子120の表面と接するようにコンタクトホール136を形成する。そして、各コンタクトホール136内を、例えばスパッタリング法によりアルミニウムやチタン等で充填し、各コンタクトホール136内に金属配線138を形成する。これにより、ポリシリコン抵抗素子120及びMOSトランジスタは他の素子と電気的に接続される。
その後、必要に応じて多層金属配線の形成やパッシベーション膜の形成を行うことにより、MOSトランジスタとポリシリコン抵抗素子120とを同一基板(図22では、WELL領域102)上に備えた半導体装置が完成する。なお、パッシベーション膜とは半導体素子又は配線を保護するために形成される膜のことである。また、多層金属配線とは金属配線が多層構造を形成しているもののことである。
しかしながら、前述の半導体装置の製造方法では図20に示すサイドウォールスペーサー用絶縁膜126をエッチバックする工程で、サイドウォールスペーサー用絶縁膜126と共に、ブロック用シリコン酸化膜110もエッチングされてしまう場合もある。さらにはブロック用シリコン酸化膜110で覆われていたポリシリコン抵抗素子120の表面も削れてしまう場合もある。
この削れ量(つまり、ポリシリコン抵抗素子120表面の研削量)は製造プロセスに起因しており、半導体ウエハー面内でばらつきが生じることがある。その結果、ポリシリコン抵抗素子120の抵抗値がばらつくという問題が生じることがある。
そこで、このばらつきを低減させる方法として、図19に示した工程の後に、図23に示すように、サイドウォールスペーサー用絶縁膜126を介してポリシリコン抵抗素子120の上方をマスク層140で覆うことが開示されている(例えば、特許文献1を参照)。このマスク層140を形成する工程をMOSトランジスタの製造工程に追加することで、図20に示すエッチバック工程でのポリシリコン抵抗素子120の表面研削を防止することができる。なお、図24はこのマスク層140を含んだ半導体装置の完成断面図を示す。
特開2008−124061号公報
しかしながら、サイドウォールスペーサー形成時(つまり、サイドウォールスペーサー用絶縁膜126のエッチング時)にポリシリコン抵抗素子120の表面が研削されてポリシリコン抵抗素子120の面内ばらつきが増加することに関して、特許文献1に記載の研削保護方法では、少なくともリソグラフィー、エッチング、アッシング(Ashing;つまり、レジスト等を除去すること)の3工程の追加が必要となり、その結果半導体装置の製造において、工程数が増加する場合もある。
そこで、本発明は、このような事情に鑑みてなされたものであって、工程数を増加させることなく、抵抗素子の厚さの均一性を良好に維持できるようにした半導体装置の製造方法及び半導体装置を提供することを目的とする。
以上の課題を解決するため、本発明の一態様に係る半導体装置の製造方法は、抵抗素子と、ゲート電極を有する素子とを同一の半導体基板に有する半導体装置の製造方法であって、前記半導体基板の第1の領域に第1の絶縁膜を形成する工程と、前記半導体基板の第2の領域に第2の絶縁膜を形成する工程と、前記第1の絶縁膜及び前記第2の絶縁膜を覆うように、前記半導体基板上に半導体膜を形成する工程と、前記第1の領域の前記半導体膜上に第3の絶縁膜を形成する工程と、前記第3の絶縁膜を覆うように、前記半導体膜上に半導体と金属との合金からなる合金膜を形成する工程と、前記第1の領域の前記合金膜上及び前記第2の領域の前記合金膜上にそれぞれマスクパターンを形成する工程と、前記マスクパターン下から露出している前記合金膜及び前記半導体膜を順次エッチングして、前記第1の絶縁膜上に前記抵抗素子を形成すると共に、前記第2の絶縁膜上に前記ゲート電極を形成する工程と、前記抵抗素子及び前記ゲート電極を覆うように、前記半導体基板上に第4の絶縁膜を形成する工程と、前記第4の絶縁膜をエッチバックして、前記抵抗素子の側面及び前記ゲート電極の側面にそれぞれサイドウォールを形成する工程と、を含み、前記サイドウォールを形成する工程では、前記合金膜よりも前記第4の絶縁膜の方がエッチングされ易い条件で、前記第4の絶縁膜をエッチバックすることを特徴とする。
このような方法であれば、第4の絶縁膜をエッチバックする際に、抵抗素子の上方には合金膜が形成されているので、抵抗素子の上方におけるエッチングの進行を合金膜で止めることができる。つまり、エッチバックする際に、合金膜がマスクとして機能するため、合金膜下にある第3の絶縁膜と抵抗素子とが研削されることを抑制することができる。これにより、半導体基板の面内において、抵抗素子の表面の削れ量を低減することができ、エッチング後においても抵抗素子の厚さの均一性を良好に維持することができる。このため、抵抗素子の抵抗値のばらつきを低減することができる。
また、このような方法であれば、抵抗素子と合金膜との間には第3の絶縁膜が介在しており、抵抗素子の上方にそのまま合金膜を残しておいても、合金膜による抵抗素子の低抵抗化を防ぐことができる。従って、例えば不純物のドーピング等により、抵抗素子の抵抗値を所望の値に容易に設定することができる。
さらに、このような方法であれば、ゲート電極上の合金膜と、抵抗素子の上方の合金膜とは同一の工程で同時に形成しており、従来の技術と比べて工程数の増加がない。つまり、抵抗素子を保護するためのマスク(例えば、図23に示したマスク層など)を別途形成する必要がなく、マスク層を形成するためのリソグラフィー、エッチング、アッシングの3つの工程は必要ない。従って、工程数を増加させることなく、抵抗素子の抵抗値のばらつきを低減することができる。
また、上記の半導体装置の製造方法において、前記マスクパターンを形成する工程では、前記第3の絶縁膜上に位置する前記合金膜の一部を前記マスクパターン下から露出させておき、前記抵抗素子及び前記ゲート電極を形成する工程では、前記第3の絶縁膜よりも前記合金膜及び前記半導体膜の方がエッチングされ易い条件で、前記合金膜及び前記半導体膜を順次エッチングすることを特徴としてもよい。
このような方法であれば、抵抗素子上に位置する第3の絶縁膜の一部を合金膜下から露出させることができる。これにより、第4の絶縁膜をエッチバックする際に、合金膜下から露出させた第3の絶縁膜の一部を、例えば第4の絶縁膜と共にエッチングし、第3の絶縁膜下から抵抗素子表面の一部を露出させることができる。こうして露出させた抵抗素子表面に金属配線を形成することで、金属配線と抵抗素子とを電気的に接続することができる。
また、上記の半導体装置の製造方法において、前記半導体膜を形成する工程では、前記半導体膜として多結晶シリコン膜またはアモルファスシリコン膜を形成し、前記合金膜を形成する工程では、前記合金膜としてシリサイド膜を形成し、前記第4の絶縁膜を形成する工程では、前記第4の絶縁膜としてシリコン酸化膜又はシリコン窒化膜の何れか一方を形成し、前記サイドウォールを形成する工程では、前記第4の絶縁膜を、四フッ化メタンを含むガスを用いてエッチングすることを特徴としてもよい。
このような方法であれば、合金膜と第4の絶縁膜とのエッチングの選択比を高めることができる。よって、第4の絶縁膜をエッチバックする際、抵抗素子の上方におけるエッチングの進行を合金膜で確実性を高めて止めることができる。これにより、エッチング後においても抵抗素子の厚さの均一性をより良好に維持することができるので、抵抗素子の抵抗値のばらつきをより低減することができる。
本発明の別の態様に係る半導体装置は、抵抗素子と、ゲート電極を有する素子とを同一の半導体基板に有する半導体装置であって、前記半導体基板の第1の領域に形成された第1の絶縁膜と、前記半導体基板の第2の領域に形成された第2の絶縁膜と、前記第1の絶縁膜上に形成された第1の半導体膜と、前記第2の絶縁膜上に形成された第2の半導体膜と、前記第1の半導体膜上に形成された第3の絶縁膜と、前記第3の絶縁膜上に形成された、半導体と金属との合金からなる第1の合金膜と、前記第2の半導体膜上に形成された、半導体と金属との合金からなる第2の合金膜と、前記第1の半導体膜の側面及び前記第2の半導体膜の側面にそれぞれ形成されたサイドウォールと、を含むことを特徴とする。
このような構成であれば、この半導体装置を上記の半導体装置の製造方法で製造することができるので、抵抗素子(つまり、第1の半導体膜)の表面の削れ量は従来技術と比較して低減され、抵抗素子の厚さの均一性は良好に維持される。このため、この半導体装置は抵抗素子の抵抗値のばらつきが低減したものとなる。
本発明によれば、工程数を増加させることなく、抵抗素子の厚さの均一性を良好に維持することができ、抵抗素子の抵抗値のばらつきを低減することができる。
実施の形態に係る半導体装置の製造方法を示す断面図(その1)。 実施の形態に係る半導体装置の製造方法を示す断面図(その2)。 実施の形態に係る半導体装置の製造方法を示す断面図(その3)。 実施の形態に係る半導体装置の製造方法を示す断面図(その4)。 実施の形態に係る半導体装置の製造方法を示す断面図(その5)。 実施の形態に係る半導体装置の製造方法を示す断面図(その6)。 実施の形態に係る半導体装置の製造方法を示す断面図(その7)。 実施の形態に係る半導体装置の製造方法を示す断面図(その8)。 実施の形態に係る半導体装置の製造方法を示す断面図(その9)。 実施の形態に係る半導体装置の製造方法を示す断面図(その10)。 実施の形態に係る半導体装置を示す断面図。 従来例を示す断面図(その1)。 従来例を示す断面図(その2)。 従来例を示す断面図(その3)。 従来例を示す断面図(その4)。 従来例を示す断面図(その5)。 従来例を示す断面図(その6)。 従来例を示す断面図(その7)。 従来例を示す断面図(その8)。 従来例を示す断面図(その9)。 従来例を示す断面図(その10)。 従来例を示す断面図(その11)。 従来例を示す断面図(その12)。 従来例を示す断面図(その13)。
以下に、本発明に係る半導体装置の製造方法についての実施の形態として、図1から図10を参照しながら説明する。図1から図10は本実施の形態に係る半導体装置の製造方法を工程順に示す断面図であり、図11は本実施の形態に係る半導体装置を示す断面図である。
以下の実施の形態では、一例としてポリシリコン抵抗素子と、ゲート電極表面にタングステンシリサイドを備えたMOSトランジスタとが形成された半導体装置について説明する。
なお、以下の工程ではポリシリコン抵抗素子とMOSトランジスタとを同一基板上に備えた半導体装置の製造工程について説明するが、本願発明によりバイポーラトランジスタ、キャパシタなどの素子を同一基板上に形成することも可能である。
まず、図1に示すように、半導体基板(例えば、シリコン基板)1にWELL領域2を形成しておく。次に、例えばLOCOS法によってWELL領域2の表面を選択的に酸化し、その表面の一部(以下、「抵抗素子形成領域」ともいう)にフィールド酸化膜4を形成する。
次に、図2に示すように、例えば熱酸化法によりMOSトランジスタ用のゲート酸化膜6を、WELL領域2の表面であってフィールド酸化膜4で囲まれた領域(以下、「トランジスタ形成領域」ともいう)に形成する。
そして、例えばCVD法によりポリシリコン膜8を、フィールド酸化膜4及びゲート酸化膜6の全面を覆うようにして堆積させる。なお、ここで形成したポリシリコン膜8は、その後パターニングされ、後述するゲート電極16やポリシリコン抵抗素子20となる。次に、ポリシリコン膜8に、N型又はP型の何れか一方の導電性を有する不純物をドーピングする。
このドーピングの際に、上記の不純物のドーピング量を調節することで、ポリシリコン抵抗素子20の抵抗値を所望の値に調整する。
次に、ゲート電極16の低抵抗化を図るため、ゲート電極16の上面を例えばタングステンシリサイドでシリサイド化する。ここでは、ゲート電極16の上面にタングステンシリサイド膜18aを形成する場合について説明する。
まず、図3に示すように、ポリシリコン膜8であって、将来ポリシリコン抵抗素子20となる部分を覆うように、ブロック用シリコン酸化膜10を形成する。
ブロック用シリコン酸化膜10の形成については、例えばCVD法によりポリシリコン膜8の全面をシリコン酸化膜(図示せず)で覆うように堆積させた後、リソグラフィーによるパターニングとエッチングとによりシリコン酸化膜(つまり、ブロック用シリコン酸化膜10)を選択的にポリシリコン膜8上に残存させて形成する。
その後、図4に示すように、ポリシリコン膜8及びブロック用シリコン酸化膜10の全面を覆うようにタングステンシリサイド膜12を堆積させる。こうすることで、ポリシリコン膜8上であってブロック用シリコン酸化膜10で覆われていない部分では、タングステンシリサイド膜12とポリシリコン膜8とが接触する。従って、この接触部分における抵抗値は低抵抗化する。なお、タングステンシリサイド膜12の堆積には、例えはスパッタリング法を用いることができる。
次に、例えばタングステンシリサイド膜12上をホトレジスト膜(図示せず)で覆った後、このホトレジスト膜をパターニングする。このパターニングの際、図5に示すように、将来ゲート電極16及びタングステンシリサイド膜18aとなる部分を覆うようにして、ホトレジスト14aをタングステンシリサイド膜12上に形成する。さらに、ホトレジスト14bを、タングステンシリサイド膜12を介してブロック用シリコン酸化膜10の上方に形成する。ここで、ホトレジスト14bを形成する際、ホトレジスト14bをブロック用シリコン酸化膜10の外周部から離れた中央部に設けると共に、断面視でホトレジスト14bの横幅をブロック用シリコン酸化膜10の横幅よりも小さくする。つまり、ブロック用シリコン酸化膜10の中央部上をホトレジスト14bで覆うと共に、その外周部(即ち、両端部)上はホトレジスト14bで覆わないようにする。これは後の工程で形成する配線層と抵抗素子を接続するためのコンタクトホール36をブロック用シリコン酸化膜10上に確保するためである。
その後、ホトレジスト14a及びホトレジスト14bをマスクにして異方性エッチングする。図6に示すように、このエッチングにより、ゲート酸化膜6上においてホトレジスト14aで覆われていなかった部分のタングステンシリサイド膜12及びポリシリコン膜8は、ゲート酸化膜6上から除去される。同様に、フィールド酸化膜4上においてブロック用シリコン酸化膜10で覆われていかなった部分のポリシリコン膜8は、エッチングされフィールド酸化膜4上から除去される。そして、ホトレジスト14bで覆われていなかった部分のタングステンシリサイド膜12は、エッチングにより、ブロック用シリコン酸化膜10上から除去される。
その結果、ゲート酸化膜6上には、ゲート電極16とタングステンシリサイド膜18aとが形成される。また、フィールド酸化膜4上には、ポリシリコン抵抗素子20とブロック用シリコン酸化膜10とタングステンシリサイド膜18bとが形成される。なお、この異方性エッチングにおいては、例えばCl2ガスを用いることができる。
次に、図7に示すように、フィールド酸化膜4上に形成されたポリシリコン抵抗素子20とブロック用シリコン酸化膜10及びタングステンシリサイド膜18bを、パターニングされたホトレジスト22で覆う。その後、このホトレジスト22とゲート電極16とをそれぞれマスクとして、トランジスタ形成領域であってWELL領域2の表面近傍にイオン注入する。これにより、不純物濃度が1017〜1018cm-3程度の低濃度ソース・ドレイン24を形成する。ここで、「低濃度」とは、後述する「高濃度ソース・ドレイン32」の場合と比較して、WELL領域2に注入するイオンの濃度が低いことを意味する。また、「表面近傍」とは、「高濃度ソース・ドレイン32」の場合と比較して、WELL領域2の表面から浅い位置にイオンが注入されていることを意味する。
次に、ホトレジスト22をフィールド酸化膜4の上方から除去する。その後、図8に示すように、ゲート電極16上に設けられたタングステンシリサイド膜18aと、ブロック用シリコン酸化膜10上に設けられたタングステンシリサイド膜18bとを覆うようにしてWELL領域2の上方全面にサイドウォールスペーサー用絶縁膜26を堆積させる。
このサイドウォールスペーサー用絶縁膜26は、将来、エッチバックされてサイドウォールスペーサー28となる膜であり、例えばシリコン酸化膜やシリコン窒化膜が用いられる。しかしながら、これらの膜と同等の機能(例えば、マスクとしての機能)を有するのであればその材質に制限はない。
次に、サイドウォールスペーサー用絶縁膜26を、例えばアルゴン(Ar)で希釈した四フッ化メタン(CF4)ガスを用いた異方性の強いエッチング方法でエッチバックをする。これにより、図9に示すように、サイドウォールスペーサー28をゲート電極16及びポリシリコン抵抗素子20のそれぞれの側面を取り囲むようにして形成する。
このエッチバックでは、タングステンシリサイド膜18a、18bとの選択比が高いガス(つまり、タングステンシリサイド膜18a、18bが、例えばサイドウォールスペーサー用絶縁膜26の材質よりもエッチングされ難いガス)を用いる。このため、タングステンシリサイド膜18a、18bの表面が露出した時点でエッチングは止まる。
即ち、このエッチバックでは、タングステンシリサイド膜18a、18bがマスクとして機能する。このため、タングステンシリサイド膜18bの直下にあるブロック用シリコン酸化膜10の表面が研削されることを防ぐことができる。その結果、ブロック用シリコン酸化膜10直下にあるポリシリコン抵抗素子20の表面が研削されることを防ぐことができる。
次に、図10に示すように、フィールド酸化膜4上に形成されたタングステンシリサイド膜18bとブロック用シリコン酸化膜10とポリシリコン抵抗素子20とサイドウォールスペーサー28とを、パターニングされたホトレジスト30で覆う。その後、トランジスタ形成領域であるWELL領域2内にイオン注入する。このように、ゲート電極16及びサイドウォールスペーサー28をマスクとして用いて、低濃度ソース・ドレイン24と重畳する領域に、不純物濃度が1020〜1021cm-3程度の高濃度ソース・ドレイン32を形成する。こうして、LDD(Lightly Doped Drain)構造を有するMOSトランジスタをWELL領域2に形成する。ここで、「高濃度」とは、前述した「低濃度ソース・ドレイン24」の場合と比較して、WELL領域2に注入するイオンの濃度が高いことを意味する。なお、高濃度ソース・ドレイン32を形成する際には、低濃度ソース・ドレイン24を形成した場合と比較して、WELL領域2の表面から深い位置にまで注入する。
また、本実施の形態においては、サイドウォールスペーサー28をマスクの一部として用いているので、当該イオン注入をセルフアラインで行うことができる。なお、セルフアラインとは、ある工程における領域の画定が、それ以前の工程における領域の画定パターンを利用して、マスク合わせ精度を要することなく行なわれる製造方法をいう。本実施の形態では、ゲート電極16及びサイドウォールスペーサー28がマスクの役割を果たしているので、パターニングされたホトレジスト等を利用することなく、セルフアラインでイオン注入を行うことができる。
次に、WELL領域2の上方全面に層間絶縁膜34を形成する。そして、この層間絶縁膜34を選択的にエッチングし、層間絶縁膜34内にポリシリコン抵抗素子20の表面と接するようにコンタクトホール36を形成する。
次に、図11に示すように、各コンタクトホール36内を、例えばスパッタリング法によりアルミニウムやチタン等で充填し、各コンタクトホール36内に金属配線38を形成する。これにより、ポリシリコン抵抗素子20及びMOSトランジスタは他の素子と電気的に接続することができる。
その後、必要に応じて多層金属配線の形成やパッシベーション膜の形成を行うことによりMOSトランジスタとポリシリコン抵抗素子20を同一基板(図11では、WELL領域2)上に備えた半導体装置が完成する。
このように、本発明の実施の形態によれば、サイドウォール用絶縁膜26をエッチバックする際に、ポリシリコン抵抗素子20の上方にはタングステンシリサイド膜18bが形成されているので、ポリシリコン抵抗素子20の上方におけるエッチングの進行をタングステンシリサイド膜18bで止めることができる。つまり、エッチバックする際に、タングステンシリサイド膜18bがマスクとして機能するため、タングステンシリサイド膜18b下にあるブロック用シリコン酸化膜10とポリシリコン抵抗素子20とが研削されることを抑制することができる。これにより、半導体基板の面内において、ポリシリコン抵抗素子20の表面の削れ量を低減することができ、エッチング後においてもポリシリコン抵抗素子20の厚さの均一性を良好に維持することができる。このため、ポリシリコン抵抗素子20の抵抗値のばらつきを低減することができる。
また、このような方法であれば、ポリシリコン抵抗素子20とタングステンシリサイド膜18bとの間にはブロック用シリコン酸化膜10が介在しており、ポリシリコン抵抗素子20の上方にそのままタングステンシリサイド膜18bを残しておいても、タングステンシリサイド膜18bによるポリシリコン抵抗素子20の低抵抗化を防ぐことができる。従って、例えば不純物のドーピング等により、ポリシリコン抵抗素子20の抵抗値を所望の値に容易に設定することができる。
さらに、このような方法であれば、ゲート電極16上のタングステンシリサイド膜18aと、ポリシリコン抵抗素子20の上方のタングステンシリサイド膜18bとは同一の工程で同時に形成しており、従来の技術と比べて工程数の増加がない。つまり、ポリシリコン抵抗素子20を保護するためのマスク(例えば、図23に示したマスク層など)を別途形成する必要がなく、マスク層を形成するためのリソグラフィー、エッチング、アッシングの3つの工程は必要ない。従って、工程数を増加させることなく、ポリシリコン抵抗素子20の抵抗値のばらつきを低減することができる。
なお、本実施の形態では、例えば、抵抗素子形成領域が本発明の「第1の領域」に対応し、トランジスタ形成領域が本発明の「第2の領域」に対応し、フィールド酸化膜4が本発明の「第1の絶縁膜」に対応し、ゲート酸化膜6が本発明の「第2の絶縁膜」に対応し、ポリシリコン抵抗素子20が本発明の「抵抗素子」に対応し、ブロック用シリコン酸化膜10が本発明の「第3の絶縁膜」に対応し、ホトレジスト14a、14bが本発明の「マスクパターン」に対応し、タングステンシリサイド膜18a、18bが本発明の「合金膜」に対応し、サイドウォールスペーサー用絶縁膜26が本発明の「第4の絶縁膜」に対応する。また、これらの中でも、タングステンシリサイド膜18bが本発明の「第1の合金膜」に対応し、タングステンシリサイド膜18aが本発明の「第2の合金膜」に対応する。
1 半導体基板
2、102 WELL領域
4、104 フィールド酸化膜
6、106 ゲート酸化膜
8、108 ポリシリコン膜
10、110 ブロック用シリコン酸化膜
12、112 タングステンシリサイド膜
14a、14b、22、30、114、122、130 ホトレジスト
16、116 ゲート電極
18a、18b、118 タングステンシリサイド膜
20、120 ポリシリコン抵抗素子
24、124 低濃度ソース・ドレイン
26、126 サイドウォールスペーサー用絶縁膜
28、128 サイドウォールスペーサー
32、132 高濃度ソース・ドレイン
34、134 層間絶縁膜
36、136 コンタクトホール
38、138 金属配線
140 マスク層

Claims (4)

  1. 抵抗素子と、ゲート電極を有する素子とを同一の半導体基板に有する半導体装置の製造方法であって、
    前記半導体基板の第1の領域に第1の絶縁膜を形成する工程と、
    前記半導体基板の第2の領域に第2の絶縁膜を形成する工程と、
    前記第1の絶縁膜及び前記第2の絶縁膜を覆うように、前記半導体基板上に半導体膜を形成する工程と、
    前記第1の領域の前記半導体膜上に第3の絶縁膜を形成する工程と、
    前記第3の絶縁膜を覆うように、前記半導体膜上に半導体と金属との合金からなる合金膜を形成する工程と、
    前記第1の領域の前記合金膜上及び前記第2の領域の前記合金膜上にそれぞれマスクパターンを形成する工程と、
    前記マスクパターン下から露出している前記合金膜及び前記半導体膜を順次エッチングして、前記第1の絶縁膜上に前記抵抗素子を形成すると共に、前記第2の絶縁膜上に前記ゲート電極を形成する工程と、
    前記抵抗素子及び前記ゲート電極を覆うように、前記半導体基板上に第4の絶縁膜を形成する工程と、
    前記第4の絶縁膜をエッチバックして、前記抵抗素子の側面及び前記ゲート電極の側面にそれぞれサイドウォールを形成する工程と、を含み、
    前記サイドウォールを形成する工程では、前記合金膜よりも前記第4の絶縁膜の方がエッチングされ易い条件で、前記第4の絶縁膜をエッチバックすることを特徴とする半導体装置の製造方法。
  2. 前記マスクパターンを形成する工程では、前記第3の絶縁膜上に位置する前記合金膜の一部を前記マスクパターン下から露出させておき、
    前記抵抗素子及び前記ゲート電極を形成する工程では、前記第3の絶縁膜よりも前記合金膜及び前記半導体膜の方がエッチングされ易い条件で、前記合金膜及び前記半導体膜を順次エッチングすることを特徴とする請求項1に記載の半導体装置の製造方法。
  3. 前記半導体膜を形成する工程では、前記半導体膜として多結晶シリコン膜またはアモルファスシリコン膜を形成し、
    前記合金膜を形成する工程では、前記合金膜としてシリサイド膜を形成し、前記第4の絶縁膜を形成する工程では、前記第4の絶縁膜としてシリコン酸化膜又はシリコン窒化膜の何れか一方を形成し、
    前記サイドウォールを形成する工程では、前記第4の絶縁膜を、四フッ化メタンを含むガスを用いてエッチングすることを特徴とする請求項1又は請求項2に記載の半導体装置の製造方法。
  4. 抵抗素子と、ゲート電極を有する素子とを同一の半導体基板に有する半導体装置であって、
    前記半導体基板の第1の領域に形成された第1の絶縁膜と、
    前記半導体基板の第2の領域に形成された第2の絶縁膜と、
    前記第1の絶縁膜上に形成された第1の半導体膜と、
    前記第2の絶縁膜上に形成された第2の半導体膜と、
    前記第1の半導体膜上に形成された第3の絶縁膜と、
    前記第3の絶縁膜上に形成された、半導体と金属との合金からなる第1の合金膜と、
    前記第2の半導体膜上に形成された、半導体と金属との合金からなる第2の合金膜と、
    前記第1の半導体膜の側面及び前記第2の半導体膜の側面にそれぞれ形成されたサイドウォールと、を含むことを特徴とする半導体装置。
JP2010072644A 2010-03-26 2010-03-26 半導体装置の製造方法 Expired - Fee Related JP5520102B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010072644A JP5520102B2 (ja) 2010-03-26 2010-03-26 半導体装置の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010072644A JP5520102B2 (ja) 2010-03-26 2010-03-26 半導体装置の製造方法

Publications (2)

Publication Number Publication Date
JP2011204997A true JP2011204997A (ja) 2011-10-13
JP5520102B2 JP5520102B2 (ja) 2014-06-11

Family

ID=44881320

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010072644A Expired - Fee Related JP5520102B2 (ja) 2010-03-26 2010-03-26 半導体装置の製造方法

Country Status (1)

Country Link
JP (1) JP5520102B2 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103578949A (zh) * 2012-07-30 2014-02-12 上海华虹Nec电子有限公司 栅极多晶硅和多晶硅电阻集成制作方法
CN103779199A (zh) * 2012-10-26 2014-05-07 上海华虹宏力半导体制造有限公司 金属硅化钨栅极工艺中多晶硅电阻的制造方法
US8969971B2 (en) 2012-12-13 2015-03-03 Samsung Electronics Co., Ltd. Semiconductor devices including a resistor structure
CN106033710A (zh) * 2015-03-13 2016-10-19 北大方正集团有限公司 一种多晶电阻的制作方法
CN107731674A (zh) * 2017-08-23 2018-02-23 长江存储科技有限责任公司 一种金属硅化钨栅极制程中多晶硅电阻制作方法及多晶硅电阻
EP3364448A1 (en) * 2017-02-20 2018-08-22 MediaTek Inc. Semiconductor device and manufacturing method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05145018A (ja) * 1991-11-20 1993-06-11 Yamaha Corp 抵抗形成法
JP2000223698A (ja) * 1999-01-28 2000-08-11 Vanguard Internatl Semiconductor Corp トランジスタの製造方法
JP2003142656A (ja) * 2001-08-09 2003-05-16 Samsung Electronics Co Ltd 浮遊トラップ型セルを有する不揮発性半導体メモリ装置及びその製造方法
JP2007512684A (ja) * 2003-10-29 2007-05-17 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 部分的シリサイド化シリコン層を有する集積回路

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05145018A (ja) * 1991-11-20 1993-06-11 Yamaha Corp 抵抗形成法
JP2000223698A (ja) * 1999-01-28 2000-08-11 Vanguard Internatl Semiconductor Corp トランジスタの製造方法
JP2003142656A (ja) * 2001-08-09 2003-05-16 Samsung Electronics Co Ltd 浮遊トラップ型セルを有する不揮発性半導体メモリ装置及びその製造方法
JP2007512684A (ja) * 2003-10-29 2007-05-17 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 部分的シリサイド化シリコン層を有する集積回路

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103578949A (zh) * 2012-07-30 2014-02-12 上海华虹Nec电子有限公司 栅极多晶硅和多晶硅电阻集成制作方法
CN103779199A (zh) * 2012-10-26 2014-05-07 上海华虹宏力半导体制造有限公司 金属硅化钨栅极工艺中多晶硅电阻的制造方法
US8969971B2 (en) 2012-12-13 2015-03-03 Samsung Electronics Co., Ltd. Semiconductor devices including a resistor structure
CN106033710A (zh) * 2015-03-13 2016-10-19 北大方正集团有限公司 一种多晶电阻的制作方法
EP3364448A1 (en) * 2017-02-20 2018-08-22 MediaTek Inc. Semiconductor device and manufacturing method thereof
CN108461445A (zh) * 2017-02-20 2018-08-28 联发科技股份有限公司 半导体设备及其制造方法
US10373949B2 (en) 2017-02-20 2019-08-06 Mediatek Inc. Semiconductor device and manufacturing method thereof
CN108461445B (zh) * 2017-02-20 2021-01-26 联发科技股份有限公司 半导体设备及其制造方法
CN107731674A (zh) * 2017-08-23 2018-02-23 长江存储科技有限责任公司 一种金属硅化钨栅极制程中多晶硅电阻制作方法及多晶硅电阻

Also Published As

Publication number Publication date
JP5520102B2 (ja) 2014-06-11

Similar Documents

Publication Publication Date Title
US8865542B2 (en) Embedded polysilicon resistor in integrated circuits formed by a replacement gate process
US7163853B2 (en) Method of manufacturing a capacitor and a metal gate on a semiconductor device
TWI423345B (zh) 半導體裝置之製造方法
JP5520102B2 (ja) 半導体装置の製造方法
US20160218171A1 (en) Integrated circuit and method of fabricating the same
US9564371B2 (en) Method for forming semiconductor device
US10840359B2 (en) Method of forming FinFET source/drain contact
US9263321B2 (en) Semiconductor device and manufacturing method thereof
KR100469913B1 (ko) 반도체소자의 제조방법
US20050255641A1 (en) Semiconductor device and method of manufacturing the same
US9859402B2 (en) Method of using an ion implantation process to prevent a shorting issue of a semiconductor device
US9806165B2 (en) Manufacturing method of semiconductor device and semiconductor device
KR20080026517A (ko) 반도체장치 및 그 제조방법
CN109494149B (zh) 半导体结构的制作方法
TWI576959B (zh) 形成具有接觸插栓的半導體結構的方法
US11538686B2 (en) Semiconductor structure and method for forming the same
JP2010098157A (ja) 半導体装置の製造方法
KR20030079806A (ko) 적층형 게이트 전극을 갖는 반도체 장치의 제조 방법
JP2007081347A (ja) 半導体装置の製造方法
US20180204839A1 (en) Formation of full metal gate to suppress interficial layer growth
US20220384615A1 (en) Method for manufacturing metal gate
KR20010093013A (ko) 반도체장치의 게이트전극 및 게이트라인 형성방법
JP2008124061A (ja) 半導体装置の製造方法
JPH1041505A (ja) 半導体装置の製造方法
KR100532967B1 (ko) 반도체 소자의 비트라인 형성방법

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140204

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140401

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140404

R150 Certificate of patent or registration of utility model

Ref document number: 5520102

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees