JP2011199077A - Method of manufacturing multilayer wiring board - Google Patents

Method of manufacturing multilayer wiring board Download PDF

Info

Publication number
JP2011199077A
JP2011199077A JP2010065254A JP2010065254A JP2011199077A JP 2011199077 A JP2011199077 A JP 2011199077A JP 2010065254 A JP2010065254 A JP 2010065254A JP 2010065254 A JP2010065254 A JP 2010065254A JP 2011199077 A JP2011199077 A JP 2011199077A
Authority
JP
Japan
Prior art keywords
wiring board
multilayer wiring
manufacturing
layer
layer sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010065254A
Other languages
Japanese (ja)
Inventor
Shinnosuke Maeda
真之介 前田
Tetsuo Suzuki
哲夫 鈴木
Satoshi Hirano
訓 平野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP2010065254A priority Critical patent/JP2011199077A/en
Publication of JP2011199077A publication Critical patent/JP2011199077A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Production Of Multi-Layered Print Wiring Board (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method of manufacturing a multilayer wiring board which can increase the number of laminates easily by using a laminate after it is laminated on a supporting substrate and separated therefrom as a pseudo-core substrate.SOLUTION: The method of manufacturing a multilayer wiring board includes a step of forming an intermediate laminate by laminating resin insulating layers 20-23 and conductor layers 30-32 alternately on a planar supporting substrate 11, a step of separating the intermediate laminate and the supporting substrate 11 after the surface side thereof is subjected entirely to metal plating, and a step of forming a wiring lamination part by laminating the resin insulating layers and conductor layers alternately for the separated laminate 10b. Consequently, a multilayer wiring board where the number of laminates can be increased easily as compared with a conventional coreless wiring board can be obtained.

Description

本発明は、樹脂絶縁層と導体層とを交互に積層形成した多層配線基板の製造方法に関するものである。   The present invention relates to a method for manufacturing a multilayer wiring board in which resin insulation layers and conductor layers are alternately laminated.

一般に、電子部品を搭載するパッケージとしては、コア基板の両側に樹脂絶縁層と導体層とを交互に積層してビルドアップ層を形成した配線基板が用いられている。配線基板において、コア基板は例えばガラス繊維を含んだ樹脂からなり、高い剛性によりビルドアップ層を補強する役割がある。しかし、コア基板は厚く形成されるため配線基板の小型化の妨げになるとともに、ビルドアップ層間を電気的に接続するスルーホール導体を設ける必要があるため配線長が長くなり、高周波信号の伝送性能の劣化を招く恐れがある。そのため、近年では上記のコア基板を設けることなく、小型化に適し、かつ高周波信号の伝送性能の向上が可能な構造を有するコアレス配線基板が提案されている(例えば、特許文献1、2参照)。このようなコアレス配線基板は、例えば、剥離可能に密着された2枚の金属箔を表面に設けた支持体に対しビルドアップ層を形成した後、2枚の金属箔を剥離界面で剥離させることによりビルドアップ層を支持体から分離し、配線基板を得る方法を用いて製造することができる。   In general, as a package for mounting an electronic component, a wiring board in which a build-up layer is formed by alternately laminating resin insulating layers and conductor layers on both sides of a core board is used. In the wiring substrate, the core substrate is made of a resin containing glass fiber, for example, and has a role of reinforcing the buildup layer with high rigidity. However, since the core substrate is made thick, it hinders miniaturization of the wiring substrate, and it is necessary to provide a through-hole conductor that electrically connects the build-up layers, so that the wiring length becomes long and high-frequency signal transmission performance There is a risk of causing deterioration. Therefore, in recent years, a coreless wiring board having a structure suitable for miniaturization and capable of improving high-frequency signal transmission performance without providing the above-described core board has been proposed (for example, see Patent Documents 1 and 2). . Such a coreless wiring board is formed by, for example, forming a build-up layer on a support provided with two metal foils adhered in a peelable manner on the surface, and then peeling the two metal foils at the peeling interface. Can be manufactured using a method of separating the buildup layer from the support and obtaining a wiring board.

特開2004−235323号公報JP 2004-235323 A 特開2005−93979号公報JP 2005-93979 A

一般に、パッケージの多機能化、高密度化に対応するため、可能な限り積層数を増加させた配線基板が求められているが、上記従来のコアレス配線基板は、その構造上、積層数には制約があった。すなわち、コア基板は強度を確保するために重い材料を用いて形成されるため、積層数を増やした場合は、ビルドアップ層を形成する各工程において搬送や取り扱いが困難になるという問題がある。また、コア基板の両面に積層されるビルドアップ層は、分離工程後には別々の配線基板になることから、各々の配線基板の積層数は少なくならざるを得ない。   In general, in order to cope with the multi-functionality and high density of the package, a wiring board having an increased number of layers as much as possible is required. There were restrictions. That is, since the core substrate is formed using a heavy material in order to ensure strength, when the number of stacked layers is increased, there is a problem that conveyance and handling become difficult in each process of forming the buildup layer. In addition, since the buildup layers laminated on both surfaces of the core substrate become separate wiring substrates after the separation step, the number of laminations of each wiring substrate must be reduced.

本発明はこれらの問題を解決するためになされたものであり、支持基材に配線積層部を形成して分離した後の積層体を擬似的なコア基板として用い、更に積層を行って多層配線基板を得ることにより、従来のコアレス配線基板に比べてより一層の多層化が可能な多層配線基板の製造方法を実現することを目的とする。   The present invention has been made to solve these problems, and uses a laminate after forming and separating a wiring laminated portion on a supporting base material as a pseudo core substrate, and further laminating to form a multilayer wiring. An object of the present invention is to realize a method for manufacturing a multilayer wiring board capable of further multilayering by obtaining a substrate as compared with a conventional coreless wiring board.

上記課題を解決するために本発明は、樹脂絶縁層と導体層とを交互に積層形成した多層配線基板の製造方法において、板状の支持基材上に前記樹脂絶縁層と前記導体層とを交互に積層して中間積層体を形成する第1の積層工程と、前記中間積層体の表面側の全面に金属を主体とする層を形成する金属層形成工程と、前記中間積層体と前記支持基材とを分離する分離工程と、前記支持基材と分離した前記中間積層体に対し、一方の主面側に前記樹脂絶縁層と前記導体層とを交互に積層した第1配線積層部を形成するとともに、他方の主面側に前記樹脂絶縁層と前記導体層とを交互に積層した第2配線積層部を形成する第2の積層工程とを含むことを特徴としている。   In order to solve the above-mentioned problems, the present invention provides a method for manufacturing a multilayer wiring board in which a resin insulating layer and a conductor layer are alternately laminated, and the resin insulating layer and the conductor layer are formed on a plate-like support base material. A first laminating step of alternately laminating to form an intermediate laminate, a metal layer forming step of forming a metal-based layer on the entire surface of the intermediate laminate, the intermediate laminate and the support A separation step of separating the base material, and a first wiring laminated portion in which the resin insulating layer and the conductor layer are alternately laminated on one main surface side with respect to the intermediate laminated body separated from the support base material. And forming a second wiring laminated portion in which the resin insulating layers and the conductor layers are alternately laminated on the other main surface side.

本発明の多層配線基板の製造方法によれば、支持基材に対して樹脂絶縁層と導体層を交互に積層して中間積層体を形成し、その表面側の全面に金属めっきを施した後、支持基材から分離した中間積層体の両面側にそれぞれ配線積層部を形成することにより多層配線基板が得られる。よって、分離工程の前の第1の積層工程では、従来と同様の手法で高剛性の支持基材で補強しながら積層しつつ、分離工程後の第2の積層工程では、分離後の積層体を擬似的な支持基材として更なる積層を可能とし、支持基材の重さ等に制約されることなく積層数をできるだけ増やして容易に多層化可能な多層配線基板を実現することができる。   According to the method for producing a multilayer wiring board of the present invention, an intermediate laminate is formed by alternately laminating a resin insulating layer and a conductor layer on a supporting base material, and metal plating is performed on the entire surface side thereof. A multilayer wiring board can be obtained by forming wiring laminated portions on both sides of the intermediate laminated body separated from the supporting substrate. Therefore, in the first lamination step before the separation step, the laminate is reinforced while being reinforced with a high-rigidity support base in the same manner as in the past, and in the second lamination step after the separation step, the laminated body after separation. Can be further laminated as a pseudo support substrate, and a multilayer wiring board that can be easily multi-layered can be realized by increasing the number of layers as much as possible without being restricted by the weight of the support substrate.

前記第1の積層工程で得られる前記中間積層体は、前記支持基材の片面側に形成する場合に加え、前記支持基材の両面側に形成してもよい。この場合前記支持基材の両面側に形成すれば、前記分離工程において前記支持基材と前記中間積層体とを分離した後に、2つの前記積層体を得ることができる。   In addition to the case where the intermediate laminate obtained in the first lamination step is formed on one side of the support substrate, the intermediate laminate may be formed on both sides of the support substrate. In this case, if the support base material is formed on both sides, the two base material bodies can be obtained after the support base material and the intermediate laminate body are separated in the separation step.

前記第1及び第2の積層工程は、前記樹脂絶縁層及び前記導体層に加えて、前記樹脂絶縁層を貫いて前記導体層間を電気的に接続するビア導体を形成するビア形成工程をさらに含めることができる。よって、本発明の多層配線基板は、スルーホールを形成することなくビア導体により積層方向の電気的接続が可能であり小型化に適している。   In addition to the resin insulation layer and the conductor layer, the first and second lamination steps further include a via formation step of forming a via conductor that penetrates the resin insulation layer and electrically connects the conductor layers. be able to. Therefore, the multilayer wiring board of the present invention can be electrically connected in the stacking direction by the via conductor without forming a through hole, and is suitable for downsizing.

前記各工程に加えて、前記支持基材の少なくとも一方の主面側に下層シートと上層シートとを剥離可能な状態で配置するシート配置工程をさらに備えていてもよい。この場合には、前記分離工程において、前記下層シートと前記上層シートとを剥離界面で剥離させることにより前記中間積層体と前記支持基板とが分離される。   In addition to the above steps, a sheet disposing step of disposing the lower layer sheet and the upper layer sheet in a peelable state on at least one main surface side of the support base material may be further provided. In this case, in the separation step, the intermediate laminate and the support substrate are separated by separating the lower layer sheet and the upper layer sheet at a separation interface.

前記シート配置工程で配置される前記下層シートと前記上層シートは、多様な材質及び厚さで形成することができる。例えば、銅からなる前記下層シートと前記上層シートを用いることができる。また例えば、前記下層シートを前記上層シートよりも薄く形成し、前記支持基材の表面に前記下層シートを密着させることができる。この場合、前記金属層形成工程で、前記中間積層体の表面側の全面に電解めっきにより金属めっき層を形成することが望ましい。さらに、前記分離工程後の前記中間積層体の両面側に形成された前記上層シート及び前記金属めっき層のそれぞれに対し、サブトラクティブ法により前記金属めっき層の少なくとも一部を除去し、前記導体層を形成してもよい。   The lower layer sheet and the upper layer sheet arranged in the sheet arrangement process can be formed with various materials and thicknesses. For example, the lower layer sheet and the upper layer sheet made of copper can be used. For example, the lower layer sheet can be formed thinner than the upper layer sheet, and the lower layer sheet can be brought into close contact with the surface of the support substrate. In this case, in the metal layer forming step, it is desirable to form a metal plating layer on the entire surface of the intermediate laminate by electrolytic plating. Furthermore, at least a part of the metal plating layer is removed by a subtractive method for each of the upper layer sheet and the metal plating layer formed on both sides of the intermediate laminate after the separation step, and the conductor layer May be formed.

一方、前記上層シートを前記下層シートよりも薄く形成し、前記支持基材の表面に、前記下層シートを密着させることができる。この場合、前記金属層形成工程では、前記中間積層体の表面側の全面に無電解めっきにより金属めっき層を形成することが望ましい。また、この場合、全ての前記導体層をセミアディティブ法により形成してもよい。   On the other hand, the upper layer sheet can be formed thinner than the lower layer sheet, and the lower layer sheet can be adhered to the surface of the support substrate. In this case, in the metal layer forming step, it is desirable to form a metal plating layer on the entire surface of the intermediate laminate by electroless plating. In this case, all the conductor layers may be formed by a semi-additive method.

本発明の多層配線基板を製造する際には、全ての前記樹脂絶縁層を同じ樹脂絶縁材を主体として形成してもよい。   When the multilayer wiring board of the present invention is manufactured, all the resin insulating layers may be formed mainly of the same resin insulating material.

以上説明したように、本発明によれば、第1の積層工程では従来のいわゆるコアレス多層配線基板と同様の手法で中間積層体を形成し、分離工程後の第2の積層工程では分離後の積層体を擬似的な支持基材として更なる積層を行って多層配線基板を得ることができる。よって、コアレス多層配線基板のメリットを享受しつつ、支持基材の重さによる搬送や取り扱いの困難性を解消し、積層数の制約を受けることなく容易に多層化することができる。また、第2の積層工程では、両面に金属めっき層を形成した中間積層体に対して順次積層を行うので、両面を同一構造にでき製造工程を簡素化することができる。さらに、支持基材に対してスルーホールを形成することなく、中間積層体と第1及び第2の配線積層部のそれぞれのビア導体により電気的接続が可能となるので、小型かつ高密度の多層配線基板を実現することができる。   As described above, according to the present invention, in the first stacking process, an intermediate stacked body is formed in the same manner as a conventional so-called coreless multilayer wiring board, and in the second stacking process after the separation process, the post-separation process is performed. A multilayer wiring board can be obtained by performing further lamination using the laminate as a pseudo support substrate. Therefore, while enjoying the merits of the coreless multilayer wiring board, the difficulty of conveyance and handling due to the weight of the supporting base material can be solved, and multilayering can be easily performed without being restricted by the number of stacked layers. Further, in the second laminating step, the intermediate laminate having the metal plating layers formed on both sides is sequentially laminated, so that both sides can have the same structure and the manufacturing process can be simplified. Furthermore, since it is possible to make an electrical connection by the via conductors of the intermediate laminate and the first and second wiring laminates without forming a through hole in the support base, a small and high-density multilayer A wiring board can be realized.

第1実施形態の多層配線基板の製造方法を説明する第1の断面構造図である。It is a 1st sectional view explaining the manufacturing method of the multilayer wiring board of a 1st embodiment. 第1実施形態の多層配線基板の製造方法を説明する第2の断面構造図である。It is a 2nd sectional view explaining the manufacturing method of the multilayer wiring board of a 1st embodiment. 第1実施形態の多層配線基板の製造方法を説明する第3の断面構造図である。It is a 3rd sectional view explaining the manufacturing method of the multilayer wiring board of a 1st embodiment. 第1実施形態の多層配線基板の製造方法を説明する第4の断面構造図である。It is a 4th cross-section figure explaining the manufacturing method of the multilayer wiring board of 1st Embodiment. 第1実施形態の多層配線基板の製造方法を説明する第5の断面構造図である。FIG. 10 is a fifth sectional view illustrating the method for manufacturing the multilayer wiring board according to the first embodiment. 第1実施形態の多層配線基板の製造方法を説明する第6の断面構造図である。It is a 6th cross-section figure explaining the manufacturing method of the multilayer wiring board of 1st Embodiment. 第1実施形態の多層配線基板の製造方法を説明する第7の断面構造図である。It is a 7th cross-section figure explaining the manufacturing method of the multilayer wiring board of 1st Embodiment. 第1実施形態の多層配線基板の製造方法を説明する第8の断面構造図である。FIG. 10 is an eighth sectional view explaining the method for manufacturing the multilayer wiring board according to the first embodiment. 第1実施形態の多層配線基板の製造方法を説明する第9の断面構造図である。FIG. 10 is a ninth cross-sectional structure diagram illustrating the method of manufacturing the multilayer wiring board according to the first embodiment. 第1実施形態の多層配線基板の製造方法を説明する第10の断面構造図である。It is a 10th cross-section figure explaining the manufacturing method of the multilayer wiring board of 1st Embodiment. 第2実施形態の多層配線基板の製造方法を説明する第1の断面構造図である。It is a 1st sectional view explaining the manufacturing method of the multilayer wiring board of a 2nd embodiment. 第2実施形態の多層配線基板の製造方法を説明する第2の断面構造図である。It is a 2nd sectional view explaining the manufacturing method of the multilayer wiring board of a 2nd embodiment. 第2実施形態の多層配線基板の製造方法を説明する第3の断面構造図である。It is a 3rd cross-section figure explaining the manufacturing method of the multilayer wiring board of 2nd Embodiment. 第2実施形態の多層配線基板の製造方法を説明する第4の断面構造図である。It is a 4th cross-section figure explaining the manufacturing method of the multilayer wiring board of 2nd Embodiment. 第2実施形態の多層配線基板の製造方法を説明する第5の断面構造図である。It is a 5th section structure figure explaining the manufacturing method of the multilayer wiring board of a 2nd embodiment. 第2実施形態の多層配線基板の製造方法を説明する第6の断面構造図である。It is a 6th cross-section figure explaining the manufacturing method of the multilayer wiring board of 2nd Embodiment.

以下、本発明の好適な実施形態として、2つの実施形態について図面を参照しながら順次説明する。ただし、以下に述べる実施形態は本発明の技術思想を適用した形態の例であり、本発明が以下の実施形態の内容により限定されることはない。   Hereinafter, as a preferred embodiment of the present invention, two embodiments will be sequentially described with reference to the drawings. However, the embodiments described below are examples of forms to which the technical idea of the present invention is applied, and the present invention is not limited by the contents of the following embodiments.

[第1実施形態]
本発明の第1実施形態の多層配線基板の製造方法について、図1〜図10を参照して説明する。まず、図1に示すように、両面に銅箔12が貼り付けられた板状の支持基材11を用意する。この支持基材11は、例えばガラス繊維を含んだ樹脂からなり、高い剛性を有している。支持基材11のそれぞれの銅箔12の表面に、例えば熱硬化性樹脂からなるプリプレグ13を挟んで剥離シート14をそれぞれ配置した状態で、例えば、真空熱プレスにより圧着する(本発明のシート配置工程)。支持基材11は、例えば、縦300mm、横300mmの矩形形状に形成される。一方、剥離シート14は、厚さの異なる2つの銅箔14a、14bを剥離可能に密着した構造を有している。支持基材11に対し、外側に位置する銅箔14a(本発明の上層シート)の厚さは内側に位置する銅箔14b(本発明の下層シート)の厚さに比べて大きくなっている。一例として、銅箔14aの厚さを18μm、銅箔14bの厚さを3μmとしてそれぞれ形成することができる。
[First Embodiment]
The manufacturing method of the multilayer wiring board of 1st Embodiment of this invention is demonstrated with reference to FIGS. First, as shown in FIG. 1, a plate-like support base material 11 having a copper foil 12 attached on both sides is prepared. The support base 11 is made of, for example, a resin containing glass fiber and has high rigidity. In a state where the release sheet 14 is disposed on the surface of each copper foil 12 of the support base 11 with a prepreg 13 made of, for example, a thermosetting resin, for example, pressure bonding is performed by, for example, vacuum hot pressing (sheet arrangement of the present invention) Process). The support base 11 is formed in a rectangular shape having a length of 300 mm and a width of 300 mm, for example. On the other hand, the release sheet 14 has a structure in which two copper foils 14a and 14b having different thicknesses are adhered in a peelable manner. The thickness of the copper foil 14a (the upper layer sheet of the present invention) located on the outer side with respect to the support base 11 is larger than the thickness of the copper foil 14b (the lower layer sheet of the present invention) located on the inner side. As an example, the thickness of the copper foil 14a can be 18 μm, and the thickness of the copper foil 14b can be 3 μm.

上記圧着により剥離シート14と一体化された支持基材11に対し、その外縁部を切断して所定サイズに整形する。その後、支持基材11の両側の剥離シート14の各表面に感光性のドライフィルム(不図示)を用いてエッチングを行うことにより、剥離シート14の外周領域の部分を除去する。つまり、支持基材11の両側の外周領域における剥離シート14が除去されてプリプレグ13が表面に露出した状態になり、図1に示すような断面構造を有する支持基材11及び剥離シート14が得られる。なお、エッチング後の剥離シート14の表面を粗化しておくことが望ましい。   With respect to the support base material 11 integrated with the release sheet 14 by the pressure bonding, the outer edge portion is cut and shaped into a predetermined size. Then, the part of the outer peripheral area | region of the peeling sheet 14 is removed by etching using the photosensitive dry film (not shown) on each surface of the peeling sheet 14 of the both sides of the support base material 11. FIG. That is, the release sheet 14 in the outer peripheral region on both sides of the support base material 11 is removed and the prepreg 13 is exposed on the surface, and the support base material 11 and the release sheet 14 having a cross-sectional structure as shown in FIG. 1 are obtained. It is done. It is desirable to roughen the surface of the release sheet 14 after etching.

次に図2に示すように、剥離シート14の上部からフィルム状の樹脂材料を積層し、真空下にて加圧加熱することにより樹脂材料を硬化させて樹脂絶縁層20を形成する。その結果、剥離シート14の表面が樹脂絶縁層20で覆われるともに、上述の外周領域における剥離シート14の除去部分に樹脂絶縁層20が充填された状態になる。これにより、銅箔14aと銅箔14bの間の剥離界面が露出しない状態になり、後述の分離工程の前の工程中に剥がれにくくなる。その後、両側の樹脂絶縁層20の所定位置にそれぞれレーザー加工を施してビアホール40aを形成する。このとき、ビアホール40aの開口径は、支持基材11の側から外側に向かうにつれて大きくなっていき(以下、開口方向と呼ぶ)、支持基材11を挟んだ上下のビアホール40aは、互いに開口方向が逆向きの配置になっている。   Next, as shown in FIG. 2, a film-like resin material is laminated from the top of the release sheet 14, and the resin material is cured by pressurizing and heating under vacuum to form the resin insulating layer 20. As a result, the surface of the release sheet 14 is covered with the resin insulating layer 20 and the removed portion of the release sheet 14 in the outer peripheral region is filled with the resin insulating layer 20. Thereby, the peeling interface between the copper foil 14a and the copper foil 14b is not exposed, and is difficult to peel off during the process before the separation process described later. Thereafter, laser processing is performed at predetermined positions of the resin insulating layers 20 on both sides to form via holes 40a. At this time, the opening diameter of the via hole 40a increases from the support base material 11 side toward the outside (hereinafter referred to as the opening direction), and the upper and lower via holes 40a sandwiching the support base material 11 are in the opening direction. Is in the opposite orientation.

次に図3に示すように、ビアホール40aの中のスミアを除去するデスミア処理を施した後、無電解銅めっきにより薄い銅膜を形成し、その銅膜の表面にドライフィルムを貼って露光・現像する。次いで、電解銅めっきを施すことによりドライフィルムが除去された部分に銅が析出し、ビア導体40及びパターニングが施された導体層30が同時に形成される(本発明のビア形成工程)。このとき、ビア導体40の上端と導体層30の所定のパターンの下端が電気的に接続される。さらに、両側の導体層30を覆うようにフィルム状の樹脂材料を積層し、真空下にて加圧加熱することにより樹脂材料を硬化させて樹脂絶縁層21を形成する。   Next, as shown in FIG. 3, after applying a desmear process for removing smear in the via hole 40a, a thin copper film is formed by electroless copper plating, and a dry film is pasted on the surface of the copper film. develop. Next, copper is deposited on the portion where the dry film is removed by performing electrolytic copper plating, and the via conductor 40 and the patterned conductor layer 30 are simultaneously formed (via formation step of the present invention). At this time, the upper end of the via conductor 40 and the lower end of the predetermined pattern of the conductor layer 30 are electrically connected. Furthermore, a film-like resin material is laminated so as to cover the conductor layers 30 on both sides, and the resin material is cured by pressurizing and heating under vacuum to form the resin insulating layer 21.

次に図4に示すように、上述のビア導体40、導体層30、樹脂絶縁層21と同様の手法で、その上層にビア導体41、導体層31、樹脂絶縁層22を形成するとともに、さらに上層にビア導体42、導体層32、樹脂絶縁層23を形成する。そして、両側の樹脂絶縁層23の所定位置にそれぞれレーザー加工を施してビアホール43aを形成する。このようにして、樹脂絶縁層20、21、22、23と導体層30、31、32が交互に積層形成された上下のビルドアップ層が形成され(本発明の第1の積層工程)、中間積層体10aの基本構造が得られる。   Next, as shown in FIG. 4, via conductor 41, conductor layer 31, and resin insulation layer 22 are formed as an upper layer by the same method as the above-described via conductor 40, conductor layer 30, and resin insulation layer 21. The via conductor 42, the conductor layer 32, and the resin insulating layer 23 are formed in the upper layer. Then, laser processing is performed on predetermined positions of the resin insulating layers 23 on both sides to form via holes 43a. In this way, upper and lower buildup layers in which the resin insulating layers 20, 21, 22, 23 and the conductor layers 30, 31, 32 are alternately stacked are formed (first stacking step of the present invention), and the middle The basic structure of the laminated body 10a is obtained.

次に図5に示すように、中間積層体10aの両側の樹脂絶縁層23の表面側の全面に電解銅めっきを施すことにより、銅めっき層33が形成される。このとき、ビアホール43aの内部に銅めっきが充填され、フィルドビアであるビア導体43が銅めっき層33と一体的に形成される。なお、この時点で、一方の主面側の各ビア導体40〜43と、他方の主面側の各ビア導体40〜43は、互いに開口方向が逆向きになっている。   Next, as shown in FIG. 5, a copper plating layer 33 is formed by performing electrolytic copper plating on the entire surface of the resin insulating layer 23 on both sides of the intermediate laminate 10a. At this time, the inside of the via hole 43 a is filled with copper plating, and the via conductor 43 that is a filled via is formed integrally with the copper plating layer 33. At this time, the via conductors 40 to 43 on one main surface side and the via conductors 40 to 43 on the other main surface side are opposite in opening direction.

次に図6に示すように、上述の中間積層体10aを、その外形よりも内周側であって、剥離シート14の外周の側面よりも僅かに内周側に設定された切断線(図中、破線で示す)に沿って切断する。その結果、中間積層体10aの外周の領域が除去され、その側面に剥離シート14の剥離界面を含む端面が露出した状態になる。この状態で、上下の各剥離シート14において密着していた銅箔14aと銅箔14bとを剥離界面に沿って剥離する。その結果、図7に示すように、中間積層体10aと支持基材11とが分離され(本発明の分離工程)、2つの同一構造の積層体10bを得ることができる。このようにして得られた各々の積層体10bは、これ以降の各工程における支持基板(擬似コア)として機能する。   Next, as shown in FIG. 6, the above-described intermediate laminated body 10 a is a cutting line set on the inner peripheral side with respect to the outer shape and slightly on the inner peripheral side with respect to the outer peripheral side surface of the release sheet 14 (FIG. Cut along (indicated by the broken line). As a result, the outer peripheral region of the intermediate laminate 10a is removed, and the end surface including the release interface of the release sheet 14 is exposed on the side surface. In this state, the copper foil 14a and the copper foil 14b that are in close contact with each of the upper and lower release sheets 14 are peeled along the peeling interface. As a result, as shown in FIG. 7, the intermediate laminate 10a and the support base 11 are separated (the separation step of the present invention), and two laminates 10b having the same structure can be obtained. Each laminated body 10b obtained in this way functions as a support substrate (pseudo core) in each subsequent process.

次に図8に示すように、分離工程で得られた積層体10bの両面に、感光性のドライフィルムをラミネートして露光・現像することによりレジストパターンを形成し、裏面の銅箔14a及び表面の銅めっき層33に対するエッチングを行った後、レジストパターンを除去する。その結果、銅箔14aにパターニングが施された導体層60と、銅めっき層33にパターニングが施された導体層61が形成される。銅箔14a及び銅めっき層33のそれぞれのエッチング部分は、樹脂絶縁層20、23が露出した状態となる。   Next, as shown in FIG. 8, a resist pattern is formed by laminating a photosensitive dry film on both surfaces of the laminate 10 b obtained in the separation step, and then exposing and developing. Then, the copper foil 14 a on the back surface and the surface After etching the copper plating layer 33, the resist pattern is removed. As a result, a conductor layer 60 in which the copper foil 14a is patterned and a conductor layer 61 in which the copper plating layer 33 is patterned are formed. The etched portions of the copper foil 14a and the copper plating layer 33 are in a state where the resin insulating layers 20 and 23 are exposed.

次に図9に示すように、積層体10bの両側の導体層60、61を覆うようにフィルム状の樹脂材料を積層し、真空下にて加圧加熱することにより樹脂材料を硬化させて樹脂絶縁層50、51を形成する。その後、両側の樹脂絶縁層50、51の所定位置にそれぞれレーザー加工を施してビアホール70a、71aを形成する。なお、ビアホール70a、71aの開口方向はいずれも外側を向いており、互いに逆向きになっている。つまり、ビアホール70aの開口方向のみが、他のビア導体40〜43及びビアホール71aの開口方向と逆向きになっている。   Next, as shown in FIG. 9, a film-like resin material is laminated so as to cover the conductor layers 60 and 61 on both sides of the laminated body 10b, and the resin material is cured by pressurizing and heating under vacuum to obtain a resin. Insulating layers 50 and 51 are formed. Thereafter, laser processing is performed at predetermined positions of the resin insulating layers 50 and 51 on both sides to form via holes 70a and 71a. Note that the opening directions of the via holes 70a and 71a both face outward and are opposite to each other. That is, only the opening direction of the via hole 70a is opposite to the opening direction of the other via conductors 40 to 43 and the via hole 71a.

次に図10に示すように、ビアホール70a、71aの中のスミアを除去するデスミア処理を施した後、無電解銅めっきにより薄い銅膜を形成し、その銅膜の表面にドライフィルムを貼って露光・現像する。次いで、電解銅めっきを施すことによりドライフィルムが除去された部分に銅が析出し、ビア導体70、71、樹脂絶縁層50の表面のパッド62、樹脂絶縁層51の表面のパッド63のそれぞれが同時に形成される(本発明のビア形成工程)。次いで、両側の樹脂絶縁層50、51の各表面に感光性エポキシ樹脂を塗布して硬化させることによりソルダーレジスト層52、53を形成する。その後、ソルダーレジスト層52、53をパターニングして所定位置に開口部を形成し、それぞれパッド62、63が外部に露出される状態にする。以上の手順により積層体10bが完成し、これにより第1実施形態の多層配線基板を得ることができる。   Next, as shown in FIG. 10, after applying a desmear process for removing smear in the via holes 70a and 71a, a thin copper film is formed by electroless copper plating, and a dry film is pasted on the surface of the copper film. Exposure and development. Subsequently, copper is deposited on the portion where the dry film is removed by performing electrolytic copper plating, and the via conductors 70 and 71, the pad 62 on the surface of the resin insulating layer 50, and the pad 63 on the surface of the resin insulating layer 51 are respectively Simultaneously formed (via forming step of the present invention). Next, solder resist layers 52 and 53 are formed by applying and curing a photosensitive epoxy resin on the surfaces of the resin insulating layers 50 and 51 on both sides. Thereafter, the solder resist layers 52 and 53 are patterned to form openings at predetermined positions so that the pads 62 and 63 are exposed to the outside, respectively. The laminated body 10b is completed by the above procedure, whereby the multilayer wiring board of the first embodiment can be obtained.

図10に示す積層体10bにおいては、一方の主面側の樹脂絶縁層50、導体層60、ソルダーレジスト層52、パッド62からなるビルドアップ層(本発明の第1配線積層部)と、他方の主面側の樹脂絶縁層51、導体層61、ソルダーレジスト層53、パッド63からなるビルドアップ層(本発明の第2配線積層部)とを同時に形成することができる(本発明の第2の積層工程)。図10の積層体10bに対しては、例えば、底面のパッド62にはBGAパッケージに用いる半田ボールを接続し、上面のパッド63には半導体チップの端子等に接合可能な半田バンプを接続することができる。なお、分離工程後の工程としては図8〜図10のみを示したが、これに限られることなく、最終的な多層配線基板の用途及び機能に応じて図8に示す積層体10bに対し多様な加工を施すことができる。また、図8の積層体10bの両側に積層される樹脂絶縁層及び導体層の積層数は、必要に応じて更に増加させることができる。さらに、多数個取りの基板形態を前提とするときは、図10で得られた積層体10bを切断して複数の多層配線基板を得ることができる。   In the laminated body 10b shown in FIG. 10, a buildup layer (first wiring laminated portion of the present invention) composed of a resin insulating layer 50, a conductor layer 60, a solder resist layer 52, and a pad 62 on one main surface side, and the other The build-up layer (the second wiring laminated portion of the present invention) composed of the resin insulating layer 51, the conductor layer 61, the solder resist layer 53, and the pad 63 on the main surface side of the main surface can be simultaneously formed (second of the present invention). Laminating step). 10, for example, solder balls used for the BGA package are connected to the pads 62 on the bottom surface, and solder bumps that can be bonded to the terminals of the semiconductor chip are connected to the pads 63 on the top surface. Can do. Although only the steps after the separation step are shown in FIGS. 8 to 10, the present invention is not limited to this, and there are various types of the laminated body 10b shown in FIG. Can be processed. Further, the number of laminated resin insulating layers and conductor layers laminated on both sides of the laminate 10b in FIG. 8 can be further increased as necessary. Furthermore, when assuming a multi-cavity substrate form, the multilayer body 10b obtained in FIG. 10 can be cut to obtain a plurality of multilayer wiring boards.

以上、図1〜図10に基づいて説明した第1実施形態の製造方法には、上記の例に限られず、多様な変形例がある。例えば、図10の積層体10bは、樹脂絶縁層20〜23、50、51とソルダーレジスト層52、53を含んで構成されるが、ソルダーレジスト層52、53を樹脂絶縁層に置き換えてもよい。この場合、図10のパッド62、63の部分の開口部を形成するために、大開口径が可能なレーザーを用いることが好ましい。また、レーザーを用いない場合は、両側の樹脂絶縁層に研磨及びデスミア処理を施して露出させたパッド62、63に銅めっきを施して厚くした後に樹脂フィルムで覆い、両面に研磨及びデスミア処理を施してからパッド62、63の部分をエッチングしてもよい。以上の変形例を採用することにより、全て同一材料の樹脂絶縁層を用いて積層体10bを構成でき、製造工程の簡素化及び低コスト化が可能となる。   As described above, the manufacturing method according to the first embodiment described with reference to FIGS. 1 to 10 is not limited to the above example, but includes various modifications. For example, although the laminated body 10b of FIG. 10 includes the resin insulating layers 20 to 23, 50, and 51 and the solder resist layers 52 and 53, the solder resist layers 52 and 53 may be replaced with resin insulating layers. . In this case, it is preferable to use a laser capable of a large opening diameter in order to form the openings of the pads 62 and 63 in FIG. If the laser is not used, the pads 62 and 63 exposed by polishing and desmearing the resin insulation layers on both sides are exposed to copper and thickened, and then covered with a resin film, and polishing and desmearing are performed on both sides. After the application, the portions of the pads 62 and 63 may be etched. By adopting the above modification, the laminated body 10b can be configured using resin insulating layers made of the same material, and the manufacturing process can be simplified and the cost can be reduced.

以上説明したように、第1実施形態の製造方法で多層配線基板を形成することにより、従来のコアレス配線基板のメリットを享受しながら、第1の積層工程では支持基材11の重さなどにより積層数が制約を受けるところ、分離工程後の第2の積層工程では分離後の積層体10bを擬似コアとして容易に積層数(例えば10層以上)を増加させることができる。これは、支持基材11に比べて分離後の積層体10bは軽い材料からなるので、製造工程において搬送や取り扱いの制約が小さくなるためである。一方、コアレス配線基板のメリットとしてスルーホールが不要な構造を取り入れ、ビア導体を用いた積層方向の電気的接続が可能となる。また、分離工程後は積層体10bの両面に対して同時に共通の処理を適用可能となり製造工程の簡素化が可能となる。   As described above, by forming the multilayer wiring board by the manufacturing method of the first embodiment, while enjoying the merits of the conventional coreless wiring board, the weight of the support base 11 is used in the first lamination process. When the number of stacks is limited, in the second stacking step after the separation step, the number of stacks (for example, 10 layers or more) can be easily increased by using the separated stacked body 10b as a pseudo core. This is because the laminated body 10b after separation is made of a light material as compared with the support base material 11, and thus restrictions on transportation and handling are reduced in the manufacturing process. On the other hand, as a merit of the coreless wiring board, a structure that does not require a through hole is adopted, and electrical connection in the stacking direction using via conductors becomes possible. In addition, after the separation process, a common process can be simultaneously applied to both surfaces of the laminate 10b, and the manufacturing process can be simplified.

[第2実施形態]
次に、本発明の第2実施形態の多層配線基板の製造方法について、図11〜図16を参照して説明する。第2実施形態は、多くの点で第1実施形態と共通するので、以下では主に第1実施形態と異なる点について説明する。まず、図11に示すように、第1実施形態の図1と同様の板状の支持基材11を用意する。図11の構造においては、図1と比べると、剥離シート14の構造が異なっている。具体的には、図11の剥離シート14では、外側に位置する銅箔14c(本発明の上層シート)の厚さは内側に位置する銅箔14d(本発明の下層シート)の厚さに比べて小さく、図1とは逆の関係となっている。その他の構造については図1と同様である。
[Second Embodiment]
Next, the manufacturing method of the multilayer wiring board of 2nd Embodiment of this invention is demonstrated with reference to FIGS. Since the second embodiment is common to the first embodiment in many respects, differences from the first embodiment will be mainly described below. First, as shown in FIG. 11, a plate-like support base 11 similar to that of FIG. 1 of the first embodiment is prepared. In the structure of FIG. 11, the structure of the release sheet 14 is different from that of FIG. 1. Specifically, in the release sheet 14 of FIG. 11, the thickness of the copper foil 14c located on the outer side (the upper layer sheet of the present invention) is compared with the thickness of the copper foil 14d located on the inner side (the lower layer sheet of the present invention). The relationship is opposite to that shown in FIG. Other structures are the same as those in FIG.

第2実施形態における図1以降の工程については、第1実施形態の図2〜図4に示すビルドアップ層の構造と共通する。ただし、第1実施形態ではサブトラクティブ法を用いて積層する場合を説明したのに対し、第2実施形態ではセミアディティブ法を用いて積層する場合を前提とする。よって、第2実施形態においては、図2〜図4に示す構造に含まれる導体層30、31、32は、樹脂絶縁層20、21、22の表面にドライフィルムを用いてレジストパターンを形成し、その表面に無電解銅めっき及び電解銅めっきを施すことにより形成される。この時点で、剥離シート14の構造以外は、図4の中間積層体10aと同様の基本構造が得られる。   1 and subsequent steps in the second embodiment are common to the build-up layer structure shown in FIGS. 2 to 4 of the first embodiment. However, while the first embodiment has described the case of stacking using the subtractive method, the second embodiment is premised on the case of stacking using the semi-additive method. Therefore, in the second embodiment, the conductor layers 30, 31, and 32 included in the structures shown in FIGS. 2 to 4 are formed by forming a resist pattern on the surfaces of the resin insulating layers 20, 21, and 22 using a dry film. The surface is formed by electroless copper plating and electrolytic copper plating. At this point, a basic structure similar to that of the intermediate laminate 10a of FIG. 4 is obtained except for the structure of the release sheet 14.

次に図12に示すように、中間積層体10aの両側の樹脂絶縁層23の表面側の全面に無電解銅めっきを施すことにより、銅めっき層33aが形成される。この銅めっき層33aは、第1実施形態の図5の銅めっき層33に比べると薄い層であり、ビアホール43a内には充填されず、その表面のみが薄い銅めっき層33aで覆われた状態になっている。   Next, as shown in FIG. 12, a copper plating layer 33a is formed by performing electroless copper plating on the entire surface of the resin insulating layer 23 on both sides of the intermediate laminate 10a. This copper plating layer 33a is thinner than the copper plating layer 33 of FIG. 5 of the first embodiment, and is not filled in the via hole 43a, and only the surface thereof is covered with the thin copper plating layer 33a. It has become.

次に、第1実施形態の図6及び図7と同様の手法で、図12の中間積層体10aを切断した後に支持基材11と分離する(本発明の分離工程)。その結果、図13に示すように、2つの同一構造の積層体10bを得ることができる。このようにして得られた各々の積層体10bは、これ以降の各工程における支持基板(擬似コア)として機能する。   Next, the intermediate laminate 10a of FIG. 12 is cut and then separated from the support base 11 by the same method as in FIGS. 6 and 7 of the first embodiment (separation step of the present invention). As a result, as shown in FIG. 13, two stacked bodies 10b having the same structure can be obtained. Each laminated body 10b obtained in this way functions as a support substrate (pseudo core) in each subsequent process.

次に図14に示すように、分離工程で得られた積層体10bに対し、両側の銅箔14c及び銅めっき層33aのそれぞれの表面にドライフィルム15をラミネートする。このドライフィルム15は、導体を形成すべき部分がそれぞれ除去されている。続いて、ドライフィルム15が形成された状態で、積層体10bの両面に電解銅めっきを施した後、ドライフィルム15を除去する。その結果、図15に示すように、銅箔14cにパターニングが施された導体層80と、銅めっき層33aにパターニングが施された導体層81が形成される。   Next, as shown in FIG. 14, the dry film 15 is laminated on each surface of the copper foil 14c and the copper plating layer 33a on both sides of the laminated body 10b obtained in the separation step. In the dry film 15, portions where conductors are to be formed are removed. Subsequently, in a state where the dry film 15 is formed, after electrolytic copper plating is performed on both surfaces of the laminate 10b, the dry film 15 is removed. As a result, as shown in FIG. 15, a conductor layer 80 in which the copper foil 14c is patterned and a conductor layer 81 in which the copper plating layer 33a is patterned are formed.

次に図16に示すように、第1実施形態の図9と同様の手法で、積層体10bの両側に樹脂絶縁層50、51を形成する。続いて、第1実施形態の図10と同様の手法で、ビア導体70、71を形成し(本発明のビア形成工程)、樹脂絶縁層50、51のそれぞれの表面にパッド62、63を形成する。さらに、ソルダーレジスト層52、53を形成し、それぞれのパターニングによりパッド62、63が外部に露出される状態にする。以上の手順により積層体10bが完成し、これにより第2実施形態の多層配線基板を得ることができる。   Next, as shown in FIG. 16, resin insulating layers 50 and 51 are formed on both sides of the laminate 10b by the same method as in FIG. 9 of the first embodiment. Subsequently, via conductors 70 and 71 are formed by the same method as in FIG. 10 of the first embodiment (via formation step of the present invention), and pads 62 and 63 are formed on the surfaces of the resin insulating layers 50 and 51, respectively. To do. Further, solder resist layers 52 and 53 are formed, and the pads 62 and 63 are exposed to the outside by patterning. The laminated body 10b is completed by the above procedure, whereby the multilayer wiring board of the second embodiment can be obtained.

なお、第2実施形態においても、第1実施形態の場合と同様、積層体10bの積層数は必要に応じて更に増加させることができるとともに、多数個取りの基板形態にも容易に対応可能である。また、第1実施形態で説明した変形例は、第2実施形態においても採用することができる。   Also in the second embodiment, as in the case of the first embodiment, the number of stacked layers 10b can be further increased as necessary, and can be easily adapted to a multi-chip substrate form. is there. The modification described in the first embodiment can also be employed in the second embodiment.

以上説明したように、第2実施形態の製造方法で多層配線基板を形成することにより、第1実施形態と同様の作用効果を得られることに加えて、内層を全てセミアディティブ法により形成可能であるため、微細なパターニングにより高密度化に適した多層配線基板を実現することができる。   As described above, by forming the multilayer wiring board by the manufacturing method of the second embodiment, the same effect as that of the first embodiment can be obtained, and all the inner layers can be formed by the semi-additive method. Therefore, a multilayer wiring board suitable for high density can be realized by fine patterning.

以上、2つの実施形態に基づき本発明の内容を具体的に説明したが、本発明は上述の各実施形態に限定されるものではなく、その要旨を逸脱しない範囲で多様な変更を施すことができる。例えば、本実施形態では銅箔14a、14bを剥離可能に密着した剥離シート14を説明したが、銅に限られることなく剥離可能に密着した各種金属材料を用いて剥離シート14を形成してもよく、その厚さも変更可能である。また、本実施形態では、金属(銅)めっき工程により中間積層体10aの表面側の全面に金属(銅)めっきを施す場合を説明したが、金属めっきに限られず、例えばスパッタリングにより、中間積層体10aの表面側の全面に金属を主体とする層を形成してもよい。また、多層配線基板を構成する樹脂絶縁層、ビア導体、パッド、ソルダーレジスト層、その他の構成部材についても、本発明の作用効果を得られる限り、それらの構造、形状、形成方法は上記各実施形態に開示した内容には限定されることなく変更可能である。   Although the contents of the present invention have been specifically described based on the two embodiments, the present invention is not limited to the above-described embodiments, and various modifications can be made without departing from the scope of the present invention. it can. For example, in the present embodiment, the release sheet 14 in which the copper foils 14a and 14b are adhered in a peelable manner has been described, but the release sheet 14 may be formed using various metal materials that are in close contact with each other without being limited to copper. Well, its thickness can also be changed. Moreover, although this embodiment demonstrated the case where metal (copper) plating was performed to the whole surface side of the intermediate | middle laminated body 10a by a metal (copper) plating process, it is not restricted to metal plating, For example, intermediate | middle laminated body by sputtering. A layer mainly composed of metal may be formed on the entire surface of the surface 10a. In addition, the resin insulation layer, via conductor, pad, solder resist layer, and other components constituting the multilayer wiring board also have their structures, shapes, and formation methods as long as the effects of the present invention can be obtained. The content disclosed in the embodiment can be changed without being limited.

10a…中間積層体
10b…積層体
11…支持基材
12…銅箔
13…プリプレグ
14…剥離シート
14a、14b、14c、14d…銅箔
15…ドライフィルム
20、21、22、23、50、51…樹脂絶縁層
30、31、32、60、61、80、81…導体層
33、33a…銅めっき層
40、41、42、43、70、71…ビア導体
40a、43a、70a、71a…ビアホール
52、53…ソルダーレジスト層
62、63…パッド
DESCRIPTION OF SYMBOLS 10a ... Intermediate laminated body 10b ... Laminated body 11 ... Support base material 12 ... Copper foil 13 ... Prepreg 14 ... Release sheet 14a, 14b, 14c, 14d ... Copper foil 15 ... Dry film 20, 21, 22, 23, 50, 51 ... Resin insulation layers 30, 31, 32, 60, 61, 80, 81 ... Conductor layers 33, 33a ... Copper plating layers 40, 41, 42, 43, 70, 71 ... Via conductors 40a, 43a, 70a, 71a ... Via holes 52, 53 ... Solder resist layer 62, 63 ... Pad

Claims (10)

樹脂絶縁層と導体層とを交互に積層形成した多層配線基板の製造方法において、
板状の支持基材上に前記樹脂絶縁層と前記導体層とを交互に積層して中間積層体を形成する第1の積層工程と、
前記中間積層体の表面側の全面に金属を主体とする層を形成する金属層形成工程と、
前記中間積層体と前記支持基材とを分離する分離工程と、
前記支持基材と分離した前記中間積層体に対し、一方の主面側に前記樹脂絶縁層と前記導体層とを交互に積層した第1配線積層部を形成するとともに、他方の主面側に前記樹脂絶縁層と前記導体層とを交互に積層した第2配線積層部を形成する第2の積層工程と、
を含むことを特徴とする多層配線基板の製造方法。
In the method of manufacturing a multilayer wiring board in which resin insulation layers and conductor layers are alternately laminated,
A first laminating step of alternately laminating the resin insulating layers and the conductor layers on a plate-like support base material to form an intermediate laminate;
A metal layer forming step of forming a metal-based layer on the entire surface of the intermediate laminate,
A separation step of separating the intermediate laminate and the support substrate;
A first wiring laminated portion in which the resin insulating layer and the conductor layer are alternately laminated is formed on one main surface side and the other main surface side is formed on the intermediate laminated body separated from the support base material. A second laminating step of forming a second wiring laminating portion in which the resin insulating layers and the conductor layers are alternately laminated;
A method for producing a multilayer wiring board, comprising:
前記第1の積層工程では、前記支持基材の両面側に2つの前記中間積層体が形成されることを特徴とする請求項1に記載の多層配線基板の製造方法。   2. The method for manufacturing a multilayer wiring board according to claim 1, wherein in the first lamination step, two intermediate laminates are formed on both sides of the support base material. 前記第1の積層工程及び前記第2の積層工程では、各々の前記樹脂絶縁層を貫いて前記導体層間を電気的に接続するビア導体を形成するビア形成工程をさらに含むことを特徴とする請求項1又は2に記載の多層配線基板の製造方法。   The first laminating step and the second laminating step further include a via forming step of forming a via conductor that penetrates each resin insulating layer and electrically connects the conductor layers. Item 3. A method for producing a multilayer wiring board according to Item 1 or 2. 前記支持基材の少なくとも一方の主面側に下層シートと上層シートとを剥離可能な状態で配置するシート配置工程をさらに備え、
前記分離工程は、前記下層シートと前記上層シートとを剥離界面で剥離させることにより前記中間積層体と前記支持基板とを分離することを特徴とする請求項1から3のいずれかに記載の多層配線基板の製造方法。
A sheet disposing step of disposing the lower layer sheet and the upper layer sheet in a peelable state on at least one main surface side of the support substrate;
4. The multilayer according to claim 1, wherein the separating step separates the intermediate laminate and the support substrate by separating the lower layer sheet and the upper layer sheet at a separation interface. 5. A method for manufacturing a wiring board.
前記下層シート及び上層シートは、銅からなることを特徴とする請求項4に記載の多層配線基板の製造方法。   The method for manufacturing a multilayer wiring board according to claim 4, wherein the lower layer sheet and the upper layer sheet are made of copper. 前記下層シートは前記上層シートよりも薄く形成され、前記支持基材の表面には、前記下層シートが密着し、
前記金属層形成工程では、前記中間積層体の表面側の全面に電解めっきにより金属めっき層が形成されることを特徴とする請求項4又は5に記載の多層配線基板の製造方法。
The lower layer sheet is formed thinner than the upper layer sheet, and the lower layer sheet is in close contact with the surface of the support substrate,
6. The method for manufacturing a multilayer wiring board according to claim 4, wherein in the metal layer forming step, a metal plating layer is formed by electrolytic plating on the entire surface on the surface side of the intermediate laminate.
前記分離工程後の前記中間積層体の両面側に形成された前記上層シート及び前記金属めっき層のそれぞれに対し、サブトラクティブ法により前記金属めっき層の少なくとも一部を除去し、前記導体層が形成されることを特徴とする請求項6に記載の多層配線基板の製造方法。   For each of the upper layer sheet and the metal plating layer formed on both sides of the intermediate laminate after the separation step, at least a part of the metal plating layer is removed by a subtractive method to form the conductor layer The method for producing a multilayer wiring board according to claim 6, wherein: 前記上層シートは前記下層シートよりも薄く形成され、前記支持基材の表面には、前記下層シートが密着し、
前記金属層形成工程では、前記中間積層体の表面側の全面に無電解めっきにより金属めっき層が形成されることを特徴とする請求項4又は5に記載の多層配線基板の製造方法。
The upper layer sheet is formed thinner than the lower layer sheet, the surface of the support substrate is in close contact with the lower layer sheet,
6. The method for manufacturing a multilayer wiring board according to claim 4, wherein in the metal layer forming step, a metal plating layer is formed by electroless plating on the entire surface of the intermediate laminate.
全ての前記導体層がセミアディティブ法により形成されることを特徴とする請求項8に記載の多層配線基板の製造方法。   The method for manufacturing a multilayer wiring board according to claim 8, wherein all the conductor layers are formed by a semi-additive method. 全ての前記樹脂絶縁層が同じ樹脂絶縁材を主体として形成されることを特徴とする請求項1から9のいずれかに記載の多層配線基板の製造方法。
The method for manufacturing a multilayer wiring board according to claim 1, wherein all the resin insulating layers are mainly formed of the same resin insulating material.
JP2010065254A 2010-03-19 2010-03-19 Method of manufacturing multilayer wiring board Pending JP2011199077A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010065254A JP2011199077A (en) 2010-03-19 2010-03-19 Method of manufacturing multilayer wiring board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010065254A JP2011199077A (en) 2010-03-19 2010-03-19 Method of manufacturing multilayer wiring board

Publications (1)

Publication Number Publication Date
JP2011199077A true JP2011199077A (en) 2011-10-06

Family

ID=44876902

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010065254A Pending JP2011199077A (en) 2010-03-19 2010-03-19 Method of manufacturing multilayer wiring board

Country Status (1)

Country Link
JP (1) JP2011199077A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103137568A (en) * 2011-12-02 2013-06-05 欣兴电子股份有限公司 Package substrate with support and method for fabricating the same
JP2013251313A (en) * 2012-05-30 2013-12-12 Toppan Printing Co Ltd Multi-layer wiring board and manufacturing method of the same
JP2014027250A (en) * 2012-07-26 2014-02-06 Samsung Electro-Mechanics Co Ltd Multilayer type coreless substrate and method of manufacturing the same
WO2014050995A1 (en) * 2012-09-26 2014-04-03 日立化成株式会社 Multilayer wiring board, and method for manufacturing multilayer wiring board
JP2014063950A (en) * 2012-09-24 2014-04-10 Shinko Electric Ind Co Ltd Method of manufacturing wiring board
JP2014130856A (en) * 2012-12-28 2014-07-10 Kyocer Slc Technologies Corp Wiring board manufacturing method
JP2014157938A (en) * 2013-02-15 2014-08-28 Panasonic Corp Material for printed wiring board, method of producing material for printed wiring board, method of manufacturing printed wiring board
JP2016072320A (en) * 2014-09-29 2016-05-09 株式会社 大昌電子 Printed wiring board and method of manufacturing the same
JP2016134395A (en) * 2015-01-15 2016-07-25 イビデン株式会社 Manufacturing method of printed wiring board
WO2016143484A1 (en) * 2015-03-12 2016-09-15 三井金属鉱業株式会社 Metal foil with carrier, and manufacturing method for wiring board
JP2017017303A (en) * 2015-06-30 2017-01-19 旭徳科技股▲ふん▼有限公司 Package substrate and manufacturing method thereof
JP2018037652A (en) * 2016-08-30 2018-03-08 サムソン エレクトロ−メカニックス カンパニーリミテッド. Method of manufacturing inductor, and inductor
JP2019016647A (en) * 2017-07-04 2019-01-31 日立化成株式会社 Temporary fixing method of fan-out wafer level package
CN109743840A (en) * 2018-12-28 2019-05-10 广州兴森快捷电路科技有限公司 Coreless substrate and its packaging method
CN113923871A (en) * 2021-09-26 2022-01-11 东莞康源电子有限公司 Edge sealing design and manufacturing method of novel coreless substrate bearing layer

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004235323A (en) * 2003-01-29 2004-08-19 Fujitsu Ltd Manufacturing method of wiring substrate
JP2007013048A (en) * 2005-07-04 2007-01-18 Daiwa Kogyo:Kk Multilayer wiring board manufacturing method
JP2007173658A (en) * 2005-12-26 2007-07-05 Kyocer Slc Technologies Corp Method for manufacturing wiring board

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004235323A (en) * 2003-01-29 2004-08-19 Fujitsu Ltd Manufacturing method of wiring substrate
JP2007013048A (en) * 2005-07-04 2007-01-18 Daiwa Kogyo:Kk Multilayer wiring board manufacturing method
JP2007173658A (en) * 2005-12-26 2007-07-05 Kyocer Slc Technologies Corp Method for manufacturing wiring board

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103137568A (en) * 2011-12-02 2013-06-05 欣兴电子股份有限公司 Package substrate with support and method for fabricating the same
JP2013251313A (en) * 2012-05-30 2013-12-12 Toppan Printing Co Ltd Multi-layer wiring board and manufacturing method of the same
JP2014027250A (en) * 2012-07-26 2014-02-06 Samsung Electro-Mechanics Co Ltd Multilayer type coreless substrate and method of manufacturing the same
JP2014063950A (en) * 2012-09-24 2014-04-10 Shinko Electric Ind Co Ltd Method of manufacturing wiring board
US9006103B2 (en) 2012-09-24 2015-04-14 Shinko Electric Industries Co., Ltd. Method of manufacturing wiring substrate
JPWO2014050995A1 (en) * 2012-09-26 2016-08-22 日立化成株式会社 Multilayer wiring board and method for manufacturing multilayer wiring board
WO2014050995A1 (en) * 2012-09-26 2014-04-03 日立化成株式会社 Multilayer wiring board, and method for manufacturing multilayer wiring board
CN104685978A (en) * 2012-09-26 2015-06-03 日立化成株式会社 Multilayer wiring board, and method for manufacturing multilayer wiring board
US10194525B2 (en) 2012-09-26 2019-01-29 Hitachi Chemical Company, Ltd. Multilayer wiring board, and method for manufacturing multilayer wiring board
JP2014130856A (en) * 2012-12-28 2014-07-10 Kyocer Slc Technologies Corp Wiring board manufacturing method
US9502340B2 (en) 2012-12-28 2016-11-22 Kyocera Corporation Method for manufacturing wiring board
JP2014157938A (en) * 2013-02-15 2014-08-28 Panasonic Corp Material for printed wiring board, method of producing material for printed wiring board, method of manufacturing printed wiring board
JP2016072320A (en) * 2014-09-29 2016-05-09 株式会社 大昌電子 Printed wiring board and method of manufacturing the same
JP2016134395A (en) * 2015-01-15 2016-07-25 イビデン株式会社 Manufacturing method of printed wiring board
WO2016143484A1 (en) * 2015-03-12 2016-09-15 三井金属鉱業株式会社 Metal foil with carrier, and manufacturing method for wiring board
JP2017017303A (en) * 2015-06-30 2017-01-19 旭徳科技股▲ふん▼有限公司 Package substrate and manufacturing method thereof
US9693468B2 (en) 2015-06-30 2017-06-27 Subtron Technology Co., Ltd. Package substrate and manufacturing method thereof
JP2018037652A (en) * 2016-08-30 2018-03-08 サムソン エレクトロ−メカニックス カンパニーリミテッド. Method of manufacturing inductor, and inductor
JP2019016647A (en) * 2017-07-04 2019-01-31 日立化成株式会社 Temporary fixing method of fan-out wafer level package
CN109743840A (en) * 2018-12-28 2019-05-10 广州兴森快捷电路科技有限公司 Coreless substrate and its packaging method
CN113923871A (en) * 2021-09-26 2022-01-11 东莞康源电子有限公司 Edge sealing design and manufacturing method of novel coreless substrate bearing layer

Similar Documents

Publication Publication Date Title
JP2011199077A (en) Method of manufacturing multilayer wiring board
US10398038B2 (en) Printed wiring board and method for manufacturing printed wiring board
KR101475109B1 (en) Multilayer Wiring Substrate and Method of Manufacturing the Same
KR101580343B1 (en) Method of Manufacturing Multilayer Wiring Substrate
JP2012191204A (en) Manufacturing method of printed wiring board
TWI463928B (en) Package substrate, package structure and methods for manufacturing same
JP2011159855A (en) Partially multilayer printed circuit board, and method of manufacturing the same
US10674608B2 (en) Printed circuit board and manufacturing method thereof
JP5302920B2 (en) Manufacturing method of multilayer wiring board
JP5307922B2 (en) Method for manufacturing printed circuit board manufacturing carrier and method for manufacturing printed circuit board
JP2010050351A (en) Method of manufacturing wiring substrate
KR20140008923A (en) Coreless substrate and method of manufacturing the same
KR101167422B1 (en) Carrier member and method of manufacturing PCB using the same
JP5302927B2 (en) Manufacturing method of multilayer wiring board
KR101205464B1 (en) Method for manufacturing a printed circuit board
WO2018163859A1 (en) Multi-layer substrate, electronic apparatus, and method for producing multi-layer substrate
JP2019121766A (en) Printed wiring board and manufacturing method thereof
JP2019067864A (en) Method for manufacturing printed wiring board
TWI461135B (en) Method for fabricating circuit board
KR101055571B1 (en) Carrier member for substrate manufacturing and method for manufacturing substrate using same
KR101441466B1 (en) Ultra-thin package board and manufacturing method thereof
KR20120036044A (en) Method of manufacturing a chip-embedded multi-level printed circuit board
KR101119380B1 (en) A carrier member for manufacturing a substrate and a method of manufacturing a substrate using the same
KR20070025493A (en) Manufacturing method of all layer inner via hall printed circuit board that utilizes the fill plating
KR101044123B1 (en) A carrier member for manufacturing a substrate and a method of manufacturing a substrate using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120604

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130528

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130725

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130903

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131031

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20131203