WO2016143484A1 - Metal foil with carrier, and manufacturing method for wiring board - Google Patents

Metal foil with carrier, and manufacturing method for wiring board Download PDF

Info

Publication number
WO2016143484A1
WO2016143484A1 PCT/JP2016/054851 JP2016054851W WO2016143484A1 WO 2016143484 A1 WO2016143484 A1 WO 2016143484A1 JP 2016054851 W JP2016054851 W JP 2016054851W WO 2016143484 A1 WO2016143484 A1 WO 2016143484A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
metal foil
carrier
ultrathin
wiring board
Prior art date
Application number
PCT/JP2016/054851
Other languages
French (fr)
Japanese (ja)
Inventor
哲聡 ▲高▼梨
浩人 飯田
吉川 和広
Original Assignee
三井金属鉱業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三井金属鉱業株式会社 filed Critical 三井金属鉱業株式会社
Priority to CN201680011755.9A priority Critical patent/CN107249876A/en
Priority to KR1020177022124A priority patent/KR20170127414A/en
Priority to JP2017504945A priority patent/JPWO2016143484A1/en
Publication of WO2016143484A1 publication Critical patent/WO2016143484A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/12Mountings, e.g. non-detachable insulating substrates
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/20Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern by affixing prefabricated conductor pattern
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • H05K3/4644Manufacturing multilayer circuits by building the multilayer layer by layer, i.e. build-up multilayer circuits
    • H05K3/4652Adding a circuit layer by laminating a metal foil or a preformed metal foil pattern
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/08PCBs, i.e. printed circuit boards

Definitions

  • the present invention relates to a metal foil with a carrier. Moreover, this invention relates to the manufacturing method of the wiring board using the copper foil with a carrier.
  • Patent Document 1 proposes a circuit-forming support substrate (hereinafter referred to as a support) in which an insulating resin layer, such as a prepreg, is bonded to a carrier foil surface of an ultrathin copper foil with a carrier foil.
  • a support a circuit-forming support substrate
  • an insulating resin layer such as a prepreg
  • pattern electrolytic copper plating is performed on an ultrathin copper foil in the support to form a first wiring conductor; a second insulating resin is disposed so as to be in contact with the first wiring conductor.
  • a non-through hole reaching the first wiring conductor is formed in the second insulating resin, and the inner wall of the non-through hole is subsequently connected by electrolytic copper plating or electroless copper plating.
  • a coreless build-up wiring board is manufactured by forming a conductor; and then peeling off the carrier foil and the ultrathin copper foil.
  • a multilayer metal foil in which a first carrier metal foil, a second carrier metal foil, and a base metal foil are laminated in this order is prepared, and the base metal foil side of the multilayer metal foil is prepared. And a prepreg as a base material are laminated to form a support.
  • the first carrier metal foil is physically peeled between the first carrier metal foil and the second carrier metal foil of the multilayer metal foil.
  • first pattern plating is performed on the second carrier metal foil remaining on the core substrate.
  • an insulating layer and a conductor layer are sequentially laminated on the second carrier metal foil including the first pattern plating to form a laminate having a build-up layer.
  • the laminate is physically separated from the support together with the second carrier metal foil and separated.
  • an etching resist is formed on the second carrier metal foil of the peeled laminate, and etching is performed to form a three-dimensional circuit on the first pattern plating or the insulating layer.
  • the support is formed in the process of manufacturing a coreless buildup substrate on which a buildup layer is formed.
  • a process of carrying is required.
  • grips the copper foil with a carrier exposed to the support body surface is performed.
  • the gripping work is performed by manual gripping, gripping by the fork or suction pad of the substrate transfer robot, or by a conveyor roll.
  • gripping and gripping by slit conveyance There are various types such as gripping and gripping by slit conveyance.
  • an object of the present invention is to improve a metal foil with a carrier and to improve a method for producing a wiring board using the same. More specifically, when forming a support, the metal foil with a carrier has good handling properties such as conveyance. And it is providing the manufacturing method of a wiring board using the same.
  • the present invention is a metal foil with a carrier having a carrier, an ultrathin metal foil layer, and a release layer located between them,
  • the release layer has a thickness of 1 nm to 1 ⁇ m
  • the carrier solves the above-mentioned problems by providing a metal foil with a carrier having an extended portion extending from at least a part of the outer edge of the ultrathin metal foil layer.
  • the present invention is a method for manufacturing a wiring board using the metal foil with a carrier.
  • the above-described problems are solved by providing a method of manufacturing a wiring board having a step of gripping the extended portion of the metal foil with a carrier.
  • FIG.1 (a) is a top view which shows one Embodiment of metal foil with a carrier of this invention
  • FIG.1 (b) is a top view which shows another embodiment of metal foil with a carrier of this invention
  • . 2A is a cross-sectional view taken along line bb in FIGS. 1A and 1B
  • FIG. 2B is a cross-sectional view taken along line bb in FIGS. 1A and 1B. It is another form of line sectional drawing.
  • 3 (a) to 3 (c) are schematic views showing a production process of a support using the metal foil with a carrier shown in FIG.
  • FIG. 4 (a) to 4 (d) are schematic views showing a process for manufacturing a wiring board with a carrier using the metal foil with a carrier shown in FIG. 1 and a metal foil with a carrier as shown in FIG. 3 (c). It is. 5 (a) to 5 (c) are schematic diagrams showing a manufacturing process of a wiring board by a support using the metal foil with a carrier shown in FIG. 1 as a continuation of FIG. 4 (d). 6 (a) to 6 (e) are schematic views showing a manufacturing process of a wiring board using the metal foil with a carrier shown in FIG. 1 and a support using the metal foil with a carrier as shown in FIG. 5 (c). FIG.
  • FIG. 1A shows a plan view of an embodiment of the metal foil with a carrier of the present invention.
  • FIG.1 (b) is a top view of another embodiment of the metal foil with a carrier of this invention.
  • 2A is a cross-sectional view taken along the line cc in FIGS. 1A and 1B.
  • the metal foil 10 with a carrier of this embodiment includes a carrier 11 and an ultrathin metal foil layer 12.
  • the carrier 11 is provided to be peelable from the ultrathin metal foil layer 12.
  • the metal foil 10 with a carrier has a release layer 13 located between the carrier 11 and the ultrathin metal foil layer 12.
  • the ultrathin metal foil layer 12 in the metal foil with carrier 10 has a pair of sides facing each other in plan view.
  • the peeling layer 13 positioned between the ultrathin metal foil layer 12 and the carrier 10 can be formed so that they are completely overlapped with each other when viewed from the ultrathin metal foil layer 12.
  • the release layer 13 has the same shape and dimensions as the ultrathin metal foil layer 12.
  • the shape of the release layer 13 is not limited to this, and may be extended from at least a part of the outer edge of the ultrathin metal foil layer 12 in plan view of the metal foil 10 with a carrier, as will be described later.
  • the ultrathin metal foil layer 12 having a quadrilateral shape in plan view has a pair of first outer edges 12a, 12a facing each other and a pair of second outer edges 12b, 12b facing each other.
  • the pair of first outer edges 12a and 12a may be parallel to each other or may not be parallel to each other.
  • the pair of first outer edges 12a, 12a may have the same length or may be different. The same applies to the pair of second outer edges 12b, 12b.
  • the carrier 11 when viewed in plan, has a first outer edge 12a and a second outer edge 12b which are outer edges of the ultrathin metal foil layer 12. It extends from the whole area.
  • the carrier 11 has a quadrilateral shape in plan view, and has a pair of first outer edges 11a and 11a facing each other and a pair of second outer edges 11b and 11b facing each other.
  • the first outer edge 11 a of the carrier 11 is substantially parallel to the first outer edge 12 a of the ultrathin metal foil layer 12.
  • the second outer edge 11 b of the carrier 11 is substantially parallel to the second outer edge 12 b of the ultrathin metal foil layer 12.
  • the carrier 11 has a quadrilateral shape having four sides substantially parallel to the four sides of the ultrathin metal foil layer 12 in plan view.
  • the carrier 11 has a pair of first extending portions 111a extending from the outer edge of the ultrathin metal foil layer 12 and facing each other, and a pair of second extending portions 111b facing each other in plan view.
  • Each extending part 111a, 111b has a long quadrilateral shape in one direction.
  • Each extending part 111a, 111b improves the handleability of the end part of the metal foil 10 with a carrier, for example, the handling property in the transport process when the support is formed, and further, in the process of the later build-up layer It is formed for the purpose of forming a sealed region in which the interface between the carrier 11 and the ultrathin metal foil layer 12 can be sealed with an insulating resin over four sides.
  • the ultrathin metal foil layer 12 preferably has a quadrilateral shape such as a rectangle.
  • the extending portions 111a and 111b and the ultrathin metal foil layer 12 when the extending portions 111a and 111b and the ultrathin metal foil layer 12 are viewed in cross section along their thickness directions, the extending portions are provided.
  • the end portions of 111a, 111b and the ultrathin metal foil layer 12 may be stepped shapes having different planes as shown in FIG.
  • the extended portions 111a and 111b may be sloped, and the end of the ultrathin metal foil layer 12 may be formed on a plane continuous with the slope.
  • the ultrathin metal foil layer 13 has a quadrilateral shape in plan view, and the carrier 11 extends at least from a pair of opposing sides in the ultrathin metal foil layer. It has a pair of extended portions 111a and 111a.
  • the carrier 11 is used as a member that supports the ultrathin metal foil layer 12 in order to improve the handleability of the ultrathin metal foil layer 12 that is a thin member.
  • the material constituting the carrier 11 is not particularly limited.
  • Metal foil can be used.
  • a resin film such as a PET film, a PEN film, an aramid film, a polyimide film, a nylon film, and a liquid crystal polymer, a metal-coated resin film having a metal coating layer on the resin film, a glass plate, a ceramic plate, and the like.
  • a metal foil is preferable from the viewpoint of preventing foreign matter from being entrained by static electricity that may occur during handling, and a copper foil is preferable from the viewpoint of uniformity of thickness and corrosion resistance of the foil.
  • the thickness of the carrier 11 is typically 250 ⁇ m or less, preferably 12 ⁇ m or more and 200 ⁇ m or less, provided that it is larger than the thickness of the ultrathin metal foil layer 12.
  • the peeling layer 13 weakens the peeling strength of the carrier 11, ensures the stability of the strength, and further may occur between the carrier 11 and the ultrathin metal foil layer 12 during press molding at a high temperature. It is a layer having a function of suppressing diffusion.
  • the release layer 13 is formed only on one surface of the carrier 11, but may be formed on both surfaces of the carrier 11 as necessary.
  • the release layer 13 may be either an organic release layer or an inorganic release layer. Examples of organic components used in the organic release layer include nitrogen-containing organic compounds, sulfur-containing organic compounds, carboxylic acids and the like. Examples of nitrogen-containing organic compounds include triazole compounds, imidazole compounds, and the like.
  • triazole compounds are preferable in terms of easy release properties.
  • triazole compounds include 1,2,3-benzotriazole, carboxybenzotriazole, N ′, N′-bis (benzotriazolylmethyl) urea, 1H-1,2,4-triazole and 3-amino-1H. -1,2,4-triazole and the like.
  • sulfur-containing organic compound include mercaptobenzothiazole, thiocyanuric acid, 2-benzimidazolethiol and the like.
  • carboxylic acid include monocarboxylic acid and dicarboxylic acid.
  • examples of inorganic components used in the inorganic release layer include at least one of Ni, Mo, Co, Cr, Fe, Ti, W, P, Zn, and carbon, or an alloy thereof, and / or an oxide. Can be mentioned.
  • these materials By using these materials as the release layer, an extremely thin release layer can be formed. Due to this, for example, the surface area of the release layer exposed at the end of the extension site is reduced compared to the case where the release layer is formed by applying a pressure-sensitive adhesive. It becomes possible to strongly prevent chemicals from entering the interface between the metal foil and the carrier at the stage and the occurrence of a peeling start point due to mechanical impact.
  • the release layer 13 is formed by bringing the release layer component-containing solution into contact with at least one surface of the carrier 11 and fixing the release layer component to the surface of the carrier 11. Just do it.
  • this contact may be performed by immersion in the release layer component-containing solution, spraying of the release layer component-containing solution, or flowing down of the release layer component-containing solution.
  • examples of the method for forming the release layer 13 when the release layer 13 is an inorganic release layer include wet processes such as an electrodeposition method and an electroless plating method.
  • a method of forming a release layer component by a vapor phase method such as vapor deposition (PVD), sputtering, or CVD can be employed regardless of organic or inorganic.
  • the thickness of the release layer 13 is typically 1 nm or more and 1 ⁇ m or less, preferably 2 nm or more and 500 nm or less, more preferably 2 nm or more and 100 nm or less.
  • the thickness can be measured by employing a cross-sectional observation method, an area weight conversion method, or the like.
  • the area weight conversion method is obtained by identifying the compound adhered as the release layer 13 and then measuring the adhesion weight per unit area by spectroscopic analysis or chromatography and dividing by the specific gravity of the compound.
  • the insulating layer is overlapped with a part of or all of the region where the ultrathin metal foil is formed and the carrier extension part in the build-up layer manufacturing stage described later.
  • the thickness of the release layer 13 is very thin and the step between the carrier extension portion and the surface of the ultrathin metal foil can be lowered, the surface of the end portion of the insulating layer in the buildup layer stacking stage It becomes possible to maintain the flatness significantly.
  • the thickness of the release layer 13 can be controlled, for example, by adjusting the immersion time when the carrier 11 is immersed in the release layer component-containing solution, or by adjusting the spray amount when spraying the release layer component-containing solution onto the carrier 11. it can.
  • the peel strength between the release layer 13 and the carrier 11 is preferably 2 gf / cm or more and 50 gf / cm or less, more preferably 5 gf / cm or more and 30 gf / cm or less, and still more preferably 10 gf / cm or more and 20 gf / cm. cm or less.
  • another functional layer may be provided between the release layer 13 and the carrier 11 and / or the ultrathin metal foil layer 12.
  • An example of such another functional layer is an auxiliary metal layer.
  • the auxiliary metal layer is preferably made of nickel and / or cobalt. By forming such an auxiliary metal layer on the surface side of the carrier 11 and / or the surface side of the ultrathin metal foil layer 12, the carrier 11 and the ultrathin metal foil layer 12 can be formed during hot press molding for a long time or at a long time. Interdiffusion that may occur between the two is suppressed, and the stability of the peeling strength of the carrier 11 can be ensured.
  • the thickness of the auxiliary metal layer is preferably 0.001 ⁇ m or more and 1 ⁇ m or less.
  • the thickness of the ultrathin metal foil layer 12 in the carrier-attached metal foil 10 is, from the viewpoint of electroplating conductivity for a wiring pattern at the time of manufacturing a wiring board, which will be described later, and a fine line forming property when flash etching is performed after peeling the support.
  • the thickness is preferably 0.1 ⁇ m or more and 10 ⁇ m or less, more preferably 0.2 ⁇ m or more and 8 ⁇ m, and still more preferably 1 ⁇ m or more and 5 ⁇ m or less.
  • the ultrathin metal foil layer 12 is preferably made of a material having conductivity and etching processability by a chemical solution, and can be formed of a metal material such as copper, copper alloy, aluminum, zinc, nickel, tin, or stainless steel, for example.
  • a copper foil or a copper alloy foil, particularly a copper foil can be suitably used from the viewpoint of low electrical resistance, excellent workability during circuit formation by etching or the like, and ease of subsequent wiring layer formation.
  • Examples of the method for producing the metal foil layer 12 include a sputtering method, a vapor deposition method, and an electrolytic method. From the viewpoint of batch productivity of the carrier 11 and the release layer 13, it is preferable to employ an electrolytic method.
  • the surface of the ultrathin metal foil layer 12 is preferably a rough surface.
  • a rough surface is formed, and the glossiness between the surface of the ultrathin metal foil layer 12 and the surfaces of the extended portions 111a and 111b of the carrier 10 is reduced by reducing the glossiness of the surface of the ultrathin metal foil layer 12. And the visibility of the extended portions 111a and 111b of the carrier 10 is improved.
  • the rough surface can be formed by an electrodeposition method, an etching method, a blast method, or a metal oxidation and reduction method. Among these, if the electrodeposition method is used, a uniform particulate metal can be deposited, and by adjusting the particle shape and particle size, it is possible to increase the range of glossiness.
  • the surface roughness of the ultrathin metal foil layer 12 is represented by surface roughness Rz (JIS B0601-2013), preferably 0.1 ⁇ m or more and 5.0 ⁇ m or less, and 0.2 ⁇ m or more and 4.0 ⁇ m or less. More preferably it is.
  • the surface of the ultrathin metal foil layer 12 (including the case of a rough surface) is used.
  • a rust prevention layer or a coupling layer may be formed.
  • the material for the rust prevention layer include metals or alloys made of at least one of Ni, Mo, Co, Cr, Fe, Ti, W, P, Zn, and the like, and / or oxides thereof.
  • the film of a silane coupling agent is mentioned, for example.
  • silane coupling agents examples include vinyl methoxy silane, vinyl phenyl trimethoxy silane, methacryloxy propyl trimethoxy silane, glycidoxy propyl trimethoxy silane, glycidyl butyl trimethoxy silane, imidazole silane, triazine silane, mercapto propyl trimethoxy.
  • Examples include silane, aminopropyltriethoxysilane, aminopropyltrimethoxysilane, and the like.
  • the surface protective layer 14 is used to oxidize the surface located on the ultrathin metal foil layer 12 side in the first extension part 111a and / or the second extension part 111b of the carrier and hold the extension part by long-term storage. It is used for the purpose of protecting from oxidation caused by scratches and prevention of oxidation contamination from water droplets and oil droplets transferred from a holding jig or gloves.
  • the surface protective layer 14 may be an inorganic protective layer or an organic protective layer, but an organic protective layer is preferable in order to prevent oxidative contamination more firmly.
  • the surface protective layer 14 is an organic protective layer
  • a form in which the surface protective layer 14 is an extension portion of the release layer 13 described above can be given. Since the surface protective layer 14 can be formed simultaneously with the peeling layer 13 when the surface protective layer 14 is composed of an extended portion of the peeling layer 13, the manufacturing process of the metal foil 10 with a carrier is not complicated. Is advantageous. When the surface protective layer 14 is composed of the extended portion of the release layer 13, both are integrated, and thus the surface protective layer 14 and the release layer 13 are made of the same material.
  • the surface protective layer 14 is an organic protective layer
  • a resin layer may be mentioned.
  • the resin constituting the surface protective layer 14 include resin components such as acrylic resin, acetal resin, ethylene resin, epoxy resin, silicone resin, fluorine resin, imide resin, amide resin, amideimide resin, and styrene-butadiene copolymer. It is preferable that it is comprised.
  • the surface protective layer 14 is formed of a resin component, the oxidation resistance can be maintained predominately, and by selecting the coating method, for example, the corner of the extension portion is chamfered, and the extension site It is possible to freely design the shape of this.
  • these resins may appropriately contain a color pigment and an inorganic filler.
  • the surface protective layer 14 can be composed of a layer containing the above-described rust inhibitor, for example.
  • the layer containing a rust preventive agent may be composed of, for example, a metal or alloy made of at least one of Ni, Mo, Co, Cr, Fe, Ti, W, P, Zn, and / or an oxide thereof. preferable.
  • the layer containing the rust preventive agent is composed of at least one metal or alloy selected from the group consisting of Ni, Cr and Zn, and / or an oxide thereof, the extended portion and the ultrathin metal This is particularly preferable because visibility with the foil surface is improved.
  • the thickness thereof is 1 nm or more in terms of preventing breakage due to the gripping of the extended portion and preventing spread of the spread width in the coating process or the like. It is preferably 10 ⁇ m or less, more preferably 2 nm or more and 5 ⁇ m or less, still more preferably 2 nm or more and 1 ⁇ m or less, particularly preferably 2 nm or more and 500 nm or less, and 2 nm or more and 50 nm or less. Most preferred.
  • the ultrathin metal foil layer 12 is used.
  • the difference ⁇ Gs in glossiness at an incident angle of 60 ° between the surface of the first extending portion 111a and / or the surface of the second extending portion 111b located on the ultrathin metal foil layer 12 side is: It is preferable that it is 30 or more.
  • the visibility mentioned here includes not only visibility with the naked eye but also visibility with an optical device.
  • ⁇ Gs is within this range, when the support is formed using the metal foil with carrier 10 and the prepreg and the wiring board is manufactured, the first extending portion 111a of the metal foil with carrier 10 and / or The position of the second extension part 111b is not only clearer with the naked eye, but is also clearer when various optical devices are used, and the gripping operation of these extension parts 111a and 111b is surely performed. Can do. From the viewpoint of making this advantageous effect more remarkable, ⁇ Gs is more preferably 35 or more, and further preferably 40 or more. There is no particular limitation on the upper limit value of ⁇ Gs, and the higher the value, the better. However, when the value is as high as 90, the above-described effects are sufficiently achieved.
  • the glossiness is measured using a commercially available gloss meter according to “Specular Glossiness—Measurement Method” of JIS Z8741-1997.
  • the incident angle is 60 °.
  • As the gloss meter for example, PG-1M manufactured by Nippon Denshoku Industries Co., Ltd. can be used.
  • the surface glossiness measured according to JIS Z8741-1997 means that the greater the value, the higher the degree of gloss. In the present invention, if the difference ⁇ Gs in glossiness is equal to or greater than the above value, the visibility of the extended portions 111a and 111b is sufficiently enhanced.
  • the magnitude relationship between the glossiness of the ultrathin metal foil layer 12 and the surface glossiness of the first extension portion 111a and / or the second extension portion 111b is not particularly limited.
  • a method for adjusting the surface glossiness of the first extension part 111a and / or the second extension part 111b for example, a method for changing the surface roughness of the carrier by etching, electrolytic method, blasting, polishing, etc. The method of adjusting also with the material of the protective layer 14, thickness, etc. is mentioned.
  • the above-described surface protective layer 14 may be formed in the first extending portion 111a and / or the second extending portion 111b with a thickness in the above-described range. It is advantageous. Further, the surface glossiness of the ultrathin metal foil layer 12 can be adjusted by a surface treatment similar to the treatment applied to the carrier.
  • the surface glossiness (Gs-e) of the first extension part 111a and / or the second extension part 111b is preferably 30 or more and 600 or less, in view of the purpose of recognizing that it is a gripping part, and 50 or more. More preferably, it is 500 or less.
  • the surface glossiness (Gs ⁇ t) of the ultrathin metal foil layer 12 is such that the glossiness difference ⁇ Gs with respect to the extension portion is not less than a desired value, while maintaining a certain level of visibility, It is preferably 4 or more and 500 or less, more preferably 5 or more and 400 or less, from the viewpoint of preventing powder falling due to the rough surface.
  • the metal foil with carrier 10 having the above configuration, in the process of manufacturing a wiring board using the metal foil with carrier 10, a support is formed by laminating the metal foil with carrier and a prepreg, etc.
  • the metal foil 10 with a carrier is conveyed by holding the first extending portion 111a and / or the second extending portion 111b in the attached metal foil 10, the holding can be reliably performed. Since the ultrathin metal foil layer 12 does not exist in the first extension part 111a and / or the second extension part 111b, the first extension part 111a and / or the second extension part 111b is gripped. Thus, it is possible to effectively prevent contaminants from adhering to the ultrathin metal foil layer 12 and damage such as tearing to the ultrathin metal foil layer 12.
  • the ultrathin metal foil layer 12 and the carrier 11 are formed at the time of forming the embedded wiring layer. It is possible to effectively prevent peeling due to the infiltration of the chemical solution between them.
  • the metal foil 10 with a carrier is prepared.
  • the metal foil 10 with a carrier having the extending portion 111 of the carrier 11 only at a part of the outer edge of the ultrathin metal foil layer 12 is shown, but this is for convenience of explanation.
  • the extended portion may extend from the entire outer edge of the ultrathin metal foil layer 12.
  • FIGS. 3B and 3C show a support formed by laminating the metal foil 10 with a carrier and the resin layer 15.
  • the resin layer 15 is laminated on the carrier 11 side of the metal foil with carrier 10, that is, on the non-formed surface of the ultrathin metal foil layer 12.
  • the metal foil formed on the support surface serves as a seed layer for forming the first wiring layer of the wiring board.
  • the support has a role of preventing warping, assisting in handling, and facilitating conveyance when forming a build-up layer that is a thin layer of the wiring board.
  • the support with the buildup layer includes the carrier 11 in close contact with the resin layer and the ultrathin metal foil layer 12 in close contact with the wiring substrate. Are separated and separated. That is, it is separated at the ultrathin metal thin layer 12 constituting the support and the release layer 13 between the carriers 11.
  • the resin layer 15 is laminated in a region overlapping with the ultrathin metal foil layer 12 and a region overlapping part or all of the extended portion 111 in a plan view of the metal foil with carrier 10.
  • FIG. 3B shows a state in which the resin layer 15 is laminated in a region that overlaps with the entire extension portion 111.
  • the lamination of the metal foil with carrier 10 and the resin layer 15 may be performed in accordance with known conditions and techniques employed for the lamination of copper foil and prepreg in a normal printed wiring board manufacturing process.
  • the resin layer 15 typically includes a resin, preferably an insulating resin.
  • the resin layer 15 is preferably a prepreg and / or a resin sheet, more preferably a prepreg.
  • the prepreg is a general term for composite materials in which a synthetic resin plate, a glass plate, a glass woven fabric, a glass nonwoven fabric, paper or the like is impregnated with a synthetic resin.
  • the insulating resin impregnated in the prepreg include an epoxy resin, a cyanate resin, a bismaleimide triazine resin (BT resin), a polyphenylene ether resin, and a phenol resin.
  • insulating resin which comprises a resin sheet insulating resins, such as an epoxy resin, a polyimide resin, and a polyester resin, are mentioned.
  • the resin layer 15 may contain filler particles made of various inorganic particles such as silica and alumina from the viewpoint of improving insulation.
  • the thickness of the resin layer 15 is not particularly limited, but is preferably 3 ⁇ m or more and 1000 ⁇ m or less, more preferably 5 ⁇ m or more and 400 ⁇ m or less, and still more preferably 10 ⁇ m or more and 200 ⁇ m or less.
  • the support may be cut at a predetermined position as shown in FIG. 3 (c) as necessary before forming the first wiring layer.
  • the laminated body serving as the support body leaves the extending portion 111 located at the peripheral edge part, and extends the extending portion 111 and the resin layer 15 together in the thickness direction. Disconnected.
  • an extension residual portion 111 ′′ is formed in the laminated body.
  • the extension residual is obtained by performing the above-described cutting.
  • the formation of the portion 111 ′′ has an advantage that the ultrathin metal foil layer 12 is remarkably prevented from being turned over when the laminated body after cutting is held or transported.
  • the extension part 111 before cutting not only the extension part 111 before cutting but also the extension residual part 111 "on the substrate side generated by the cutting may be used as a gripping part. From this viewpoint, the extension part 111 before cutting is used.
  • the width W is preferably set to a value such that a sufficiently long extension residual portion 111 ′′ is generated after cutting. From this point of view, the carrier 11 has a pair of first extending portions 111a and a pair of second extending portions 111b extending from the entire outer edge of the ultrathin metal foil layer 12 having a quadrilateral shape. As shown in FIG.
  • the width W2 of the second extension part 111b is made larger than the width W1 of the first extension part 111a, and a part of the second extension part 111b is cut together with the resin layer. It is preferable to do.
  • the width W2 of the second extending portion 111b larger than the width W1 of the first extending portion 111a, for example, when the outer dimension of the metal foil 10 with a carrier is square, It becomes easy to identify the first extension part 111a and the second extension part 111b artificially or mechanically.
  • the resist layer 16 is formed in the surface by the side of the ultra-thin metal foil layer 12 in a laminated body.
  • the resist layer 16 is formed so that at least the exposed surface of the ultrathin metal foil layer 12 is covered, and preferably the surface on the ultrathin metal foil layer 12 side in the extended residual portion 111 ′′ is also covered.
  • the resist layer 16 is subjected to pattern exposure as shown in FIG. 4B, and subsequently developed as shown in FIG. 4C. Thereby, a resist pattern 16 'is formed.
  • the material for forming the pattern 16 ′ may be a negative resist or a positive resist.
  • the resist may be either a film type or a liquid type. Examples of the light source for exposure include ultraviolet rays and electron beams.
  • As the developer sodium carbonate, sodium hydroxide, an amine-based aqueous solution, or the like can be used.
  • the copper plating 18 is applied to the surface of the resist pattern 16' as shown in FIG.
  • the copper plating 18 can generally be formed by electroplating.
  • the formation of the copper plating 18 is not particularly limited as long as it is performed using, for example, a copper sulfate plating solution, a copper pyrophosphate plating solution, or the like according to various pattern plating methods and conditions generally used for manufacturing a wiring board.
  • the ultrathin metal foil layer 12 is less likely to be peeled off when the copper plating 18 is formed. .
  • the resist pattern 16 ′ is peeled off to form a wiring pattern 20 as shown in FIG.
  • the resist pattern 16 ′ is peeled off by using a sodium hydroxide aqueous solution, an amine-based solution or an aqueous solution thereof, and may be performed in accordance with various peeling methods and conditions generally used in the production of printed wiring boards. In this way, a wiring pattern in which wiring portions (lines) made of the first wiring layer 22 are arranged with a gap (space) therebetween is directly formed on the surface of the ultrathin metal foil layer 12.
  • the first wiring layer 22 may be subjected to a roughening process (not shown) according to a conventional method if necessary.
  • ⁇ Formation of build-up wiring layer> it is preferable to continue to form a buildup wiring layer to produce a laminate with a buildup wiring layer.
  • the method for forming the build-up wiring layer is not particularly limited, and a subtractive method, an MSAP (Modified Semi-Additive Process) method, an SAP (Semi-Additive) method, a full additive method, or the like can be used.
  • a forming method using the modified semi-additive method is shown below. Specifically, as shown in FIG. 5B, the insulating layer 24 is formed on the surface on the first wiring layer 22 side.
  • the insulating layer 24 overlaps with a region overlapping with the ultrathin metal foil layer 12 and a part or all of the extended portion 111 in the peripheral portion in plan view of the metal foil with carrier 10. It is preferable to be stacked in the region. By laminating the insulating layer 24 in this way, it becomes possible to reliably prevent the intrusion of the chemical solution in the build-up layer forming process.
  • a metal foil 30 with a carrier is laminated on the laminated insulating layer 24 as shown in FIG.
  • the metal foil 30 with a carrier has a laminated structure of a carrier 31 and an ultrathin metal foil layer 32, and a release layer 33 is interposed between the two, and these members are the carrier described above. It can comprise from the material similar to the metal foil 10 with attachment.
  • the ultrathin metal foil layer 32 in the metal foil 30 with a carrier is laminated so as to face the insulating layer 24.
  • the ultrathin metal foil layer 32 and the insulating layer 24 positioned immediately below are subjected to perforation processing, and the first wiring layer 22 is formed.
  • the perforation process can be performed by laser processing using, for example, a carbon dioxide laser, a UV-YAG laser, an excimer laser, or the like.
  • patterning is performed by photoresist processing, electroless copper plating, electrolytic copper plating, photoresist stripping, flash etching, or the like to form the second wiring layer 34 as shown in FIG. 6B. This patterning can be repeated a plurality of times as necessary, whereby the nth wiring layer (n is an integer of 2 or more) can be formed.
  • the build-up layer after the second wiring layer 34 for example, when a metal foil typified by a resin layer and a copper foil is bonded together by press working at the same time, interlayer conduction such as via hole formation and panel plating is performed. In combination with the formation of the means, the panel plating layer and the metal foil can be etched to form a wiring pattern. When only the resin layer is bonded to the surface of the ultrathin metal foil layer 12 by pressing or laminating, a wiring pattern can be formed on the surface by a semi-additive method.
  • the shape of the carrier 11 and the ultrathin metal foil layer 12 in the metal foil with carrier 10 in a plan view is a quadrilateral, but the shape of these members is not limited to a quadrilateral.
  • Example 1 a rectangular metal foil 10 with a carrier shown in FIGS. 1A and 2B was manufactured by the following procedures (1) to (6).
  • (1) Production of electrolytic copper foil for carrier A sulfuric acid copper sulfate solution is used as a copper electrolyte, a titanium electrode having a surface roughness Ra of 0.20 ⁇ m is used as a cathode, and a DSA (dimensional stability anode) is used as an anode.
  • a solution temperature of 45 ° C. and a current density of 55 A / dm 2 to obtain an electrolytic copper foil for carriers having a thickness of 12 ⁇ m.
  • the surface of the electrolytic copper foil for carrier that is processed in the steps described later is referred to as the “electrode surface side” that is in contact with the cathode during electrolysis, and is in contact with the electrolytic solution.
  • the side is referred to as the “electrolyte surface side”.
  • Electroplating is carried out at an electric current density of 8 A / dm 2 in an acidic copper sulfate solution on the electrode surface side of the electrolytic copper foil for carriers on which an organic release layer is formed.
  • a 3 ⁇ m ultrathin copper foil layer was formed on the organic release layer.
  • Roughening treatment was performed on the ultrathin copper foil layer formed on the electrode surface side of the electrolytic copper foil for carrier by the following two-stage process.
  • the first stage of the roughening treatment is electrolysis (current density 27 A / dm 2 ) in a copper electrolytic solution for roughening treatment (copper concentration: 11 g / L, free sulfuric acid concentration: 220 g / L, solution temperature: 35 ° C.). This was done by washing with water.
  • the second stage of the roughening treatment is electrolysis (current density: 21 A / dm 2 ) in a copper electrolytic solution for roughening treatment (copper concentration: 69 g / L, free sulfuric acid concentration: 130 g / L, solution temperature: 52 ° C.). And then by washing with water.
  • Rust prevention layer The rust prevention process which consists of an inorganic rust prevention process and a chromate process was performed on both surfaces of the copper foil after a roughening process.
  • a pyrophosphoric acid bath is used as an inorganic rust prevention treatment, potassium pyrophosphate concentration 80 g / L, zinc concentration 0.29 g / L, nickel concentration 2.9 g / L, liquid temperature 40 ° C., current density 0.5 A / dm.
  • Step 2 a rust-proofing treatment of zinc-nickel alloy was performed.
  • chromate treatment was performed, and a chromate layer was further formed on the zinc-nickel alloy rust prevention treatment. This chromate treatment was performed at a chromic acid concentration of 1 g / L, pH 11, a solution temperature of 25 ° C., and a current density of 1 A / dm 2 .
  • part formation process After cutting the said copper foil into a rectangle, it set
  • a metal foil 10 with a carrier shown in FIGS. 1 (a) and 2 (b) was obtained.
  • the organic peeling layer was also formed in the whole area of the surface on the ultrathin copper foil side in the extended portion.
  • the gloss of the ultrathin copper foil (incident angle 60 °) in this metal foil with carrier 10 was 5, and the glossiness of the ultrathin copper foil side (incident angle 60 °) at the extended portion was 50.
  • the difference in glossiness ⁇ Gs between the two was 45. Due to the difference in glossiness between the two, the support laminated with the prepreg of the same size using the metal foil with carrier 10 had very good visibility of the extended portion.
  • part 111a was 20 mm
  • part 111b was 20 mm
  • the grip property by a suction pad was also favorable.
  • the wiring layer shown in FIG. 5 is formed, and the build-up layer shown in FIG. After forming, the laminate was cut and the support including the carrier was peeled off. As a result, it was confirmed that the chemical solution did not enter from the end face at the interface between the carrier and the metal foil, and that the four sides were securely sealed.
  • Example 2 a metal foil 10 with a carrier whose extension part was covered with a protective layer made of an epoxy resin was prepared by the following procedure.
  • (1) Production of electrolytic copper foil for carrier The electrolytic copper foil for carrier was prepared in the same manner as in Example 1.
  • (2) Step of forming epoxy resin protective layer and extension site After shielding the inner region from the position 20 mm away from the outer edge of the electrolytic copper foil for carrier with a mask film, the transparent epoxy resin is dried to a thickness of 3 ⁇ m. Spray coated. Then, it was cured at 150 ° C. for 10 minutes in a drying furnace to obtain a copper foil provided with a surface protective layer formed by applying an epoxy resin to the region of the extended portion 20 mm from the outer edge.
  • Organic release layer to antirust treatment For the copper foil, an organic release layer, an ultrathin copper foil layer, a roughening treatment layer, and an antirust layer were formed in the same manner as in Example 1 except for the step of forming the organic release layer. Formed.
  • the organic release layer in this example was formed in the same manner as in Example 1 except that the immersion time was 90 seconds and the thickness of the release layer was 6 nm.
  • a new film was not formed in the region covered with the protective layer made of epoxy resin, and a metal foil 10 with a carrier having an extended portion covered with the protective layer was obtained.
  • the glossiness (incident angle 60 °) of the ultrathin copper foil in this metal foil 10 with a carrier was 5, and the glossiness (incident angle 60 °) on the ultrathin copper foil side at the extended portion was 37.
  • the difference in glossiness ⁇ Gs between them was 32. Due to the difference in glossiness between them, in the support using the metal foil with carrier 10, the visibility of the extended portion was good.
  • part 111a was 20 mm
  • part 111b was 20 mm, and the grip property by a suction pad was also favorable.
  • Example 3 the metal foil 10 with a carrier whose extension part was covered with a protective layer composed of two layers of an inorganic zinc-nickel alloy layer and a chromate layer was prepared by the following procedure.
  • (1) Formation of electrolytic copper foil for carrier The electrolytic copper foil for carrier was prepared in the same manner as in Example 1 except that the immersion time in the step of forming the organic release layer was 180 seconds and the thickness of the release layer was 10 nm. .
  • the shielding board was installed in the position of 5 mm as a distance from the deposition surface of copper foil only in the process of an ultra-thin copper foil layer and a roughening process layer.
  • the shielding area was an area within 20 mm from the outer edge of the copper foil, and an ultrathin copper foil layer and a roughening treatment layer were not formed in that area.
  • Each treatment solution and electrodeposition conditions were the same as in Example 1.
  • the rust preventive layer was formed in the same manner as in Example 1, that is, without installing a shielding plate. As a result, a copper foil with a carrier in which a zinc-nickel alloy layer and a chromate layer having the same components as the rust preventive layer were coated on the extended portion was obtained.
  • the glossiness (incident angle 60 °) of the ultrathin copper foil in this metal foil 10 with a carrier was 5, and the glossiness (incident angle 60 °) on the ultrathin copper foil side at the extended portion was 70.
  • the difference in glossiness ⁇ Gs between the two was 65.
  • the visibility of the extension site was very good.
  • the width W1 of the 1st extension part 111a was 20 mm
  • the width W2 of the 2nd extension part 111b was 20 mm
  • the grip property by a suction pad was favorable.
  • Example 4 The present example is an example in which the organic peeling layer as the surface protective layer was not formed on the extending portions 111a and 111b in the first example.
  • (1) Formation of electrolytic copper foil for carrier and organic release layer The electrolytic copper foil for carrier and the organic release layer were prepared in the same manner as in Example 1.
  • (2) Formation of an ultrathin copper foil layer, a roughening treatment layer, and a rust prevention layer The ultrathin copper foil layer, a roughening treatment layer, and an anti-proofing were installed with respect to the copper foil by installing the shielding plate used in Example 3. A rust-treated layer was formed. Each treatment solution and electrodeposition conditions were the same as in Example 1.
  • the metal foil 10 with a carrier shown to Fig.1 (a) and (b) was obtained.
  • the glossiness (incident angle 60 °) of the ultrathin copper foil in this metal foil 10 with a carrier was 5, and the glossiness (incident angle 60 °) on the ultrathin copper foil side at the extended portion was 30.
  • the difference in glossiness ⁇ Gs between the two was 25. Due to the difference in glossiness between the two, in the support using the metal foil 10 with a carrier, the visibility of the extended portion immediately after production was barely possible. In addition, when a part of the region gripped by the rubber gloves was observed after one week, a part was oxidized and discolored.
  • Example 5 This example is an example in which an organic layer and an inorganic layer as surface protective layers were formed on the extended portions 111a and 111b in Example 1. After forming the organic release layer of the electrolytic copper foil for the carrier, 50 mg / m 2 of Ni plating was formed, and the copper foil with carrier and the carrier extension were the same as in Example 1 except that the rust preventive layer forming step was not performed. A site was created.
  • the organic peeling layer and the Ni layer were also formed on the entire surface of the extending portion on the ultrathin copper foil side.
  • the amount of Ni deposited at the extension site was 3 nm in terms of thickness.
  • the glossiness (incident angle 60 °) of the ultrathin copper foil in this metal foil 10 with carrier was 5, and the glossiness (incident angle 60 °) on the ultrathin copper foil side at the extended portion was 85.
  • the difference in glossiness ⁇ Gs between them was 80. Due to the difference in glossiness between the two, the support laminated with the prepreg of the same size using the metal foil with carrier 10 had very good visibility of the extended portion.
  • part 111a was 20 mm
  • part 111b was 20 mm
  • the grip property by a suction pad was also favorable.
  • the wiring layer shown in FIG. 5 is formed, and the build-up layer shown in FIG. After forming, the laminate was cut and the support including the carrier was peeled off. As a result, it was confirmed that the chemical solution did not enter from the end face at the interface between the carrier and the metal foil, and that the four sides were securely sealed.
  • Example 1 a pressure-sensitive adhesive layer having a thickness of 1.5 ⁇ m was used as the release layer in Example 1, and the extended portion was an exposed electrolytic copper foil for carrier.
  • the outer periphery of the electrolytic copper foil for carrier obtained in Example 1 was masked with a polyimide tape having a width of 20 mm.
  • the peeling layer was formed by apply
  • part was produced by peeling a polyimide tape.
  • the wiring layer shown in FIG. 5 is formed, and the build-up layer shown in FIG. 6 is further formed.
  • the laminate was cut and the support including the carrier was peeled off.
  • penetration of the chemical used when forming the buildup layer was observed in the adhesive layer and in the gap, and a pinhole having a size of 5 mm ⁇ was generated in the ultrathin copper layer.
  • the handling property such as transportation is good and the visibility of the gripping portion is excellent.
  • a coreless build-up board is manufactured, it is excellent in sealing from the end face of the support and can prevent the intrusion of chemicals in the build-up layer forming process, so that the productivity of the wiring board is high. It can be.

Abstract

A metal foil (10) with a carrier has a carrier (11), an ultrathin metal foil layer (12), and a release layer (13) located therebetween. The release layer (13) has a thickness of 1 nm to 1 μm. The carrier (11) has extension parts (111a, 111b) that extend from at least a portion of the outer edge of the ultrathin metal foil layer (12). A surface protection layer is preferably provided to a surface located on the ultrathin metal foil layer side among the extension parts (111a, 111b). The surface protection layer is preferably formed from an extending section of the release layer (13). The surface protection layer is preferably formed from a layer containing an anti-rust agent. The difference ΔGs in glossiness between the surface of the ultrathin metal foil layer (12) and the surface of the extension parts (111a, 111b) at an incident angle of 60°, as measured in accordance with JIS Z8741-1997, is preferably at least 30.

Description

キャリア付き金属箔及び配線基板の製造方法Metal foil with carrier and method for manufacturing wiring board
 本発明はキャリア付き金属箔に関する。また本発明は、キャリア付き銅箔を用いた配線基板の製造方法に関する。 The present invention relates to a metal foil with a carrier. Moreover, this invention relates to the manufacturing method of the wiring board using the copper foil with a carrier.
 キャリア付き金属箔を用いてコア層を有さない薄型のビルドアップ配線基板(以下「コアレス・ビルドアップ基板」ともいう。)を製造する技術が種々知られている。例えば特許文献1には、絶縁樹脂層であるプリプレグ等が、キャリア箔付き極薄銅箔のキャリア箔面に接着されてなる回路形成用支持基板(以下、支持体と称す)が提案されている。同文献においては、この支持体における極薄銅箔の上にパターン電解銅めっきを行って第1の配線導体を形成し;この第1の配線導体と接するように第2の絶縁樹脂を配置するとともに加熱加圧して積層し;第2の絶縁樹脂に、第1の配線導体に達する非貫通孔を形成し、引き続き該非貫通孔内壁を電解銅めっき又は無電解銅めっきによって接続させ第2の配線導体を形成し;然る後にキャリア箔と極薄銅箔とを剥離することで、コアレス・ビルドアップ配線基板を製造している。 Various techniques for manufacturing a thin build-up wiring board having no core layer (hereinafter also referred to as “coreless build-up board”) using a metal foil with a carrier are known. For example, Patent Document 1 proposes a circuit-forming support substrate (hereinafter referred to as a support) in which an insulating resin layer, such as a prepreg, is bonded to a carrier foil surface of an ultrathin copper foil with a carrier foil. . In this document, pattern electrolytic copper plating is performed on an ultrathin copper foil in the support to form a first wiring conductor; a second insulating resin is disposed so as to be in contact with the first wiring conductor. A non-through hole reaching the first wiring conductor is formed in the second insulating resin, and the inner wall of the non-through hole is subsequently connected by electrolytic copper plating or electroless copper plating. A coreless build-up wiring board is manufactured by forming a conductor; and then peeling off the carrier foil and the ultrathin copper foil.
 特許文献2に記載の配線基板の製造方法では、第1キャリア金属箔と第2キャリア金属箔とベース金属箔とをこの順に積層した多層金属箔を準備し、この多層金属箔のベース金属箔側と基材となるプリプレグ等を積層して支持体を形成する。次に、多層金属箔の第1キャリア金属箔と第2キャリア金属箔との間で、第1キャリア金属箔を物理的に剥離する。そして、コア基板に残った第2キャリア金属箔上に第1のパターンめっきを行う。更に第1のパターンめっきを含む第2キャリア金属箔上に絶縁層及び導体層を逐次積層して、ビルドアップ層が形成された積層体を形成する。次いで多層金属箔の第2キャリア金属箔とベース金属箔との間で、前記積層体を第2キャリア金属箔とともに支持体から物理的に剥離して分離する。最後に、剥離した積層体の第2キャリア金属箔上にエッチングレジストを形成してエッチングを行い、第1のパターンめっき上又は絶縁層上に立体回路を形成する。 In the method for manufacturing a wiring board described in Patent Document 2, a multilayer metal foil in which a first carrier metal foil, a second carrier metal foil, and a base metal foil are laminated in this order is prepared, and the base metal foil side of the multilayer metal foil is prepared. And a prepreg as a base material are laminated to form a support. Next, the first carrier metal foil is physically peeled between the first carrier metal foil and the second carrier metal foil of the multilayer metal foil. Then, first pattern plating is performed on the second carrier metal foil remaining on the core substrate. Furthermore, an insulating layer and a conductor layer are sequentially laminated on the second carrier metal foil including the first pattern plating to form a laminate having a build-up layer. Next, between the second carrier metal foil and the base metal foil of the multilayer metal foil, the laminate is physically separated from the support together with the second carrier metal foil and separated. Finally, an etching resist is formed on the second carrier metal foil of the peeled laminate, and etching is performed to form a three-dimensional circuit on the first pattern plating or the insulating layer.
特開2005-101137号公報JP 2005-101137 A 特開2012-094840号公報JP 2012-094840 A
 これらの文献に記載の技術においては、キャリア付き金属箔とプリプレグ等を用いて支持体を形成した後、この上にビルドアップ層を形成するコアレス・ビルドアップ基板を製造する過程において、支持体を搬送する工程が必要となる。この搬送工程においては、支持体表面に露出するキャリア付き銅箔を把持する動作が行われる。この把持作業は、例えば、支持体を形成するプレス工程や、支持体の上に配線層を形成する工程において、手作業による把持の他、基板搬送ロボットのフォークや吸着パッドによる把持、コンベアロールによる把持、スリット搬送による把持等、様々である。このとき、これらの把持による接触動作に起因して、薄い層である金属箔に破れ等の損傷が生じる恐れがある。その結果、ビルドアップ層の製造段階で金属箔とキャリアの界面に薬品が侵入したり、搬送工程中の支持体端面の機械的衝撃により損傷が助長されたりする等の影響で、金属箔とキャリアとの界面剥離を生じる等の不都合が起こる場合がある。そのような不都合は、目的とする配線基板の不良ピースの増加をまねき、配線基板の生産効率を低下させる一因となることが分かってきた。 In the techniques described in these documents, after forming a support using a metal foil with a carrier and a prepreg, the support is formed in the process of manufacturing a coreless buildup substrate on which a buildup layer is formed. A process of carrying is required. In this conveyance process, the operation | movement which hold | grips the copper foil with a carrier exposed to the support body surface is performed. For example, in the pressing process for forming the support or the process for forming the wiring layer on the support, the gripping work is performed by manual gripping, gripping by the fork or suction pad of the substrate transfer robot, or by a conveyor roll. There are various types such as gripping and gripping by slit conveyance. At this time, there is a possibility that damage such as tearing may occur in the metal foil which is a thin layer due to the contact operation by the gripping. As a result, the metal foil and the carrier are affected by chemicals entering the interface between the metal foil and the carrier during the build-up layer manufacturing process, and damage caused by the mechanical impact of the support end surface during the transport process. Inconveniences such as interfacial peeling may occur. It has been found that such inconvenience leads to an increase in defective pieces of the target wiring board and causes a reduction in the production efficiency of the wiring board.
 したがって本発明の課題は、キャリア付き金属箔の改良及びそれを用いた配線基板の製造方法の改良にあり、更に詳しくは支持体を形成した際、搬送等の取り扱い性が良好なキャリア付き金属箔及びそれを用いた配線基板の製造方法を提供することにある。 Accordingly, an object of the present invention is to improve a metal foil with a carrier and to improve a method for producing a wiring board using the same. More specifically, when forming a support, the metal foil with a carrier has good handling properties such as conveyance. And it is providing the manufacturing method of a wiring board using the same.
 本発明は、キャリアと、極薄金属箔層と、これらの間に位置する剥離層とを有するキャリア付き金属箔において、
 前記剥離層の厚さは1nm以上1μm以下であり、
 前記キャリアは、前記極薄金属箔層の外縁の少なくとも一部から延出した延出部位を有するキャリア付き金属箔を提供することにより前記の課題を解決したものである。
The present invention is a metal foil with a carrier having a carrier, an ultrathin metal foil layer, and a release layer located between them,
The release layer has a thickness of 1 nm to 1 μm,
The carrier solves the above-mentioned problems by providing a metal foil with a carrier having an extended portion extending from at least a part of the outer edge of the ultrathin metal foil layer.
 また本発明は、前記のキャリア付き金属箔を用いた配線基板の製造方法であって、
 前記キャリア付き金属箔における前記延出部位を把持する工程を有する配線基板の製造方法を提供することにより前記の課題を解決したものである。
Further, the present invention is a method for manufacturing a wiring board using the metal foil with a carrier,
The above-described problems are solved by providing a method of manufacturing a wiring board having a step of gripping the extended portion of the metal foil with a carrier.
図1(a)は、本発明のキャリア付き金属箔の一実施形態を示す平面図であり、図1(b)は、本発明のキャリア付き金属箔の別の実施形態を示す平面図である。Fig.1 (a) is a top view which shows one Embodiment of metal foil with a carrier of this invention, FIG.1 (b) is a top view which shows another embodiment of metal foil with a carrier of this invention. . 図2(a)は、図1(a)及び図1(b)におけるb-b線断面図であり、図2(b)は、図1(a)及び図1(b)におけるb-b線断面図の別形態である。2A is a cross-sectional view taken along line bb in FIGS. 1A and 1B, and FIG. 2B is a cross-sectional view taken along line bb in FIGS. 1A and 1B. It is another form of line sectional drawing. 図3(a)ないし(c)は、図1に示すキャリア付き金属箔を用いた支持体の製造工程を示す模式図である。3 (a) to 3 (c) are schematic views showing a production process of a support using the metal foil with a carrier shown in FIG. 図4(a)ないし(d)は、図3(c)の引き続きとして、図1に示すキャリア付き金属箔、及びキャリア付き金属箔を用いた支持体による配線基板を製造する工程を示す模式図である。4 (a) to 4 (d) are schematic views showing a process for manufacturing a wiring board with a carrier using the metal foil with a carrier shown in FIG. 1 and a metal foil with a carrier as shown in FIG. 3 (c). It is. 図5(a)ないし(c)は、図4(d)の引き続きとして、図1に示すキャリア付き金属箔を用いた支持体による配線基板の製造工程を示す模式図である。5 (a) to 5 (c) are schematic diagrams showing a manufacturing process of a wiring board by a support using the metal foil with a carrier shown in FIG. 1 as a continuation of FIG. 4 (d). 図6(a)ないし(e)は、図5(c)の引き続きとして、図1に示すキャリア付き金属箔、及びキャリア付き金属箔を用いた支持体を用いた配線基板の製造工程を示す模式図である。6 (a) to 6 (e) are schematic views showing a manufacturing process of a wiring board using the metal foil with a carrier shown in FIG. 1 and a support using the metal foil with a carrier as shown in FIG. 5 (c). FIG.
 以下本発明を、その好ましい実施形態の一例に基づき図面を参照しながら説明する。図1(a)には、本発明のキャリア付き金属箔の一実施形態の平面図が示されている。図1(b)は、本発明のキャリア付き金属箔の別の実施形態の平面図である。図2(a)は、図1(a)及び図1(b)におけるc-c線断面図である。図1(a)及び(b)並びに図2(a)に示すとおり、本実施形態のキャリア付き金属箔10は、キャリア11と、極薄金属箔層12とを有している。キャリア11は、極薄金属箔層12に対して剥離自在に設けられている。この目的のためにキャリア付き金属箔10は、キャリア11と極薄金属箔層12との間に位置する剥離層13を有している。 Hereinafter, the present invention will be described based on an example of a preferred embodiment with reference to the drawings. FIG. 1A shows a plan view of an embodiment of the metal foil with a carrier of the present invention. FIG.1 (b) is a top view of another embodiment of the metal foil with a carrier of this invention. 2A is a cross-sectional view taken along the line cc in FIGS. 1A and 1B. As shown in FIGS. 1A and 1B and FIG. 2A, the metal foil 10 with a carrier of this embodiment includes a carrier 11 and an ultrathin metal foil layer 12. The carrier 11 is provided to be peelable from the ultrathin metal foil layer 12. For this purpose, the metal foil 10 with a carrier has a release layer 13 located between the carrier 11 and the ultrathin metal foil layer 12.
<キャリア付き金属箔>
 キャリア付き金属箔10における極薄金属箔層12は平面視して対向する一対の辺を有している。この極薄金属箔層12とキャリア10との間に位置する剥離層13は、極薄金属箔層12との平面視において、両者が完全に重なるように形成することができる。その場合には剥離層13は、極薄金属箔層12と同形且つ同寸法となる。尤も、剥離層13の形状はこれに限られず、後述するとおり、キャリア付き金属箔10の平面視において、極薄金属箔層12の外縁のうちの少なくとも一部から延出していてもよい。
<Metal foil with carrier>
The ultrathin metal foil layer 12 in the metal foil with carrier 10 has a pair of sides facing each other in plan view. The peeling layer 13 positioned between the ultrathin metal foil layer 12 and the carrier 10 can be formed so that they are completely overlapped with each other when viewed from the ultrathin metal foil layer 12. In that case, the release layer 13 has the same shape and dimensions as the ultrathin metal foil layer 12. However, the shape of the release layer 13 is not limited to this, and may be extended from at least a part of the outer edge of the ultrathin metal foil layer 12 in plan view of the metal foil 10 with a carrier, as will be described later.
 平面視して四辺形をしている極薄金属箔層12は、対向する一対の第1外縁12a,12aと、対向する一対の第2外縁12b,12bとを有している。一対の第1外縁12a,12aは、互いに平行であってもよく、あるいは平行でなくてもよい。一対の第2外縁12b,12bに関しても同様である。また、一対の第1外縁12a,12aはそれらの長さが同じであってもよく、あるいは異なっていてもよい。一対の第2外縁12b,12bに関しても同様である。 The ultrathin metal foil layer 12 having a quadrilateral shape in plan view has a pair of first outer edges 12a, 12a facing each other and a pair of second outer edges 12b, 12b facing each other. The pair of first outer edges 12a and 12a may be parallel to each other or may not be parallel to each other. The same applies to the pair of second outer edges 12b, 12b. The pair of first outer edges 12a, 12a may have the same length or may be different. The same applies to the pair of second outer edges 12b, 12b.
 図1(a)に示す実施形態のキャリア付き金属箔10においては、これを平面視したときに、キャリア11は、極薄金属箔層12の外縁である第1外縁12a及び第2外縁12bの全域から延出している。またキャリア11は、平面視して四辺形をしており、対向する一対の第1外縁11a,11aと、対向する一対の第2外縁11b,11bとを有している。キャリア11の第1外縁11aは、極薄金属箔層12の第1外縁12aと略平行になっている。同様にキャリア11の第2外縁11bは、極薄金属箔層12の第2外縁12bと略平行になっている。すなわちキャリア11は、平面視して極薄金属箔層12の四辺と略平行な四辺を有する四辺形をしている。それによってキャリア11は、その平面視において、極薄金属箔層12の外縁から延出し且つ対向する一対の第1延出部位111a、及び対向する一対の第2延出部位111bを有している。各延出部位111a,111bは、一方向に長い四辺形をしている。各延出部位111a,111bは、キャリア付き金属箔10の端部の取り扱い性、例えば支持体を形成した際の搬送工程などでのハンドリング性を高め、更には、後のビルドアップ層の工程において、キャリア11と極薄金属箔層12の界面を四辺にわたり絶縁樹脂で封止できる密閉領域を形成する目的で形成されている。このような目的のためには、極薄金属箔層12は矩形等の四辺形をしていることが好ましい。 In the metal foil 10 with a carrier of the embodiment shown in FIG. 1 (a), when viewed in plan, the carrier 11 has a first outer edge 12a and a second outer edge 12b which are outer edges of the ultrathin metal foil layer 12. It extends from the whole area. The carrier 11 has a quadrilateral shape in plan view, and has a pair of first outer edges 11a and 11a facing each other and a pair of second outer edges 11b and 11b facing each other. The first outer edge 11 a of the carrier 11 is substantially parallel to the first outer edge 12 a of the ultrathin metal foil layer 12. Similarly, the second outer edge 11 b of the carrier 11 is substantially parallel to the second outer edge 12 b of the ultrathin metal foil layer 12. That is, the carrier 11 has a quadrilateral shape having four sides substantially parallel to the four sides of the ultrathin metal foil layer 12 in plan view. Thereby, the carrier 11 has a pair of first extending portions 111a extending from the outer edge of the ultrathin metal foil layer 12 and facing each other, and a pair of second extending portions 111b facing each other in plan view. . Each extending part 111a, 111b has a long quadrilateral shape in one direction. Each extending part 111a, 111b improves the handleability of the end part of the metal foil 10 with a carrier, for example, the handling property in the transport process when the support is formed, and further, in the process of the later build-up layer It is formed for the purpose of forming a sealed region in which the interface between the carrier 11 and the ultrathin metal foil layer 12 can be sealed with an insulating resin over four sides. For this purpose, the ultrathin metal foil layer 12 preferably has a quadrilateral shape such as a rectangle.
 図1(a)に示す実施形態のキャリア付き金属箔10においては、各延出部位111a,111b及び極薄金属箔層12をそれらの厚み方向に沿って断面視したときに、各延出部位111a,111bと極薄金属箔層12との端部が、図2(a)に示すように、異なる平面をもつ段差形状であってもよい。あるいは、図示していないが、延出部位111a,111bが斜面状になっており、且つその斜面と連続した平面上に、極薄金属箔層12の端部が形成されていてもよい。 In the metal foil 10 with a carrier according to the embodiment shown in FIG. 1A, when the extending portions 111a and 111b and the ultrathin metal foil layer 12 are viewed in cross section along their thickness directions, the extending portions are provided. The end portions of 111a, 111b and the ultrathin metal foil layer 12 may be stepped shapes having different planes as shown in FIG. Alternatively, although not shown, the extended portions 111a and 111b may be sloped, and the end of the ultrathin metal foil layer 12 may be formed on a plane continuous with the slope.
 一方、図1(b)に示す実施形態においては、極薄金属箔層13が平面視して四辺形をしており、キャリア11は、極薄金属箔層における対向する一対の辺から少なくとも延出した一対の延出部位111a,111aを有している。 On the other hand, in the embodiment shown in FIG. 1B, the ultrathin metal foil layer 13 has a quadrilateral shape in plan view, and the carrier 11 extends at least from a pair of opposing sides in the ultrathin metal foil layer. It has a pair of extended portions 111a and 111a.
<キャリア>
 キャリア11は、厚みの薄い部材である極薄金属箔層12の取り扱い性を向上させるために、極薄金属箔層12を支持する部材として用いられる。キャリア11を構成する材料に特に限定はないが、例えば、銅箔、銅合金箔、アルミニウム箔、アルミニウム箔の表面に銅あるいは亜鉛等の金属めっき層が設けられた複合金属箔、ステンレス箔等の金属箔を用いることができる。その他には、PETフィルム、PENフィルム、アラミドフィルム、ポリイミドフィルム、ナイロンフィルム、液晶ポリマー等の樹脂フィルム、樹脂フィルム上に金属コート層を備える金属コート樹脂フィルム、ガラス板、セラミック板等が挙げられる。それらの中でも、ハンドリング中に生じることのある静電気による異物の巻込みを防ぐ点から、金属箔が好ましく、厚さの均一性及び箔の耐食性などの点から銅箔が好ましい。キャリア11の厚さは、極薄金属箔層12の厚さよりも大きいことを条件として、典型的には250μm以下であり、好ましくは12μm以上200μm以下である。
<Career>
The carrier 11 is used as a member that supports the ultrathin metal foil layer 12 in order to improve the handleability of the ultrathin metal foil layer 12 that is a thin member. The material constituting the carrier 11 is not particularly limited. For example, a copper foil, a copper alloy foil, an aluminum foil, a composite metal foil in which a metal plating layer such as copper or zinc is provided on the surface of the aluminum foil, a stainless steel foil, etc. Metal foil can be used. In addition, a resin film such as a PET film, a PEN film, an aramid film, a polyimide film, a nylon film, and a liquid crystal polymer, a metal-coated resin film having a metal coating layer on the resin film, a glass plate, a ceramic plate, and the like. Among them, a metal foil is preferable from the viewpoint of preventing foreign matter from being entrained by static electricity that may occur during handling, and a copper foil is preferable from the viewpoint of uniformity of thickness and corrosion resistance of the foil. The thickness of the carrier 11 is typically 250 μm or less, preferably 12 μm or more and 200 μm or less, provided that it is larger than the thickness of the ultrathin metal foil layer 12.
<剥離層>
 剥離層13は、キャリア11の引き剥がし強度を弱くし、該強度の安定性を担保し、更には高温でのプレス成形時にキャリア11と極薄金属箔層12の間で起こる可能性のある相互拡散を抑制する機能を有する層である。図1に示す実施形態では、剥離層13は、キャリア11の一方の面にのみ形成されているが、必要に応じキャリア11の両面に形成されてもよい。剥離層13は、有機剥離層及び無機剥離層のいずれであってもよい。有機剥離層に用いられる有機成分の例としては、窒素含有有機化合物、硫黄含有有機化合物、カルボン酸等が挙げられる。窒素含有有機化合物の例としては、トリアゾール化合物、イミダゾール化合物等が挙げられ、中でもトリアゾール化合物は剥離性が安定しやすい点で好ましい。トリアゾール化合物の例としては、1,2,3-ベンゾトリアゾール、カルボキシベンゾトリアゾール、N’,N’-ビス(ベンゾトリアゾリルメチル)ユリア、1H-1,2,4-トリアゾール及び3-アミノー1H-1,2,4-トリアゾール等が挙げられる。硫黄含有有機化合物の例としては、メルカプトベンゾチアゾール、チオシアヌル酸、2-ベンズイミダゾールチオール等が挙げられる。カルボン酸の例としては、モノカルボン酸、ジカルボン酸等が挙げられる。一方、無機剥離層に用いられる無機成分の例としては、Ni、Mo、Co、Cr、Fe、Ti、W、P、Zn、炭素等のうち少なくとも一種若しくはこれらの合金、又は/及び酸化物が挙げられる。剥離層としてこれらの材料を用いることで、極めて薄層の剥離層を形成できる。このことに起因して、例えば、粘着剤を塗布して剥離層を形成する場合と比較して、延出部位の端部に露出される剥離層の表面積が少なくなるので、ビルドアップ層の製造段階での金属箔とキャリアとの界面への薬品侵入や、機械的衝撃による剥離起点の発生を強固に防ぐことが可能となる。
<Peeling layer>
The peeling layer 13 weakens the peeling strength of the carrier 11, ensures the stability of the strength, and further may occur between the carrier 11 and the ultrathin metal foil layer 12 during press molding at a high temperature. It is a layer having a function of suppressing diffusion. In the embodiment shown in FIG. 1, the release layer 13 is formed only on one surface of the carrier 11, but may be formed on both surfaces of the carrier 11 as necessary. The release layer 13 may be either an organic release layer or an inorganic release layer. Examples of organic components used in the organic release layer include nitrogen-containing organic compounds, sulfur-containing organic compounds, carboxylic acids and the like. Examples of nitrogen-containing organic compounds include triazole compounds, imidazole compounds, and the like. Among these, triazole compounds are preferable in terms of easy release properties. Examples of triazole compounds include 1,2,3-benzotriazole, carboxybenzotriazole, N ′, N′-bis (benzotriazolylmethyl) urea, 1H-1,2,4-triazole and 3-amino-1H. -1,2,4-triazole and the like. Examples of the sulfur-containing organic compound include mercaptobenzothiazole, thiocyanuric acid, 2-benzimidazolethiol and the like. Examples of the carboxylic acid include monocarboxylic acid and dicarboxylic acid. On the other hand, examples of inorganic components used in the inorganic release layer include at least one of Ni, Mo, Co, Cr, Fe, Ti, W, P, Zn, and carbon, or an alloy thereof, and / or an oxide. Can be mentioned. By using these materials as the release layer, an extremely thin release layer can be formed. Due to this, for example, the surface area of the release layer exposed at the end of the extension site is reduced compared to the case where the release layer is formed by applying a pressure-sensitive adhesive. It becomes possible to strongly prevent chemicals from entering the interface between the metal foil and the carrier at the stage and the occurrence of a peeling start point due to mechanical impact.
 剥離層13が有機剥離層である場合、該剥離層13の形成は、キャリア11の少なくとも一方の表面に剥離層成分含有溶液を接触させ、剥離層成分をキャリア11の表面に固定させること等によって行えばよい。キャリア11を剥離層成分含有溶液に接触させる場合、この接触は、剥離層成分含有溶液への浸漬、剥離層成分含有溶液の噴霧、又は剥離層成分含有溶液の流下等によって行えばよい。一方、剥離層13が無機剥離層である場合の該剥離層13の形成方法としては、例えば電着法及び無電解めっき法などの湿式処理が挙げられる。その他、剥離層13の形成には、有機・無機に関わらず、蒸着(PVD)、スパッタリング及びCVD等による気相法で剥離層成分を被膜形成する方法も採用可能である。 When the release layer 13 is an organic release layer, the release layer 13 is formed by bringing the release layer component-containing solution into contact with at least one surface of the carrier 11 and fixing the release layer component to the surface of the carrier 11. Just do it. When the carrier 11 is brought into contact with the release layer component-containing solution, this contact may be performed by immersion in the release layer component-containing solution, spraying of the release layer component-containing solution, or flowing down of the release layer component-containing solution. On the other hand, examples of the method for forming the release layer 13 when the release layer 13 is an inorganic release layer include wet processes such as an electrodeposition method and an electroless plating method. In addition, for the formation of the release layer 13, a method of forming a release layer component by a vapor phase method such as vapor deposition (PVD), sputtering, or CVD can be employed regardless of organic or inorganic.
 剥離層13の厚さは、典型的には1nm以上1μm以下であり、好ましくは2nm以上500nm以下、更に好ましくは2nm以上100nm以下である。厚さは、断面観察法や面積重量換算法などを採用することで測定できる。面積重量換算法は、剥離層13として付着させた化合物を同定した後、単位面積あたりの付着重量を分光分析やクロマトグラフィーに等より測定し、化合物の比重で除算することで求められる。剥離層13をこの厚さの範囲とすることで、後述するビルドアップ層の製造段階において、絶縁層を極薄金属箔の形成領域、及びキャリアの延出部位の一部又は全部に重なるように積層した場合、ビルドアップ層の製造段階で金属箔とキャリアとの界面に薬品が侵入することや、機械的衝撃による界面での剥離起点の発生を強固に防ぐことができる。また、剥離層13の厚さが非常に薄く、キャリアの延出部位と極薄金属箔の表面との段差を低くすることができるので、ビルドアップ層の積層段階における絶縁層の端部の表面平坦性を有意に保つことが可能となる。剥離層13の厚さは、例えばキャリア11を剥離層成分含有溶液へ浸漬するときの浸漬時間の調整や、キャリア11へ剥離層成分含有溶液を噴霧するときの噴霧量の調整によってコントロールすることができる。 The thickness of the release layer 13 is typically 1 nm or more and 1 μm or less, preferably 2 nm or more and 500 nm or less, more preferably 2 nm or more and 100 nm or less. The thickness can be measured by employing a cross-sectional observation method, an area weight conversion method, or the like. The area weight conversion method is obtained by identifying the compound adhered as the release layer 13 and then measuring the adhesion weight per unit area by spectroscopic analysis or chromatography and dividing by the specific gravity of the compound. By setting the release layer 13 within this thickness range, the insulating layer is overlapped with a part of or all of the region where the ultrathin metal foil is formed and the carrier extension part in the build-up layer manufacturing stage described later. When laminated, it is possible to strongly prevent chemicals from entering the interface between the metal foil and the carrier at the stage of manufacturing the build-up layer and the occurrence of a separation starting point at the interface due to mechanical impact. Moreover, since the thickness of the release layer 13 is very thin and the step between the carrier extension portion and the surface of the ultrathin metal foil can be lowered, the surface of the end portion of the insulating layer in the buildup layer stacking stage It becomes possible to maintain the flatness significantly. The thickness of the release layer 13 can be controlled, for example, by adjusting the immersion time when the carrier 11 is immersed in the release layer component-containing solution, or by adjusting the spray amount when spraying the release layer component-containing solution onto the carrier 11. it can.
 剥離層13とキャリア11との間の剥離強度は2gf/cm以上50gf/cm以下であることが好ましく、より好ましくは5gf/cm以上30gf/cm以下であり、一層好ましくは10gf/cm以上20gf/cm以下である。 The peel strength between the release layer 13 and the carrier 11 is preferably 2 gf / cm or more and 50 gf / cm or less, more preferably 5 gf / cm or more and 30 gf / cm or less, and still more preferably 10 gf / cm or more and 20 gf / cm. cm or less.
 所望により、剥離層13とキャリア11及び/又は極薄金属箔層12の間に他の機能層を設けてもよい。そのような他の機能層の例としては補助金属層が挙げられる。補助金属層はニッケル及び/又はコバルトからなることが好ましい。このような補助金属層をキャリア11の表面側及び/又は極薄金属箔層12の表面側に形成することで、高温又は長時間の熱間プレス成形時にキャリア11と極薄金属箔層12の間で起こる可能性のある相互拡散を抑制し、キャリア11の引き剥がし強度の安定性を担保することができる。補助金属層の厚さは、0.001μm以上1μm以下とすることが好ましい。 If desired, another functional layer may be provided between the release layer 13 and the carrier 11 and / or the ultrathin metal foil layer 12. An example of such another functional layer is an auxiliary metal layer. The auxiliary metal layer is preferably made of nickel and / or cobalt. By forming such an auxiliary metal layer on the surface side of the carrier 11 and / or the surface side of the ultrathin metal foil layer 12, the carrier 11 and the ultrathin metal foil layer 12 can be formed during hot press molding for a long time or at a long time. Interdiffusion that may occur between the two is suppressed, and the stability of the peeling strength of the carrier 11 can be ensured. The thickness of the auxiliary metal layer is preferably 0.001 μm or more and 1 μm or less.
<極薄金属箔層>
 キャリア付き金属箔10における極薄金属箔層12は、後述する配線基板製造時における配線パターン用電気めっき導通性、及び支持体を剥離後にフラッシュエッチングする際の細線形成性の観点から、その厚みが0.1μm以上10μm以下であることが好ましく、更に好ましくは、0.2μm以上8μm、一層好ましくは1μm以上5μm以下である。極薄金属箔層12は、導電性及び薬液等によるエッチング加工性を有する材料が好ましく、例えば銅、銅合金、アルミニウム、亜鉛、ニッケル、スズ又はステンレスの金属材料で形成することができる。特に、電気抵抗が低く、エッチング等による回路形成時の加工性に優れる点や、その後の配線層の形成の容易さの点から銅箔又は銅合金箔、特に銅箔を好適に用いることができる。金属箔層12の製造方法としては、例えばスパッタリング法、蒸着法、電解法などが挙げられる。キャリア11及び剥離層13の一括生産性の観点からは、電解法を採用することが好ましい。
<Ultrathin metal foil layer>
The thickness of the ultrathin metal foil layer 12 in the carrier-attached metal foil 10 is, from the viewpoint of electroplating conductivity for a wiring pattern at the time of manufacturing a wiring board, which will be described later, and a fine line forming property when flash etching is performed after peeling the support. The thickness is preferably 0.1 μm or more and 10 μm or less, more preferably 0.2 μm or more and 8 μm, and still more preferably 1 μm or more and 5 μm or less. The ultrathin metal foil layer 12 is preferably made of a material having conductivity and etching processability by a chemical solution, and can be formed of a metal material such as copper, copper alloy, aluminum, zinc, nickel, tin, or stainless steel, for example. In particular, a copper foil or a copper alloy foil, particularly a copper foil can be suitably used from the viewpoint of low electrical resistance, excellent workability during circuit formation by etching or the like, and ease of subsequent wiring layer formation. . Examples of the method for producing the metal foil layer 12 include a sputtering method, a vapor deposition method, and an electrolytic method. From the viewpoint of batch productivity of the carrier 11 and the release layer 13, it is preferable to employ an electrolytic method.
 極薄金属箔層12の表面は、粗面であることが好ましい。粗面が形成され、極薄金属箔層12の表面の光沢度を下げることにより、極薄金属箔層12の表面と、キャリア10の延出部位111a,111bの表面との間での光沢度に差が生じやすくなり、キャリア10の延出部位111a,111bの視認性が向上する。粗面の形成は、電着法によるもの、エッチング法によるもの、ブラスト法によるもの、及び金属の酸化及び還元法によるものなどが採用できる。これらの中でも、電着法であれば均一な粒子状金属を被着させることができ、その粒子形状や粒子サイズの調整によって、光沢度の取り得る幅を大きいものとすることが可能である。極薄金属箔層12の表面の粗度は、表面粗さRz(JIS B0601-2013)で表して、0.1μm以上5.0μm以下であることが好ましく、0.2μm以上4.0μm以下であることが更に好ましい。 The surface of the ultrathin metal foil layer 12 is preferably a rough surface. A rough surface is formed, and the glossiness between the surface of the ultrathin metal foil layer 12 and the surfaces of the extended portions 111a and 111b of the carrier 10 is reduced by reducing the glossiness of the surface of the ultrathin metal foil layer 12. And the visibility of the extended portions 111a and 111b of the carrier 10 is improved. The rough surface can be formed by an electrodeposition method, an etching method, a blast method, or a metal oxidation and reduction method. Among these, if the electrodeposition method is used, a uniform particulate metal can be deposited, and by adjusting the particle shape and particle size, it is possible to increase the range of glossiness. The surface roughness of the ultrathin metal foil layer 12 is represented by surface roughness Rz (JIS B0601-2013), preferably 0.1 μm or more and 5.0 μm or less, and 0.2 μm or more and 4.0 μm or less. More preferably it is.
 更に、この極薄金属箔層12の表面(粗面である場合も含む)には、表面の化学的な安定性の保持や、後述するパターン形成用のレジストとの密着性を確保するために、防錆層やカップリング層が形成されていてもよい。防錆層の材料としては、例えばNi、Mo、Co、Cr、Fe、Ti、W、P及びZn等のうち少なくとも一種からなる金属ないし合金、又は/及びこれらの酸化物が挙げられる。一方、カップリング層としては、例えばシランカップリング剤の被膜が挙げられる。シランカップリング剤としては、例えば、ビニルメトキシシラン、ビニルフェニルトリメトキシシラン、メタクリロキシプロピルトリメトキシシラン、グリシドキシプロピルトリメトキシシラン、グリシジルブチルトリメトキシシラン、イミダゾールシラン、トリアジンシラン、メルカプトプロピルトリメトキシシラン、アミノプロピルトリエトキシシラン、アミノプロピルトリメトキシシラン等が挙げられる。 Furthermore, in order to maintain the chemical stability of the surface and the adhesion to the resist for pattern formation described later, the surface of the ultrathin metal foil layer 12 (including the case of a rough surface) is used. In addition, a rust prevention layer or a coupling layer may be formed. Examples of the material for the rust prevention layer include metals or alloys made of at least one of Ni, Mo, Co, Cr, Fe, Ti, W, P, Zn, and the like, and / or oxides thereof. On the other hand, as a coupling layer, the film of a silane coupling agent is mentioned, for example. Examples of silane coupling agents include vinyl methoxy silane, vinyl phenyl trimethoxy silane, methacryloxy propyl trimethoxy silane, glycidoxy propyl trimethoxy silane, glycidyl butyl trimethoxy silane, imidazole silane, triazine silane, mercapto propyl trimethoxy. Examples include silane, aminopropyltriethoxysilane, aminopropyltrimethoxysilane, and the like.
<表面保護層>
 先に述べた第1延出部位111a及び/又は第2延出部位111bにおいては、それらの面のうち、極薄金属箔層12側に位置する面に、図2(b)に示すとおり、表面保護層14を設けることが一層好ましい。表面保護層14は、キャリアの第1延出部位111a及び/又は第2延出部位111bにおける極薄金属箔層12側に位置する表面を、長期保管による酸化、延出部位の把持の際に生じるキズによる酸化、並びに把持用治具や手袋などから転写される水滴及び油滴からの酸化汚染防止等から保護する目的で用いられる。表面保護層14は無機保護層であっても有機保護層であってもよいが、酸化汚染をより強固に防止するためには、有機保護層が好ましい。
<Surface protective layer>
In the first extension part 111a and / or the second extension part 111b described above, the surface located on the ultrathin metal foil layer 12 side among those faces, as shown in FIG. It is more preferable to provide the surface protective layer 14. The surface protective layer 14 is used to oxidize the surface located on the ultrathin metal foil layer 12 side in the first extension part 111a and / or the second extension part 111b of the carrier and hold the extension part by long-term storage. It is used for the purpose of protecting from oxidation caused by scratches and prevention of oxidation contamination from water droplets and oil droplets transferred from a holding jig or gloves. The surface protective layer 14 may be an inorganic protective layer or an organic protective layer, but an organic protective layer is preferable in order to prevent oxidative contamination more firmly.
 表面保護層14が有機保護層である一つの形態として、該表面保護層14が前述した剥離層13の延出部である形態が挙げられる。表面保護層14が、剥離層13の延出部からなっていると、表面保護層14を剥離層13と同時形成することができるので、キャリア付き金属箔10の製造工程が複雑にならないという点で有利なものとなる。表面保護層14が剥離層13の延出部からなる場合、両者は一体のものになるので、表面保護層14と剥離層13とは同一の物質から構成される。 As one form in which the surface protective layer 14 is an organic protective layer, a form in which the surface protective layer 14 is an extension portion of the release layer 13 described above can be given. Since the surface protective layer 14 can be formed simultaneously with the peeling layer 13 when the surface protective layer 14 is composed of an extended portion of the peeling layer 13, the manufacturing process of the metal foil 10 with a carrier is not complicated. Is advantageous. When the surface protective layer 14 is composed of the extended portion of the release layer 13, both are integrated, and thus the surface protective layer 14 and the release layer 13 are made of the same material.
 一方、表面保護層14が有機保護層である場合の別の形態として樹脂層が挙げられる。該表面保護層14を構成する樹脂とは、例えばアクリル樹脂、アセタール樹脂、エチレン樹脂、エポキシ樹脂、シリコーン樹脂、フッ素樹脂、イミド樹脂、アミド樹脂、アミドイミド樹脂、スチレン-ブタジエン共重合体などの樹脂成分から構成されることが好ましい。特に表面保護層14を樹脂成分で形成した場合には、耐酸化性を優位に保つことができるとともに、塗布方法の選択により、例えば延出部の角部を面取り形状にするなど、延出部位の形状を自在に設計することが可能とできる。なお、これらの樹脂には、着色顔料や無機フィラーが適宜含有されてもよい。 On the other hand, as another form in the case where the surface protective layer 14 is an organic protective layer, a resin layer may be mentioned. Examples of the resin constituting the surface protective layer 14 include resin components such as acrylic resin, acetal resin, ethylene resin, epoxy resin, silicone resin, fluorine resin, imide resin, amide resin, amideimide resin, and styrene-butadiene copolymer. It is preferable that it is comprised. In particular, when the surface protective layer 14 is formed of a resin component, the oxidation resistance can be maintained predominately, and by selecting the coating method, for example, the corner of the extension portion is chamfered, and the extension site It is possible to freely design the shape of this. Note that these resins may appropriately contain a color pigment and an inorganic filler.
 表面保護層14が無機保護層である場合、該表面保護層14は、例えば、上述した防錆剤を含む層で構成することができる。防錆剤を含む層は、例えばNi、Mo、Co、Cr、Fe、Ti、W、P、Zn等のうち少なくとも一種からなる金属ないし合金、又は/及びこれらの酸化物から構成されることが好ましい。この中でも、防錆剤を含む層がNi、Cr及びZnからなる群より選択される少なくとも一種からなる金属ないし合金、又は/及びこれらの酸化物から構成されると、延出部位と極薄金属箔表面との視認性が向上するので特に好ましい。 When the surface protective layer 14 is an inorganic protective layer, the surface protective layer 14 can be composed of a layer containing the above-described rust inhibitor, for example. The layer containing a rust preventive agent may be composed of, for example, a metal or alloy made of at least one of Ni, Mo, Co, Cr, Fe, Ti, W, P, Zn, and / or an oxide thereof. preferable. Among these, when the layer containing the rust preventive agent is composed of at least one metal or alloy selected from the group consisting of Ni, Cr and Zn, and / or an oxide thereof, the extended portion and the ultrathin metal This is particularly preferable because visibility with the foil surface is improved.
 表面保護層14が上述したいずれの形態である場合であっても、その厚さは、延出部把持による破れ防止の点と、塗布工程などでの滲み幅の広がり防止の点で、1nm以上10μm以下であることが好ましく、2nm以上5μm以下であることが更に好ましく、2nm以上1μm以下であることが更に一層好ましく、2nm以上500nm以下であることが特に好ましく、2nm以上50nm以下であることが最も好ましい。 Even if the surface protective layer 14 is in any of the forms described above, the thickness thereof is 1 nm or more in terms of preventing breakage due to the gripping of the extended portion and preventing spread of the spread width in the coating process or the like. It is preferably 10 μm or less, more preferably 2 nm or more and 5 μm or less, still more preferably 2 nm or more and 1 μm or less, particularly preferably 2 nm or more and 500 nm or less, and 2 nm or more and 50 nm or less. Most preferred.
<延出部位の視認性>
 キャリア付き金属箔10を、その極薄金属箔層12側から見たときに、第1延出部位111a及び/又は第2延出部位111bの視認性を高める観点から、極薄金属箔層12の表面と、第1延出部位111a及び/又は第2延出部位111bのうち、該極薄金属箔層12側に位置する表面との、入射角60°での光沢度の差ΔGsは、30以上であることが好ましい。ここで言う視認性とは、肉眼での視認性だけでなく、光学機器による視認性も含まれる。ΔGsがこの範囲内であることによって、キャリア付き金属箔10及びプリプレグ等を用いて支持体を形成し、配線基板を製造するときに、キャリア付き金属箔10の第1延出部位111a及び/又は第2延出部位111bの位置が肉眼で一層明瞭になるだけでなく、各種の光学機器を用いた場合にも一層明瞭になり、これらの延出部位111a,111bの把持操作を確実に行うことができる。この有利な効果を一層顕著なものとする観点から、ΔGsは35以上であることが更に好ましく、40以上であることが一層好ましい。ΔGsの上限値に特に制限はなく、その値は高ければ高いほど好ましいが、90程度に高くなれば、上述の効果が十分に奏される。
<Visibility of the extended part>
From the viewpoint of enhancing the visibility of the first extending portion 111a and / or the second extending portion 111b when the metal foil with carrier 10 is viewed from the ultrathin metal foil layer 12 side, the ultrathin metal foil layer 12 is used. The difference ΔGs in glossiness at an incident angle of 60 ° between the surface of the first extending portion 111a and / or the surface of the second extending portion 111b located on the ultrathin metal foil layer 12 side is: It is preferable that it is 30 or more. The visibility mentioned here includes not only visibility with the naked eye but also visibility with an optical device. When ΔGs is within this range, when the support is formed using the metal foil with carrier 10 and the prepreg and the wiring board is manufactured, the first extending portion 111a of the metal foil with carrier 10 and / or The position of the second extension part 111b is not only clearer with the naked eye, but is also clearer when various optical devices are used, and the gripping operation of these extension parts 111a and 111b is surely performed. Can do. From the viewpoint of making this advantageous effect more remarkable, ΔGs is more preferably 35 or more, and further preferably 40 or more. There is no particular limitation on the upper limit value of ΔGs, and the higher the value, the better. However, when the value is as high as 90, the above-described effects are sufficiently achieved.
 光沢度はJIS Z8741-1997の「鏡面光沢度-測定方法」に準じ、市販の光沢計を用いて測定される。入射角は60°とする。光沢計としては、例えば日本電色工業株式会社製のPG-1Mを用いることができる。JIS Z8741-1997に準じて測定される表面光沢度は、その値が大きいほど光沢の程度が高いことを意味する。本発明においては、光沢度の差ΔGsが上述の値以上であれば、延出部位111a,111bの視認性は十分に高まる。この際、極薄金属箔層12の光沢度と、第1延出部位111a及び/又は第2延出部位111bの表面光沢度との大小関係に特に制限はない。第1延出部位111a及び/又は第2延出部位111bの表面光沢度を調整する方法としては、例えばエッチングや電解法、ブラスト、研磨などでキャリアの表面粗さを変化させる方法の他、表面保護層14の材料や厚さなどでも調整する方法が挙げられる。特に、ΔGsを上述の値以上にするためには、第1延出部位111a及び/又は第2延出部位111bに、上述した表面保護層14を、上述した範囲の厚さで形成することが有利である。また、極薄金属箔層12の表面光沢度の調整は、前記キャリアに対して施した処理と同様の表面処理によって可能となる。 The glossiness is measured using a commercially available gloss meter according to “Specular Glossiness—Measurement Method” of JIS Z8741-1997. The incident angle is 60 °. As the gloss meter, for example, PG-1M manufactured by Nippon Denshoku Industries Co., Ltd. can be used. The surface glossiness measured according to JIS Z8741-1997 means that the greater the value, the higher the degree of gloss. In the present invention, if the difference ΔGs in glossiness is equal to or greater than the above value, the visibility of the extended portions 111a and 111b is sufficiently enhanced. At this time, the magnitude relationship between the glossiness of the ultrathin metal foil layer 12 and the surface glossiness of the first extension portion 111a and / or the second extension portion 111b is not particularly limited. As a method for adjusting the surface glossiness of the first extension part 111a and / or the second extension part 111b, for example, a method for changing the surface roughness of the carrier by etching, electrolytic method, blasting, polishing, etc. The method of adjusting also with the material of the protective layer 14, thickness, etc. is mentioned. In particular, in order to set ΔGs to be equal to or greater than the above value, the above-described surface protective layer 14 may be formed in the first extending portion 111a and / or the second extending portion 111b with a thickness in the above-described range. It is advantageous. Further, the surface glossiness of the ultrathin metal foil layer 12 can be adjusted by a surface treatment similar to the treatment applied to the carrier.
 第1延出部位111a及び/又は第2延出部位111bの表面光沢度(Gs-e)は、把持部位であることを認識する目的を考えると30以上600以下であることが好ましく、50以上500以下であることが更に好ましい。一方、極薄金属箔層12の表面光沢度(Gs-t)は、前記延出部位との光沢度差ΔGsを所望の値以上とする中で、一定以上の視認性の保持と、表面の粗面による粉落ち防止の点から4以上500以下であることが好ましく、5以上400以下であることが更に好ましい。 The surface glossiness (Gs-e) of the first extension part 111a and / or the second extension part 111b is preferably 30 or more and 600 or less, in view of the purpose of recognizing that it is a gripping part, and 50 or more. More preferably, it is 500 or less. On the other hand, the surface glossiness (Gs−t) of the ultrathin metal foil layer 12 is such that the glossiness difference ΔGs with respect to the extension portion is not less than a desired value, while maintaining a certain level of visibility, It is preferably 4 or more and 500 or less, more preferably 5 or more and 400 or less, from the viewpoint of preventing powder falling due to the rough surface.
 以上の構成を有するキャリア付き金属箔10によれば、該キャリア付き金属箔10を用いての配線基板の製造過程において、該キャリア付き金属箔とプリプレグ等を積層した支持体を形成し、該キャリア付き金属箔10における第1延出部位111a及び/又は第2延出部位111bを把持して該キャリア付き金属箔10を搬送するときに、把持を確実に行うことができる。第1延出部位111a及び/又は第2延出部位111bには、極薄金属箔層12が存在していないので、該第1延出部位111a及び/又は第2延出部位111bを把持することで、極薄金属箔層12に汚染物が付着したり、極薄金属箔層12に破れ等の損傷が生じたりすることを効果的に防止することができる。また、第1延出部位111a及び第2延出部位111bを、いわゆる「埋め込み配線層」のレジスト被覆エリアとすることで、埋め込み配線層の形成時に、極薄金属箔層12とキャリア11との間に薬液が滲入する等により剥離することを効果的に防止することができる。 According to the metal foil with carrier 10 having the above configuration, in the process of manufacturing a wiring board using the metal foil with carrier 10, a support is formed by laminating the metal foil with carrier and a prepreg, etc. When the metal foil 10 with a carrier is conveyed by holding the first extending portion 111a and / or the second extending portion 111b in the attached metal foil 10, the holding can be reliably performed. Since the ultrathin metal foil layer 12 does not exist in the first extension part 111a and / or the second extension part 111b, the first extension part 111a and / or the second extension part 111b is gripped. Thus, it is possible to effectively prevent contaminants from adhering to the ultrathin metal foil layer 12 and damage such as tearing to the ultrathin metal foil layer 12. In addition, by forming the first extension portion 111a and the second extension portion 111b as a resist-covered area of a so-called “embedded wiring layer”, the ultrathin metal foil layer 12 and the carrier 11 are formed at the time of forming the embedded wiring layer. It is possible to effectively prevent peeling due to the infiltration of the chemical solution between them.
 次に、本発明のキャリア付き金属箔を用いた支持体と、配線基板の製造方法を、図1及び図2(b)に示すキャリア付き金属箔10を用いた場合を例にとり説明する。先ず図3(a)に示すとおり、キャリア付き金属箔10を用意する。なお同図には、極薄金属箔層12の外縁における一部にのみキャリア11の延出部位111を有するキャリア付き金属箔10が示されているが、これは説明を簡便にするために便宜的に描かれたものであり、図1に示すとおり、極薄金属箔層12の外縁の全域から延出部位が延出していてもよい。 Next, a support using the metal foil with a carrier of the present invention and a method for manufacturing a wiring board will be described taking the case of using the metal foil with a carrier 10 shown in FIGS. 1 and 2B as an example. First, as shown to Fig.3 (a), the metal foil 10 with a carrier is prepared. In the figure, the metal foil 10 with a carrier having the extending portion 111 of the carrier 11 only at a part of the outer edge of the ultrathin metal foil layer 12 is shown, but this is for convenience of explanation. As shown in FIG. 1, the extended portion may extend from the entire outer edge of the ultrathin metal foil layer 12.
<支持体>
 図3(b)及び(c)は、前記のキャリア付き金属箔10と、樹脂層15を積層して形成される支持体を示すものである。
 支持体において、樹脂層15は、キャリア付き金属箔10のキャリア11側、すなわち極薄金属箔層12の非形成面に積層されている。
 支持体表面に形成された金属箔は、配線基板の第1配線層形成用のシード層となる。
 支持体は、配線基板の薄層であるビルドアップ層形成時における反りの防止やハンドリングの補助、及び搬送を容易にする役割をもつ。また、第1配線層を含むビルドアップ層が形成された後、ビルドアップ層付きの支持体は、樹脂層と密着されたキャリア11と、配線基板と密着された極薄金属箔層12との間で剥離され、分離されるものである。つまり、支持体を構成する極薄金属薄層12と、キャリア11の間の剥離層13において分離されるものである。
 樹脂層15は、キャリア付き金属箔10の平面視において、極薄金属箔層12と重なる領域、及び延出部位111の一部又は全部と重なる領域に積層される。図3(b)には、延出部位111の全部と重なる領域に樹脂層15が積層されている状態が示されている。
<Support>
FIGS. 3B and 3C show a support formed by laminating the metal foil 10 with a carrier and the resin layer 15.
In the support, the resin layer 15 is laminated on the carrier 11 side of the metal foil with carrier 10, that is, on the non-formed surface of the ultrathin metal foil layer 12.
The metal foil formed on the support surface serves as a seed layer for forming the first wiring layer of the wiring board.
The support has a role of preventing warping, assisting in handling, and facilitating conveyance when forming a build-up layer that is a thin layer of the wiring board. In addition, after the buildup layer including the first wiring layer is formed, the support with the buildup layer includes the carrier 11 in close contact with the resin layer and the ultrathin metal foil layer 12 in close contact with the wiring substrate. Are separated and separated. That is, it is separated at the ultrathin metal thin layer 12 constituting the support and the release layer 13 between the carriers 11.
The resin layer 15 is laminated in a region overlapping with the ultrathin metal foil layer 12 and a region overlapping part or all of the extended portion 111 in a plan view of the metal foil with carrier 10. FIG. 3B shows a state in which the resin layer 15 is laminated in a region that overlaps with the entire extension portion 111.
 キャリア付き金属箔10と樹脂層15との積層は、通常のプリント配線板製造プロセスにおいて銅箔とプリプレグ等との積層に採用される公知の条件及び手法に従って行えばよい。樹脂層15は、典型的には樹脂、好ましくは絶縁性樹脂を含んでなる。樹脂層15はプリプレグ及び/又は樹脂シートであることが好ましく、より好ましくはプリプレグである。プリプレグとは、合成樹脂板、ガラス板、ガラス織布、ガラス不織布又は紙等の基材に合成樹脂を含浸させた複合材料の総称である。プリプレグに含浸される絶縁性樹脂の好ましい例としては、エポキシ樹脂、シアネート樹脂、ビスマレイミドトリアジン樹脂(BT樹脂)、ポリフェニレンエーテル樹脂、及びフェノール樹脂等が挙げられる。また、樹脂シートを構成する絶縁性樹脂の例としては、エポキシ樹脂、ポリイミド樹脂、及びポリエステル樹脂等の絶縁樹脂が挙げられる。また、樹脂層15には絶縁性を向上する等の観点からシリカ、アルミナ等の各種無機粒子からなるフィラー粒子等が含有されていてもよい。樹脂層15の厚さは特に限定されないが、3μm以上1000μm以下であることが好ましく、より好ましくは5μm以上400μm以下であり、一層好ましくは10μm以上200μm以下である。 The lamination of the metal foil with carrier 10 and the resin layer 15 may be performed in accordance with known conditions and techniques employed for the lamination of copper foil and prepreg in a normal printed wiring board manufacturing process. The resin layer 15 typically includes a resin, preferably an insulating resin. The resin layer 15 is preferably a prepreg and / or a resin sheet, more preferably a prepreg. The prepreg is a general term for composite materials in which a synthetic resin plate, a glass plate, a glass woven fabric, a glass nonwoven fabric, paper or the like is impregnated with a synthetic resin. Preferable examples of the insulating resin impregnated in the prepreg include an epoxy resin, a cyanate resin, a bismaleimide triazine resin (BT resin), a polyphenylene ether resin, and a phenol resin. Moreover, as an example of insulating resin which comprises a resin sheet, insulating resins, such as an epoxy resin, a polyimide resin, and a polyester resin, are mentioned. In addition, the resin layer 15 may contain filler particles made of various inorganic particles such as silica and alumina from the viewpoint of improving insulation. The thickness of the resin layer 15 is not particularly limited, but is preferably 3 μm or more and 1000 μm or less, more preferably 5 μm or more and 400 μm or less, and still more preferably 10 μm or more and 200 μm or less.
 支持体は、第1配線層を形成する前に、必要に応じて図3(c)に示すとおり、これを所定の位置において切断してもよい。例えば図3(c)に示すとおり、支持体となる積層体は、周縁部に位置する延出部位111の一部を残して、該延出部位111と樹脂層15とを一緒に厚み方向にわたって切断される。この切断によって、積層体には、延出残留部位111”が形成される。例えばキャリア付き金属箔10の大きさが樹脂層15よりも大きい場合には、前記の切断を行うことで延出残留部位111”を形成すると、切断後の積層体の把持ないし搬送時に、極薄金属箔層12のめくれが顕著に防止される等の利点がある。 The support may be cut at a predetermined position as shown in FIG. 3 (c) as necessary before forming the first wiring layer. For example, as shown in FIG. 3 (c), the laminated body serving as the support body leaves the extending portion 111 located at the peripheral edge part, and extends the extending portion 111 and the resin layer 15 together in the thickness direction. Disconnected. By this cutting, an extension residual portion 111 ″ is formed in the laminated body. For example, when the size of the metal foil with carrier 10 is larger than the resin layer 15, the extension residual is obtained by performing the above-described cutting. The formation of the portion 111 ″ has an advantage that the ultrathin metal foil layer 12 is remarkably prevented from being turned over when the laminated body after cutting is held or transported.
<配線基板の製造方法>
 本製造方法においては、切断前の延出部位111だけでなく、切断によって生じる基板側の延出残留部位111”も、把持部として用いる場合がある。その観点から、切断前の延出部位111の幅Wは、切断後に十分な幅の延出残留部位111”が生じるような値に設定することが好ましい。この観点から、キャリア11が、四辺形を有する極薄金属箔層12の外縁の全域から延出して、一対の第1延出部位111a及び一対の第2延出部位111bを有している場合には、図1(a)に示すとおり、第1延出部位111aの幅W1よりも第2延出部位111bの幅W2を大きくし、第2延出部位111bの一部を樹脂層とともに切断することが好ましい。このような目的の他、第1延出部位111aの幅W1よりも第2延出部位111bの幅W2を大きくしておくことで、例えばキャリア付き金属箔10の外形寸法が正方形だった場合、人為的ないし機械的に第1延出部位111aと第2延出部位111bを識別することが容易となる。
<Manufacturing method of wiring board>
In this manufacturing method, not only the extension part 111 before cutting but also the extension residual part 111 "on the substrate side generated by the cutting may be used as a gripping part. From this viewpoint, the extension part 111 before cutting is used. The width W is preferably set to a value such that a sufficiently long extension residual portion 111 ″ is generated after cutting. From this point of view, the carrier 11 has a pair of first extending portions 111a and a pair of second extending portions 111b extending from the entire outer edge of the ultrathin metal foil layer 12 having a quadrilateral shape. As shown in FIG. 1A, the width W2 of the second extension part 111b is made larger than the width W1 of the first extension part 111a, and a part of the second extension part 111b is cut together with the resin layer. It is preferable to do. In addition to such a purpose, by setting the width W2 of the second extending portion 111b larger than the width W1 of the first extending portion 111a, for example, when the outer dimension of the metal foil 10 with a carrier is square, It becomes easy to identify the first extension part 111a and the second extension part 111b artificially or mechanically.
<配線パターンの形成>
 次に図4(a)に示すとおり、積層体における極薄金属箔層12側の表面にレジスト層16を形成する。レジスト層16は、少なくとも、極薄金属箔層12の露出面が被覆されるように形成され、好ましくは延出残留部位111”における極薄金属箔層12側の表面も被覆されるように形成される。このようにレジスト層16を形成することで、積層体の端部を確実に封止することが可能となるので、後述する第1配線層を確実に形成できるという利点がある。
<Formation of wiring pattern>
Next, as shown to Fig.4 (a), the resist layer 16 is formed in the surface by the side of the ultra-thin metal foil layer 12 in a laminated body. The resist layer 16 is formed so that at least the exposed surface of the ultrathin metal foil layer 12 is covered, and preferably the surface on the ultrathin metal foil layer 12 side in the extended residual portion 111 ″ is also covered. By forming the resist layer 16 in this way, it is possible to reliably seal the end portion of the stacked body, and thus there is an advantage that a first wiring layer to be described later can be reliably formed.
 レジスト層16が形成されたら、図4(b)に示すとおりレジスト層16のパターン露光を行い、引き続き図4(c)に示すとおり現像を行う。それによってレジストパターン16’を形成する。パターン16’の形成材料は、ネガレジスト及びポジレジストのいずれの方式で行ってもよい。レジストはフィルムタイプ及び液状タイプのいずれであってもよい。露光用の光源は紫外線、電子線などが挙げられる。また、現像液としては炭酸ナトリウム、水酸化ナトリウム、アミン系水溶液等を用いることができる。 When the resist layer 16 is formed, the resist layer 16 is subjected to pattern exposure as shown in FIG. 4B, and subsequently developed as shown in FIG. 4C. Thereby, a resist pattern 16 'is formed. The material for forming the pattern 16 ′ may be a negative resist or a positive resist. The resist may be either a film type or a liquid type. Examples of the light source for exposure include ultraviolet rays and electron beams. As the developer, sodium carbonate, sodium hydroxide, an amine-based aqueous solution, or the like can be used.
 レジストパターン16’が形成されたら、図4(d)に示すとおり、レジストパターン16’の面に銅めっき18を施す。銅めっき18は一般に電気めっきによって形成できる。銅めっき18の形成は、例えば硫酸銅めっき液やピロリン酸銅めっき液等を用い、配線基板の製造に一般的に用いられる各種パターンめっき手法及び条件に従い行えばよく特に限定されない。上述のとおり、積層体の端部はレジスト層16(レジストパターン16’)によって封止されているので、銅めっき18を形成する際に、極薄金属箔層12の剥離が起こりにくくなっている。 When the resist pattern 16 'is formed, copper plating 18 is applied to the surface of the resist pattern 16' as shown in FIG. The copper plating 18 can generally be formed by electroplating. The formation of the copper plating 18 is not particularly limited as long as it is performed using, for example, a copper sulfate plating solution, a copper pyrophosphate plating solution, or the like according to various pattern plating methods and conditions generally used for manufacturing a wiring board. As described above, since the end of the laminated body is sealed by the resist layer 16 (resist pattern 16 ′), the ultrathin metal foil layer 12 is less likely to be peeled off when the copper plating 18 is formed. .
 銅めっき18が形成されたら、レジストパターン16’を剥離して、図5(a)に示すとおり配線パターン20を形成する。レジストパターン16’の剥離は、水酸化ナトリウム水溶液や、アミン系溶液若しくはその水溶液等が採用され、プリント配線板の製造に一般的に用いられる各種剥離手法及び条件に従い行えばよく特に限定されない。こうして、極薄金属箔層12の表面に第1配線層22からなる配線部(ライン)が間隙部(スペース)を隔てて配列された配線パターンが直接形成されることになる。例えば、回路の微細化のためには、ライン/スペース(L/S)が30μm以下/30μm以下(例えば30μm/30μm、20μm/20μm、5μm/5μm)といった程度にまで高度に微細化された配線パターンを形成することが好ましい。
 このようにして、第1配線層22が形成される。この第1配線層22は、必要に応じ露出面を常法に従い粗化処理してもよい(図示せず)。
After the copper plating 18 is formed, the resist pattern 16 ′ is peeled off to form a wiring pattern 20 as shown in FIG. The resist pattern 16 ′ is peeled off by using a sodium hydroxide aqueous solution, an amine-based solution or an aqueous solution thereof, and may be performed in accordance with various peeling methods and conditions generally used in the production of printed wiring boards. In this way, a wiring pattern in which wiring portions (lines) made of the first wiring layer 22 are arranged with a gap (space) therebetween is directly formed on the surface of the ultrathin metal foil layer 12. For example, for circuit miniaturization, highly refined wiring with a line / space (L / S) of 30 μm or less / 30 μm or less (for example, 30 μm / 30 μm, 20 μm / 20 μm, 5 μm / 5 μm) It is preferable to form a pattern.
In this way, the first wiring layer 22 is formed. The first wiring layer 22 may be subjected to a roughening process (not shown) according to a conventional method if necessary.
<ビルドアップ配線層の形成>
本製造方法においては、引き続き、ビルドアップ配線層を形成してビルドアップ配線層付き積層体を作製することが好ましい。ビルドアップ配線層の形成方法は、特に限定されず、サブトラクティブ法、MSAP(モディファイド・セミ・アディティブ・プロセス)法、SAP(セミアディティブ)法、フルアディティブ法等が使用可能である。一例としてモディファイド・セミ・アディティブ法を用いた形成方法を以下に示す。詳細には、図5(b)に示すとおり、第1配線層22側の表面に絶縁層24を形成する。
<Formation of build-up wiring layer>
In this manufacturing method, it is preferable to continue to form a buildup wiring layer to produce a laminate with a buildup wiring layer. The method for forming the build-up wiring layer is not particularly limited, and a subtractive method, an MSAP (Modified Semi-Additive Process) method, an SAP (Semi-Additive) method, a full additive method, or the like can be used. As an example, a forming method using the modified semi-additive method is shown below. Specifically, as shown in FIG. 5B, the insulating layer 24 is formed on the surface on the first wiring layer 22 side.
 この絶縁層24は、図5(b)に示すとおり、キャリア付き金属箔10の平面視における周縁部において、極薄金属箔層12と重なる領域、及び延出部位111の一部又は全部と重なる領域に積層されることが好ましい。このように絶縁層24を積層することで、ビルドアップ層の形成工程における薬液の侵入防止を確実にすることが可能となる。 As shown in FIG. 5B, the insulating layer 24 overlaps with a region overlapping with the ultrathin metal foil layer 12 and a part or all of the extended portion 111 in the peripheral portion in plan view of the metal foil with carrier 10. It is preferable to be stacked in the region. By laminating the insulating layer 24 in this way, it becomes possible to reliably prevent the intrusion of the chemical solution in the build-up layer forming process.
 更に必要に応じ、図5(c)に示すとおり、積層された絶縁層24の上にキャリア付き金属箔30を積層する。キャリア付き金属箔30は、キャリア31と極薄金属箔層32との積層構造を有し、両者の間に剥離層33が介在しているものであり、これらの部材は、先に述べたキャリア付き金属箔10と同様の材料から構成することができる。絶縁層24上にキャリア付き金属箔30を積層するときには、該キャリア付き金属箔30における極薄金属箔層32が絶縁層24と対向するように積層する。 Further, if necessary, a metal foil 30 with a carrier is laminated on the laminated insulating layer 24 as shown in FIG. The metal foil 30 with a carrier has a laminated structure of a carrier 31 and an ultrathin metal foil layer 32, and a release layer 33 is interposed between the two, and these members are the carrier described above. It can comprise from the material similar to the metal foil 10 with attachment. When laminating the metal foil 30 with a carrier on the insulating layer 24, the ultrathin metal foil layer 32 in the metal foil 30 with a carrier is laminated so as to face the insulating layer 24.
 次にキャリア付き金属箔30からキャリア31を剥離した後、図6(a)に示すとおり、極薄金属箔層32及びその直下に位置する絶縁層24に穿孔処理を施し、第1配線層22を露出させる。穿孔処理は、例えば炭酸ガスレーザーやUV-YAGレーザー、エキシマレーザー等を用いたレーザー加工によって行うことができる。続いて、フォトレジスト加工、無電解銅めっき、電解銅めっき、フォトレジスト剥離及びフラッシュエッチング等によってパターニングを行い、図6(b)に示すとおり第2配線層34を形成する。このパターニングは、必要に応じて複数繰り返すことができ、それによって第n配線層(nは2以上の整数)まで形成することができる。 Next, after the carrier 31 is peeled from the metal foil 30 with the carrier, as shown in FIG. 6A, the ultrathin metal foil layer 32 and the insulating layer 24 positioned immediately below are subjected to perforation processing, and the first wiring layer 22 is formed. To expose. The perforation process can be performed by laser processing using, for example, a carbon dioxide laser, a UV-YAG laser, an excimer laser, or the like. Subsequently, patterning is performed by photoresist processing, electroless copper plating, electrolytic copper plating, photoresist stripping, flash etching, or the like to form the second wiring layer 34 as shown in FIG. 6B. This patterning can be repeated a plurality of times as necessary, whereby the nth wiring layer (n is an integer of 2 or more) can be formed.
 第2配線層34以降のビルドアップ層の形成方法として、この他に例えば、樹脂層及び銅箔に代表される金属箔を同時にプレス加工で貼り合わせる場合は、ビアホール形成及びパネルめっき等の層間導通手段の形成と組み合わせて、当該パネルめっき層及び金属箔をエッチング加工して、配線パターンを形成することができる。また、極薄金属箔層12の表面に樹脂層のみをプレス又はラミネート加工により貼り合わせる場合は、その表面にセミアディティブ法で配線パターンを形成することもできる。 As another method for forming the build-up layer after the second wiring layer 34, for example, when a metal foil typified by a resin layer and a copper foil is bonded together by press working at the same time, interlayer conduction such as via hole formation and panel plating is performed. In combination with the formation of the means, the panel plating layer and the metal foil can be etched to form a wiring pattern. When only the resin layer is bonded to the surface of the ultrathin metal foil layer 12 by pressing or laminating, a wiring pattern can be formed on the surface by a semi-additive method.
<支持体の剥離及びフラッシュエッチング>
 このようにして第2配線層34又は/及び第2配線層34以降のビルドアップ層(図示せず)が形成されたら、図6(c)に示すとおり積層体をその厚み方向に沿って切断する切断工程を行う。積層体の切断位置は、先に述べたキャリアの延出残留部位111”よりも基板の中心側とすることが好ましい。そのような位置で切断を行うと、図6(d)に示す、キャリア11を含む支持体の剥離工程において、剥離が容易になるという利点がある。なお図6(d)に示す剥離工程においては、樹脂層15をキャリア11とともに剥離する。引き続き、図6(e)に示すとおり、第1配線層22の配線パターン間、及び第2配線層34の配線パターン間に露出する極薄金属箔層12,32をフラッシュエッチングにより除去して、目的とする配線基板を得る。
<Peeling of support and flash etching>
When the second wiring layer 34 and / or the build-up layer (not shown) after the second wiring layer 34 is formed in this way, the laminate is cut along the thickness direction as shown in FIG. A cutting step is performed. The cutting position of the laminate is preferably closer to the center side of the substrate than the carrier extension residual portion 111 ″ described above. When cutting is performed at such a position, the carrier shown in FIG. There is an advantage that peeling becomes easy in the peeling step of the support including 11. In the peeling step shown in Fig. 6 (d), the resin layer 15 is peeled together with the carrier 11. Subsequently, Fig. 6 (e) As shown in FIG. 2, the ultrathin metal foil layers 12 and 32 exposed between the wiring patterns of the first wiring layer 22 and between the wiring patterns of the second wiring layer 34 are removed by flash etching, thereby obtaining a target wiring board. .
 以上、本発明をその好ましい実施形態に基づき説明したが、本発明は前記実施形態に制限されない。例えば前記実施形態においては、キャリア付き金属箔10におけるキャリア11及び極薄金属箔層12の平面視での形状が四辺形であったが、これらの部材の形状は四辺形に限られない。 As mentioned above, although this invention was demonstrated based on the preferable embodiment, this invention is not restrict | limited to the said embodiment. For example, in the embodiment, the shape of the carrier 11 and the ultrathin metal foil layer 12 in the metal foil with carrier 10 in a plan view is a quadrilateral, but the shape of these members is not limited to a quadrilateral.
 以下、実施例により本発明を更に詳細に説明する。しかしながら本発明の範囲は、かかる実施例に制限されない。 Hereinafter, the present invention will be described in more detail with reference to examples. However, the scope of the present invention is not limited to such examples.
  〔実施例1〕
 本実施例では、図1(a)及び図2(b)に示す長方形のキャリア付き金属箔10を、以下の(1)-(6)の手順で製造した。
 (1)キャリア用電解銅箔の製造
 銅電解液として硫酸酸性硫酸銅溶液を用い、陰極に表面粗さRaが0.20μmのチタン製の電極を用い、陽極にはDSA(寸法安定性陽極)を用いて、溶液温度45℃、電流密度55A/dmで電解し、厚さ12μmのキャリア用電解銅箔を得た。なお、以下の説明においては、キャリア用電解銅箔に対して、後述の工程で加工を施す面について、電解時に陰極と接していた側を「電極面側」と称し、電解液と接していた側を「電解液面側」と称する。
[Example 1]
In this example, a rectangular metal foil 10 with a carrier shown in FIGS. 1A and 2B was manufactured by the following procedures (1) to (6).
(1) Production of electrolytic copper foil for carrier A sulfuric acid copper sulfate solution is used as a copper electrolyte, a titanium electrode having a surface roughness Ra of 0.20 μm is used as a cathode, and a DSA (dimensional stability anode) is used as an anode. Was used for electrolysis at a solution temperature of 45 ° C. and a current density of 55 A / dm 2 to obtain an electrolytic copper foil for carriers having a thickness of 12 μm. In the following description, the surface of the electrolytic copper foil for carrier that is processed in the steps described later is referred to as the “electrode surface side” that is in contact with the cathode during electrolysis, and is in contact with the electrolytic solution. The side is referred to as the “electrolyte surface side”.
(2)有機剥離層の形成
 酸洗処理されたキャリア用電解銅箔の電極面側を、CBTA(カルボキシベンゾトリアゾール)1000質量ppm、硫酸150g/L及び銅10g/Lを含む水溶液に、液温30℃で30秒間浸漬して引き上げた。こうしてCBTA成分をキャリア用電解銅箔の電極面側に吸着させて、CBTA層を有機剥離層として形成させた。面積重量換算法で測定した剥離層の厚さは3nmであった。
(2) Formation of Organic Peeling Layer The electrode surface side of the pickled electrolytic copper foil for carrier was subjected to an aqueous solution containing 1000 mass ppm of CBTA (carboxybenzotriazole), 150 g / L of sulfuric acid and 10 g / L of copper. It was dipped at 30 ° C. for 30 seconds and pulled up. Thus, the CBTA component was adsorbed on the electrode surface side of the electrolytic copper foil for carrier, and the CBTA layer was formed as an organic release layer. The thickness of the release layer measured by the area weight conversion method was 3 nm.
(3)極薄銅箔層の形成
 有機剥離層を形成したキャリア用電解銅箔の電極面側に対して酸性硫酸銅溶液中で、電流密度8A/dmにて電気めっきを行い、厚さ3μmの極薄銅箔層を有機剥離層上に形成した。
(3) Formation of ultrathin copper foil layer Electroplating is carried out at an electric current density of 8 A / dm 2 in an acidic copper sulfate solution on the electrode surface side of the electrolytic copper foil for carriers on which an organic release layer is formed. A 3 μm ultrathin copper foil layer was formed on the organic release layer.
(4)粗化処理
 キャリア用電解銅箔の電極面側に形成された極薄銅箔層に対して、以下の2段階のプロセスで粗化処理を行った。粗化処理の1段目は、粗化処理用銅電解溶液(銅濃度:11g/L、フリー硫酸濃度:220g/L、溶液温度:35℃)にて電解(電流密度27A/dm)し、水洗することにより行った。粗化処理の2段目は、粗化処理用銅電解溶液(銅濃度:69g/L、フリー硫酸濃度:130g/L、溶液温度:52℃)にて電解(電流密度:21A/dm)し、水洗することにより行った。
(4) Roughening treatment Roughening treatment was performed on the ultrathin copper foil layer formed on the electrode surface side of the electrolytic copper foil for carrier by the following two-stage process. The first stage of the roughening treatment is electrolysis (current density 27 A / dm 2 ) in a copper electrolytic solution for roughening treatment (copper concentration: 11 g / L, free sulfuric acid concentration: 220 g / L, solution temperature: 35 ° C.). This was done by washing with water. The second stage of the roughening treatment is electrolysis (current density: 21 A / dm 2 ) in a copper electrolytic solution for roughening treatment (copper concentration: 69 g / L, free sulfuric acid concentration: 130 g / L, solution temperature: 52 ° C.). And then by washing with water.
(5)防錆層
 粗化処理後の銅箔の両面に、無機防錆処理及びクロメート処理からなる防錆処理を行った。先ず、無機防錆処理として、ピロリン酸浴を用い、ピロリン酸カリウム濃度80g/L、亜鉛濃度0.29g/L、ニッケル濃度2.9g/L、液温40℃、電流密度0.5A/dmで亜鉛-ニッケル合金防錆処理を行った。次いで、クロメート処理をして、亜鉛-ニッケル合金防錆処理の上に、更にクロメート層を形成した。このクロメート処理は、クロム酸濃度が1g/L、pH11、溶液温度25℃、電流密度1A/dmで行った。
(5) Rust prevention layer The rust prevention process which consists of an inorganic rust prevention process and a chromate process was performed on both surfaces of the copper foil after a roughening process. First, as an inorganic rust prevention treatment, a pyrophosphoric acid bath is used, potassium pyrophosphate concentration 80 g / L, zinc concentration 0.29 g / L, nickel concentration 2.9 g / L, liquid temperature 40 ° C., current density 0.5 A / dm. In Step 2 , a rust-proofing treatment of zinc-nickel alloy was performed. Next, chromate treatment was performed, and a chromate layer was further formed on the zinc-nickel alloy rust prevention treatment. This chromate treatment was performed at a chromic acid concentration of 1 g / L, pH 11, a solution temperature of 25 ° C., and a current density of 1 A / dm 2 .
(6)キャリア延出部位形成工程
 前記の銅箔を、長方形にカットした後、極薄銅層を上面にして平板ステージ上に置いて全面を真空吸着させた。その後、銅箔の一辺の端部より20mmの領域のみを露出させた状態で、ステンレス板で被覆し、露出部のみにシリコーン系粘着剤付きのポリイミド・テープを貼り合わせた。貼り合わせの後、速度5m/minでポリイミド・テープを引き上げることで、極薄銅箔が粘着されたポリイミド・テープを銅箔から剥離し、一辺の端部に剥離層が露出した幅20mmの延出部位を得た。同様の処理を残りの3辺について行い、四辺の端部20mmが剥離層で被覆された延出部位の設けられたキャリア付き金属箔10を得た。
(6) Carrier extension site | part formation process After cutting the said copper foil into a rectangle, it set | placed on the flat plate stage by making an ultra-thin copper layer into an upper surface, and the whole surface was vacuum-sucked. Then, in the state which exposed only the area | region of 20 mm from the edge part of one side of copper foil, it coat | covered with the stainless steel plate, and the polyimide tape with a silicone type adhesive was bonded only to the exposed part. After bonding, the polyimide tape with the ultrathin copper foil adhered is peeled off from the copper foil by pulling up the polyimide tape at a speed of 5 m / min, and a 20 mm wide extension with a release layer exposed at one end. The exit site was obtained. The same process was performed for the remaining three sides, and a metal foil 10 with a carrier provided with an extended portion in which the end portions of the four sides were covered with a release layer was obtained.
 このようにして図1(a)及び図2(b)に示すキャリア付き金属箔10を得た。このキャリア付き金属箔10においては、延出部位における極薄銅箔側の表面の全域にも有機剥離層が形成されていた。このキャリア付き金属箔10における極薄銅箔の光沢度(入射角60°)は5であり、延出部位における極薄銅箔側の光沢度(入射角60°)は50であった。両者の光沢度の差ΔGsは45であった。両者の光沢度の差に起因して、キャリア付き金属箔10を用いて同じサイズのプリプレグと積層した支持体は、延出部位の視認性が非常に良好であった。また、第1延出部位111aの幅W1は20mmであり、第2延出部位111bの幅W2は20mmであり、吸着パッドによる把持性も良好であった。 Thus, a metal foil 10 with a carrier shown in FIGS. 1 (a) and 2 (b) was obtained. In this metal foil 10 with a carrier, the organic peeling layer was also formed in the whole area of the surface on the ultrathin copper foil side in the extended portion. The gloss of the ultrathin copper foil (incident angle 60 °) in this metal foil with carrier 10 was 5, and the glossiness of the ultrathin copper foil side (incident angle 60 °) at the extended portion was 50. The difference in glossiness ΔGs between the two was 45. Due to the difference in glossiness between the two, the support laminated with the prepreg of the same size using the metal foil with carrier 10 had very good visibility of the extended portion. Moreover, the width W1 of the 1st extension site | part 111a was 20 mm, the width W2 of the 2nd extension site | part 111b was 20 mm, and the grip property by a suction pad was also favorable.
 また、このキャリア付き金属箔10と、該キャリア付き金属箔10と同じサイズのプリプレグとを積層し、支持体とした後、図5に示す配線層を形成し、更に図6に示すビルドアップ層を形成した後、積層体を切断し、キャリアを含む支持体を剥離した。その結果、キャリアと金属箔の界面において、端面からの薬液の侵入は見られず、四辺の封止も確実に行われていることを確認できた。 Further, after laminating the metal foil with carrier 10 and a prepreg of the same size as the metal foil with carrier 10 to form a support, the wiring layer shown in FIG. 5 is formed, and the build-up layer shown in FIG. After forming, the laminate was cut and the support including the carrier was peeled off. As a result, it was confirmed that the chemical solution did not enter from the end face at the interface between the carrier and the metal foil, and that the four sides were securely sealed.
  〔実施例2〕
 本実施例では、延出部位がエポキシ樹脂からなる保護層で被覆されたキャリア付き金属箔10を次の手順で作成した。
(1)キャリア用電解銅箔の製造
 キャリア用電解銅箔は、実施例1と同様に作成した。
(2)エポキシ樹脂保護層及び延出部位の形成工程
 キャリア用電解銅箔の外縁から20mm隔てた位置から内側の領域をマスクフィルムで遮蔽した後、透明エポキシ樹脂を乾燥膜厚3μmとなる要領でスプレーコートした。その後、乾燥炉で150℃10分硬化させ外縁から20mmの延出部位の領域にエポキシ樹脂が塗布されて形成された表面保護層を備えた銅箔を得た。
(3)有機剥離層~防錆処理
 前記銅箔に対して、有機剥離層の形成工程以外は実施例1と同様に有機剥離層、極薄銅箔層、粗化処理層及び防錆層を形成した。本実施例における有機剥離層の形成は、浸漬時間を90秒として、剥離層の厚さを6nmとする以外は実施例1と同様とした。エポキシ樹脂からなる保護層で被覆された領域には、新たな被膜は形成せず、該保護層で被覆された延出部位をもつキャリア付き金属箔10を得た。
[Example 2]
In this example, a metal foil 10 with a carrier whose extension part was covered with a protective layer made of an epoxy resin was prepared by the following procedure.
(1) Production of electrolytic copper foil for carrier The electrolytic copper foil for carrier was prepared in the same manner as in Example 1.
(2) Step of forming epoxy resin protective layer and extension site After shielding the inner region from the position 20 mm away from the outer edge of the electrolytic copper foil for carrier with a mask film, the transparent epoxy resin is dried to a thickness of 3 μm. Spray coated. Then, it was cured at 150 ° C. for 10 minutes in a drying furnace to obtain a copper foil provided with a surface protective layer formed by applying an epoxy resin to the region of the extended portion 20 mm from the outer edge.
(3) Organic release layer to antirust treatment For the copper foil, an organic release layer, an ultrathin copper foil layer, a roughening treatment layer, and an antirust layer were formed in the same manner as in Example 1 except for the step of forming the organic release layer. Formed. The organic release layer in this example was formed in the same manner as in Example 1 except that the immersion time was 90 seconds and the thickness of the release layer was 6 nm. A new film was not formed in the region covered with the protective layer made of epoxy resin, and a metal foil 10 with a carrier having an extended portion covered with the protective layer was obtained.
 このキャリア付き金属箔10における極薄銅箔の光沢度(入射角60°)は5であり、延出部位における極薄銅箔側の光沢度(入射角60°)は37であった。両者の光沢度の差ΔGsは32であった。両者の光沢度の差に起因して、キャリア付き金属箔10を用いた支持体においては、延出部位の視認性は良好であった。また、第1延出部位111aの幅W1は20mmであり、第2延出部位111bの幅W2は20mmであり、吸着パッドによる把持性も良好であった。 The glossiness (incident angle 60 °) of the ultrathin copper foil in this metal foil 10 with a carrier was 5, and the glossiness (incident angle 60 °) on the ultrathin copper foil side at the extended portion was 37. The difference in glossiness ΔGs between them was 32. Due to the difference in glossiness between them, in the support using the metal foil with carrier 10, the visibility of the extended portion was good. Moreover, the width W1 of the 1st extension site | part 111a was 20 mm, the width W2 of the 2nd extension site | part 111b was 20 mm, and the grip property by a suction pad was also favorable.
  〔実施例3〕
 本実施例では、延出部位が、無機物である亜鉛-ニッケル合金層とクロメート層の2層からなる保護層で被覆されたキャリア付き金属箔10を次の手順で作成した。
(1)キャリア用電解銅箔の形成
 キャリア用電解銅箔は、有機剥離層の形成工程における浸漬時間を180秒とし、剥離層の厚さを10nmとする以外は実施例1と同様に作成した。
(2)極薄銅箔層、粗化処理層及び防錆層の形成
 前記銅箔に対して、遮蔽板を設置して極薄銅箔層、粗化処理層を形成した。ここで、極薄銅箔層と粗化処理層の工程のみ、銅箔の析出面からの距離として5mmの位置に遮蔽板を設置した。遮蔽領域は銅箔の外縁から20mm以内の領域とし、その領域に極薄銅箔層と粗化処理層が形成されないようにした。それぞれの処理液や電着の条件は実施例1と同様に行った。次いで、防錆層は実施例1と同様に、すなわち遮蔽板を設置せずに形成した。その結果、延出部位上に防錆層と同じ成分の亜鉛-ニッケル合金層とクロメート層が被覆されたキャリア付き銅箔を得た。
Example 3
In this example, the metal foil 10 with a carrier whose extension part was covered with a protective layer composed of two layers of an inorganic zinc-nickel alloy layer and a chromate layer was prepared by the following procedure.
(1) Formation of electrolytic copper foil for carrier The electrolytic copper foil for carrier was prepared in the same manner as in Example 1 except that the immersion time in the step of forming the organic release layer was 180 seconds and the thickness of the release layer was 10 nm. .
(2) Formation of ultrathin copper foil layer, roughening treatment layer, and rust prevention layer A shielding plate was installed on the copper foil to form an ultrathin copper foil layer and a roughening treatment layer. Here, the shielding board was installed in the position of 5 mm as a distance from the deposition surface of copper foil only in the process of an ultra-thin copper foil layer and a roughening process layer. The shielding area was an area within 20 mm from the outer edge of the copper foil, and an ultrathin copper foil layer and a roughening treatment layer were not formed in that area. Each treatment solution and electrodeposition conditions were the same as in Example 1. Next, the rust preventive layer was formed in the same manner as in Example 1, that is, without installing a shielding plate. As a result, a copper foil with a carrier in which a zinc-nickel alloy layer and a chromate layer having the same components as the rust preventive layer were coated on the extended portion was obtained.
 このキャリア付き金属箔10における極薄銅箔の光沢度(入射角60°)は5であり、延出部位における極薄銅箔側の光沢度(入射角60°)は70であった。両者の光沢度の差ΔGsは65であった。延出部位の視認性は非常に良好であった。第1延出部位111aの幅W1は20mmであり、第2延出部位111bの幅W2は20mmであり、吸着パッドによる把持性は良好であった。 The glossiness (incident angle 60 °) of the ultrathin copper foil in this metal foil 10 with a carrier was 5, and the glossiness (incident angle 60 °) on the ultrathin copper foil side at the extended portion was 70. The difference in glossiness ΔGs between the two was 65. The visibility of the extension site was very good. The width W1 of the 1st extension part 111a was 20 mm, the width W2 of the 2nd extension part 111b was 20 mm, and the grip property by a suction pad was favorable.
  〔実施例4〕
 本実施例は、実施例1において、延出部位111a,111bに表面保護層としての有機剥離層の形成を行わなかった例である。
(1)キャリア用電解銅箔及び有機剥離層の形成
 キャリア用電解銅箔及び有機剥離層は、実施例1と同様に作成した。
(2)極薄銅箔層、粗化処理層及び防錆層の形成
 前記銅箔に対して、実施例3で用いた遮蔽板を設置して極薄銅箔層、粗化処理層及び防錆処理層を形成した。それぞれの処理液や電着の条件は実施例1と同様に行った。その結果、防錆処理工程においてキャリア延出部位上に形成された剥離層は防錆処理工程において溶解除去されたことが確認できた。
 このようにして図1(a)及び(b)に示すキャリア付き金属箔10を得た。このキャリア付き金属箔10における極薄銅箔の光沢度(入射角60°)は5であり、延出部位における極薄銅箔側の光沢度(入射角60°)は30であった。両者の光沢度の差ΔGsは25であった。両者の光沢度の差に起因して、キャリア付き金属箔10を用いた支持体においては、製造直後の延出部位の視認性は辛うじて可能なレベルであった。また、ゴム手袋で把持した領域の一部は1週間後に観察すると、一部が酸化し変色を発生していた。
Example 4
The present example is an example in which the organic peeling layer as the surface protective layer was not formed on the extending portions 111a and 111b in the first example.
(1) Formation of electrolytic copper foil for carrier and organic release layer The electrolytic copper foil for carrier and the organic release layer were prepared in the same manner as in Example 1.
(2) Formation of an ultrathin copper foil layer, a roughening treatment layer, and a rust prevention layer The ultrathin copper foil layer, a roughening treatment layer, and an anti-proofing were installed with respect to the copper foil by installing the shielding plate used in Example 3. A rust-treated layer was formed. Each treatment solution and electrodeposition conditions were the same as in Example 1. As a result, it was confirmed that the release layer formed on the carrier extension site in the rust prevention treatment step was dissolved and removed in the rust prevention treatment step.
Thus, the metal foil 10 with a carrier shown to Fig.1 (a) and (b) was obtained. The glossiness (incident angle 60 °) of the ultrathin copper foil in this metal foil 10 with a carrier was 5, and the glossiness (incident angle 60 °) on the ultrathin copper foil side at the extended portion was 30. The difference in glossiness ΔGs between the two was 25. Due to the difference in glossiness between the two, in the support using the metal foil 10 with a carrier, the visibility of the extended portion immediately after production was barely possible. In addition, when a part of the region gripped by the rubber gloves was observed after one week, a part was oxidized and discolored.
  〔実施例5〕
 本実施例は、実施例1において、延出部位111a,111bに表面保護層としての有機層及び無機層の形成を行った例である。キャリア用電解銅箔の有機剥離層を形成した後、Niめっきを50mg/m形成し、且つ防錆層形成工程を行わなかった以外は実施例1と同様にキャリア付銅箔及びキャリア延出部位を作製した。
Example 5
This example is an example in which an organic layer and an inorganic layer as surface protective layers were formed on the extended portions 111a and 111b in Example 1. After forming the organic release layer of the electrolytic copper foil for the carrier, 50 mg / m 2 of Ni plating was formed, and the copper foil with carrier and the carrier extension were the same as in Example 1 except that the rust preventive layer forming step was not performed. A site was created.
 このキャリア付き金属箔10においては、延出部位における極薄銅箔側の表面の全域にも有機剥離層及びNi層が形成されていた。延出部位におけるNi付着量は、厚さに換算すると3nmであった。このキャリア付き金属箔10における極薄銅箔の光沢度(入射角60°)は5であり、延出部位における極薄銅箔側の光沢度(入射角60°)は85であった。両者の光沢度の差ΔGsは80であった。両者の光沢度の差に起因して、キャリア付き金属箔10を用いて同じサイズのプリプレグと積層した支持体は、延出部位の視認性が極めて良好であった。また、第1延出部位111aの幅W1は20mmであり、第2延出部位111bの幅W2は20mmであり、吸着パッドによる把持性も良好であった。 In this metal foil 10 with a carrier, the organic peeling layer and the Ni layer were also formed on the entire surface of the extending portion on the ultrathin copper foil side. The amount of Ni deposited at the extension site was 3 nm in terms of thickness. The glossiness (incident angle 60 °) of the ultrathin copper foil in this metal foil 10 with carrier was 5, and the glossiness (incident angle 60 °) on the ultrathin copper foil side at the extended portion was 85. The difference in glossiness ΔGs between them was 80. Due to the difference in glossiness between the two, the support laminated with the prepreg of the same size using the metal foil with carrier 10 had very good visibility of the extended portion. Moreover, the width W1 of the 1st extension site | part 111a was 20 mm, the width W2 of the 2nd extension site | part 111b was 20 mm, and the grip property by a suction pad was also favorable.
 また、このキャリア付き金属箔10と、該キャリア付き金属箔10と同じサイズのプリプレグとを積層し、支持体とした後、図5に示す配線層を形成し、更に図6に示すビルドアップ層を形成した後、積層体を切断し、キャリアを含む支持体を剥離した。その結果、キャリアと金属箔の界面において、端面からの薬液の侵入は見られず、四辺の封止も確実に行われていることを確認できた。 Further, after laminating the metal foil with carrier 10 and a prepreg of the same size as the metal foil with carrier 10 to form a support, the wiring layer shown in FIG. 5 is formed, and the build-up layer shown in FIG. After forming, the laminate was cut and the support including the carrier was peeled off. As a result, it was confirmed that the chemical solution did not enter from the end face at the interface between the carrier and the metal foil, and that the four sides were securely sealed.
  〔比較例1〕
 本実施例は、実施例1において、剥離層として厚さ1.5μmの粘着剤層を用い、延出部位はキャリア用電解銅箔を露出させた例である。先ず、実施例1で得られるキャリア用電解銅箔の外周に、幅20mmのポリイミド・テープでマスキングを行った。その後、マスキングを行った面に、アクリル酸エステル樹脂とエラストマーの混合物である接着剤を乾燥厚さ1.5μmとして塗布乾燥することで剥離層を形成した。その後、マグネトロン式のスパッタリング装置により厚さ2μmの極薄銅層を形成した。その後、粗化処理及び防錆処理を実施例1と同様に行った後、ポリイミド・テープを剥離することでキャリア延出部位を作製した。
[Comparative Example 1]
In this example, a pressure-sensitive adhesive layer having a thickness of 1.5 μm was used as the release layer in Example 1, and the extended portion was an exposed electrolytic copper foil for carrier. First, the outer periphery of the electrolytic copper foil for carrier obtained in Example 1 was masked with a polyimide tape having a width of 20 mm. Then, the peeling layer was formed by apply | coating and drying the adhesive agent which is a mixture of acrylic ester resin and an elastomer with the dry thickness of 1.5 micrometers on the masked surface. Thereafter, an ultrathin copper layer having a thickness of 2 μm was formed by a magnetron type sputtering apparatus. Then, after performing a roughening process and a rust prevention process like Example 1, the carrier extension site | part was produced by peeling a polyimide tape.
 このキャリア付き金属箔10と、該キャリア付き金属箔10と同じサイズのプリプレグとを積層し、支持体とした後、図5に示す配線層を形成し、更に図6に示すビルドアップ層を形成した後、積層体を切断し、キャリアを含む支持体を剥離した。その結果、キャリアと金属箔との界面において、粘着剤層の内部及び隙間にビルドアップ層形成時に用いた薬液の侵入が観察され、極薄銅層に5mmφ大のピンホールが発生していた。 After laminating this metal foil with carrier 10 and a prepreg of the same size as the metal foil with carrier 10 to form a support, the wiring layer shown in FIG. 5 is formed, and the build-up layer shown in FIG. 6 is further formed. After that, the laminate was cut and the support including the carrier was peeled off. As a result, at the interface between the carrier and the metal foil, penetration of the chemical used when forming the buildup layer was observed in the adhesive layer and in the gap, and a pinhole having a size of 5 mmφ was generated in the ultrathin copper layer.
 本発明のキャリア付き銅箔によれば、これを用いてプリント配線板用支持体を形成した際、搬送等の取り扱い性が良好で、把持部の視認性にも優れるものとすることができる。また本発明によれば、コアレス・ビルドアップ基板を製造した際に、支持体端面からの封止に優れ、ビルドアップ層形成工程で薬液の侵入を防止できるため、配線基板の生産性を高いものとすることができる。 According to the copper foil with a carrier of the present invention, when a printed wiring board support is formed using the copper foil, the handling property such as transportation is good and the visibility of the gripping portion is excellent. In addition, according to the present invention, when a coreless build-up board is manufactured, it is excellent in sealing from the end face of the support and can prevent the intrusion of chemicals in the build-up layer forming process, so that the productivity of the wiring board is high. It can be.

Claims (11)

  1.  キャリアと、極薄金属箔層と、これらの間に位置する剥離層とを有するキャリア付き金属箔において、
     前記剥離層の厚さは1nm以上1μm以下であり、
     前記キャリアは、前記極薄金属箔層の外縁の少なくとも一部から延出した延出部位を有するキャリア付き金属箔。
    In a metal foil with a carrier having a carrier, an ultrathin metal foil layer, and a release layer located between them,
    The release layer has a thickness of 1 nm to 1 μm,
    The carrier is a metal foil with a carrier having an extended portion extending from at least a part of an outer edge of the ultrathin metal foil layer.
  2.  前記延出部位のうち、前記極薄金属箔層側の面に、表面保護層が設けられている請求項1に記載のキャリア付き金属箔。 The metal foil with a carrier according to claim 1, wherein a surface protective layer is provided on a surface of the extending portion on the ultrathin metal foil layer side.
  3.  前記表面保護層が、前記剥離層の延出部からなる請求項2に記載のキャリア付き金属箔。 The metal foil with a carrier according to claim 2, wherein the surface protective layer comprises an extended portion of the release layer.
  4.  前記表面保護層が、防錆剤を含む層からなる請求項2に記載のキャリア付き金属箔。 The metal foil with a carrier according to claim 2, wherein the surface protective layer comprises a layer containing a rust inhibitor.
  5.  JIS Z8741-1997に準じて測定された、入射角60°での前記極薄金属箔層表面と前記延出部位表面との光沢度の差ΔGsが30以上である請求項1ないし4のいずれか一項に記載のキャリア付き金属箔。 5. The difference ΔGs in glossiness between the surface of the ultrathin metal foil layer and the surface of the extended part at an incident angle of 60 °, measured according to JIS Z8741-1997, is 30 or more. The metal foil with a carrier according to one item.
  6.  前記極薄金属箔層が平面視して対向する少なくとも一対の辺を有し、
     前記キャリアは、前記極薄金属箔層における対向する少なくとも一対の辺から延出した前記延出部位を有する請求項1ないし5のいずれかに記載のキャリア付き金属箔。
    The ultrathin metal foil layer has at least a pair of sides facing each other in plan view;
    The metal foil with a carrier according to any one of claims 1 to 5, wherein the carrier has the extended portion extending from at least a pair of opposing sides in the ultrathin metal foil layer.
  7.  前記極薄金属箔層が平面視して四辺形をしており、
     前記キャリアが、前記極薄金属箔層の外縁の全域から延出し、平面視して該極薄金属箔層の四辺と略平行な四辺を有する四辺形をしており、それによって該キャリアは、対向する一対の第1延出部位及び対向する一対の第2延出部位を有し、
     第1延出部位の幅W1よりも第2延出部位の幅W2が大きくなっている請求項1ないし6のいずれか一項に記載のキャリア付き金属箔。
    The ultrathin metal foil layer has a quadrilateral shape in plan view,
    The carrier extends from the entire outer edge of the ultrathin metal foil layer and has a quadrilateral shape having four sides substantially parallel to the four sides of the ultrathin metal foil layer in plan view. A pair of opposing first extending portions and a pair of opposing second extending portions;
    The metal foil with a carrier according to any one of claims 1 to 6, wherein a width W2 of the second extension part is larger than a width W1 of the first extension part.
  8.  請求項1ないし7のいずれか一項に記載のキャリア付き金属箔における前記極薄金属箔層の非形成面に樹脂層が積層されてなり、
     前記樹脂層は前記極薄金属箔層と重なる領域、及び前記延出部位の一部又は全部と重なる領域に積層されている配線基板製造用支持体。
    A resin layer is laminated on a non-formed surface of the ultrathin metal foil layer in the metal foil with a carrier according to any one of claims 1 to 7,
    The support for manufacturing a wiring board, wherein the resin layer is laminated in a region overlapping with the ultrathin metal foil layer and a region overlapping a part or all of the extended portion.
  9.  請求項1ないし7のいずれか一項に記載のキャリア付き金属箔を用いた配線基板の製造方法であって、
     前記キャリア付き金属箔における前記延出部位を把持する工程を有する配線基板の製造方法。
    A method for manufacturing a wiring board using the metal foil with a carrier according to any one of claims 1 to 7,
    The manufacturing method of a wiring board which has the process of hold | gripping the said extension part in the said metal foil with a carrier.
  10.  請求項8に記載の配線基板製造用支持体を用いた配線基板の製造方法であって、
     前記支持体の極薄金属箔上に配線パターンを形成する工程、
    ビルドアップ配線層を形成する工程をこの順に有し、
     前記ビルドアップ配線層形成工程において、絶縁層が積層され、
     前記支持体の周縁部において、前記絶縁層が、前記極薄金属箔層と重なる領域、及び前記延出部位の一部又は全部と重なる領域に積層される、配線基板の製造方法。
    A method for manufacturing a wiring board using the wiring board manufacturing support according to claim 8,
    Forming a wiring pattern on the ultrathin metal foil of the support,
    It has a process of forming a build-up wiring layer in this order,
    In the build-up wiring layer forming step, an insulating layer is laminated,
    A method for manufacturing a wiring board, wherein the insulating layer is laminated in a region overlapping with the ultrathin metal foil layer and a region overlapping with a part or all of the extended portion at a peripheral portion of the support.
  11.  請求項8に記載の配線基板製造用支持体を用いた配線基板の製造方法であって、
     前記支持体の周縁部において、前記延出部位の一部を残して、該延出部位と前記樹脂層とを一緒に切断する工程を有する配線基板の製造方法。
    A method for manufacturing a wiring board using the wiring board manufacturing support according to claim 8,
    A method for manufacturing a wiring board, comprising a step of cutting the extended portion and the resin layer together, leaving a part of the extended portion at a peripheral portion of the support.
PCT/JP2016/054851 2015-03-12 2016-02-19 Metal foil with carrier, and manufacturing method for wiring board WO2016143484A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201680011755.9A CN107249876A (en) 2015-03-12 2016-02-19 The manufacture method of metal foil and circuit board with carrier
KR1020177022124A KR20170127414A (en) 2015-03-12 2016-02-19 Carrier-attached metal foil and method for manufacturing wiring board
JP2017504945A JPWO2016143484A1 (en) 2015-03-12 2016-02-19 Metal foil with carrier and method for manufacturing wiring board

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JPPCT/JP2015/057298 2015-03-12
PCT/JP2015/057298 WO2016143117A1 (en) 2015-03-12 2015-03-12 Metal foil with carrier, and manufacturing method for wiring board

Publications (1)

Publication Number Publication Date
WO2016143484A1 true WO2016143484A1 (en) 2016-09-15

Family

ID=56878850

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2015/057298 WO2016143117A1 (en) 2015-03-12 2015-03-12 Metal foil with carrier, and manufacturing method for wiring board
PCT/JP2016/054851 WO2016143484A1 (en) 2015-03-12 2016-02-19 Metal foil with carrier, and manufacturing method for wiring board

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/057298 WO2016143117A1 (en) 2015-03-12 2015-03-12 Metal foil with carrier, and manufacturing method for wiring board

Country Status (5)

Country Link
JP (1) JPWO2016143484A1 (en)
KR (1) KR20170127414A (en)
CN (1) CN107249876A (en)
TW (1) TW201644330A (en)
WO (2) WO2016143117A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018087369A (en) * 2016-11-30 2018-06-07 福田金属箔粉工業株式会社 Composite metal foil, copper-clad laminated plate using the composite metal foil, and method for producing the copper-clad laminated plate
WO2019240217A1 (en) * 2018-06-14 2019-12-19 積水化学工業株式会社 Laminate film and method for manufacturing laminate structure

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107660108A (en) * 2017-10-25 2018-02-02 广东欧珀移动通信有限公司 The metal foil method for sticking and covering of metal foil members and mobile terminal
CN110798986A (en) * 2018-12-10 2020-02-14 广州方邦电子股份有限公司 Metal foil with carrier
CN113022048A (en) * 2019-12-24 2021-06-25 广州方邦电子股份有限公司 Composite metal foil, flexible foil-clad plate and preparation method of flexible foil-clad plate
CN111834232B (en) * 2020-06-12 2021-04-09 珠海越亚半导体股份有限公司 Transfer carrier plate without characteristic layer structure and manufacturing method thereof

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001301087A (en) * 2000-03-10 2001-10-30 Olin Corp Copper foil reinforced in low profile bonding
JP2002134877A (en) * 2000-10-10 2002-05-10 Morton Internatl Inc Method for securing and processing thin film material
JP2003181970A (en) * 2001-12-20 2003-07-03 Mitsui Mining & Smelting Co Ltd Electrolytic copper foil with carrier foil, method of manufacturing the same, and copper-clad laminate using electrolytic copper foil with carrier foil
JP2007186782A (en) * 2005-12-15 2007-07-26 Furukawa Circuit Foil Kk Ultrathin copper foil with carrier and printed circuit board using the same
JP2007214427A (en) * 2006-02-10 2007-08-23 Shinko Electric Ind Co Ltd Method for manufacturing wiring board
JP2008277717A (en) * 2007-03-30 2008-11-13 Fujifilm Corp Resin film with metal layer, its forming method, and flexible printed board manufacturing method using the film
JP2009090570A (en) * 2007-10-10 2009-04-30 Unitika Ltd Peelable metal foil and its manufacturing method
WO2010073744A1 (en) * 2008-12-24 2010-07-01 日鉱金属株式会社 Metal foil with carrier
WO2010073745A1 (en) * 2008-12-24 2010-07-01 日鉱金属株式会社 Metal foil with carrier
JP2010157605A (en) * 2008-12-26 2010-07-15 Panasonic Electric Works Co Ltd Circuit board and method of manufacturing circuit board
JP2011199077A (en) * 2010-03-19 2011-10-06 Ngk Spark Plug Co Ltd Method of manufacturing multilayer wiring board
JP2013120771A (en) * 2011-12-06 2013-06-17 Shinko Electric Ind Co Ltd Wiring board manufacturing method and support medium for wiring board manufacturing
WO2014092015A1 (en) * 2012-12-13 2014-06-19 旭硝子株式会社 Electronic device manufacturing method, and glass laminate manufacturing method
JP2014130856A (en) * 2012-12-28 2014-07-10 Kyocer Slc Technologies Corp Wiring board manufacturing method

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6346335B1 (en) * 2000-03-10 2002-02-12 Olin Corporation Copper foil composite including a release layer
JP4391449B2 (en) * 2005-07-19 2009-12-24 古河電気工業株式会社 Ultra-thin copper foil with carrier and printed wiring board
CN1984527B (en) * 2005-12-15 2010-12-01 古河电气工业株式会社 Ultrathin copper foil with carrier and printed circuit board
JP5177855B2 (en) * 2008-02-29 2013-04-10 京セラSlcテクノロジー株式会社 Wiring board manufacturing method
US8581388B2 (en) * 2009-12-28 2013-11-12 Ngk Spark Plug Co., Ltd Multilayered wiring substrate
TWI527687B (en) * 2013-06-13 2016-04-01 Jx Nippon Mining & Metals Corp Production method of copper foil, copper clad laminate, printed wiring board, electronic machine, and printed wiring board

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001301087A (en) * 2000-03-10 2001-10-30 Olin Corp Copper foil reinforced in low profile bonding
JP2002134877A (en) * 2000-10-10 2002-05-10 Morton Internatl Inc Method for securing and processing thin film material
JP2003181970A (en) * 2001-12-20 2003-07-03 Mitsui Mining & Smelting Co Ltd Electrolytic copper foil with carrier foil, method of manufacturing the same, and copper-clad laminate using electrolytic copper foil with carrier foil
JP2007186782A (en) * 2005-12-15 2007-07-26 Furukawa Circuit Foil Kk Ultrathin copper foil with carrier and printed circuit board using the same
JP2007214427A (en) * 2006-02-10 2007-08-23 Shinko Electric Ind Co Ltd Method for manufacturing wiring board
JP2008277717A (en) * 2007-03-30 2008-11-13 Fujifilm Corp Resin film with metal layer, its forming method, and flexible printed board manufacturing method using the film
JP2009090570A (en) * 2007-10-10 2009-04-30 Unitika Ltd Peelable metal foil and its manufacturing method
WO2010073744A1 (en) * 2008-12-24 2010-07-01 日鉱金属株式会社 Metal foil with carrier
WO2010073745A1 (en) * 2008-12-24 2010-07-01 日鉱金属株式会社 Metal foil with carrier
JP2010157605A (en) * 2008-12-26 2010-07-15 Panasonic Electric Works Co Ltd Circuit board and method of manufacturing circuit board
JP2011199077A (en) * 2010-03-19 2011-10-06 Ngk Spark Plug Co Ltd Method of manufacturing multilayer wiring board
JP2013120771A (en) * 2011-12-06 2013-06-17 Shinko Electric Ind Co Ltd Wiring board manufacturing method and support medium for wiring board manufacturing
WO2014092015A1 (en) * 2012-12-13 2014-06-19 旭硝子株式会社 Electronic device manufacturing method, and glass laminate manufacturing method
JP2014130856A (en) * 2012-12-28 2014-07-10 Kyocer Slc Technologies Corp Wiring board manufacturing method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018087369A (en) * 2016-11-30 2018-06-07 福田金属箔粉工業株式会社 Composite metal foil, copper-clad laminated plate using the composite metal foil, and method for producing the copper-clad laminated plate
WO2019240217A1 (en) * 2018-06-14 2019-12-19 積水化学工業株式会社 Laminate film and method for manufacturing laminate structure
JP2022172221A (en) * 2018-06-14 2022-11-15 積水化学工業株式会社 Manufacturing method of laminated film and laminated structure
JP7344357B2 (en) 2018-06-14 2023-09-13 積水化学工業株式会社 Method for manufacturing laminated films and laminated structures

Also Published As

Publication number Publication date
KR20170127414A (en) 2017-11-21
WO2016143117A1 (en) 2016-09-15
CN107249876A (en) 2017-10-13
TW201644330A (en) 2016-12-16
JPWO2016143484A1 (en) 2017-12-28

Similar Documents

Publication Publication Date Title
WO2016143484A1 (en) Metal foil with carrier, and manufacturing method for wiring board
JP7356209B2 (en) Surface-treated copper foil, surface-treated copper foil with resin layer, copper foil with carrier, laminate, method for manufacturing printed wiring boards, and method for manufacturing electronic devices
KR102480377B1 (en) Roughened copper foil, copper foil with carrier, copper-clad laminate and printed wiring board
TWI587757B (en) Copper foil, copper foil with carrier foil, and copper clad laminate
KR101705969B1 (en) Copper foil with carrier, printed circuit board, laminate, electronic device and method of manufacturing printed circuit board
CN108156769B (en) Surface-treated copper foil, copper foil with carrier, laminate, method for manufacturing printed wiring board, and method for manufacturing electronic device
CN108696987B (en) Surface-treated copper foil, copper foil with carrier, laminate, method for manufacturing printed wiring board, and method for manufacturing electronic device
TWI569953B (en) Attached metal foil
WO2015030256A1 (en) Copper foil provided with carrier, copper-clad laminated board, printed wiring board, electronic device, and method for manufacturing printed wiring board
TWI694180B (en) Surface-treated copper foil, surface-treated copper foil with resin layer, copper foil with carrier, laminate, printed wiring board manufacturing method, and electronic device manufacturing method
WO2014192895A1 (en) Copper foil, copper foil with carrier, copper-clad laminate, printed circuit board, circuit forming substrate for semiconductor package, semiconductor package, electronic device, resin substrate, circuit forming method, semiadditive method, and printed circuit board manufacturing method
KR102316978B1 (en) Copper foil with carrier, copper-clad laminate and printed wiring board
KR102039844B1 (en) Manufacturing method of printed wiring board
JP2016194112A (en) Metal foil with carrier, laminate, printed wiring board, electronic device, manufacturing method of metal foil with carrier and manufacturing method of printed wiring board
KR102126611B1 (en) Method for manufacturing peelable copper foil, coreless substrate and coreless substrate obtained by this method
WO2020195748A1 (en) Metal foil for printed wiring board, metal foil with carrier, and metal-clad laminate, and method for manufacturing printed wiring board using same
JP5650023B2 (en) Copper foil for printed wiring board and laminated board using the same
KR20180111659A (en) Copper foil with release layer, laminate, method of manufacturing printed wiring board and method of manufacturing electronic device
JP2017013473A (en) Copper foil with carrier, copper clad laminate, laminate, printed wiring board, coreless substrate, electronic device, and manufacturing method of coreless substrate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16761456

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017504945

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20177022124

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16761456

Country of ref document: EP

Kind code of ref document: A1