WO2019240217A1 - Laminate film and method for manufacturing laminate structure - Google Patents

Laminate film and method for manufacturing laminate structure Download PDF

Info

Publication number
WO2019240217A1
WO2019240217A1 PCT/JP2019/023465 JP2019023465W WO2019240217A1 WO 2019240217 A1 WO2019240217 A1 WO 2019240217A1 JP 2019023465 W JP2019023465 W JP 2019023465W WO 2019240217 A1 WO2019240217 A1 WO 2019240217A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin layer
insulating resin
base film
film
laminated
Prior art date
Application number
PCT/JP2019/023465
Other languages
French (fr)
Japanese (ja)
Inventor
達史 林
貴至 西村
奨 馬場
Original Assignee
積水化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 積水化学工業株式会社 filed Critical 積水化学工業株式会社
Priority to JP2019554574A priority Critical patent/JP7132242B2/en
Publication of WO2019240217A1 publication Critical patent/WO2019240217A1/en
Priority to JP2022134212A priority patent/JP7344357B2/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/11Printed elements for providing electric connections to or between printed circuits

Definitions

  • the present invention relates to a laminated film including a base film and an insulating resin layer. Moreover, this invention relates to the manufacturing method of the laminated structure using the said laminated
  • a resin composition is used in order to form an insulating layer for insulating inner layers or to form an insulating layer located in a surface layer portion.
  • a laminated film including a base film and an insulating resin layer is used in order to form the insulating layer.
  • the insulating resin layer is obtained by forming the resin composition into a film.
  • the insulating resin layer is cured or precured to form an insulating layer (cured material layer or precured material layer). Thereafter, the base film may be peeled off from the cured or precured insulating resin layer.
  • Patent Documents 1 and 2 An example of such a manufacturing method is described in Patent Documents 1 and 2 below.
  • a blind via having a top diameter of 100 ⁇ m or less is obtained by irradiating a carbon dioxide laser on the insulating layer from above the plastic film in a state where the insulating layer and the plastic film are laminated on both sides or one side of the circuit board.
  • a method for manufacturing a multilayer printed wiring board comprising a step of forming a substrate is disclosed.
  • the insulating layer contains 35% by mass or more of an inorganic filler.
  • Patent Document 2 discloses a circuit board manufacturing method including the following steps (A) to (F).
  • B A step of thermosetting the resin composition layer to form an insulating layer, wherein the adhesion strength between the insulating layer and the plastic film support is 2 gf / cm to 18 gf / cm.
  • C A step of forming a via hole having a top diameter of 40 ⁇ m or less in the insulating layer by irradiating a laser on the plastic film support.
  • D The process of performing a desmear process.
  • E The process of peeling a plastic film support body.
  • F A step of forming a conductor layer on the surface of the insulating layer.
  • the insulating resin layer is cured in a state where the base film and the insulating resin layer are laminated.
  • the base film may spontaneously peel from the insulating resin layer during curing.
  • unevenness of curing may occur in the insulating resin layer.
  • the base film and the insulating resin layer cannot be peeled off satisfactorily. The film may tear.
  • the object of the present invention is to suppress natural peeling from the insulating resin layer of the base film during curing, and to suppress poor peeling of the base film when peeling the base film from the insulating resin layer after curing. It is providing the laminated
  • multilayer film which can be performed. Another object of the present invention is to provide a method for producing a laminated structure using the laminated film.
  • a base film and an insulating resin layer laminated on the surface of the base film are provided, and at one end of the laminated film, the base relative to the end surface of the insulating resin layer is provided.
  • the peel strength of the base film with respect to the insulating resin layer is Xgf / cm, and the distance of the base film protruding on the one end side is Ymm,
  • a laminated film in which Y / X is 0.5 or more and 15 or less is provided.
  • the X is 0.3 or more and 9 or less.
  • the Y is 0.5 or more and 20 or less.
  • the base film has a thickness of 25 ⁇ m or more.
  • the arithmetic average roughness Ra of the surface of the base film on the insulating resin layer side is 5 nm or more and less than 400 nm.
  • the insulating resin layer includes an epoxy compound, an inorganic filler, and a curing agent.
  • the curing agent contains a phenol compound, a cyanate compound, a maleimide compound, or an active ester compound.
  • end surfaces of the base film and the insulating resin layer are aligned on the other end side opposite to the one end of the laminated film, or the one end of the laminated film.
  • the end face of the base film protrudes outward from the end face of the insulating resin layer on both the side and the other end opposite to the one end, and the base film protrudes on the other end side. Is smaller than the distance of the base film protruding from the one end side.
  • the minimum melt viscosity in the temperature region of 60 ° C. or higher and 180 ° C. or lower of the insulating resin layer is 5 mPa ⁇ s or higher.
  • the insulating resin layer is suitably used for forming an insulating layer in a multilayer printed wiring board.
  • a surface of the insulating resin layer opposite to the base film is disposed.
  • the insulating resin layer is irradiated with a laser from the substrate film side in a lamination process in which the metal layer is laminated on the lamination target member.
  • a via hole forming step of forming a via hole is a step of forming a via hole.
  • a curing step of curing the insulating resin layer is provided between the laminating step and the via hole forming step.
  • the laminated film according to the present invention includes a base film and an insulating resin layer laminated on the surface of the base film.
  • the end face of the base film protrudes most outward from the end face of the insulating resin layer.
  • Y / X is 0. .5 or more and 15 or less.
  • the laminated film according to the present invention has the above-described configuration, natural peeling from the insulating resin layer of the base film during curing can be suppressed, and the base film is peeled from the insulating resin layer after curing. When it does, the peeling defect of a base film can be suppressed.
  • FIG. 1 is a cross-sectional view showing a laminated film according to the first embodiment of the present invention.
  • FIG. 2 is a cross-sectional view showing a laminated film according to the second embodiment of the present invention.
  • the laminated film according to the present invention includes a base film and an insulating resin layer laminated on the surface of the base film.
  • the laminated film according to the present invention has the following configuration (0).
  • the end surface of the base film protrudes most outwardly with respect to the end surface of the insulating resin layer. (Hereafter, it may be described as a laminated film (0))
  • the laminated film according to the present invention has the largest protruding distance on one end side among all ends.
  • the peel strength of the base film with respect to the insulating resin layer is Xgf / cm
  • the distance of the base film protruding on the one end side is Ymm
  • Y / X Y
  • the ratio of X to X is 0.5 or more and 15 or less.
  • the distance Y is the distance protruding most.
  • the laminated film according to the present invention has the above-described configuration, natural peeling from the insulating resin layer of the base film during curing can be suppressed, and the base film is peeled from the insulating resin layer after curing. When it does, the peeling defect of a base film can be suppressed. In the laminated film according to the present invention, tearing of the base film can be suppressed when the base film is peeled from the insulating resin layer after curing.
  • the time of pre-curing and after pre-curing are also included.
  • the base film since one end side of the base film protrudes, the base film can be peeled from the insulating resin layer from one end side after curing.
  • the laminated film according to the present invention has the above-described configuration, natural peeling from the insulating resin layer of the base film at the time of preliminary curing can be suppressed, and the base film is insulated from the insulating resin layer after preliminary curing. When peeling from the substrate film, poor peeling of the base film can be suppressed.
  • the laminated film according to the present invention since the laminated film according to the present invention has the above-described configuration, it suppresses natural peeling from the insulating resin layer of the base film during transportation of the substrate or during laser irradiation for forming a via hole. Can do.
  • Examples of the configuration included in the configuration (0) include the following configuration (1) and the following configuration (2).
  • the laminated film according to the present invention may have the following configuration (1) or the following configuration (2).
  • the laminated film according to the present invention may have the following configuration (1) or may have the following configuration (2).
  • the end face of the base film protrudes most outwardly with respect to the end face of the insulating resin layer.
  • end surfaces of the base film and the insulating resin layer are aligned.
  • the end surface of the base film protrudes most outward from the end surface of the insulating resin layer.
  • the end face of the base film protrudes outward from the end face of the insulating resin layer.
  • the distance that the base film protrudes on the other end side is equal to or less than the distance that the base film protrudes on the one end side.
  • the one end and the other end are ends on opposite sides of the laminated film.
  • the protruding distance of the base film on the other end side is the same as the protruding distance of the base film on the one end side, or the base film on the one end side. Is smaller than the protruding distance.
  • the base film When the end faces of the base film and the insulating resin layer are aligned at all ends of the laminated film, that is, in the case of a conventional laminated film, the base film is likely to be naturally separated from the insulating resin layer during curing. Moreover, in the case of the conventional laminated
  • a laminated film Of (1) and laminated film (2), laminated film (1) is preferred.
  • the laminated film (2) preferably has the following configuration (2A).
  • the end face of the base film protrudes most outward from the end face of the insulating resin layer.
  • the end face of the base film protrudes outward from the end face of the insulating resin layer.
  • the distance that the base film protrudes on the other end side is smaller than the distance that the base film protrudes on the one end side.
  • the peel strength of the base film with respect to the insulating resin layer is Xgf / cm, and the distance of the base film protruding on the one end side is Ymm. Therefore, in the laminated films (2) and (2A), Y indicates the larger distance among the distances at which the end surfaces of the base film protrude outward from the end surfaces of the insulating resin layer.
  • Y / X (X of Y Ratio) to 0.5 to 15.
  • the base film is likely to spontaneously peel from the insulating resin layer during curing.
  • Y / X exceeds 15, when the base film is peeled from the insulating resin layer after curing, the base film and the insulating resin layer cannot be peeled well, and the base film is easily torn.
  • X is preferably 0.7 or more, more preferably 1.0 or more, preferably 13 or less, more preferably 11 or less.
  • X is , Preferably 0.3 or more, preferably 9 or less.
  • the above Y is , Preferably 0.5 or more, preferably 20 or less.
  • the peel strength (that is, X) of the base film with respect to the insulating resin layer is preferably 0.3 gf / cm or more, more preferably 0.5 gf / cm or more, preferably 9 gf / cm or less, more preferably 7 gf / cm. cm or less.
  • the peel strength is equal to or higher than the lower limit, natural peeling from the insulating resin layer of the base film during substrate transportation can be suppressed, and insulation of the base film can be achieved even during laser irradiation for forming via holes. Spontaneous peeling from the resin layer can be suppressed.
  • the peel strength is not more than the above upper limit, the peel strength can be increased, and the roughness after desmear treatment can be suppressed from increasing.
  • the peel strength of the base film with respect to the insulating resin layer can be measured using a tensile tester (“AG-5000B” manufactured by Shimadzu Corporation) under a crosshead speed of 5 mm / min.
  • the distance (that is, Y) that the base film protrudes on the one end side is preferably 0.5 mm or more, more preferably 1 mm or more, preferably 20 mm or less, more preferably 15 mm or less.
  • the base film can be satisfactorily peeled from the insulating resin layer after curing using an auto peeling device. Cracking or cracking of the insulating resin layer can be suppressed when slitting one end or the other end of the laminated film during production.
  • the distance that the base film protrudes on the one end side is not more than the above upper limit, natural peeling from the insulating resin layer of the base film during transport of the laminated film can be suppressed, and the manufacturing cost can be suppressed. be able to.
  • a protective film is preferably laminated on the surface of the insulating resin layer opposite to the base film side.
  • the base film and the insulating resin layer may be used as a method of protruding the end face of the base film outward from the end face of the insulating resin layer on one end side of the laminated films (0) and (1).
  • stacking with is mentioned.
  • the following method may be mentioned as a method for aligning the end surfaces of the base material, the insulating resin layer, and the protective film on the other end side opposite to the one end of the laminated film (1).
  • Examples of a method for reducing the distance of the base film on the other end side of the laminated film (2A) to be smaller than the distance of the base film on the one end side include the following methods. .
  • a method of slitting the base film of the base film and the insulating resin layer A method of slitting a base film and a protective film among the base film, the insulating resin layer, and the protective film.
  • the method for producing a laminated film according to the present invention preferably has the following configuration (A) or (B).
  • Manufacturing method (A), (B) is a manufacturing method of laminated
  • Manufacturing method (A) is a manufacturing method of laminated film (1)
  • manufacturing method (B) is a manufacturing method of laminated film (2).
  • the method for producing the laminated film (1) preferably includes the following configuration (A). It is preferable that the manufacturing method of a laminated film (2) is provided with the following structures (B).
  • the manufacturing method of a laminated film (1) arrange
  • the first step is provided.
  • the production method of the laminated film (1) preferably includes a second step of disposing a protective film on the surface of the insulating resin layer opposite to the base film side.
  • the manufacturing method of a laminated film (1) the laminated film (1) with which the end surface of the said base film and the said insulating resin layer has gathered in the other end side opposite to the said one end of a laminated film is obtained.
  • the manufacturing method of a laminated film (2) arrange
  • the first step is provided. In this first step, the end face of the base film protrudes outwardly on the surface of the base film with respect to both end faces of one end side of the insulating resin layer and the other end side opposite to the one end. It is preferable to dispose an insulating resin layer. It is preferable that the manufacturing method of a laminated film (2) is equipped with the 2nd process which arrange
  • the end face of the base film protrudes outward with respect to the end face of the insulating resin layer on both the one end side of the laminated film and the other end side opposite to the one end.
  • a laminated film (2) is obtained.
  • a laminated film (2) is obtained in which the distance that the base film protrudes on the other end side is smaller than the distance that the base film protrudes on the one end side.
  • the base film, the insulating resin layer, and the protection are provided on the other end side opposite to the one end of the insulating resin layer after the second step. It is preferable to further include a third step of aligning the end surface with the film.
  • the base film, the insulating resin layer, and the protective film on the other end side opposite to the one end of the insulating resin layer. You may align the end face.
  • the base film protrudes on the other end side. It is preferable to further include a third step of making the distance that is smaller than the distance that the base film protrudes on the one end side.
  • the distance of the base film on the other end side of the laminated film (2) is defined as the distance of the base film on the one end side. From the viewpoint of making it even smaller than the protruding distance, it is preferable to perform the following slits.
  • the insulating resin layer is preferably slit. In the third step, it is preferable to slit the base film, the insulating resin layer, and the protective film.
  • an adherend such as a metal layer (for example, a laminate of a substrate and metal wiring) is generally laminated on the surface of the insulating resin layer.
  • the protective film is peeled off when the insulating resin layer is used in the laminated film.
  • an adherend such as a metal layer (for example, a laminate of a substrate and metal wiring) is laminated on the surface of the insulating resin layer after the protective film is peeled off.
  • FIG. 1 is a cross-sectional view showing a laminated film according to the first embodiment of the present invention.
  • FIG. 1 is a cross-sectional view showing the laminated film (1).
  • the laminated film 1 has one end 1a and the other end 1b opposite to the one end 1a.
  • One end 1a and the other end 1b of the laminated film 1 are end portions on both sides facing each other.
  • the laminated film 1 includes a base film 2 and an insulating resin layer 3.
  • the insulating resin layer 3 is laminated on the first surface 2 a of the base film 2.
  • the dimension of the base film 2 is larger than the dimension of the insulating resin layer 3 in the direction connecting the one end 1 a and the other end 1 b of the laminated film 1.
  • the size of the insulating resin layer 3 is smaller than the size of the base film 2.
  • the end surface of the base film 2 protrudes outward from the end surface of the insulating resin layer 3.
  • the end surfaces of the base film 2 and the insulating resin layer 3 are not aligned.
  • the protruding distance of the base film 2 is Ymm.
  • the end surfaces of the base film 2 and the insulating resin layer 3 are aligned.
  • FIG. 2 is a cross-sectional view showing a laminated film according to the second embodiment of the present invention.
  • FIG. 2 is a cross-sectional view showing the laminated film (2).
  • the laminated film 1A has one end 1Aa and the other end 1Ab opposite to the one end 1Aa.
  • One end 1Aa and the other end 1Ab of the laminated film 1A are opposite ends on opposite sides.
  • the laminated film 1A includes a base film 2A and an insulating resin layer 3A.
  • the insulating resin layer 3 is laminated on the first surface 2Aa of the base film 2A.
  • the dimension of the base film 2A is larger than the dimension of the insulating resin layer 3A.
  • the size of the insulating resin layer 3A is smaller than the size of the base film 2A.
  • the end surface of the base film 2A protrudes outward from the end surface of the insulating resin layer 3A.
  • the end surfaces of the base film 2A and the insulating resin layer 3A are not aligned.
  • the end surface of the base film 2A protrudes outward from the end surface of the insulating resin layer 3A.
  • the end surfaces of the base film 2A and the insulating resin layer 3A are not aligned.
  • the distance that the base film 2A protrudes on the other end 1Ab side of the laminated film 1A is smaller than the distance that the base film 2A protrudes on the one end 1Aa side.
  • the protruding distance of the base film 2A is Ymm.
  • the laminated film preferably has an MD (Machine Direction) direction and a TD (Transverse Direction) direction.
  • the MD direction is the flow direction of the laminated film during production of the laminated film, for example, the length direction.
  • the TD direction is a direction perpendicular to the flow direction of the laminated film during production of the laminated film, and is a direction perpendicular to the thickness direction of the laminated film.
  • the TD direction is the width direction. It is preferable that the said one end and the said other end of the said laminated
  • the dimension of the base film is W 1 mm
  • the dimension of the insulating resin layer is W 2 mm.
  • W 1 is usually larger than W 2 .
  • the laminated film according to the present invention usually satisfies W 1 > W 2 .
  • W 2 / W 1 (ratio of insulating resin layer dimension to base film dimension) is preferably 0.9 or more, more preferably 0.92 or more, and further preferably 0.94 or more. Particularly preferably, it is 0.96 or more.
  • W 2 / W 1 (ratio of the size of the insulating resin layer to the size of the base film) is preferably 0.999 or less, more preferably 0.998 or less, and even more preferably 0.997 or less. Particularly preferably, it is 0.996 or less.
  • the base film can be satisfactorily peeled from the insulating resin layer after curing using an auto peeling device, and at the time of producing the laminated film, one end of the laminated film or When the other end is slit, cracking or cracking of the insulating resin layer can be suppressed.
  • W 2 / W 1 is less than or equal to the above upper limit, natural peeling from the insulating resin layer of the base film during conveyance of the laminated film can be suppressed, and the base film can be used efficiently. Cost can be reduced.
  • Base film examples of the base film include metal foil, polyester resin films such as polyethylene terephthalate film and polybutylene terephthalate film, olefin resin films such as polyethylene film and polypropylene film, and polyimide film.
  • the surface of the base film may be subjected to a release treatment as necessary.
  • the base film may be a metal foil or a resin film.
  • the base film is preferably a resin film.
  • the metal foil is preferably a copper foil.
  • the base film is preferably subjected to a release treatment.
  • the release treatment is preferably a non-silicone transfer release treatment.
  • the silicone non-migrating mold release process means a mold release process that does not contain silicone or a mold release process that is processed so that silicone does not migrate to the insulating resin layer side.
  • the thickness of the base film is preferably 25 ⁇ m or more, more preferably 30 ⁇ m or more, preferably 75 ⁇ m or less. Preferably it is 50 micrometers or less. From the viewpoint of further suppressing natural peeling, the thickness of the substrate film is preferably 75 ⁇ m or less, more preferably 50 ⁇ m or less. From the viewpoint of further suppressing the peeling failure, the thickness of the base film is preferably 25 ⁇ m or more.
  • the arithmetic average roughness Ra of the surface of the base film on the insulating resin layer side is preferably 5 nm or more, more preferably 10 nm or more, preferably 400 nm or less, more preferably less than 400 nm, still more preferably 300 nm or less.
  • the arithmetic average roughness is not less than the above lower limit and not more than the above upper limit, the natural peeling from the insulating resin layer of the base film during curing is further suppressed, and the base film is peeled from the insulating resin layer after curing. Moreover, the peeling defect of a base film can be further suppressed.
  • the arithmetic average roughness Ra is measured using a non-contact type surface roughness meter in a VSI contact mode and a measurement range of 95.6 ⁇ m ⁇ 71.7 ⁇ m with a 50 ⁇ lens.
  • the insulating resin layer is laminated on the surface of the base film. It is preferable that the said insulating resin layer contains the epoxy compound mentioned later, the inorganic filler mentioned later, and the hardening
  • the insulating resin layer preferably contains an epoxy compound.
  • a conventionally well-known epoxy compound can be used as said epoxy compound.
  • the epoxy compound refers to an organic compound having at least one epoxy group. As for the said epoxy compound, only 1 type may be used and 2 or more types may be used together.
  • epoxy compounds examples include bisphenol A type epoxy compounds, bisphenol F type epoxy compounds, bisphenol S type epoxy compounds, phenol novolac type epoxy compounds, biphenyl type epoxy compounds, biphenyl novolac type epoxy compounds, biphenol type epoxy compounds, and naphthalene type epoxy compounds.
  • examples thereof include an epoxy compound and an epoxy compound having a triazine nucleus in the skeleton.
  • the epoxy compound preferably has an aromatic skeleton, more preferably a biphenyl skeleton, and further preferably a biphenyl type epoxy compound. preferable.
  • the content of the epoxy compound in the insulating resin layer 100% by weight is preferably 10% by weight or more, more preferably 20% by weight or more.
  • it is 70 weight% or less, More preferably, it is 65 weight% or less, More preferably, it is 60 weight% or less, Most preferably, it is 55 weight% or less.
  • the molecular weight of the epoxy compound is more preferably 1000 or less.
  • the inorganic filler can be uniformly present.
  • the molecular weight of the epoxy compound and the molecular weight of the curing agent described later mean the molecular weight that can be calculated from the structural formula when the epoxy compound or the curing agent is not a polymer and when the structural formula of the epoxy compound or the curing agent can be specified. To do. Moreover, when an epoxy compound or a hardening
  • the insulating resin layer preferably contains an inorganic filler.
  • the use of the inorganic filler reduces the dimensional change due to heat of the cured product. Furthermore, the surface roughness of the surface of the cured product is further reduced, and the adhesive strength between the cured product and the metal layer is increased.
  • the base film when the insulating resin layer contains an inorganic filler, the base film may be naturally peeled from the insulating resin layer at the time of curing, and when the base film is peeled from the insulating resin layer after curing, The base film and the insulating resin layer cannot be peeled well, and the base film is easily torn.
  • the laminated film according to the present invention even when the insulating resin layer contains an inorganic filler, natural peeling from the insulating resin layer of the base film during curing is further suppressed, and the base film is insulated after curing. When peeling from a layer, the peeling defect of a base film can be suppressed further.
  • examples of the inorganic filler include silica, talc, clay, mica, hydrotalcite, alumina, magnesium oxide, aluminum hydroxide, aluminum nitride, and boron nitride.
  • the inorganic filler is preferably silica or alumina, more preferably silica, and still more preferably fused silica.
  • silica the coefficient of thermal expansion of the cured product is further reduced, the surface roughness of the surface of the cured product is effectively reduced, and the adhesive strength between the cured product and the metal layer is effectively increased.
  • the shape of silica is preferably spherical.
  • the inorganic filler is spherical silica from the viewpoint of promoting the curing of the resin, effectively increasing the glass transition temperature of the cured product, and effectively reducing the thermal linear expansion coefficient of the cured product. It is preferable.
  • the average particle size of the inorganic filler is preferably 10 nm or more, more preferably 50 nm or more, still more preferably 100 nm or more, preferably 5 ⁇ m or less, more preferably 3 ⁇ m or less, still more preferably 1 ⁇ m or less, and particularly preferably 0.5 ⁇ m. It is as follows. The adhesive strength of hardened
  • the median diameter (d50) value of 50% is adopted as the average particle diameter of the inorganic filler.
  • the average particle size can be measured using a laser diffraction / scattering particle size distribution measuring apparatus.
  • the average particle diameter of the said inorganic filler is measured with the whole inorganic filler contained in the said insulating resin layer. You may measure the average particle diameter of an inorganic filler using the resin composition or inorganic filler used in order to obtain the said insulating resin layer.
  • the inorganic filler is preferably spherical and more preferably spherical silica. In this case, the surface roughness of the surface of the cured product is effectively reduced, and the adhesive strength between the cured product and the metal layer is effectively increased.
  • the aspect ratio of the inorganic filler is preferably 2 or less, more preferably 1.5 or less.
  • the inorganic filler is preferably surface-treated, more preferably a surface-treated product with a coupling agent, and still more preferably a surface-treated product with a silane coupling agent.
  • the surface roughness of the surface of the roughened cured product is further reduced, the adhesive strength between the cured product and the metal layer is further increased, and finer wiring is formed on the surface of the cured product, and more Better inter-wiring insulation reliability and interlayer insulation reliability can be imparted to the cured product.
  • Examples of the coupling agent include silane coupling agents, titanium coupling agents, and aluminum coupling agents.
  • Examples of the silane coupling agent include methacryl silane, acrylic silane, amino silane, imidazole silane, vinyl silane, and epoxy silane.
  • the content of the inorganic filler is preferably 30% by weight or more, more preferably 40% by weight or more, still more preferably 50% by weight or more, and particularly preferably 60% by weight or more. Preferably it is 70 weight% or more. In 100% by weight of the insulating resin layer, the content of the inorganic filler is preferably 90% by weight or less, more preferably 85% by weight or less, still more preferably 83% by weight or less, and particularly preferably 80% by weight or less. .
  • the content of the inorganic filler is not less than the above lower limit and not more than the above upper limit, the surface roughness of the surface of the cured product is further reduced, the adhesive strength between the cured product and the metal layer is further increased, and curing is performed. Finer wiring is formed on the surface of the object. Furthermore, if it is content of this inorganic filler, it is also possible to make smear removal property favorable simultaneously with making the thermal expansion coefficient of hardened
  • the insulating resin layer preferably contains a curing agent.
  • curing agent is not specifically limited.
  • a conventionally known curing agent can be used.
  • curing agent only 1 type may be used and 2 or more types may be used together.
  • cyanate compound cyanate curing agent
  • phenol compound phenol curing agent
  • amine compound amine curing agent
  • thiol compound thiol curing agent
  • imidazole compound phosphine compound
  • acid anhydride dicyandiamide
  • examples thereof include a carbodiimide compound (carbodiimide curing agent), a maleimide compound (maleimide curing agent), and an active ester compound.
  • the curing agent preferably has a functional group capable of reacting with the epoxy group of the epoxy compound.
  • the curing agent preferably contains a cyanate compound, a phenol compound, a maleimide compound, an active ester compound, or a carbodiimide compound. From the viewpoint of further suppressing the natural peeling from the insulating resin layer of the base film during curing, and further suppressing the peeling failure of the base film when peeling the base film from the insulating resin layer after curing.
  • a phenolic compound, a cyanate compound, a maleimide compound, or an active ester compound Preferably contains a phenolic compound, a cyanate compound, a maleimide compound, or an active ester compound.
  • the curing agent may contain a phenol compound, a cyanate compound, or an active ester compound.
  • the cyanate compound may be a cyanate ester compound (cyanate ester curing agent).
  • the cyanate ester compound include novolac-type cyanate ester resins, bisphenol-type cyanate ester resins, and prepolymers in which these are partially trimerized.
  • novolak-type cyanate ester resin a phenol novolak-type cyanate ester resin, an alkylphenol-type cyanate ester resin, etc. are mentioned.
  • the bisphenol type cyanate ester resin include bisphenol A type cyanate ester resin, bisphenol E type cyanate ester resin, and tetramethylbisphenol F type cyanate ester resin.
  • cyanate ester compounds Commercially available products of the above-mentioned cyanate ester compounds include phenol novolac type cyanate ester resins (Lonza Japan “PT-30” and “PT-60”), and prepolymers (Lonza Japan) in which bisphenol type cyanate ester resins are trimmed. "BA-230S”, “BA-3000S”, “BTP-1000S” and “BTP-6020S”) manufactured by the company.
  • phenol compound examples include novolak type phenol, biphenol type phenol, naphthalene type phenol, dicyclopentadiene type phenol, aralkyl type phenol, and dicyclopentadiene type phenol.
  • phenol compounds Commercially available products of the above-mentioned phenol compounds include novolak-type phenols (“TD-2091” manufactured by DIC), biphenyl novolac-type phenols (“MEH-7851” manufactured by Meiwa Kasei Co., Ltd.), and aralkyl-type phenol compounds (“MEH manufactured by Meiwa Kasei Co., Ltd.). -7800 "), and phenols having an aminotriazine skeleton (“ LA1356 “and” LA3018-50P "manufactured by DIC).
  • the active ester compound refers to a compound containing at least one ester bond in the structure and having an aromatic ring bonded to both sides of the ester bond.
  • the active ester compound is obtained, for example, by a condensation reaction between a carboxylic acid compound or thiocarboxylic acid compound and a hydroxy compound or thiol compound.
  • Examples of the active ester compound include a compound represented by the following formula (1).
  • X1 and X2 each represent a group containing an aromatic ring.
  • the group containing an aromatic ring include a benzene ring which may have a substituent and a naphthalene ring which may have a substituent.
  • a hydrocarbon group is mentioned as said substituent.
  • the carbon number of the hydrocarbon group is preferably 12 or less, more preferably 6 or less, and still more preferably 4 or less.
  • a combination of a benzene ring which may have a substituent and a benzene ring which may have a substituent a combination of a benzene ring which may have a substituent and a benzene ring which may have a substituent, a benzene ring which may have a substituent and a substitution
  • the combination with the naphthalene ring which may have a group is mentioned.
  • examples of the combination of X1 and X2 include a combination of a naphthalene ring which may have a substituent and a naphthalene ring which may have a substituent.
  • the active ester compound is not particularly limited.
  • Examples of commercially available active ester compounds include “HPC-8000-65T”, “EXB9416-70BK”, “EXB8100-65T”, and “EXB-8000L-65MT” manufactured by DIC.
  • the carbodiimide compound has a structural unit represented by the following formula (2).
  • the right end and the left end are binding sites with other groups.
  • X is an alkylene group, a group having a substituent bonded to an alkylene group, a cycloalkylene group, a group having a substituent bonded to a cycloalkylene group, an arylene group, or a substituent bonded to an arylene group.
  • X may be the same and may differ.
  • At least one X is an alkylene group, a group in which a substituent is bonded to an alkylene group, a cycloalkylene group, or a group in which a substituent is bonded to a cycloalkylene group.
  • carbodiimide compounds include “Carbodilite V-02B”, “Carbodilite V-03”, “Carbodilite V-04K”, “Carbodilite V-07”, “Carbodilite V-09”, “Carbodilite” manufactured by Nisshinbo Chemical Co., Ltd. 10M-SP ”and“ Carbodilite 10M-SP (revised) ”,“ STABAXOL P ”,“ STABAXOL P400 ”, and“ HIKAZIL 510 ”manufactured by Rhein Chemie.
  • a conventionally known maleimide compound can be used as the maleimide compound.
  • the said maleimide compound only 1 type may be used and 2 or more types may be used together.
  • the maleimide compound may be a bismaleimide compound.
  • maleimide compound examples include N-phenylmaleimide and N-alkylbismaleimide.
  • the maleimide compound preferably has a skeleton derived from a diamine compound other than dimer amine or a triamine compound other than trimer triamine.
  • the maleimide compound may or may not have an aromatic ring.
  • the maleimide compound preferably has an aromatic ring.
  • a nitrogen atom in the maleimide skeleton and an aromatic ring are preferably bonded.
  • the content of the maleimide compound in 100% by weight of the component excluding the solvent in the insulating resin layer is preferably 0.5% by weight or more, more preferably It is 1% by weight or more, preferably 15% by weight or less, more preferably 10% by weight or less.
  • the content of the maleimide compound in 100% by weight of the component excluding the inorganic filler and the solvent in the insulating resin layer is preferably 2.5% by weight or more, more preferably 5% by weight or more, and still more preferably 7.5%. % By weight or more, preferably 50% by weight or less, more preferably 35% by weight or less.
  • the thermal dimensional stability of the cured product can be further enhanced.
  • the molecular weight of the maleimide compound is preferably 500 or more, more preferably 1000 or more, preferably less than 30000, more preferably less than 20000.
  • the molecular weight of the maleimide compound means a molecular weight that can be calculated from the structural formula when the maleimide compound is not a polymer and when the structural formula of the maleimide compound can be specified. Moreover, the molecular weight of the said maleimide compound shows the weight average molecular weight in polystyrene conversion measured by gel permeation chromatography (GPC), when the said maleimide compound is a polymer.
  • GPC gel permeation chromatography
  • maleimide compound Commercially available products of the maleimide compound include, for example, “BMI-4000” and “BMI-5100” manufactured by Daiwa Kasei Kogyo Co., Ltd., and Designer Molecules Inc. “BMI-3000” manufactured by the company can be mentioned.
  • the molecular weight of the curing agent is preferably 1000 or less. In this case, when the insulating resin layer is laminated on the base film, the inorganic filler can be uniformly present.
  • the total content of the epoxy compound and the curing agent is preferably 75% by weight or more, more preferably 80% by weight or more, preferably It is 99 weight% or less, More preferably, it is 97 weight% or less.
  • the total content of the epoxy compound and the curing agent is not less than the above lower limit and not more than the above upper limit, an even better cured product can be obtained and the melt viscosity can be adjusted. Good. Further, it is possible to prevent the insulating resin layer from spreading into unintended areas during the curing process. Furthermore, the dimensional change by the heat
  • the melt viscosity does not become too low, and the insulating film tends to become difficult to wet excessively in unintended areas during the curing process. is there. Further, if the total content of the epoxy compound and the curing agent is not more than the above upper limit, it becomes easy to embed the holes or irregularities of the circuit board, and the inorganic filler tends not to exist unevenly. is there.
  • the content of the curing agent is preferably 30% by weight or more, more preferably 40% by weight or more, and preferably 70% by weight or less. More preferably, it is 60% by weight or less.
  • the content of the curing agent is not less than the above lower limit and not more than the above upper limit, a better cured product is obtained, and the dielectric loss tangent is effectively reduced.
  • the insulating resin layer preferably contains a thermoplastic resin.
  • the thermoplastic resin include polyimide resin, polyvinyl acetal resin, and phenoxy resin.
  • the said thermoplastic resin only 1 type may be used and 2 or more types may be used together.
  • the thermoplastic resin is preferably a phenoxy resin from the viewpoint of effectively reducing the dielectric loss tangent and effectively improving the adhesion of the metal wiring.
  • the phenoxy resin By using the phenoxy resin, it is possible to suppress the deterioration of the embedding property of the insulating resin layer with respect to the hole or the unevenness of the circuit board and the unevenness of the inorganic filler.
  • the melt viscosity can be adjusted by using a phenoxy resin, the dispersibility of the inorganic filler is improved, and the insulating resin layer is difficult to wet and spread in an unintended region during the curing process.
  • the phenoxy resin is not particularly limited. A conventionally known phenoxy resin can be used as the phenoxy resin. As for the said phenoxy resin, only 1 type may be used and 2 or more types may be used together.
  • phenoxy resins examples include phenoxy resins having a skeleton such as a bisphenol A skeleton, a bisphenol F skeleton, a bisphenol S skeleton, a biphenyl skeleton, a novolak skeleton, a naphthalene skeleton, and an imide skeleton.
  • phenoxy resins examples include “YP50”, “YP55” and “YP70” manufactured by Nippon Steel & Sumikin Chemical Co., Ltd., and “1256B40”, “4250”, “4256H40” manufactured by Mitsubishi Chemical Corporation, “ 4275 “,” YX6954BH30 “,” YX8100BH30 “, and the like.
  • the weight average molecular weight of the thermoplastic resin is preferably 5000 or more, more preferably 10,000 or more, preferably 100,000 or less, more preferably 50000 or less.
  • the weight average molecular weight of the thermoplastic resin indicates a weight average molecular weight in terms of polystyrene measured by gel permeation chromatography (GPC).
  • the contents of the thermoplastic resin and the phenoxy resin are not particularly limited.
  • the content of the thermoplastic resin (the content of the phenoxy resin when the thermoplastic resin is a phenoxy resin) is preferably 1% by weight or more More preferably, it is 5% by weight or more, preferably 30% by weight or less, more preferably 15% by weight or less.
  • the content of the thermoplastic resin is not less than the above lower limit and not more than the above upper limit, the embedding property of the insulating resin layer with respect to the holes or irregularities of the circuit board is improved.
  • the content of the thermoplastic resin is not less than the above lower limit, the formation of the insulating resin layer is further facilitated, and an even better insulating layer is obtained.
  • the content of the thermoplastic resin is not more than the above upper limit, the thermal expansion coefficient of the cured product is further reduced. The surface roughness of the surface of the cured product is further reduced, and the adhesive strength between the cured product and the metal layer is further increased.
  • the insulating resin layer preferably contains a curing accelerator.
  • the curing rate is further increased.
  • the crosslinked structure in the cured product becomes uniform, the number of unreacted functional groups decreases, and as a result, the crosslinking density increases.
  • the said hardening accelerator is not specifically limited, A conventionally well-known hardening accelerator can be used. As for the said hardening accelerator, only 1 type may be used and 2 or more types may be used together.
  • curing accelerator examples include imidazole compounds, phosphorus compounds, amine compounds, and organometallic compounds.
  • imidazole compound examples include 2-undecylimidazole, 2-heptadecylimidazole, 2-methylimidazole, 2-ethyl-4-methylimidazole, 2-phenylimidazole, 2-phenyl-4-methylimidazole, 1-benzyl- 2-methylimidazole, 1-benzyl-2-phenylimidazole, 1,2-dimethylimidazole, 1-cyanoethyl-2-methylimidazole, 1-cyanoethyl-2-ethyl-4-methylimidazole, 1-cyanoethyl-2-un Decylimidazole, 1-cyanoethyl-2-phenylimidazole, 1-cyanoethyl-2-undecylimidazolium trimellitate, 1-cyanoethyl-2-phenylimidazolium trimellitate, 2,4-diamino-6- [2 ' -Mechi Imidazolyl- (1 ′)]-
  • Examples of the phosphorus compound include triphenylphosphine.
  • Examples of the amine compound include diethylamine, triethylamine, diethylenetetramine, triethylenetetramine and 4,4-dimethylaminopyridine.
  • organometallic compound examples include zinc naphthenate, cobalt naphthenate, tin octylate, cobalt octylate, bisacetylacetonate cobalt (II), and trisacetylacetonate cobalt (III).
  • the content of the curing accelerator is not particularly limited. In 100% by weight of the component excluding the inorganic filler in the insulating resin layer, the content of the curing accelerator is preferably 0.005% by weight or more, more preferably 0.01% by weight or more, preferably 5% by weight or less. More preferably, it is 3% by weight or less.
  • the content of the curing accelerator is not less than the above lower limit and not more than the above upper limit, the insulating resin layer is efficiently cured. If content of the said hardening accelerator is a more preferable range, the storage stability of an insulating resin layer will become still higher, and a much better hardened
  • the insulating resin layer does not contain or contains a solvent. Moreover, the said solvent may be used in order to obtain the slurry containing the said inorganic filler. As for the said solvent, only 1 type may be used and 2 or more types may be used together.
  • Examples of the solvent include acetone, methanol, ethanol, butanol, 2-propanol, 2-methoxyethanol, 2-ethoxyethanol, 1-methoxy-2-propanol, 2-acetoxy-1-methoxypropane, toluene, xylene, methyl ethyl ketone, Examples thereof include N, N-dimethylformamide, methyl isobutyl ketone, N-methyl-pyrrolidone, n-hexane, cyclohexane, cyclohexanone and naphtha which is a mixture.
  • the boiling point of the solvent is preferably 200 ° C. or lower, more preferably 180 ° C. or lower.
  • the content of the solvent in the insulating resin layer is not particularly limited. The content of the solvent can be appropriately changed to such an extent that the layer shape of the insulating resin layer can be maintained.
  • the insulating resin layer has a leveling agent, a flame retardant, a coupling agent, a colorant, an antioxidant, an ultraviolet degradation inhibitor, You may add other thermosetting resins other than an antifoamer, a thickener, a thixotropic agent, and an epoxy compound.
  • Examples of the coupling agent include silane coupling agents, titanium coupling agents, and aluminum coupling agents.
  • Examples of the silane coupling agent include vinyl silane, amino silane, imidazole silane, and epoxy silane.
  • thermosetting resins examples include polyphenylene ether resins, divinyl benzyl ether resins, polyarylate resins, diallyl phthalate resins, polyimide resins, benzoxazine resins, benzoxazole resins, and acrylate resins.
  • Examples of the method for obtaining the insulating resin layer include the following methods.
  • An extrusion molding method in which a material for forming an insulating resin layer is melt-kneaded using an extruder, extruded, and then formed into a film shape by a T die or a circular die.
  • a casting molding method in which a material for forming an insulating resin layer containing a solvent is cast into a film.
  • the material for forming an insulating resin layer can be laminated
  • the extrusion molding method or the casting molding method is preferable because it can cope with the reduction in thickness.
  • the film includes a sheet.
  • the material for forming the insulating resin layer is formed into a film and is a B-stage film by, for example, heating and drying at 50 ° C. to 150 ° C. for 1 to 10 minutes so that curing by heat does not proceed excessively.
  • An insulating resin layer can be obtained.
  • the film-like insulating resin layer that can be obtained by the drying process as described above is referred to as a B-stage film.
  • the B-stage film is in a semi-cured state.
  • the semi-cured product is not completely cured and curing can proceed further.
  • the insulating resin layer is preferably a B stage film.
  • the minimum melt viscosity in the temperature region of 60 ° C. or higher and 180 ° C. or lower of the insulating resin layer (or B stage film when the insulating resin layer is a B stage film) is preferably 5 mPa ⁇ s or more, preferably 10 mPa ⁇ s. That's it.
  • the minimum melt viscosity in the temperature region of 60 ° C. or higher and 180 ° C. or lower of the insulating resin layer (when the insulating resin layer is a B stage film) may be 200 mPa ⁇ s or less, It may be 150 mPa ⁇ s or less, 100 mPa ⁇ s or less, or 75 mPa ⁇ s or less.
  • the temperature at the minimum melt viscosity is preferably 140 ° C. or lower, more preferably 130 ° C. or lower.
  • the temperature at the minimum melt viscosity is equal to or lower than the above upper limit, natural peeling accompanying shrinkage of the base film can be effectively suppressed.
  • the minimum melt viscosity was measured using a Rheometer device (for example, “AR-2000” manufactured by TA Instruments) at a frequency of 6.28 rad / sec, a starting temperature of 60 ° C., a heating rate of 5 ° C./min, and a strain of 21. It is obtained by measuring dynamic viscoelasticity under the condition of 8%.
  • the thickness of the insulating resin layer is , Preferably 5 ⁇ m or more, more preferably 10 ⁇ m or more, preferably 200 ⁇ m or less, more preferably 100 ⁇ m or less.
  • a protective film is preferably laminated on the surface of the insulating resin layer opposite to the base film side.
  • the protective film material examples include polyolefins such as polypropylene and polyethylene, and polyethylene terephthalate.
  • the material of the protective film is preferably polyolefin, and more preferably polypropylene.
  • the thickness of the protective film is preferably 5 ⁇ m or more, more preferably 10 ⁇ m or more, preferably 75 ⁇ m or less, more preferably 60 ⁇ m or less.
  • the laminated film according to the present invention is suitably used for forming an insulating layer in a multilayer printed wiring board.
  • the insulating resin layer is suitably used for forming an insulating layer in a multilayer printed wiring board.
  • An insulating layer can be formed by the insulating resin layer of the laminated film according to the present invention.
  • a multilayer printed wiring board including a circuit board, a plurality of insulating layers stacked on the circuit board, and a metal layer disposed between the plurality of insulating layers may be mentioned. At least one of the insulating layers is formed by the insulating resin layer. The insulating layer in contact with the circuit board may be formed by the insulating resin layer. An insulating layer disposed between two insulating layers may be formed of the insulating resin layer. The insulating layer farthest from the circuit board may be formed by the insulating resin layer. Among the plurality of insulating layers, a metal layer may be disposed on the outer surface of the insulating layer away from the circuit board.
  • the manufacturing method of the laminated structure which concerns on this invention is the opposite side to the said base film of the said insulating resin layer in the state by which the said base film and the said insulating resin layer were laminated
  • a via hole is formed by irradiating the insulating resin layer with a laser from the base film side in a state where the base film and the insulating resin layer are laminated. Forming step.
  • the above-described laminated film is used, and the above-mentioned base film and the above-mentioned insulating resin layer are laminated, and the above-mentioned base film of the above-mentioned insulating resin layer is opposite to the above-mentioned base film.
  • the above-mentioned base film of the above-mentioned insulating resin layer is opposite to the above-mentioned base film.
  • the protective film is peeled off, and the surface of the insulating resin layer exposed by peeling is laminated on a lamination target member having a metal layer on the surface.
  • the laminating step is preferably performed by laminating.
  • the temperature during lamination is preferably 80 ° C. or higher, and preferably 120 ° C. or lower.
  • the manufacturing method of the laminated structure which concerns on this invention is equipped with the hardening process which hardens the said insulating resin layer.
  • the insulating resin layer is cured to form a cured product.
  • the curing of the insulating resin layer in the curing step may be preliminary curing.
  • the cured product includes a precured product that can be further cured.
  • the insulating resin layer may be precured to obtain a B stage film.
  • the curing step is preferably performed by heating.
  • the heating temperature is preferably 130 ° C. or higher, preferably 200 ° C. or lower.
  • the heating time is preferably 30 minutes or longer, preferably 120 minutes or shorter.
  • the cured product is preferably roughened.
  • the cured product Prior to the roughening treatment, the cured product is preferably subjected to a swelling treatment.
  • the cured product is preferably subjected to a swelling treatment after the preliminary curing and before the roughening treatment, and is further cured after the roughening treatment.
  • the cured product is not necessarily subjected to the swelling treatment.
  • the swelling treatment method for example, a method of treating a cured product with an aqueous solution or an organic solvent dispersion solution of a compound mainly composed of ethylene glycol or the like is used.
  • the swelling liquid used for the swelling treatment generally contains an alkali as a pH adjuster or the like.
  • the swelling liquid preferably contains sodium hydroxide.
  • the swelling treatment is carried out by treating the cured product with a 40 wt% ethylene glycol aqueous solution at a treatment temperature of 30 ° C. to 85 ° C. for 1 minute to 30 minutes.
  • the swelling treatment temperature is preferably in the range of 50 ° C to 85 ° C. When the temperature of the swelling treatment is too low, it takes a long time for the swelling treatment, and the adhesive strength between the cured product and the metal layer tends to be low.
  • a chemical oxidant such as a manganese compound, a chromium compound, or a persulfate compound is used.
  • chemical oxidizers are used as an aqueous solution or an organic solvent dispersion after water or an organic solvent is added.
  • the roughening liquid used for the roughening treatment generally contains an alkali as a pH adjuster or the like.
  • the roughening solution preferably contains sodium hydroxide.
  • Examples of the manganese compound include potassium permanganate and sodium permanganate.
  • Examples of the chromium compound include potassium dichromate and anhydrous potassium chromate.
  • Examples of the persulfate compound include sodium persulfate, potassium persulfate, and ammonium persulfate.
  • the arithmetic average roughness Ra of the surface of the cured product is preferably 5 nm or more, more preferably 10 nm or more, preferably 400 nm or less, more preferably less than 400 nm, even more preferably 300 nm or less, still more preferably less than 300 nm, particularly preferably Preferably it is less than 200 nm, most preferably less than 150 nm.
  • the adhesive strength between the cured product and the metal layer is increased, and further finer wiring is formed on the surface of the insulating layer. Furthermore, conductor loss can be suppressed and signal loss can be suppressed low.
  • a laser beam is irradiated to the insulating resin layer from the base film side in a state where the base film and the insulating resin layer are laminated to form a via hole.
  • Examples of the laser used in the via hole forming step include a CO 2 laser and a UV laser.
  • the laser is preferably a CO 2 laser.
  • a UV laser it is preferable to use a polyethylene naphthalate (PEN) film and a film containing an ultraviolet absorber.
  • the diameter of the via hole to be formed is not particularly limited, but is preferably 80 ⁇ m or less.
  • the diameter of the via hole may be 10 ⁇ m or more, 30 ⁇ m or more, or 60 ⁇ m or more.
  • the manufacturing method of the laminated structure which concerns on this invention is equipped with the process (desmear process) of removing the smear inside the said via hole by a desmear process after the said via hole formation process.
  • the desmear process it is possible to effectively remove smear, which is a resin residue derived from the resin component formed in the via hole formation process.
  • a chemical oxidant such as a manganese compound, a chromium compound, or a persulfate compound is used.
  • chemical oxidizers are used as an aqueous solution or an organic solvent dispersion after water or an organic solvent is added.
  • the desmear treatment liquid used in the desmear process generally contains an alkali.
  • the desmear treatment liquid preferably contains sodium hydroxide.
  • the desmear process may also serve as a roughening process for roughening the surface of the insulating resin layer.
  • the manufacturing method of the laminated structure which concerns on this invention is equipped with the process (peeling process) which peels the said base film from the said insulating resin layer after the said desmear process.
  • the above peeling process is preferably performed using an auto peeling apparatus.
  • the manufacturing method of the laminated structure according to the present invention further includes a plating step of forming a metal layer by plating on the surface of the insulating resin layer exposed by peeling after the peeling step, and an insulating resin layer after the plating step. It is preferable to provide each step of the main curing step for curing.
  • Base film Base film A (polyethylene terephthalate (PET) film (“25X” manufactured by Lintec), thickness 25 ⁇ m, width 550 mm, arithmetic average roughness Ra 30 nm on the surface of the insulating resin layer side)
  • Base film B polyethylene terephthalate (PET) film (“386501” manufactured by Lintec Corporation), thickness 38 ⁇ m, width 550 mm, arithmetic average roughness Ra 30 nm on the surface of the insulating resin layer side)
  • Base film C polyethylene terephthalate (PET) film (“PLD386502” manufactured by Lintec Corporation), thickness 38 ⁇ m, width 550 mm, arithmetic average roughness Ra 7 nm on the surface of the insulating resin layer side)
  • the arithmetic average roughness was measured using a non-contact type surface roughness meter (“WYKO NT3300” manufactured by BECOL Instruments Co., Ltd.) with a VSI contact mode and a 50 ⁇ lens with a measurement range of 95.6 ⁇ m ⁇ 71.7 ⁇ m. Note that the arithmetic average roughness with the threshold set to 1%, the median filter (Window: Size5), and the tilt corrected condition was measured at 10 measurement points selected at random, and the average value of the measured values was adopted. .
  • a material for forming the insulating resin layer was prepared as follows.
  • Material for forming insulating resin layer A 69.3 parts by weight of cyclohexanone slurry (solid content: 70% by weight) of vinylsilane-treated silica (“SOC2” manufactured by Admatechs) was prepared. To this slurry, 5.6 parts by weight of a biphenyl type epoxy compound (“NC3000H” manufactured by Nippon Kayaku Co., Ltd.), 5.3 parts by weight of a bisphenol F type epoxy compound (“830S” manufactured by DIC), and a fluorene type epoxy compound ( 2.0 parts by weight of “OGSOL PG-100” manufactured by Osaka Gas Chemical Co., Ltd. was added.
  • a biphenyl type epoxy compound (“NC3000H” manufactured by Nippon Kayaku Co., Ltd.)
  • a bisphenol F type epoxy compound 830S” manufactured by DIC
  • fluorene type epoxy compound 2.0 parts by weight of “OGSOL PG-100” manufactured by Osaka Gas Chemical Co., Ltd.
  • a methyl ethyl ketone and cyclohexanone mixed solution (solid content 30% by weight) of bisphenolacetophenone skeleton phenoxy resin (“YX6954” manufactured by Mitsubishi Chemical Corporation) was prepared. 3.6 parts by weight of the mixed solution (solid content 30% by weight), 0.3 part by weight of 2-ethyl-4-methylimidazole (“2E4MZ” manufactured by Shikoku Kasei Kogyo Co., Ltd.), and a leveling agent (manufactured by Enomoto Kasei Co., Ltd.) LS-480 ”) and 0.1 parts by weight were further added. Stirring was performed at 1200 rpm for 30 minutes to obtain a material (varnish) for forming the insulating resin layer A.
  • Material for forming insulating resin layer B A material for forming the insulating resin layer A except that the active ester curing agent (“HPC-8000-65T” manufactured by DIC) is changed to a phenol novolac curing agent (“MEH7851-H” manufactured by Meiwa Kasei Co., Ltd.) Similarly, a material (varnish) for forming the insulating resin layer B was obtained.
  • HPC-8000-65T manufactured by DIC
  • MEH7851-H phenol novolac curing agent
  • Example 1 The step of disposing an insulating resin layer on the surface of the base film: Using a die coater, a material (varnish) for forming the obtained insulating resin layer A is applied on the base film A with a width of 510 mm except for a range of 20 mm from both ends in the width direction of the base material. After the process, the solvent was evaporated by drying at an average temperature of 100 ° C. for 3 minutes. Thus, the insulating resin layer A having a thickness of 40 ⁇ m and a width of 510 mm was formed on the base film A to obtain a laminate.
  • a slitter is provided at a position 30 mm inward from one end (other end) in the width direction of the obtained laminate, and 18 mm inward from an end (one end) opposite to the other end.
  • the laminated film whose distance (Y) which the end surface of the base film protrudes with respect to the end surface of an insulating resin layer is 2 mm in the one end side was obtained.
  • Tables 1 to 3 show the types of base film, the type of insulating resin layer, and the distance (Y) that the end face of the base film protrudes from the end face of the insulating resin layer on one end side of the laminated film as shown in Tables 1 to 3
  • a laminated film was obtained in the same manner as in Example 1 except that.
  • Insulating resin layer A minimum melt viscosity 98 mPa ⁇ s, minimum melt viscosity temperature 137 ° C.
  • Insulating resin layer B minimum melt viscosity 50 mPa ⁇ s, minimum melt viscosity temperature 128 ° C.
  • a CCL substrate (“E679FG” manufactured by Hitachi Chemical Co., Ltd.) of 340 mm ⁇ 510 mm in which an inner layer circuit was formed by etching was prepared. Both surfaces of the CCL substrate were immersed in a copper surface roughening agent (“MEC etch bond CZ-8101” manufactured by MEC) to roughen the copper surface.
  • MEC etch bond CZ-8101 manufactured by MEC
  • the obtained laminated film was cut out to 325 mm ⁇ 502 mm, set on both sides of the CCL substrate from the resin film side, and using the diaphragm type vacuum laminator (“MVLP-500” manufactured by Meiki Seisakusho), the CCL substrate
  • MVLP-500 diaphragm type vacuum laminator
  • the uncured laminated sample A was obtained. Lamination was performed by reducing the pressure for 20 seconds, pressing the pressure at 13 hPa or less at 100 ° C. for 20 seconds, and further pressing at 100 ° C. and a pressure of 0.8 MPa for 40 seconds.
  • Curing process The insulating resin layer was heated at a heating temperature of 180 ° C. for 30 minutes to pre-cure the insulating resin layer.
  • the base film and insulating resin layer (B stage film) are laminated and pre-cured, and then the insulating resin layer is irradiated with a CO 2 laser (“LC-4KF212” manufactured by Hitachi Via Mechanics) from the base film side.
  • a CO 2 laser (“LC-4KF212” manufactured by Hitachi Via Mechanics) from the base film side.
  • the via hole penetrating the base film and the insulating resin layer was formed so that the upper end diameter of the via hole was 60 ⁇ m.
  • the irradiation conditions of the CO 2 laser were as follows.
  • Machining mode Burst Period 0.100ms Pulse width 0.018ms Number of pulses 3 shot Aperture 3.5mm 2nd aperture 28mm Power 3.3W
  • the peeling step the presence or absence of tearing of the base film was confirmed visually.

Abstract

Provided is a laminate film in which it is possible to suppress spontaneous peeling of a base material film from an insulating resin layer during curing, and in which it is possible to suppress peeling defects in the base material film when the base material film is being peeled from the insulating resin layer after curing. The laminate film according to the present invention comprises a base material film and an insulating resin layer laminated on the obverse surface of the base material film, the laminate film being such that: at one end side of the laminate film, an end surface of the base material film juts farthest outward relative to an end surface of the insulating resin layer; and Y/X is 0.5-15, where X gf/cm is the peel strength of the base material film relative to the insulating resin layer, and Y mm is the distance by which the base material film juts out at the one end side.

Description

積層フィルム及び積層構造体の製造方法LAMINATED FILM AND METHOD FOR PRODUCING LAMINATED STRUCTURE
 本発明は、基材フィルムと絶縁樹脂層とを備える積層フィルムに関する。また、本発明は、上記積層フィルムを用いた積層構造体の製造方法に関する。 The present invention relates to a laminated film including a base film and an insulating resin layer. Moreover, this invention relates to the manufacturing method of the laminated structure using the said laminated | multilayer film.
 従来、半導体装置、積層板及びプリント配線板等の電子部品を得るために、様々な樹脂組成物が用いられている。例えば、多層プリント配線板では、内部の層間を絶縁するための絶縁層を形成したり、表層部分に位置する絶縁層を形成したりするために、樹脂組成物が用いられている。上記絶縁層を形成するために、基材フィルムと絶縁樹脂層とを備える積層フィルムが用いられている。上記絶縁樹脂層は、上記樹脂組成物をフィルム状にすることにより得られる。 Conventionally, various resin compositions have been used to obtain electronic components such as semiconductor devices, laminated boards, and printed wiring boards. For example, in a multilayer printed wiring board, a resin composition is used in order to form an insulating layer for insulating inner layers or to form an insulating layer located in a surface layer portion. In order to form the insulating layer, a laminated film including a base film and an insulating resin layer is used. The insulating resin layer is obtained by forming the resin composition into a film.
 多層プリント配線板等の製造方法では、基材フィルムと絶縁樹脂層とが積層された状態で、該絶縁樹脂層を硬化又は予備硬化させて絶縁層(硬化物層又は予備硬化物層)を形成し、その後、基材フィルムを、硬化又は予備硬化した絶縁樹脂層から剥離することがある。 In a manufacturing method of a multilayer printed wiring board, etc., in a state where a base film and an insulating resin layer are laminated, the insulating resin layer is cured or precured to form an insulating layer (cured material layer or precured material layer). Thereafter, the base film may be peeled off from the cured or precured insulating resin layer.
 このような製造方法の一例が、下記の特許文献1、2に記載されている。 An example of such a manufacturing method is described in Patent Documents 1 and 2 below.
 下記の特許文献1には、回路基板の両面又は片面に絶縁層及びプラスチックフィルムが積層された状態で、プラスチックフィルム上から絶縁層に炭酸ガスレーザーを照射して、トップ径が100μm以下のブラインドビアを形成する工程を備える多層プリント配線板の製造方法が開示されている。上記絶縁層は、無機充填材を35質量%以上含有する。 In Patent Document 1 below, a blind via having a top diameter of 100 μm or less is obtained by irradiating a carbon dioxide laser on the insulating layer from above the plastic film in a state where the insulating layer and the plastic film are laminated on both sides or one side of the circuit board. A method for manufacturing a multilayer printed wiring board comprising a step of forming a substrate is disclosed. The insulating layer contains 35% by mass or more of an inorganic filler.
 下記の特許文献2には、以下の(A)~(F)の工程を備える回路基板の製造方法が開示されている。(A)プラスチックフィルム支持体と、該プラスチックフィルム支持体と接合する樹脂組成物層とを含む支持体付き樹脂シートを、樹脂組成物層が内層基板と接合するように、内層基板に積層する工程。(B)樹脂組成物層を熱硬化して絶縁層を形成する工程であって、該絶縁層とプラスチックフィルム支持体との密着強度が2gf/cm~18gf/cmである工程。(C)プラスチックフィルム支持体上よりレーザーを照射して、絶縁層にトップ径40μm以下のビアホールを形成する工程。(D)デスミア処理を行う工程。(E)プラスチックフィルム支持体を剥離する工程。(F)絶縁層の表面に導体層を形成する工程。 Patent Document 2 below discloses a circuit board manufacturing method including the following steps (A) to (F). (A) A step of laminating a resin sheet with a support including a plastic film support and a resin composition layer bonded to the plastic film support on the inner layer substrate such that the resin composition layer is bonded to the inner layer substrate. . (B) A step of thermosetting the resin composition layer to form an insulating layer, wherein the adhesion strength between the insulating layer and the plastic film support is 2 gf / cm to 18 gf / cm. (C) A step of forming a via hole having a top diameter of 40 μm or less in the insulating layer by irradiating a laser on the plastic film support. (D) The process of performing a desmear process. (E) The process of peeling a plastic film support body. (F) A step of forming a conductor layer on the surface of the insulating layer.
WO2009/066759A1WO2009 / 066759A1 特開2015-211085号公報JP 2015-211085 A
 特許文献1、2に記載のような従来の積層フィルム(基材フィルムと絶縁樹脂層とを備える積層フィルム)では、基材フィルムと絶縁樹脂層とが積層された状態で該絶縁樹脂層を硬化させた場合に、硬化時に基材フィルムが絶縁樹脂層から自然剥離することがある。上記自然剥離が生じた場合には、絶縁樹脂層に硬化むらが生じることがある。また、特許文献1、2に記載のような従来の積層フィルムでは、硬化後に基材フィルムを絶縁樹脂層から剥離する際に、基材フィルムと絶縁樹脂層とを良好に剥離できず、基材フィルムが裂けることがある。 In the conventional laminated film (laminated film including a base film and an insulating resin layer) as described in Patent Documents 1 and 2, the insulating resin layer is cured in a state where the base film and the insulating resin layer are laminated. In such a case, the base film may spontaneously peel from the insulating resin layer during curing. When the natural peeling occurs, unevenness of curing may occur in the insulating resin layer. Moreover, in the conventional laminated films as described in Patent Documents 1 and 2, when the base film is peeled off from the insulating resin layer after curing, the base film and the insulating resin layer cannot be peeled off satisfactorily. The film may tear.
 本発明の目的は、硬化時における基材フィルムの絶縁樹脂層からの自然剥離を抑えることができ、かつ硬化後に基材フィルムを絶縁樹脂層から剥離する際に基材フィルムの剥離不良を抑えることができる積層フィルムを提供することである。また、本発明は、上記積層フィルムを用いた積層構造体の製造方法を提供することも目的とする。 The object of the present invention is to suppress natural peeling from the insulating resin layer of the base film during curing, and to suppress poor peeling of the base film when peeling the base film from the insulating resin layer after curing. It is providing the laminated | multilayer film which can be performed. Another object of the present invention is to provide a method for producing a laminated structure using the laminated film.
 本発明の広い局面によれば、基材フィルムと、前記基材フィルムの表面上に積層された絶縁樹脂層とを備え、積層フィルムの一端側において、前記絶縁樹脂層の端面に対して前記基材フィルムの端面が外側に最も大きくはみだしており、前記絶縁樹脂層に対する前記基材フィルムの剥離強度をXgf/cm、前記一端側における前記基材フィルムのはみだしている距離をYmmとしたときに、Y/Xが0.5以上15以下である、積層フィルムが提供される。 According to a wide aspect of the present invention, a base film and an insulating resin layer laminated on the surface of the base film are provided, and at one end of the laminated film, the base relative to the end surface of the insulating resin layer is provided. When the end face of the material film protrudes most outside, the peel strength of the base film with respect to the insulating resin layer is Xgf / cm, and the distance of the base film protruding on the one end side is Ymm, A laminated film in which Y / X is 0.5 or more and 15 or less is provided.
 本発明に係る積層フィルムのある特定の局面では、前記Xが、0.3以上9以下である。 In a specific aspect of the laminated film according to the present invention, the X is 0.3 or more and 9 or less.
 本発明に係る積層フィルムのある特定の局面では、前記Yが、0.5以上20以下である。 In a specific aspect of the laminated film according to the present invention, the Y is 0.5 or more and 20 or less.
 本発明に係る積層フィルムのある特定の局面では、前記基材フィルムの厚みが、25μm以上である。 In a specific aspect of the laminated film according to the present invention, the base film has a thickness of 25 μm or more.
 本発明に係る積層フィルムのある特定の局面では、前記基材フィルムの前記絶縁樹脂層側の表面の算術平均粗さRaが、5nm以上400nm未満である。 In a specific aspect of the laminated film according to the present invention, the arithmetic average roughness Ra of the surface of the base film on the insulating resin layer side is 5 nm or more and less than 400 nm.
 本発明に係る積層フィルムのある特定の局面では、前記絶縁樹脂層が、エポキシ化合物と、無機充填材と、硬化剤とを含む。 In a specific aspect of the laminated film according to the present invention, the insulating resin layer includes an epoxy compound, an inorganic filler, and a curing agent.
 本発明に係る積層フィルムのある特定の局面では、前記硬化剤が、フェノール化合物、シアネート化合物、マレイミド化合物、又は活性エステル化合物を含む。 In a specific aspect of the laminated film according to the present invention, the curing agent contains a phenol compound, a cyanate compound, a maleimide compound, or an active ester compound.
 本発明に係る積層フィルムのある特定の局面では、積層フィルムの前記一端とは反対の他端側において、前記基材フィルムと前記絶縁樹脂層との端面が揃っているか、又は積層フィルムの前記一端側と前記一端とは反対の他端側との双方において、前記絶縁樹脂層の端面に対して前記基材フィルムの端面が外側にはみだしており、かつ前記他端側における前記基材フィルムのはみだしている距離が、前記一端側における前記基材フィルムのはみだしている距離よりも小さい。 In a specific aspect of the laminated film according to the present invention, end surfaces of the base film and the insulating resin layer are aligned on the other end side opposite to the one end of the laminated film, or the one end of the laminated film. The end face of the base film protrudes outward from the end face of the insulating resin layer on both the side and the other end opposite to the one end, and the base film protrudes on the other end side. Is smaller than the distance of the base film protruding from the one end side.
 本発明に係る積層フィルムのある特定の局面では、前記絶縁樹脂層の60℃以上180℃以下の温度領域における最低溶融粘度が、5mPa・s以上である。 In a specific aspect of the laminated film according to the present invention, the minimum melt viscosity in the temperature region of 60 ° C. or higher and 180 ° C. or lower of the insulating resin layer is 5 mPa · s or higher.
 本発明に係る積層フィルムのある特定の局面では、前記絶縁樹脂層は、多層プリント配線板において、絶縁層を形成するために好適に用いられる。 In a specific aspect of the laminated film according to the present invention, the insulating resin layer is suitably used for forming an insulating layer in a multilayer printed wiring board.
 本発明の広い局面によれば、上述した積層フィルムを用いて、前記基材フィルムと前記絶縁樹脂層とが積層された状態で、前記絶縁樹脂層の前記基材フィルムとは反対側の表面を、金属層を表面に有する積層対象部材上に積層する積層工程と、前記基材フィルムと前記絶縁樹脂層とが積層された状態で、前記絶縁樹脂層に前記基材フィルム側からレーザーを照射し、ビアホールを形成するビアホール形成工程とを備える、積層構造体の製造方法が提供される。 According to a wide aspect of the present invention, using the laminated film described above, in a state where the base film and the insulating resin layer are laminated, a surface of the insulating resin layer opposite to the base film is disposed. In the state in which the substrate film and the insulating resin layer are laminated, the insulating resin layer is irradiated with a laser from the substrate film side in a lamination process in which the metal layer is laminated on the lamination target member. And a via hole forming step of forming a via hole.
 本発明に係る積層構造体の製造方法のある特定の局面では、前記積層工程と前記ビアホール形成工程との間に、前記絶縁樹脂層を硬化させる硬化工程を備える。 In a specific aspect of the method for manufacturing a laminated structure according to the present invention, a curing step of curing the insulating resin layer is provided between the laminating step and the via hole forming step.
 本発明に係る積層フィルムは、基材フィルムと、上記基材フィルムの表面上に積層された絶縁樹脂層とを備える。本発明に係る積層フィルムでは、積層フィルムの一端側において、上記絶縁樹脂層の端面に対して上記基材フィルムの端面が外側に最も大きくはみだしている。本発明に係る積層フィルムでは、上記絶縁樹脂層に対する上記基材フィルムの剥離強度をXgf/cm、上記一端側における上記基材フィルムのはみだしている距離をYmmとしたときに、Y/Xが0.5以上15以下である。本発明に係る積層フィルムでは、上記の構成が備えられているので、硬化時における基材フィルムの絶縁樹脂層からの自然剥離を抑えることができ、かつ硬化後に基材フィルムを絶縁樹脂層から剥離する際に基材フィルムの剥離不良を抑えることができる。 The laminated film according to the present invention includes a base film and an insulating resin layer laminated on the surface of the base film. In the laminated film according to the present invention, on one end side of the laminated film, the end face of the base film protrudes most outward from the end face of the insulating resin layer. In the laminated film according to the present invention, when the peel strength of the base film with respect to the insulating resin layer is Xgf / cm and the distance of the base film protruding on the one end side is Ymm, Y / X is 0. .5 or more and 15 or less. Since the laminated film according to the present invention has the above-described configuration, natural peeling from the insulating resin layer of the base film during curing can be suppressed, and the base film is peeled from the insulating resin layer after curing. When it does, the peeling defect of a base film can be suppressed.
図1は、本発明の第1の実施形態に係る積層フィルムを示す断面図である。FIG. 1 is a cross-sectional view showing a laminated film according to the first embodiment of the present invention. 図2は、本発明の第2の実施形態に係る積層フィルムを示す断面図である。FIG. 2 is a cross-sectional view showing a laminated film according to the second embodiment of the present invention.
 以下、本発明を詳細に説明する。 Hereinafter, the present invention will be described in detail.
 本発明に係る積層フィルムは、基材フィルムと、上記基材フィルムの表面上に積層された絶縁樹脂層とを備える。 The laminated film according to the present invention includes a base film and an insulating resin layer laminated on the surface of the base film.
 本発明に係る積層フィルムは、以下の構成(0)を備える。 The laminated film according to the present invention has the following configuration (0).
 (0)積層フィルムの一端側において、上記絶縁樹脂層の端面に対して上記基材フィルムの端面が外側に最も大きくはみだしている。(以下、積層フィルム(0)と記載することがある) (0) On one end side of the laminated film, the end surface of the base film protrudes most outwardly with respect to the end surface of the insulating resin layer. (Hereafter, it may be described as a laminated film (0))
 本発明に係る積層フィルムでは、全ての端の中で、一端側のはみだし距離が最も大きい。 The laminated film according to the present invention has the largest protruding distance on one end side among all ends.
 本発明に係る積層フィルムでは、上記絶縁樹脂層に対する上記基材フィルムの剥離強度をXgf/cm、上記一端側における上記基材フィルムのはみだしている距離をYmmとしたときに、Y/X(YのXに対する比)が0.5以上15以下である。 In the laminated film according to the present invention, when the peel strength of the base film with respect to the insulating resin layer is Xgf / cm, and the distance of the base film protruding on the one end side is Ymm, Y / X (Y The ratio of X to X is 0.5 or more and 15 or less.
 本発明に係る積層フィルムでは、全ての端の中で、一端側のはみだし距離が最も大きいので、上記距離Yは、最も大きくはみだしている距離である。 In the laminated film according to the present invention, since the protruding distance on one end side is the largest among all the ends, the distance Y is the distance protruding most.
 本発明に係る積層フィルムでは、上記の構成が備えられているので、硬化時における基材フィルムの絶縁樹脂層からの自然剥離を抑えることができ、かつ硬化後に基材フィルムを絶縁樹脂層から剥離する際に基材フィルムの剥離不良を抑えることができる。本発明に係る積層フィルムでは、硬化後に基材フィルムを絶縁樹脂層から剥離する際に基材フィルムの裂けを抑えることができる。 Since the laminated film according to the present invention has the above-described configuration, natural peeling from the insulating resin layer of the base film during curing can be suppressed, and the base film is peeled from the insulating resin layer after curing. When it does, the peeling defect of a base film can be suppressed. In the laminated film according to the present invention, tearing of the base film can be suppressed when the base film is peeled from the insulating resin layer after curing.
 なお、上記硬化時及び上記硬化後には、予備硬化時及び予備硬化後も含まれる。 In addition, at the time of the said hardening and after the said hardening, the time of pre-curing and after pre-curing are also included.
 本発明に係る積層フィルムでは、基材フィルムの一端側がはみだしているので、硬化後に基材フィルムを一端側から、絶縁樹脂層から剥離することができる。 In the laminated film according to the present invention, since one end side of the base film protrudes, the base film can be peeled from the insulating resin layer from one end side after curing.
 本発明に係る積層フィルムでは、上記の構成が備えられているので、予備硬化時における基材フィルムの絶縁樹脂層からの自然剥離を抑えることができ、かつ予備硬化後に基材フィルムを絶縁樹脂層から剥離する際に基材フィルムの剥離不良を抑えることもできる。 Since the laminated film according to the present invention has the above-described configuration, natural peeling from the insulating resin layer of the base film at the time of preliminary curing can be suppressed, and the base film is insulated from the insulating resin layer after preliminary curing. When peeling from the substrate film, poor peeling of the base film can be suppressed.
 また、本発明に係る積層フィルムでは、上記の構成が備えられているので、基板の搬送時や、ビアホールを形成するためのレーザー照射時における基材フィルムの絶縁樹脂層からの自然剥離を抑えることができる。 In addition, since the laminated film according to the present invention has the above-described configuration, it suppresses natural peeling from the insulating resin layer of the base film during transportation of the substrate or during laser irradiation for forming a via hole. Can do.
 上記構成(0)に含まれる構成としては、以下の構成(1)、及び以下の構成(2)等が挙げられる。本発明に係る積層フィルムは、以下の構成(1)又は以下の構成(2)を備えていてもよい。本発明に係る積層フィルムは、以下の構成(1)を備えていてもよく、以下の構成(2)を備えていてもよい。 Examples of the configuration included in the configuration (0) include the following configuration (1) and the following configuration (2). The laminated film according to the present invention may have the following configuration (1) or the following configuration (2). The laminated film according to the present invention may have the following configuration (1) or may have the following configuration (2).
 (1)積層フィルムの一端側において、上記絶縁樹脂層の端面に対して上記基材フィルムの端面が外側に最も大きくはみだしている。積層フィルムの上記一端とは反対の他端側において、上記基材フィルムと上記絶縁樹脂層との端面が揃っている。(以下、積層フィルム(1)と記載することがある) (1) On one end side of the laminated film, the end face of the base film protrudes most outwardly with respect to the end face of the insulating resin layer. On the other end side opposite to the one end of the laminated film, end surfaces of the base film and the insulating resin layer are aligned. (Hereafter, it may be described as a laminated film (1))
 (2)積層フィルムの一端側において、上記絶縁樹脂層の端面に対して上記基材フィルムの端面が外側に最も大きくはみだしている。積層フィルムの上記一端とは反対の他端側において、上記絶縁樹脂層の端面に対して上記基材フィルムの端面が外側にはみだしている。上記他端側における上記基材フィルムのはみだしている距離が、上記一端側における上記基材フィルムのはみだしている距離と同等以下である。(以下、積層フィルム(2)と記載することがある) (2) On one end side of the laminated film, the end surface of the base film protrudes most outward from the end surface of the insulating resin layer. On the other end side opposite to the one end of the laminated film, the end face of the base film protrudes outward from the end face of the insulating resin layer. The distance that the base film protrudes on the other end side is equal to or less than the distance that the base film protrudes on the one end side. (Hereafter, it may be described as a laminated film (2))
 上記一端と上記他端とは、積層フィルムにおいて、対向し合う両側の端である。 The one end and the other end are ends on opposite sides of the laminated film.
 上記構成(2)において、上記他端側における上記基材フィルムのはみだしている距離は、上記一端側における上記基材フィルムのはみだしている距離と同じか、又は、上記一端側における上記基材フィルムのはみだしている距離よりも小さい。 In the configuration (2), the protruding distance of the base film on the other end side is the same as the protruding distance of the base film on the one end side, or the base film on the one end side. Is smaller than the protruding distance.
 積層フィルムの全ての端において、基材フィルムと絶縁樹脂層との端面が揃っている場合、すなわち、従来の積層フィルムの場合、硬化時において基材フィルムが絶縁樹脂層から自然剥離しやすい。また、従来の積層フィルムの場合、硬化後に基材フィルムを絶縁樹脂層から剥離する際に基材フィルムの裂けが生じやすい。このため、従来の積層フィルムでは、硬化時における基材フィルムの絶縁樹脂層からの自然剥離を抑え、かつ硬化後に基材フィルムを絶縁樹脂層から剥離する際に基材フィルムの裂けを抑えることは困難である。 When the end faces of the base film and the insulating resin layer are aligned at all ends of the laminated film, that is, in the case of a conventional laminated film, the base film is likely to be naturally separated from the insulating resin layer during curing. Moreover, in the case of the conventional laminated | multilayer film, when a base film is peeled from an insulating resin layer after hardening, a base film tends to tear. For this reason, in the conventional laminated film, it is possible to suppress natural peeling from the insulating resin layer of the base film during curing, and to suppress tearing of the base film when peeling the base film from the insulating resin layer after curing. Have difficulty.
 硬化時の基材フィルムの絶縁樹脂層からの自然剥離をより一層抑え、かつ硬化後に基材フィルムを絶縁樹脂層から剥離する際の基材フィルムの剥離不良をより一層抑える観点からは、積層フィルム(1)と積層フィルム(2)とのうち、積層フィルム(1)が好ましい。 From the viewpoint of further suppressing the natural peeling from the insulating resin layer of the base film during curing, and further suppressing the peeling failure of the base film when peeling the base film from the insulating resin layer after curing, a laminated film Of (1) and laminated film (2), laminated film (1) is preferred.
 積層フィルム(2)は、以下の構成(2A)を備えることが好ましい。 The laminated film (2) preferably has the following configuration (2A).
 (2A)積層フィルムの一端側において、上記絶縁樹脂層の端面に対して上記基材フィルムの端面が外側に最も大きくはみだしている。積層フィルムの上記一端とは反対の他端側において、上記絶縁樹脂層の端面に対して上記基材フィルムの端面が外側にはみだしている。上記他端側における上記基材フィルムのはみだしている距離が、上記一端側における上記基材フィルムのはみだしている距離よりも小さい。(以下、積層フィルム(2A)と記載することがある) (2A) On one end side of the laminated film, the end face of the base film protrudes most outward from the end face of the insulating resin layer. On the other end side opposite to the one end of the laminated film, the end face of the base film protrudes outward from the end face of the insulating resin layer. The distance that the base film protrudes on the other end side is smaller than the distance that the base film protrudes on the one end side. (Hereafter, it may be described as a laminated film (2A))
 本発明に係る積層フィルムでは、上記絶縁樹脂層に対する上記基材フィルムの剥離強度をXgf/cm、上記一端側における上記基材フィルムのはみだしている距離をYmmとする。したがって、積層フィルム(2),(2A)において、上記Yは、上記絶縁樹脂層の端面に対して上記基材フィルムの端面がそれぞれ外側にはみだしている距離の内、大きい方の距離を示す。 In the laminated film according to the present invention, the peel strength of the base film with respect to the insulating resin layer is Xgf / cm, and the distance of the base film protruding on the one end side is Ymm. Therefore, in the laminated films (2) and (2A), Y indicates the larger distance among the distances at which the end surfaces of the base film protrude outward from the end surfaces of the insulating resin layer.
 硬化時における基材フィルムの絶縁樹脂層からの自然剥離を抑え、かつ硬化後に基材フィルムを絶縁樹脂層から剥離する際に基材フィルムの剥離不良を抑える観点から、Y/X(YのXに対する比)が0.5以上15以下である。上記Y/Xが0.5未満であると、硬化時に基材フィルムが絶縁樹脂層から自然剥離しやすい。上記Y/Xが15を超えると、硬化後に基材フィルムを絶縁樹脂層から剥離する際に、基材フィルムと絶縁樹脂層とを良好に剥離できず、基材フィルムが裂けやすい。 From the viewpoint of suppressing natural peeling from the insulating resin layer of the base film during curing and suppressing poor peeling of the base film when peeling the base film from the insulating resin layer after curing, Y / X (X of Y Ratio) to 0.5 to 15. When the Y / X is less than 0.5, the base film is likely to spontaneously peel from the insulating resin layer during curing. When Y / X exceeds 15, when the base film is peeled from the insulating resin layer after curing, the base film and the insulating resin layer cannot be peeled well, and the base film is easily torn.
 硬化時における基材フィルムの絶縁樹脂層からの自然剥離をより一層抑え、かつ硬化後に基材フィルムを絶縁樹脂層から剥離する際に基材フィルムの剥離不良をより一層抑える観点から、上記Y/Xは、好ましくは0.7以上、より好ましくは1.0以上、好ましくは13以下、より好ましくは11以下である。 From the viewpoint of further suppressing the natural peeling from the insulating resin layer of the base film during curing and further suppressing the peeling failure of the base film when peeling the base film from the insulating resin layer after curing. X is preferably 0.7 or more, more preferably 1.0 or more, preferably 13 or less, more preferably 11 or less.
 硬化時における基材フィルムの絶縁樹脂層からの自然剥離をより一層抑え、かつ硬化後に基材フィルムを絶縁樹脂層から剥離する際に基材フィルムの剥離不良をより一層抑える観点から、上記Xは、好ましくは0.3以上、好ましくは9以下である。 From the viewpoint of further suppressing the natural peeling from the insulating resin layer of the base film during curing, and further suppressing the peeling failure of the base film when peeling the base film from the insulating resin layer after curing, X is , Preferably 0.3 or more, preferably 9 or less.
 硬化時における基材フィルムの絶縁樹脂層からの自然剥離をより一層抑え、かつ硬化後に基材フィルムを絶縁樹脂層から剥離する際に基材フィルムの剥離不良をより一層抑える観点から、上記Yは、好ましくは0.5以上、好ましくは20以下である。 From the viewpoint of further suppressing the natural peeling from the insulating resin layer of the base film during curing, and further suppressing the peeling failure of the base film when peeling the base film from the insulating resin layer after curing, the above Y is , Preferably 0.5 or more, preferably 20 or less.
 上記絶縁樹脂層に対する上記基材フィルムの剥離強度(すなわち、X)は、好ましくは0.3gf/cm以上、より好ましくは0.5gf/cm以上、好ましくは9gf/cm以下、より好ましくは7gf/cm以下である。上記剥離強度が上記下限以上であると、基板の搬送時における基材フィルムの絶縁樹脂層からの自然剥離を抑えることができ、また、ビアホール形成するためのレーザー照射時でも、基材フィルムの絶縁樹脂層からの自然剥離を抑えることができる。上記剥離強度が上記上限以下であると、ピール強度を高くすることができ、また、デスミア処理後の粗度が高くなることを抑えることができる。 The peel strength (that is, X) of the base film with respect to the insulating resin layer is preferably 0.3 gf / cm or more, more preferably 0.5 gf / cm or more, preferably 9 gf / cm or less, more preferably 7 gf / cm. cm or less. When the peel strength is equal to or higher than the lower limit, natural peeling from the insulating resin layer of the base film during substrate transportation can be suppressed, and insulation of the base film can be achieved even during laser irradiation for forming via holes. Spontaneous peeling from the resin layer can be suppressed. When the peel strength is not more than the above upper limit, the peel strength can be increased, and the roughness after desmear treatment can be suppressed from increasing.
 上記絶縁樹脂層に対する上記基材フィルムの剥離強度は、引張試験機(島津製作所社製「AG-5000B」)を用いて、クロスヘッド速度5mm/分の条件で測定することができる。 The peel strength of the base film with respect to the insulating resin layer can be measured using a tensile tester (“AG-5000B” manufactured by Shimadzu Corporation) under a crosshead speed of 5 mm / min.
 上記一端側における上記基材フィルムのはみだしている距離(すなわち、Y)は、好ましくは0.5mm以上、より好ましくは1mm以上、好ましくは20mm以下、より好ましくは15mm以下である。上記一端側における上記基材フィルムのはみだしている距離が上記下限以上であると、オート剥離装置を用いて硬化後に基材フィルムを絶縁樹脂層から良好に剥離することができ、また、積層フィルムの製造時において積層フィルムの一端又は他端をスリットする際に絶縁樹脂層のひび又は割れを抑えることができる。上記一端側における上記基材フィルムのはみだしている距離が上記上限以下であると、積層フィルムの搬送時における基材フィルムの絶縁樹脂層からの自然剥離を抑えることができ、また、製造コストを抑えることができる。 The distance (that is, Y) that the base film protrudes on the one end side is preferably 0.5 mm or more, more preferably 1 mm or more, preferably 20 mm or less, more preferably 15 mm or less. When the distance over which the base film protrudes on the one end side is equal to or more than the lower limit, the base film can be satisfactorily peeled from the insulating resin layer after curing using an auto peeling device. Cracking or cracking of the insulating resin layer can be suppressed when slitting one end or the other end of the laminated film during production. When the distance that the base film protrudes on the one end side is not more than the above upper limit, natural peeling from the insulating resin layer of the base film during transport of the laminated film can be suppressed, and the manufacturing cost can be suppressed. be able to.
 上記積層フィルムは、上記絶縁樹脂層の上記基材フィルム側とは反対の表面上に保護フィルムが積層されていることが好ましい。 In the laminated film, a protective film is preferably laminated on the surface of the insulating resin layer opposite to the base film side.
 上記積層フィルム(0),(1)の一端側において、上記絶縁樹脂層の端面に対して上記基材フィルムの端面を外側にはみださせる方法としては、上記基材フィルムと上記絶縁樹脂層との積層時に、端面をずらす方法が挙げられる。 As a method of protruding the end face of the base film outward from the end face of the insulating resin layer on one end side of the laminated films (0) and (1), the base film and the insulating resin layer may be used. The method of shifting an end surface at the time of lamination | stacking with is mentioned.
 上記積層フィルム(2)の一端側と上記一端とは反対の他端側との双方において、上記絶縁樹脂層の端面に対して上記基材フィルムの端面を外側にはみださせる方法としては、上記基材フィルムと上記絶縁樹脂層との積層時に、端面をずらす方法が挙げられる。積層フィルム(2)では、端面のずらす距離を調整する。 As a method of projecting the end face of the base film outward with respect to the end face of the insulating resin layer on both the one end side of the laminated film (2) and the other end side opposite to the one end, The method of shifting an end surface at the time of lamination | stacking with the said base film and the said insulating resin layer is mentioned. In the laminated film (2), the distance shifted by the end face is adjusted.
 上記積層フィルム(1)の上記一端とは反対の他端側において、上記基材と上記絶縁樹脂層と上記保護フィルムとの端面を揃える方法としては、以下の方法が挙げられる。上記基材フィルムと上記絶縁樹脂層との積層時に端面を揃える方法、並びに、上記基材フィルムと上記絶縁樹脂層との積層体、又は上記基材フィルムと上記絶縁樹脂層と上記保護フィルムとの積層体をスリットする方法。 The following method may be mentioned as a method for aligning the end surfaces of the base material, the insulating resin layer, and the protective film on the other end side opposite to the one end of the laminated film (1). A method of aligning end faces when laminating the base film and the insulating resin layer, and a laminate of the base film and the insulating resin layer, or the base film, the insulating resin layer, and the protective film. A method of slitting a laminate.
 上記積層フィルム(2A)の上記他端側における上記基材フィルムのはみだしている距離を、上記一端側における上記基材フィルムのはみだしている距離よりも小さくする方法としては、以下の方法が挙げられる。上記基材フィルムと上記絶縁樹脂層との積層時に、他端側における上記基材フィルムのはみだしている距離を、上記一端側における上記基材フィルムのはみだしている距離よりも小さくする方法。基材フィルムと絶縁樹脂層とのうちの基材フィルムをスリットする方法。基材フィルムと絶縁樹脂層と保護フィルムとのうちの基材フィルム及び保護フィルムをスリットする方法。 Examples of a method for reducing the distance of the base film on the other end side of the laminated film (2A) to be smaller than the distance of the base film on the one end side include the following methods. . The method of making the distance which the said base film protrudes in the other end side smaller than the distance which the said base film protrudes in the said one end side at the time of lamination | stacking of the said base film and the said insulating resin layer. A method of slitting the base film of the base film and the insulating resin layer. A method of slitting a base film and a protective film among the base film, the insulating resin layer, and the protective film.
 本発明に係る積層フィルムの製造方法は、以下の(A)又は(B)の構成を備えることが好ましい。製造方法(A),(B)は、積層フィルム(0)の製造方法である。製造方法(A)は、積層フィルム(1)の製造方法であり、製造方法(B)は、積層フィルム(2)の製造方法である。積層フィルム(1)の製造方法は、以下の構成(A)を備えることが好ましい。積層フィルム(2)の製造方法は、以下の構成(B)を備えることが好ましい。 The method for producing a laminated film according to the present invention preferably has the following configuration (A) or (B). Manufacturing method (A), (B) is a manufacturing method of laminated | multilayer film (0). Manufacturing method (A) is a manufacturing method of laminated film (1), and manufacturing method (B) is a manufacturing method of laminated film (2). The method for producing the laminated film (1) preferably includes the following configuration (A). It is preferable that the manufacturing method of a laminated film (2) is provided with the following structures (B).
 (A)積層フィルム(1)の製造方法は、基材フィルムの表面上に、絶縁樹脂層の一端側の端面に対して上記基材フィルムの端面が外側にはみだすように、絶縁樹脂層を配置する第1の工程を備える。積層フィルム(1)の製造方法は、上記絶縁樹脂層の上記基材フィルム側とは反対の表面上に、保護フィルムを配置する第2の工程を備えることが好ましい。積層フィルム(1)の製造方法では、上記絶縁樹脂層の上記一端に対応する積層フィルムの一端側において、上記絶縁樹脂層の端面に対して上記基材フィルムの端面が外側にはみだしている積層フィルムを得る。積層フィルム(1)の製造方法では、積層フィルムの上記一端とは反対の他端側において、上記基材フィルムと上記絶縁樹脂層との端面が揃っている積層フィルム(1)を得る。 (A) The manufacturing method of a laminated film (1) arrange | positions an insulating resin layer on the surface of a base film so that the end surface of the said base film may protrude outside with respect to the end surface of the one end side of an insulating resin layer. The first step is provided. The production method of the laminated film (1) preferably includes a second step of disposing a protective film on the surface of the insulating resin layer opposite to the base film side. In the manufacturing method of the laminated film (1), the laminated film in which the end face of the base film protrudes outside the end face of the insulating resin layer on one end side of the laminated film corresponding to the one end of the insulating resin layer. Get. In the manufacturing method of a laminated film (1), the laminated film (1) with which the end surface of the said base film and the said insulating resin layer has gathered in the other end side opposite to the said one end of a laminated film is obtained.
 (B)積層フィルム(2)の製造方法は、基材フィルムの表面上に、絶縁樹脂層の一端側の端面に対して上記基材フィルムの端面が外側にはみだすように、絶縁樹脂層を配置する第1の工程を備える。この第1の工程において、基材フィルムの表面上に、絶縁樹脂層の一端側と上記一端とは反対の他端側との双方の端面に対して上記基材フィルムの端面が外側にはみだすように、絶縁樹脂層を配置することが好ましい。積層フィルム(2)の製造方法は、上記絶縁樹脂層の上記基材フィルム側とは反対の表面上に、保護フィルムを配置する第2の工程を備えていることが好ましい。積層フィルム(2)の製造方法では、積層フィルムの一端側と上記一端とは反対の他端側との双方において、上記絶縁樹脂層の端面に対して上記基材フィルムの端面が外側にはみだしている積層フィルム(2)を得る。積層フィルム(2)の製造方法では、上記他端側における上記基材フィルムのはみだしている距離が、上記一端側における上記基材フィルムのはみだしている距離よりも小さい積層フィルム(2)を得る。 (B) The manufacturing method of a laminated film (2) arrange | positions an insulating resin layer on the surface of a base film so that the end surface of the said base film may protrude outside with respect to the end surface of the one end side of an insulating resin layer The first step is provided. In this first step, the end face of the base film protrudes outwardly on the surface of the base film with respect to both end faces of one end side of the insulating resin layer and the other end side opposite to the one end. It is preferable to dispose an insulating resin layer. It is preferable that the manufacturing method of a laminated film (2) is equipped with the 2nd process which arrange | positions a protective film on the surface on the opposite side to the said base film side of the said insulating resin layer. In the production method of the laminated film (2), the end face of the base film protrudes outward with respect to the end face of the insulating resin layer on both the one end side of the laminated film and the other end side opposite to the one end. A laminated film (2) is obtained. In the production method of the laminated film (2), a laminated film (2) is obtained in which the distance that the base film protrudes on the other end side is smaller than the distance that the base film protrudes on the one end side.
 本発明に係る積層フィルムの製造方法(A)は、上記第2の工程の後に、上記絶縁樹脂層の上記一端とは反対の他端側において、上記基材フィルムと上記絶縁樹脂層と上記保護フィルムとの端面を揃える第3の工程をさらに備えることが好ましい。本発明に係る積層フィルムの製造方法(A)では、上記第2の工程において、上記絶縁樹脂層の上記一端とは反対の他端側において、上記基材フィルムと上記絶縁樹脂層と上記保護フィルムとの端面を揃えてもよい。 In the method (A) for producing a laminated film according to the present invention, the base film, the insulating resin layer, and the protection are provided on the other end side opposite to the one end of the insulating resin layer after the second step. It is preferable to further include a third step of aligning the end surface with the film. In the manufacturing method (A) of the laminated film according to the present invention, in the second step, the base film, the insulating resin layer, and the protective film on the other end side opposite to the one end of the insulating resin layer. You may align the end face.
 本発明に係る積層フィルムの製造方法(B)は、上記第2の工程の後に、上記絶縁樹脂層の上記一端とは反対の他端側において、上記他端側における上記基材フィルムのはみだしている距離を、上記一端側における上記基材フィルムのはみだしている距離よりも小さくする第3の工程をさらに備えることが好ましい。 In the production method (B) of the laminated film according to the present invention, after the second step, on the other end side opposite to the one end of the insulating resin layer, the base film protrudes on the other end side. It is preferable to further include a third step of making the distance that is smaller than the distance that the base film protrudes on the one end side.
 積層フィルム(1)の他端側において端面をより一層平坦にする観点、積層フィルム(2)の上記他端側における上記基材フィルムのはみだしている距離を、上記一端側における上記基材フィルムのはみだしている距離よりもより一層小さくする観点からは、以下のスリットを行うことが好ましい。上記第3の工程において、上記絶縁樹脂層をスリットすることが好ましい。上記第3の工程において、上記基材フィルムと上記絶縁樹脂層と上記保護フィルムとをスリットすることが好ましい。 From the viewpoint of further flattening the end surface on the other end side of the laminated film (1), the distance of the base film on the other end side of the laminated film (2) is defined as the distance of the base film on the one end side. From the viewpoint of making it even smaller than the protruding distance, it is preferable to perform the following slits. In the third step, the insulating resin layer is preferably slit. In the third step, it is preferable to slit the base film, the insulating resin layer, and the protective film.
 本発明の積層フィルムでは、絶縁樹脂層の表面には、一般に金属層等の被着体(例えば、基板と金属である配線との積層体等)が積層される。上記積層フィルムが保護フィルムを備える場合において、上記積層フィルムでは、絶縁樹脂層の使用時に、保護フィルムは剥離される。保護フィルム剥離後の上記絶縁樹脂層の表面には、一般に金属層等の被着体(例えば、基板と金属である配線との積層体等)が積層される。 In the laminated film of the present invention, an adherend such as a metal layer (for example, a laminate of a substrate and metal wiring) is generally laminated on the surface of the insulating resin layer. In the case where the laminated film includes a protective film, the protective film is peeled off when the insulating resin layer is used in the laminated film. Generally, an adherend such as a metal layer (for example, a laminate of a substrate and metal wiring) is laminated on the surface of the insulating resin layer after the protective film is peeled off.
 以下、図面を参照しつつ、本発明を具体的に説明する。 Hereinafter, the present invention will be specifically described with reference to the drawings.
 図1は、本発明の第1の実施形態に係る積層フィルムを示す断面図である。図1は、上記積層フィルム(1)を示す断面図である。 FIG. 1 is a cross-sectional view showing a laminated film according to the first embodiment of the present invention. FIG. 1 is a cross-sectional view showing the laminated film (1).
 積層フィルム1は、一端1aと、一端1aとは反対の他端1bとを有する。積層フィルム1の一端1aと他端1bとは対向し合う両側の端部である。 The laminated film 1 has one end 1a and the other end 1b opposite to the one end 1a. One end 1a and the other end 1b of the laminated film 1 are end portions on both sides facing each other.
 積層フィルム1は、基材フィルム2と、絶縁樹脂層3とを備える。絶縁樹脂層3は、基材フィルム2の第1の表面2a上に積層されている。 The laminated film 1 includes a base film 2 and an insulating resin layer 3. The insulating resin layer 3 is laminated on the first surface 2 a of the base film 2.
 積層フィルム1の一端1aと他端1bとを結ぶ方向において、基材フィルム2の寸法は、絶縁樹脂層3の寸法よりも大きい。積層フィルム1の一端1aと他端1bとを結ぶ方向において、絶縁樹脂層3の寸法は、基材フィルム2の寸法よりも小さい。 The dimension of the base film 2 is larger than the dimension of the insulating resin layer 3 in the direction connecting the one end 1 a and the other end 1 b of the laminated film 1. In the direction connecting the one end 1 a and the other end 1 b of the laminated film 1, the size of the insulating resin layer 3 is smaller than the size of the base film 2.
 積層フィルム1の一端1a側において、絶縁樹脂層3の端面に対して基材フィルム2の端面が外側にはみだしている。積層フィルム1の一端1aにおいて、基材フィルム2と絶縁樹脂層3との端面は揃っていない。積層フィルム1の一端1a側において、基材フィルム2の第1の表面2a上に絶縁樹脂層3が積層されていない部分が存在する。 On the one end 1 a side of the laminated film 1, the end surface of the base film 2 protrudes outward from the end surface of the insulating resin layer 3. At one end 1a of the laminated film 1, the end surfaces of the base film 2 and the insulating resin layer 3 are not aligned. On the one end 1 a side of the laminated film 1, there is a portion where the insulating resin layer 3 is not laminated on the first surface 2 a of the base film 2.
 積層フィルム1の一端1a側において、基材フィルム2のはみだしている距離がYmmである。 On the one end 1a side of the laminated film 1, the protruding distance of the base film 2 is Ymm.
 積層フィルム1の他端1b側において、基材フィルム2と、絶縁樹脂層3との端面は揃っている。 On the other end 1b side of the laminated film 1, the end surfaces of the base film 2 and the insulating resin layer 3 are aligned.
 図2は、本発明の第2の実施形態に係る積層フィルムを示す断面図である。図2は、上記積層フィルム(2)を示す断面図である。 FIG. 2 is a cross-sectional view showing a laminated film according to the second embodiment of the present invention. FIG. 2 is a cross-sectional view showing the laminated film (2).
 積層フィルム1Aは、一端1Aaと、一端1Aaとは反対の他端1Abとを有する。積層フィルム1Aの一端1Aaと他端1Abとは対向し合う両側の端部である。 The laminated film 1A has one end 1Aa and the other end 1Ab opposite to the one end 1Aa. One end 1Aa and the other end 1Ab of the laminated film 1A are opposite ends on opposite sides.
 積層フィルム1Aは、基材フィルム2Aと、絶縁樹脂層3Aとを備える。絶縁樹脂層3は、基材フィルム2Aの第1の表面2Aa上に積層されている。 The laminated film 1A includes a base film 2A and an insulating resin layer 3A. The insulating resin layer 3 is laminated on the first surface 2Aa of the base film 2A.
 積層フィルム1Aの一端1Aaと他端1Abとを結ぶ方向において、基材フィルム2Aの寸法は、絶縁樹脂層3Aの寸法よりも大きい。積層フィルム1Aの一端1Aaと他端1Abとを結ぶ方向において、絶縁樹脂層3Aの寸法は、基材フィルム2Aの寸法よりも小さい。 In the direction connecting the one end 1Aa and the other end 1Ab of the laminated film 1A, the dimension of the base film 2A is larger than the dimension of the insulating resin layer 3A. In the direction connecting the one end 1Aa and the other end 1Ab of the laminated film 1A, the size of the insulating resin layer 3A is smaller than the size of the base film 2A.
 積層フィルム1Aの一端1Aa側において、絶縁樹脂層3Aの端面に対して基材フィルム2Aの端面が外側にはみだしている。積層フィルム1Aの一端1Aaにおいて、基材フィルム2Aと、絶縁樹脂層3Aとの端面は揃っていない。積層フィルム1Aの一端1Aa側において、基材フィルム2Aの第1の表面2Aa上に絶縁樹脂層3Aが積層されていない部分が存在する。 On the one end 1Aa side of the laminated film 1A, the end surface of the base film 2A protrudes outward from the end surface of the insulating resin layer 3A. At one end 1Aa of the laminated film 1A, the end surfaces of the base film 2A and the insulating resin layer 3A are not aligned. On one end 1Aa side of the laminated film 1A, there is a portion where the insulating resin layer 3A is not laminated on the first surface 2Aa of the base film 2A.
 積層フィルム1Aの他端1Ab側において、絶縁樹脂層3Aの端面に対して基材フィルム2Aの端面が外側にはみだしている。積層フィルム1Aの他端1Abにおいて、基材フィルム2Aと、絶縁樹脂層3Aとの端面は揃っていない。積層フィルム1Aの他端1Ab側において、基材フィルム2Aの第1の表面2Aa上に絶縁樹脂層3Aが積層されていない部分が存在する。 On the other end 1Ab side of the laminated film 1A, the end surface of the base film 2A protrudes outward from the end surface of the insulating resin layer 3A. In the other end 1Ab of the laminated film 1A, the end surfaces of the base film 2A and the insulating resin layer 3A are not aligned. On the other end 1Ab side of the laminated film 1A, there is a portion where the insulating resin layer 3A is not laminated on the first surface 2Aa of the base film 2A.
 積層フィルム1Aの他端1Ab側における基材フィルム2Aのはみだしている距離は、一端1Aa側における基材フィルム2Aのはみだしている距離よりも小さい。 The distance that the base film 2A protrudes on the other end 1Ab side of the laminated film 1A is smaller than the distance that the base film 2A protrudes on the one end 1Aa side.
 積層フィルム1Aの一端1Aa側において、基材フィルム2Aのはみだしている距離がYmmである。 On the one end 1Aa side of the laminated film 1A, the protruding distance of the base film 2A is Ymm.
 上記積層フィルムは、MD(Machine Direction)方向と、TD(Transverse Direction)方向とを有することが好ましい。MD方向は、積層フィルムの製造時の積層フィルムの流れ方向であり、例えば、長さ方向である。TD方向は、積層フィルムの製造時の積層フィルムの流れ方向と直交する方向であり、かつ積層フィルムの厚み方向と直交する方向である。上記積層フィルムが、MD方向と、TD方向とを有する場合、上記TD方向が、幅方向である。上記積層フィルムの上記一端と上記他端とは、積層フィルムの幅方向の対向し合う両側の端部であることが好ましい。 The laminated film preferably has an MD (Machine Direction) direction and a TD (Transverse Direction) direction. The MD direction is the flow direction of the laminated film during production of the laminated film, for example, the length direction. The TD direction is a direction perpendicular to the flow direction of the laminated film during production of the laminated film, and is a direction perpendicular to the thickness direction of the laminated film. When the laminated film has an MD direction and a TD direction, the TD direction is the width direction. It is preferable that the said one end and the said other end of the said laminated | multilayer film are the edge parts of the both sides which the width direction of a laminated | multilayer film opposes.
 本発明に係る積層フィルムの上記一端と上記他端とを結ぶ方向において、上記基材フィルムの寸法をWmm、上記絶縁樹脂層の寸法をWmmとする。本発明に係る積層フィルムでは、通常、WがWより大きい。本発明に係る積層フィルムは、通常、W>Wを満足する。 In the direction connecting the one end and the other end of the laminated film according to the present invention, the dimension of the base film is W 1 mm, and the dimension of the insulating resin layer is W 2 mm. In the laminated film according to the present invention, W 1 is usually larger than W 2 . The laminated film according to the present invention usually satisfies W 1 > W 2 .
 W/W(絶縁樹脂層の寸法の基材フィルムの寸法に対する比)は、好ましくは0.9以上であり、より好ましくは0.92以上であり、更に好ましくは0.94以上であり、特に好ましくは0.96以上である。W/W(絶縁樹脂層の寸法の基材フィルムの寸法に対する比)は、好ましくは0.999以下であり、より好ましくは0.998以下であり、更に好ましくは0.997以下であり、特に好ましくは0.996以下である。W/Wが上記下限以上であると、オート剥離装置を用いて硬化後に基材フィルムを絶縁樹脂層から良好に剥離することができ、また、積層フィルムの製造時において積層フィルムの一端又は他端をスリットする際に絶縁樹脂層のひび又は割れを抑えることができる。W/Wが上記上限以下であると、積層フィルムの搬送時における基材フィルムの絶縁樹脂層からの自然剥離を抑えることができ、また、基材フィルムを効率よく用いることができるため製造コストを抑えることができる。 W 2 / W 1 (ratio of insulating resin layer dimension to base film dimension) is preferably 0.9 or more, more preferably 0.92 or more, and further preferably 0.94 or more. Particularly preferably, it is 0.96 or more. W 2 / W 1 (ratio of the size of the insulating resin layer to the size of the base film) is preferably 0.999 or less, more preferably 0.998 or less, and even more preferably 0.997 or less. Particularly preferably, it is 0.996 or less. When W 2 / W 1 is equal to or more than the above lower limit, the base film can be satisfactorily peeled from the insulating resin layer after curing using an auto peeling device, and at the time of producing the laminated film, one end of the laminated film or When the other end is slit, cracking or cracking of the insulating resin layer can be suppressed. When W 2 / W 1 is less than or equal to the above upper limit, natural peeling from the insulating resin layer of the base film during conveyance of the laminated film can be suppressed, and the base film can be used efficiently. Cost can be reduced.
 以下、本発明に係る積層フィルムを構成する各層の詳細を説明する。 Hereinafter, details of each layer constituting the laminated film according to the present invention will be described.
 (基材フィルム)
 上記基材フィルムとしては、金属箔、ポリエチレンテレフタレートフィルム及びポリブチレンテレフタレートフィルムなどのポリエステル樹脂フィルム、ポリエチレンフィルム及びポリプロピレンフィルムなどのオレフィン樹脂フィルム、及びポリイミドフィルム等が挙げられる。上記基材フィルムの表面は、必要に応じて、離型処理されていてもよい。上記基材フィルムは、金属箔であってもよく、樹脂フィルムであってもよい。上記基材フィルムは、樹脂フィルムであることが好ましい。上記基材フィルムとして、金属箔を用いる場合、上記金属箔は銅箔であることが好ましい。
(Base film)
Examples of the base film include metal foil, polyester resin films such as polyethylene terephthalate film and polybutylene terephthalate film, olefin resin films such as polyethylene film and polypropylene film, and polyimide film. The surface of the base film may be subjected to a release treatment as necessary. The base film may be a metal foil or a resin film. The base film is preferably a resin film. When using a metal foil as the base film, the metal foil is preferably a copper foil.
 剥離不良をより一層抑える観点からは、上記基材フィルムは、離型処理されていることが好ましい。シリコーンの移行に伴う自然剥離をより一層抑える観点から、上記離型処理は、シリコーン非移行性の離型処理であることが好ましい。なお、シリコーン非移行性の離型処理とは、シリコーンを含有しない離型処理、又は、上記絶縁樹脂層側にシリコーンが移行しないように処理された離型処理を意味する。 From the viewpoint of further suppressing the peeling failure, the base film is preferably subjected to a release treatment. From the viewpoint of further suppressing the natural peeling associated with the transfer of silicone, the release treatment is preferably a non-silicone transfer release treatment. The silicone non-migrating mold release process means a mold release process that does not contain silicone or a mold release process that is processed so that silicone does not migrate to the insulating resin layer side.
 積層フィルムの操作性を良好にし、また、絶縁樹脂層のラミネート性を良好にする観点からは、上記基材フィルムの厚みは、好ましくは25μm以上、より好ましくは30μm以上、好ましくは75μm以下、より好ましくは50μm以下である。自然剥離をより一層抑える観点からは、上記基材フィルムの厚みは、好ましくは75μm以下、より好ましくは50μm以下である。剥離不良をより一層抑える観点からは、上記基材フィルムの厚みは、好ましくは25μm以上である。 From the viewpoint of improving the operability of the laminated film and improving the laminating property of the insulating resin layer, the thickness of the base film is preferably 25 μm or more, more preferably 30 μm or more, preferably 75 μm or less. Preferably it is 50 micrometers or less. From the viewpoint of further suppressing natural peeling, the thickness of the substrate film is preferably 75 μm or less, more preferably 50 μm or less. From the viewpoint of further suppressing the peeling failure, the thickness of the base film is preferably 25 μm or more.
 上記基材フィルムの上記絶縁樹脂層側の表面の算術平均粗さRaは、好ましくは5nm以上、より好ましくは10nm以上、好ましくは400nm以下、より好ましくは400nm未満、更に好ましくは300nm以下である。上記算術平均粗さが上記下限以上及び上記上限以下であると、硬化時における基材フィルムの絶縁樹脂層からの自然剥離をより一層抑え、かつ硬化後に基材フィルムを絶縁樹脂層から剥離する際に基材フィルムの剥離不良をより一層抑えることができる。 The arithmetic average roughness Ra of the surface of the base film on the insulating resin layer side is preferably 5 nm or more, more preferably 10 nm or more, preferably 400 nm or less, more preferably less than 400 nm, still more preferably 300 nm or less. When the arithmetic average roughness is not less than the above lower limit and not more than the above upper limit, the natural peeling from the insulating resin layer of the base film during curing is further suppressed, and the base film is peeled from the insulating resin layer after curing. Moreover, the peeling defect of a base film can be further suppressed.
 上記算術平均粗さRaは、非接触型表面粗さ計を用いて、VSIコンタクトモードで、かつ、50倍レンズにより測定範囲を95.6μm×71.7μmとして測定される。 The arithmetic average roughness Ra is measured using a non-contact type surface roughness meter in a VSI contact mode and a measurement range of 95.6 μm × 71.7 μm with a 50 × lens.
 (絶縁樹脂層)
 上記絶縁樹脂層は、基材フィルムの表面上に積層される。上記絶縁樹脂層は、後述するエポキシ化合物と、後述する無機充填材と、後述する硬化剤とを含むことが好ましい。
(Insulating resin layer)
The insulating resin layer is laminated on the surface of the base film. It is preferable that the said insulating resin layer contains the epoxy compound mentioned later, the inorganic filler mentioned later, and the hardening | curing agent mentioned later.
 [エポキシ化合物]
 上記絶縁樹脂層は、エポキシ化合物を含むことが好ましい。上記エポキシ化合物として、従来公知のエポキシ化合物を使用可能である。上記エポキシ化合物は、少なくとも1個のエポキシ基を有する有機化合物をいう。上記エポキシ化合物は、1種のみが用いられてもよく、2種以上が併用されてもよい。
[Epoxy compound]
The insulating resin layer preferably contains an epoxy compound. A conventionally well-known epoxy compound can be used as said epoxy compound. The epoxy compound refers to an organic compound having at least one epoxy group. As for the said epoxy compound, only 1 type may be used and 2 or more types may be used together.
 上記エポキシ化合物としては、ビスフェノールA型エポキシ化合物、ビスフェノールF型エポキシ化合物、ビスフェノールS型エポキシ化合物、フェノールノボラック型エポキシ化合物、ビフェニル型エポキシ化合物、ビフェニルノボラック型エポキシ化合物、ビフェノール型エポキシ化合物、ナフタレン型エポキシ化合物、フルオレン型エポキシ化合物、フェノールアラルキル型エポキシ化合物、ナフトールアラルキル型エポキシ化合物、ジシクロペンタジエン型エポキシ化合物、アントラセン型エポキシ化合物、アダマンタン骨格を有するエポキシ化合物、トリシクロデカン骨格を有するエポキシ化合物、ナフチレンエーテル型エポキシ化合物、及びトリアジン核を骨格に有するエポキシ化合物等が挙げられる。 Examples of the epoxy compounds include bisphenol A type epoxy compounds, bisphenol F type epoxy compounds, bisphenol S type epoxy compounds, phenol novolac type epoxy compounds, biphenyl type epoxy compounds, biphenyl novolac type epoxy compounds, biphenol type epoxy compounds, and naphthalene type epoxy compounds. Fluorene type epoxy compound, phenol aralkyl type epoxy compound, naphthol aralkyl type epoxy compound, dicyclopentadiene type epoxy compound, anthracene type epoxy compound, epoxy compound having adamantane skeleton, epoxy compound having tricyclodecane skeleton, naphthylene ether type Examples thereof include an epoxy compound and an epoxy compound having a triazine nucleus in the skeleton.
 硬化物と金属層との接着強度をより一層高くする観点からは、上記エポキシ化合物は、芳香族骨格を有することが好ましく、ビフェニル骨格を有することがより好ましく、ビフェニル型エポキシ化合物であることが更に好ましい。 From the viewpoint of further increasing the adhesive strength between the cured product and the metal layer, the epoxy compound preferably has an aromatic skeleton, more preferably a biphenyl skeleton, and further preferably a biphenyl type epoxy compound. preferable.
 硬化物と金属層との接着強度をより一層高くする観点からは、上記絶縁樹脂層100重量%中、上記エポキシ化合物の含有量は、好ましくは10重量%以上、より好ましくは20重量%以上、好ましくは70重量%以下、より好ましくは65重量%以下、更に好ましくは60重量%以下、特に好ましくは55重量%以下である。 From the viewpoint of further increasing the adhesive strength between the cured product and the metal layer, the content of the epoxy compound in the insulating resin layer 100% by weight is preferably 10% by weight or more, more preferably 20% by weight or more. Preferably it is 70 weight% or less, More preferably, it is 65 weight% or less, More preferably, it is 60 weight% or less, Most preferably, it is 55 weight% or less.
 上記エポキシ化合物の分子量は1000以下であることがより好ましい。この場合には、絶縁樹脂層を基材フィルム上にラミネートした場合に、無機充填材を均一に存在させることができる。 The molecular weight of the epoxy compound is more preferably 1000 or less. In this case, when the insulating resin layer is laminated on the base film, the inorganic filler can be uniformly present.
 エポキシ化合物の分子量、及び後述する硬化剤の分子量は、エポキシ化合物又は硬化剤が重合体ではない場合、及びエポキシ化合物又は硬化剤の構造式が特定できる場合は、当該構造式から算出できる分子量を意味する。また、エポキシ化合物又は硬化剤が重合体である場合は、重量平均分子量を意味する。 The molecular weight of the epoxy compound and the molecular weight of the curing agent described later mean the molecular weight that can be calculated from the structural formula when the epoxy compound or the curing agent is not a polymer and when the structural formula of the epoxy compound or the curing agent can be specified. To do. Moreover, when an epoxy compound or a hardening | curing agent is a polymer, a weight average molecular weight is meant.
 [無機充填材]
 上記絶縁樹脂層は、無機充填材を含むことが好ましい。無機充填材の使用により、硬化物の熱による寸法変化が小さくなる。さらに、硬化物の表面の表面粗さがより一層小さくなり、硬化物と金属層との接着強度が高くなる。
[Inorganic filler]
The insulating resin layer preferably contains an inorganic filler. The use of the inorganic filler reduces the dimensional change due to heat of the cured product. Furthermore, the surface roughness of the surface of the cured product is further reduced, and the adhesive strength between the cured product and the metal layer is increased.
 従来の積層フィルムでは、絶縁樹脂層が無機充填材を含むと、硬化時に基材フィルムが絶縁樹脂層から自然剥離することがあり、更に硬化後に基材フィルムを絶縁樹脂層から剥離する際に、基材フィルムと絶縁樹脂層とを良好に剥離できず、基材フィルムが裂けやすい。しかしながら、本発明に係る積層フィルムでは、絶縁樹脂層が無機充填材を含む場合でも、硬化時における基材フィルムの絶縁樹脂層からの自然剥離をより一層抑え、かつ硬化後に基材フィルムを絶縁樹脂層から剥離する際に基材フィルムの剥離不良をより一層抑えることができる。 In the conventional laminated film, when the insulating resin layer contains an inorganic filler, the base film may be naturally peeled from the insulating resin layer at the time of curing, and when the base film is peeled from the insulating resin layer after curing, The base film and the insulating resin layer cannot be peeled well, and the base film is easily torn. However, in the laminated film according to the present invention, even when the insulating resin layer contains an inorganic filler, natural peeling from the insulating resin layer of the base film during curing is further suppressed, and the base film is insulated after curing. When peeling from a layer, the peeling defect of a base film can be suppressed further.
 上記無機充填材としては、シリカ、タルク、クレイ、マイカ、ハイドロタルサイト、アルミナ、酸化マグネシウム、水酸化アルミニウム、窒化アルミニウム、及び窒化ホウ素等が挙げられる。 Examples of the inorganic filler include silica, talc, clay, mica, hydrotalcite, alumina, magnesium oxide, aluminum hydroxide, aluminum nitride, and boron nitride.
 硬化物の表面の表面粗さを小さくし、硬化物と金属層との接着強度をより一層高くし、かつ硬化物の表面により一層微細な配線を形成し、かつ硬化物により良好な絶縁信頼性を付与する観点からは、上記無機充填材は、シリカ又はアルミナであることが好ましく、シリカであることがより好ましく、溶融シリカであることが更に好ましい。シリカの使用により、硬化物の熱膨張率がより一層低くなり、かつ硬化物の表面の表面粗さが効果的に小さくなり、硬化物と金属層との接着強度が効果的に高くなる。シリカの形状は球状であることが好ましい。 The surface roughness of the cured product is reduced, the adhesive strength between the cured product and the metal layer is further increased, finer wiring is formed on the surface of the cured product, and better insulation reliability is achieved by the cured product. From the viewpoint of imparting the above, the inorganic filler is preferably silica or alumina, more preferably silica, and still more preferably fused silica. By using silica, the coefficient of thermal expansion of the cured product is further reduced, the surface roughness of the surface of the cured product is effectively reduced, and the adhesive strength between the cured product and the metal layer is effectively increased. The shape of silica is preferably spherical.
 硬化環境によらず、樹脂の硬化を進め、硬化物のガラス転移温度を効果的に高くし、硬化物の熱線膨張係数を効果的に小さくする観点からは、上記無機充填材は球状シリカであることが好ましい。 Regardless of the curing environment, the inorganic filler is spherical silica from the viewpoint of promoting the curing of the resin, effectively increasing the glass transition temperature of the cured product, and effectively reducing the thermal linear expansion coefficient of the cured product. It is preferable.
 上記無機充填材の平均粒径は、好ましくは10nm以上、より好ましくは50nm以上、更に好ましくは100nm以上、好ましくは5μm以下、より好ましくは3μm以下、更に好ましくは1μm以下、特に好ましくは0.5μm以下である。上記無機充填材の平均粒径が上記下限以上及び上記上限以下であると、硬化物と金属層との接着強度がより一層高くなる。 The average particle size of the inorganic filler is preferably 10 nm or more, more preferably 50 nm or more, still more preferably 100 nm or more, preferably 5 μm or less, more preferably 3 μm or less, still more preferably 1 μm or less, and particularly preferably 0.5 μm. It is as follows. The adhesive strength of hardened | cured material and a metal layer becomes it still higher that the average particle diameter of the said inorganic filler is more than the said minimum and below the said upper limit.
 上記無機充填材の平均粒径として、50%となるメディアン径(d50)の値が採用される。上記平均粒径は、レーザー回折散乱方式の粒度分布測定装置を用いて測定可能である。上記絶縁樹脂層が無機充填材を2種以上含む場合には、上記無機充填材の平均粒径は、上記絶縁樹脂層に含まれる無機充填材全体で測定される。上記絶縁樹脂層を得るために用いる樹脂組成物又は無機充填材を用いて、無機充填材の平均粒径を測定してもよい。 The median diameter (d50) value of 50% is adopted as the average particle diameter of the inorganic filler. The average particle size can be measured using a laser diffraction / scattering particle size distribution measuring apparatus. When the said insulating resin layer contains 2 or more types of inorganic fillers, the average particle diameter of the said inorganic filler is measured with the whole inorganic filler contained in the said insulating resin layer. You may measure the average particle diameter of an inorganic filler using the resin composition or inorganic filler used in order to obtain the said insulating resin layer.
 上記無機充填材は、球状であることが好ましく、球状シリカであることがより好ましい。この場合には、硬化物の表面の表面粗さが効果的に小さくなり、更に硬化物と金属層との接着強度が効果的に高くなる。上記無機充填材が球状である場合には、上記無機充填材のアスペクト比は好ましくは2以下、より好ましくは1.5以下である。 The inorganic filler is preferably spherical and more preferably spherical silica. In this case, the surface roughness of the surface of the cured product is effectively reduced, and the adhesive strength between the cured product and the metal layer is effectively increased. When the inorganic filler is spherical, the aspect ratio of the inorganic filler is preferably 2 or less, more preferably 1.5 or less.
 上記無機充填材は、表面処理されていることが好ましく、カップリング剤による表面処理物であることがより好ましく、シランカップリング剤による表面処理物であることが更に好ましい。これにより、粗化硬化物の表面の表面粗さがより一層小さくなり、硬化物と金属層との接着強度がより一層高くなり、かつ硬化物の表面により一層微細な配線が形成され、かつより一層良好な配線間絶縁信頼性及び層間絶縁信頼性を硬化物に付与することができる。 The inorganic filler is preferably surface-treated, more preferably a surface-treated product with a coupling agent, and still more preferably a surface-treated product with a silane coupling agent. Thereby, the surface roughness of the surface of the roughened cured product is further reduced, the adhesive strength between the cured product and the metal layer is further increased, and finer wiring is formed on the surface of the cured product, and more Better inter-wiring insulation reliability and interlayer insulation reliability can be imparted to the cured product.
 上記カップリング剤としては、シランカップリング剤、チタンカップリング剤及びアルミニウムカップリング剤等が挙げられる。上記シランカップリング剤としては、メタクリルシラン、アクリルシラン、アミノシラン、イミダゾールシラン、ビニルシラン、及びエポキシシラン等が挙げられる。 Examples of the coupling agent include silane coupling agents, titanium coupling agents, and aluminum coupling agents. Examples of the silane coupling agent include methacryl silane, acrylic silane, amino silane, imidazole silane, vinyl silane, and epoxy silane.
 上記絶縁樹脂層100重量%中、上記無機充填材の含有量は、好ましくは30重量%以上、より好ましくは40重量%以上、更に好ましくは50重量%以上、特に好ましくは60重量%以上、最も好ましくは70重量%以上である。上記絶縁樹脂層100重量%中、上記無機充填材の含有量は、好ましくは90重量%以下、より好ましくは85重量%以下、更に好ましくは83重量%以下、特に好ましくは80重量%以下である。上記無機充填材の含有量が上記下限以上及び上記上限以下であると、硬化物の表面の表面粗さがより一層小さくなり、硬化物と金属層との接着強度がより一層高くなり、かつ硬化物の表面により一層微細な配線が形成される。さらに、この無機充填材の含有量であれば、硬化物の熱膨張率を低くすることと同時に、スミア除去性を良好にすることも可能である。上記無機充填材の含有量が上記下限以上であると、誘電正接が効果的に低くなる。上記無機充填材の含有量が上記上限以下であると、保護フィルムの剥離時の絶縁樹脂層の割れをより一層効果的に抑えることができる。 In 100% by weight of the insulating resin layer, the content of the inorganic filler is preferably 30% by weight or more, more preferably 40% by weight or more, still more preferably 50% by weight or more, and particularly preferably 60% by weight or more. Preferably it is 70 weight% or more. In 100% by weight of the insulating resin layer, the content of the inorganic filler is preferably 90% by weight or less, more preferably 85% by weight or less, still more preferably 83% by weight or less, and particularly preferably 80% by weight or less. . When the content of the inorganic filler is not less than the above lower limit and not more than the above upper limit, the surface roughness of the surface of the cured product is further reduced, the adhesive strength between the cured product and the metal layer is further increased, and curing is performed. Finer wiring is formed on the surface of the object. Furthermore, if it is content of this inorganic filler, it is also possible to make smear removal property favorable simultaneously with making the thermal expansion coefficient of hardened | cured material low. When the content of the inorganic filler is not less than the above lower limit, the dielectric loss tangent is effectively lowered. When the content of the inorganic filler is not more than the above upper limit, it is possible to more effectively suppress the cracking of the insulating resin layer when the protective film is peeled off.
 [硬化剤]
 上記絶縁樹脂層は、硬化剤を含むことが好ましい。上記硬化剤は特に限定されない。上記硬化剤として、従来公知の硬化剤を使用可能である。上記硬化剤は1種のみが用いられてもよく、2種以上が併用されてもよい。
[Curing agent]
The insulating resin layer preferably contains a curing agent. The said hardening | curing agent is not specifically limited. As the curing agent, a conventionally known curing agent can be used. As for the said hardening | curing agent, only 1 type may be used and 2 or more types may be used together.
 上記硬化剤としては、シアネート化合物(シアネート硬化剤)、フェノール化合物(フェノール硬化剤)、アミン化合物(アミン硬化剤)、チオール化合物(チオール硬化剤)、イミダゾール化合物、ホスフィン化合物、酸無水物、ジシアンジアミド、カルボジイミド化合物(カルボジイミド硬化剤)、マレイミド化合物(マレイミド硬化剤)、及び活性エステル化合物等が挙げられる。上記硬化剤は、上記エポキシ化合物のエポキシ基と反応可能な官能基を有することが好ましい。 As the curing agent, cyanate compound (cyanate curing agent), phenol compound (phenol curing agent), amine compound (amine curing agent), thiol compound (thiol curing agent), imidazole compound, phosphine compound, acid anhydride, dicyandiamide, Examples thereof include a carbodiimide compound (carbodiimide curing agent), a maleimide compound (maleimide curing agent), and an active ester compound. The curing agent preferably has a functional group capable of reacting with the epoxy group of the epoxy compound.
 誘電正接をより一層低くする観点から、上記硬化剤は、シアネート化合物、フェノール化合物、マレイミド化合物、活性エステル化合物、又はカルボジイミド化合物を含むことが好ましい。硬化時における基材フィルムの絶縁樹脂層からの自然剥離をより一層抑え、かつ硬化後に基材フィルムを絶縁樹脂層から剥離する際に基材フィルムの剥離不良をより一層抑える観点から、上記硬化剤は、フェノール化合物、シアネート化合物、マレイミド化合物、又は活性エステル化合物を含むことが好ましい。上記硬化剤は、フェノール化合物、シアネート化合物、又は活性エステル化合物を含んでいてもよい。 From the viewpoint of further reducing the dielectric loss tangent, the curing agent preferably contains a cyanate compound, a phenol compound, a maleimide compound, an active ester compound, or a carbodiimide compound. From the viewpoint of further suppressing the natural peeling from the insulating resin layer of the base film during curing, and further suppressing the peeling failure of the base film when peeling the base film from the insulating resin layer after curing. Preferably contains a phenolic compound, a cyanate compound, a maleimide compound, or an active ester compound. The curing agent may contain a phenol compound, a cyanate compound, or an active ester compound.
 上記シアネート化合物は、シアネートエステル化合物(シアネートエステル硬化剤)であってよい。上記シアネートエステル化合物としては、ノボラック型シアネートエステル樹脂、ビスフェノール型シアネートエステル樹脂、並びにこれらが一部三量化されたプレポリマー等が挙げられる。上記ノボラック型シアネートエステル樹脂としては、フェノールノボラック型シアネートエステル樹脂及びアルキルフェノール型シアネートエステル樹脂等が挙げられる。上記ビスフェノール型シアネートエステル樹脂としては、ビスフェノールA型シアネートエステル樹脂、ビスフェノールE型シアネートエステル樹脂及びテトラメチルビスフェノールF型シアネートエステル樹脂等が挙げられる。 The cyanate compound may be a cyanate ester compound (cyanate ester curing agent). Examples of the cyanate ester compound include novolac-type cyanate ester resins, bisphenol-type cyanate ester resins, and prepolymers in which these are partially trimerized. As said novolak-type cyanate ester resin, a phenol novolak-type cyanate ester resin, an alkylphenol-type cyanate ester resin, etc. are mentioned. Examples of the bisphenol type cyanate ester resin include bisphenol A type cyanate ester resin, bisphenol E type cyanate ester resin, and tetramethylbisphenol F type cyanate ester resin.
 上記シアネートエステル化合物の市販品としては、フェノールノボラック型シアネートエステル樹脂(ロンザジャパン社製「PT-30」及び「PT-60」)、及びビスフェノール型シアネートエステル樹脂が三量化されたプレポリマー(ロンザジャパン社製「BA-230S」、「BA-3000S」、「BTP-1000S」及び「BTP-6020S」)等が挙げられる。 Commercially available products of the above-mentioned cyanate ester compounds include phenol novolac type cyanate ester resins (Lonza Japan “PT-30” and “PT-60”), and prepolymers (Lonza Japan) in which bisphenol type cyanate ester resins are trimmed. "BA-230S", "BA-3000S", "BTP-1000S" and "BTP-6020S") manufactured by the company.
 上記フェノール化合物としては、ノボラック型フェノール、ビフェノール型フェノール、ナフタレン型フェノール、ジシクロペンタジエン型フェノール、アラルキル型フェノール及びジシクロペンタジエン型フェノール等が挙げられる。 Examples of the phenol compound include novolak type phenol, biphenol type phenol, naphthalene type phenol, dicyclopentadiene type phenol, aralkyl type phenol, and dicyclopentadiene type phenol.
 上記フェノール化合物の市販品としては、ノボラック型フェノール(DIC社製「TD-2091」)、ビフェニルノボラック型フェノール(明和化成社製「MEH-7851」)、アラルキル型フェノール化合物(明和化成社製「MEH-7800」)、並びにアミノトリアジン骨格を有するフェノール(DIC社製「LA1356」及び「LA3018-50P」)等が挙げられる。 Commercially available products of the above-mentioned phenol compounds include novolak-type phenols (“TD-2091” manufactured by DIC), biphenyl novolac-type phenols (“MEH-7851” manufactured by Meiwa Kasei Co., Ltd.), and aralkyl-type phenol compounds (“MEH manufactured by Meiwa Kasei Co., Ltd.). -7800 "), and phenols having an aminotriazine skeleton (" LA1356 "and" LA3018-50P "manufactured by DIC).
 活性エステル化合物とは、構造体中にエステル結合を少なくとも1つ含み、かつ、エステル結合の両側に芳香族環が結合している化合物をいう。活性エステル化合物は、例えばカルボン酸化合物又はチオカルボン酸化合物と、ヒドロキシ化合物又はチオール化合物との縮合反応によって得られる。活性エステル化合物の例としては、下記式(1)で表される化合物が挙げられる。 The active ester compound refers to a compound containing at least one ester bond in the structure and having an aromatic ring bonded to both sides of the ester bond. The active ester compound is obtained, for example, by a condensation reaction between a carboxylic acid compound or thiocarboxylic acid compound and a hydroxy compound or thiol compound. Examples of the active ester compound include a compound represented by the following formula (1).
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 上記式(1)中、X1及びX2はそれぞれ、芳香族環を含む基を表す。上記芳香族環を含む基の好ましい例としては、置換基を有していてもよいベンゼン環、及び置換基を有していてもよいナフタレン環等が挙げられる。上記置換基としては、炭化水素基が挙げられる。該炭化水素基の炭素数は、好ましくは12以下、より好ましくは6以下、更に好ましくは4以下である。 In the above formula (1), X1 and X2 each represent a group containing an aromatic ring. Preferable examples of the group containing an aromatic ring include a benzene ring which may have a substituent and a naphthalene ring which may have a substituent. A hydrocarbon group is mentioned as said substituent. The carbon number of the hydrocarbon group is preferably 12 or less, more preferably 6 or less, and still more preferably 4 or less.
 X1及びX2の組み合わせとしては、置換基を有していてもよいベンゼン環と、置換基を有していてもよいベンゼン環との組み合わせ、置換基を有していてもよいベンゼン環と、置換基を有していてもよいナフタレン環との組み合わせが挙げられる。さらに、X1及びX2の組み合わせとしては、置換基を有していてもよいナフタレン環と、置換基を有していてもよいナフタレン環との組み合わせが挙げられる。 As a combination of X1 and X2, a combination of a benzene ring which may have a substituent and a benzene ring which may have a substituent, a benzene ring which may have a substituent and a substitution The combination with the naphthalene ring which may have a group is mentioned. Furthermore, examples of the combination of X1 and X2 include a combination of a naphthalene ring which may have a substituent and a naphthalene ring which may have a substituent.
 上記活性エステル化合物は特に限定されない。上記活性エステル化合物の市販品としては、DIC社製「HPC-8000-65T」、「EXB9416-70BK」、「EXB8100-65T」、及び「EXB-8000L-65MT」等が挙げられる。 The active ester compound is not particularly limited. Examples of commercially available active ester compounds include “HPC-8000-65T”, “EXB9416-70BK”, “EXB8100-65T”, and “EXB-8000L-65MT” manufactured by DIC.
 上記カルボジイミド化合物は、下記式(2)で表される構造単位を有する。下記式(2)において、右端部及び左端部は、他の基との結合部位である。 The carbodiimide compound has a structural unit represented by the following formula (2). In the following formula (2), the right end and the left end are binding sites with other groups.
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 上記式(2)中、Xは、アルキレン基、アルキレン基に置換基が結合した基、シクロアルキレン基、シクロアルキレン基に置換基が結合した基、アリーレン基、又はアリーレン基に置換基が結合した基を表し、pは1~5の整数を表す。Xが複数存在する場合、複数のXは同一であってもよく、異なっていてもよい。 In the above formula (2), X is an alkylene group, a group having a substituent bonded to an alkylene group, a cycloalkylene group, a group having a substituent bonded to a cycloalkylene group, an arylene group, or a substituent bonded to an arylene group. Represents a group, and p represents an integer of 1 to 5. When two or more X exists, several X may be the same and may differ.
 好適な一つの形態において、少なくとも1つのXは、アルキレン基、アルキレン基に置換基が結合した基、シクロアルキレン基、又はシクロアルキレン基に置換基が結合した基である。 In one preferred embodiment, at least one X is an alkylene group, a group in which a substituent is bonded to an alkylene group, a cycloalkylene group, or a group in which a substituent is bonded to a cycloalkylene group.
 上記カルボジイミド化合物の市販品としては、日清紡ケミカル社製「カルボジライト V-02B」、「カルボジライト V-03」、「カルボジライト V-04K」、「カルボジライト V-07」、「カルボジライト V-09」、「カルボジライト 10M-SP」、及び「カルボジライト 10M-SP(改)」、並びに、ラインケミー社製「スタバクゾールP」、「スタバクゾールP400」、及び「ハイカジル510」等が挙げられる。 Commercially available carbodiimide compounds include “Carbodilite V-02B”, “Carbodilite V-03”, “Carbodilite V-04K”, “Carbodilite V-07”, “Carbodilite V-09”, “Carbodilite” manufactured by Nisshinbo Chemical Co., Ltd. 10M-SP ”and“ Carbodilite 10M-SP (revised) ”,“ STABAXOL P ”,“ STABAXOL P400 ”, and“ HIKAZIL 510 ”manufactured by Rhein Chemie.
 上記マレイミド化合物として、従来公知のマレイミド化合物を用いることができる。上記マレイミド化合物は、1種のみが用いられてもよく、2種以上が併用されてもよい。 A conventionally known maleimide compound can be used as the maleimide compound. As for the said maleimide compound, only 1 type may be used and 2 or more types may be used together.
 上記マレイミド化合物は、ビスマレイミド化合物であってもよい。 The maleimide compound may be a bismaleimide compound.
 上記マレイミド化合物としては、N-フェニルマレイミド及びN-アルキルビスマレイミド等が挙げられる。 Examples of the maleimide compound include N-phenylmaleimide and N-alkylbismaleimide.
 上記マレイミド化合物は、ダイマージアミン以外のジアミン化合物又はトリマートリアミン以外のトリアミン化合物に由来する骨格を有することが好ましい。 The maleimide compound preferably has a skeleton derived from a diamine compound other than dimer amine or a triamine compound other than trimer triamine.
 上記マレイミド化合物は、芳香族環を有していてもよく、有していなくてもよい。上記マレイミド化合物は、芳香族環を有することが好ましい。 The maleimide compound may or may not have an aromatic ring. The maleimide compound preferably has an aromatic ring.
 上記マレイミド化合物では、マレイミド骨格における窒素原子と、芳香族環とが結合していることが好ましい。 In the maleimide compound, a nitrogen atom in the maleimide skeleton and an aromatic ring are preferably bonded.
 硬化物の熱寸法安定性をより一層高める観点からは、上記絶縁樹脂層中の溶剤を除く成分100重量%中、上記マレイミド化合物の含有量は、好ましくは0.5重量%以上、より好ましくは1重量%以上、好ましくは15重量%以下、より好ましくは10重量%以下である。 From the viewpoint of further improving the thermal dimensional stability of the cured product, the content of the maleimide compound in 100% by weight of the component excluding the solvent in the insulating resin layer is preferably 0.5% by weight or more, more preferably It is 1% by weight or more, preferably 15% by weight or less, more preferably 10% by weight or less.
 上記絶縁樹脂層中の無機充填材及び溶剤を除く成分100重量%中、上記マレイミド化合物の含有量は、好ましくは2.5重量%以上、より好ましくは5重量%以上、更に好ましくは7.5重量%以上、好ましくは50重量%以下、より好ましくは35重量%以下である。上記マレイミド化合物の含有量が上記下限以上及び上記上限以下であると、硬化物の熱寸法安定性をより一層高めることができる。 The content of the maleimide compound in 100% by weight of the component excluding the inorganic filler and the solvent in the insulating resin layer is preferably 2.5% by weight or more, more preferably 5% by weight or more, and still more preferably 7.5%. % By weight or more, preferably 50% by weight or less, more preferably 35% by weight or less. When the content of the maleimide compound is not less than the above lower limit and not more than the above upper limit, the thermal dimensional stability of the cured product can be further enhanced.
 本発明の効果を効果的に発揮する観点からは、上記マレイミド化合物の分子量は、好ましくは500以上、より好ましくは1000以上、好ましくは30000未満、より好ましくは20000未満である。 From the viewpoint of effectively demonstrating the effects of the present invention, the molecular weight of the maleimide compound is preferably 500 or more, more preferably 1000 or more, preferably less than 30000, more preferably less than 20000.
 上記マレイミド化合物の分子量は、上記マレイミド化合物が重合体ではない場合、及び上記マレイミド化合物の構造式が特定できる場合は、当該構造式から算出できる分子量を意味する。また、上記マレイミド化合物の分子量は、上記マレイミド化合物が重合体である場合は、ゲルパーミエーションクロマトグラフィー(GPC)により測定されたポリスチレン換算での重量平均分子量を示す。 The molecular weight of the maleimide compound means a molecular weight that can be calculated from the structural formula when the maleimide compound is not a polymer and when the structural formula of the maleimide compound can be specified. Moreover, the molecular weight of the said maleimide compound shows the weight average molecular weight in polystyrene conversion measured by gel permeation chromatography (GPC), when the said maleimide compound is a polymer.
 上記マレイミド化合物の市販品としては、例えば、大和化成工業社製「BMI-4000」及び「BMI-5100」、並びにDesigner Molecules Inc.社製「BMI-3000」等が挙げられる。 Commercially available products of the maleimide compound include, for example, “BMI-4000” and “BMI-5100” manufactured by Daiwa Kasei Kogyo Co., Ltd., and Designer Molecules Inc. “BMI-3000” manufactured by the company can be mentioned.
 上記硬化剤の分子量は1000以下であることが好ましい。この場合には、絶縁樹脂層を基材フィルム上にラミネートした場合に、無機充填材を均一に存在させることができる。 The molecular weight of the curing agent is preferably 1000 or less. In this case, when the insulating resin layer is laminated on the base film, the inorganic filler can be uniformly present.
 上記絶縁樹脂層中の上記無機充填材を除く成分100重量%中、上記エポキシ化合物と上記硬化剤との合計の含有量は、好ましくは75重量%以上、より好ましくは80重量%以上、好ましくは99重量%以下、より好ましくは97重量%以下である。上記エポキシ化合物と上記硬化剤との合計の含有量が上記下限以上及び上記上限以下であると、より一層良好な硬化物が得られ、溶融粘度を調整することができるために無機充填材の分散性が良好になる。さらに、硬化過程で、意図しない領域に絶縁樹脂層が濡れ拡がることを防止できる。さらに、硬化物の熱による寸法変化をより一層抑制できる。また、上記エポキシ化合物と上記硬化剤との合計の含有量が上記下限以上であると、溶融粘度が低くなりすぎず、硬化過程で、意図しない領域に絶縁フィルムが過度に濡れ拡がりにくくなる傾向がある。また、上記エポキシ化合物と上記硬化剤との合計の含有量が上記上限以下であると、回路基板の穴又は凹凸に対する埋め込みが容易になり、さらに無機充填材が不均一に存在しにくくなる傾向がある。 In 100% by weight of the component excluding the inorganic filler in the insulating resin layer, the total content of the epoxy compound and the curing agent is preferably 75% by weight or more, more preferably 80% by weight or more, preferably It is 99 weight% or less, More preferably, it is 97 weight% or less. When the total content of the epoxy compound and the curing agent is not less than the above lower limit and not more than the above upper limit, an even better cured product can be obtained and the melt viscosity can be adjusted. Good. Further, it is possible to prevent the insulating resin layer from spreading into unintended areas during the curing process. Furthermore, the dimensional change by the heat | fever of hardened | cured material can be suppressed further. Also, if the total content of the epoxy compound and the curing agent is equal to or more than the lower limit, the melt viscosity does not become too low, and the insulating film tends to become difficult to wet excessively in unintended areas during the curing process. is there. Further, if the total content of the epoxy compound and the curing agent is not more than the above upper limit, it becomes easy to embed the holes or irregularities of the circuit board, and the inorganic filler tends not to exist unevenly. is there.
 上記絶縁樹脂層中の上記無機充填材を除く成分100重量%中、上記硬化剤の含有量は、好ましくは30重量%以上、より好ましくは40重量%以上であり、好ましくは70重量%以下、より好ましくは60重量%以下である。上記硬化剤の含有量が上記下限以上及び上記上限以下であると、より一層良好な硬化物が得られ、誘電正接が効果的に低くなる。 In 100% by weight of the component excluding the inorganic filler in the insulating resin layer, the content of the curing agent is preferably 30% by weight or more, more preferably 40% by weight or more, and preferably 70% by weight or less. More preferably, it is 60% by weight or less. When the content of the curing agent is not less than the above lower limit and not more than the above upper limit, a better cured product is obtained, and the dielectric loss tangent is effectively reduced.
 [熱可塑性樹脂]
 上記絶縁樹脂層は、熱可塑性樹脂を含むことが好ましい。上記熱可塑性樹脂としては、ポリイミド樹脂、ポリビニルアセタール樹脂及びフェノキシ樹脂等が挙げられる。上記熱可塑性樹脂は、1種のみが用いられてもよく、2種以上が併用されてもよい。
[Thermoplastic resin]
The insulating resin layer preferably contains a thermoplastic resin. Examples of the thermoplastic resin include polyimide resin, polyvinyl acetal resin, and phenoxy resin. As for the said thermoplastic resin, only 1 type may be used and 2 or more types may be used together.
 硬化環境によらず、誘電正接を効果的に低くし、かつ、金属配線の密着性を効果的に高める観点からは、上記熱可塑性樹脂は、フェノキシ樹脂であることが好ましい。フェノキシ樹脂の使用により、絶縁樹脂層の回路基板の穴又は凹凸に対する埋め込み性の悪化及び無機充填材の不均一化が抑えられる。また、フェノキシ樹脂の使用により、溶融粘度を調整可能であるために無機充填材の分散性が良好になり、かつ硬化過程で、意図しない領域に絶縁樹脂層が濡れ拡がり難くなる。上記フェノキシ樹脂は特に限定されない。上記フェノキシ樹脂として、従来公知のフェノキシ樹脂を使用可能である。上記フェノキシ樹脂は、1種のみが用いられてもよく、2種以上が併用されてもよい。 Regardless of the curing environment, the thermoplastic resin is preferably a phenoxy resin from the viewpoint of effectively reducing the dielectric loss tangent and effectively improving the adhesion of the metal wiring. By using the phenoxy resin, it is possible to suppress the deterioration of the embedding property of the insulating resin layer with respect to the hole or the unevenness of the circuit board and the unevenness of the inorganic filler. In addition, since the melt viscosity can be adjusted by using a phenoxy resin, the dispersibility of the inorganic filler is improved, and the insulating resin layer is difficult to wet and spread in an unintended region during the curing process. The phenoxy resin is not particularly limited. A conventionally known phenoxy resin can be used as the phenoxy resin. As for the said phenoxy resin, only 1 type may be used and 2 or more types may be used together.
 上記フェノキシ樹脂としては、例えば、ビスフェノールA型の骨格、ビスフェノールF型の骨格、ビスフェノールS型の骨格、ビフェニル骨格、ノボラック骨格、ナフタレン骨格及びイミド骨格などの骨格を有するフェノキシ樹脂等が挙げられる。 Examples of the phenoxy resin include phenoxy resins having a skeleton such as a bisphenol A skeleton, a bisphenol F skeleton, a bisphenol S skeleton, a biphenyl skeleton, a novolak skeleton, a naphthalene skeleton, and an imide skeleton.
 上記フェノキシ樹脂の市販品としては、例えば、新日鐵住金化学社製の「YP50」、「YP55」及び「YP70」、並びに三菱化学社製の「1256B40」、「4250」、「4256H40」、「4275」、「YX6954BH30」及び「YX8100BH30」等が挙げられる。 Examples of commercially available phenoxy resins include “YP50”, “YP55” and “YP70” manufactured by Nippon Steel & Sumikin Chemical Co., Ltd., and “1256B40”, “4250”, “4256H40” manufactured by Mitsubishi Chemical Corporation, “ 4275 "," YX6954BH30 "," YX8100BH30 ", and the like.
 保存安定性により一層優れた絶縁樹脂層を得る観点からは、上記熱可塑性樹脂の重量平均分子量は、好ましくは5000以上、より好ましくは10000以上、好ましくは100000以下、より好ましくは50000以下である。 From the viewpoint of obtaining an insulating resin layer more excellent in storage stability, the weight average molecular weight of the thermoplastic resin is preferably 5000 or more, more preferably 10,000 or more, preferably 100,000 or less, more preferably 50000 or less.
 上記熱可塑性樹脂の上記重量平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)により測定されたポリスチレン換算での重量平均分子量を示す。 The weight average molecular weight of the thermoplastic resin indicates a weight average molecular weight in terms of polystyrene measured by gel permeation chromatography (GPC).
 上記熱可塑性樹脂及び上記フェノキシ樹脂の含有量は特に限定されない。絶縁樹脂層中の上記無機充填材を除く成分100重量%中、上記熱可塑性樹脂の含有量(上記熱可塑性樹脂がフェノキシ樹脂である場合にはフェノキシ樹脂の含有量)は好ましくは1重量%以上、より好ましくは5重量%以上、好ましくは30重量%以下、より好ましくは15重量%以下である。上記熱可塑性樹脂の含有量が上記下限以上及び上記上限以下であると、絶縁樹脂層の回路基板の穴又は凹凸に対する埋め込み性が良好になる。上記熱可塑性樹脂の含有量が上記下限以上であると、絶縁樹脂層の形成がより一層容易になり、より一層良好な絶縁層が得られる。上記熱可塑性樹脂の含有量が上記上限以下であると、硬化物の熱膨張率がより一層低くなる。硬化物の表面の表面粗さがより一層小さくなり、硬化物と金属層との接着強度がより一層高くなる。 The contents of the thermoplastic resin and the phenoxy resin are not particularly limited. In 100% by weight of the component excluding the inorganic filler in the insulating resin layer, the content of the thermoplastic resin (the content of the phenoxy resin when the thermoplastic resin is a phenoxy resin) is preferably 1% by weight or more More preferably, it is 5% by weight or more, preferably 30% by weight or less, more preferably 15% by weight or less. When the content of the thermoplastic resin is not less than the above lower limit and not more than the above upper limit, the embedding property of the insulating resin layer with respect to the holes or irregularities of the circuit board is improved. When the content of the thermoplastic resin is not less than the above lower limit, the formation of the insulating resin layer is further facilitated, and an even better insulating layer is obtained. When the content of the thermoplastic resin is not more than the above upper limit, the thermal expansion coefficient of the cured product is further reduced. The surface roughness of the surface of the cured product is further reduced, and the adhesive strength between the cured product and the metal layer is further increased.
 [硬化促進剤]
 上記絶縁樹脂層は、硬化促進剤を含むことが好ましい。上記硬化促進剤の使用により、硬化速度がより一層速くなる。絶縁樹脂層を速やかに硬化させることで、硬化物における架橋構造が均一になると共に、未反応の官能基数が減り、結果的に架橋密度が高くなる。上記硬化促進剤は特に限定されず、従来公知の硬化促進剤を使用可能である。上記硬化促進剤は、1種のみが用いられてもよく、2種以上が併用されてもよい。
[Curing accelerator]
The insulating resin layer preferably contains a curing accelerator. By using the curing accelerator, the curing rate is further increased. By rapidly curing the insulating resin layer, the crosslinked structure in the cured product becomes uniform, the number of unreacted functional groups decreases, and as a result, the crosslinking density increases. The said hardening accelerator is not specifically limited, A conventionally well-known hardening accelerator can be used. As for the said hardening accelerator, only 1 type may be used and 2 or more types may be used together.
 上記硬化促進剤としては、例えば、イミダゾール化合物、リン化合物、アミン化合物及び有機金属化合物等が挙げられる。 Examples of the curing accelerator include imidazole compounds, phosphorus compounds, amine compounds, and organometallic compounds.
 上記イミダゾール化合物としては、2-ウンデシルイミダゾール、2-ヘプタデシルイミダゾール、2-メチルイミダゾール、2-エチル-4-メチルイミダゾール、2-フェニルイミダゾール、2-フェニル-4-メチルイミダゾール、1-ベンジル-2-メチルイミダゾール、1-ベンジル-2-フェニルイミダゾール、1,2-ジメチルイミダゾール、1-シアノエチル-2-メチルイミダゾール、1-シアノエチル-2-エチル-4-メチルイミダゾール、1-シアノエチル-2-ウンデシルイミダゾール、1-シアノエチル-2-フェニルイミダゾール、1-シアノエチル-2-ウンデシルイミダゾリウムトリメリテイト、1-シアノエチル-2-フェニルイミダゾリウムトリメリテイト、2,4-ジアミノ-6-[2’-メチルイミダゾリル-(1’)]-エチル-s-トリアジン、2,4-ジアミノ-6-[2’-ウンデシルイミダゾリル-(1’)]-エチル-s-トリアジン、2,4-ジアミノ-6-[2’-エチル-4’-メチルイミダゾリル-(1’)]-エチル-s-トリアジン、2,4-ジアミノ-6-[2’-メチルイミダゾリル-(1’)]-エチル-s-トリアジンイソシアヌル酸付加物、2-フェニルイミダゾールイソシアヌル酸付加物、2-メチルイミダゾールイソシアヌル酸付加物、2-フェニル-4,5-ジヒドロキシメチルイミダゾール及び2-フェニル-4-メチル-5-ジヒドロキシメチルイミダゾール等が挙げられる。 Examples of the imidazole compound include 2-undecylimidazole, 2-heptadecylimidazole, 2-methylimidazole, 2-ethyl-4-methylimidazole, 2-phenylimidazole, 2-phenyl-4-methylimidazole, 1-benzyl- 2-methylimidazole, 1-benzyl-2-phenylimidazole, 1,2-dimethylimidazole, 1-cyanoethyl-2-methylimidazole, 1-cyanoethyl-2-ethyl-4-methylimidazole, 1-cyanoethyl-2-un Decylimidazole, 1-cyanoethyl-2-phenylimidazole, 1-cyanoethyl-2-undecylimidazolium trimellitate, 1-cyanoethyl-2-phenylimidazolium trimellitate, 2,4-diamino-6- [2 ' -Mechi Imidazolyl- (1 ′)]-ethyl-s-triazine, 2,4-diamino-6- [2′-undecylimidazolyl- (1 ′)]-ethyl-s-triazine, 2,4-diamino-6- [2′-Ethyl-4′-methylimidazolyl- (1 ′)]-ethyl-s-triazine, 2,4-diamino-6- [2′-methylimidazolyl- (1 ′)]-ethyl-s-triazine Isocyanuric acid adduct, 2-phenylimidazole isocyanuric acid adduct, 2-methylimidazole isocyanuric acid adduct, 2-phenyl-4,5-dihydroxymethylimidazole, 2-phenyl-4-methyl-5-dihydroxymethylimidazole, etc. Can be mentioned.
 上記リン化合物としては、トリフェニルホスフィン等が挙げられる。 Examples of the phosphorus compound include triphenylphosphine.
 上記アミン化合物としては、ジエチルアミン、トリエチルアミン、ジエチレンテトラミン、トリエチレンテトラミン及び4,4-ジメチルアミノピリジン等が挙げられる。 Examples of the amine compound include diethylamine, triethylamine, diethylenetetramine, triethylenetetramine and 4,4-dimethylaminopyridine.
 上記有機金属化合物としては、ナフテン酸亜鉛、ナフテン酸コバルト、オクチル酸スズ、オクチル酸コバルト、ビスアセチルアセトナートコバルト(II)及びトリスアセチルアセトナートコバルト(III)等が挙げられる。 Examples of the organometallic compound include zinc naphthenate, cobalt naphthenate, tin octylate, cobalt octylate, bisacetylacetonate cobalt (II), and trisacetylacetonate cobalt (III).
 上記硬化促進剤の含有量は特に限定されない。絶縁樹脂層中の上記無機充填材を除く成分100重量%中、上記硬化促進剤の含有量は好ましくは0.005重量%以上、より好ましくは0.01重量%以上、好ましくは5重量%以下、より好ましくは3重量%以下である。上記硬化促進剤の含有量が上記下限以上及び上記上限以下であると、絶縁樹脂層が効率的に硬化する。上記硬化促進剤の含有量がより好ましい範囲であれば、絶縁樹脂層の保存安定性がより一層高くなり、かつより一層良好な硬化物が得られる。 The content of the curing accelerator is not particularly limited. In 100% by weight of the component excluding the inorganic filler in the insulating resin layer, the content of the curing accelerator is preferably 0.005% by weight or more, more preferably 0.01% by weight or more, preferably 5% by weight or less. More preferably, it is 3% by weight or less. When the content of the curing accelerator is not less than the above lower limit and not more than the above upper limit, the insulating resin layer is efficiently cured. If content of the said hardening accelerator is a more preferable range, the storage stability of an insulating resin layer will become still higher, and a much better hardened | cured material will be obtained.
 [溶剤]
 上記絶縁樹脂層は、溶剤を含まないか又は含む。また、上記溶剤は、上記無機充填材を含むスラリーを得るために用いられてもよい。上記溶剤は1種のみが用いられてもよく、2種以上が併用されてもよい。
[solvent]
The insulating resin layer does not contain or contains a solvent. Moreover, the said solvent may be used in order to obtain the slurry containing the said inorganic filler. As for the said solvent, only 1 type may be used and 2 or more types may be used together.
 上記溶剤としては、アセトン、メタノール、エタノール、ブタノール、2-プロパノール、2-メトキシエタノール、2-エトキシエタノール、1-メトキシ-2-プロパノール、2-アセトキシ-1-メトキシプロパン、トルエン、キシレン、メチルエチルケトン、N,N-ジメチルホルムアミド、メチルイソブチルケトン、N-メチル-ピロリドン、n-ヘキサン、シクロヘキサン、シクロヘキサノン及び混合物であるナフサ等が挙げられる。 Examples of the solvent include acetone, methanol, ethanol, butanol, 2-propanol, 2-methoxyethanol, 2-ethoxyethanol, 1-methoxy-2-propanol, 2-acetoxy-1-methoxypropane, toluene, xylene, methyl ethyl ketone, Examples thereof include N, N-dimethylformamide, methyl isobutyl ketone, N-methyl-pyrrolidone, n-hexane, cyclohexane, cyclohexanone and naphtha which is a mixture.
 上記溶剤の多くは、上記絶縁樹脂層を成形するときに、除去されることが好ましい。従って、上記溶剤の沸点は好ましくは200℃以下、より好ましくは180℃以下である。上記絶縁樹脂層における上記溶剤の含有量は特に限定されない。上記絶縁樹脂層の層形状を維持できる程度に、上記溶剤の含有量は適宜変更可能である。 Most of the solvent is preferably removed when the insulating resin layer is formed. Therefore, the boiling point of the solvent is preferably 200 ° C. or lower, more preferably 180 ° C. or lower. The content of the solvent in the insulating resin layer is not particularly limited. The content of the solvent can be appropriately changed to such an extent that the layer shape of the insulating resin layer can be maintained.
 [他の成分]
 耐衝撃性、耐熱性、樹脂の相溶性及び作業性等の改善を目的として、上記絶縁樹脂層には、レベリング剤、難燃剤、カップリング剤、着色剤、酸化防止剤、紫外線劣化防止剤、消泡剤、増粘剤、揺変性付与剤及びエポキシ化合物以外の他の熱硬化性樹脂等を添加してもよい。
[Other ingredients]
For the purpose of improving impact resistance, heat resistance, resin compatibility and workability, the insulating resin layer has a leveling agent, a flame retardant, a coupling agent, a colorant, an antioxidant, an ultraviolet degradation inhibitor, You may add other thermosetting resins other than an antifoamer, a thickener, a thixotropic agent, and an epoxy compound.
 上記カップリング剤としては、シランカップリング剤、チタンカップリング剤及びアルミニウムカップリング剤等が挙げられる。上記シランカップリング剤としては、ビニルシラン、アミノシラン、イミダゾールシラン及びエポキシシラン等が挙げられる。 Examples of the coupling agent include silane coupling agents, titanium coupling agents, and aluminum coupling agents. Examples of the silane coupling agent include vinyl silane, amino silane, imidazole silane, and epoxy silane.
 上記他の熱硬化性樹脂としては、ポリフェニレンエーテル樹脂、ジビニルベンジルエーテル樹脂、ポリアリレート樹脂、ジアリルフタレート樹脂、ポリイミド樹脂、ベンゾオキサジン樹脂、ベンゾオキサゾール樹脂及びアクリレート樹脂等が挙げられる。 Examples of the other thermosetting resins include polyphenylene ether resins, divinyl benzyl ether resins, polyarylate resins, diallyl phthalate resins, polyimide resins, benzoxazine resins, benzoxazole resins, and acrylate resins.
 上記絶縁樹脂層を得る方法としては、以下の方法等が挙げられる。押出機を用いて、絶縁樹脂層を形成するための材料を溶融混練し、押出した後、Tダイ又はサーキュラーダイ等により、フィルム状に成形する押出成形法。溶剤を含む絶縁樹脂層を形成するための材料をキャスティングしてフィルム状に成形するキャスティング成形法。従来公知のその他のフィルム成形法。また、基材フィルム上に絶縁樹脂層を形成するための材料を積層し、加熱乾燥させ、絶縁樹脂層を得ることもできる。薄型化に対応可能であることから、押出成形法又はキャスティング成形法が好ましい。フィルムにはシートが含まれる。 Examples of the method for obtaining the insulating resin layer include the following methods. An extrusion molding method in which a material for forming an insulating resin layer is melt-kneaded using an extruder, extruded, and then formed into a film shape by a T die or a circular die. A casting molding method in which a material for forming an insulating resin layer containing a solvent is cast into a film. Other known film forming methods. Moreover, the material for forming an insulating resin layer can be laminated | stacked on a base film, and it can also heat-dry and can obtain an insulating resin layer. The extrusion molding method or the casting molding method is preferable because it can cope with the reduction in thickness. The film includes a sheet.
 絶縁樹脂層を形成するための材料をフィルム状に成形し、熱による硬化が進行し過ぎない程度に、例えば50℃~150℃で1分間~10分間加熱乾燥させることにより、Bステージフィルムである絶縁樹脂層を得ることができる。 The material for forming the insulating resin layer is formed into a film and is a B-stage film by, for example, heating and drying at 50 ° C. to 150 ° C. for 1 to 10 minutes so that curing by heat does not proceed excessively. An insulating resin layer can be obtained.
 上述のような乾燥工程により得ることができるフィルム状の絶縁樹脂層をBステージフィルムと称する。上記Bステージフィルムは、半硬化状態にある。半硬化物は、完全に硬化しておらず、硬化がさらに進行され得る。 The film-like insulating resin layer that can be obtained by the drying process as described above is referred to as a B-stage film. The B-stage film is in a semi-cured state. The semi-cured product is not completely cured and curing can proceed further.
 上記絶縁樹脂層は、Bステージフィルムであることが好ましい。 The insulating resin layer is preferably a B stage film.
 上記絶縁樹脂層(上記絶縁樹脂層がBステージフィルムである場合は、Bステージフィルム)の60℃以上180℃以下の温度領域における最低溶融粘度は、好ましくは5mPa・s以上、好ましくは10mPa・s以上である。上記最低溶融粘度が上記下限以上であると、ラミネート、プレス加工時に意図しない領域への樹脂の染み出しを防止することができ、硬化後に基材フィルムを剥離する際の剥離不良を効果的に抑えることができ、さらに、自然剥離も効果的に抑えることができる。上記絶縁樹脂層(上記絶縁樹脂層がBステージフィルムである場合には、該Bステージフィルム)の60℃以上180℃以下の温度領域における最低溶融粘度の上限は特に限定されない。上記絶縁樹脂層(上記絶縁樹脂層がBステージフィルムである場合には、該Bステージフィルム)の60℃以上180℃以下の温度領域における最低溶融粘度は、200mPa・s以下であってもよく、150mPa・s以下であってもよく、100mPa・s以下であってもよく、75mPa・s以下であってもよい。 The minimum melt viscosity in the temperature region of 60 ° C. or higher and 180 ° C. or lower of the insulating resin layer (or B stage film when the insulating resin layer is a B stage film) is preferably 5 mPa · s or more, preferably 10 mPa · s. That's it. When the minimum melt viscosity is equal to or higher than the above lower limit, it is possible to prevent the resin from exuding to an unintended region during lamination and press processing, and effectively suppress the peeling failure when peeling the base film after curing. Furthermore, natural peeling can be effectively suppressed. The upper limit of the minimum melt viscosity in the temperature region of 60 ° C. or higher and 180 ° C. or lower of the insulating resin layer (when the insulating resin layer is a B stage film) is not particularly limited. The minimum melt viscosity in the temperature region of 60 ° C. or higher and 180 ° C. or lower of the insulating resin layer (when the insulating resin layer is a B stage film) may be 200 mPa · s or less, It may be 150 mPa · s or less, 100 mPa · s or less, or 75 mPa · s or less.
 上記最低溶融粘度時の温度は、好ましくは140℃以下、より好ましくは130℃以下である。上記最低溶融粘度時の温度が上記上限以下であると、基材フィルムの収縮に伴う自然剥離を効果的に抑えることができる。 The temperature at the minimum melt viscosity is preferably 140 ° C. or lower, more preferably 130 ° C. or lower. When the temperature at the minimum melt viscosity is equal to or lower than the above upper limit, natural peeling accompanying shrinkage of the base film can be effectively suppressed.
 上記最低溶融粘度は、Rheometer装置(例えば、TAインスツルメント社製「AR-2000」)を用いて、周波数6.28rad/sec、開始温度60℃、昇温速度5℃/分、歪み21.8%の条件で動的粘弾性を測定して求められる。 The minimum melt viscosity was measured using a Rheometer device (for example, “AR-2000” manufactured by TA Instruments) at a frequency of 6.28 rad / sec, a starting temperature of 60 ° C., a heating rate of 5 ° C./min, and a strain of 21. It is obtained by measuring dynamic viscoelasticity under the condition of 8%.
 絶縁樹脂層(絶縁樹脂層がBステージフィルムである場合は、Bステージフィルム)のラミネート性をより一層良好にし、絶縁樹脂層の硬化むらをより一層抑える観点からは、上記絶縁樹脂層の厚みは、好ましくは5μm以上、より好ましくは10μm以上、好ましくは200μm以下、より好ましくは100μm以下である。 From the viewpoint of further improving the laminating property of the insulating resin layer (in the case where the insulating resin layer is a B stage film) and further suppressing the uneven curing of the insulating resin layer, the thickness of the insulating resin layer is , Preferably 5 μm or more, more preferably 10 μm or more, preferably 200 μm or less, more preferably 100 μm or less.
 (保護フィルム)
 上記積層フィルムは、上記絶縁樹脂層の上記基材フィルム側とは反対の表面上に保護フィルムが積層されていることが好ましい。
(Protective film)
In the laminated film, a protective film is preferably laminated on the surface of the insulating resin layer opposite to the base film side.
 上記保護フィルムの材料としては、ポリプロピレン及びポリエチレンなどのポリオレフィン、並びにポリエチレンテレフタレート等が挙げられる。上記保護フィルムの材料は、ポリオレフィンであることが好ましく、ポリプロピレンであることがより好ましい。 Examples of the protective film material include polyolefins such as polypropylene and polyethylene, and polyethylene terephthalate. The material of the protective film is preferably polyolefin, and more preferably polypropylene.
 絶縁樹脂層の保護性をより一層良好にする観点からは、上記保護フィルムの厚みは、好ましくは5μm以上、より好ましくは10μm以上、好ましくは75μm以下、より好ましくは60μm以下である。 From the viewpoint of further improving the protective property of the insulating resin layer, the thickness of the protective film is preferably 5 μm or more, more preferably 10 μm or more, preferably 75 μm or less, more preferably 60 μm or less.
 (積層フィルムの他の詳細)
 本発明に係る積層フィルムは、多層プリント配線板において、絶縁層を形成するために好適に用いられる。上記絶縁樹脂層は、多層プリント配線板において、絶縁層を形成するために好適に用いられる。本発明に係る積層フィルムの絶縁樹脂層によって、絶縁層を形成することができる。
(Other details of laminated film)
The laminated film according to the present invention is suitably used for forming an insulating layer in a multilayer printed wiring board. The insulating resin layer is suitably used for forming an insulating layer in a multilayer printed wiring board. An insulating layer can be formed by the insulating resin layer of the laminated film according to the present invention.
 多層プリント配線板の一例として、回路基板と、該回路基板上に積層された複数の絶縁層と、複数の上記絶縁層間に配置された金属層とを備える多層プリント配線板が挙げられる。上記絶縁層の内の少なくとも1層が、上記絶縁樹脂層により形成される。上記回路基板に接している絶縁層が、上記絶縁樹脂層により形成されてもよい。2つの絶縁層間に配置された絶縁層が、上記絶縁樹脂層により形成されてもよい。上記回路基板から最も離れた絶縁層が、上記絶縁樹脂層により形成されてもよい。複数の上記絶縁層のうち、上記回路基板から離れた絶縁層の外側の表面上に、金属層が配置されていてもよい。 As an example of the multilayer printed wiring board, a multilayer printed wiring board including a circuit board, a plurality of insulating layers stacked on the circuit board, and a metal layer disposed between the plurality of insulating layers may be mentioned. At least one of the insulating layers is formed by the insulating resin layer. The insulating layer in contact with the circuit board may be formed by the insulating resin layer. An insulating layer disposed between two insulating layers may be formed of the insulating resin layer. The insulating layer farthest from the circuit board may be formed by the insulating resin layer. Among the plurality of insulating layers, a metal layer may be disposed on the outer surface of the insulating layer away from the circuit board.
 (積層構造体の製造方法)
 本発明に係る積層構造体の製造方法は、上述した積層フィルムを用いて、上記基材フィルムと上記絶縁樹脂層とが積層された状態で、上記絶縁樹脂層の上記基材フィルムとは反対側の表面を、金属層を表面に有する積層対象部材上に積層する積層工程を備える。本発明に係る積層構造体の製造方法は、上記基材フィルムと上記絶縁樹脂層とが積層された状態で、上記絶縁樹脂層に上記基材フィルム側からレーザーを照射し、ビアホールを形成するビアホール形成工程を備える。
(Manufacturing method of laminated structure)
The manufacturing method of the laminated structure which concerns on this invention is the opposite side to the said base film of the said insulating resin layer in the state by which the said base film and the said insulating resin layer were laminated | stacked using the laminated film mentioned above. A laminating step of laminating the surface of the material on a lamination target member having a metal layer on the surface. In the method for manufacturing a laminated structure according to the present invention, a via hole is formed by irradiating the insulating resin layer with a laser from the base film side in a state where the base film and the insulating resin layer are laminated. Forming step.
 本発明に係る積層構造体の製造方法では、上記の構成が備えられているので、上記硬化工程において、基材フィルムの絶縁樹脂層からの自然剥離を抑えることができる。 In the manufacturing method of the laminated structure according to the present invention, since the above-described configuration is provided, natural peeling from the insulating resin layer of the base film can be suppressed in the curing step.
 (積層工程)
 本発明に係る積層構造体の製造方法では、上述した積層フィルムを用いて、上記基材フィルムと上記絶縁樹脂層とが積層された状態で、上記絶縁樹脂層の上記基材フィルムとは反対側の表面を、金属層を表面に有する積層対象部材上に積層する。
(Lamination process)
In the method for producing a laminated structure according to the present invention, the above-described laminated film is used, and the above-mentioned base film and the above-mentioned insulating resin layer are laminated, and the above-mentioned base film of the above-mentioned insulating resin layer is opposite to the above-mentioned base film. Is laminated on a lamination target member having a metal layer on the surface.
 上記積層工程において、上記積層フィルムが上記保護フィルムを備える場合には、保護フィルムを剥離し、剥離により露出した上記絶縁樹脂層の表面を、金属層を表面に有する積層対象部材上に積層する。 In the laminating step, when the laminated film includes the protective film, the protective film is peeled off, and the surface of the insulating resin layer exposed by peeling is laminated on a lamination target member having a metal layer on the surface.
 上記積層工程は、ラミネートにより行われることが好ましい。上記ラミネート時の温度は、好ましくは80℃以上、好ましくは120℃以下である。 The laminating step is preferably performed by laminating. The temperature during lamination is preferably 80 ° C. or higher, and preferably 120 ° C. or lower.
 (硬化工程)
 本発明に係る積層構造体の製造方法は、上記絶縁樹脂層を硬化させる硬化工程を備えることが好ましい。
(Curing process)
It is preferable that the manufacturing method of the laminated structure which concerns on this invention is equipped with the hardening process which hardens the said insulating resin layer.
 本発明に係る積層構造体の製造方法では、上記絶縁樹脂層を硬化させることが好ましい。上記硬化工程では、上記絶縁樹脂層を硬化させて、硬化物を形成する。上記硬化工程における上記絶縁樹脂層の硬化は、予備硬化であってもよい。上記硬化物には、更に硬化が可能な予備硬化物も含まれる。上記硬化工程において、上記絶縁樹脂層を予備硬化させて、Bステージフィルムを得てもよい。 In the method for manufacturing a laminated structure according to the present invention, it is preferable to cure the insulating resin layer. In the curing step, the insulating resin layer is cured to form a cured product. The curing of the insulating resin layer in the curing step may be preliminary curing. The cured product includes a precured product that can be further cured. In the curing step, the insulating resin layer may be precured to obtain a B stage film.
 上記硬化工程は、加熱により行われることが好ましい。上記加熱温度は、好ましくは130℃以上、好ましくは200℃以下である。上記加熱時間は、好ましくは30分以上、好ましくは120分以下である。 The curing step is preferably performed by heating. The heating temperature is preferably 130 ° C. or higher, preferably 200 ° C. or lower. The heating time is preferably 30 minutes or longer, preferably 120 minutes or shorter.
 上記絶縁樹脂層を予備硬化させることにより得られた硬化物の表面に微細な凹凸を形成するために、硬化物は粗化処理されることが好ましい。粗化処理の前に、硬化物は膨潤処理されることが好ましい。硬化物は、予備硬化の後、かつ粗化処理される前に、膨潤処理されており、さらに粗化処理の後に硬化されていることが好ましい。ただし、硬化物は、必ずしも膨潤処理されなくてもよい。 In order to form fine irregularities on the surface of the cured product obtained by pre-curing the insulating resin layer, the cured product is preferably roughened. Prior to the roughening treatment, the cured product is preferably subjected to a swelling treatment. The cured product is preferably subjected to a swelling treatment after the preliminary curing and before the roughening treatment, and is further cured after the roughening treatment. However, the cured product is not necessarily subjected to the swelling treatment.
 上記膨潤処理の方法としては、例えば、エチレングリコールなどを主成分とする化合物の水溶液又は有機溶媒分散溶液などにより、硬化物を処理する方法が用いられる。膨潤処理に用いる膨潤液は、一般にpH調整剤などとして、アルカリを含む。膨潤液は、水酸化ナトリウムを含むことが好ましい。具体的には、例えば、上記膨潤処理は、40重量%エチレングリコール水溶液等を用いて、処理温度30℃~85℃で1分間~30分間、硬化物を処理することにより行なわれる。上記膨潤処理の温度は50℃~85℃の範囲内であることが好ましい。上記膨潤処理の温度が低すぎると、膨潤処理に長時間を要し、更に硬化物と金属層との接着強度が低くなる傾向がある。 As the swelling treatment method, for example, a method of treating a cured product with an aqueous solution or an organic solvent dispersion solution of a compound mainly composed of ethylene glycol or the like is used. The swelling liquid used for the swelling treatment generally contains an alkali as a pH adjuster or the like. The swelling liquid preferably contains sodium hydroxide. Specifically, for example, the swelling treatment is carried out by treating the cured product with a 40 wt% ethylene glycol aqueous solution at a treatment temperature of 30 ° C. to 85 ° C. for 1 minute to 30 minutes. The swelling treatment temperature is preferably in the range of 50 ° C to 85 ° C. When the temperature of the swelling treatment is too low, it takes a long time for the swelling treatment, and the adhesive strength between the cured product and the metal layer tends to be low.
 上記粗化処理には、例えば、マンガン化合物、クロム化合物又は過硫酸化合物などの化学酸化剤等が用いられる。これらの化学酸化剤は、水又は有機溶剤が添加された後、水溶液又は有機溶媒分散溶液として用いられる。粗化処理に用いられる粗化液は、一般にpH調整剤などとしてアルカリを含む。粗化液は、水酸化ナトリウムを含むことが好ましい。 For the roughening treatment, for example, a chemical oxidant such as a manganese compound, a chromium compound, or a persulfate compound is used. These chemical oxidizers are used as an aqueous solution or an organic solvent dispersion after water or an organic solvent is added. The roughening liquid used for the roughening treatment generally contains an alkali as a pH adjuster or the like. The roughening solution preferably contains sodium hydroxide.
 上記マンガン化合物としては、過マンガン酸カリウム及び過マンガン酸ナトリウム等が挙げられる。上記クロム化合物としては、重クロム酸カリウム及び無水クロム酸カリウム等が挙げられる。上記過硫酸化合物としては、過硫酸ナトリウム、過硫酸カリウム及び過硫酸アンモニウム等が挙げられる。 Examples of the manganese compound include potassium permanganate and sodium permanganate. Examples of the chromium compound include potassium dichromate and anhydrous potassium chromate. Examples of the persulfate compound include sodium persulfate, potassium persulfate, and ammonium persulfate.
 硬化物の表面の算術平均粗さRaは、好ましくは5nm以上、より好ましくは10nm以上であり、好ましくは400nm以下、より好ましくは400nm未満、より一層好ましくは300nm以下、更に好ましくは300nm未満、特に好ましくは200nm未満、最も好ましくは150nm未満である。この場合には、硬化物と金属層との接着強度が高くなり、更に絶縁層の表面により一層微細な配線が形成される。さらに、導体損失を抑えることができ、信号損失を低く抑えることができる。 The arithmetic average roughness Ra of the surface of the cured product is preferably 5 nm or more, more preferably 10 nm or more, preferably 400 nm or less, more preferably less than 400 nm, even more preferably 300 nm or less, still more preferably less than 300 nm, particularly preferably Preferably it is less than 200 nm, most preferably less than 150 nm. In this case, the adhesive strength between the cured product and the metal layer is increased, and further finer wiring is formed on the surface of the insulating layer. Furthermore, conductor loss can be suppressed and signal loss can be suppressed low.
 (ビアホール形成工程)
 本発明に係る積層構造体の製造方法では、上記基材フィルムと上記絶縁樹脂層とが積層された状態で、上記絶縁樹脂層に上記基材フィルム側からレーザーを照射し、ビアホールを形成する。
(Via hole formation process)
In the method for manufacturing a laminated structure according to the present invention, a laser beam is irradiated to the insulating resin layer from the base film side in a state where the base film and the insulating resin layer are laminated to form a via hole.
 上記ビアホール形成工程に用いられるレーザーとしては、COレーザー及びUVレーザー等が挙げられる。 Examples of the laser used in the via hole forming step include a CO 2 laser and a UV laser.
 基材として汎用のポリエチレンテレフタレート(PET)フィルムを用いる観点からは、上記レーザーはCOレーザーであることが好ましい。一方、レーザーとしてUVレーザーを用いる場合には、ポリエチレンナフタレート(PEN)フィルム及び紫外線吸収剤を含むフィルム等を用いることが好ましい。 From the viewpoint of using a general-purpose polyethylene terephthalate (PET) film as the substrate, the laser is preferably a CO 2 laser. On the other hand, when a UV laser is used as the laser, it is preferable to use a polyethylene naphthalate (PEN) film and a film containing an ultraviolet absorber.
 形成されるビアホールの直径は特に限定されないが、好ましくは80μm以下である。ビアホールの直径は、10μm以上であってもよく、30μm以上であってもよく、60μm以上であってもよい。 The diameter of the via hole to be formed is not particularly limited, but is preferably 80 μm or less. The diameter of the via hole may be 10 μm or more, 30 μm or more, or 60 μm or more.
 (デスミア工程)
 本発明に係る積層構造体の製造方法は、上記ビアホール形成工程後に、デスミア処理により上記ビアホールの内部のスミアを除去する工程(デスミア工程)を備えることが好ましい。上記デスミア工程を備えることにより、上記ビアホール形成工程で形成された樹脂成分に由来する樹脂の残渣であるスミアを効果的に除去することができる。
(Desmear process)
It is preferable that the manufacturing method of the laminated structure which concerns on this invention is equipped with the process (desmear process) of removing the smear inside the said via hole by a desmear process after the said via hole formation process. By providing the desmear process, it is possible to effectively remove smear, which is a resin residue derived from the resin component formed in the via hole formation process.
 上記デスミア工程には、例えば、マンガン化合物、クロム化合物又は過硫酸化合物等の化学酸化剤等が用いられる。これらの化学酸化剤は、水又は有機溶剤が添加された後、水溶液又は有機溶媒分散溶液として用いられる。デスミア工程に用いられるデスミア処理液は、一般にアルカリを含む。デスミア処理液は、水酸化ナトリウムを含むことが好ましい。 In the desmear process, for example, a chemical oxidant such as a manganese compound, a chromium compound, or a persulfate compound is used. These chemical oxidizers are used as an aqueous solution or an organic solvent dispersion after water or an organic solvent is added. The desmear treatment liquid used in the desmear process generally contains an alkali. The desmear treatment liquid preferably contains sodium hydroxide.
 上記デスミア工程は、上記絶縁樹脂層の表面を粗化処理する粗化処理工程を兼ねていてもよい。 The desmear process may also serve as a roughening process for roughening the surface of the insulating resin layer.
 (剥離工程)
 本発明に係る積層構造体の製造方法は、上記デスミア工程後に、上記基材フィルムを上記絶縁樹脂層から剥離する工程(剥離工程)を備えることが好ましい。
(Peeling process)
It is preferable that the manufacturing method of the laminated structure which concerns on this invention is equipped with the process (peeling process) which peels the said base film from the said insulating resin layer after the said desmear process.
 上記剥離工程は、オート剥離装置を用いて行うことが好ましい。 The above peeling process is preferably performed using an auto peeling apparatus.
 本発明に係る積層構造体の製造方法では、上記の構成が備えられているので、上記剥離工程において、基材フィルムの剥離不良を抑えることができる。 In the method for manufacturing a laminated structure according to the present invention, since the above-described configuration is provided, it is possible to suppress the peeling failure of the base film in the peeling step.
 (その他の工程)
 本発明に係る積層構造体の製造方法は、上記剥離工程後に、剥離により露出した絶縁樹脂層の表面に、めっき処理により金属層を形成するめっき工程、並びに上記めっき工程後に、絶縁樹脂層をさらに硬化させる本硬化工程の各工程を備えることが好ましい。
(Other processes)
The manufacturing method of the laminated structure according to the present invention further includes a plating step of forming a metal layer by plating on the surface of the insulating resin layer exposed by peeling after the peeling step, and an insulating resin layer after the plating step. It is preferable to provide each step of the main curing step for curing.
 以下、実施例及び比較例を挙げることにより、本発明を具体的に説明する。本発明は、以下の実施例に限定されない。 Hereinafter, the present invention will be specifically described by giving examples and comparative examples. The present invention is not limited to the following examples.
 (基材フィルム)
 基材フィルムA(ポリエチレンテレフタレート(PET)フィルム(リンテック社製「25X」)、厚み25μm、幅550mm、絶縁樹脂層側の表面の算術平均粗さRa30nm)
 基材フィルムB(ポリエチレンテレフタレート(PET)フィルム(リンテック社製「386501」)、厚み38μm、幅550mm、絶縁樹脂層側の表面の算術平均粗さRa30nm)
 基材フィルムC(ポリエチレンテレフタレート(PET)フィルム(リンテック社製「PLD386502」)、厚み38μm、幅550mm、絶縁樹脂層側の表面の算術平均粗さRa7nm)
(Base film)
Base film A (polyethylene terephthalate (PET) film (“25X” manufactured by Lintec), thickness 25 μm, width 550 mm, arithmetic average roughness Ra 30 nm on the surface of the insulating resin layer side)
Base film B (polyethylene terephthalate (PET) film (“386501” manufactured by Lintec Corporation), thickness 38 μm, width 550 mm, arithmetic average roughness Ra 30 nm on the surface of the insulating resin layer side)
Base film C (polyethylene terephthalate (PET) film (“PLD386502” manufactured by Lintec Corporation), thickness 38 μm, width 550 mm, arithmetic average roughness Ra 7 nm on the surface of the insulating resin layer side)
 上記算術平均粗さは、非接触型表面粗さ計(ビーコインスツルメンツ社製「WYKO NT3300」)を用いて、VSIコンタクトモード、50倍レンズにより測定範囲を95.6μm×71.7μmとして測定した。なお、Thresholdを1%とし、MedianFilter(Window:Size5)、Tilt補正をした条件とした上記算術平均粗さは、無作為に選んだ測定箇所10点で測定し、測定値の平均値を採用した。 The arithmetic average roughness was measured using a non-contact type surface roughness meter (“WYKO NT3300” manufactured by BECOL Instruments Co., Ltd.) with a VSI contact mode and a 50 × lens with a measurement range of 95.6 μm × 71.7 μm. Note that the arithmetic average roughness with the threshold set to 1%, the median filter (Window: Size5), and the tilt corrected condition was measured at 10 measurement points selected at random, and the average value of the measured values was adopted. .
 (絶縁樹脂層を形成するための材料)
 以下の様にして、絶縁樹脂層を形成するための材料を用意した。
(Material for forming insulating resin layer)
A material for forming the insulating resin layer was prepared as follows.
 絶縁樹脂層Aを形成するための材料: 
 ビニルシラン処理シリカ(アドマテックス社製「SOC2」)のシクロヘキサノンスラリー(固形分70重量%)69.3重量部を用意した。このスラリーに、ビフェニル型エポキシ化合物(日本化薬社製「NC3000H」)5.6重量部と、ビスフェノールF型エポキシ化合物(DIC社製「830S」)5.3重量部と、フルオレン型エポキシ化合物(大阪ガスケミカル社製「OGSOL PG-100」)2.0重量部とを加えた。攪拌機を用いて、1200rpmで60分間撹拌し、未溶解物がなくなったことを確認した。その後、フェノールノボラック硬化剤(明和化成社製「H4」)1.6重量部と、活性エステル硬化剤(DIC社製「HPC-8000-65T」)のトルエン混合溶液(固形分65重量%)13重量部とを加えて、1200rpmで60分間撹拌し、未溶解物がなくなったことを確認した。ビスフェノールアセトフェノン骨格フェノキシ樹脂(三菱化学社製「YX6954」)のメチルエチルケトン及びシクロヘキサノン混合溶液(固形分30重量%)を用意した。該混合溶液(固形分30重量%)3.6重量部と、2-エチル-4-メチルイミダゾール(四国化成工業社製「2E4MZ」)0.3重量部と、レベリング剤(楠本化成社製「LS-480」)0.1重量部とをさらに加えた。1200rpmで30分間撹拌し、絶縁樹脂層Aを形成するための材料(ワニス)を得た。
Material for forming insulating resin layer A:
69.3 parts by weight of cyclohexanone slurry (solid content: 70% by weight) of vinylsilane-treated silica (“SOC2” manufactured by Admatechs) was prepared. To this slurry, 5.6 parts by weight of a biphenyl type epoxy compound (“NC3000H” manufactured by Nippon Kayaku Co., Ltd.), 5.3 parts by weight of a bisphenol F type epoxy compound (“830S” manufactured by DIC), and a fluorene type epoxy compound ( 2.0 parts by weight of “OGSOL PG-100” manufactured by Osaka Gas Chemical Co., Ltd. was added. It stirred for 60 minutes at 1200 rpm using the stirrer, and it confirmed that the undissolved substance was lose | eliminated. Thereafter, 1.6 parts by weight of a phenol novolac curing agent (“H4” manufactured by Meiwa Kasei Co., Ltd.) and a toluene mixed solution (solid content: 65% by weight) of an active ester curing agent (“HPC-8000-65T” manufactured by DIC) 13 Part by weight was added and stirred at 1200 rpm for 60 minutes, and it was confirmed that there was no undissolved material. A methyl ethyl ketone and cyclohexanone mixed solution (solid content 30% by weight) of bisphenolacetophenone skeleton phenoxy resin (“YX6954” manufactured by Mitsubishi Chemical Corporation) was prepared. 3.6 parts by weight of the mixed solution (solid content 30% by weight), 0.3 part by weight of 2-ethyl-4-methylimidazole (“2E4MZ” manufactured by Shikoku Kasei Kogyo Co., Ltd.), and a leveling agent (manufactured by Enomoto Kasei Co., Ltd.) LS-480 ") and 0.1 parts by weight were further added. Stirring was performed at 1200 rpm for 30 minutes to obtain a material (varnish) for forming the insulating resin layer A.
 絶縁樹脂層Bを形成するための材料:
 活性エステル硬化剤(DIC社製「HPC-8000-65T」)をフェノールノボラック硬化剤(明和化成社製「MEH7851-H」)に変更したこと以外は、絶縁樹脂層Aを形成するための材料と同様にして、絶縁樹脂層Bを形成するための材料(ワニス)を得た。
Material for forming insulating resin layer B:
A material for forming the insulating resin layer A except that the active ester curing agent (“HPC-8000-65T” manufactured by DIC) is changed to a phenol novolac curing agent (“MEH7851-H” manufactured by Meiwa Kasei Co., Ltd.) Similarly, a material (varnish) for forming the insulating resin layer B was obtained.
 (実施例1)
 基材フィルムの表面上に絶縁樹脂層を配置する工程:
 ダイコーターを用いて、基材フィルムA上に、得られた絶縁樹脂層Aを形成するための材料(ワニス)を基材の幅方向における両端部から20mmの範囲を除いて、幅510mmで塗工した後、平均温度100℃で3分間乾燥し、溶剤を揮発させた。このようにして、基材フィルムA上に、厚さが40μmであり、幅が510mmである絶縁樹脂層Aを形成して積層体を得た。
(Example 1)
The step of disposing an insulating resin layer on the surface of the base film:
Using a die coater, a material (varnish) for forming the obtained insulating resin layer A is applied on the base film A with a width of 510 mm except for a range of 20 mm from both ends in the width direction of the base material. After the process, the solvent was evaporated by drying at an average temperature of 100 ° C. for 3 minutes. Thus, the insulating resin layer A having a thickness of 40 μm and a width of 510 mm was formed on the base film A to obtain a laminate.
 積層体の幅方向における一方の端面を揃える工程:
 得られた積層体の幅方向における一方の端部(他端)から内側に向かって30mmの位置、及び該他端とは反対の端部(一端)から内側に向かって18mmの位置を、スリッターを用いて10m/分の速度でスリットし、他端側の基材フィルムの端面と絶縁樹脂層の端面とを揃えた。このようにして、一端側において、絶縁樹脂層の端面に対して、基材フィルムの端面がはみだしている距離(Y)が2mmである積層フィルムを得た。
The step of aligning one end face in the width direction of the laminate:
A slitter is provided at a position 30 mm inward from one end (other end) in the width direction of the obtained laminate, and 18 mm inward from an end (one end) opposite to the other end. Was slit at a speed of 10 m / min, and the end surface of the base film on the other end side was aligned with the end surface of the insulating resin layer. Thus, the laminated film whose distance (Y) which the end surface of the base film protrudes with respect to the end surface of an insulating resin layer is 2 mm in the one end side was obtained.
 (実施例2~16及び比較例1~5)
 基材フィルムの種類、絶縁樹脂層の種類、積層フィルムの一端側において絶縁樹脂層の端面に対して基材フィルムの端面がはみだしている距離(Y)を表1~3に示すように変更したこと以外は実施例1と同様にして、積層フィルムを得た。
(Examples 2 to 16 and Comparative Examples 1 to 5)
Tables 1 to 3 show the types of base film, the type of insulating resin layer, and the distance (Y) that the end face of the base film protrudes from the end face of the insulating resin layer on one end side of the laminated film as shown in Tables 1 to 3 A laminated film was obtained in the same manner as in Example 1 except that.
 (評価)
 (1)絶縁樹脂層に対する基材フィルムの剥離強度(X)
 得られた積層フィルムを、引張試験機(島津製作所社製「AG-5000B」)を用いて、クロスヘッド速度5mm/分の条件で測定し、絶縁樹脂層に対する基材フィルムの剥離強度(X)を測定した。
(Evaluation)
(1) Peel strength of base film to insulating resin layer (X)
The obtained laminated film was measured using a tensile tester (“AG-5000B” manufactured by Shimadzu Corporation) under the condition of a crosshead speed of 5 mm / min, and the peel strength (X) of the base film with respect to the insulating resin layer Was measured.
 (2)Y/X
 得られた積層フィルムの一端側において、絶縁樹脂層の端面に対して、基材フィルムの端面がはみだしている距離(Y)と、上記(1)で測定された絶縁樹脂層に対する基材フィルムの剥離強度(X)から、Y/Xを算出した。
(2) Y / X
On one end side of the obtained laminated film, the distance (Y) where the end face of the base film protrudes from the end face of the insulating resin layer, and the base film relative to the insulating resin layer measured in the above (1) Y / X was calculated from the peel strength (X).
 (3)最低溶融粘度及び最低溶融粘度時の温度
 得られた積層フィルムから基材フィルムを剥離して絶縁樹脂層を得た。得られた絶縁樹脂層について、Rheometer装置(TAインスツルメント社製「AR-2000」)を用いて、周波数6.28rad/sec、開始温度60℃、昇温速度5℃/分、歪み21.8%の条件で動的粘弾性を測定し、最低溶融粘度、及び最低溶融粘度時の温度を求めた。結果を以下に示す。
(3) Minimum melt viscosity and temperature at the minimum melt viscosity The base film was peeled from the obtained laminated film to obtain an insulating resin layer. The obtained insulating resin layer was subjected to a frequency of 6.28 rad / sec, a starting temperature of 60 ° C., a heating rate of 5 ° C./min, and a strain of 21 using a Rheometer device (“AR-2000” manufactured by TA Instruments). The dynamic viscoelasticity was measured under the condition of 8%, and the minimum melt viscosity and the temperature at the minimum melt viscosity were determined. The results are shown below.
 絶縁樹脂層A:最低溶融粘度98mPa・s、最低溶融粘度時の温度137℃
 絶縁樹脂層B:最低溶融粘度50mPa・s、最低溶融粘度時の温度128℃
Insulating resin layer A: minimum melt viscosity 98 mPa · s, minimum melt viscosity temperature 137 ° C.
Insulating resin layer B: minimum melt viscosity 50 mPa · s, minimum melt viscosity temperature 128 ° C.
 (4)自然剥離
 積層工程:
 エッチングにより内層回路を形成した340mm×510mmのCCL基板(日立化成工業社製「E679FG」)を用意した。CCL基板の両面を銅表面粗化剤(メック社製「メックエッチボンド CZ-8101」)に浸漬して、銅表面を粗化処理した。
(4) Natural peeling Lamination process:
A CCL substrate (“E679FG” manufactured by Hitachi Chemical Co., Ltd.) of 340 mm × 510 mm in which an inner layer circuit was formed by etching was prepared. Both surfaces of the CCL substrate were immersed in a copper surface roughening agent (“MEC etch bond CZ-8101” manufactured by MEC) to roughen the copper surface.
 得られた積層フィルムを、325mm×502mmに切り出し、樹脂フィルム側から上記CCL基板の両面にセットして、ダイアフラム式真空ラミネーター(名機製作所社製「MVLP-500」)を用いて、上記CCL基板の両面にラミネートし、未硬化積層サンプルAを得た。ラミネートは、20秒減圧して気圧を13hPa以下として100℃で20秒間プレスし、さらに100℃、圧力0.8MPaで40秒間プレスすることにより行った。 The obtained laminated film was cut out to 325 mm × 502 mm, set on both sides of the CCL substrate from the resin film side, and using the diaphragm type vacuum laminator (“MVLP-500” manufactured by Meiki Seisakusho), the CCL substrate The uncured laminated sample A was obtained. Lamination was performed by reducing the pressure for 20 seconds, pressing the pressure at 13 hPa or less at 100 ° C. for 20 seconds, and further pressing at 100 ° C. and a pressure of 0.8 MPa for 40 seconds.
 硬化工程:
 上記絶縁樹脂層を、加熱温度180℃で30分間加熱し、絶縁樹脂層を予備硬化させてた。
Curing process:
The insulating resin layer was heated at a heating temperature of 180 ° C. for 30 minutes to pre-cure the insulating resin layer.
 上記硬化工程において、基材フィルムの絶縁樹脂層からの自然剥離の発生の有無を目視にて確認した。 In the above curing step, the presence or absence of spontaneous peeling from the insulating resin layer of the base film was visually confirmed.
 [自然剥離の評価基準]
 ○:自然剥離が生じない
 △:自然剥離がわずかに生じる
 ×:自然剥離が生じる
[Evaluation criteria for natural peeling]
○: Natural peeling does not occur △: Natural peeling occurs slightly ×: Natural peeling occurs
 (5)基材フィルムの裂け(剥離不良)
 上記(4)自然剥離の評価を行った後、以下の工程を行った。
(5) Substrate film tear (exfoliation failure)
After the evaluation of (4) natural peeling, the following steps were performed.
 ビアホール形成工程:
 基材フィルムと絶縁樹脂層(Bステージフィルム)とを積層し、予備硬化した状態で、絶縁樹脂層に基材フィルム側からCOレーザー(日立ビアメカニクス社製「LC-4KF212」)を照射し、ビアホールの上端径が60μmとなるように、基材フィルムと絶縁樹脂層とを貫通するビアホールを形成した。なお、COレーザーの照射条件は以下とした。
Via hole formation process:
The base film and insulating resin layer (B stage film) are laminated and pre-cured, and then the insulating resin layer is irradiated with a CO 2 laser (“LC-4KF212” manufactured by Hitachi Via Mechanics) from the base film side. The via hole penetrating the base film and the insulating resin layer was formed so that the upper end diameter of the via hole was 60 μm. The irradiation conditions of the CO 2 laser were as follows.
 [COレーザーの照射条件]
 加工モードBurst
 周期0.100ms
 パルス幅0.018ms
 パルス数3ショット
 アパーチャー3.5mm
 2ndアパーチャー28mm
 パワー3.3W
[CO 2 laser irradiation conditions]
Machining mode Burst
Period 0.100ms
Pulse width 0.018ms
Number of pulses 3 shot Aperture 3.5mm
2nd aperture 28mm
Power 3.3W
 剥離工程:
 上記基材フィルムを上記絶縁樹脂層から剥離した。
Peeling process:
The base film was peeled from the insulating resin layer.
 上記剥離工程において、基材フィルムの裂けの有無を目視にて確認した。 In the peeling step, the presence or absence of tearing of the base film was confirmed visually.
 [基材フィルムの裂けの評価基準]
 ○:基材フィルムの裂けが生じない
 △:基材フィルムの裂けがわずかに生じる
 ×:基材フィルムの裂けが生じる
[Evaluation criteria for tearing of base film]
○: No tearing of the base film occurs Δ: Slight tearing of the base film occurs ×: Tearing of the base film occurs
 積層フィルムの構成、及び結果を下記の表1~3に示す。 The composition of the laminated film and the results are shown in Tables 1 to 3 below.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 1,1A…積層フィルム
 1a,1Aa…一端
 1b,1Ab…他端
 2,2A…基材フィルム
 2a,2Aa…第1の表面
 3,3A…絶縁樹脂層
 Y…積層フィルムの一端側において、基材フィルムのはみだしている距離
DESCRIPTION OF SYMBOLS 1,1A ... Laminated film 1a, 1Aa ... One end 1b, 1Ab ... Other end 2, 2A ... Base film 2a, 2Aa ... First surface 3, 3A ... Insulating resin layer Y ... Base material in the one end side of laminated film The distance that the film protrudes

Claims (12)

  1.  基材フィルムと、前記基材フィルムの表面上に積層された絶縁樹脂層とを備え、
     積層フィルムの一端側において、前記絶縁樹脂層の端面に対して前記基材フィルムの端面が外側に最も大きくはみだしており、
     前記絶縁樹脂層に対する前記基材フィルムの剥離強度をXgf/cm、前記一端側における前記基材フィルムのはみだしている距離をYmmとしたときに、Y/Xが0.5以上15以下である、積層フィルム。
    A base film, and an insulating resin layer laminated on the surface of the base film,
    On one end side of the laminated film, the end surface of the base film protrudes to the outside most with respect to the end surface of the insulating resin layer,
    When the peel strength of the base film with respect to the insulating resin layer is Xgf / cm and the distance of the base film protruding on the one end side is Ymm, Y / X is 0.5 or more and 15 or less. Laminated film.
  2.  前記Xが、0.3以上9以下である、請求項1に記載の積層フィルム。 The laminated film according to claim 1, wherein the X is 0.3 or more and 9 or less.
  3.  前記Yが、0.5以上20以下である、請求項1又は2に記載の積層フィルム。 The laminated film according to claim 1 or 2, wherein the Y is 0.5 or more and 20 or less.
  4.  前記基材フィルムの厚みが、25μm以上である、請求項1~3のいずれか1項に記載の積層フィルム。 The laminated film according to any one of claims 1 to 3, wherein the base film has a thickness of 25 µm or more.
  5.  前記基材フィルムの前記絶縁樹脂層側の表面の算術平均粗さRaが、5nm以上400nm未満である、請求項1~4のいずれか1項に記載の積層フィルム。 The laminated film according to any one of claims 1 to 4, wherein an arithmetic average roughness Ra of the surface of the base film on the insulating resin layer side is 5 nm or more and less than 400 nm.
  6.  前記絶縁樹脂層が、エポキシ化合物と、無機充填材と、硬化剤とを含む、請求項1~5のいずれか1項に記載の積層フィルム。 The laminated film according to any one of claims 1 to 5, wherein the insulating resin layer contains an epoxy compound, an inorganic filler, and a curing agent.
  7.  前記硬化剤が、フェノール化合物、シアネート化合物、マレイミド化合物、又は活性エステル化合物を含む、請求項6に記載の積層フィルム。 The laminated film according to claim 6, wherein the curing agent comprises a phenol compound, a cyanate compound, a maleimide compound, or an active ester compound.
  8.  積層フィルムの前記一端とは反対の他端側において、前記基材フィルムと前記絶縁樹脂層との端面が揃っているか、又は積層フィルムの前記一端側と前記一端とは反対の他端側との双方において、前記絶縁樹脂層の端面に対して前記基材フィルムの端面が外側にはみだしており、かつ前記他端側における前記基材フィルムのはみだしている距離が、前記一端側における前記基材フィルムのはみだしている距離よりも小さい、請求項1~7のいずれか1項に記載の積層フィルム。 On the other end side opposite to the one end of the laminated film, the end surfaces of the base film and the insulating resin layer are aligned, or the one end side of the laminated film and the other end side opposite to the one end are In both cases, the end face of the base film protrudes outward with respect to the end face of the insulating resin layer, and the distance that the base film protrudes on the other end side is the base film on the one end side. The laminated film according to any one of claims 1 to 7, wherein the laminated film is smaller than the protruding distance.
  9.  前記絶縁樹脂層の60℃以上180℃以下の温度領域における最低溶融粘度が、5mPa・s以上である、請求項1~8のいずれか1項に記載の積層フィルム。 The laminated film according to any one of claims 1 to 8, wherein a minimum melt viscosity of the insulating resin layer in a temperature range of 60 ° C or higher and 180 ° C or lower is 5 mPa · s or higher.
  10.  前記絶縁樹脂層は、多層プリント配線板において、絶縁層を形成するために用いられる、請求項1~9のいずれか1項に記載の積層フィルム。 The laminated film according to any one of claims 1 to 9, wherein the insulating resin layer is used for forming an insulating layer in a multilayer printed wiring board.
  11.  請求項1~10のいずれか1項に記載の積層フィルムを用いて、前記基材フィルムと前記絶縁樹脂層とが積層された状態で、前記絶縁樹脂層の前記基材フィルムとは反対側の表面を、金属層を表面に有する積層対象部材上に積層する積層工程と、
     前記基材フィルムと前記絶縁樹脂層とが積層された状態で、前記絶縁樹脂層に前記基材フィルム側からレーザーを照射し、ビアホールを形成するビアホール形成工程とを備える、積層構造体の製造方法。
    The laminated film according to any one of claims 1 to 10, wherein the base film and the insulating resin layer are laminated, and the insulating resin layer is opposite to the base film. A lamination step of laminating the surface on a lamination target member having a metal layer on the surface;
    A method of manufacturing a laminated structure comprising: a via hole forming step of forming a via hole by irradiating the insulating resin layer with a laser from the base film side in a state where the base film and the insulating resin layer are laminated. .
  12.  前記積層工程と前記ビアホール形成工程との間に、前記絶縁樹脂層を硬化させる硬化工程を備える、請求項11に記載の積層構造体の製造方法。 The manufacturing method of the laminated structure of Claim 11 provided with the hardening process which hardens the said insulating resin layer between the said lamination process and the said via-hole formation process.
PCT/JP2019/023465 2018-06-14 2019-06-13 Laminate film and method for manufacturing laminate structure WO2019240217A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019554574A JP7132242B2 (en) 2018-06-14 2019-06-13 LAMINATED FILM AND LAMINATED STRUCTURE MANUFACTURING METHOD
JP2022134212A JP7344357B2 (en) 2018-06-14 2022-08-25 Method for manufacturing laminated films and laminated structures

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-113678 2018-06-14
JP2018113678 2018-06-14

Publications (1)

Publication Number Publication Date
WO2019240217A1 true WO2019240217A1 (en) 2019-12-19

Family

ID=68842229

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/023465 WO2019240217A1 (en) 2018-06-14 2019-06-13 Laminate film and method for manufacturing laminate structure

Country Status (2)

Country Link
JP (2) JP7132242B2 (en)
WO (1) WO2019240217A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024038701A1 (en) * 2022-08-17 2024-02-22 株式会社ダイセル Laminate and manufacturing method for laminate

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002011820A (en) * 2000-04-28 2002-01-15 Achilles Corp Sheet body for curing
JP2010094983A (en) * 2008-09-16 2010-04-30 Toyobo Co Ltd Laminated polyimide film
JP2011176362A (en) * 2007-07-09 2011-09-08 Sumitomo Bakelite Co Ltd Resin sheet for circuit board and method for manufacturing the same
JP2015211085A (en) * 2014-04-24 2015-11-24 味の素株式会社 Method of manufacturing circuit board
WO2016143484A1 (en) * 2015-03-12 2016-09-15 三井金属鉱業株式会社 Metal foil with carrier, and manufacturing method for wiring board

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5607780B2 (en) 2013-03-28 2014-10-15 株式会社カネカ Graphite composite film
JP6664092B2 (en) * 2015-10-07 2020-03-13 パナソニックIpマネジメント株式会社 Resin composition, resin varnish, prepreg, metal-clad laminate, and printed wiring board

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002011820A (en) * 2000-04-28 2002-01-15 Achilles Corp Sheet body for curing
JP2011176362A (en) * 2007-07-09 2011-09-08 Sumitomo Bakelite Co Ltd Resin sheet for circuit board and method for manufacturing the same
JP2010094983A (en) * 2008-09-16 2010-04-30 Toyobo Co Ltd Laminated polyimide film
JP2015211085A (en) * 2014-04-24 2015-11-24 味の素株式会社 Method of manufacturing circuit board
WO2016143484A1 (en) * 2015-03-12 2016-09-15 三井金属鉱業株式会社 Metal foil with carrier, and manufacturing method for wiring board

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024038701A1 (en) * 2022-08-17 2024-02-22 株式会社ダイセル Laminate and manufacturing method for laminate

Also Published As

Publication number Publication date
JP2022172221A (en) 2022-11-15
TW202000472A (en) 2020-01-01
JP7132242B2 (en) 2022-09-06
JP7344357B2 (en) 2023-09-13
JPWO2019240217A1 (en) 2021-05-06

Similar Documents

Publication Publication Date Title
JP6461194B2 (en) Resin composition for multilayer printed wiring board and multilayer printed wiring board
JP5629407B2 (en) Insulating resin material and multilayer substrate
KR20200138227A (en) Resin material and multilayer printed wiring board
JP2018115334A (en) Epoxy resin material and multilayer substrate
JP2024009109A (en) Resin material and multilayer printed wiring board
JP6570400B2 (en) Laminated film
JP2015188073A (en) Multi-layer insulating film, method of manufacturing multi-layer insulating board and multi-layer board
JP5752071B2 (en) B-stage film and multilayer substrate
JP7344357B2 (en) Method for manufacturing laminated films and laminated structures
JP6431425B2 (en) Manufacturing method of laminated structure and laminated structure
JP2017066399A (en) Resin composition, laminate, and manufacturing method of laminate structure
JP2021042295A (en) Resin material and multilayer printed board
JP5508342B2 (en) B-stage film for printed wiring board and multilayer board
JP2019006980A (en) Resin composition for insulation film, insulation film, and multilayer printed board
WO2019088079A1 (en) Laminate film and manufacturing method of laminate film
JP6159627B2 (en) Resin composition, resin film and multilayer substrate
JP5940943B2 (en) Insulating resin material and multilayer substrate
TWI834676B (en) Method for manufacturing laminated film and laminated structure
JP7288321B2 (en) laminated film
JP2012140570A (en) Epoxy resin material and multilayer substrate
JP6084854B2 (en) Epoxy resin material for multilayer printed wiring board and multilayer printed wiring board
JP2013023667A (en) Epoxy resin material and multilayer substrate
JP2020111695A (en) Resin material and multilayer printed wiring board

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019554574

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19820193

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19820193

Country of ref document: EP

Kind code of ref document: A1