WO2019088079A1 - Laminate film and manufacturing method of laminate film - Google Patents

Laminate film and manufacturing method of laminate film Download PDF

Info

Publication number
WO2019088079A1
WO2019088079A1 PCT/JP2018/040273 JP2018040273W WO2019088079A1 WO 2019088079 A1 WO2019088079 A1 WO 2019088079A1 JP 2018040273 W JP2018040273 W JP 2018040273W WO 2019088079 A1 WO2019088079 A1 WO 2019088079A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin layer
protective film
film
laminated film
laminated
Prior art date
Application number
PCT/JP2018/040273
Other languages
French (fr)
Japanese (ja)
Inventor
貴至 西村
Original Assignee
積水化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 積水化学工業株式会社 filed Critical 積水化学工業株式会社
Priority to CN201880070111.6A priority Critical patent/CN111278639B/en
Priority to KR1020207012133A priority patent/KR20200073234A/en
Publication of WO2019088079A1 publication Critical patent/WO2019088079A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/20Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/26Layered products comprising a layer of synthetic resin characterised by the use of special additives using curing agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form
    • B32B3/02Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form characterised by features of form at particular places, e.g. in edge regions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B38/00Ancillary operations in connection with laminating processes
    • B32B38/04Punching, slitting or perforating
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/20Adhesives in the form of films or foils characterised by their carriers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B38/00Ancillary operations in connection with laminating processes
    • B32B38/04Punching, slitting or perforating
    • B32B2038/045Slitting
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits

Definitions

  • the present invention relates to a laminated film provided with a substrate, a resin layer, and a protective film. Moreover, this invention relates to the manufacturing method of a laminated film provided with a base material, a resin layer, and a protective film.
  • a resin composition is used to form an insulating layer to insulate the inner layers, or to form an insulating layer located on the surface layer portion.
  • the laminated film provided with the resin layer is used.
  • the adhesive sheet with a protective film provided with a support body, a resin composition layer, and a protective film is disclosed by following patent document 1 as an example of the said laminated
  • a step of slitting (cutting) the adhesive sheet with a protective film is performed.
  • the both ends of the width direction of the adhesive sheet with a protective film are slit.
  • the end surface of the both sides in the width direction of a support body, a resin composition layer, and a protective film is arrange
  • a protective film peels at the time of use of a resin layer.
  • the resin layer exposed by peeling off the protective film is adhered to an adherend such as a metal layer (for example, a laminate of a substrate and a metal wiring or the like), and the resin layer is formed by heating or the like. Cure.
  • An object of the present invention is to provide a laminated film which can suppress cracking of a resin layer at the time of peeling of a protective film and can suppress curing unevenness of the resin layer.
  • the present invention comprises a substrate, a resin layer laminated on the surface of the substrate, and a protective film laminated on the surface of the resin layer opposite to the substrate side.
  • the end faces of the base material and the protective film protrude outward with respect to the end face of the resin layer, and at the other end side opposite to the one end of the laminated film.
  • the end faces of the base material, the resin layer, and the protective film are aligned, or the base relative to the end face of the resin layer in both the one end side of the laminated film and the other end side opposite to the one end
  • the end faces of the material and the protective film are respectively projected to the outside, and the protruding distance between the base material and the protective film at the other end side is the distance between the base material and the protective film at the one end side Hami Smaller than the distance you are laminated film is provided.
  • the end faces of the substrate and the protective film protrude outward with respect to the end face of the resin layer, and At the other end side opposite to the one end, the end faces of the base, the resin layer, and the protective film are aligned.
  • the dimension of the substrate is W 1 mm and the dimension of the resin layer is W 2 mm in the direction connecting the one end and the other end of the laminated film
  • W 2 / W 1 is 0.9 or more and 0.999 or less.
  • the dimension of the resin layer is W 2 mm and the dimension of the protective film is W 3 mm in the direction connecting the one end and the other end of the laminated film
  • W 2 / W 3 is 0.9 or more and 0.999 or less.
  • the resin layer contains an inorganic filler, a curing agent, and a thermosetting compound.
  • the content of the inorganic filler is 30% by weight or more in 100% by weight of the resin layer.
  • a method for producing a laminated film as described above wherein the resin is extruded on the surface of the substrate such that the end surface of the substrate is projected outward with respect to the end surface of the resin layer on one end side.
  • the first step of disposing a layer, and on the surface of the resin layer opposite to the substrate side the end face of the protective layer is protected against the end face of the resin layer on the one side.
  • a second step of disposing a film wherein at one end side of the laminated film corresponding to the one end of the resin layer, the end faces of the base and the protective film are outside with respect to the end face of the resin layer
  • the end faces of the substrate, the resin layer and the protective film are aligned, or one end side of the laminated film and the one end Both sides with opposite end
  • the end faces of the base and the protective film protrude outward with respect to the end face of the resin layer, and the distance between the base and the protective film on the other end side is
  • the manufacturing method of a lamination film which obtains a lamination film smaller than the projection distance of the base material and the protective film in the one end side is provided.
  • the method for producing a laminated film comprises, after the second step, the base material on the other end side opposite to the one end of the resin layer Or aligning the end faces of the resin layer and the protective film, or after the second step, on the other end side opposite to the one end of the resin layer, the base material and the base on the other end side
  • the method further comprises a third step of reducing the distance of extension with the protective film to be smaller than the distance of extension of the base material with the protective film at the one end side.
  • the base, the resin layer, and the protective film are slit.
  • the end face of the base material and the protective film with respect to the end face of the resin layer on one end side of the laminated film corresponding to the one end of the resin layer
  • a laminated film is obtained in which the end faces of the substrate, the resin layer and the protective film are aligned on the other end side of the laminated film opposite to the one end.
  • the laminated film according to the present invention comprises a substrate, a resin layer laminated on the surface of the substrate, and a protective film laminated on the surface of the resin layer opposite to the substrate side.
  • the laminated film according to the present invention has the following configuration (1) or (2). (1) At one end side of the laminated film, the end faces of the base material and the protective film protrude outward with respect to the end face of the resin layer, and at the other end side opposite to the one end of the laminated film The end faces of the base, the resin layer, and the protective film are aligned.
  • the end face of the base material and the protective film is projected to the outside with respect to the end face of the resin layer on both the one end side of the laminated film and the other end side opposite to the one end, and
  • the overhanging distance between the base and the protective film at the other end is smaller than the overhanging distance between the base and the protective film at the one end.
  • the laminated film according to the present invention is provided with the above-described configuration, so cracking of the resin layer at the time of peeling of the protective film can be suppressed, and curing unevenness of the resin layer can be suppressed.
  • FIG. 1 is a cross-sectional view schematically showing a laminated film according to a first embodiment of the present invention.
  • FIG. 2 is a cross-sectional view schematically showing a laminated film according to a second embodiment of the present invention.
  • FIG. 3 is sectional drawing for demonstrating an example of the manufacturing method of the laminated
  • the laminated film according to the present invention comprises a substrate, a resin layer, and a protective film.
  • the substrate, the resin layer, and the protective film are laminated in this order.
  • the resin layer is laminated on the surface of the substrate.
  • the protective film is laminated on the surface of the resin layer opposite to the substrate side.
  • the laminated film according to the present invention has the following configuration (1) or (2).
  • the end faces of the base material and the protective film protrude outward with respect to the end face of the resin layer, and at the other end side opposite to the one end of the laminated film
  • the end faces of the base, the resin layer, and the protective film are aligned. (Hereafter, it may be described as laminated film (1).)
  • the laminated film according to the present invention is provided with the above-described configuration, so cracking of the resin layer at the time of peeling of the protective film can be suppressed, and curing unevenness of the resin layer can be suppressed. As a result, it is possible to improve the insulation reliability of an electronic component such as a multilayer printed wiring board manufactured using the laminated film according to the present invention.
  • the end faces of the substrate, the resin layer, and the protective film are aligned, or the base and the protective film at the other end of the laminated film.
  • the overhanging distance is smaller than the overhanging distance between the base material and the protective film at one end.
  • the resin layer When the end faces of the substrate, the resin layer, and the protective film are not aligned at both ends of the laminated film, depending on the distance between the substrate and the protective film with respect to the resin layer, the resin layer It is difficult to suppress the curing unevenness of the resin layer because the curing unevenness of the resin layer easily occurs.
  • the end surfaces of the base and the protective film protrude outward with respect to the end surface of the resin layer on one end side of the laminated film.
  • the end faces of the base, the resin layer, and the protective film are aligned.
  • the end face of the base material and the protective film is to the end face of the resin layer on both the one end side of the laminated film and the other end side opposite to the one end. Each one is projected outside.
  • the protruding distance between the base and the protective film at the other end is greater than the distance between the base and the protective film at the one end. small.
  • the laminated film according to the present invention is provided with the above-described configuration, so that cracking of the resin layer at the time of peeling of the protective film can be suppressed, and uneven curing of the resin layer can be suppressed.
  • a protective film can be easily peeled from the end side of a laminated film.
  • the laminate film (1) Is preferred.
  • the end face of the base material and the protective film is projected outward with respect to the end face of the resin layer on one end side of the laminated film (1). There is a method of shifting the
  • the end face of the base material and the protective film is projected outward with respect to the end face of the resin layer on both the one end side of the laminated film (2) and the other end side opposite to the one end.
  • the method of shifting an end surface is mentioned at the time of lamination
  • the shift distance of the end face is adjusted.
  • the method for producing a laminated film according to the present invention has the following configuration (A) or (B).
  • the production method (A) is a production method of the laminated film (1)
  • the production method (B) is a production method of the laminated film (2). It is preferable that the manufacturing method of laminated
  • the resin layer is disposed on the surface of the substrate such that the end surface of the substrate protrudes outward with respect to the end surface on one end side of the resin layer.
  • the end face of the base material and the protective film is to the end face of the resin layer on one end side of the laminated film corresponding to the one end of the resin layer Obtain a laminated film protruding outside.
  • an end face of the substrate, the resin layer and the protective film are aligned. Get).
  • the resin layer is disposed on the surface of the substrate such that the end surface of the substrate protrudes outward with respect to the end surface on one end side of the resin layer
  • the end face of the protective film protrudes outward with respect to the end face of the one end side of the resin layer on the surface of the resin layer opposite to the substrate side.
  • a second step of disposing a protective film is provided.
  • a protective film is applied to both end faces of the one end of the resin layer and the other end opposite to the one end. It is preferable to arrange a protective film so that the end face of the outer side protrudes.
  • the base material and the protective film with respect to the end face of the resin layer on both the one end side of the laminated film and the other end side opposite to the one end The laminated film (2) which the end surface of each has protruded on the outer side is obtained.
  • the protruding distance between the base and the protective film on the other end side is protruding from the base and the protective film on the one end side Obtain a laminated film (2) smaller than the distance.
  • the method further comprises a third step of aligning the end faces.
  • a third step of aligning the end faces in the method for producing a laminated film according to the present invention, in the second step, an end face of the base material, the resin layer, and the protective film on the other end side opposite to the one end of the resin layer. May be aligned.
  • the protruding distance between the base and the protective film on the other end side is the distance between the base on the one end and the base It may be smaller than the protruding distance with the protective film.
  • the resin layer is preferably slit.
  • the substrate, the resin layer and the protective film are preferably slit.
  • the protective film is peeled off when the resin layer is used.
  • An adherend such as a metal layer (for example, a laminate of a substrate and a metal wire) is generally laminated on the surface of the resin layer after the protective film is peeled off.
  • FIG. 1 is a cross-sectional view schematically showing a laminated film according to a first embodiment of the present invention.
  • FIG. 1 is a cross-sectional view showing the laminated film (1).
  • the laminated film 1 has one end 1a and the other end 1b opposite to the one end 1a.
  • the one end 1a and the other end 1b of the laminated film 1 are end portions on both sides facing each other.
  • the laminated film 1 includes a base 4, a resin layer 2, and a protective film 3.
  • the protective film 3 is laminated on the first surface 2 a of the resin layer 2.
  • the substrate 4 is laminated on the second surface 2 b opposite to the first surface 2 a of the resin layer 2.
  • the dimension of the base 4 is larger than the dimension of the resin layer 2 in the direction connecting the one end 1 a and the other end 1 b of the laminated film 1.
  • the dimension of the protective film 3 is larger than the dimension of the resin layer 2.
  • the dimension of the resin layer 2 is smaller than the dimension of the substrate 4 in the direction connecting the one end 1 a and the other end 1 b of the laminated film 1.
  • the dimension of the resin layer 2 is smaller than the dimension of the protective film 3.
  • the end faces of the base material 4 and the protective film 3 protrude to the outside with respect to the end face of the resin layer 2.
  • the end faces of the substrate 4 and the resin layer 2 are not aligned, and the end faces of the resin layer 2 and the protective film 3 are not aligned.
  • the end face on the end 1 a side of the laminated film 1 has a concave shape in which the resin layer 2 portion is concaved.
  • FIG. 2 is a cross-sectional view schematically showing a laminated film according to a second embodiment of the present invention.
  • FIG. 2 is a cross-sectional view showing the laminated film (2).
  • the laminated film 1A has one end 1Aa and the other end 1Ab opposite to the one end 1Aa.
  • One end 1Aa and the other end 1Ab of the laminated film 1A are ends on both sides facing each other.
  • the laminated film 1A includes a base 4A, a resin layer 2A, and a protective film 3A.
  • Protective film 3A is laminated on first surface 2Aa of resin layer 2A.
  • the base 4A is laminated on a second surface 2Ab opposite to the first surface 2Aa of the resin layer 2A.
  • the dimension of the base 4A is larger than the dimension of the resin layer 2A in the direction connecting the one end 1Aa and the other end 1Ab of the laminated film 1A.
  • the dimensions of the protective film 3A are larger than the dimensions of the resin layer 2A.
  • the dimension of the resin layer 2A is smaller than the dimension of the base 4A in the direction connecting the one end 1Aa and the other end 1Ab of the laminated film 1A.
  • the dimension of the resin layer 2A is smaller than the dimension of the protective film 3A.
  • the end faces of the base 4A and the protective film 3A protrude outward with respect to the end face of the resin layer 2A.
  • the end faces of the substrate 4A and the resin layer 2A are not aligned, and the end faces of the resin layer 2A and the protective film 3A are not aligned.
  • the end surface on the end 1Aa side of the laminated film 1A has a concave shape in which the resin layer 2A portion is concaved.
  • On the end 1Aa side of the laminated film 1A there is a portion where the resin layer 2A is not laminated on the base 4A, and a portion where the resin layer 2A is not laminated on the protective film 3A.
  • the end faces of the base 4A and the protective film 3A protrude outward with respect to the end face of the resin layer 2A.
  • the end faces of the base 4A and the resin layer 2A are not aligned, and the end faces of the resin layer 2A and the protective film 3A are not aligned.
  • the end face on the other end 1Ab side of the laminated film 1A has a concave shape in which the resin layer 2A portion is concaved.
  • the protruding distance of the base 4A and the protective film 3A on the other end 1Ab side of the laminated film 1A is smaller than the protruding distance of the base 4A and the protective film 3A on the one end 1Aa side.
  • FIG. 3 is sectional drawing for demonstrating an example of the manufacturing method of the laminated
  • FIG. 3 is sectional drawing for demonstrating an example of the manufacturing method (A) of the said laminated
  • the laminated film 1 shown in FIG. 1 may be obtained, for example, through the steps shown in FIG. 3 (a), FIG. 3 (b-1) or FIG. 3 (b-2) and FIG. 3 (c). it can.
  • FIG. 3A By partially changing each process shown in FIG. 3A, FIG. 3B, FIG. 3B, and FIG. 3C, the laminated film 1A shown in FIG. You can also get it.
  • the resin layer 2 is disposed on the surface of the base 4 so that the end face of the base 4 protrudes outward with respect to the end face on one end side of the resin layer 2 (first Process).
  • the resin layer 2 is disposed such that the end face of the base material 4 protrudes outside with respect to the end face on the other end side opposite to the one end of the resin layer 2.
  • the resin layer 2 may be disposed so that the end face on the other end side of the resin layer 2 and the end face of the base 4 are aligned.
  • the resin composition for forming the resin layer 2 may be coated on the surface of the substrate 4 and the resin composition may be formed into a film to form the resin layer.
  • the temperature at the time of drying is preferably 80 ° C. or more, more preferably 100 ° C. or more, preferably 160 ° C. or less, more preferably 140 ° C. or less.
  • the solvent in the resin composition can be volatilized.
  • the resin layer 2 is preferably a B-stage film.
  • the end faces of the substrate 4, the resin layer 2 and the protective film 3 are aligned at the other end side opposite to one end of the resin layer 2 Absent.
  • the resin layer 2 is disposed such that the end face of the protective film 3 protrudes outside with respect to the end face of the resin layer 2 on the other end side opposite to the one end.
  • the resin layer 2 is disposed such that the end face of the protective film 3 is inside with respect to the end face on the other end side opposite to the one end of the resin layer 2.
  • the end faces of the substrate, the resin layer and the protective film may be aligned.
  • the temperature during lamination is preferably 70 ° C. or less, more preferably 65 ° C. or less.
  • the lower limit of the temperature during lamination is not particularly limited, but is usually 20 ° C. or 25 ° C. or the like.
  • the pressure during lamination is preferably 0.01 MPa or more, more preferably 0.02 MPa or more, preferably 1.0 MPa or less, more preferably 0.8 MPa or less.
  • the laminated film preferably has a MD (Machine Direction) direction and a TD (Transverse Direction) direction.
  • the MD direction is the flow direction of the laminated film at the time of production of the laminated film, and is, for example, the length direction.
  • the TD direction is a direction perpendicular to the flow direction of the laminated film at the time of production of the laminated film, and a direction perpendicular to the thickness direction of the laminated film.
  • the TD direction is the width direction. It is preferable that the said one end and said other end of the said laminated film are the edge parts of the both sides which the width direction of a laminated film opposes.
  • the dimension of the substrate is W 1 mm
  • the dimension of the resin layer is W 2 mm
  • the dimension of the protective film is W 3 mm in the direction connecting the one end and the other end of the laminated film according to the present invention.
  • W 1 is greater than W 2
  • W 3 is larger than W 2.
  • the laminated film according to the present invention generally satisfies W 1 > W 2 and W 3 > W 2 .
  • W 2 / W 1 (the ratio of the size of the resin layer to the size of the base material) is preferably 0.9 or more, more preferably 0.92 or more, still more preferably 0.94 or more, particularly preferably 0.96 or more It is.
  • W 2 / W 1 (the ratio of the size of the resin layer to the size of the base material) is preferably at most 0.999, more preferably at most 0.998, still more preferably at most 0.997, particularly preferably at most 0.996 It is.
  • W 2 / W 1 is equal to or less than the above lower limit or more and the upper limit, cracking of the resin layer at the time of peeling the protective film further suppressed, and it is possible to suppress the hardening irregularity of resin layer further.
  • W 2 / W 3 (the ratio of the dimension of the resin layer to the dimension of the protective film) is preferably 0.9 or more, more preferably 0.92 or more, still more preferably 0.94 or more, particularly preferably 0.96 or more It is.
  • the ratio of W 2 / W 3 (the ratio of the size of the resin layer to the size of the protective film) is preferably at most 0.999, more preferably at most 0.998, still more preferably at most 0.997, particularly preferably at most 0.996 It is.
  • W 3 / W 1 (the ratio of the dimension of the protective film to the dimension of the substrate) is preferably 0.997 or more, more preferably 0.998 or more, still more preferably 0.999 or more, particularly preferably 1.0 or more It is.
  • W 3 / W 1 (ratio of dimension of protective film to dimension of substrate) is preferably 1.01 or less, more preferably 1.009 or less, still more preferably 1.008 or less, particularly preferably 1.007 or less It is.
  • the overhanging distance of the substrate at one end side is more than 0 mm, preferably 3 mm or more, preferably 15 mm or less, more preferably 10 mm or less.
  • the extension distance of the protective film on one end side is more than 0 mm, preferably 3 mm or more, preferably 15 mm or less, more preferably 10 mm or less.
  • the absolute value of the difference between the overhanging distance of the substrate at the other end and the overhanging distance of the substrate at one end exceeds 0 mm, preferably 3 mm or more, more preferably Is 5 mm or more, more preferably 10 mm or more.
  • the absolute value of the difference between the protruding distance of the protective film at the other end and the protruding distance of the protective film at the one end exceeds 0 mm, preferably 3 mm or more, more preferably Is 5 mm or more, more preferably 10 mm or more.
  • the crack of the resin layer at the time of peeling of a protective film can be further suppressed as the absolute value of the above-mentioned difference is more than the above-mentioned minimum, respectively, and the hardening nonuniformity of a resin layer can be suppressed further.
  • the overhanging distance of the substrate on the other end side is more than 0 mm, preferably 10 mm or less, more preferably 5 mm or less, still more preferably 1 mm or less.
  • the overhanging distance of the protective film on the other end side is more than 0 mm, preferably 10 mm or less, more preferably 5 mm or less, still more preferably 1 mm or less.
  • the substrate examples include metal foils, polyester resin films such as polyethylene terephthalate films and polybutylene terephthalate films, olefin resin films such as polyethylene films and polypropylene films, and polyimide films.
  • the surface of the substrate may be subjected to release treatment, if necessary.
  • the substrate may be a metal foil or a resin film.
  • the substrate is preferably a resin film.
  • the said metal foil is copper foil.
  • the thickness of the above-mentioned base material is preferably 5 ⁇ m or more, more preferably 10 ⁇ m or more, preferably 75 ⁇ m or less, from the viewpoint of making the operability of the laminated film good and making the lamination of the resin layer good. 60 ⁇ m or less.
  • the resin layer is laminated on the surface of the substrate. It is preferable that the said resin layer contains the inorganic filler mentioned later, the hardening
  • the resin layer preferably contains an inorganic filler.
  • the use of the inorganic filler reduces the dimensional change of the cured resin layer due to heat. Furthermore, the surface roughness of the surface of the cured product of the resin layer is further reduced, and the adhesive strength between the cured product and the metal layer is increased.
  • the inorganic filler may be used alone or in combination of two or more.
  • examples of the inorganic filler include silica, talc, clay, mica, hydrotalcite, alumina, magnesium oxide, aluminum hydroxide, aluminum nitride, and boron nitride.
  • the above-mentioned inorganic filler is preferably silica or alumina, more preferably silica, and still more preferably fused silica.
  • the use of silica further lowers the thermal expansion coefficient of the cured product, effectively reduces the surface roughness of the surface of the cured product, and effectively increases the adhesion strength between the cured product and the metal layer.
  • the shape of the silica is preferably spherical.
  • the inorganic filler is spherical silica Is preferred.
  • the average particle diameter of the above inorganic filler is preferably 10 nm or more, more preferably 50 nm or more, still more preferably 100 nm or more, preferably 5 ⁇ m or less, more preferably 3 ⁇ m or less, still more preferably 1 ⁇ m or less, particularly preferably 0.5 ⁇ m It is below.
  • cured material and a metal layer becomes it still higher that the average particle diameter of the said inorganic filler is more than the said minimum and below the said upper limit.
  • the average particle diameter of the above-mentioned inorganic filler a value of median diameter (d50) which is 50% is adopted.
  • the average particle size can be measured using a laser diffraction scattering type particle size distribution measuring apparatus.
  • the inorganic filler is preferably spherical, and more preferably spherical silica. In this case, the surface roughness of the surface of the cured product is effectively reduced, and the adhesion strength between the cured product and the metal layer is effectively increased.
  • the aspect ratio of the inorganic filler is preferably 2 or less, more preferably 1.5 or less.
  • the inorganic filler is preferably surface-treated, more preferably a surface-treated product with a coupling agent, and still more preferably a surface-treated product with a silane coupling agent.
  • silane coupling agent a silane coupling agent, a titanium coupling agent, an aluminum coupling agent etc.
  • silane coupling agent examples include methacryl silane, acryl silane, aminosilane, imidazole silane, vinyl silane, and epoxy silane.
  • the content of the inorganic filler is preferably 30% by weight or more, more preferably 40% by weight or more, still more preferably 50% by weight or more, particularly preferably 60% by weight or more, and most preferably 100% by weight of the resin layer. Is 70% by weight or more, preferably 90% by weight or less, more preferably 85% by weight or less, still more preferably 83% by weight or less, particularly preferably 80% by weight or less.
  • the content of the inorganic filler is the lower limit or more and the upper limit or less, the surface roughness of the surface of the cured product is further decreased, and the adhesion strength between the cured product and the metal layer is further enhanced, and cured. Finer wiring is formed by the surface of the object.
  • this inorganic filler it is also possible to make smear removability good simultaneously with lowering the coefficient of thermal expansion of a hardened material.
  • the content of the inorganic filler is at least the lower limit, the dielectric loss tangent is effectively reduced.
  • the crack of the resin layer at the time of peeling of a protective film can be suppressed much more effectively as content of the said inorganic filler is below the said upper limit.
  • the resin layer preferably contains a thermosetting compound.
  • the said thermosetting compound is not specifically limited.
  • thermosetting compound conventionally known thermosetting compounds can be used.
  • thermosetting compound examples include styrene compounds, phenoxy compounds, oxetane compounds, epoxy compounds, episulfide compounds, (meth) acrylic compounds, phenol compounds, amino compounds, unsaturated polyester compounds, polyurethane compounds, silicone compounds, and polyimide compounds. It can be mentioned. Only one type of the thermosetting compound may be used, or two or more types may be used in combination.
  • the thermosetting compound is preferably an epoxy compound.
  • the epoxy compound refers to an organic compound having at least one epoxy group. Only one type of the thermosetting compound and the epoxy compound may be used, or two or more types may be used in combination.
  • epoxy compounds examples include bisphenol A type epoxy compounds, bisphenol F type epoxy compounds, bisphenol S type epoxy compounds, phenol novolac type epoxy compounds, biphenyl type epoxy compounds, biphenyl novolac type epoxy compounds, biphenol type epoxy compounds, naphthalene type epoxy compounds , Fluorene type epoxy compounds, phenol aralkyl type epoxy compounds, naphthol aralkyl type epoxy compounds, dicyclopentadiene type epoxy compounds, anthracene type epoxy compounds, epoxy compounds having an adamantane skeleton, epoxy compounds having a tricyclodecane skeleton, naphthalene ether type
  • skeleton, etc. are mentioned.
  • the epoxy compound preferably has an aromatic skeleton, preferably has a biphenyl skeleton, and is preferably a biphenyl type epoxy compound.
  • the molecular weight of the epoxy compound is more preferably 1,000 or less. In this case, when the resin layer is laminated on the substrate, the inorganic filler can be uniformly present.
  • the molecular weight of the epoxy compound and the molecular weight of the curing agent described later mean the molecular weight that can be calculated from the structural formula. Do. Moreover, when an epoxy compound or a hardening
  • the content of the thermosetting compound (epoxy compound when the thermosetting compound is an epoxy compound) in 100% by weight of the resin layer is preferably 10% by weight or more, more preferably 20% by weight or more, and preferably Is 70% by weight or less, more preferably 65% by weight or less, still more preferably 60% by weight or less, and particularly preferably 55% by weight or less.
  • the adhesive strength of an insulating layer and a metal layer can be further heightened as the said content is more than the said minimum and below the said upper limit.
  • the resin layer preferably contains a curing agent.
  • the curing agent is not particularly limited. A conventionally known curing agent can be used as the above-mentioned curing agent. Only one type of the curing agent may be used, or two or more types may be used in combination.
  • cyanate ester compounds cyanate ester curing agents
  • phenol compounds phenol curing agents
  • amine compounds amine curing agents
  • thiol compounds thiol curing agents
  • imidazole compounds phosphine compounds
  • acid anhydrides Active ester compounds and dicyandiamide
  • the thermosetting compound is an epoxy compound
  • the curing agent preferably has a functional group capable of reacting with the epoxy group of the epoxy compound.
  • novolak-type cyanate ester resin novolak-type cyanate ester resin, bisphenol-type cyanate ester resin, the prepolymer by which these were partially trimerized, etc.
  • the novolac type cyanate ester resin include phenol novolac type cyanate ester resin and alkylphenol type cyanate ester resin.
  • bisphenol type cyanate ester resin bisphenol A type cyanate ester resin, bisphenol E type cyanate ester resin, tetramethyl bisphenol F type cyanate ester resin, etc. are mentioned.
  • cyanate ester compounds include phenol novolac type cyanate ester resins ("PT-30” and “PT-60” manufactured by Lonza Japan Co., Ltd.), and prepolymers in which bisphenol type cyanate ester resins are trimerized (Lonza Japan Company-made “BA-230S”, “BA-3000S”, “BTP-1000S” and “BTP-6020S” etc. are mentioned.
  • phenol compound examples include novolac type phenol, biphenol type phenol, naphthalene type phenol, dicyclopentadiene type phenol, aralkyl type phenol and dicyclopentadiene type phenol.
  • novolac type phenol (“TD-2091” manufactured by DIC Corporation), biphenyl novolac type phenol (“MEH-7851” manufactured by Meiwa Kasei Co., Ltd.), aralkyl type phenol compound (“MEH manufactured by Meiwa Chemical Co., Ltd.”
  • phenol having an aminotriazine skeleton (“LA1356” and “LA3018-50P” manufactured by DIC Corporation).
  • the curing agent preferably contains an active ester compound.
  • the active ester compound refers to a compound having at least one ester bond in the structure and having an aromatic ring bonded to both sides of the ester bond.
  • the compound represented by following formula (1) as a preferable example of an active ester compound is mentioned.
  • X1 and X2 each represent a group containing an aromatic ring.
  • the group containing the said aromatic ring the benzene ring which may have a substituent, the naphthalene ring which may have a substituent, etc. are mentioned.
  • a hydrocarbon group is mentioned as said substituent.
  • the carbon number of the hydrocarbon group is preferably 12 or less, more preferably 6 or less, and still more preferably 4 or less.
  • the combination of X 1 and X 2 is a combination of a benzene ring which may have a substituent and a benzene ring which may have a substituent, and which has a substituent
  • a combination of a benzene ring which may be substituted with a naphthalene ring which may have a substituent is also included.
  • the combination of X 1 and X 2 includes a combination of a naphthalene ring which may have a substituent and a naphthalene ring which may have a substituent.
  • the said active ester compound is not specifically limited.
  • Examples of commercially available products of the above active ester compounds include "HPC-8000-65T”, “EXB9416-70BK”, “EXB8100-65T” and “EXB-8000L-65MT” manufactured by DIC Corporation.
  • curing agent is 1000 or less. In this case, when the resin layer is laminated on the substrate, the inorganic filler can be uniformly present.
  • the content of the total of the thermosetting compound and the curing agent and the total content of the epoxy compound and the curing agent are preferably 100% by weight of the components excluding the inorganic filler in the resin layer. Is 75% by weight or more, more preferably 80% by weight or more, preferably 99% by weight or less, and more preferably 97% by weight or less.
  • a still better cured product is obtained when the total content of the thermosetting compound and the curing agent and the total content of the epoxy compound and the curing agent are the lower limit or more and the upper limit or less. Since the melt viscosity can be adjusted, the dispersibility of the inorganic filler is improved. Furthermore, in the curing process, it is possible to prevent the resin layer from wetting and spreading to unintended regions.
  • the dimensional change of the cured product due to heat can be further suppressed.
  • the total content of the thermosetting compound and the curing agent and the total content of the epoxy compound and the curing agent are at least the lower limit, the melt viscosity does not become too low, and the curing process Therefore, the insulating film tends to be difficult to spread excessively in the unintended region.
  • the total content of the thermosetting compound and the curing agent and the total content of the epoxy compound and the curing agent are less than or equal to the upper limit, it is easy to bury the circuit board in holes or asperities.
  • the inorganic filler tends to be difficult to be present unevenly.
  • the content of the curing agent is preferably 30% by weight or more, more preferably 40% by weight or more, and preferably 70% by weight or less in 100% by weight of the components excluding the inorganic filler in the resin layer. Preferably it is 60 weight% or less.
  • the content of the curing agent is at least the lower limit and the upper limit, a more favorable cured product is obtained, and the dielectric loss tangent is effectively reduced.
  • the resin layer preferably contains a thermoplastic resin.
  • the thermoplastic resin include polyvinyl acetal resin and phenoxy resin. Only one type of the thermoplastic resin may be used, or two or more types may be used in combination.
  • the thermoplastic resin is preferably a phenoxy resin from the viewpoint of effectively reducing the dielectric loss tangent and effectively improving the adhesion of the metal wiring regardless of the curing environment.
  • phenoxy resin By the use of phenoxy resin, the deterioration of the filling property of the resin layer to the holes or irregularities of the circuit board and the nonuniformity of the inorganic filler can be suppressed.
  • the use of the phenoxy resin makes it possible to adjust the melt viscosity, so that the dispersibility of the inorganic filler is improved, and the resin layer is less likely to wet and spread in an unintended region in the curing process.
  • the phenoxy resin is not particularly limited. A conventionally known phenoxy resin can be used as the phenoxy resin.
  • the phenoxy resin may be used alone or in combination of two or more.
  • phenoxy resin examples include a bisphenol A type skeleton, a bisphenol F type skeleton, a bisphenol S type skeleton, a biphenyl skeleton, a novolak skeleton, a naphthalene skeleton, and a phenoxy skeleton having a skeleton such as an imide skeleton.
  • Examples of commercial products of the phenoxy resin include “YP50”, “YP55” and “YP70” manufactured by Nippon Steel Sumikin Chemical Co., Ltd., and “1256B40”, “4250”, “4256H40”, “4275” manufactured by Mitsubishi Chemical Corporation. And “YX6954BH30” and “YX8100BH30”.
  • the weight average molecular weight of the thermoplastic resin is preferably 5000 or more, more preferably 10000 or more, preferably 100000 or less, more preferably 50000 or less.
  • the said weight average molecular weight of the said thermoplastic resin shows the weight average molecular weight in polystyrene conversion measured by gel permeation chromatography (GPC).
  • the content of the thermoplastic resin and the phenoxy resin is not particularly limited.
  • the content of the thermoplastic resin (the content of the phenoxy resin when the thermoplastic resin is a phenoxy resin) is preferably 1% by weight or more in 100% by weight of the components excluding the inorganic filler in the resin layer. More preferably, it is 5% by weight or more, preferably 30% by weight or less, and more preferably 15% by weight or less.
  • the content of the thermoplastic resin is not less than the lower limit and not more than the upper limit, the burying property of the resin layer to the hole or the unevenness of the circuit board is improved.
  • thermoplastic resin When the content of the thermoplastic resin is equal to or more than the above lower limit, the formation of the resin layer is further facilitated, and a better insulating layer can be obtained.
  • cured material becomes it still lower that content of the said thermoplastic resin is below the said upper limit.
  • the surface roughness of the surface of the cured product is further reduced, and the adhesion strength between the cured product and the metal layer is further enhanced.
  • the resin layer preferably contains a curing accelerator.
  • the use of the above curing accelerator makes the curing speed faster. By rapidly curing the resin layer, the crosslinked structure in the cured product becomes uniform, and the number of unreacted functional groups is reduced, resulting in an increase in the crosslinking density.
  • the curing accelerator is not particularly limited, and conventionally known curing accelerators can be used.
  • the said hardening accelerator may be used only by 1 type, and 2 or more types may be used together.
  • an imidazole compound As said hardening accelerator, an imidazole compound, a phosphorus compound, an amine compound, an organic metal compound etc. are mentioned, for example.
  • Examples of the phosphorus compounds include triphenylphosphine and the like.
  • Examples of the amine compound include diethylamine, triethylamine, diethylenetetramine, triethylenetetramine and 4,4-dimethylaminopyridine.
  • organic metal compounds examples include zinc naphthenate, cobalt naphthenate, tin octylate, cobalt octylate, bis (acetylacetonato) cobalt (II), and tris (acetylacetonato) cobalt (III).
  • the content of the curing accelerator is not particularly limited.
  • the content of the curing accelerator is preferably 0.005% by weight or more, more preferably 0.01% by weight or more, and preferably 5% by weight or less in 100% by weight of the components excluding the inorganic filler in the resin layer. More preferably, it is 3% by weight or less.
  • the resin layer does not contain or contains a solvent. Moreover, the said solvent may be used in order to obtain the slurry containing the said inorganic filler.
  • the solvent may be used alone or in combination of two or more.
  • solvents acetone, methanol, ethanol, butanol, 2-propanol, 2-methoxyethanol, 2-ethoxyethanol, 1-methoxy-2-propanol, 2-acetoxy-1-methoxypropane, toluene, xylene, methyl ethyl ketone
  • examples include N, N-dimethylformamide, methyl isobutyl ketone, N-methyl-pyrrolidone, n-hexane, cyclohexane, cyclohexanone and naphtha as a mixture.
  • the boiling point of the solvent is preferably 200 ° C. or less, more preferably 180 ° C. or less.
  • the content of the solvent in the resin layer is not particularly limited. The content of the solvent can be appropriately changed to such an extent that the layer shape of the resin layer can be maintained.
  • the resin layer contains a leveling agent, a flame retardant, a coupling agent, a coloring agent, an antioxidant, an anti-ultraviolet deterioration inhibitor, and a light-emitting agent.
  • a foaming agent, a thickener, a thixotropic agent and a thermosetting resin other than the above-mentioned thermosetting compound may be added.
  • silane coupling agent a silane coupling agent, a titanium coupling agent, an aluminum coupling agent etc. are mentioned.
  • silane coupling agent examples include vinylsilane, aminosilane, imidazolesilane and epoxysilane.
  • thermosetting resin examples include polyphenylene ether resin, divinyl benzyl ether resin, polyarylate resin, diallyl phthalate resin, polyimide resin, benzoxazine resin, benzoxazole resin, bismaleimide resin, acrylate resin and the like.
  • the following method etc. are mentioned as a method of obtaining the said resin layer.
  • An extrusion molding method in which a material for forming a resin layer is melt-kneaded and extruded using an extruder, and then formed into a film by a T die or a circular die.
  • a casting method in which a material for forming a resin layer containing a solvent is cast and formed into a film.
  • the material for forming a resin layer can be laminated
  • the extrusion molding method or the casting molding method is preferable because it can cope with thinning.
  • the film includes a sheet.
  • a resin that is a B-stage film is formed by forming a material for forming a resin layer into a film and heating and drying it at, for example, 50 ° C. to 150 ° C. for 1 minute to 10 minutes so that curing by heat does not proceed excessively You can get a layer.
  • the film-like resin layer obtainable by the above-mentioned drying step is referred to as a B-stage film.
  • the B-stage film is in a semi-cured state.
  • the semi-cured product is not completely cured, and curing can be further advanced.
  • the resin layer is preferably a B-stage film.
  • the thickness of the resin layer is preferably 5 ⁇ m.
  • the thickness is more preferably 10 ⁇ m or more, preferably 200 ⁇ m or less, and more preferably 100 ⁇ m or less.
  • the protective film is laminated on the surface of the resin layer opposite to the substrate side.
  • Examples of the material of the protective film include polyolefins such as polypropylene and polyethylene, and polyethylene terephthalate.
  • the material of the protective film is preferably a polyolefin, more preferably polypropylene.
  • the thickness of the protective film is preferably 5 ⁇ m or more, more preferably 10 ⁇ m or more, preferably 75 ⁇ m or less, more preferably 60 ⁇ m or less.
  • the laminated film according to the present invention is suitably used to form an insulating layer in a multilayer printed wiring board.
  • An insulating layer can be formed by the resin layer of the laminated film according to the present invention.
  • the multilayer printed wiring board is a multilayer printed wiring board including a circuit board, a plurality of insulating layers stacked on the circuit board, and a metal layer disposed between the plurality of insulating layers. At least one of the insulating layers is formed of the resin layer. The insulating layer in contact with the circuit board may be formed of the resin layer. An insulating layer disposed between two insulating layers may be formed by the resin layer. The insulating layer farthest from the circuit board may be formed of the resin layer. Among the plurality of insulating layers, a metal layer may be disposed on the outer surface of the insulating layer remote from the circuit board.
  • Protective film (“Alfan MA-411" manufactured by Oji F-TEX, 15 ⁇ m thick, 550 mm wide)
  • the material for forming a resin layer was prepared as follows.
  • Materials for forming a resin layer 107 parts by weight of a cyclohexanone slurry (solid content: 70% by weight) of aminophenylsilane-treated silica ("SOC 2" manufactured by Admatex Co., Ltd.) was prepared. To this slurry, 11 parts by weight of a biphenyl type epoxy compound ("NC 3000H” manufactured by Nippon Kayaku Co., Ltd.), 5 parts by weight of a bisphenol A type epoxy compound ("850S” manufactured by DIC), 7.9 parts by weight of cyclohexanone, and methyl ethyl ketone 7.7 parts by weight were added. Stirring was performed at 1200 rpm for 60 minutes using a stirrer, and it was confirmed that the undissolved matter disappeared.
  • NC 3000H manufactured by Nippon Kayaku Co., Ltd.
  • a bisphenol A type epoxy compound (“850S” manufactured by DIC)
  • Example 1 Placing a resin layer on the surface of the substrate: Using a die coater, the material (varnish) for forming the obtained resin layer is coated on the substrate with a width of 410 mm, excluding the range of 70 mm from both ends in the width direction of the substrate, It was dried at an average temperature of 100 ° C. for 3 minutes to evaporate the solvent. In this way, a resin layer having a thickness of 40 ⁇ m and a width of 410 mm was formed on the base material.
  • a protective film is thermally laminated at a pressure of 0.4 MPa and a temperature of 50 ° C. on the surface opposite to the substrate side of the resin layer, and then wound up in a roll to obtain a laminate of the substrate, the resin layer and the protective film. Obtained.
  • Step of aligning one end face in the width direction of the laminate A slitter is provided at a position 84 mm inward from one end (the other end) in the width direction of the obtained laminate and a position 66 mm inward from the end (one end) opposite to the other end. Slit at a speed of 10 m / min to align the end face of the base on the other end side, the end face of the resin layer, and the end face of the protective film.
  • a laminate film having a width (W 1 ) of the substrate in the width direction of 400 mm, a width (W 2 ) of the resin layer of 396 mm, and a width (W 3 ) of the protective film of 400 mm.
  • Example 2 Placing a resin layer on the surface of the substrate: A resin layer was formed in the same manner as in Example 1.
  • Step of aligning the end face of the other end of the laminated film A slitter is formed at a position 120 mm inward from one end (the other end) in the width direction of the obtained laminate, and 30 mm from the end (one end) opposite to the other end in the width direction. Slit at a speed of 10 m / min to align the end face of the base on the other end side, the end face of the resin layer, and the end face of the protective film.
  • a laminated film having a width (W 1 ) of the substrate in the width direction of 400 mm, a width (W 2 ) of the resin layer of 360 mm, and a width (W 3 ) of the protective film of 400 mm.
  • Example 3 Placing a resin layer on the surface of the substrate: A resin layer was formed in the same manner as in Example 1.
  • Step of aligning one end face in the width direction of the laminate A slitter is formed at a position 140 mm inward from one end (the other end) in the width direction of the obtained laminate and at a position 10 mm inward from the end (one end) opposite to the other end. Slit at a speed of 10 m / min to align the end face of the base on the other end side, the end face of the resin layer, and the end face of the protective film.
  • a laminated film having a width (W 1 ) of the substrate in the width direction of 340 mm, a width (W 2 ) of the resin layer of 400 mm, and a width (W 3 ) of the protective film of 400 mm.
  • a slitter is provided at a position 48 mm inward from one end (the other end) in the width direction of the obtained laminate, and 48 mm from the end (one end) opposite to the other end in the width direction. Slit at a speed of 10 m / min.
  • the substrate width dimension (W 1 ) is 454 mm
  • the resin layer width direction dimension (W 2 ) is 410 mm
  • the protective film width direction dimension (W 3 ) is 454 mm.
  • a laminated film was obtained in which both end faces in the width direction of the film were not aligned.
  • Step of aligning both end faces in the width direction of the laminate A slitter is provided at a position 75 mm inward from one end (the other end) in the width direction of the obtained laminate, and 75 mm from the other end (one end) in the width direction. Slit at a speed of 10 m / min.
  • the dimension in the width direction of the substrate (W 1 ), the dimension in the width direction of the resin layer (W 2 ), and the dimension in the width direction of the protective film (W 3 ) are all 400 mm.
  • a laminated film in which both end faces in the width direction of the film are aligned is obtained.
  • the laminate of the obtained base material, resin layer and glass epoxy substrate was placed in a heating oven ("SPHH-201" manufactured by ESPEC) and heated at a temperature of 170 ° C. for 60 minutes to cure the resin layer. After heating, the base was left to stand at normal temperature and cooled, and then the base material was peeled off to obtain a laminate of a resin layer (cured product) and a glass epoxy substrate.
  • SPHH-201 manufactured by ESPEC
  • the glass transition temperatures Tg of the obtained three cured product samples were measured using a temperature measurement rate of 3 ° C./min and a temperature range of -30 ° C. to 250 ° C. using “Q2000” manufactured by TA Instruments. The In the obtained measurement results, the unevenness of curing of the resin layer was evaluated by determining the difference between the maximum value and the minimum value of the Tg of the three cured product samples.

Abstract

A laminate film is provided which can suppress cracking of a resin layer during peeling of a protective film and which can suppress uneven curing of the resin layer. This laminate film is provided with a substrate, a resin layer, and a protective film. At one end of the laminate film, the end surfaces of the substrate and the protective film protrude to outside of the end surface of the resin layer, and at the other end of the laminate film, opposite of the aforementioned one end, the end surfaces of the substrate, the resin layer and the protective film are aligned; or, at both one end of the laminate film and at the other end opposite of said one end, the end surfaces of the substrate and the protective film protrude to outside of the end surface of the resin layer. The distance of protruding of the substrate and the protective film at the aforementioned other end is less than the distance of protruding of the substrate and the protective film at the aforementioned one end.<u> <b/> </u> <u> <b/> </u>

Description

積層フィルム及び積層フィルムの製造方法Laminated film and method of manufacturing laminated film
 本発明は、基材と、樹脂層と、保護フィルムとを備える積層フィルムに関する。また、本発明は、基材と、樹脂層と、保護フィルムとを備える積層フィルムの製造方法に関する。 The present invention relates to a laminated film provided with a substrate, a resin layer, and a protective film. Moreover, this invention relates to the manufacturing method of a laminated film provided with a base material, a resin layer, and a protective film.
 従来、半導体装置、積層板及びプリント配線板等の電子部品を得るために、様々な樹脂組成物が用いられている。例えば、多層プリント配線板では、内部の層間を絶縁するための絶縁層を形成したり、表層部分に位置する絶縁層を形成したりするために、樹脂組成物が用いられている。上記絶縁層を形成するために、樹脂層を備える積層フィルムが用いられている。 Heretofore, various resin compositions have been used to obtain electronic components such as semiconductor devices, laminates and printed wiring boards. For example, in a multilayer printed wiring board, a resin composition is used to form an insulating layer to insulate the inner layers, or to form an insulating layer located on the surface layer portion. In order to form the said insulating layer, the laminated film provided with the resin layer is used.
 上記積層フィルムの一例として、下記の特許文献1には、支持体と、樹脂組成物層と、保護フィルムとを備える保護フィルム付き接着シートが開示されている。この保護フィルム付き接着シートの製造時には、保護フィルム付き接着シートをスリット(切断)する工程が行われる。特許文献1の実施例では、保護フィルム付き接着シートの幅方向の両端部がスリットされている。このため、特許文献1の実施例では、支持体と樹脂組成物層と保護フィルムとの幅方向における両側の端面を揃えている。 The adhesive sheet with a protective film provided with a support body, a resin composition layer, and a protective film is disclosed by following patent document 1 as an example of the said laminated | multilayer film. At the time of manufacturing the adhesive sheet with a protective film, a step of slitting (cutting) the adhesive sheet with a protective film is performed. In the Example of patent document 1, the both ends of the width direction of the adhesive sheet with a protective film are slit. For this reason, in the Example of patent document 1, the end surface of the both sides in the width direction of a support body, a resin composition layer, and a protective film is arrange | equalized.
特開2016-74788号公報JP, 2016-74788, A
 基材と樹脂層と保護フィルムとを備える積層フィルムでは、樹脂層の使用時に、保護フィルムが剥離される。また、保護フィルムを剥離することにより露出した樹脂層を、金属層等の被着体(例えば、基板と金属である配線等との積層体)に接着させて、加熱等することにより樹脂層を硬化させる。 In the laminated film provided with a base material, a resin layer, and a protective film, a protective film peels at the time of use of a resin layer. In addition, the resin layer exposed by peeling off the protective film is adhered to an adherend such as a metal layer (for example, a laminate of a substrate and a metal wiring or the like), and the resin layer is formed by heating or the like. Cure.
 特許文献1に記載のような従来の積層フィルムでは、保護フィルムの剥離時に、樹脂層に割れが生じることがある。また、上記積層フィルムの使用時に、積層フィルムを加熱オーブン等で加熱すると、熱風により基材が樹脂層から部分的に剥離し、樹脂層に硬化むらが生じることがある。 In the conventional laminated film as described in Patent Document 1, cracks may occur in the resin layer when the protective film is peeled off. In addition, when the laminated film is heated in a heating oven or the like at the time of use of the laminated film, hot air may partially peel the base material from the resin layer to cause uneven curing in the resin layer.
 本発明の目的は、保護フィルムの剥離時の樹脂層の割れを抑えることができ、かつ、樹脂層の硬化むらを抑えることができる積層フィルムを提供することである。 An object of the present invention is to provide a laminated film which can suppress cracking of a resin layer at the time of peeling of a protective film and can suppress curing unevenness of the resin layer.
 本発明の広い局面によれば、基材と、前記基材の表面上に積層された樹脂層と、前記樹脂層の前記基材側とは反対の表面上に積層された保護フィルムとを備え、積層フィルムの一端側において、前記樹脂層の端面に対して前記基材と前記保護フィルムとの端面がそれぞれ外側にはみだしており、かつ積層フィルムの前記一端とは反対の他端側において、前記基材と前記樹脂層と前記保護フィルムとの端面が揃っているか、又は、積層フィルムの一端側と前記一端とは反対の他端側との双方において、前記樹脂層の端面に対して前記基材と前記保護フィルムとの端面がそれぞれ外側にはみだしており、かつ前記他端側における前記基材と前記保護フィルムとのはみだしている距離が、前記一端側における前記基材と前記保護フィルムとのはみだしている距離よりも小さい、積層フィルムが提供される。 According to a broad aspect of the present invention, it comprises a substrate, a resin layer laminated on the surface of the substrate, and a protective film laminated on the surface of the resin layer opposite to the substrate side. At one end side of the laminated film, the end faces of the base material and the protective film protrude outward with respect to the end face of the resin layer, and at the other end side opposite to the one end of the laminated film The end faces of the base material, the resin layer, and the protective film are aligned, or the base relative to the end face of the resin layer in both the one end side of the laminated film and the other end side opposite to the one end The end faces of the material and the protective film are respectively projected to the outside, and the protruding distance between the base material and the protective film at the other end side is the distance between the base material and the protective film at the one end side Hami Smaller than the distance you are laminated film is provided.
 本発明に係る積層フィルムのある特定の局面では、積層フィルムの一端側において、前記樹脂層の端面に対して前記基材と前記保護フィルムとの端面がそれぞれ外側にはみだしており、かつ積層フィルムの前記一端とは反対の他端側において、前記基材と前記樹脂層と前記保護フィルムとの端面が揃っている。 In a specific aspect of the laminated film according to the present invention, at one end side of the laminated film, the end faces of the substrate and the protective film protrude outward with respect to the end face of the resin layer, and At the other end side opposite to the one end, the end faces of the base, the resin layer, and the protective film are aligned.
 本発明に係る積層フィルムのある特定の局面では、積層フィルムの前記一端と前記他端とを結ぶ方向において、前記基材の寸法をWmm、前記樹脂層の寸法をWmmとしたときに、W/Wが0.9以上0.999以下である。 In a specific aspect of the laminated film according to the present invention, when the dimension of the substrate is W 1 mm and the dimension of the resin layer is W 2 mm in the direction connecting the one end and the other end of the laminated film In addition, W 2 / W 1 is 0.9 or more and 0.999 or less.
 本発明に係る積層フィルムのある特定の局面では、積層フィルムの前記一端と前記他端とを結ぶ方向において、前記樹脂層の寸法をWmm、前記保護フィルムの寸法をWmmとしたときに、W/Wが0.9以上0.999以下である。 In a specific aspect of the laminated film according to the present invention, when the dimension of the resin layer is W 2 mm and the dimension of the protective film is W 3 mm in the direction connecting the one end and the other end of the laminated film In addition, W 2 / W 3 is 0.9 or more and 0.999 or less.
 本発明に係る積層フィルムのある特定の局面では、前記樹脂層が、無機充填材と、硬化剤と、熱硬化性化合物とを含む。 In a specific aspect of the laminated film according to the present invention, the resin layer contains an inorganic filler, a curing agent, and a thermosetting compound.
 本発明に係る積層フィルムのある特定の局面では、前記樹脂層100重量%中、前記無機充填材の含有量が30重量%以上である。 In a specific aspect of the laminated film according to the present invention, the content of the inorganic filler is 30% by weight or more in 100% by weight of the resin layer.
 本発明の広い局面によれば、上述した積層フィルムの製造方法であって、基材の表面上に、樹脂層の一端側の端面に対して前記基材の端面が外側にはみだすように、樹脂層を配置する第1の工程と、前記樹脂層の前記基材側とは反対の表面上に、前記樹脂層の前記一端側の端面に対して保護フィルムの端面が外側にはみだすように、保護フィルムを配置する第2の工程とを備え、前記樹脂層の前記一端に対応する積層フィルムの一端側において、前記樹脂層の端面に対して前記基材と前記保護フィルムとの端面がそれぞれ外側にはみだしており、かつ積層フィルムの前記一端とは反対の他端側において、前記基材と前記樹脂層と前記保護フィルムとの端面が揃っているか、又は、積層フィルムの一端側と前記一端とは反対の他端側との双方において、前記樹脂層の端面に対して前記基材と前記保護フィルムとの端面がそれぞれ外側にはみだしており、かつ前記他端側における前記基材と前記保護フィルムとのはみだしている距離が、前記一端側における前記基材と前記保護フィルムとのはみだしている距離よりも小さい積層フィルムを得る、積層フィルムの製造方法が提供される。 According to a broad aspect of the present invention, there is provided a method for producing a laminated film as described above, wherein the resin is extruded on the surface of the substrate such that the end surface of the substrate is projected outward with respect to the end surface of the resin layer on one end side. In the first step of disposing a layer, and on the surface of the resin layer opposite to the substrate side, the end face of the protective layer is protected against the end face of the resin layer on the one side. And a second step of disposing a film, wherein at one end side of the laminated film corresponding to the one end of the resin layer, the end faces of the base and the protective film are outside with respect to the end face of the resin layer At the other end side of the laminated film which is over and opposite to the one end of the laminated film, the end faces of the substrate, the resin layer and the protective film are aligned, or one end side of the laminated film and the one end Both sides with opposite end In addition, the end faces of the base and the protective film protrude outward with respect to the end face of the resin layer, and the distance between the base and the protective film on the other end side is The manufacturing method of a lamination film which obtains a lamination film smaller than the projection distance of the base material and the protective film in the one end side is provided.
 本発明に係る積層フィルムの製造方法のある特定の局面では、該積層フィルムの製造方法は、前記第2の工程の後に、前記樹脂層の前記一端とは反対の他端側において、前記基材と前記樹脂層と前記保護フィルムとの端面を揃えるか、又は、前記第2の工程の後に、前記樹脂層の前記一端とは反対の他端側において、前記他端側における前記基材と前記保護フィルムとのはみだしている距離を、前記一端側における前記基材と前記保護フィルムとのはみだしている距離よりも小さくする第3の工程をさらに備える。 In a specific aspect of the method for producing a laminated film according to the present invention, the method for producing a laminated film comprises, after the second step, the base material on the other end side opposite to the one end of the resin layer Or aligning the end faces of the resin layer and the protective film, or after the second step, on the other end side opposite to the one end of the resin layer, the base material and the base on the other end side The method further comprises a third step of reducing the distance of extension with the protective film to be smaller than the distance of extension of the base material with the protective film at the one end side.
 本発明に係る積層フィルムの製造方法のある特定の局面では、前記第3の工程において、前記基材と前記樹脂層と前記保護フィルムとをスリットする。 In a specific aspect of the method for manufacturing a laminated film according to the present invention, in the third step, the base, the resin layer, and the protective film are slit.
 本発明に係る積層フィルムの製造方法のある特定の局面では、前記樹脂層の前記一端に対応する積層フィルムの一端側において、前記樹脂層の端面に対して前記基材と前記保護フィルムとの端面がそれぞれ外側にはみだしており、かつ積層フィルムの前記一端とは反対の他端側において、前記基材と前記樹脂層と前記保護フィルムとの端面が揃っている積層フィルムを得る。 In a specific aspect of the method for producing a laminated film according to the present invention, the end face of the base material and the protective film with respect to the end face of the resin layer on one end side of the laminated film corresponding to the one end of the resin layer In each case, a laminated film is obtained in which the end faces of the substrate, the resin layer and the protective film are aligned on the other end side of the laminated film opposite to the one end.
 本発明に係る積層フィルムは、基材と、上記基材の表面上に積層された樹脂層と、上記樹脂層の上記基材側とは反対の表面上に積層された保護フィルムとを備える。本発明に係る積層フィルムは、以下の(1)又は(2)の構成を備える。(1)積層フィルムの一端側において、上記樹脂層の端面に対して上記基材と上記保護フィルムとの端面がそれぞれ外側にはみだしており、かつ積層フィルムの上記一端とは反対の他端側において、上記基材と上記樹脂層と上記保護フィルムとの端面が揃っている。(2)積層フィルムの一端側と上記一端とは反対の他端側との双方において、上記樹脂層の端面に対して上記基材と上記保護フィルムとの端面がそれぞれ外側にはみだしており、かつ上記他端側における上記基材と上記保護フィルムとのはみだしている距離が、上記一端側における上記基材と上記保護フィルムとのはみだしている距離よりも小さい。本発明に係る積層フィルムでは、上記の構成が備えられているので、保護フィルムの剥離時の樹脂層の割れを抑えることができ、かつ、樹脂層の硬化むらを抑えることができる。 The laminated film according to the present invention comprises a substrate, a resin layer laminated on the surface of the substrate, and a protective film laminated on the surface of the resin layer opposite to the substrate side. The laminated film according to the present invention has the following configuration (1) or (2). (1) At one end side of the laminated film, the end faces of the base material and the protective film protrude outward with respect to the end face of the resin layer, and at the other end side opposite to the one end of the laminated film The end faces of the base, the resin layer, and the protective film are aligned. (2) The end face of the base material and the protective film is projected to the outside with respect to the end face of the resin layer on both the one end side of the laminated film and the other end side opposite to the one end, and The overhanging distance between the base and the protective film at the other end is smaller than the overhanging distance between the base and the protective film at the one end. The laminated film according to the present invention is provided with the above-described configuration, so cracking of the resin layer at the time of peeling of the protective film can be suppressed, and curing unevenness of the resin layer can be suppressed.
図1は、本発明の第1の実施形態に係る積層フィルムを模式的に示す断面図である。FIG. 1 is a cross-sectional view schematically showing a laminated film according to a first embodiment of the present invention. 図2は、本発明の第2の実施形態に係る積層フィルムを模式的に示す断面図である。FIG. 2 is a cross-sectional view schematically showing a laminated film according to a second embodiment of the present invention. 図3は、本発明の第1の実施形態に係る積層フィルムの製造方法の一例を説明するための断面図である。FIG. 3: is sectional drawing for demonstrating an example of the manufacturing method of the laminated | multilayer film which concern on the 1st Embodiment of this invention.
 以下、本発明を詳細に説明する。 Hereinafter, the present invention will be described in detail.
 本発明に係る積層フィルムは、基材と、樹脂層と、保護フィルムとを備える。本発明に係る積層フィルムでは、基材と、樹脂層と、保護フィルムとがこの順で積層されている。上記樹脂層は、上記基材の表面上に積層されている。上記保護フィルムは、上記樹脂層の上記基材側とは反対の表面上に積層されている。 The laminated film according to the present invention comprises a substrate, a resin layer, and a protective film. In the laminated film according to the present invention, the substrate, the resin layer, and the protective film are laminated in this order. The resin layer is laminated on the surface of the substrate. The protective film is laminated on the surface of the resin layer opposite to the substrate side.
 本発明に係る積層フィルムは、以下の(1)又は(2)の構成を備える。 The laminated film according to the present invention has the following configuration (1) or (2).
 (1)積層フィルムの一端側において、上記樹脂層の端面に対して上記基材と上記保護フィルムとの端面がそれぞれ外側にはみだしており、かつ積層フィルムの上記一端とは反対の他端側において、上記基材と上記樹脂層と上記保護フィルムとの端面が揃っている。(以下、積層フィルム(1)と記載することがある) (1) At one end side of the laminated film, the end faces of the base material and the protective film protrude outward with respect to the end face of the resin layer, and at the other end side opposite to the one end of the laminated film The end faces of the base, the resin layer, and the protective film are aligned. (Hereafter, it may be described as laminated film (1).)
 (2)積層フィルムの一端側と上記一端とは反対の他端側との双方において、上記樹脂層の端面に対して上記基材と上記保護フィルムとの端面がそれぞれ外側にはみだしており、かつ上記他端側における上記基材と上記保護フィルムとのはみだしている距離が、上記一端側における上記基材と上記保護フィルムとのはみだしている距離よりも小さい。(以下、積層フィルム(2)と記載することがある) (2) The end face of the base material and the protective film is projected to the outside with respect to the end face of the resin layer on both the one end side of the laminated film and the other end side opposite to the one end, and The overhanging distance between the base and the protective film at the other end is smaller than the overhanging distance between the base and the protective film at the one end. (Hereafter, it may describe as laminated film (2).)
 本発明に係る積層フィルムでは、上記の構成が備えられているので、保護フィルムの剥離時の樹脂層の割れを抑えることができ、かつ、樹脂層の硬化むらを抑えることができる。結果として、本発明に係る積層フィルムを用いて製造する多層プリント配線板等の電子部品の絶縁信頼性を向上させることができる。 The laminated film according to the present invention is provided with the above-described configuration, so cracking of the resin layer at the time of peeling of the protective film can be suppressed, and curing unevenness of the resin layer can be suppressed. As a result, it is possible to improve the insulation reliability of an electronic component such as a multilayer printed wiring board manufactured using the laminated film according to the present invention.
 本発明に係る積層フィルムでは、積層フィルムの他端側において、基材と、樹脂層と、保護フィルムとの端面が揃っているか、積層フィルムの他端側における上記基材と上記保護フィルムとのはみだしている距離が、一端側における上記基材と上記保護フィルムとのはみだしている距離よりも小さい。積層フィルムの一端と他端との双方において、基材と、樹脂層と、保護フィルムとの端面が揃っている場合、すなわち、従来の積層フィルムの場合、保護フィルムの剥離時の樹脂層の割れが生じやすい。このため、従来の積層フィルムでは、保護フィルムの剥離時の樹脂層の割れを抑えることは困難である。積層フィルムの一端と他端との双方において、基材と、樹脂層と、保護フィルムとの端面が揃っていない場合、樹脂層に対する基材と保護フィルムとのはみ出している距離によっては、樹脂層の硬化むらが生じやすいため、樹脂層の硬化むらを抑えることは困難である。 In the laminated film according to the present invention, at the other end of the laminated film, the end faces of the substrate, the resin layer, and the protective film are aligned, or the base and the protective film at the other end of the laminated film. The overhanging distance is smaller than the overhanging distance between the base material and the protective film at one end. When the end faces of the substrate, the resin layer, and the protective film are aligned at both ends of the laminated film, that is, in the case of a conventional laminated film, cracking of the resin layer at the time of peeling of the protective film Is likely to occur. For this reason, it is difficult to suppress the crack of the resin layer at the time of peeling of a protective film in the conventional laminated | multilayer film. When the end faces of the substrate, the resin layer, and the protective film are not aligned at both ends of the laminated film, depending on the distance between the substrate and the protective film with respect to the resin layer, the resin layer It is difficult to suppress the curing unevenness of the resin layer because the curing unevenness of the resin layer easily occurs.
 本発明に係る積層フィルム(1)では、積層フィルムの一端側において、上記樹脂層の端面に対して上記基材と上記保護フィルムとの端面がそれぞれ外側にはみだしている。本発明に係る積層フィルム(1)では、積層フィルムの他端側において、上記基材と上記樹脂層と上記保護フィルムとの端面が揃っている。本発明に係る積層フィルム(2)では、積層フィルムの一端側と上記一端とは反対の他端側との双方において、上記樹脂層の端面に対して上記基材と上記保護フィルムとの端面がそれぞれ外側にはみだしている。本発明に係る積層フィルム(2)では、上記他端側における上記基材と上記保護フィルムとのはみだしている距離が、上記一端側における上記基材と上記保護フィルムとのはみだしている距離よりも小さい。本発明に係る積層フィルムでは上記の構成が備えられているので、保護フィルムの剥離時の樹脂層の割れを抑えることができ、かつ、樹脂層の硬化むらを抑えることができる。また、本発明に係る積層フィルムでは、上記の構成が備えられているので、積層フィルムの一端側から、保護フィルムを容易に剥離することができる。 In the laminated film (1) according to the present invention, the end surfaces of the base and the protective film protrude outward with respect to the end surface of the resin layer on one end side of the laminated film. In the laminated film (1) according to the present invention, on the other end side of the laminated film, the end faces of the base, the resin layer, and the protective film are aligned. In the laminated film (2) according to the present invention, the end face of the base material and the protective film is to the end face of the resin layer on both the one end side of the laminated film and the other end side opposite to the one end. Each one is projected outside. In the laminated film (2) according to the present invention, the protruding distance between the base and the protective film at the other end is greater than the distance between the base and the protective film at the one end. small. The laminated film according to the present invention is provided with the above-described configuration, so that cracking of the resin layer at the time of peeling of the protective film can be suppressed, and uneven curing of the resin layer can be suppressed. Moreover, in the laminated film which concerns on this invention, since said structure is equipped, a protective film can be easily peeled from the end side of a laminated film.
 保護フィルムの剥離時の樹脂層の割れをより一層抑え、かつ、樹脂層の硬化むらをより一層抑える観点からは、積層フィルム(1)と積層フィルム(2)とのうち、積層フィルム(1)が好ましい。 From the viewpoint of further suppressing the cracking of the resin layer at the time of peeling of the protective film and further suppressing the curing unevenness of the resin layer, of the laminate film (1) and the laminate film (2), the laminate film (1) Is preferred.
 上記積層フィルム(1)の一端側において、上記樹脂層の端面に対して上記基材と上記保護フィルムとの端面をそれぞれ外側にはみださせる方法としては、積層フィルムにおける各層の積層時に、端面をずらす方法が挙げられる。 The end face of the base material and the protective film is projected outward with respect to the end face of the resin layer on one end side of the laminated film (1). There is a method of shifting the
 上記積層フィルム(2)の一端側と上記一端とは反対の他端側との双方において、上記樹脂層の端面に対して上記基材と上記保護フィルムとの端面をそれぞれ外側にはみださせる方法としては、積層フィルムにおける各層の積層時に、端面をずらす方法が挙げられる。積層フィルム(2)では、端面のずらす距離を調整する。 The end face of the base material and the protective film is projected outward with respect to the end face of the resin layer on both the one end side of the laminated film (2) and the other end side opposite to the one end As a method, the method of shifting an end surface is mentioned at the time of lamination | stacking of each layer in laminated | multilayer film. In the laminated film (2), the shift distance of the end face is adjusted.
 上記積層フィルム(1)の上記一端とは反対の他端側において、上記基材と上記樹脂層と上記保護フィルムとの端面を揃える方法としては、積層フィルムにおける各層の積層時に、端面を揃える方法、並びに、基材と樹脂層と保護フィルムとの積層体をスリットする方法が挙げられる。 As a method of aligning the end faces of the substrate, the resin layer, and the protective film on the other end side opposite to the one end of the laminated film (1), a method of aligning the end faces at the time of lamination of each layer in the laminated film And a method of slitting a laminate of a substrate, a resin layer and a protective film.
 上記積層フィルム(2)の上記他端側における上記基材と上記保護フィルムとのはみだしている距離を、上記一端側における上記基材と上記保護フィルムとのはみだしている距離よりも小さくする方法としては、以下の方法が挙げられる。積層フィルムにおける各層の積層時に、他端側における上記基材と上記保護フィルムとのはみだしている距離を、上記一端側における上記基材と上記保護フィルムとのはみだしている距離よりも小さくする方法。基材と樹脂層と保護フィルムのうちの基材及び保護フィルムをスリットする方法。 As a method of making the protrusion distance of the base material and the protective film at the other end side of the laminated film (2) smaller than the protrusion distance of the base material and the protective film at the one end side The following methods are mentioned. The method of making the protrusion distance of the said base material and the said protective film in the other end side smaller than the protrusion distance of the said base material and the said protective film in the said one end side at the time of lamination | stacking of each layer in laminated | multilayer film. A method of slitting a substrate and a protective film among a substrate, a resin layer and a protective film.
 本発明に係る積層フィルムの製造方法は、以下の(A)又は(B)の構成を備える。製造方法(A)は、上記積層フィルム(1)の製造方法であり、製造方法(B)は、上記積層フィルム(2)の製造方法である。本発明に係る積層フィルム(1)の製造方法は、以下の(A)の構成を備えることが好ましい。本発明に係る積層フィルム(2)の製造方法は、以下の(B)の構成を備えることが好ましい。 The method for producing a laminated film according to the present invention has the following configuration (A) or (B). The production method (A) is a production method of the laminated film (1), and the production method (B) is a production method of the laminated film (2). It is preferable that the manufacturing method of laminated | multilayer film (1) which concerns on this invention is equipped with the structure of the following (A). It is preferable that the manufacturing method of laminated | multilayer film (2) which concerns on this invention is equipped with the structure of the following (B).
 (A)本発明に係る積層フィルム(1)の製造方法は、基材の表面上に、樹脂層の一端側の端面に対して上記基材の端面が外側にはみだすように、樹脂層を配置する第1の工程を備える。本発明に係る積層フィルム(1)の製造方法は、上記樹脂層の上記基材側とは反対の表面上に、上記樹脂層の上記一端側の端面に対して保護フィルムの端面が外側にはみだすように、保護フィルムを配置する第2の工程を備える。本発明に係る積層フィルム(1)の製造方法では、上記樹脂層の上記一端に対応する積層フィルムの一端側において、上記樹脂層の端面に対して上記基材と上記保護フィルムとの端面がそれぞれ外側にはみだしている積層フィルムを得る。本発明に係る積層フィルム(1)の製造方法では、積層フィルムの上記一端とは反対の他端側において、上記基材と上記樹脂層と上記保護フィルムとの端面が揃っている積層フィルム(1)を得る。 (A) In the method for producing a laminated film (1) according to the present invention, the resin layer is disposed on the surface of the substrate such that the end surface of the substrate protrudes outward with respect to the end surface on one end side of the resin layer. The first step of In the method for producing a laminated film (1) according to the present invention, the end face of the protective film protrudes outward with respect to the end face of the one end side of the resin layer on the surface of the resin layer opposite to the substrate side. As such, a second step of disposing a protective film is provided. In the method for producing a laminated film (1) according to the present invention, the end face of the base material and the protective film is to the end face of the resin layer on one end side of the laminated film corresponding to the one end of the resin layer Obtain a laminated film protruding outside. In the method for producing a laminated film (1) according to the present invention, at the other end side of the laminated film opposite to the one end, an end face of the substrate, the resin layer and the protective film are aligned. Get).
 (B)本発明に係る積層フィルム(2)の製造方法は、基材の表面上に、樹脂層の一端側の端面に対して上記基材の端面が外側にはみだすように、樹脂層を配置する第1の工程を備える。この第1の工程において、基材の表面上に、樹脂層の一端側と上記一端とは反対の他端側との双方の端面に対して上記基材の端面が外側にはみだすように、樹脂層を配置することが好ましい。本発明に係る積層フィルム(2)の製造方法は、上記樹脂層の上記基材側とは反対の表面上に、上記樹脂層の上記一端側の端面に対して保護フィルムの端面が外側にはみだすように、保護フィルムを配置する第2の工程を備える。この第2の工程において、上記樹脂層の上記基材側とは反対の表面上に、上記樹脂層の上記一端側と上記一端とは反対の他端側との双方の端面に対して保護フィルムの端面が外側にはみだすように、保護フィルムを配置することが好ましい。本発明に係る積層フィルム(2)の製造方法では、積層フィルムの一端側と上記一端とは反対の他端側との双方において、上記樹脂層の端面に対して上記基材と上記保護フィルムとの端面がそれぞれ外側にはみだしている積層フィルム(2)を得る。本発明に係る積層フィルム(2)の製造方法では、上記他端側における上記基材と上記保護フィルムとのはみだしている距離が、上記一端側における上記基材と上記保護フィルムとのはみだしている距離よりも小さい積層フィルム(2)を得る。 (B) In the method for producing a laminated film (2) according to the present invention, the resin layer is disposed on the surface of the substrate such that the end surface of the substrate protrudes outward with respect to the end surface on one end side of the resin layer The first step of In this first step, the resin is extruded on the surface of the base so that the end face of the base protrudes outward with respect to both end faces of the resin layer at the one end and the other end opposite to the one end. It is preferred to arrange the layers. In the method for producing a laminated film (2) according to the present invention, the end face of the protective film protrudes outward with respect to the end face of the one end side of the resin layer on the surface of the resin layer opposite to the substrate side. As such, a second step of disposing a protective film is provided. In the second step, on the surface of the resin layer opposite to the substrate side, a protective film is applied to both end faces of the one end of the resin layer and the other end opposite to the one end. It is preferable to arrange a protective film so that the end face of the outer side protrudes. In the method for producing a laminated film (2) according to the present invention, the base material and the protective film with respect to the end face of the resin layer on both the one end side of the laminated film and the other end side opposite to the one end The laminated film (2) which the end surface of each has protruded on the outer side is obtained. In the method for producing a laminated film (2) according to the present invention, the protruding distance between the base and the protective film on the other end side is protruding from the base and the protective film on the one end side Obtain a laminated film (2) smaller than the distance.
 本発明に係る積層フィルムの製造方法(A)は、上記第2の工程の後に、上記樹脂層の上記一端とは反対の他端側において、上記基材と上記樹脂層と上記保護フィルムとの端面を揃える第3の工程をさらに備えることが好ましい。本発明に係る積層フィルムの製造方法(A)では、上記第2の工程において、上記樹脂層の上記一端とは反対の他端側において、上記基材と上記樹脂層と上記保護フィルムとの端面を揃えてもよい。 In the method (A) for producing a laminated film according to the present invention, after the second step, at the other end side of the resin layer opposite to the one end, the base material, the resin layer, and the protective film Preferably, the method further comprises a third step of aligning the end faces. In the method for producing a laminated film according to the present invention, in the second step, an end face of the base material, the resin layer, and the protective film on the other end side opposite to the one end of the resin layer. May be aligned.
 本発明に係る積層フィルムの製造方法(B)は、上記第2の工程の後に、上記樹脂層の上記一端とは反対の他端側において、上記他端側における上記基材と上記保護フィルムとのはみだしている距離を、上記一端側における上記基材と上記保護フィルムとのはみだしている距離よりも小さくする第3の工程をさらに備えることが好ましい。本発明に係る積層フィルムの製造方法(B)では、上記第2の工程において、上記他端側における上記基材と上記保護フィルムとのはみだしている距離を、上記一端側における上記基材と上記保護フィルムとのはみだしている距離よりも小さくしてもよい。 In the method (B) for producing a laminated film according to the present invention, after the second step, at the other end side of the resin layer opposite to the one end, the base material and the protective film at the other end side It is preferable to further include a third step of reducing the protruding distance of the one end side than the protruding distance of the base material and the protective film on the one end side. In the method (B) for producing a laminated film according to the present invention, in the second step, the protruding distance between the base and the protective film on the other end side is the distance between the base on the one end and the base It may be smaller than the protruding distance with the protective film.
 積層フィルム(1)の他端側において端面をより一層平坦にする観点、積層フィルム(2)の上記他端側における上記基材と上記保護フィルムとのはみだしている距離を、上記一端側における上記基材と上記保護フィルムとのはみだしている距離よりもより一層小さくする観点からは、以下のスリットを行うことが好ましい。上記第3の工程において、上記樹脂層をスリットすることが好ましい。上記第3の工程において、上記基材と上記樹脂層と上記保護フィルムとをスリットすることが好ましい。 In order to further flatten the end face on the other end side of the laminated film (1), the protruding distance between the base and the protective film on the other end side of the laminated film (2) From the viewpoint of further reducing the distance between the base and the protective film, it is preferable to perform the following slits. In the third step, the resin layer is preferably slit. In the third step, the substrate, the resin layer and the protective film are preferably slit.
 本発明に係る積層フィルムでは、樹脂層の使用時に、保護フィルムは剥離される。保護フィルム剥離後の上記樹脂層の表面には、一般に金属層等の被着体(例えば、基板と金属である配線との積層体等)が積層される。 In the laminated film according to the present invention, the protective film is peeled off when the resin layer is used. An adherend such as a metal layer (for example, a laminate of a substrate and a metal wire) is generally laminated on the surface of the resin layer after the protective film is peeled off.
 以下、図面を参照しつつ、本発明をより具体的に説明する。 Hereinafter, the present invention will be more specifically described with reference to the drawings.
 図1は、本発明の第1の実施形態に係る積層フィルムを模式的に示す断面図である。図1は、上記積層フィルム(1)を示す断面図である。 FIG. 1 is a cross-sectional view schematically showing a laminated film according to a first embodiment of the present invention. FIG. 1 is a cross-sectional view showing the laminated film (1).
 積層フィルム1は、一端1aと、一端1aとは反対の他端1bとを有する。積層フィルム1の一端1aと他端1bとは対向し合う両側の端部である。 The laminated film 1 has one end 1a and the other end 1b opposite to the one end 1a. The one end 1a and the other end 1b of the laminated film 1 are end portions on both sides facing each other.
 積層フィルム1は、基材4と、樹脂層2と、保護フィルム3とを備える。保護フィルム3は、樹脂層2の第1の表面2aに積層されている。基材4は、樹脂層2の第1の表面2aとは反対側の第2の表面2bに積層されている。 The laminated film 1 includes a base 4, a resin layer 2, and a protective film 3. The protective film 3 is laminated on the first surface 2 a of the resin layer 2. The substrate 4 is laminated on the second surface 2 b opposite to the first surface 2 a of the resin layer 2.
 積層フィルム1の一端1aと他端1bとを結ぶ方向において、基材4の寸法は、樹脂層2の寸法よりも大きい。保護フィルム3の寸法は、樹脂層2の寸法よりも大きい。積層フィルム1の一端1aと他端1bとを結ぶ方向において、樹脂層2の寸法は、基材4の寸法よりも小さい。樹脂層2の寸法は、保護フィルム3の寸法よりも小さい。 The dimension of the base 4 is larger than the dimension of the resin layer 2 in the direction connecting the one end 1 a and the other end 1 b of the laminated film 1. The dimension of the protective film 3 is larger than the dimension of the resin layer 2. The dimension of the resin layer 2 is smaller than the dimension of the substrate 4 in the direction connecting the one end 1 a and the other end 1 b of the laminated film 1. The dimension of the resin layer 2 is smaller than the dimension of the protective film 3.
 積層フィルム1の一端1a側において、樹脂層2の端面に対して基材4と保護フィルム3との端面がそれぞれ外側にはみだしている。積層フィルム1の一端1aにおいて、基材4と、樹脂層2との端面は揃っておらず、樹脂層2と保護フィルム3との端面は揃っていない。積層フィルム1の一端1a側の端面は、樹脂層2部分が凹んだ凹形状である。積層フィルム1の一端1a側において、基材4に樹脂層2が積層されていない部分が存在し、保護フィルム3に樹脂層2が積層されていない部分が存在する。 On the end 1 a side of the laminated film 1, the end faces of the base material 4 and the protective film 3 protrude to the outside with respect to the end face of the resin layer 2. At one end 1 a of the laminated film 1, the end faces of the substrate 4 and the resin layer 2 are not aligned, and the end faces of the resin layer 2 and the protective film 3 are not aligned. The end face on the end 1 a side of the laminated film 1 has a concave shape in which the resin layer 2 portion is concaved. On the end 1 a side of the laminated film 1, there is a portion where the resin layer 2 is not laminated on the base material 4, and a portion where the resin layer 2 is not laminated on the protective film 3.
 積層フィルム1の他端1b側において、基材4と、樹脂層2と、保護フィルム3との端面は揃っている。 On the other end 1 b side of the laminated film 1, the end faces of the base 4, the resin layer 2 and the protective film 3 are aligned.
 図2は、本発明の第2の実施形態に係る積層フィルムを模式的に示す断面図である。図2は、上記積層フィルム(2)を示す断面図である。 FIG. 2 is a cross-sectional view schematically showing a laminated film according to a second embodiment of the present invention. FIG. 2 is a cross-sectional view showing the laminated film (2).
 積層フィルム1Aは、一端1Aaと、一端1Aaとは反対の他端1Abとを有する。積層フィルム1Aの一端1Aaと他端1Abとは対向し合う両側の端部である。 The laminated film 1A has one end 1Aa and the other end 1Ab opposite to the one end 1Aa. One end 1Aa and the other end 1Ab of the laminated film 1A are ends on both sides facing each other.
 積層フィルム1Aは、基材4Aと、樹脂層2Aと、保護フィルム3Aとを備える。保護フィルム3Aは、樹脂層2Aの第1の表面2Aaに積層されている。基材4Aは、樹脂層2Aの第1の表面2Aaとは反対側の第2の表面2Abに積層されている。 The laminated film 1A includes a base 4A, a resin layer 2A, and a protective film 3A. Protective film 3A is laminated on first surface 2Aa of resin layer 2A. The base 4A is laminated on a second surface 2Ab opposite to the first surface 2Aa of the resin layer 2A.
 積層フィルム1Aの一端1Aaと他端1Abとを結ぶ方向において、基材4Aの寸法は、樹脂層2Aの寸法よりも大きい。保護フィルム3Aの寸法は、樹脂層2Aの寸法よりも大きい。積層フィルム1Aの一端1Aaと他端1Abとを結ぶ方向において、樹脂層2Aの寸法は、基材4Aの寸法よりも小さい。樹脂層2Aの寸法は、保護フィルム3Aの寸法よりも小さい。 The dimension of the base 4A is larger than the dimension of the resin layer 2A in the direction connecting the one end 1Aa and the other end 1Ab of the laminated film 1A. The dimensions of the protective film 3A are larger than the dimensions of the resin layer 2A. The dimension of the resin layer 2A is smaller than the dimension of the base 4A in the direction connecting the one end 1Aa and the other end 1Ab of the laminated film 1A. The dimension of the resin layer 2A is smaller than the dimension of the protective film 3A.
 積層フィルム1Aの一端1Aa側において、樹脂層2Aの端面に対して基材4Aと保護フィルム3Aとの端面がそれぞれ外側にはみだしている。積層フィルム1Aの一端1Aaにおいて、基材4Aと、樹脂層2Aとの端面は揃っておらず、樹脂層2Aと保護フィルム3Aとの端面は揃っていない。積層フィルム1Aの一端1Aa側の端面は、樹脂層2A部分が凹んだ凹形状である。積層フィルム1Aの一端1Aa側において、基材4Aに樹脂層2Aが積層されていない部分が存在し、保護フィルム3Aに樹脂層2Aが積層されていない部分が存在する。 On the end 1Aa side of the laminated film 1A, the end faces of the base 4A and the protective film 3A protrude outward with respect to the end face of the resin layer 2A. At one end 1Aa of the laminated film 1A, the end faces of the substrate 4A and the resin layer 2A are not aligned, and the end faces of the resin layer 2A and the protective film 3A are not aligned. The end surface on the end 1Aa side of the laminated film 1A has a concave shape in which the resin layer 2A portion is concaved. On the end 1Aa side of the laminated film 1A, there is a portion where the resin layer 2A is not laminated on the base 4A, and a portion where the resin layer 2A is not laminated on the protective film 3A.
 積層フィルム1Aの他端1Ab側において、樹脂層2Aの端面に対して基材4Aと保護フィルム3Aとの端面がそれぞれ外側にはみだしている。積層フィルム1Aの他端1Abにおいて、基材4Aと、樹脂層2Aとの端面は揃っておらず、樹脂層2Aと保護フィルム3Aとの端面は揃っていない。積層フィルム1Aの他端1Ab側の端面は、樹脂層2A部分が凹んだ凹形状である。積層フィルム1Aの他端1Ab側において、基材4Aに樹脂層2Aが積層されていない部分が存在し、保護フィルム3Aに樹脂層2Aが積層されていない部分が存在する。 On the other end 1Ab side of the laminated film 1A, the end faces of the base 4A and the protective film 3A protrude outward with respect to the end face of the resin layer 2A. In the other end 1Ab of the laminated film 1A, the end faces of the base 4A and the resin layer 2A are not aligned, and the end faces of the resin layer 2A and the protective film 3A are not aligned. The end face on the other end 1Ab side of the laminated film 1A has a concave shape in which the resin layer 2A portion is concaved. On the other end 1Ab side of the laminated film 1A, there is a portion where the resin layer 2A is not laminated on the base 4A, and a portion where the resin layer 2A is not laminated on the protective film 3A.
 積層フィルム1Aの他端1Ab側における基材4Aと保護フィルム3Aとのはみ出している距離は、一端1Aa側における基材4Aと保護フィルム3Aとのはみ出している距離よりも小さい。 The protruding distance of the base 4A and the protective film 3A on the other end 1Ab side of the laminated film 1A is smaller than the protruding distance of the base 4A and the protective film 3A on the one end 1Aa side.
 図3は、本発明の第1の実施形態に係る積層フィルムの製造方法の一例を説明するための断面図である。図3は、上記積層フィルムの製造方法(A)の一例を説明するための断面図である。 FIG. 3: is sectional drawing for demonstrating an example of the manufacturing method of the laminated | multilayer film which concern on the 1st Embodiment of this invention. FIG. 3: is sectional drawing for demonstrating an example of the manufacturing method (A) of the said laminated | multilayer film.
 図1に示す積層フィルム1は、例えば、図3(a)と、図3(b-1)又は図3(b-2)と、図3(c)とに示す各工程を経て得ることができる。図3(a)と、図3(b-1)又は図3(b-2)と、図3(c)とに示す各工程を一部変更することで、図2に示す積層フィルム1Aを得ることもできる。 The laminated film 1 shown in FIG. 1 may be obtained, for example, through the steps shown in FIG. 3 (a), FIG. 3 (b-1) or FIG. 3 (b-2) and FIG. 3 (c). it can. By partially changing each process shown in FIG. 3A, FIG. 3B, FIG. 3B, and FIG. 3C, the laminated film 1A shown in FIG. You can also get it.
 図3(a)に示すように、基材4の表面上に、樹脂層2の一端側の端面に対して基材4の端面が外側にはみだすように、樹脂層2を配置する(第1の工程)。図3(a)では、樹脂層2の上記一端とは反対の他端側の端面に対して基材4の端面が外側にはみだすように、樹脂層2を配置している。樹脂層2の上記他端側の端面と基材4の端面とが揃うように、樹脂層2を配置してもよい。 As shown in FIG. 3A, the resin layer 2 is disposed on the surface of the base 4 so that the end face of the base 4 protrudes outward with respect to the end face on one end side of the resin layer 2 (first Process). In FIG. 3A, the resin layer 2 is disposed such that the end face of the base material 4 protrudes outside with respect to the end face on the other end side opposite to the one end of the resin layer 2. The resin layer 2 may be disposed so that the end face on the other end side of the resin layer 2 and the end face of the base 4 are aligned.
 樹脂層2を配置する際に、樹脂層2を形成するための樹脂組成物を基材4の表面上に塗工し、樹脂組成物をフィルム化して、樹脂層を形成してもよい。 When the resin layer 2 is disposed, the resin composition for forming the resin layer 2 may be coated on the surface of the substrate 4 and the resin composition may be formed into a film to form the resin layer.
 上記樹脂組成物により樹脂層を形成する際に、樹脂組成物を乾燥することが好ましい。乾燥時の温度は、好ましくは80℃以上、より好ましくは100℃以上、好ましくは160℃以下、より好ましくは140℃以下である。乾燥することにより、樹脂組成物中の溶剤を揮発させることができる。樹脂層2はBステージフィルムであることが好ましい。 When forming a resin layer with the said resin composition, it is preferable to dry a resin composition. The temperature at the time of drying is preferably 80 ° C. or more, more preferably 100 ° C. or more, preferably 160 ° C. or less, more preferably 140 ° C. or less. By drying, the solvent in the resin composition can be volatilized. The resin layer 2 is preferably a B-stage film.
 次に、図3(b-1)又は図3(b-2)に示すように、樹脂層2の基材4側とは反対の表面上に、樹脂層2の上記一端側の端面に対して保護フィルム3の端面が外側にはみだすように、保護フィルム3を配置する(第2の工程)。 Next, as shown in FIG. 3 (b-1) or FIG. 3 (b-2), on the surface of the resin layer 2 opposite to the base 4 side, with respect to the end face of the one end side of the resin layer 2 The protective film 3 is disposed such that the end face of the protective film 3 protrudes outward (second step).
 図3(b-1)及び図3(b-2)ではいずれも、樹脂層2の一端とは反対の他端側において、基材4と樹脂層2と保護フィルム3との端面は揃っていない。図3(b-1)では、樹脂層2の上記一端とは反対の他端側の端面に対して保護フィルム3の端面が外側にはみだすように、樹脂層2を配置している。図3(b-2)では、樹脂層2の上記一端とは反対の他端側の端面に対して保護フィルム3の端面が内側になるように、樹脂層2を配置している。第2の工程では、樹脂層2の一端とは反対の他端側において、基材と樹脂層と保護フィルムとの端面を揃えてもよい。 In FIG. 3 (b-1) and FIG. 3 (b-2), the end faces of the substrate 4, the resin layer 2 and the protective film 3 are aligned at the other end side opposite to one end of the resin layer 2 Absent. In FIG. 3 (b-1), the resin layer 2 is disposed such that the end face of the protective film 3 protrudes outside with respect to the end face of the resin layer 2 on the other end side opposite to the one end. In FIG. 3 (b-2), the resin layer 2 is disposed such that the end face of the protective film 3 is inside with respect to the end face on the other end side opposite to the one end of the resin layer 2. In the second step, on the other end side opposite to the one end of the resin layer 2, the end faces of the substrate, the resin layer and the protective film may be aligned.
 保護フィルムの樹脂層の基材側とは反対の表面上への配置方法は、ラミネートにより行うことが好ましい。この場合、ラミネート時の温度は、好ましくは70℃以下、より好ましくは65℃以下である。ラミネート時の温度の下限は、特に限定されないが、通常、20℃又は25℃等である。また、ラミネート時の圧力は、好ましくは0.01MPa以上、より好ましくは0.02MPa以上、好ましくは1.0MPa以下、より好ましくは0.8MPa以下である。 It is preferable to perform the arrangement | positioning method on the surface opposite to the base material side of the resin layer of a protective film by lamination. In this case, the temperature during lamination is preferably 70 ° C. or less, more preferably 65 ° C. or less. The lower limit of the temperature during lamination is not particularly limited, but is usually 20 ° C. or 25 ° C. or the like. The pressure during lamination is preferably 0.01 MPa or more, more preferably 0.02 MPa or more, preferably 1.0 MPa or less, more preferably 0.8 MPa or less.
 図3(b-1)及び図3(b-2)では、樹脂層2の一端とは反対の他端側において、基材4と樹脂層2と保護フィルム3との端面は揃っていない。このため、図3(c)に示すように、樹脂層2の上記一端とは反対の他端側において、基材4と樹脂層2と保護フィルム3との端面を揃える工程を行う(第3の工程)。例えば、図3(b-1)及び図3(b-2)に示すスリット位置Xにて、基材4と樹脂層2と保護フィルム3との積層体をスリットすることで、基材4と樹脂層2と保護フィルム3との端面を容易に揃えることができる。結果として、図1に示す積層フィルム1を得ることができる。 In FIG. 3 (b-1) and FIG. 3 (b-2), on the other end side opposite to the one end of the resin layer 2, the end faces of the substrate 4, the resin layer 2 and the protective film 3 are not aligned. For this reason, as shown in FIG. 3C, on the other end side of the resin layer 2 opposite to the one end, the step of aligning the end faces of the base 4, the resin layer 2 and the protective film 3 is performed (third Process). For example, by slitting the laminate of the substrate 4, the resin layer 2 and the protective film 3 at the slit position X shown in FIG. 3 (b-1) and FIG. 3 (b-2), The end faces of the resin layer 2 and the protective film 3 can be easily aligned. As a result, the laminated film 1 shown in FIG. 1 can be obtained.
 上記積層フィルムは、MD(Machine Direction)方向と、TD(Transverse Direction)方向とを有することが好ましい。MD方向は、積層フィルムの製造時の積層フィルムの流れ方向であり、例えば、長さ方向である。TD方向は、積層フィルムの製造時の積層フィルムの流れ方向と直交する方向であり、かつ積層フィルムの厚み方向と直交する方向である。上記積層フィルムが、MD方向と、TD方向とを有する場合、上記TD方向が、幅方向である。上記積層フィルムの上記一端と上記他端とは、積層フィルムの幅方向の対向し合う両側の端部であることが好ましい。 The laminated film preferably has a MD (Machine Direction) direction and a TD (Transverse Direction) direction. The MD direction is the flow direction of the laminated film at the time of production of the laminated film, and is, for example, the length direction. The TD direction is a direction perpendicular to the flow direction of the laminated film at the time of production of the laminated film, and a direction perpendicular to the thickness direction of the laminated film. When the laminated film has an MD direction and a TD direction, the TD direction is the width direction. It is preferable that the said one end and said other end of the said laminated film are the edge parts of the both sides which the width direction of a laminated film opposes.
 本発明に係る積層フィルムの上記一端と上記他端とを結ぶ方向において、上記基材の寸法をWmm、上記樹脂層の寸法をWmm、上記保護フィルムの寸法をWmmとする。本発明に係る積層フィルムでは、通常、WがWより大きく、かつ、WがWより大きい。本発明に係る積層フィルムは、通常、W>Wを満足し、W>Wを満足する。 The dimension of the substrate is W 1 mm, the dimension of the resin layer is W 2 mm, and the dimension of the protective film is W 3 mm in the direction connecting the one end and the other end of the laminated film according to the present invention. . In the multilayer film according to the present invention, typically, W 1 is greater than W 2, and, W 3 is larger than W 2. The laminated film according to the present invention generally satisfies W 1 > W 2 and W 3 > W 2 .
 W/W(樹脂層の寸法の基材の寸法に対する比)は、好ましくは0.9以上、より好ましくは0.92以上、更に好ましくは0.94以上、特に好ましくは0.96以上である。W/W(樹脂層の寸法の基材の寸法に対する比)は、好ましくは0.999以下、より好ましくは0.998以下、更に好ましくは0.997以下、特に好ましくは0.996以下である。W/Wが上記下限以上及び上記上限以下であると、保護フィルムの剥離時の樹脂層の割れをより一層抑え、かつ、樹脂層の硬化むらをより一層抑えることができる。 W 2 / W 1 (the ratio of the size of the resin layer to the size of the base material) is preferably 0.9 or more, more preferably 0.92 or more, still more preferably 0.94 or more, particularly preferably 0.96 or more It is. W 2 / W 1 (the ratio of the size of the resin layer to the size of the base material) is preferably at most 0.999, more preferably at most 0.998, still more preferably at most 0.997, particularly preferably at most 0.996 It is. When W 2 / W 1 is equal to or less than the above lower limit or more and the upper limit, cracking of the resin layer at the time of peeling the protective film further suppressed, and it is possible to suppress the hardening irregularity of resin layer further.
 W/W(樹脂層の寸法の保護フィルムの寸法に対する比)は、好ましくは0.9以上、より好ましくは0.92以上、更に好ましくは0.94以上、特に好ましくは0.96以上である。W/W(樹脂層の寸法の保護フィルムの寸法に対する比)は、好ましくは0.999以下、より好ましくは0.998以下、更に好ましくは0.997以下、特に好ましくは0.996以下である。W/Wが上記下限以上及び上記上限以下であると、保護フィルムの剥離時の樹脂層の割れをより一層抑え、かつ、樹脂層の硬化むらをより一層抑えることができる。 W 2 / W 3 (the ratio of the dimension of the resin layer to the dimension of the protective film) is preferably 0.9 or more, more preferably 0.92 or more, still more preferably 0.94 or more, particularly preferably 0.96 or more It is. The ratio of W 2 / W 3 (the ratio of the size of the resin layer to the size of the protective film) is preferably at most 0.999, more preferably at most 0.998, still more preferably at most 0.997, particularly preferably at most 0.996 It is. When W 2 / W 3 is equal to or less than the above lower limit or more and the upper limit, cracking of the resin layer at the time of peeling the protective film further suppressed, and it is possible to suppress the hardening irregularity of resin layer further.
 W/W(保護フィルムの寸法の基材の寸法に対する比)は、好ましくは0.997以上、より好ましくは0.998以上、更に好ましくは0.999以上、特に好ましくは1.0以上である。W/W(保護フィルムの寸法の基材の寸法に対する比)は、好ましくは1.01以下、より好ましくは1.009以下、更に好ましくは1.008以下、特に好ましくは1.007以下である。W/Wが上記下限以上及び上記上限以下であると、保護フィルムの剥離時の樹脂層の割れをより一層抑え、かつ、樹脂層の硬化むらをより一層抑えることができる。 W 3 / W 1 (the ratio of the dimension of the protective film to the dimension of the substrate) is preferably 0.997 or more, more preferably 0.998 or more, still more preferably 0.999 or more, particularly preferably 1.0 or more It is. W 3 / W 1 (ratio of dimension of protective film to dimension of substrate) is preferably 1.01 or less, more preferably 1.009 or less, still more preferably 1.008 or less, particularly preferably 1.007 or less It is. When W 3 / W 1 is equal to or less than the above lower limit or more and the upper limit, cracking of the resin layer at the time of peeling the protective film further suppressed, and it is possible to suppress the hardening irregularity of resin layer further.
 上記積層フィルム(1)及び上記積層フィルム(2)において、一端側における基材のはみだしている距離は、0mmを超え、好ましくは3mm以上、好ましくは15mm以下、より好ましくは10mm以下である。上記積層フィルム(1)及び上記積層フィルム(2)において、一端側における保護フィルムのはみだしている距離は、0mmを超え、好ましくは3mm以上、好ましくは15mm以下、より好ましくは10mm以下である。上記はみだしている距離がそれぞれ上記上限以下であると、保護フィルムの剥離時の樹脂層の割れをより一層抑え、かつ、樹脂層の硬化むらをより一層抑えることができる。 In the laminated film (1) and the laminated film (2), the overhanging distance of the substrate at one end side is more than 0 mm, preferably 3 mm or more, preferably 15 mm or less, more preferably 10 mm or less. In the laminated film (1) and the laminated film (2), the extension distance of the protective film on one end side is more than 0 mm, preferably 3 mm or more, preferably 15 mm or less, more preferably 10 mm or less. The crack of the resin layer at the time of peeling of a protective film can be further suppressed as the said protrusion distance is each below the said upper limit, and the hardening nonuniformity of a resin layer can be suppressed further.
 上記積層フィルム(2)において、他端側における基材のはみだしている距離と、一端側における基材のはみだしている距離との差の絶対値は、0mmを超え、好ましくは3mm以上、より好ましくは5mm以上、更に好ましくは10mm以上である。上記積層フィルム(2)において、他端側における保護フィルムのはみだしている距離と、一端側における保護フィルムのはみだしている距離との差の絶対値は、0mmを超え、好ましくは3mm以上、より好ましくは5mm以上、更に好ましくは10mm以上である。上記差の絶対値がそれぞれ上記下限以上であると、保護フィルムの剥離時の樹脂層の割れをより一層抑え、かつ、樹脂層の硬化むらをより一層抑えることができる。 In the laminated film (2), the absolute value of the difference between the overhanging distance of the substrate at the other end and the overhanging distance of the substrate at one end exceeds 0 mm, preferably 3 mm or more, more preferably Is 5 mm or more, more preferably 10 mm or more. In the laminated film (2), the absolute value of the difference between the protruding distance of the protective film at the other end and the protruding distance of the protective film at the one end exceeds 0 mm, preferably 3 mm or more, more preferably Is 5 mm or more, more preferably 10 mm or more. The crack of the resin layer at the time of peeling of a protective film can be further suppressed as the absolute value of the above-mentioned difference is more than the above-mentioned minimum, respectively, and the hardening nonuniformity of a resin layer can be suppressed further.
 上記積層フィルム(2)において、他端側における基材のはみだしている距離は、0mmを超え、好ましくは10mm以下、より好ましくは5mm以下、更に好ましくは1mm以下である。上記積層フィルム(2)において、他端側における保護フィルムのはみだしている距離は、0mmを超え、好ましくは10mm以下、より好ましくは5mm以下、更に好ましくは1mm以下である。上記はみだしている距離がそれぞれ上記上限以下であると、保護フィルムの剥離時の樹脂層の割れをより一層抑え、かつ、樹脂層の硬化むらをより一層抑えることができる。 In the laminated film (2), the overhanging distance of the substrate on the other end side is more than 0 mm, preferably 10 mm or less, more preferably 5 mm or less, still more preferably 1 mm or less. In the laminated film (2), the overhanging distance of the protective film on the other end side is more than 0 mm, preferably 10 mm or less, more preferably 5 mm or less, still more preferably 1 mm or less. The crack of the resin layer at the time of peeling of a protective film can be further suppressed as the said protrusion distance is each below the said upper limit, and the hardening nonuniformity of a resin layer can be suppressed further.
 以下、本発明に係る積層フィルムを構成する各層の詳細を説明する。 Hereinafter, the detail of each layer which comprises the laminated film which concerns on this invention is demonstrated.
 (基材)
 上記基材としては、金属箔、ポリエチレンテレフタレートフィルム及びポリブチレンテレフタレートフィルム等のポリエステル樹脂フィルム、ポリエチレンフィルム及びポリプロピレンフィルム等のオレフィン樹脂フィルム、並びにポリイミドフィルム等が挙げられる。上記基材の表面は、必要に応じて、離型処理されていてもよい。上記基材は、金属箔であってもよく、樹脂フィルムであってもよい。上記基材は、樹脂フィルムであることが好ましい。上記基材として、金属箔を用いる場合、上記金属箔は銅箔であることが好ましい。
(Base material)
Examples of the substrate include metal foils, polyester resin films such as polyethylene terephthalate films and polybutylene terephthalate films, olefin resin films such as polyethylene films and polypropylene films, and polyimide films. The surface of the substrate may be subjected to release treatment, if necessary. The substrate may be a metal foil or a resin film. The substrate is preferably a resin film. When using metal foil as said base material, it is preferable that the said metal foil is copper foil.
 積層フィルムの操作性を良好にし、また、樹脂層のラミネート性を良好にする観点からは、上記基材の厚みは、好ましくは5μm以上、より好ましくは10μm以上、好ましくは75μm以下、より好ましくは60μm以下である。 The thickness of the above-mentioned base material is preferably 5 μm or more, more preferably 10 μm or more, preferably 75 μm or less, from the viewpoint of making the operability of the laminated film good and making the lamination of the resin layer good. 60 μm or less.
 (樹脂層)
 上記樹脂層は、基材の表面上に積層される。上記樹脂層は、後述する無機充填材と、後述する硬化剤と、後述する熱可塑性化合物とを含むことが好ましい。
(Resin layer)
The resin layer is laminated on the surface of the substrate. It is preferable that the said resin layer contains the inorganic filler mentioned later, the hardening | curing agent mentioned later, and the thermoplastic compound mentioned later.
 以下、樹脂層に用いられる各成分の詳細を説明する。 Hereinafter, the detail of each component used for a resin layer is demonstrated.
 [無機充填材]
 上記樹脂層は、無機充填材を含むことが好ましい。無機充填材の使用により、上記樹脂層の硬化物の熱による寸法変化が小さくなる。さらに、上記樹脂層の硬化物の表面の表面粗さがより一層小さくなり、硬化物と金属層との接着強度が高くなる。上記無機充填材は、1種のみが用いられてもよく、2種以上が併用されていてもよい。
[Inorganic filler]
The resin layer preferably contains an inorganic filler. The use of the inorganic filler reduces the dimensional change of the cured resin layer due to heat. Furthermore, the surface roughness of the surface of the cured product of the resin layer is further reduced, and the adhesive strength between the cured product and the metal layer is increased. The inorganic filler may be used alone or in combination of two or more.
 従来の積層フィルムでは、樹脂層が無機充填材を含むと、保護フィルムの剥離時の樹脂層の割れが発生しやすい。しかしながら、本発明に係る積層フィルムでは、樹脂層が無機充填材を含む場合でも、保護フィルムの剥離時の樹脂層の割れを効果的に抑えることができる。 In the conventional laminated film, when the resin layer contains an inorganic filler, cracking of the resin layer at the time of peeling of the protective film tends to occur. However, in the laminated film according to the present invention, even when the resin layer contains an inorganic filler, cracking of the resin layer at the time of peeling of the protective film can be effectively suppressed.
 上記無機充填材としては、シリカ、タルク、クレイ、マイカ、ハイドロタルサイト、アルミナ、酸化マグネシウム、水酸化アルミニウム、窒化アルミニウム、及び窒化ホウ素等が挙げられる。 Examples of the inorganic filler include silica, talc, clay, mica, hydrotalcite, alumina, magnesium oxide, aluminum hydroxide, aluminum nitride, and boron nitride.
 硬化物の表面の表面粗さを小さくし、硬化物と金属層との接着強度をより一層高くし、かつ硬化物の表面により一層微細な配線を形成し、かつ硬化物により良好な絶縁信頼性を付与する観点からは、上記無機充填材は、シリカ又はアルミナであることが好ましく、シリカであることがより好ましく、溶融シリカであることが更に好ましい。シリカの使用により、硬化物の熱膨張率がより一層低くなり、かつ硬化物の表面の表面粗さが効果的に小さくなり、硬化物と金属層との接着強度が効果的に高くなる。シリカの形状は球状であることが好ましい。 The surface roughness of the surface of the cured product is reduced, the adhesion strength between the cured product and the metal layer is further enhanced, and finer wiring is formed by the surface of the cured product, and the insulation reliability is improved by the cured product. From the viewpoint of imparting, the above-mentioned inorganic filler is preferably silica or alumina, more preferably silica, and still more preferably fused silica. The use of silica further lowers the thermal expansion coefficient of the cured product, effectively reduces the surface roughness of the surface of the cured product, and effectively increases the adhesion strength between the cured product and the metal layer. The shape of the silica is preferably spherical.
 硬化環境によらず、樹脂の硬化を進め、硬化物のガラス転移温度を効果的に高くし、硬化物の熱線膨張係数を効果的に小さくする観点からは、上記無機充填材は球状シリカであることが好ましい。 From the viewpoint of promoting curing of the resin regardless of the curing environment, effectively raising the glass transition temperature of the cured product, and effectively reducing the coefficient of linear thermal expansion of the cured product, the inorganic filler is spherical silica Is preferred.
 上記無機充填材の平均粒径は、好ましくは10nm以上、より好ましくは50nm以上、更に好ましくは100nm以上、好ましくは5μm以下、より好ましくは3μm以下、更に好ましくは1μm以下、特に好ましくは0.5μm以下である。上記無機充填材の平均粒径が上記下限以上及び上記上限以下であると、硬化物と金属層との接着強度がより一層高くなる。 The average particle diameter of the above inorganic filler is preferably 10 nm or more, more preferably 50 nm or more, still more preferably 100 nm or more, preferably 5 μm or less, more preferably 3 μm or less, still more preferably 1 μm or less, particularly preferably 0.5 μm It is below. The adhesive strength of hardened | cured material and a metal layer becomes it still higher that the average particle diameter of the said inorganic filler is more than the said minimum and below the said upper limit.
 上記無機充填材の平均粒径として、50%となるメディアン径(d50)の値が採用される。上記平均粒径は、レーザー回折散乱方式の粒度分布測定装置を用いて測定可能である。 As the average particle diameter of the above-mentioned inorganic filler, a value of median diameter (d50) which is 50% is adopted. The average particle size can be measured using a laser diffraction scattering type particle size distribution measuring apparatus.
 上記無機充填材は、球状であることが好ましく、球状シリカであることがより好ましい。この場合には、硬化物の表面の表面粗さが効果的に小さくなり、更に硬化物と金属層との接着強度が効果的に高くなる。上記無機充填材が球状である場合には、上記無機充填材のアスペクト比は好ましくは2以下、より好ましくは1.5以下である。 The inorganic filler is preferably spherical, and more preferably spherical silica. In this case, the surface roughness of the surface of the cured product is effectively reduced, and the adhesion strength between the cured product and the metal layer is effectively increased. When the inorganic filler is spherical, the aspect ratio of the inorganic filler is preferably 2 or less, more preferably 1.5 or less.
 上記無機充填材は、表面処理されていることが好ましく、カップリング剤による表面処理物であることがより好ましく、シランカップリング剤による表面処理物であることが更に好ましい。これにより、粗化硬化物の表面の表面粗さがより一層小さくなり、硬化物と金属層との接着強度がより一層高くなり、かつ硬化物の表面により一層微細な配線が形成され、かつより一層良好な配線間絶縁信頼性及び層間絶縁信頼性を硬化物に付与することができる。 The inorganic filler is preferably surface-treated, more preferably a surface-treated product with a coupling agent, and still more preferably a surface-treated product with a silane coupling agent. Thereby, the surface roughness of the surface of the roughened cured product is further reduced, the adhesion strength between the cured product and the metal layer is further enhanced, and a finer wiring is formed by the surface of the cured product, and the like. It is possible to provide the cured product with even better inter-wiring insulation reliability and interlayer insulation reliability.
 上記カップリング剤としては、シランカップリング剤、チタンカップリング剤及びアルミニウムカップリング剤等が挙げられる。上記シランカップリング剤としては、メタクリルシラン、アクリルシラン、アミノシラン、イミダゾールシラン、ビニルシラン、及びエポキシシラン等が挙げられる。 As said coupling agent, a silane coupling agent, a titanium coupling agent, an aluminum coupling agent etc. are mentioned. Examples of the above-mentioned silane coupling agent include methacryl silane, acryl silane, aminosilane, imidazole silane, vinyl silane, and epoxy silane.
 上記樹脂層100重量%中、上記無機充填材の含有量は、好ましくは30重量%以上、より好ましくは40重量%以上、更に好ましくは50重量%以上、特に好ましくは60重量%以上、最も好ましくは70重量%以上、好ましくは90重量%以下、より好ましくは85重量%以下、更に好ましくは83重量%以下、特に好ましくは80重量%以下である。上記無機充填材の含有量が上記下限以上及び上記上限以下であると、硬化物の表面の表面粗さがより一層小さくなり、硬化物と金属層との接着強度がより一層高くなり、かつ硬化物の表面により一層微細な配線が形成される。さらに、この無機充填材の含有量であれば、硬化物の熱膨張率を低くすることと同時に、スミア除去性を良好にすることも可能である。上記無機充填材の含有量が上記下限以上であると、誘電正接が効果的に低くなる。上記無機充填材の含有量が上記上限以下であると、保護フィルムの剥離時の樹脂層の割れをより一層効果的に抑えることができる。 The content of the inorganic filler is preferably 30% by weight or more, more preferably 40% by weight or more, still more preferably 50% by weight or more, particularly preferably 60% by weight or more, and most preferably 100% by weight of the resin layer. Is 70% by weight or more, preferably 90% by weight or less, more preferably 85% by weight or less, still more preferably 83% by weight or less, particularly preferably 80% by weight or less. When the content of the inorganic filler is the lower limit or more and the upper limit or less, the surface roughness of the surface of the cured product is further decreased, and the adhesion strength between the cured product and the metal layer is further enhanced, and cured. Finer wiring is formed by the surface of the object. Furthermore, if it is content of this inorganic filler, it is also possible to make smear removability good simultaneously with lowering the coefficient of thermal expansion of a hardened material. When the content of the inorganic filler is at least the lower limit, the dielectric loss tangent is effectively reduced. The crack of the resin layer at the time of peeling of a protective film can be suppressed much more effectively as content of the said inorganic filler is below the said upper limit.
 [熱硬化性化合物]
 上記樹脂層は、熱硬化性化合物を含むことが好ましい。上記熱硬化性化合物は特に限定されない。上記熱硬化性化合物として、従来公知の熱硬化性化合物を使用可能である。
[Thermosetting compound]
The resin layer preferably contains a thermosetting compound. The said thermosetting compound is not specifically limited. As the above-mentioned thermosetting compound, conventionally known thermosetting compounds can be used.
 上記熱硬化性化合物としては、スチレン化合物、フェノキシ化合物、オキセタン化合物、エポキシ化合物、エピスルフィド化合物、(メタ)アクリル化合物、フェノール化合物、アミノ化合物、不飽和ポリエステル化合物、ポリウレタン化合物、シリコーン化合物及びポリイミド化合物等が挙げられる。上記熱硬化性化合物は、1種のみが用いられてもよく、2種以上が併用されてもよい。 Examples of the thermosetting compound include styrene compounds, phenoxy compounds, oxetane compounds, epoxy compounds, episulfide compounds, (meth) acrylic compounds, phenol compounds, amino compounds, unsaturated polyester compounds, polyurethane compounds, silicone compounds, and polyimide compounds. It can be mentioned. Only one type of the thermosetting compound may be used, or two or more types may be used in combination.
 上記熱硬化性化合物は、エポキシ化合物であることが好ましい。該エポキシ化合物は、少なくとも1個のエポキシ基を有する有機化合物をいう。上記熱硬化性化合物及び上記エポキシ化合物は、1種のみが用いられてもよく、2種以上が併用されてもよい。 The thermosetting compound is preferably an epoxy compound. The epoxy compound refers to an organic compound having at least one epoxy group. Only one type of the thermosetting compound and the epoxy compound may be used, or two or more types may be used in combination.
 上記エポキシ化合物としては、ビスフェノールA型エポキシ化合物、ビスフェノールF型エポキシ化合物、ビスフェノールS型エポキシ化合物、フェノールノボラック型エポキシ化合物、ビフェニル型エポキシ化合物、ビフェニルノボラック型エポキシ化合物、ビフェノール型エポキシ化合物、ナフタレン型エポキシ化合物、フルオレン型エポキシ化合物、フェノールアラルキル型エポキシ化合物、ナフトールアラルキル型エポキシ化合物、ジシクロペンタジエン型エポキシ化合物、アントラセン型エポキシ化合物、アダマンタン骨格を有するエポキシ化合物、トリシクロデカン骨格を有するエポキシ化合物、ナフチレンエーテル型エポキシ化合物、及びトリアジン核を骨格に有するエポキシ化合物等が挙げられる。 Examples of the epoxy compounds include bisphenol A type epoxy compounds, bisphenol F type epoxy compounds, bisphenol S type epoxy compounds, phenol novolac type epoxy compounds, biphenyl type epoxy compounds, biphenyl novolac type epoxy compounds, biphenol type epoxy compounds, naphthalene type epoxy compounds , Fluorene type epoxy compounds, phenol aralkyl type epoxy compounds, naphthol aralkyl type epoxy compounds, dicyclopentadiene type epoxy compounds, anthracene type epoxy compounds, epoxy compounds having an adamantane skeleton, epoxy compounds having a tricyclodecane skeleton, naphthalene ether type The epoxy compound, the epoxy compound which has a triazine nucleus in frame | skeleton, etc. are mentioned.
 硬化物と金属層との接着強度をより一層高くする観点からは、上記エポキシ化合物は、芳香族骨格を有することが好ましく、ビフェニル骨格を有することが好ましく、ビフェニル型エポキシ化合物であることが好ましい。 From the viewpoint of further increasing the adhesive strength between the cured product and the metal layer, the epoxy compound preferably has an aromatic skeleton, preferably has a biphenyl skeleton, and is preferably a biphenyl type epoxy compound.
 上記エポキシ化合物の分子量は1000以下であることがより好ましい。この場合には、樹脂層を基材上にラミネートした場合に、無機充填材を均一に存在させることができる。 The molecular weight of the epoxy compound is more preferably 1,000 or less. In this case, when the resin layer is laminated on the substrate, the inorganic filler can be uniformly present.
 エポキシ化合物の分子量、及び後述する硬化剤の分子量は、エポキシ化合物又は硬化剤が重合体ではない場合、及びエポキシ化合物又は硬化剤の構造式が特定できる場合は、当該構造式から算出できる分子量を意味する。また、エポキシ化合物又は硬化剤が重合体である場合は、重量平均分子量を意味する。 When the epoxy compound or the curing agent is not a polymer, and when the structural formula of the epoxy compound or the curing agent can be specified, the molecular weight of the epoxy compound and the molecular weight of the curing agent described later mean the molecular weight that can be calculated from the structural formula. Do. Moreover, when an epoxy compound or a hardening | curing agent is a polymer, a weight average molecular weight is meant.
 上記樹脂層100重量%中、上記熱硬化性化合物(熱硬化性化合物がエポキシ化合物である場合にはエポキシ化合物)の含有量は、好ましくは10重量%以上、より好ましくは20重量%以上、好ましくは70重量%以下、より好ましくは65重量%以下、更に好ましくは60重量%以下、特に好ましくは55重量%以下である。上記含有量が上記下限以上及び上記上限以下であると、絶縁層と金属層との接着強度をより一層高くすることができる。 The content of the thermosetting compound (epoxy compound when the thermosetting compound is an epoxy compound) in 100% by weight of the resin layer is preferably 10% by weight or more, more preferably 20% by weight or more, and preferably Is 70% by weight or less, more preferably 65% by weight or less, still more preferably 60% by weight or less, and particularly preferably 55% by weight or less. The adhesive strength of an insulating layer and a metal layer can be further heightened as the said content is more than the said minimum and below the said upper limit.
 [硬化剤]
 上記樹脂層は、硬化剤を含むことが好ましい。上記硬化剤は特に限定されない。上記硬化剤として、従来公知の硬化剤を使用可能である。上記硬化剤は1種のみが用いられてもよく、2種以上が併用されてもよい。
[Hardener]
The resin layer preferably contains a curing agent. The curing agent is not particularly limited. A conventionally known curing agent can be used as the above-mentioned curing agent. Only one type of the curing agent may be used, or two or more types may be used in combination.
 上記硬化剤としては、シアネートエステル化合物(シアネートエステル硬化剤)、フェノール化合物(フェノール硬化剤)、アミン化合物(アミン硬化剤)、チオール化合物(チオール硬化剤)、イミダゾール化合物、ホスフィン化合物、酸無水物、活性エステル化合物及びジシアンジアミド等が挙げられる。上記熱硬化性化合物が、エポキシ化合物である場合、上記硬化剤は、上記エポキシ化合物のエポキシ基と反応可能な官能基を有することが好ましい。 As the curing agent, cyanate ester compounds (cyanate ester curing agents), phenol compounds (phenol curing agents), amine compounds (amine curing agents), thiol compounds (thiol curing agents), imidazole compounds, phosphine compounds, acid anhydrides, Active ester compounds and dicyandiamide may, for example, be mentioned. When the thermosetting compound is an epoxy compound, the curing agent preferably has a functional group capable of reacting with the epoxy group of the epoxy compound.
 上記シアネートエステル化合物としては、ノボラック型シアネートエステル樹脂、ビスフェノール型シアネートエステル樹脂、並びにこれらが一部三量化されたプレポリマー等が挙げられる。上記ノボラック型シアネートエステル樹脂としては、フェノールノボラック型シアネートエステル樹脂及びアルキルフェノール型シアネートエステル樹脂等が挙げられる。上記ビスフェノール型シアネートエステル樹脂としては、ビスフェノールA型シアネートエステル樹脂、ビスフェノールE型シアネートエステル樹脂及びテトラメチルビスフェノールF型シアネートエステル樹脂等が挙げられる。 As said cyanate ester compound, novolak-type cyanate ester resin, bisphenol-type cyanate ester resin, the prepolymer by which these were partially trimerized, etc. are mentioned. Examples of the novolac type cyanate ester resin include phenol novolac type cyanate ester resin and alkylphenol type cyanate ester resin. As said bisphenol type cyanate ester resin, bisphenol A type cyanate ester resin, bisphenol E type cyanate ester resin, tetramethyl bisphenol F type cyanate ester resin, etc. are mentioned.
 上記シアネートエステル化合物の市販品としては、フェノールノボラック型シアネートエステル樹脂(ロンザジャパン社製「PT-30」及び「PT-60」)、及びビスフェノール型シアネートエステル樹脂が三量化されたプレポリマー(ロンザジャパン社製「BA-230S」、「BA-3000S」、「BTP-1000S」及び「BTP-6020S」)等が挙げられる。 Commercially available products of the above cyanate ester compounds include phenol novolac type cyanate ester resins ("PT-30" and "PT-60" manufactured by Lonza Japan Co., Ltd.), and prepolymers in which bisphenol type cyanate ester resins are trimerized (Lonza Japan Company-made "BA-230S", "BA-3000S", "BTP-1000S" and "BTP-6020S" etc. are mentioned.
 上記フェノール化合物としては、ノボラック型フェノール、ビフェノール型フェノール、ナフタレン型フェノール、ジシクロペンタジエン型フェノール、アラルキル型フェノール及びジシクロペンタジエン型フェノール等が挙げられる。 Examples of the phenol compound include novolac type phenol, biphenol type phenol, naphthalene type phenol, dicyclopentadiene type phenol, aralkyl type phenol and dicyclopentadiene type phenol.
 上記フェノール化合物の市販品としては、ノボラック型フェノール(DIC社製「TD-2091」)、ビフェニルノボラック型フェノール(明和化成社製「MEH-7851」)、アラルキル型フェノール化合物(明和化成社製「MEH-7800」)、並びにアミノトリアジン骨格を有するフェノール(DIC社製「LA1356」及び「LA3018-50P」)等が挙げられる。 As commercial products of the above-mentioned phenol compounds, novolac type phenol (“TD-2091” manufactured by DIC Corporation), biphenyl novolac type phenol (“MEH-7851” manufactured by Meiwa Kasei Co., Ltd.), aralkyl type phenol compound (“MEH manufactured by Meiwa Chemical Co., Ltd.” And phenol having an aminotriazine skeleton (“LA1356” and “LA3018-50P” manufactured by DIC Corporation).
 誘電正接をより一層低くする観点から、上記硬化剤は、活性エステル化合物を含むことが好ましい。上記活性エステル化合物とは、構造体中にエステル結合を少なくとも1つ含み、かつ、エステル結合の両側に芳香族環が結合している化合物をいう。活性エステル化合物の好ましい例としては、下記式(1)で表される化合物が挙げられる。 From the viewpoint of further lowering the dielectric loss tangent, the curing agent preferably contains an active ester compound. The active ester compound refers to a compound having at least one ester bond in the structure and having an aromatic ring bonded to both sides of the ester bond. The compound represented by following formula (1) as a preferable example of an active ester compound is mentioned.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 上記式(1)中、X1及びX2はそれぞれ、芳香族環を含む基を表す。上記芳香族環を含む基の好ましい例としては、置換基を有していてもよいベンゼン環、及び置換基を有していてもよいナフタレン環等が挙げられる。上記置換基としては、炭化水素基が挙げられる。該炭化水素基の炭素数は、好ましくは12以下、より好ましくは6以下、更に好ましくは4以下である。 In the above formula (1), X1 and X2 each represent a group containing an aromatic ring. As a preferable example of the group containing the said aromatic ring, the benzene ring which may have a substituent, the naphthalene ring which may have a substituent, etc. are mentioned. A hydrocarbon group is mentioned as said substituent. The carbon number of the hydrocarbon group is preferably 12 or less, more preferably 6 or less, and still more preferably 4 or less.
 上記式(1)中、X1及びX2の組み合わせとしては、置換基を有していてもよいベンゼン環と、置換基を有していてもよいベンゼン環との組み合わせ、置換基を有していてもよいベンゼン環と、置換基を有していてもよいナフタレン環との組み合わせが挙げられる。さらに、X1及びX2の組み合わせとしては、置換基を有していてもよいナフタレン環と、置換基を有していてもよいナフタレン環との組み合わせが挙げられる。 In the above formula (1), the combination of X 1 and X 2 is a combination of a benzene ring which may have a substituent and a benzene ring which may have a substituent, and which has a substituent A combination of a benzene ring which may be substituted with a naphthalene ring which may have a substituent is also included. Furthermore, the combination of X 1 and X 2 includes a combination of a naphthalene ring which may have a substituent and a naphthalene ring which may have a substituent.
 上記活性エステル化合物は特に限定されない。上記活性エステル化合物の市販品としては、DIC社製「HPC-8000-65T」、「EXB9416-70BK」、「EXB8100-65T」、及び「EXB-8000L-65MT」等が挙げられる。 The said active ester compound is not specifically limited. Examples of commercially available products of the above active ester compounds include "HPC-8000-65T", "EXB9416-70BK", "EXB8100-65T" and "EXB-8000L-65MT" manufactured by DIC Corporation.
 上記硬化剤の分子量は1000以下であることが好ましい。この場合には、樹脂層を基材上にラミネートした場合に、無機充填材を均一に存在させることができる。 It is preferable that the molecular weight of the said hardening | curing agent is 1000 or less. In this case, when the resin layer is laminated on the substrate, the inorganic filler can be uniformly present.
 上記樹脂層中の上記無機充填材を除く成分100重量%中、上記熱硬化性化合物と上記硬化剤との合計の含有量、及び上記エポキシ化合物と上記硬化剤との合計の含有量は、好ましくは75重量%以上、より好ましくは80重量%以上、好ましくは99重量%以下、より好ましくは97重量%以下である。上記熱硬化性化合物と上記硬化剤との合計の含有量、及び上記エポキシ化合物と上記硬化剤との合計の含有量が上記下限以上及び上記上限以下であると、より一層良好な硬化物が得られ、溶融粘度を調整することができるために無機充填材の分散性が良好になる。さらに、硬化過程で、意図しない領域に樹脂層が濡れ拡がることを防止できる。さらに、硬化物の熱による寸法変化をより一層抑制できる。また、上記熱硬化性化合物と上記硬化剤との合計の含有量、及び上記エポキシ化合物と上記硬化剤との合計の含有量が上記下限以上であると、溶融粘度が低くなりすぎず、硬化過程で、意図しない領域に絶縁フィルムが過度に濡れ拡がりにくくなる傾向がある。また、上記熱硬化性化合物と上記硬化剤との合計の含有量、及び上記エポキシ化合物と上記硬化剤との合計の含有量が上記上限以下であると、回路基板の穴又は凹凸に対する埋め込みが容易になり、さらに無機充填材が不均一に存在しにくくなる傾向がある。 The content of the total of the thermosetting compound and the curing agent and the total content of the epoxy compound and the curing agent are preferably 100% by weight of the components excluding the inorganic filler in the resin layer. Is 75% by weight or more, more preferably 80% by weight or more, preferably 99% by weight or less, and more preferably 97% by weight or less. A still better cured product is obtained when the total content of the thermosetting compound and the curing agent and the total content of the epoxy compound and the curing agent are the lower limit or more and the upper limit or less. Since the melt viscosity can be adjusted, the dispersibility of the inorganic filler is improved. Furthermore, in the curing process, it is possible to prevent the resin layer from wetting and spreading to unintended regions. Furthermore, the dimensional change of the cured product due to heat can be further suppressed. In addition, when the total content of the thermosetting compound and the curing agent and the total content of the epoxy compound and the curing agent are at least the lower limit, the melt viscosity does not become too low, and the curing process Therefore, the insulating film tends to be difficult to spread excessively in the unintended region. In addition, when the total content of the thermosetting compound and the curing agent and the total content of the epoxy compound and the curing agent are less than or equal to the upper limit, it is easy to bury the circuit board in holes or asperities. In addition, the inorganic filler tends to be difficult to be present unevenly.
 上記樹脂層中の上記無機充填材を除く成分100重量%中、上記硬化剤の含有量は、好ましくは30重量%以上、より好ましくは40重量%以上であり、好ましくは70重量%以下、より好ましくは60重量%以下である。上記硬化剤の含有量が上記下限以上及び上記上限以下であると、より一層良好な硬化物が得られ、誘電正接が効果的に低くなる。 The content of the curing agent is preferably 30% by weight or more, more preferably 40% by weight or more, and preferably 70% by weight or less in 100% by weight of the components excluding the inorganic filler in the resin layer. Preferably it is 60 weight% or less. When the content of the curing agent is at least the lower limit and the upper limit, a more favorable cured product is obtained, and the dielectric loss tangent is effectively reduced.
 [熱可塑性樹脂]
 上記樹脂層は、熱可塑性樹脂を含むことが好ましい。上記熱可塑性樹脂としては、ポリビニルアセタール樹脂及びフェノキシ樹脂等が挙げられる。上記熱可塑性樹脂は、1種のみが用いられてもよく、2種以上が併用されてもよい。
[Thermoplastic resin]
The resin layer preferably contains a thermoplastic resin. Examples of the thermoplastic resin include polyvinyl acetal resin and phenoxy resin. Only one type of the thermoplastic resin may be used, or two or more types may be used in combination.
 硬化環境によらず、誘電正接を効果的に低くし、かつ、金属配線の密着性を効果的に高める観点からは、上記熱可塑性樹脂は、フェノキシ樹脂であることが好ましい。フェノキシ樹脂の使用により、樹脂層の回路基板の穴又は凹凸に対する埋め込み性の悪化及び無機充填材の不均一化が抑えられる。また、フェノキシ樹脂の使用により、溶融粘度を調整可能であるために無機充填材の分散性が良好になり、かつ硬化過程で、意図しない領域に樹脂層が濡れ拡がり難くなる。上記フェノキシ樹脂は特に限定されない。上記フェノキシ樹脂として、従来公知のフェノキシ樹脂を使用可能である。上記フェノキシ樹脂は、1種のみが用いられてもよく、2種以上が併用されてもよい。 The thermoplastic resin is preferably a phenoxy resin from the viewpoint of effectively reducing the dielectric loss tangent and effectively improving the adhesion of the metal wiring regardless of the curing environment. By the use of phenoxy resin, the deterioration of the filling property of the resin layer to the holes or irregularities of the circuit board and the nonuniformity of the inorganic filler can be suppressed. In addition, the use of the phenoxy resin makes it possible to adjust the melt viscosity, so that the dispersibility of the inorganic filler is improved, and the resin layer is less likely to wet and spread in an unintended region in the curing process. The phenoxy resin is not particularly limited. A conventionally known phenoxy resin can be used as the phenoxy resin. The phenoxy resin may be used alone or in combination of two or more.
 上記フェノキシ樹脂としては、例えば、ビスフェノールA型の骨格、ビスフェノールF型の骨格、ビスフェノールS型の骨格、ビフェニル骨格、ノボラック骨格、ナフタレン骨格及びイミド骨格などの骨格を有するフェノキシ樹脂等が挙げられる。 Examples of the phenoxy resin include a bisphenol A type skeleton, a bisphenol F type skeleton, a bisphenol S type skeleton, a biphenyl skeleton, a novolak skeleton, a naphthalene skeleton, and a phenoxy skeleton having a skeleton such as an imide skeleton.
 上記フェノキシ樹脂の市販品としては、例えば、新日鉄住金化学社製の「YP50」、「YP55」及び「YP70」、並びに三菱化学社製の「1256B40」、「4250」、「4256H40」、「4275」、「YX6954BH30」及び「YX8100BH30」等が挙げられる。 Examples of commercial products of the phenoxy resin include “YP50”, “YP55” and “YP70” manufactured by Nippon Steel Sumikin Chemical Co., Ltd., and “1256B40”, “4250”, “4256H40”, “4275” manufactured by Mitsubishi Chemical Corporation. And “YX6954BH30” and “YX8100BH30”.
 保存安定性により一層優れた樹脂層を得る観点からは、上記熱可塑性樹脂の重量平均分子量は、好ましくは5000以上、より好ましくは10000以上、好ましくは100000以下、より好ましくは50000以下である。 From the viewpoint of obtaining a resin layer which is more excellent in storage stability, the weight average molecular weight of the thermoplastic resin is preferably 5000 or more, more preferably 10000 or more, preferably 100000 or less, more preferably 50000 or less.
 上記熱可塑性樹脂の上記重量平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)により測定されたポリスチレン換算での重量平均分子量を示す。 The said weight average molecular weight of the said thermoplastic resin shows the weight average molecular weight in polystyrene conversion measured by gel permeation chromatography (GPC).
 上記熱可塑性樹脂及び上記フェノキシ樹脂の含有量は特に限定されない。樹脂層中の上記無機充填材を除く成分100重量%中、上記熱可塑性樹脂の含有量(上記熱可塑性樹脂がフェノキシ樹脂である場合にはフェノキシ樹脂の含有量)は好ましくは1重量%以上、より好ましくは5重量%以上、好ましくは30重量%以下、より好ましくは15重量%以下である。上記熱可塑性樹脂の含有量が上記下限以上及び上記上限以下であると、樹脂層の回路基板の穴又は凹凸に対する埋め込み性が良好になる。上記熱可塑性樹脂の含有量が上記下限以上であると、樹脂層の形成がより一層容易になり、より一層良好な絶縁層が得られる。上記熱可塑性樹脂の含有量が上記上限以下であると、硬化物の熱膨張率がより一層低くなる。硬化物の表面の表面粗さがより一層小さくなり、硬化物と金属層との接着強度がより一層高くなる。 The content of the thermoplastic resin and the phenoxy resin is not particularly limited. The content of the thermoplastic resin (the content of the phenoxy resin when the thermoplastic resin is a phenoxy resin) is preferably 1% by weight or more in 100% by weight of the components excluding the inorganic filler in the resin layer. More preferably, it is 5% by weight or more, preferably 30% by weight or less, and more preferably 15% by weight or less. When the content of the thermoplastic resin is not less than the lower limit and not more than the upper limit, the burying property of the resin layer to the hole or the unevenness of the circuit board is improved. When the content of the thermoplastic resin is equal to or more than the above lower limit, the formation of the resin layer is further facilitated, and a better insulating layer can be obtained. The thermal expansion coefficient of hardened | cured material becomes it still lower that content of the said thermoplastic resin is below the said upper limit. The surface roughness of the surface of the cured product is further reduced, and the adhesion strength between the cured product and the metal layer is further enhanced.
 [硬化促進剤]
 上記樹脂層は、硬化促進剤を含むことが好ましい。上記硬化促進剤の使用により、硬化速度がより一層速くなる。樹脂層を速やかに硬化させることで、硬化物における架橋構造が均一になると共に、未反応の官能基数が減り、結果的に架橋密度が高くなる。上記硬化促進剤は特に限定されず、従来公知の硬化促進剤を使用可能である。上記硬化促進剤は、1種のみが用いられてもよく、2種以上が併用されてもよい。
[Hardening accelerator]
The resin layer preferably contains a curing accelerator. The use of the above curing accelerator makes the curing speed faster. By rapidly curing the resin layer, the crosslinked structure in the cured product becomes uniform, and the number of unreacted functional groups is reduced, resulting in an increase in the crosslinking density. The curing accelerator is not particularly limited, and conventionally known curing accelerators can be used. The said hardening accelerator may be used only by 1 type, and 2 or more types may be used together.
 上記硬化促進剤としては、例えば、イミダゾール化合物、リン化合物、アミン化合物及び有機金属化合物等が挙げられる。 As said hardening accelerator, an imidazole compound, a phosphorus compound, an amine compound, an organic metal compound etc. are mentioned, for example.
 上記イミダゾール化合物としては、2-ウンデシルイミダゾール、2-ヘプタデシルイミダゾール、2-メチルイミダゾール、2-エチル-4-メチルイミダゾール、2-フェニルイミダゾール、2-フェニル-4-メチルイミダゾール、1-ベンジル-2-メチルイミダゾール、1-ベンジル-2-フェニルイミダゾール、1,2-ジメチルイミダゾール、1-シアノエチル-2-メチルイミダゾール、1-シアノエチル-2-エチル-4-メチルイミダゾール、1-シアノエチル-2-ウンデシルイミダゾール、1-シアノエチル-2-フェニルイミダゾール、1-シアノエチル-2-ウンデシルイミダゾリウムトリメリテイト、1-シアノエチル-2-フェニルイミダゾリウムトリメリテイト、2,4-ジアミノ-6-[2’-メチルイミダゾリル-(1’)]-エチル-s-トリアジン、2,4-ジアミノ-6-[2’-ウンデシルイミダゾリル-(1’)]-エチル-s-トリアジン、2,4-ジアミノ-6-[2’-エチル-4’-メチルイミダゾリル-(1’)]-エチル-s-トリアジン、2,4-ジアミノ-6-[2’-メチルイミダゾリル-(1’)]-エチル-s-トリアジンイソシアヌル酸付加物、2-フェニルイミダゾールイソシアヌル酸付加物、2-メチルイミダゾールイソシアヌル酸付加物、2-フェニル-4,5-ジヒドロキシメチルイミダゾール及び2-フェニル-4-メチル-5-ジヒドロキシメチルイミダゾール等が挙げられる。 As the above imidazole compounds, 2-undecylimidazole, 2-heptadecylimidazole, 2-methylimidazole, 2-ethyl-4-methylimidazole, 2-phenylimidazole, 2-phenyl-4-methylimidazole, 1-benzyl- 2-methylimidazole, 1-benzyl-2-phenylimidazole, 1,2-dimethylimidazole, 1-cyanoethyl-2-methylimidazole, 1-cyanoethyl-2-ethyl-4-methylimidazole, 1-cyanoethyl-2-unne Decylimidazole, 1-cyanoethyl-2-phenylimidazole, 1-cyanoethyl-2-undecylimidazolium trimellitate, 1-cyanoethyl-2-phenylimidazolium trimellitate, 2,4-diamino-6- [2 ′ -Methi Imidazolyl- (1 ′)]-ethyl-s-triazine, 2,4-diamino-6- [2′-undecylimidazolyl- (1 ′)]-ethyl-s-triazine, 2,4-diamino-6- [2′-Ethyl-4′-methylimidazolyl- (1 ′)]-ethyl-s-triazine, 2,4-diamino-6- [2′-methylimidazolyl- (1 ′)]-ethyl-s-triazine Isocyanuric acid adduct, 2-phenylimidazole isocyanuric acid adduct, 2-methylimidazole isocyanuric acid adduct, 2-phenyl-4,5-dihydroxymethylimidazole and 2-phenyl-4-methyl-5-dihydroxymethylimidazole It can be mentioned.
 上記リン化合物としては、トリフェニルホスフィン等が挙げられる。 Examples of the phosphorus compounds include triphenylphosphine and the like.
 上記アミン化合物としては、ジエチルアミン、トリエチルアミン、ジエチレンテトラミン、トリエチレンテトラミン及び4,4-ジメチルアミノピリジン等が挙げられる。 Examples of the amine compound include diethylamine, triethylamine, diethylenetetramine, triethylenetetramine and 4,4-dimethylaminopyridine.
 上記有機金属化合物としては、ナフテン酸亜鉛、ナフテン酸コバルト、オクチル酸スズ、オクチル酸コバルト、ビスアセチルアセトナートコバルト(II)及びトリスアセチルアセトナートコバルト(III)等が挙げられる。 Examples of the organic metal compounds include zinc naphthenate, cobalt naphthenate, tin octylate, cobalt octylate, bis (acetylacetonato) cobalt (II), and tris (acetylacetonato) cobalt (III).
 上記硬化促進剤の含有量は特に限定されない。樹脂層中の上記無機充填材を除く成分100重量%中、上記硬化促進剤の含有量は好ましくは0.005重量%以上、より好ましくは0.01重量%以上、好ましくは5重量%以下、より好ましくは3重量%以下である。上記硬化促進剤の含有量が上記下限以上及び上記上限以下であると、樹脂層が効率的に硬化する。上記硬化促進剤の含有量がより好ましい範囲であれば、樹脂層の保存安定性がより一層高くなり、かつより一層良好な硬化物が得られる。 The content of the curing accelerator is not particularly limited. The content of the curing accelerator is preferably 0.005% by weight or more, more preferably 0.01% by weight or more, and preferably 5% by weight or less in 100% by weight of the components excluding the inorganic filler in the resin layer. More preferably, it is 3% by weight or less. A resin layer hardens | cures efficiently that content of the said hardening accelerator is more than the said minimum and below the said upper limit. If the content of the above-mentioned curing accelerator is in a more preferable range, the storage stability of the resin layer is further enhanced, and a much better cured product can be obtained.
 [溶剤]
 上記樹脂層は、溶剤を含まないか又は含む。また、上記溶剤は、上記無機充填材を含むスラリーを得るために用いられてもよい。上記溶剤は1種のみが用いられてもよく、2種以上が併用されてもよい。
[solvent]
The resin layer does not contain or contains a solvent. Moreover, the said solvent may be used in order to obtain the slurry containing the said inorganic filler. The solvent may be used alone or in combination of two or more.
 上記溶剤としては、アセトン、メタノール、エタノール、ブタノール、2-プロパノール、2-メトキシエタノール、2-エトキシエタノール、1-メトキシ-2-プロパノール、2-アセトキシ-1-メトキシプロパン、トルエン、キシレン、メチルエチルケトン、N,N-ジメチルホルムアミド、メチルイソブチルケトン、N-メチル-ピロリドン、n-ヘキサン、シクロヘキサン、シクロヘキサノン及び混合物であるナフサ等が挙げられる。 As the above solvents, acetone, methanol, ethanol, butanol, 2-propanol, 2-methoxyethanol, 2-ethoxyethanol, 1-methoxy-2-propanol, 2-acetoxy-1-methoxypropane, toluene, xylene, methyl ethyl ketone, Examples include N, N-dimethylformamide, methyl isobutyl ketone, N-methyl-pyrrolidone, n-hexane, cyclohexane, cyclohexanone and naphtha as a mixture.
 上記溶剤の多くは、上記樹脂層を成形するときに、除去されることが好ましい。従って、上記溶剤の沸点は好ましくは200℃以下、より好ましくは180℃以下である。上記樹脂層における上記溶剤の含有量は特に限定されない。上記樹脂層の層形状を維持できる程度に、上記溶剤の含有量は適宜変更可能である。 It is preferable that many of the solvents be removed when the resin layer is formed. Therefore, the boiling point of the solvent is preferably 200 ° C. or less, more preferably 180 ° C. or less. The content of the solvent in the resin layer is not particularly limited. The content of the solvent can be appropriately changed to such an extent that the layer shape of the resin layer can be maintained.
 [他の成分]
 耐衝撃性、耐熱性、樹脂の相溶性及び作業性等の改善を目的として、上記樹脂層には、レベリング剤、難燃剤、カップリング剤、着色剤、酸化防止剤、紫外線劣化防止剤、消泡剤、増粘剤、揺変性付与剤及び上記熱硬化性化合物以外の他の熱硬化性樹脂等を添加してもよい。
[Other ingredients]
For the purpose of improving impact resistance, heat resistance, resin compatibility and workability, etc., the resin layer contains a leveling agent, a flame retardant, a coupling agent, a coloring agent, an antioxidant, an anti-ultraviolet deterioration inhibitor, and a light-emitting agent. A foaming agent, a thickener, a thixotropic agent and a thermosetting resin other than the above-mentioned thermosetting compound may be added.
 上記カップリング剤としては、シランカップリング剤、チタンカップリング剤及びアルミニウムカップリング剤等が挙げられる。上記シランカップリング剤としては、ビニルシラン、アミノシラン、イミダゾールシラン及びエポキシシラン等が挙げられる。 As said coupling agent, a silane coupling agent, a titanium coupling agent, an aluminum coupling agent etc. are mentioned. Examples of the above-mentioned silane coupling agent include vinylsilane, aminosilane, imidazolesilane and epoxysilane.
 上記他の熱硬化性樹脂としては、ポリフェニレンエーテル樹脂、ジビニルベンジルエーテル樹脂、ポリアリレート樹脂、ジアリルフタレート樹脂、ポリイミド樹脂、ベンゾオキサジン樹脂、ベンゾオキサゾール樹脂、ビスマレイミド樹脂及びアクリレート樹脂等が挙げられる。 Examples of the other thermosetting resin include polyphenylene ether resin, divinyl benzyl ether resin, polyarylate resin, diallyl phthalate resin, polyimide resin, benzoxazine resin, benzoxazole resin, bismaleimide resin, acrylate resin and the like.
 上記樹脂層を得る方法としては、以下の方法等が挙げられる。押出機を用いて、樹脂層を形成するための材料を溶融混練し、押出した後、Tダイ又はサーキュラーダイ等により、フィルム状に成形する押出成形法。溶剤を含む樹脂層を形成するための材料をキャスティングしてフィルム状に成形するキャスティング成形法。従来公知のその他のフィルム成形法。また、基材上に樹脂層を形成するための材料を積層し、加熱乾燥させ、樹脂層を得ることもできる。薄型化に対応可能であることから、押出成形法又はキャスティング成形法が好ましい。フィルムにはシートが含まれる。 The following method etc. are mentioned as a method of obtaining the said resin layer. An extrusion molding method in which a material for forming a resin layer is melt-kneaded and extruded using an extruder, and then formed into a film by a T die or a circular die. A casting method in which a material for forming a resin layer containing a solvent is cast and formed into a film. Other known film forming methods. Moreover, the material for forming a resin layer can be laminated | stacked on a base material, it can be heat-dried, and a resin layer can also be obtained. The extrusion molding method or the casting molding method is preferable because it can cope with thinning. The film includes a sheet.
 樹脂層を形成するための材料をフィルム状に成形し、熱による硬化が進行し過ぎない程度に、例えば50℃~150℃で1分間~10分間加熱乾燥させることにより、Bステージフィルムである樹脂層を得ることができる。 A resin that is a B-stage film is formed by forming a material for forming a resin layer into a film and heating and drying it at, for example, 50 ° C. to 150 ° C. for 1 minute to 10 minutes so that curing by heat does not proceed excessively You can get a layer.
 上述のような乾燥工程により得ることができるフィルム状の樹脂層をBステージフィルムと称する。上記Bステージフィルムは、半硬化状態にある。半硬化物は、完全に硬化しておらず、硬化がさらに進行され得る。 The film-like resin layer obtainable by the above-mentioned drying step is referred to as a B-stage film. The B-stage film is in a semi-cured state. The semi-cured product is not completely cured, and curing can be further advanced.
 上記樹脂層は、Bステージフィルムであることが好ましい。 The resin layer is preferably a B-stage film.
 樹脂層(樹脂層がBステージフィルムである場合は、Bステージフィルム)のラミネート性をより一層良好にし、樹脂層の硬化むらをより一層抑える観点からは、上記樹脂層の厚みは、好ましくは5μm以上、より好ましくは10μm以上、好ましくは200μm以下、より好ましくは100μm以下である。 From the viewpoint of further improving the laminateability of the resin layer (B stage film when the resin layer is a B stage film) and further suppressing uneven curing of the resin layer, the thickness of the resin layer is preferably 5 μm. The thickness is more preferably 10 μm or more, preferably 200 μm or less, and more preferably 100 μm or less.
 (保護フィルム)
 上記保護フィルムは、上記樹脂層の上記基材側とは反対の表面上に積層される。
(Protective film)
The protective film is laminated on the surface of the resin layer opposite to the substrate side.
 上記保護フィルムの材料としては、ポリプロピレン及びポリエチレン等のポリオレフィン、並びにポリエチレンテレフタレート等が挙げられる。上記保護フィルムの材料は、ポリオレフィンであることが好ましく、ポリプロピレンであることがより好ましい。 Examples of the material of the protective film include polyolefins such as polypropylene and polyethylene, and polyethylene terephthalate. The material of the protective film is preferably a polyolefin, more preferably polypropylene.
 樹脂層の保護性をより一層良好にする観点からは、上記保護フィルムの厚みは、好ましくは5μm以上、より好ましくは10μm以上、好ましくは75μm以下、より好ましくは60μm以下である。 From the viewpoint of further improving the protective properties of the resin layer, the thickness of the protective film is preferably 5 μm or more, more preferably 10 μm or more, preferably 75 μm or less, more preferably 60 μm or less.
 (積層フィルムの他の詳細)
 本発明に係る積層フィルムは、多層プリント配線板において、絶縁層を形成するために好適に用いられる。本発明に係る積層フィルムの樹脂層によって、絶縁層を形成することができる。
(Other details of laminated film)
The laminated film according to the present invention is suitably used to form an insulating layer in a multilayer printed wiring board. An insulating layer can be formed by the resin layer of the laminated film according to the present invention.
 多層プリント配線板の一例として、回路基板と、該回路基板上に積層された複数の絶縁層と、複数の上記絶縁層間に配置された金属層とを備える多層プリント配線板が挙げられる。上記絶縁層の内の少なくとも1層が、上記樹脂層により形成される。上記回路基板に接している絶縁層が、上記樹脂層により形成されてもよい。2つの絶縁層間に配置された絶縁層が、上記樹脂層により形成されてもよい。上記回路基板から最も離れた絶縁層が、上記樹脂層により形成されてもよい。複数の上記絶縁層のうち、上記回路基板から離れた絶縁層の外側の表面上に、金属層が配置されていてもよい。 One example of the multilayer printed wiring board is a multilayer printed wiring board including a circuit board, a plurality of insulating layers stacked on the circuit board, and a metal layer disposed between the plurality of insulating layers. At least one of the insulating layers is formed of the resin layer. The insulating layer in contact with the circuit board may be formed of the resin layer. An insulating layer disposed between two insulating layers may be formed by the resin layer. The insulating layer farthest from the circuit board may be formed of the resin layer. Among the plurality of insulating layers, a metal layer may be disposed on the outer surface of the insulating layer remote from the circuit board.
 以下、実施例及び比較例を挙げることにより、本発明を具体的に説明する。本発明は、以下の実施例に限定されない。 Hereinafter, the present invention will be specifically described by listing examples and comparative examples. The present invention is not limited to the following examples.
 以下の基材、保護フィルムを用意した。 The following base materials and protective films were prepared.
 (基材)
 ポリエチレンテレフタレート(PET)フィルム(リンテック社製「AL5」、厚み38μm、幅550mm)
(Base material)
Polyethylene terephthalate (PET) film ("L5" manufactured by LINTEC Corporation, 38 μm thick, 550 mm wide)
 (保護フィルム)
 保護フィルム(王子エフテックス社製「アルファンMA-411」、厚み15μm、幅550mm)
(Protective film)
Protective film ("Alfan MA-411" manufactured by Oji F-TEX, 15 μm thick, 550 mm wide)
 (樹脂層を形成するための材料)
 以下の様にして、樹脂層を形成するための材料を用意した。
(Material for forming resin layer)
The material for forming a resin layer was prepared as follows.
 樹脂層を形成するための材料:
 アミノフェニルシラン処理シリカ(アドマテックス社製「SOC2」)のシクロヘキサノンスラリー(固形分70重量%)107重量部を用意した。このスラリーに、ビフェニル型エポキシ化合物(日本化薬社製「NC3000H」)11重量部と、ビスフェノールA型エポキシ化合物(DIC社製「850S」)5重量部と、シクロヘキサノン7.9重量部と、メチルエチルケトン7.7重量部とを加えた。攪拌機を用いて、1200rpmで60分間撹拌し、未溶解物がなくなったことを確認した。その後、アミノトリアジン変性フェノールノボラック硬化剤(DIC社製「LA-1356」)のメチルエチルケトン混合溶液(固形分50重量%)11重量部と、フェノールノボラック硬化剤(明和化成社製「H4」)3重量部とを加えて、1200rpmで60分間撹拌し、未溶解物がなくなったことを確認した。その後、ビスフェノールアセトフェノン骨格フェノキシ樹脂(三菱化学社製「YX6954」)のメチルエチルケトン及びシクロヘキサノン混合溶液(固形分30重量%)を用意した。該混合溶液(固形分30重量%)2.5重量部と、2-エチル-4-メチルイミダゾール(四国化成工業社製「2E4MZ」)0.1重量部と、レベリング剤(楠本化成社製「LS-480」)0.01重量部とをさらに加えた。1200rpmで30分間撹拌し、樹脂層を形成するための材料(ワニス)を得た。
Materials for forming a resin layer:
107 parts by weight of a cyclohexanone slurry (solid content: 70% by weight) of aminophenylsilane-treated silica ("SOC 2" manufactured by Admatex Co., Ltd.) was prepared. To this slurry, 11 parts by weight of a biphenyl type epoxy compound ("NC 3000H" manufactured by Nippon Kayaku Co., Ltd.), 5 parts by weight of a bisphenol A type epoxy compound ("850S" manufactured by DIC), 7.9 parts by weight of cyclohexanone, and methyl ethyl ketone 7.7 parts by weight were added. Stirring was performed at 1200 rpm for 60 minutes using a stirrer, and it was confirmed that the undissolved matter disappeared. Thereafter, 11 parts by weight of methyl ethyl ketone mixed solution (solid content: 50% by weight) of aminotriazine-modified phenol novolac curing agent ("LA-1356" manufactured by DIC) and 3 weight of phenol novolac curing agent ("H4" manufactured by Meiwa Kasei Co., Ltd.) The solution was stirred for 60 minutes at 1200 rpm, and it was confirmed that undissolved matter had disappeared. Thereafter, a methyl ethyl ketone and cyclohexanone mixed solution (solid content: 30% by weight) of bisphenol acetophenone skeleton phenoxy resin ("YX6954" manufactured by Mitsubishi Chemical Corporation) was prepared. 2.5 parts by weight of the mixed solution (solid content 30% by weight), 0.1 parts by weight of 2-ethyl-4-methylimidazole ("2E4MZ" manufactured by Shikoku Kasei Kogyo Co., Ltd.), and a leveling agent (manufactured by Kushimoto Kasei Co., Ltd.) LS-480 ′ ′) 0.01 parts by weight was further added. The mixture was stirred at 1200 rpm for 30 minutes to obtain a material (varnish) for forming a resin layer.
 (実施例1)
 基材の表面上に樹脂層を配置する工程:
 ダイコーターを用いて、基材上に、得られた樹脂層を形成するための材料(ワニス)を基材の幅方向における両端部から70mmの範囲を除いて、幅410mmで塗工した後、平均温度100℃で3分間乾燥し、溶剤を揮発させた。このようにして、基材上に、厚さが40μmであり、幅が410mmである樹脂層を形成した。
Example 1
Placing a resin layer on the surface of the substrate:
Using a die coater, the material (varnish) for forming the obtained resin layer is coated on the substrate with a width of 410 mm, excluding the range of 70 mm from both ends in the width direction of the substrate, It was dried at an average temperature of 100 ° C. for 3 minutes to evaporate the solvent. In this way, a resin layer having a thickness of 40 μm and a width of 410 mm was formed on the base material.
 樹脂層の表面上に保護フィルムを配置する工程:
 樹脂層の基材側とは反対の表面上に、保護フィルムを圧力0.4MPa、温度50℃で熱ラミネートした後、ロール状に巻き取り、基材と樹脂層と保護フィルムとの積層体を得た。
Placing a protective film on the surface of the resin layer:
A protective film is thermally laminated at a pressure of 0.4 MPa and a temperature of 50 ° C. on the surface opposite to the substrate side of the resin layer, and then wound up in a roll to obtain a laminate of the substrate, the resin layer and the protective film. Obtained.
 積層体の幅方向における一方の端面を揃える工程:
 得られた積層体の幅方向における一方の端部(他端)から内側に向かって84mmの位置、及び該他端とは反対の端部(一端)から内側に向かって66mmの位置を、スリッターを用いて10m/分の速度でスリットし、他端側の基材の端面と樹脂層の端面と保護フィルムの端面を揃えた。このようにして、基材の幅方向の寸法(W)が400mm、樹脂層の幅方向の寸法(W)が396mm、保護フィルムの幅方向の寸法(W)が400mmである積層フィルムを得た。
Step of aligning one end face in the width direction of the laminate:
A slitter is provided at a position 84 mm inward from one end (the other end) in the width direction of the obtained laminate and a position 66 mm inward from the end (one end) opposite to the other end. Slit at a speed of 10 m / min to align the end face of the base on the other end side, the end face of the resin layer, and the end face of the protective film. Thus, a laminate film having a width (W 1 ) of the substrate in the width direction of 400 mm, a width (W 2 ) of the resin layer of 396 mm, and a width (W 3 ) of the protective film of 400 mm. I got
 (実施例2)
 基材の表面上に樹脂層を配置する工程:
 実施例1と同様にして樹脂層を形成した。
(Example 2)
Placing a resin layer on the surface of the substrate:
A resin layer was formed in the same manner as in Example 1.
 樹脂層の表面上に保護フィルムを配置する工程:
 実施例1と同様にして、基材と樹脂層と保護フィルムとの積層体を得た。
Placing a protective film on the surface of the resin layer:
In the same manner as in Example 1, a laminate of a substrate, a resin layer, and a protective film was obtained.
 積層フィルムの他端の端面を揃える工程:
 得られた積層体の幅方向における一方の端部(他端)から内側に向かって120mmの位置、及び該他端とは反対の端部(一端)から内側に向かって30mmの位置を、スリッターを用いて10m/分の速度でスリットし、他端側の基材の端面と樹脂層の端面と保護フィルムの端面を揃えた。このようにして、基材の幅方向の寸法(W)が400mm、樹脂層の幅方向の寸法(W)が360mm、保護フィルムの幅方向の寸法(W)が400mmである積層フィルムを得た。
Step of aligning the end face of the other end of the laminated film:
A slitter is formed at a position 120 mm inward from one end (the other end) in the width direction of the obtained laminate, and 30 mm from the end (one end) opposite to the other end in the width direction. Slit at a speed of 10 m / min to align the end face of the base on the other end side, the end face of the resin layer, and the end face of the protective film. Thus, a laminated film having a width (W 1 ) of the substrate in the width direction of 400 mm, a width (W 2 ) of the resin layer of 360 mm, and a width (W 3 ) of the protective film of 400 mm. I got
 (実施例3)
 基材の表面上に樹脂層を配置する工程:
 実施例1と同様にして樹脂層を形成した。
(Example 3)
Placing a resin layer on the surface of the substrate:
A resin layer was formed in the same manner as in Example 1.
 樹脂層の表面上に保護フィルムを配置する工程:
 実施例1と同様にして、基材と樹脂層と保護フィルムとの積層体を得た。
Placing a protective film on the surface of the resin layer:
In the same manner as in Example 1, a laminate of a substrate, a resin layer, and a protective film was obtained.
 積層体の幅方向における一方の端面を揃える工程:
 得られた積層体の幅方向における一方の端部(他端)から内側に向かって140mmの位置、及び該他端とは反対の端部(一端)から内側に向かって10mmの位置を、スリッターを用いて10m/分の速度でスリットし、他端側の基材の端面と樹脂層の端面と保護フィルムの端面を揃えた。このようにして、基材の幅方向の寸法(W)が340mm、樹脂層の幅方向の寸法(W)が400mm、保護フィルムの幅方向の寸法(W)が400mmである積層フィルムを得た。
Step of aligning one end face in the width direction of the laminate:
A slitter is formed at a position 140 mm inward from one end (the other end) in the width direction of the obtained laminate and at a position 10 mm inward from the end (one end) opposite to the other end. Slit at a speed of 10 m / min to align the end face of the base on the other end side, the end face of the resin layer, and the end face of the protective film. Thus, a laminated film having a width (W 1 ) of the substrate in the width direction of 340 mm, a width (W 2 ) of the resin layer of 400 mm, and a width (W 3 ) of the protective film of 400 mm. I got
 (比較例1)
 基材の表面上に樹脂層を配置する工程:
 実施例1と同様にして樹脂層を形成した。
(Comparative example 1)
Placing a resin layer on the surface of the substrate:
A resin layer was formed in the same manner as in Example 1.
 樹脂層の表面上に保護フィルムを配置する工程:
 実施例1と同様にして、基材と樹脂層と保護フィルムとの積層体を得た。
Placing a protective film on the surface of the resin layer:
In the same manner as in Example 1, a laminate of a substrate, a resin layer, and a protective film was obtained.
 得られた積層体の幅方向における一方の端部(他端)から内側に向かって48mmの位置、及び該他端とは反対の端部(一端)から内側に向かって48mmの位置を、スリッターを用いて10m/分の速度でスリットした。このようにして、基材の幅方向の寸法(W)が454mm、樹脂層の幅方向の寸法(W)が410mm、保護フィルムの幅方向の寸法(W)が454mmであり、積層フィルムの幅方向における双方の端面が揃っていない積層フィルムを得た。 A slitter is provided at a position 48 mm inward from one end (the other end) in the width direction of the obtained laminate, and 48 mm from the end (one end) opposite to the other end in the width direction. Slit at a speed of 10 m / min. Thus, the substrate width dimension (W 1 ) is 454 mm, the resin layer width direction dimension (W 2 ) is 410 mm, and the protective film width direction dimension (W 3 ) is 454 mm. A laminated film was obtained in which both end faces in the width direction of the film were not aligned.
 (比較例2)
 基材の表面上に樹脂層を配置する工程:
 実施例1と同様にして樹脂層を形成した。
(Comparative example 2)
Placing a resin layer on the surface of the substrate:
A resin layer was formed in the same manner as in Example 1.
 樹脂層の表面上に保護フィルムを配置する工程:
 実施例1と同様にして、基材と樹脂層と保護フィルムとの積層体を得た。
Placing a protective film on the surface of the resin layer:
In the same manner as in Example 1, a laminate of a substrate, a resin layer, and a protective film was obtained.
 積層体の幅方向における両端面を揃える工程:
 得られた積層体の幅方向における一方の両端部(他端)から内側に向かって75mmの位置、及び該他端とは反対の端部(一端)から内側に向かって75mmの位置を、スリッターを用いて10m/分の速度でスリットした。このようにして、基材の幅方向の寸法(W)、樹脂層の幅方向の寸法(W)、及び保護フィルムの幅方向の寸法(W)がいずれも400mmであり、積層フィルムの幅方向における双方の端面が揃っている積層フィルムを得た。
Step of aligning both end faces in the width direction of the laminate:
A slitter is provided at a position 75 mm inward from one end (the other end) in the width direction of the obtained laminate, and 75 mm from the other end (one end) in the width direction. Slit at a speed of 10 m / min. Thus, the dimension in the width direction of the substrate (W 1 ), the dimension in the width direction of the resin layer (W 2 ), and the dimension in the width direction of the protective film (W 3 ) are all 400 mm. A laminated film in which both end faces in the width direction of the film are aligned is obtained.
 (評価)
 (1)保護フィルムの剥離時の樹脂層の割れ
 得られた積層フィルムを長さ(MD方向)500mmに切り出した後、保護フィルムを剥離した。露出した樹脂層を目視にて観察し、樹脂層の割れを評価した。
(Evaluation)
(1) Cracking of resin layer at peeling of protective film The obtained laminated film was cut out to a length (MD direction) of 500 mm, and then the protective film was peeled. The exposed resin layer was visually observed to evaluate cracking of the resin layer.
 [保護フィルムの剥離時の樹脂層の割れの判定基準]
 ○:樹脂層に割れがない
 ×:樹脂層に割れがある
[Criteria for judgment of cracking of resin layer at peeling of protective film]
○: no cracks in the resin layer ×: cracks in the resin layer
 (2)樹脂層の硬化むら
 得られた積層フィルムを長さ(MD方向)380mmに切り出した後、保護フィルムを剥離した。露出した樹脂層の表面上に、ガラスエポキシ基板(日立化成社製「E679FGR」)をラミネートし、基材と樹脂層とガラスエポキシ基板との積層体を得た。なお、上記ラミネートは、名機製作所社製「バッチ式真空ラミネーターMVLP-500IIA」を用いて、ラミネート圧0.4MPa、ラミネート温度90℃、及びラミネート時間20秒、並びにプレス圧力0.8MPa、プレス温度90℃、及びプレス時間20秒の条件で行った。
(2) Curing Unevenness of Resin Layer The obtained laminated film was cut out to a length (MD direction) of 380 mm, and then the protective film was peeled off. On the surface of the exposed resin layer, a glass epoxy substrate ("E679FGR" manufactured by Hitachi Chemical Co., Ltd.) was laminated to obtain a laminate of a substrate, a resin layer and a glass epoxy substrate. The above-mentioned lamination is performed using a "batch-type vacuum laminator MVLP-500IIA" manufactured by Name Machine Works Co., Ltd., lamination pressure 0.4 MPa, lamination temperature 90 ° C., lamination time 20 seconds, and press pressure 0.8 MPa, press temperature It performed on the conditions of 90 degreeC and 20 second of press times.
 得られた基材と樹脂層とガラスエポキシ基板との積層体を、加熱オーブン(ESPEC社製「SPHH-201」)に入れ、温度170℃で60分間加熱し、樹脂層を硬化させた。加熱後、常温に放置し冷却した後、基材を剥離し、樹脂層(硬化物)とガラスエポキシ基板との積層体を得た。 The laminate of the obtained base material, resin layer and glass epoxy substrate was placed in a heating oven ("SPHH-201" manufactured by ESPEC) and heated at a temperature of 170 ° C. for 60 minutes to cure the resin layer. After heating, the base was left to stand at normal temperature and cooled, and then the base material was peeled off to obtain a laminate of a resin layer (cured product) and a glass epoxy substrate.
 得られた樹脂層(硬化物)とガラスエポキシ基板との積層体から、マイクログラインダー(浦和工業社製「UC210」)を用いて、樹脂層(硬化物)の幅方向における両端部、及び幅方向における中央部の樹脂層(硬化物)を幅20mm×長さ100mm×厚み0.04mmで削り取り、3つの硬化物サンプルを得た。 From the laminate of the obtained resin layer (cured product) and the glass epoxy substrate, both ends in the width direction of the resin layer (cured product) and the width direction using a micro grinder ("UC210" manufactured by Urawa Kogyo Co., Ltd.) The resin layer (cured product) at the central portion in the above was scraped off with a width of 20 mm × length 100 mm × thickness 0.04 mm to obtain three cured product samples.
 TAインスツルメント社製「Q2000」を用いて、得られた3つの硬化物サンプルのガラス転移温度Tgを3℃/分の昇温速度、温度範囲-30℃から250℃の条件で測定を行った。得られた測定結果において、3つの硬化物サンプルのTgの最大値と最小値との差を求めることにより、樹脂層の硬化むらを評価した。 The glass transition temperatures Tg of the obtained three cured product samples were measured using a temperature measurement rate of 3 ° C./min and a temperature range of -30 ° C. to 250 ° C. using “Q2000” manufactured by TA Instruments. The In the obtained measurement results, the unevenness of curing of the resin layer was evaluated by determining the difference between the maximum value and the minimum value of the Tg of the three cured product samples.
 [樹脂層の硬化むらの判定基準]
 ○:Tgの最大値と最小値との差が5℃以下
 △:Tgの最大値と最小値との差が5℃を超え、15℃未満
 ×:Tgの最大値と最小値との差が15℃以上
[Criteria for judgment of curing unevenness of resin layer]
○: The difference between the maximum value and the minimum value of Tg is 5 ° C. or less Δ: The difference between the maximum value and the minimum value of Tg exceeds 5 ° C., less than 15 ° C. ×: The difference between the maximum value and the minimum of Tg 15 ° C or more
 積層フィルムの構成、及び結果を下記の表1に示す。 The configuration of the laminated film and the results are shown in Table 1 below.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 1,1A…積層フィルム
 1a,1Aa…一端
 1b,1Ab…他端
 2,2A…樹脂層
 2a,2Aa…第1の表面
 2b,2Ab…第2の表面
 3,3A…保護フィルム
 4,4A…基材
 X…スリット位置
1, 1A: laminated film 1a, 1Aa: one end 1b, 1Ab: other end 2, 2A: resin layer 2a, 2Aa: first surface 2b, 2Ab: second surface 3, 3A: protective film 4, 4A: group Material X ... Slit position

Claims (10)

  1.  基材と、
     前記基材の表面上に積層された樹脂層と、
     前記樹脂層の前記基材側とは反対の表面上に積層された保護フィルムとを備え、
     積層フィルムの一端側において、前記樹脂層の端面に対して前記基材と前記保護フィルムとの端面がそれぞれ外側にはみだしており、かつ積層フィルムの前記一端とは反対の他端側において、前記基材と前記樹脂層と前記保護フィルムとの端面が揃っているか、又は、積層フィルムの一端側と前記一端とは反対の他端側との双方において、前記樹脂層の端面に対して前記基材と前記保護フィルムとの端面がそれぞれ外側にはみだしており、かつ前記他端側における前記基材と前記保護フィルムとのはみだしている距離が、前記一端側における前記基材と前記保護フィルムとのはみだしている距離よりも小さい、積層フィルム。
    A substrate,
    A resin layer laminated on the surface of the substrate;
    And a protective film laminated on the surface of the resin layer opposite to the substrate side,
    At one end side of the laminated film, the end faces of the base material and the protective film protrude outward with respect to the end face of the resin layer, and at the other end side opposite to the one end of the laminated film, the base End faces of the material, the resin layer, and the protective film are aligned, or the base material with respect to the end face of the resin layer in both the one end side of the laminated film and the other end side opposite to the one end The end face of the support film and the protection film protrudes outside, and the extension distance between the base material and the protection film on the other end side is an extension of the base material and the protection film on the one end side. Less than the distance, laminated film.
  2.  積層フィルムの一端側において、前記樹脂層の端面に対して前記基材と前記保護フィルムとの端面がそれぞれ外側にはみだしており、かつ積層フィルムの前記一端とは反対の他端側において、前記基材と前記樹脂層と前記保護フィルムとの端面が揃っている、請求項1に記載の積層フィルム。 At one end side of the laminated film, the end faces of the base material and the protective film protrude outward with respect to the end face of the resin layer, and at the other end side opposite to the one end of the laminated film, the base The laminated film according to claim 1, wherein end faces of the material, the resin layer, and the protective film are aligned.
  3.  積層フィルムの前記一端と前記他端とを結ぶ方向において、前記基材の寸法をWmm、前記樹脂層の寸法をWmmとしたときに、W/Wが0.9以上0.999以下である、請求項1又は2に記載の積層フィルム。 When the dimension of the substrate is W 1 mm and the dimension of the resin layer is W 2 mm in the direction connecting the one end and the other end of the laminated film, W 2 / W 1 is 0.9 or more and 0 The laminated film according to claim 1 or 2, which is .999 or less.
  4.  積層フィルムの前記一端と前記他端とを結ぶ方向において、前記樹脂層の寸法をWmm、前記保護フィルムの寸法をWmmとしたときに、W/Wが0.9以上0.999以下である、請求項1~3のいずれか1項に記載の積層フィルム。 When the dimension of the resin layer is W 2 mm and the dimension of the protective film is W 3 mm in the direction connecting the one end and the other end of the laminated film, W 2 / W 3 is 0.9 or more and 0 The laminated film according to any one of claims 1 to 3, which is 999 or less.
  5.  前記樹脂層が、無機充填材と、硬化剤と、熱硬化性化合物とを含む、請求項1~4のいずれか1項に記載の積層フィルム。 The laminated film according to any one of claims 1 to 4, wherein the resin layer contains an inorganic filler, a curing agent, and a thermosetting compound.
  6.  前記樹脂層100重量%中、前記無機充填材の含有量が30重量%以上である、請求項5に記載の積層フィルム。 The laminated film according to claim 5, wherein a content of the inorganic filler is 30% by weight or more in 100% by weight of the resin layer.
  7.  請求項1~6のいずれか1項に記載の積層フィルムの製造方法であって、
     基材の表面上に、樹脂層の一端側の端面に対して前記基材の端面が外側にはみだすように、樹脂層を配置する第1の工程と、
     前記樹脂層の前記基材側とは反対の表面上に、前記樹脂層の前記一端側の端面に対して保護フィルムの端面が外側にはみだすように、保護フィルムを配置する第2の工程とを備え、
     前記樹脂層の前記一端に対応する積層フィルムの一端側において、前記樹脂層の端面に対して前記基材と前記保護フィルムとの端面がそれぞれ外側にはみだしており、かつ積層フィルムの前記一端とは反対の他端側において、前記基材と前記樹脂層と前記保護フィルムとの端面が揃っているか、又は、積層フィルムの一端側と前記一端とは反対の他端側との双方において、前記樹脂層の端面に対して前記基材と前記保護フィルムとの端面がそれぞれ外側にはみだしており、かつ前記他端側における前記基材と前記保護フィルムとのはみだしている距離が、前記一端側における前記基材と前記保護フィルムとのはみだしている距離よりも小さい積層フィルムを得る、積層フィルムの製造方法。
    A method for producing a laminated film according to any one of claims 1 to 6, wherein
    A first step of disposing the resin layer on the surface of the substrate such that the end surface of the substrate is projected to the outside with respect to the end surface on one end side of the resin layer;
    A second step of disposing a protective film on the surface of the resin layer opposite to the base material side such that the end surface of the protective film protrudes outward with respect to the end surface of the one end side of the resin layer Equipped
    At one end side of the laminated film corresponding to the one end of the resin layer, the end face of the base material and the protective film is projected to the outside with respect to the end face of the resin layer, and the one end of the laminated film On the other end side opposite to the above, the end faces of the substrate, the resin layer and the protective film are aligned, or on both the one end side of the laminated film and the other end side opposite to the one end, the resin The end faces of the base and the protective film protrude outward with respect to the end face of the layer, and the distance between the base and the protective film on the other end side is the distance on the one end side The manufacturing method of a lamination film which obtains a lamination film smaller than the distance which the base material and the above-mentioned protective film overflowed.
  8.  前記第2の工程の後に、前記樹脂層の前記一端とは反対の他端側において、前記基材と前記樹脂層と前記保護フィルムとの端面を揃えるか、又は、前記第2の工程の後に、前記樹脂層の前記一端とは反対の他端側において、前記他端側における前記基材と前記保護フィルムとのはみだしている距離を、前記一端側における前記基材と前記保護フィルムとのはみだしている距離よりも小さくする第3の工程をさらに備える、請求項7に記載の積層フィルムの製造方法。 After the second step, on the other end side opposite to the one end of the resin layer, the end faces of the substrate, the resin layer, and the protective film are aligned, or after the second step In the other end side of the resin layer opposite to the one end, the protruding distance between the base material and the protective film at the other end side is the protrusion of the base material and the protective film at the one end side. The manufacturing method of the laminated | multilayer film of Claim 7 further equipped with the 3rd process made smaller than the distance.
  9.  前記第3の工程において、前記基材と前記樹脂層と前記保護フィルムとをスリットする、請求項8に記載の積層フィルムの製造方法。 The manufacturing method of the laminated film of Claim 8 which slits the said base material, the said resin layer, and the said protective film in the said 3rd process.
  10.  前記樹脂層の前記一端に対応する積層フィルムの一端側において、前記樹脂層の端面に対して前記基材と前記保護フィルムとの端面がそれぞれ外側にはみだしており、かつ積層フィルムの前記一端とは反対の他端側において、前記基材と前記樹脂層と前記保護フィルムとの端面が揃っている積層フィルムを得る、請求項7~9のいずれか1項に記載の積層フィルムの製造方法。 At one end side of the laminated film corresponding to the one end of the resin layer, the end face of the base material and the protective film is projected to the outside with respect to the end face of the resin layer, and the one end of the laminated film The method for producing a laminated film according to any one of claims 7 to 9, wherein a laminated film in which the end faces of the substrate, the resin layer and the protective film are aligned on the other end side opposite to each other is obtained.
PCT/JP2018/040273 2017-11-02 2018-10-30 Laminate film and manufacturing method of laminate film WO2019088079A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201880070111.6A CN111278639B (en) 2017-11-02 2018-10-30 Laminated film and method for producing laminated film
KR1020207012133A KR20200073234A (en) 2017-11-02 2018-10-30 Laminated film and manufacturing method of laminated film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017212954A JP6641338B2 (en) 2017-11-02 2017-11-02 Laminated film and method for producing laminated film
JP2017-212954 2017-11-02

Publications (1)

Publication Number Publication Date
WO2019088079A1 true WO2019088079A1 (en) 2019-05-09

Family

ID=66331783

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/040273 WO2019088079A1 (en) 2017-11-02 2018-10-30 Laminate film and manufacturing method of laminate film

Country Status (5)

Country Link
JP (1) JP6641338B2 (en)
KR (1) KR20200073234A (en)
CN (1) CN111278639B (en)
TW (1) TW201924917A (en)
WO (1) WO2019088079A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7435165B2 (en) 2020-03-30 2024-02-21 味の素株式会社 Manufacturing method of printed wiring board

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005154727A (en) * 2003-05-27 2005-06-16 Ajinomoto Co Inc Resin composition for interlayer insulation of multilayer printed wiring board, adhesive film, and prepreg
JP2008270697A (en) * 2007-03-28 2008-11-06 Hitachi Chem Co Ltd Printed circuit board
JP2014024961A (en) * 2012-07-26 2014-02-06 Ajinomoto Co Inc Protective-film-fitted adhesive sheet, method for manufacturing a laminate, and method for manufacturing a print wire board
JP2016074788A (en) * 2014-10-03 2016-05-12 味の素株式会社 Method for producing protective film-fitted adhesive sheet

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5104034B2 (en) * 2007-05-23 2012-12-19 日立化成工業株式会社 Anisotropic conductive connection film and reel body
JP2011148943A (en) * 2010-01-25 2011-08-04 Nitto Denko Corp Protective sheet and use thereof
JP4868266B2 (en) * 2010-03-31 2012-02-01 住友化学株式会社 Method for producing laminated film and method for producing polarizing plate
KR101456088B1 (en) * 2010-07-30 2014-11-03 쿄세라 코포레이션 Insulating sheet, process for producing same, and process for producing structure using the insulating sheet
WO2013042752A1 (en) * 2011-09-22 2013-03-28 日立化成株式会社 Laminated body, laminated board, multi-layer laminated board, printed wiring board, and production method for laminated board
JP5938313B2 (en) * 2012-09-14 2016-06-22 ホシデン株式会社 Peeling tape, and liquid crystal panel and liquid crystal module having the same
KR20180109936A (en) * 2016-02-19 2018-10-08 히타치가세이가부시끼가이샤 Adhesive film for multilayer printed circuit boards
JP6148775B1 (en) * 2016-02-25 2017-06-14 住友化学株式会社 Method for producing laminated optical film
JP6175527B1 (en) * 2016-02-25 2017-08-02 住友化学株式会社 Method for producing laminated optical film

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005154727A (en) * 2003-05-27 2005-06-16 Ajinomoto Co Inc Resin composition for interlayer insulation of multilayer printed wiring board, adhesive film, and prepreg
JP2008270697A (en) * 2007-03-28 2008-11-06 Hitachi Chem Co Ltd Printed circuit board
JP2014024961A (en) * 2012-07-26 2014-02-06 Ajinomoto Co Inc Protective-film-fitted adhesive sheet, method for manufacturing a laminate, and method for manufacturing a print wire board
JP2016074788A (en) * 2014-10-03 2016-05-12 味の素株式会社 Method for producing protective film-fitted adhesive sheet

Also Published As

Publication number Publication date
CN111278639A (en) 2020-06-12
JP6641338B2 (en) 2020-02-05
TW201924917A (en) 2019-07-01
CN111278639B (en) 2022-06-24
KR20200073234A (en) 2020-06-23
JP2019084705A (en) 2019-06-06

Similar Documents

Publication Publication Date Title
TWI774644B (en) Resin composition and multilayer substrate
WO2019088078A1 (en) Roll packaging body
JP6570400B2 (en) Laminated film
JP2018115334A (en) Epoxy resin material and multilayer substrate
JP2024009109A (en) Resin material and multilayer printed wiring board
JP7344357B2 (en) Method for manufacturing laminated films and laminated structures
WO2019088079A1 (en) Laminate film and manufacturing method of laminate film
JP2017066399A (en) Resin composition, laminate, and manufacturing method of laminate structure
JP2019006980A (en) Resin composition for insulation film, insulation film, and multilayer printed board
JP2013082873A (en) B-stage film and multilayer board
JP2013060553A (en) Episulfide resin material and multilayer board
JP5508342B2 (en) B-stage film for printed wiring board and multilayer board
JP5940943B2 (en) Insulating resin material and multilayer substrate
TWI834676B (en) Method for manufacturing laminated film and laminated structure
JP7288321B2 (en) laminated film
JP2020055890A (en) Resin material and multilayer printed wiring board
JP2012140570A (en) Epoxy resin material and multilayer substrate
JP6559520B2 (en) Resin composition, resin film, laminated film and multilayer substrate
JP6084854B2 (en) Epoxy resin material for multilayer printed wiring board and multilayer printed wiring board
JP2013023667A (en) Epoxy resin material and multilayer substrate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18874729

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20207012133

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18874729

Country of ref document: EP

Kind code of ref document: A1