JP2013251313A - Multi-layer wiring board and manufacturing method of the same - Google Patents

Multi-layer wiring board and manufacturing method of the same Download PDF

Info

Publication number
JP2013251313A
JP2013251313A JP2012123152A JP2012123152A JP2013251313A JP 2013251313 A JP2013251313 A JP 2013251313A JP 2012123152 A JP2012123152 A JP 2012123152A JP 2012123152 A JP2012123152 A JP 2012123152A JP 2013251313 A JP2013251313 A JP 2013251313A
Authority
JP
Japan
Prior art keywords
via hole
insulating resin
multilayer
layer
multilayer wiring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012123152A
Other languages
Japanese (ja)
Other versions
JP5998643B2 (en
Inventor
Masaru Kikuchi
克 菊池
Iwao Wakao
巌 若生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Printing Co Ltd filed Critical Toppan Printing Co Ltd
Priority to JP2012123152A priority Critical patent/JP5998643B2/en
Publication of JP2013251313A publication Critical patent/JP2013251313A/en
Application granted granted Critical
Publication of JP5998643B2 publication Critical patent/JP5998643B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Production Of Multi-Layered Print Wiring Board (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a multilayer wiring board which includes a protruding electrode formed on a peelable copper foil side surface and protruding from a surface of an insulation resin layer and is extremely thin.SOLUTION: A multilayer wiring board has a multilayer wiring structure formed by alternately laminating multiple interlayer insulation resin layers and multiple wiring patterns. In the multilayer wiring board, an upper bottom of a circular truncated cone shaped via hole is connected with a protruding terminal that is formed protruding from the interlayer insulation resin layer. A land is connected with a lower bottom of the circular truncated cone shaped via hole, and a connection portion between the land and the lower bottom of the via hole is covered by the protruding terminal.

Description

本発明は、半導体素子搭載用パッケージに用いる板厚が極めて薄い多層配線板とその製造方法に関するものである。   The present invention relates to a multilayer wiring board having a very thin plate thickness used for a semiconductor element mounting package and a method for manufacturing the same.

近年、電子機器の小型化、軽量化、多機能化が一段と進み、これに伴ない、配線の高集積化と小型化が急速に進み、配線の微細化が進んでいる。また、半導体チップとほぼ同等のサイズの、いわゆるチップサイズパッケージ(CSP;Chip Size/Scale Package)などの小型化したパッケージへの要求が強くなっている。一方、エッチングにより配線を形成するサブトラクティブ法で歩留り良く形成できる配線は、導体幅(L)/導体間隙(S)=50μm/50μm程度である。   In recent years, electronic devices have been further reduced in size, weight, and functionality, and along with this, higher integration and miniaturization of wiring are rapidly progressing, and miniaturization of wiring is progressing. In addition, there is an increasing demand for a downsized package such as a so-called chip size package (CSP; Chip Size / Scale Package) that is almost the same size as a semiconductor chip. On the other hand, the wiring that can be formed with good yield by the subtractive method of forming the wiring by etching is about conductor width (L) / conductor gap (S) = 50 μm / 50 μm.

更に微細な導体幅/導体間隙=35μm/35μm程度の配線を実現するために、特許文献1では、離脱が可能なピーラブル銅箔を2枚向かい合わせた間にプリプレグを挟んで積層して硬化させた支持基板を作製する。そして、そのピーラブル銅箔上にめっきレジストを形成して、電解金属めっきで導体を必要な厚さに形成した配線層を形成し、レジストを剥離した後に、その配線層の上に層間絶縁樹脂層と配線パターンを順次ビルドアップして多層構造体を形成する。   In order to realize a finer conductor width / conductor gap = about 35 μm / 35 μm, in Patent Document 1, the two detachable peelable copper foils are laminated with a prepreg sandwiched between them and cured. A support substrate is prepared. Then, a plating resist is formed on the peelable copper foil, a wiring layer in which a conductor is formed to a necessary thickness by electrolytic metal plating is formed, and after removing the resist, an interlayer insulating resin layer is formed on the wiring layer. The wiring pattern is sequentially built up to form a multilayer structure.

そして、支持基板の両面に形成した多層構造体を、ピーラブル銅箔を剥離して分離し、多層構造体の表面に残ったピーラブル銅箔の薄い金属層をソフトエッチングで除去するというセミアディティブ法を利用した技術により、板厚が極めて薄い多層配線板を製造する技術が開示されている。   Then, the multilayer structure formed on both sides of the support substrate is separated by peeling the peelable copper foil, and the thin metal layer of the peelable copper foil remaining on the surface of the multilayer structure is removed by soft etching. A technique for manufacturing a multilayer wiring board having a very thin board thickness is disclosed.

特開2005−101137号公報JP 2005-101137 A

特許文献1の技術では、支持基板の外側にプリプレグを介してピーラブル銅箔を積層することで硬化したプリプレグの絶縁樹脂材料の外側にピーラブル銅箔を貼り合せ、そのピーラブル銅箔上に銅めっきすることにより配線パターンを形成し、その上に層間絶縁樹脂層と配線パターンを複数層積層した後、ピーラブル銅箔を剥離していた。そして、ピーラブル銅箔の層をエッチングして除去することでその上に形成していた配線パターンと層間絶縁樹脂層の面とを露出させていたので、その露出した配線パターンは層間絶縁樹脂層に埋め込まれていて、その表面からは突出していない構造に形成していた。   In the technique of Patent Document 1, the peelable copper foil is bonded to the outside of the insulating resin material of the prepreg cured by laminating the peelable copper foil via the prepreg on the outside of the support substrate, and copper plating is performed on the peelable copper foil. Thus, a wiring pattern was formed, a plurality of interlayer insulating resin layers and wiring patterns were laminated thereon, and then the peelable copper foil was peeled off. Since the peelable copper foil layer is removed by etching, the wiring pattern formed on the layer and the surface of the interlayer insulating resin layer are exposed, so that the exposed wiring pattern is formed on the interlayer insulating resin layer. The structure is embedded and does not protrude from the surface.

特許文献1の技術では、そのようにして多層配線板を製造していたので、ピーラブル銅箔側の面の配線パターンは、絶縁樹脂層に埋め込まれた構造であり、絶縁樹脂層から突出した金属による凸電極が形成できなかった。そのため、その多層配線板のピーラブル銅箔側の面には、凸電極上にICチップのバンプを接合して、ICチップと層間絶縁樹脂層の表面の間にアンダーフィル樹脂を注入してICチップを固定するフリップチップ実装を行うことは難しい問題があった。   In the technique of Patent Document 1, since the multilayer wiring board is manufactured as described above, the wiring pattern on the surface of the peelable copper foil has a structure embedded in the insulating resin layer, and the metal protruding from the insulating resin layer. A convex electrode due to could not be formed. Therefore, on the surface of the multilayer wiring board on the peelable copper foil side, bumps of the IC chip are bonded on the convex electrodes, and an underfill resin is injected between the surface of the IC chip and the interlayer insulating resin layer to form the IC chip. It was difficult to perform flip-chip mounting to fix.

本発明の課題は、上記の問題を解決して、その製造に用いるピーラブル銅箔側の面にICチップをフリップチップ実装することができる、絶縁樹脂層の面から突出した凸電極を
形成した、板厚が極めて薄い多層配線板を得ることにある。
The problem of the present invention is to solve the above problems and to form a convex electrode protruding from the surface of the insulating resin layer, on which the IC chip can be flip-chip mounted on the surface of the peelable copper foil used for its production, It is to obtain a multilayer wiring board having a very thin plate thickness.

本発明は、上記課題を解決するために、複数の層間絶縁樹脂層及び複数の配線パターンの層を交互に積層した多層配線構造を有する多層配線板であって、前記層間絶縁樹脂層から突出した凸端子に、円錐台状のビアホールの上底が接続し、前記円錐台状のビアホールの下底にランドが接続し、該ランドと前記ビアホールは一体で構成され、前記ビアホールの上底と前記凸端子との間には接合界面が存在していることを特徴とする多層配線板である。   In order to solve the above-mentioned problem, the present invention is a multilayer wiring board having a multilayer wiring structure in which a plurality of interlayer insulating resin layers and a plurality of wiring pattern layers are alternately stacked, and protrudes from the interlayer insulating resin layer. The convex terminal is connected to the upper bottom of the frustoconical via hole, the land is connected to the lower bottom of the frustoconical via hole, the land and the via hole are integrally formed, and the upper bottom of the via hole and the convex The multilayer wiring board is characterized in that a bonding interface exists between the terminals.

また、本発明は、前記円錐台状のビアホールにおいて、上底が下底より平面投影面積が小さいことを特徴とする上記の多層配線板である。   The present invention is also the above multilayer wiring board, wherein the upper base of the frustoconical via hole has a smaller plane projection area than the lower base.

また、本発明は、前記凸端子の前記ビアホールとの接合する面は、前記円錐台状のビアホール上底の平面投影面積より大きいことを特徴とする上記の多層配線板である。   The present invention is the above multilayer wiring board, wherein a surface of the convex terminal to be joined to the via hole is larger than a planar projection area of the upper bottom of the frustoconical via hole.

また、本発明は、支持基板の外側に半硬化の絶縁樹脂シートを重ね、該半硬化の絶縁樹脂シートの外側に、該半硬化の絶縁樹脂シートよりも寸法が小さく、両面に複数の金属層が剥離可能に積層されて成る多層構造の金属箔を、そのキャリア銅箔層を外側にして重ねて積層する工程と、
前記多層構造の金属箔の外側に第1の層間絶縁樹脂層を積層する工程と、
前記層間絶縁樹脂層の外側から穴あけ加工用レーザー光線によって前記多層構造の金属箔の前記キャリア銅箔層に達するビアホール下穴を形成する工程と、
銅めっきにより前記ビアホール下穴を充填した第1のビアホール及び前記第1の層間絶縁樹脂層の外側に前記第1のビアホールのランドと第1の配線パターンを形成する工程と、前記第1の層間絶縁樹脂層と第1の配線パターンの外側に次の層間絶縁樹脂層と配線パターンの層を交互に積層して多層配線構造を形成する工程と、
前記多層構造の金属箔を剥離することで、前記支持基板から、前記キャリア銅箔層を含む前記多層配線構造を分離する工程と、
前記キャリア銅箔層をエッチングすることで前記第1のビアホールの位置に前記第1のビアホールを覆う凸端子のパターンを形成する工程
とを有することを特徴とする多層配線板の製造方法である。
The present invention also provides a semi-cured insulating resin sheet stacked on the outer side of a support substrate, the outer surface of the semi-cured insulating resin sheet is smaller in size than the semi-cured insulating resin sheet, and has a plurality of metal layers on both sides. Laminating the metal foil of the multilayer structure formed by laminating such that the carrier copper foil layer is on the outside,
Laminating a first interlayer insulating resin layer on the outside of the multi-layer metal foil;
Forming a via hole pilot hole reaching the carrier copper foil layer of the metal foil of the multilayer structure by a laser beam for drilling from the outside of the interlayer insulating resin layer;
Forming a first via hole filled with the via hole pilot hole by copper plating and a land of the first via hole and a first wiring pattern outside the first interlayer insulating resin layer; and the first interlayer Forming a multilayer wiring structure by alternately laminating next interlayer insulating resin layers and wiring pattern layers outside the insulating resin layer and the first wiring pattern;
Separating the multilayer wiring structure including the carrier copper foil layer from the support substrate by peeling the metal foil of the multilayer structure;
And a step of forming a convex terminal pattern covering the first via hole at the position of the first via hole by etching the carrier copper foil layer.

本発明の多層配線板の製造方法によると、凸端子1がビアホール32の下側(下底側)の、ビアホール32とビアホールのランド32bとの接続部分を覆って、その接続部分に応力が集中することを回避させる効果がある。また、ビアホールのランド32bが、凸端子1の下面とビアホール32の上面との接続境界部分を下側から覆うので、凸端子1の下面とビアホール32の上面との接続境界部分に応力が集中することを回避させる効果がある。それにより、ビアホール32と凸端子1との接続信頼性を高くできる効果がある。   According to the method for manufacturing a multilayer wiring board of the present invention, the convex terminal 1 covers the connection portion between the via hole 32 and the via hole land 32b on the lower side (lower bottom side) of the via hole 32, and stress is concentrated on the connection portion. There is an effect to avoid doing. Further, the via hole land 32 b covers the connection boundary portion between the lower surface of the convex terminal 1 and the upper surface of the via hole 32 from below, so that stress concentrates on the connection boundary portion between the lower surface of the convex terminal 1 and the upper surface of the via hole 32. This has the effect of avoiding this. Thereby, there is an effect that the connection reliability between the via hole 32 and the convex terminal 1 can be increased.

本発明の製造方法の実施形態を示す部分断面図である(その1)。It is a fragmentary sectional view which shows embodiment of the manufacturing method of this invention (the 1). 本発明の製造方法の実施形態を示す部分断面図である(その2)。It is a fragmentary sectional view which shows embodiment of the manufacturing method of this invention (the 2). 本発明の製造方法の実施形態を示す部分断面図である(その3)。It is a fragmentary sectional view which shows embodiment of the manufacturing method of this invention (the 3). 本発明の製造方法の実施形態を示す部分断面図である(その4)。It is a fragmentary sectional view which shows embodiment of the manufacturing method of this invention (the 4). 本発明の製造方法の実施形態を示す部分断面図である(その5)。It is a fragmentary sectional view which shows embodiment of the manufacturing method of this invention (the 5). 本発明の製造方法の実施形態を示す部分断面図である(その6)。It is a fragmentary sectional view which shows embodiment of the manufacturing method of this invention (the 6). 本発明の変形例3の積層基板構造の部分断面図である。It is a fragmentary sectional view of the laminated substrate structure of the modification 3 of this invention.

以下、図面を参照して本発明の実施形態を説明する。図1から図7の側断面図に、本発明の多層配線板の製造方法の一実施形態を工程順に示す。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. 1 to 7 show an embodiment of a method for producing a multilayer wiring board according to the present invention in the order of steps.

構造に用いる材料、構成については、製造方法の実施形態を例に以下に説明する。
(支持基板)
先ず、図1(a)のように、支持基板10として、厚み0.04mmから0.4mmの基板で、両面に厚み18μmの銅箔11を有する、有機樹脂をガラスやポリイミド、液晶などから成る補強繊維に含浸させた材料から成る銅張積層板(例えば、サイズが610×510mm)を用いる。
Materials and structures used for the structure will be described below by taking an embodiment of the manufacturing method as an example.
(Support substrate)
First, as shown in FIG. 1A, the supporting substrate 10 is a substrate having a thickness of 0.04 mm to 0.4 mm, and has a copper foil 11 having a thickness of 18 μm on both sides, and an organic resin is made of glass, polyimide, liquid crystal, or the like. A copper clad laminate (for example, a size of 610 × 510 mm) made of a material impregnated in a reinforcing fiber is used.

この支持基板10を構成する有機樹脂材料は、エポキシ系、アクリル系、ウレタン系、エポキシアクリレート系、フェノールエポキシ系、ポリイミド系、ポリアミド系、シアネート系、液晶系を主体とする有機樹脂を用いることができる。また、その有機樹脂にシリカやブチル系有機材料、炭酸カルシウムなどによるフィラーを含ませた基板を用いることもできる。   As the organic resin material constituting the support substrate 10, an organic resin mainly composed of epoxy, acrylic, urethane, epoxy acrylate, phenol epoxy, polyimide, polyamide, cyanate, and liquid crystal is used. it can. Alternatively, a substrate in which a filler made of silica, butyl organic material, calcium carbonate, or the like is included in the organic resin can be used.

(支持基板の銅箔粗化処理工程)
先ず、支持基板10の銅箔11の表面を、過水硫酸等のエッチング液によるソフトエッチング処理により粗化処理する。次に、支持基板10の表面に、ピーラブル銅箔などの多層構造の金属箔13を重ねる位置合せマークとして、銅箔11をエッチングしたパターンで位置合せマークを形成する。
(Copper foil roughening process for support substrate)
First, the surface of the copper foil 11 of the support substrate 10 is roughened by a soft etching process using an etchant such as perhydrosulfuric acid. Next, an alignment mark is formed in a pattern obtained by etching the copper foil 11 as an alignment mark for superimposing the metal foil 13 having a multilayer structure such as peelable copper foil on the surface of the support substrate 10.

(変形例1)
変形例1として、この支持基板10として、ガラス(青板、無アルカリガラス、石英)、又は、金属(ステンレス、鉄、銅、チタン、タングステン、マグネシウム、アルミニウム、クロム、モリブデンなどを主体とする)を用いることもできる。
(Modification 1)
As a first modification, the support substrate 10 is made of glass (blue plate, non-alkali glass, quartz) or metal (mainly stainless steel, iron, copper, titanium, tungsten, magnesium, aluminum, chromium, molybdenum, etc.). Can also be used.

(多層構造の金属箔の積層工程)
次に、図1(b)のように、サイズが例えば610×510mmの支持基板10を中心にし、その支持基板10の外側に、平面視で支持基板10と同じサイズの寸法が610×510mmのプリプレグもしくは樹脂フィルムから成る半硬化絶縁樹脂シート12aを重ね、その外側に、半硬化絶縁樹脂シート12aより小さいサイズの寸法が600×500mmの多層構造の金属箔13を重ねる。そして、その多層構造の金属箔13の外側に離型フィルム20を重ねて、真空積層プレスにより、支持基板10の外側に半硬化絶縁樹脂シート12aを介して多層構造の金属箔13を積層する。
(Lamination process of metal foil with multilayer structure)
Next, as shown in FIG. 1B, the support substrate 10 having a size of, for example, 610 × 510 mm is centered, and outside the support substrate 10, the size of the same size as the support substrate 10 in plan view is 610 × 510 mm. A semi-cured insulating resin sheet 12a made of a prepreg or a resin film is stacked, and a multilayered metal foil 13 having a size smaller than the semi-cured insulating resin sheet 12a and having a size smaller than 600 × 500 mm is stacked on the outside thereof. Then, the release film 20 is stacked on the outer side of the multi-layered metal foil 13, and the multi-layered metal foil 13 is stacked on the outer side of the support substrate 10 via the semi-cured insulating resin sheet 12a by a vacuum laminating press.

真空積層プレス装置によって加熱・加圧する積層処理によって、支持基板10の外側の半硬化絶縁樹脂シート12aを硬化させて絶縁樹脂材料12にし、その支持基板10と絶縁樹脂材料12とからなる支持基板の外側の面に多層構造の金属箔13が一体となった積層基板100を製造する。   The semi-cured insulating resin sheet 12a outside the support substrate 10 is cured into an insulating resin material 12 by a laminating process that is heated and pressurized by a vacuum laminating press apparatus, and the support substrate made of the support substrate 10 and the insulating resin material 12 is used. A laminated substrate 100 in which a multilayered metal foil 13 is integrated on the outer surface is manufactured.

(半硬化絶縁樹脂シート)
ここで用いる半硬化絶縁樹脂シート12aとしては、厚さが0.04mmから0.4mmの(例えば厚さが0.07mmの)、有機樹脂が補強繊維に含浸されて成るプリプレグを半硬化絶縁樹脂シート12aとして用いる。プリプレグは、樹脂リッチに調整している方が好ましい。必要なハンドリング性を確保できる場合は、補強繊維を含まない樹脂フィルムの半硬化絶縁樹脂シート12aを用いても構わない。
(Semi-cured insulating resin sheet)
As the semi-cured insulating resin sheet 12a used here, a prepreg having a thickness of 0.04 mm to 0.4 mm (for example, a thickness of 0.07 mm) and impregnated with an organic resin is used as a semi-cured insulating resin. Used as a sheet 12a. The prepreg is preferably adjusted to be resin-rich. If necessary handling properties can be ensured, a semi-cured insulating resin sheet 12a made of a resin film not containing reinforcing fibers may be used.

半硬化絶縁樹脂シート12aの有機樹脂の材料としては、エポキシ樹脂、ビスマレイミ
ド−トリアジン樹脂(以下、BT樹脂と称す)、ポリイミド樹脂、PPE樹脂、フェノール樹脂、PTFE樹脂、珪素樹脂、ポリブタジエン樹脂、ポリエステル樹脂、メラミン樹脂、ユリア樹脂、PPS樹脂、PPO樹脂、シアネート樹脂、シアネートエステル樹脂などの有機樹脂を使用することができる。
As the organic resin material of the semi-cured insulating resin sheet 12a, epoxy resin, bismaleimide-triazine resin (hereinafter referred to as BT resin), polyimide resin, PPE resin, phenol resin, PTFE resin, silicon resin, polybutadiene resin, polyester Organic resins such as resins, melamine resins, urea resins, PPS resins, PPO resins, cyanate resins, and cyanate ester resins can be used.

また、補強繊維は、ガラス繊維、アラミド不織布やアラミド繊維、ポリエステル繊維、ポリアミド繊維、液晶繊維などを用いることができる。また、半硬化絶縁樹脂シート12aの有機樹脂には、シリカやブチル系有機材料、炭酸カルシウムなどによるフィラーを含ませることもできる。   As the reinforcing fiber, glass fiber, aramid nonwoven fabric, aramid fiber, polyester fiber, polyamide fiber, liquid crystal fiber, or the like can be used. In addition, the organic resin of the semi-cured insulating resin sheet 12a can include a filler made of silica, butyl organic material, calcium carbonate, or the like.

(複数の金属層が剥離可能に積層されて成る多層構造の金属箔)
複数の金属層が剥離可能に積層されて成る多層構造の金属箔13として、例えば、厚さ10μm〜35μm(例えば18μm)のキャリア銅箔層13bの金属層に、厚さ1μm〜8μm(例えば5μm)の極薄銅箔層13aの金属層を剥離可能に積層したピーラブル金属箔を用いる。キャリア銅箔層13bと極薄銅箔層13aの金属層を剥離可能に積層する手段は、剥離可能に接着剤で接着する方法や、その他の剥離可能な積層方法を用いる。
(Multi-layered metal foil in which multiple metal layers are laminated in a peelable manner)
As the metal foil 13 having a multilayer structure in which a plurality of metal layers are detachably laminated, for example, a metal layer of a carrier copper foil layer 13b having a thickness of 10 μm to 35 μm (for example, 18 μm), and a thickness of 1 μm to 8 μm (for example, 5 μm). The peelable metal foil in which the metal layer of the ultrathin copper foil layer 13a is peelably laminated is used. As a means for releasably laminating the metal layers of the carrier copper foil layer 13b and the ultrathin copper foil layer 13a, a method in which the carrier copper foil layer 13b and the ultrathin copper foil layer 13a are releasably bonded with an adhesive or other releasable laminating methods are used.

この多層構造の金属箔13を、キャリア銅箔層13bを外側にし極薄銅箔層13aを内側にして半硬化絶縁樹脂シート12aの外側に重ねる。   The metal foil 13 having this multilayer structure is stacked on the outside of the semi-cured insulating resin sheet 12a with the carrier copper foil layer 13b on the outside and the ultrathin copper foil layer 13a on the inside.

図1(b)のように、多層構造の金属箔13の外側に、離型フィルム20を重ねて真空積層プレスにより、支持基板10の外側に半硬化絶縁樹脂シート12aを介して多層構造の金属箔13を積層する。真空積層プレスの条件は、適用する半硬化絶縁樹脂シート12aの材料に合わせて昇温速度や圧力、加圧タイミングを調整して実施する。流動性が高い材料を用いる場合は、昇温速度や加圧タイミングを遅くする調整を施しても構わない。   As shown in FIG. 1B, a multilayer film metal is laminated on the outer side of the support substrate 10 via a semi-cured insulating resin sheet 12a by stacking a release film 20 on the outer side of the multi-layer metal foil 13 and using a vacuum lamination press. The foil 13 is laminated. The conditions of the vacuum lamination press are carried out by adjusting the heating rate, pressure, and pressurization timing according to the material of the semi-cured insulating resin sheet 12a to be applied. In the case of using a material having high fluidity, adjustment may be made to slow the temperature increase rate or pressurization timing.

そして、半硬化絶縁樹脂シート12aを固化させて絶縁樹脂材料12にした後に離型フィルム20を剥離して、図2(c)のように、サイズ600×500mmの多層構造の金属箔13の外周部を絶縁樹脂材料12による幅5mmの額縁部14が囲み、多層構造の金属箔13の外縁部の表面の上に、額縁部14の絶縁樹脂材料12と連結している薄い樹脂薄膜15を形成させた支持基板である積層基板100を製造する。この状態に置いて、多層構造の金属箔13の内側の面、側壁、外側の端部が一体の絶縁樹脂材料にて覆われる。   Then, after the semi-cured insulating resin sheet 12a is solidified to be the insulating resin material 12, the release film 20 is peeled off, and the outer periphery of the metal foil 13 having a multilayer structure of size 600 × 500 mm as shown in FIG. A thin resin thin film 15 connected to the insulating resin material 12 of the frame portion 14 is formed on the surface of the outer edge portion of the metal foil 13 having a multilayer structure. The laminated substrate 100 that is the supported substrate is manufactured. In this state, the inner surface, side wall, and outer end of the metal foil 13 having a multilayer structure are covered with an integral insulating resin material.

(変形例3)
変形例3として、支持基板10を用いずに、2枚の多層構造の金属箔13の間に、その多層構造の金属箔13より大きいサイズの、積層による硬化後に剛性が十分に確保できる厚さ及び剛性を有する絶縁樹脂材料12になる半硬化絶縁樹脂シート12aを挟んで真空積層プレスにより積層処理して積層基板100を製造することもできる。その積層基板100は、図7のように、2枚の多層構造の金属箔13の間に絶縁樹脂材料12が形成された構造であり、その2枚の多層構造の金属箔13のサイズは積層基板100のサイズより小さい。そして、多層構造の金属箔13の外側の面の端部を絶縁樹脂材料12の一部である樹脂薄膜15が覆う構造が形成される。結局、変形例3によっても、多層構造の金属箔13の内側の面と多層構造の金属箔13の外側の面の端部とが、一体構造に形成された絶縁樹脂材料12で覆われている積層基板100を製造することができる。
(Modification 3)
As a third modification, a thickness larger than that of the multi-layered metal foil 13 between the two multi-layered metal foils 13 without using the support substrate 10 and sufficient rigidity can be ensured after curing by lamination. And the laminated substrate 100 can also be manufactured by carrying out lamination | stacking processing by the vacuum lamination press on both sides of the semi-hardened insulation resin sheet 12a used as the insulating resin material 12 which has rigidity. The laminated substrate 100 has a structure in which an insulating resin material 12 is formed between two multi-layered metal foils 13 as shown in FIG. 7, and the size of the two multi-layered metal foils 13 is laminated. It is smaller than the size of the substrate 100. And the structure which the resin thin film 15 which is a part of insulating resin material 12 covers the edge part of the outer surface of the metal foil 13 of a multilayer structure is formed. Eventually, also in Modification 3, the inner surface of the multilayer metal foil 13 and the end of the outer surface of the multilayer metal foil 13 are covered with the insulating resin material 12 formed in an integral structure. The laminated substrate 100 can be manufactured.

(離型フィルム)
図1(b)の工程で、真空積層プレスの際に真空積層プレス装置のステンレス製のプレス板との間に挟む離型フィルム20としては、ポリフェニレンスルフィド、ポリイミド等の樹脂材料とステンレス、真鍮等の金属材料とを組み合わせた複合材料からなるフィルムを用いる。
(Release film)
In the step of FIG. 1 (b), the release film 20 sandwiched between the stainless steel press plate of the vacuum lamination press apparatus in the vacuum lamination press is a resin material such as polyphenylene sulfide or polyimide, stainless steel, brass or the like. A film made of a composite material combined with a metal material is used.

離型フィルム20の熱収縮率は、加熱加圧処理を施す温度において、0.01〜0.9%の熱収縮率を持つ離型フィルム20を用いる。また、離型フィルム20の加熱加圧処理後における伸びの低下率が加熱加圧処理前の30%以下である離型フィルム20を用いる。   As the heat shrinkage rate of the release film 20, the release film 20 having a heat shrinkage rate of 0.01 to 0.9% is used at the temperature at which the heat and pressure treatment is performed. Moreover, the release film 20 whose elongation reduction rate after the heat-pressing process of the release film 20 is 30% or less before the heat-pressing process is used.

離型フィルム20の形態は、厚みが、10〜200μmの樹脂材料からなり、特に、離型フィルム20の表面に、JIS B0601に規定される平均粗さRaを300nm以上1500nm以下に粗面化処理(マット処理)を施した離型フィルム20を用いる。   The form of the release film 20 is made of a resin material having a thickness of 10 to 200 μm. In particular, the surface of the release film 20 has an average roughness Ra specified in JIS B0601 of 300 nm to 1500 nm. A release film 20 subjected to (mat treatment) is used.

図1(b)の工程で、支持基板10の外側に、樹脂リッチに調整した半硬化絶縁樹脂シート12aを重ね、その外側に多層構造の金属箔13を重ね、その外側に、平均粗さRaを300nm以上1500nm以下に粗面化処理(マット処理)した離型フィルム20を重ねて、プレス板の間に挟んで、そのプレス板で加熱・加圧する真空積層プレス装置を用いて積層して積層基板100を製造する。   In the step of FIG. 1 (b), the resin-rich semi-cured insulating resin sheet 12a is overlaid on the outside of the support substrate 10, the multilayered metal foil 13 is overlaid on the outside, and the average roughness Ra is on the outside. Are laminated using a vacuum laminating press apparatus that heats and presses the release film 20 that is roughened to a surface roughness of 300 nm or more and 1500 nm or less, sandwiched between press plates, and heated and pressed by the press plates. Manufacturing.

その際に、離型フィルム20の面のマット処理の効果により、図2(c)のように、多層構造の金属箔13の外縁部の表面の上に、額縁部14の絶縁樹脂材料12と連結している薄い樹脂薄膜15が形成される。   At that time, due to the effect of the mat treatment on the surface of the release film 20, the insulating resin material 12 of the frame portion 14 and the surface of the outer edge portion of the metal foil 13 having a multilayer structure as shown in FIG. A thin thin resin film 15 is formed.

この樹脂薄膜15が適切に形成されるように、離型フィルム20の面のマット処理と半硬化絶縁樹脂シート12aの樹脂リッチな度合いと真空積層プレスの加熱・加圧条件を調整する。それにより、加熱・加圧された半硬化絶縁樹脂シート12aの樹脂材料が多層構造の金属箔13の外縁部の表面の上に適切に流れ出して、多層構造の金属箔13の外縁部の上に絶縁樹脂材料12の樹脂薄膜15が厚さが3μm以下で、幅が0.1mm以上10mm以下の範囲の幅で形成される。   The matting treatment of the surface of the release film 20, the resin rich degree of the semi-cured insulating resin sheet 12a, and the heating / pressurizing conditions of the vacuum lamination press are adjusted so that the resin thin film 15 is appropriately formed. Accordingly, the resin material of the semi-cured insulating resin sheet 12a that has been heated and pressurized appropriately flows out onto the outer edge portion of the multilayer metal foil 13, and onto the outer edge portion of the multilayer metal foil 13. The resin thin film 15 of the insulating resin material 12 has a thickness of 3 μm or less and a width in the range of 0.1 mm to 10 mm.

これにより、積層基板100を、多層構造の金属箔13のサイズが、積層基板100全体のサイズより小さく形成する。そして、図2(c)の部分断面図に示すとおり、多層構造の金属箔13の外側である額縁部14の絶縁樹脂材料12が、多層構造の金属箔13の内側の面と外側の端部と、多層構造の金属箔13の露出面の外周部分とを、一体に覆うようにする。それにより積層基板を用いた基板製造工程での金属箔13の層の剥離を効果的に防止することができる。   As a result, the multilayer substrate 100 is formed such that the size of the metal foil 13 having a multilayer structure is smaller than the overall size of the multilayer substrate 100. Then, as shown in the partial cross-sectional view of FIG. 2 (c), the insulating resin material 12 of the frame portion 14 which is the outer side of the metal foil 13 having the multilayer structure is composed of the inner surface and the outer end portion of the metal foil 13 having the multilayer structure. The outer peripheral portion of the exposed surface of the metal foil 13 having a multilayer structure is integrally covered. Thereby, peeling of the layer of the metal foil 13 in the substrate manufacturing process using the laminated substrate can be effectively prevented.

積層基板100の樹脂薄膜15は、額縁部14の絶縁樹脂材料12と連結して、多層構造の金属箔13の極薄銅箔層13aとキャリア銅箔層13bとの剥離の界面の境界線を絶縁樹脂材料12内に埋め込んで保護する効果がある。それにより、以降の製造工程のストレスで、多層構造の金属箔13の、極薄銅箔層13aとキャリア銅箔層13bの剥離の境界面が剥離することを防止でき、その界面の剥離による製造不良を防止できる効果がある。   The resin thin film 15 of the multilayer substrate 100 is connected to the insulating resin material 12 of the frame portion 14, and the boundary line of the peeling interface between the ultrathin copper foil layer 13a and the carrier copper foil layer 13b of the metal foil 13 having a multilayer structure is formed. The insulating resin material 12 has an effect of being embedded and protected. Thereby, it is possible to prevent peeling of the boundary surface between the ultrathin copper foil layer 13a and the carrier copper foil layer 13b of the multi-layered metal foil 13 due to stress in the subsequent manufacturing process, and manufacture by peeling of the interface. This has the effect of preventing defects.

特に、樹脂薄膜15の幅を0.1mm以上にすることで、多層構造の金属箔の剥離の界面の境界線が十分に保護される効果があり、それにより、基板の以降の製造工程において多層構造の金属箔13が予期せず剥離する不具合を防止できる効果がある。一方、樹脂薄膜15の幅を10mmより大きくすると、多層構造の金属箔13が樹脂薄膜15で覆われない有効領域の面積が狭くなり製品コストを増加させてしまう。なお、好ましくは、この樹脂薄膜15が多層構造の金属箔13を覆う幅を0.5μm以上5mm以下の幅となるように製造条件を調整することが望ましい。   In particular, by setting the width of the resin thin film 15 to 0.1 mm or more, there is an effect that the boundary line of the peeling interface of the metal foil having the multilayer structure is sufficiently protected, and thereby the multilayer in the subsequent manufacturing process of the substrate. There is an effect that it is possible to prevent a problem that the structured metal foil 13 is unexpectedly peeled off. On the other hand, if the width of the resin thin film 15 is larger than 10 mm, the area of the effective region in which the multi-layered metal foil 13 is not covered with the resin thin film 15 is narrowed and the product cost is increased. Preferably, the manufacturing conditions are adjusted so that the resin thin film 15 covers the multilayer metal foil 13 with a width of 0.5 μm or more and 5 mm or less.

この樹脂薄膜15と額縁部14の絶縁樹脂材料12の表面には、マット処理された離型
フィルム20の、平均粗さRaが300nm以上1500nm以下の粗度の粗さが転写されている。それにより、後に形成する金属めっき層と、この樹脂薄膜15の表面及び額縁部14の絶縁樹脂材料12の表面との密着力を強くできる効果がある。Raが300nmより小さくなると発現される密着力が弱く、工程中に絶縁樹脂材料12表面に設けられる金属めっき層が剥離する。また、Raが1500nmより大きくなる場合、凸部となる絶縁樹脂材料12が脱離しやすく、この脱離物により工程中の歩留低下を発生させる。
On the surfaces of the resin thin film 15 and the insulating resin material 12 of the frame portion 14, the roughness of the matte release film 20 having an average roughness Ra of 300 nm to 1500 nm is transferred. Thereby, there is an effect that the adhesion force between the metal plating layer to be formed later and the surface of the resin thin film 15 and the surface of the insulating resin material 12 of the frame portion 14 can be increased. When Ra is smaller than 300 nm, the adhesive force expressed is weak, and the metal plating layer provided on the surface of the insulating resin material 12 peels during the process. Moreover, when Ra becomes larger than 1500 nm, the insulating resin material 12 which becomes a convex portion is easily detached, and this detached substance causes a decrease in yield during the process.

ここで、両面に銅箔11を有する支持基板10とその両面の外側に半硬化絶縁樹脂シート12aを重ねて積層する場合は、それらを多層構造の金属箔13の間に挟んで積層して積層基板100を製造すると、その積層基板100が銅箔11で補強される効果がある。また、銅箔11により、積層基板100の表面の熱膨張係数が銅の熱膨張係数に整合され、後に積層基板100の外側にビルドアップして形成する銅の配線パターン33と積層基板100の表面の熱膨張係数の差が小さくなり、製造工程での熱処理により積層基板100と配線パターン33の界面に生じる熱ストレスを軽減できる効果がある。   Here, when the support substrate 10 having the copper foil 11 on both sides and the semi-cured insulating resin sheet 12a are laminated on the outer sides of the both sides, the laminate is laminated by sandwiching them between the metal foils 13 having a multilayer structure. When the substrate 100 is manufactured, the laminated substrate 100 has an effect of being reinforced with the copper foil 11. Also, the copper foil 11 matches the thermal expansion coefficient of the surface of the multilayer substrate 100 to the thermal expansion coefficient of copper, and later builds up the outer surface of the multilayer substrate 100 to form the copper wiring pattern 33 and the surface of the multilayer substrate 100. There is an effect that the difference in thermal expansion coefficient between the two is reduced, and the thermal stress generated at the interface between the multilayer substrate 100 and the wiring pattern 33 due to the heat treatment in the manufacturing process can be reduced.

(層間絶縁樹脂層の形成工程)
次に、層間絶縁樹脂層31の形成のための前処理として、多層構造の金属箔13の表面を、粒界腐食のエッチング処理により粗化処理するか、酸化還元処理による黒化処理、又は、過水硫酸系のソフトエッチング処理により粗化処理する。
(Interlayer insulating resin layer formation process)
Next, as a pretreatment for forming the interlayer insulating resin layer 31, the surface of the multilayered metal foil 13 is roughened by an etching process of intergranular corrosion, a blackening process by an oxidation-reduction process, or Roughening is performed by perhydrosulfuric acid based soft etching.

次に、図2(d)のように、多層構造の金属箔13上に層間絶縁樹脂層31を、ロールラミネートまたは積層プレスで熱圧着させる。例えば厚さ45μmのエポキシ樹脂をロールラミネートする。ガラスエポキシ樹脂を使う場合は任意の厚さの銅箔を重ね合わせ積層プレスで熱圧着させる。   Next, as shown in FIG. 2 (d), the interlayer insulating resin layer 31 is thermocompression-bonded on the multi-layered metal foil 13 by roll lamination or lamination press. For example, an epoxy resin having a thickness of 45 μm is roll laminated. When glass epoxy resin is used, copper foil of any thickness is stacked and thermocompression bonded with a lamination press.

層間絶縁樹脂層31の樹脂材料として、エポキシ樹脂、ビスマレイミド−トリアジン樹脂(以下、BT樹脂と称す)、ポリイミド樹脂、PPE樹脂、フェノール樹脂、PTFE樹脂、珪素樹脂、ポリブタジエン樹脂、ポリエステル樹脂、メラミン樹脂、ユリア樹脂、PPS樹脂、PPO樹脂、シアネート樹脂、シアネートエステル樹脂などの有機樹脂を使用することができる。また、これらの樹脂単独でも、複数樹脂を混合しあるいは化合物を作成するなどの樹脂の組み合わせも使用できる。更に、これらの材料に、ガラス繊維の補強材を混入させた層間絶縁樹脂層31を用いることができる。補強材には、アラミド不織布やアラミド繊維、ポリエステル繊維を用いることができる。   As a resin material of the interlayer insulating resin layer 31, epoxy resin, bismaleimide-triazine resin (hereinafter referred to as BT resin), polyimide resin, PPE resin, phenol resin, PTFE resin, silicon resin, polybutadiene resin, polyester resin, melamine resin Organic resins such as urea resin, PPS resin, PPO resin, cyanate resin, and cyanate ester resin can be used. In addition, these resins can be used alone, or a combination of resins such as mixing a plurality of resins or preparing a compound can be used. Furthermore, an interlayer insulating resin layer 31 in which a glass fiber reinforcing material is mixed into these materials can be used. As the reinforcing material, an aramid nonwoven fabric, an aramid fiber, or a polyester fiber can be used.

(ビアホール及び配線パターンの形成工程)
次に、図3(e)のように、層間接続用のビアホール下穴32aを、穴あけ加工用レーザー光線によって形成する。なお、層間絶縁樹脂層31の熱圧着に銅箔を使用した場合は、ビアホール下穴32aを形成する前処理として、その銅箔を全面エッチングするか、銅箔にビアホール下穴32a用の開口を形成するエッチング処理を行うか、あるいは、銅箔の表面処理を行うことでビアホール下穴32a部分の銅箔のレーザー吸収性を改善してレーザー光線によってビアホール下穴32aを形成する。このビアホール下穴32aは円錐状に形成される。
(Via hole and wiring pattern formation process)
Next, as shown in FIG. 3E, a via hole prepared hole 32a for interlayer connection is formed by a laser beam for drilling. When copper foil is used for thermocompression bonding of the interlayer insulating resin layer 31, as a pretreatment for forming the via hole prepared hole 32a, the entire copper foil is etched, or an opening for the via hole prepared hole 32a is formed in the copper foil. By performing the etching process to be formed or the surface treatment of the copper foil, the laser absorption of the copper foil in the via hole pilot hole 32a is improved, and the via hole pilot hole 32a is formed by a laser beam. The via hole prepared hole 32a is formed in a conical shape.

次に、図3(f)のように、ビアホール下穴32aの壁面および層間絶縁樹脂層31の表面に無電解めっきを施し、その外側に電解銅めっきの層を形成し、銅めっきで充填したビアホール32を形成する。ビアホール32は、支持基板側を上側にし基板の外側を下側にすると、円錐台状に形成される。   Next, as shown in FIG. 3 (f), the wall surface of the via hole prepared hole 32a and the surface of the interlayer insulating resin layer 31 are subjected to electroless plating, and an electrolytic copper plating layer is formed on the outer side and filled with copper plating. A via hole 32 is formed. The via hole 32 is formed in a truncated cone shape when the support substrate side is on the upper side and the outer side of the substrate is on the lower side.

次に、電解銅めっきの層の面に感光性めっきレジストフィルムを形成して露光・現像することで、エッチングレジストのパターンを形成し、そのエッチングレジストで保護して
電解銅めっきのパターンをエッチングし、次に、エッチングレジストのパターンを剥離することで、図3(g)のように、層間絶縁樹脂層31上にビアホールのランド32bと配線パターン33を形成する。
Next, a photosensitive plating resist film is formed on the surface of the electrolytic copper plating layer, exposed and developed to form an etching resist pattern, which is protected by the etching resist and etched into the electrolytic copper plating pattern. Next, the pattern of the etching resist is peeled to form via hole lands 32 b and wiring patterns 33 on the interlayer insulating resin layer 31 as shown in FIG.

そして、その配線パターン33と層間絶縁樹脂層31上に、同様のビルドアップ工法による層間絶縁樹脂層34の形成工程と、ビアホール35及び配線パターンの形成工程を繰り返して、図4(h)のように、積層基板100上に、層間絶縁樹脂層31及び34とビアホール32及び35と配線パターンを複数層ビルドアップした多層配線構造30を形成する。   Then, the formation process of the interlayer insulation resin layer 34 by the same build-up method and the formation process of the via hole 35 and the wiring pattern are repeated on the wiring pattern 33 and the interlayer insulation resin layer 31 as shown in FIG. Then, a multilayer wiring structure 30 is formed on the multilayer substrate 100 by building up a plurality of interlayer insulating resin layers 31 and 34, via holes 32 and 35, and wiring patterns.

次に、多層配線構造30の表面をマイクロエッチング剤で粗化処理した上にアゾール化合物の厚い被膜を形成させてソルダーレジストの接着性を向上させる処理を行う。次に、感光性のソルダーレジスト36の膜を形成し、露光・現像しパッド部分を開口させ、加熱硬化させる。粗化処理後に多層配線構造30とソルダーレジスト36との密着が確保できる場合は、アゾール化合物による処理は実施しなくても構わない。   Next, the surface of the multilayer wiring structure 30 is roughened with a microetching agent, and then a thick coating of an azole compound is formed to improve the solder resist adhesion. Next, a film of a photosensitive solder resist 36 is formed, exposed and developed, the pad portion is opened, and heat cured. When the adhesion between the multilayer wiring structure 30 and the solder resist 36 can be secured after the roughening treatment, the treatment with the azole compound may not be performed.

次に、多層配線構造30の表面に、所望のサイズのエッチングレジストを張り付け、図4(i)の切断線16で多層配線構造30と積層基板100を切断することで額縁部14を切り離し、その切断面に多層構造の金属箔13の剥離の境界線を露出させる。そして、図5(j)のように、露出させた剥離の境界線から多層構造の金属箔13の極薄銅箔層13aからキャリア銅箔層13bを剥離することで、厚さ0.4mmの積層基板100から多層配線構造30を分離する。   Next, an etching resist of a desired size is pasted on the surface of the multilayer wiring structure 30, and the frame portion 14 is cut off by cutting the multilayer wiring structure 30 and the laminated substrate 100 along the cutting line 16 in FIG. A boundary line for peeling the multilayer metal foil 13 is exposed on the cut surface. Then, as shown in FIG. 5 (j), the carrier copper foil layer 13b is peeled from the ultrathin copper foil layer 13a of the metal foil 13 having a multilayer structure from the exposed peeling boundary line. The multilayer wiring structure 30 is separated from the multilayer substrate 100.

次に、そうして分離した多層配線構造30に対し、多層配線構造30のキャリア銅箔層13bの表面にエッチングレジストのパターンを形成してキャリア銅箔層13bをエッチングすることで、図5(k)のように、凸端子1を層間絶縁樹脂層31から突出させて形成した多層配線構造30を得る。なお、必要な凸端子1の高さに合わせるため、エッチングする前にパネルめっきを実施したり、ハーフエッチングを実施しても構わない。   Next, with respect to the multilayer wiring structure 30 thus separated, an etching resist pattern is formed on the surface of the carrier copper foil layer 13b of the multilayer wiring structure 30, and the carrier copper foil layer 13b is etched, whereby FIG. As shown in k), the multilayer wiring structure 30 formed by protruding the protruding terminals 1 from the interlayer insulating resin layer 31 is obtained. In addition, in order to match the required height of the convex terminals 1, panel plating may be performed before etching or half etching may be performed.

この凸端子1の部分の形状は、図6のように、円錐台状のビアホール32の上面(上底)の高さと層間絶縁樹脂層31の上面の高さと凸端子1の下面の高さが略一致する形であり、かつ、ビアホール32と凸端子1との接続界面が存在する。一方、凸端子1がビアホール32の下側(下底側)では、ビアホール32の内側とビアホールのランド32bが銅を代表とする金属にて一体で設けられ、接続界面がビアホール32の下側には接続界面が存在しない構成となる。   As shown in FIG. 6, the shape of the convex terminal 1 is such that the height of the upper surface (upper bottom) of the frustoconical via hole 32, the height of the upper surface of the interlayer insulating resin layer 31, and the height of the lower surface of the convex terminal 1. The connection interface between the via hole 32 and the convex terminal 1 exists in a substantially coincident shape. On the other hand, on the lower side (lower side) of the via terminal 32, the inner side of the via hole 32 and the land 32 b of the via hole are integrally provided with a metal typified by copper, and the connection interface is located below the via hole 32. Has a configuration in which no connection interface exists.

凸端子1が、層間絶縁樹脂層31下面に密着することで、凸端子1近傍の層間絶縁樹脂層31は凸端子1に拘束され変形しない状態とすることができ、この凸端子1に拘束された層間絶縁樹脂層31の領域内にビアホール32の上面に存在する接続界面周囲の変形を効果的に低減できる。   When the convex terminal 1 is in close contact with the lower surface of the interlayer insulating resin layer 31, the interlayer insulating resin layer 31 in the vicinity of the convex terminal 1 can be constrained by the convex terminal 1 and not deformed. Further, deformation around the connection interface existing on the upper surface of the via hole 32 in the region of the interlayer insulating resin layer 31 can be effectively reduced.

特にLSIなど部品を接続したときに熱膨張係数差を主として発生する応力がかかる状況において、ビアホール32の上側では凸端子1による層間絶縁樹脂層31の変形抑制が、ビアホール32の下側では樹脂が変形しやすい領域でのくびれた構造よりビアホール32の上側より高い応力が集中する。つまり、ビアホール32の下側に接続界面が存在すると接続部での破断を引き起こす確率が高くなる。特にLSIを接続する端子は、反対面に設けられるBGAやLGA端子より小さいことから、応力が集中しやすく、ビアの接続界面の位置が重要となる。 In particular, in a situation where stress that mainly generates a difference in thermal expansion coefficient is applied when components such as LSI are connected, deformation of the interlayer insulating resin layer 31 by the convex terminals 1 is suppressed above the via holes 32, and resin is suppressed below the via holes 32. A higher stress is concentrated on the upper side of the via hole 32 than in the constricted structure in the region where deformation is likely to occur. That is, if a connection interface exists below the via hole 32, the probability of causing breakage at the connection portion increases. In particular, the terminal connecting the LSI is smaller than the BGA or LGA terminal provided on the opposite surface, so that stress tends to concentrate, and the position of the via connection interface is important.

(ランド部分のめっき)
次に、ソルダーレジスト36の開口部の部分及び凸端子1に、無電解Niめっきを3μm以上形成し、その上に無電解Auめっきを0.03μm以上形成する。無電解Auめっきは1μm以上形成しても良い。更にその上にはんだをプリコートすることも可能である。あるいは、ソルダーレジスト開口部に、電解Niめっきを3μm以上形成し、その上に電解Auめっきを0.5μm以上形成しても良い。更に、ソルダーレジスト開口部に、金属めっき以外に、有機防錆皮膜を形成しても良い。
(外形加工)
次に、多層配線構造30の外形をダイサーなどで加工して個片の多層配線板に分離する。
(Land plating)
Next, 3 μm or more of electroless Ni plating is formed on the opening portion of the solder resist 36 and the protruding terminal 1, and 0.03 μm or more of electroless Au plating is formed thereon. The electroless Au plating may be formed with a thickness of 1 μm or more. Furthermore, it is also possible to pre-coat solder thereon. Alternatively, electrolytic Ni plating may be formed at 3 μm or more in the solder resist opening, and electrolytic Au plating may be formed thereon at 0.5 μm or more. Furthermore, an organic rust preventive film may be formed in the solder resist opening in addition to the metal plating.
(Outline processing)
Next, the outer shape of the multilayer wiring structure 30 is processed with a dicer or the like and separated into individual multilayer wiring boards.

1・・・凸端子
10・・・支持基板
11・・・銅箔
12・・・絶縁樹脂材料
12a・・・半硬化絶縁樹脂シート
13・・・多層構造の金属箔
13a・・・極薄銅箔層
13b・・・キャリア銅箔層
14・・・額縁部
15・・・樹脂薄膜
16・・・切断線
20・・・離型フィルム
30・・・多層配線構造
31、34・・・層間絶縁樹脂層
32、35・・・ビアホール
32a・・・ビアホール下穴
32b・・・ビアホールのランド
33・・・配線パターン
36・・・ソルダーレジスト
100・・・積層基板
DESCRIPTION OF SYMBOLS 1 ... Convex terminal 10 ... Support substrate 11 ... Copper foil 12 ... Insulating resin material 12a ... Semi-hardened insulating resin sheet 13 ... Multi-layer metal foil 13a ... Ultra-thin copper Foil layer 13b ... carrier copper foil layer 14 ... frame 15 ... resin thin film 16 ... cutting line 20 ... release film 30 ... multilayer wiring structure 31, 34 ... interlayer insulation Resin layers 32, 35 ... via hole 32a ... via hole pilot hole 32b ... via hole land 33 ... wiring pattern 36 ... solder resist 100 ... laminated substrate

Claims (4)

複数の層間絶縁樹脂層及び複数の配線パターンの層を交互に積層した多層配線構造を有する多層配線板であって、前記層間絶縁樹脂層から突出した凸端子に、円錐台状のビアホールの上底が接続し、前記円錐台状のビアホールの下底にランドが接続し、該ランドと前記ビアホールは一体で構成され、前記ビアホールの上底と前記凸端子との間には接合界面が存在していることを特徴とする多層配線板。   A multilayer wiring board having a multilayer wiring structure in which a plurality of interlayer insulating resin layers and a plurality of wiring pattern layers are alternately laminated, wherein a convex terminal protruding from the interlayer insulating resin layer has an upper base of a truncated cone-shaped via hole Is connected, and a land is connected to the lower bottom of the frustoconical via hole, the land and the via hole are integrally formed, and there is a bonding interface between the upper bottom of the via hole and the convex terminal. A multilayer wiring board characterized by comprising: 前記円錐台状のビアホールにおいて、上底が下底より平面投影面積が小さいことを特徴とする請求項1に記載の多層配線板。   2. The multilayer wiring board according to claim 1, wherein, in the frustoconical via hole, an upper base has a smaller plane projection area than a lower base. 前記凸端子の前記ビアホールとの接合する面は、前記円錐台状のビアホール上底の平面投影面積より大きいことを特徴とする請求項1または2に記載の多層配線板。   3. The multilayer wiring board according to claim 1, wherein a surface of the convex terminal to be joined to the via hole is larger than a planar projection area of an upper bottom of the frustoconical via hole. 支持基板の外側に半硬化の絶縁樹脂シートを重ね、該半硬化の絶縁樹脂シートの外側に、該半硬化の絶縁樹脂シートよりも寸法が小さく、両面に複数の金属層が剥離可能に積層されて成る多層構造の金属箔を、そのキャリア銅箔層を外側にして重ねて積層する工程と、
前記多層構造の金属箔の外側に第1の層間絶縁樹脂層を積層する工程と、
前記層間絶縁樹脂層の外側から穴あけ加工用レーザー光線によって前記多層構造の金属箔の前記キャリア銅箔層に達するビアホール下穴を形成する工程と、
銅めっきにより前記ビアホール下穴を充填した第1のビアホール及び前記第1の層間絶縁樹脂層の外側に前記第1のビアホールのランドと第1の配線パターンを形成する工程と、前記第1の層間絶縁樹脂層と第1の配線パターンの外側に次の層間絶縁樹脂層と配線パターンの層を交互に積層して多層配線構造を形成する工程と、
前記多層構造の金属箔を剥離することで、前記支持基板から、前記キャリア銅箔層を含む前記多層配線構造を分離する工程と、
前記キャリア銅箔層をエッチングすることで前記第1のビアホールの位置に前記第1のビアホールを覆う凸端子のパターンを形成する工程
とを有することを特徴とする多層配線板の製造方法。
A semi-cured insulating resin sheet is stacked on the outside of the support substrate, and the outer surface of the semi-cured insulating resin sheet is smaller in size than the semi-cured insulating resin sheet, and a plurality of metal layers are laminated on both sides in a peelable manner. A step of laminating and laminating a multilayer metal foil with the carrier copper foil layer facing outside,
Laminating a first interlayer insulating resin layer on the outside of the multi-layer metal foil;
Forming a via hole pilot hole reaching the carrier copper foil layer of the metal foil of the multilayer structure by a laser beam for drilling from the outside of the interlayer insulating resin layer;
Forming a first via hole filled with the via hole pilot hole by copper plating and a land of the first via hole and a first wiring pattern outside the first interlayer insulating resin layer; and the first interlayer Forming a multilayer wiring structure by alternately laminating next interlayer insulating resin layers and wiring pattern layers outside the insulating resin layer and the first wiring pattern;
Separating the multilayer wiring structure including the carrier copper foil layer from the support substrate by peeling the metal foil of the multilayer structure;
Forming a pattern of convex terminals covering the first via hole at the position of the first via hole by etching the carrier copper foil layer.
JP2012123152A 2012-05-30 2012-05-30 Multilayer substrate and method for manufacturing multilayer wiring board Active JP5998643B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012123152A JP5998643B2 (en) 2012-05-30 2012-05-30 Multilayer substrate and method for manufacturing multilayer wiring board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012123152A JP5998643B2 (en) 2012-05-30 2012-05-30 Multilayer substrate and method for manufacturing multilayer wiring board

Publications (2)

Publication Number Publication Date
JP2013251313A true JP2013251313A (en) 2013-12-12
JP5998643B2 JP5998643B2 (en) 2016-09-28

Family

ID=49849737

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012123152A Active JP5998643B2 (en) 2012-05-30 2012-05-30 Multilayer substrate and method for manufacturing multilayer wiring board

Country Status (1)

Country Link
JP (1) JP5998643B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016025306A (en) * 2014-07-24 2016-02-08 日立化成株式会社 Manufacturing method of wiring board
WO2018194367A1 (en) * 2017-04-18 2018-10-25 (주)잉크테크 Method for manufacturing printed circuit board

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009037939A1 (en) * 2007-09-20 2009-03-26 Ibiden Co., Ltd. Printed wiring board and method for manufacturing the same
JP2011199077A (en) * 2010-03-19 2011-10-06 Ngk Spark Plug Co Ltd Method of manufacturing multilayer wiring board
JP2013197163A (en) * 2012-03-16 2013-09-30 Toppan Printing Co Ltd Multilayer substrate and manufacturing method of the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009037939A1 (en) * 2007-09-20 2009-03-26 Ibiden Co., Ltd. Printed wiring board and method for manufacturing the same
JP2011199077A (en) * 2010-03-19 2011-10-06 Ngk Spark Plug Co Ltd Method of manufacturing multilayer wiring board
JP2013197163A (en) * 2012-03-16 2013-09-30 Toppan Printing Co Ltd Multilayer substrate and manufacturing method of the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016025306A (en) * 2014-07-24 2016-02-08 日立化成株式会社 Manufacturing method of wiring board
WO2018194367A1 (en) * 2017-04-18 2018-10-25 (주)잉크테크 Method for manufacturing printed circuit board

Also Published As

Publication number Publication date
JP5998643B2 (en) 2016-09-28

Similar Documents

Publication Publication Date Title
JP5962094B2 (en) Manufacturing method of laminated substrate
US8238114B2 (en) Printed wiring board and method for manufacturing same
JP5526746B2 (en) Multilayer substrate manufacturing method and supporting substrate
JP5410660B2 (en) WIRING BOARD AND ITS MANUFACTURING METHOD, ELECTRONIC COMPONENT DEVICE AND ITS MANUFACTURING METHOD
JP6358887B2 (en) Support, wiring board, method for manufacturing the same, and method for manufacturing semiconductor package
JP2008218450A (en) Manufacturing method of wiring board and manufacturing method of electronic component device
US8237056B2 (en) Printed wiring board having a stiffener
JP2013120771A (en) Wiring board manufacturing method and support medium for wiring board manufacturing
CN106340461B (en) A kind of processing method and structure of ultra-thin centreless package substrate
JP2007300147A (en) Method of manufacturing wiring substrate and electronic component mounting structure
WO2014104328A1 (en) Layered body with support substrate, method for fabricating same, and method for fabricating multi-layer wiring substrate
JP2012169591A (en) Multilayer wiring board
JP2014154631A (en) Multilayer wiring board and manufacturing method of the same
JP2017038044A (en) Wiring board and manufacturing method of the same, and electronic component device
JP5998644B2 (en) Multilayer substrate and method for manufacturing multilayer wiring board
JP2013135080A (en) Manufacturing method of multilayer wiring board
JP2014146761A (en) Laminate substrate and manufacturing method therefor
JP5302920B2 (en) Manufacturing method of multilayer wiring board
JP5998643B2 (en) Multilayer substrate and method for manufacturing multilayer wiring board
JP5432354B2 (en) Temporary board for manufacturing wiring board and method for manufacturing the same
JP6682963B2 (en) Method for manufacturing multilayer wiring board and laminated board for peeling
JP2010283300A (en) Wiring board with bump electrode, and method of manufacturing the same
KR20120019144A (en) Method for manufacturing a printed circuit board
JP2016219530A (en) Wiring board and manufacturing method of the same
JP6467884B2 (en) Peelable metal foil, method for producing the same, and method for producing printed wiring board

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150420

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160202

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160401

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160802

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160815

R150 Certificate of patent or registration of utility model

Ref document number: 5998643

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250