JP5998644B2 - Multilayer substrate and method for manufacturing multilayer wiring board - Google Patents

Multilayer substrate and method for manufacturing multilayer wiring board Download PDF

Info

Publication number
JP5998644B2
JP5998644B2 JP2012123153A JP2012123153A JP5998644B2 JP 5998644 B2 JP5998644 B2 JP 5998644B2 JP 2012123153 A JP2012123153 A JP 2012123153A JP 2012123153 A JP2012123153 A JP 2012123153A JP 5998644 B2 JP5998644 B2 JP 5998644B2
Authority
JP
Japan
Prior art keywords
insulating resin
laminated
layer
sheet
multilayer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012123153A
Other languages
Japanese (ja)
Other versions
JP2013251314A (en
Inventor
菊池 克
克 菊池
巌 若生
巌 若生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Inc filed Critical Toppan Inc
Priority to JP2012123153A priority Critical patent/JP5998644B2/en
Publication of JP2013251314A publication Critical patent/JP2013251314A/en
Application granted granted Critical
Publication of JP5998644B2 publication Critical patent/JP5998644B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Production Of Multi-Layered Print Wiring Board (AREA)

Description

本発明は、半導体素子搭載用パッケージに用いる板厚が極めて薄い多層配線板とその製造方法に関するものである。   The present invention relates to a multilayer wiring board having a very thin plate thickness used for a semiconductor element mounting package and a method for manufacturing the same.

近年、電子機器の小型化、軽量化、多機能化が一段と進み、これに伴ない、配線の高集積化と小型化が急速に進み、配線の微細化が進んでいる。また、半導体チップとほぼ同等のサイズの、いわゆるチップサイズパッケージ(CSP;Chip Size/Scale Package)などの小型化したパッケージへの要求が強くなっている。一方、エッチングにより配線を形成するサブトラクティブ法で歩留り良く形成できる配線は、導体幅(L)/導体間隙(S)=50μm/50μm程度である。   In recent years, electronic devices have been further reduced in size, weight, and functionality, and along with this, higher integration and miniaturization of wiring are rapidly progressing, and miniaturization of wiring is progressing. In addition, there is an increasing demand for a downsized package such as a so-called chip size package (CSP; Chip Size / Scale Package) that is almost the same size as a semiconductor chip. On the other hand, the wiring that can be formed with good yield by the subtractive method of forming the wiring by etching is about conductor width (L) / conductor gap (S) = 50 μm / 50 μm.

更に微細な導体幅/導体間隙=35μm/35μm程度の配線を実現するために、特許文献1では、剥離可能なピーラブル銅箔を2枚向かい合わせた間にプリプレグを挟んで積層して硬化させた支持基板を作製する。そして、そのピーラブル銅箔上にめっきレジストを形成して、電解金属めっきで導体を必要な厚さに形成した配線層を形成し、レジストを剥離した後に、その配線層の上に層間絶縁樹脂層と配線パターンを順次ビルドアップして多層構造体を形成する。   In order to realize a finer conductor width / conductor gap = about 35 μm / 35 μm, in Patent Document 1, two peelable peelable copper foils are stacked and cured with a prepreg sandwiched between them. A support substrate is produced. Then, a plating resist is formed on the peelable copper foil, a wiring layer in which a conductor is formed to a necessary thickness by electrolytic metal plating is formed, and after removing the resist, an interlayer insulating resin layer is formed on the wiring layer. The wiring pattern is sequentially built up to form a multilayer structure.

そして、支持基板の両面に形成した多層構造体を、ピーラブル銅箔を剥離して分離し、多層構造体の表面に残ったピーラブル銅箔の薄い金属層をソフトエッチングで除去するというセミアディティブ法を利用した技術により、板厚が極めて薄い多層配線板を製造する技術が開示されている。   Then, the multilayer structure formed on both sides of the support substrate is separated by peeling the peelable copper foil, and the thin metal layer of the peelable copper foil remaining on the surface of the multilayer structure is removed by soft etching. A technique for manufacturing a multilayer wiring board having a very thin board thickness is disclosed.

特開2005−101137号公報JP 2005-101137 A

特許文献1の技術では、支持基板の外側にプリプレグを介してピーラブル銅箔を積層することで硬化したプリプレグの絶縁樹脂材料の外側にピーラブル銅箔を貼り合せ、そのピーラブル銅箔上に銅めっきすることにより配線パターンを形成し、その上に層間絶縁樹脂層と配線パターンを複数層積層した後、ピーラブル銅箔を剥離していた。そして、ピーラブル銅箔の層をエッチングして除去することでその上に形成していた配線パターンと層間絶縁樹脂層の面とを露出させていた。   In the technique of Patent Document 1, the peelable copper foil is bonded to the outside of the insulating resin material of the prepreg cured by laminating the peelable copper foil via the prepreg on the outside of the support substrate, and copper plating is performed on the peelable copper foil. Thus, a wiring pattern was formed, a plurality of interlayer insulating resin layers and wiring patterns were laminated thereon, and then the peelable copper foil was peeled off. Then, the peelable copper foil layer is removed by etching to expose the wiring pattern formed thereon and the surface of the interlayer insulating resin layer.

特許文献1の技術では、そのようにして多層配線板を製造していたので、ピーラブル銅箔側に面する絶縁樹脂層の面に接続端子の配線パターンを埋め込んで、その接続端子の配線パターンに位置を合わせたビアホールを絶縁樹脂層内に形成していた。   In the technique of Patent Document 1, since the multilayer wiring board was manufactured in this way, the wiring pattern of the connection terminal was embedded in the surface of the insulating resin layer facing the peelable copper foil side, and the wiring pattern of the connection terminal was Via holes aligned with each other were formed in the insulating resin layer.

この従来技術では、接続端子とビアホールとのパターンの位置合せ精度の関係から、130μm以下のピッチで接続端子とビアホールとを安定して製造することができなかった。すなわち、接続端子をビアホールの径程度に小さく形成した場合に、その接続端子からビアホールの位置がずれて加工された場合、最終的に多層配線板の絶縁樹脂層の表面に露出する接続端子の形状が片側に飛び出る形になり、接続端子部分が絶縁樹脂層から露出する形状が異常になった。その異常な接続端子部分は半導体チップのバンプ(接続端子)との接続の信頼性が低い問題があった。また、その接続端子部分が隣接するバンプとの距離が近くなり、半導体チップのバンプを半田付けする際に、隣接するバンプと半田によるショートが発生するか、又は、絶縁信頼性が悪くなる問題があった。   In this conventional technique, the connection terminals and the via holes cannot be stably manufactured at a pitch of 130 μm or less because of the positional alignment accuracy of the connection terminals and the via holes. That is, when the connection terminal is formed as small as the diameter of the via hole, the shape of the connection terminal that is finally exposed on the surface of the insulating resin layer of the multilayer wiring board when the position of the via hole is shifted from the connection terminal is processed. Jumped out to one side, and the shape in which the connecting terminal part was exposed from the insulating resin layer became abnormal. The abnormal connection terminal portion has a problem that the reliability of connection with the bump (connection terminal) of the semiconductor chip is low. In addition, the distance between the connection terminal portion and the adjacent bump becomes short, and when soldering the bump of the semiconductor chip, a short circuit occurs between the adjacent bump and the solder, or the insulation reliability deteriorates. there were.

本発明の課題は、上記の問題を解決して、ICチップのピッチが130μm程度の高密度のバンプと高い信頼性で電気接続でき、かつ、板厚が極めて薄い多層配線板を得ることにある。   An object of the present invention is to solve the above-described problem and obtain a multilayer wiring board that can be electrically connected to a high-density bump having an IC chip pitch of about 130 μm with high reliability and has a very thin plate thickness. .

本発明は、上記課題を解決するために、層配線板の製造方法に用いる積層基板が、支持基板の外側に半硬化絶縁樹脂シートと、剥離可能な複数の金属層を有する多層構造の金属箔と、を有し、前記半硬化絶縁樹脂の絶縁樹脂材料で、前記多層構造の金属箔の外周部分を一体に覆う構造を備えることを特徴とする積層基板である。 The present invention, in order to solve the above problems, a laminated substrate used in the production method of the multi-layer wiring board, a metal multilayer structure comprising a semi-cured insulating resin sheet on the outside of the supporting substrate, a plurality of metal layers that can be peeled off has a foil, the said an insulating resin material in a semi-cured insulating resin, the outer peripheral portion of the metal foil of the multilayer structure is a laminated board, wherein Rukoto having a structure that covers together.

また、本発明は、支持基板の外側に半硬化の絶縁樹脂シートを重ね、該半硬化の絶縁樹脂シートの外側に、該半硬化の絶縁樹脂シートよりも寸法が小さく、両面に複数の金属層が剥離可能に積層されて成る積層金属シートを、その極薄銅箔層を外側にして重ねて積層する工程と、前記積層金属シートの外側に第1の層間絶縁樹脂層を積層する時に前記層間絶縁樹脂層の絶縁樹脂が前記多層構造の金属箔の外縁部の表面の上に流れ出すことにより、前記絶縁樹脂により前記多層構造の金属箔の外周部分を覆った積層基板を形成する工程と、
前記層間絶縁樹脂層の外側から穴あけ加工用レーザー光線によって前記積層金属シートの前記積層金属シートに達するビアホール下穴を形成する工程と、銅めっきにより前記ビアホール下穴を充填した第1のビアホール及び前記第1の層間絶縁樹脂層の外側に前記第1のビアホールのランドと第1の配線パターンを形成する工程と、前記第1の層間絶縁樹脂層と第1の配線パターンの外側に次の層間絶縁樹脂層と配線パターンの層を交互に積層して多層配線構造を形成する工程と、前記積層金属シートを剥離することで、前記支持基板から前記多層配線構造を分離する工程と、前記多層配線構造の極薄銅箔層をクイックエッチングすることで、前記層間絶縁樹脂層に埋め込まれた、上底の径が下底の径より小さい円錐台状のビアホールの上底を外側に露出させた多層配線板を形成する工程とを有することを特徴とする多層配線板の製造方法である。
The present invention also provides a semi-cured insulating resin sheet stacked on the outer side of a support substrate, the outer surface of the semi-cured insulating resin sheet is smaller in size than the semi-cured insulating resin sheet, and has a plurality of metal layers on both sides. sometimes the interlayer but laminating a laminated metal sheet formed by releasably laminated, laminating overlapping with the ultrathin copper foil layer on the outside, a first interlayer insulating resin layer on the outer side of the laminated metal sheet Forming a laminated substrate that covers the outer peripheral portion of the metal foil of the multilayer structure with the insulating resin by allowing the insulating resin of the insulating resin layer to flow on the surface of the outer edge of the metal foil of the multilayer structure ;
Forming a via hole pilot hole reaching the laminated metal sheet of the laminated metal sheet by a drilling laser beam from outside the interlayer insulating resin layer, a first via hole filling the via hole pilot hole by copper plating, and the first Forming a land of the first via hole and a first wiring pattern outside the first interlayer insulating resin layer; and a next interlayer insulating resin outside the first interlayer insulating resin layer and the first wiring pattern. Forming a multilayer wiring structure by alternately laminating layers and wiring pattern layers, separating the multilayer wiring structure from the support substrate by peeling the laminated metal sheet, and The top bottom of the frustoconical via hole embedded in the interlayer insulating resin layer by the quick etching of the ultrathin copper foil layer is smaller in diameter than the bottom bottom A method for manufacturing a multilayer wiring board, characterized in that a step of forming a multilayer wiring board was exposed outside.

本発明により、層間絶縁樹脂層31に埋め込まれた、上底の径が下底の径より小さい円錐台状のビアホール32の、径が50μm程度の上底を外側に露出させた多層配線構造30から成る多層配線板を得ることができる。   According to the present invention, the multilayer wiring structure 30 in which the upper base of a truncated cone-shaped via hole 32 embedded in the interlayer insulating resin layer 31 is smaller than the diameter of the lower base is exposed to the outside. A multilayer wiring board made of can be obtained.

この露出させたビアホール32の上底の径が50μm程度で小さいので、その上底にICチップのバンプ(接続端子)を接続することで、ICチップのピッチが130μm程度の高密度の部品端子と高い信頼性で電気接続することができる効果がある。   Since the diameter of the upper base of the exposed via hole 32 is about 50 μm and small, by connecting bumps (connection terminals) of the IC chip to the upper base, high-density component terminals with an IC chip pitch of about 130 μm and There is an effect that electrical connection can be made with high reliability.

本発明の製造方法の実施形態を示す部分断面図である(その1)。It is a fragmentary sectional view which shows embodiment of the manufacturing method of this invention (the 1). 本発明の製造方法の実施形態を示す部分断面図である(その2)。It is a fragmentary sectional view which shows embodiment of the manufacturing method of this invention (the 2). 本発明の製造方法の実施形態を示す部分断面図である(その3)。It is a fragmentary sectional view which shows embodiment of the manufacturing method of this invention (the 3). 本発明の製造方法の実施形態を示す部分断面図である(その4)。It is a fragmentary sectional view which shows embodiment of the manufacturing method of this invention (the 4). 本発明の製造方法の実施形態を示す部分断面図である(その5)。It is a fragmentary sectional view which shows embodiment of the manufacturing method of this invention (the 5). 本発明の変形例2の多層配線板の部分断面図である。It is a fragmentary sectional view of the multilayer wiring board of modification 2 of the present invention.

以下、図面を参照して本発明の実施形態を説明する。図1から図6の側断面図に、本発明の多層配線板の製造方法の一実施形態を工程順に示す。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. 1 to 6 show an embodiment of a method for producing a multilayer wiring board according to the present invention in the order of steps.

構造に用いる材料、構成については、製造方法の実施形態を例に以下に説明する。
(支持基板)
先ず、図1(a)のように、支持基板10として、厚み0.04mmから0.4mmの基板で、両面に厚み18μmの銅箔11を有する、有機樹脂をガラスやポリイミド、液晶などから成る補強繊維に含浸させた材料から成る銅張積層板(例えば、サイズが610×510mm)を用いる。
Materials and structures used for the structure will be described below by taking an embodiment of the manufacturing method as an example.
(Support substrate)
First, as shown in FIG. 1A, the supporting substrate 10 is a substrate having a thickness of 0.04 mm to 0.4 mm, and has a copper foil 11 having a thickness of 18 μm on both sides, and an organic resin is made of glass, polyimide, liquid crystal, or the like. A copper clad laminate (for example, a size of 610 × 510 mm) made of a material impregnated in a reinforcing fiber is used.

この支持基板10を構成する有機樹脂材料は、エポキシ系、アクリル系、ウレタン系、エポキシアクリレート系、フェノールエポキシ系、ポリイミド系、ポリアミド系、シアネート系、液晶系を主体とする有機樹脂を用いることができる。また、その有機樹脂にシリカやブチル系有機材料、炭酸カルシウムなどによるフィラーを含ませた基板を用いることもできる。   As the organic resin material constituting the support substrate 10, an organic resin mainly composed of epoxy, acrylic, urethane, epoxy acrylate, phenol epoxy, polyimide, polyamide, cyanate, and liquid crystal is used. it can. Alternatively, a substrate in which a filler made of silica, butyl organic material, calcium carbonate, or the like is included in the organic resin can be used.

(支持基板の銅箔粗化処理工程)
先ず、支持基板10の銅箔11の表面を、過水硫酸等のエッチング液によるソフトエッチング処理により粗化処理する。次に、支持基板10の表面に、ピーラブル銅箔などの多層構造の積層金属シート13を重ねる位置合せマークとして、銅箔11をエッチングしたパターンで位置合せマークを形成する。
(Copper foil roughening process for support substrate)
First, the surface of the copper foil 11 of the support substrate 10 is roughened by a soft etching process using an etchant such as perhydrosulfuric acid. Next, an alignment mark is formed in a pattern obtained by etching the copper foil 11 as an alignment mark on which the multilayer metal sheet 13 having a multilayer structure such as peelable copper foil is superimposed on the surface of the support substrate 10.

(変形例1)
変形例1として、この支持基板10として、ガラス(青板、無アルカリガラス、石英)、又は、金属(ステンレス、鉄、銅、チタン、タングステン、マグネシウム、アルミニウム、クロム、モリブデンなどを主体とする)を用いることもできる。
(Modification 1)
As a first modification, the support substrate 10 is made of glass (blue plate, non-alkali glass, quartz) or metal (mainly stainless steel, iron, copper, titanium, tungsten, magnesium, aluminum, chromium, molybdenum, etc.). Can also be used.

(積層金属シートを支持基板へ積層する工程)
次に、図1(b)のように、サイズが例えば610×510mmの支持基板10を中心にし、その支持基板10の外側に、平面視で支持基板10と同じサイズの寸法が610×510mmのプリプレグもしくは樹脂フィルムから成る半硬化絶縁樹脂シート12aを重ね、その外側に、半硬化絶縁樹脂シート12aより小さいサイズの寸法が600×500mmの多層構造の積層金属シート13を重ねる。そして、その積層金属シート13の外側に離型フィルム20を重ねて、真空積層プレスにより、支持基板10の外側に半硬化絶縁樹脂シート12aを介して積層金属シート13を積層する。
(Process of laminating a laminated metal sheet on a support substrate)
Next, as shown in FIG. 1B, the support substrate 10 having a size of, for example, 610 × 510 mm is centered, and outside the support substrate 10, the size of the same size as the support substrate 10 in plan view is 610 × 510 mm. A semi-cured insulating resin sheet 12a made of a prepreg or a resin film is overlaid, and a multilayered laminated metal sheet 13 having a size smaller than the semi-cured insulating resin sheet 12a and having a size smaller than 600 × 500 mm is overlaid on the outside. And the release film 20 is piled up on the outer side of the laminated metal sheet 13, and the laminated metal sheet 13 is laminated | stacked on the outer side of the support substrate 10 via the semi-hardened insulating resin sheet 12a with a vacuum lamination press.

真空積層プレス装置によって加熱・加圧する積層処理によって、支持基板10の外側の半硬化絶縁樹脂シート12aを硬化させて絶縁樹脂材料12にし、その支持基板10と絶縁樹脂材料12とからなる支持基板の外側の面に積層金属シート13が一体となった積層基板100を製造する。   The semi-cured insulating resin sheet 12a outside the support substrate 10 is cured into an insulating resin material 12 by a laminating process that is heated and pressurized by a vacuum laminating press apparatus, and the support substrate made of the support substrate 10 and the insulating resin material 12 is used. The laminated substrate 100 in which the laminated metal sheet 13 is integrated on the outer surface is manufactured.

(半硬化絶縁樹脂シート)
ここで用いる半硬化絶縁樹脂シート12aとしては、厚さが0.04mmから0.4m
mの(例えば厚さが0.07mmの)、有機樹脂が補強繊維に含浸されて成るプリプレグを半硬化絶縁樹脂シート12aとして用いる。プリプレグは、樹脂リッチに調整している方が好ましい。必要なハンドリング性を確保できる場合は、補強繊維を含まない樹脂フィルムの半硬化絶縁樹脂シート12aを用いても構わない。
(Semi-cured insulating resin sheet)
The semi-cured insulating resin sheet 12a used here has a thickness of 0.04 mm to 0.4 m.
m (for example, 0.07 mm thickness) prepreg formed by impregnating a reinforcing fiber with an organic resin is used as the semi-cured insulating resin sheet 12a. The prepreg is preferably adjusted to be resin-rich. If necessary handling properties can be ensured, a semi-cured insulating resin sheet 12a made of a resin film not containing reinforcing fibers may be used.

半硬化絶縁樹脂シート12aの有機樹脂の材料としては、エポキシ樹脂、ビスマレイミド−トリアジン樹脂(以下、BT樹脂と称す)、ポリイミド樹脂、PPE樹脂、フェノール樹脂、PTFE樹脂、珪素樹脂、ポリブタジエン樹脂、ポリエステル樹脂、メラミン樹脂、ユリア樹脂、PPS樹脂、PPO樹脂、シアネート樹脂、シアネートエステル樹脂などの有機樹脂を使用することができる。   As the organic resin material of the semi-cured insulating resin sheet 12a, epoxy resin, bismaleimide-triazine resin (hereinafter referred to as BT resin), polyimide resin, PPE resin, phenol resin, PTFE resin, silicon resin, polybutadiene resin, polyester Organic resins such as resins, melamine resins, urea resins, PPS resins, PPO resins, cyanate resins, and cyanate ester resins can be used.

また、補強繊維は、ガラス繊維、アラミド不織布やアラミド繊維、ポリエステル繊維、ポリアミド繊維、液晶繊維などを用いることができる。また、半硬化絶縁樹脂シート12aの有機樹脂には、シリカやブチル系有機材料、炭酸カルシウムなどによるフィラーを含ませることもできる。   As the reinforcing fiber, glass fiber, aramid nonwoven fabric, aramid fiber, polyester fiber, polyamide fiber, liquid crystal fiber, or the like can be used. In addition, the organic resin of the semi-cured insulating resin sheet 12a can include a filler made of silica, butyl organic material, calcium carbonate, or the like.

(積層金属シート)
複数の金属層が剥離可能に積層されて成る多層構造の積層金属シート13として、例えば、厚さ10μm〜35μm(例えば18μm)のキャリア銅箔層13aの金属層に、厚さ1μm〜8μm(例えば5μm)の極薄銅箔層13bの金属層を剥離可能に積層したピーラブル金属箔を用いる。キャリア銅箔層13aと極薄銅箔層13bの金属層を剥離可能に積層する手段は、剥離可能に接着剤で接着する方法や、その他の剥離可能な積層方法を用いる。
(Laminated metal sheet)
As the laminated metal sheet 13 having a multilayer structure in which a plurality of metal layers are detachably laminated, for example, a metal layer of a carrier copper foil layer 13a having a thickness of 10 μm to 35 μm (for example, 18 μm), and a thickness of 1 μm to 8 μm (for example, A peelable metal foil in which a metal layer of an ultrathin copper foil layer 13b having a thickness of 5 μm is peelably laminated is used. As a means for releasably laminating the metal layers of the carrier copper foil layer 13a and the ultrathin copper foil layer 13b, a method of releasably bonding with an adhesive or other releasable laminating methods is used.

この積層金属シート13を、極薄銅箔層13bを外側にしキャリア銅箔層13aを内側にして半硬化絶縁樹脂シート12aの外側に重ねる。   The laminated metal sheet 13 is stacked on the outside of the semi-cured insulating resin sheet 12a with the ultrathin copper foil layer 13b on the outside and the carrier copper foil layer 13a on the inside.

図1(b)のように、積層金属シート13の外側に、離型フィルム20を重ねて真空積層プレスにより、支持基板10の外側に半硬化絶縁樹脂シート12aを介して積層金属シート13を積層する。真空積層プレスの条件は、適用する半硬化絶縁樹脂シート12aの材料に合わせて昇温速度や圧力、加圧タイミングを調整して実施する。流動性が高い材料を用いる場合は、昇温速度や加圧タイミングを遅くする調整を施しても構わない。   As shown in FIG. 1B, the release metal film 20 is stacked on the outside of the laminated metal sheet 13, and the laminated metal sheet 13 is laminated on the outside of the support substrate 10 via the semi-cured insulating resin sheet 12a by a vacuum lamination press. To do. The conditions of the vacuum lamination press are carried out by adjusting the heating rate, pressure, and pressurization timing according to the material of the semi-cured insulating resin sheet 12a to be applied. In the case of using a material having high fluidity, adjustment may be made to slow the temperature increase rate or pressurization timing.

そして、半硬化絶縁樹脂シート12aを固化させて絶縁樹脂材料12にした後に離型フィルム20を剥離して、図2(c)のように、サイズ600×500mmの積層金属シート13の外周部を絶縁樹脂材料12による幅5mmの額縁部14が囲み、積層金属シート13の外縁部の表面の上に、額縁部14の絶縁樹脂材料12と連結している薄い樹脂薄膜15を形成させた支持基板である積層基板100を製造する。この状態に置いて、積層金属シート13の内側の面、側壁、外側の端部が一体の絶縁樹脂材料にて覆われる。   Then, after the semi-cured insulating resin sheet 12a is solidified to form the insulating resin material 12, the release film 20 is peeled off, and the outer peripheral portion of the laminated metal sheet 13 having a size of 600 × 500 mm is formed as shown in FIG. A support substrate in which a frame portion 14 having a width of 5 mm is surrounded by the insulating resin material 12 and a thin resin thin film 15 connected to the insulating resin material 12 of the frame portion 14 is formed on the surface of the outer edge portion of the laminated metal sheet 13. The laminated substrate 100 is manufactured. In this state, the inner surface, side wall, and outer end of the laminated metal sheet 13 are covered with an integral insulating resin material.

(変形例2)
変形例2として、支持基板10を用いずに、2枚の積層金属シート13の間に、その積層金属シート13より大きいサイズの、積層による硬化後に剛性が十分に確保できる厚さ及び剛性を有する絶縁樹脂材料12になる半硬化絶縁樹脂シート12aを挟んで真空積層プレスにより積層処理して積層基板100を製造することもできる。その積層基板100は、図6のように、2枚の積層金属シート13の間に絶縁樹脂材料12が形成された構造であり、その2枚の積層金属シート13のサイズは積層基板100のサイズより小さい。そして、積層金属シート13の外側の面の端部を絶縁樹脂材料12の一部である樹脂薄膜15が覆う構造が形成される。結局、変形例2によっても、積層金属シート13の内側の面と積層金属シート13の外側の面の端部とが、一体構造に形成された絶縁樹脂材料12
で覆われている積層基板100を製造することができる。
(Modification 2)
As a second modified example, a thickness and rigidity that can sufficiently ensure rigidity after curing by lamination between the two laminated metal sheets 13 and having a size larger than that of the laminated metal sheet 13 without using the support substrate 10 are provided. The laminated substrate 100 can also be manufactured by sandwiching the semi-cured insulating resin sheet 12a to be the insulating resin material 12 with a vacuum lamination press. As shown in FIG. 6, the multilayer substrate 100 has a structure in which an insulating resin material 12 is formed between two multilayer metal sheets 13, and the size of the two multilayer metal sheets 13 is the size of the multilayer substrate 100. Smaller than. And the structure which the resin thin film 15 which is a part of the insulating resin material 12 covers the edge part of the outer surface of the laminated metal sheet 13 is formed. Eventually, also according to the modified example 2, the insulating resin material 12 in which the inner surface of the laminated metal sheet 13 and the end of the outer surface of the laminated metal sheet 13 are formed in an integral structure.
The laminated substrate 100 covered with can be manufactured.

(離型フィルム)
図1(b)の工程で、真空積層プレスの際に真空積層プレス装置のステンレス製のプレス板との間に挟む離型フィルム20としては、ポリフェニレンスルフィド、ポリイミド等の樹脂材料とステンレス、真鍮等の金属材料とを組み合わせた複合材料からなるフィルムを用いる。
(Release film)
In the step of FIG. 1 (b), the release film 20 sandwiched between the stainless steel press plate of the vacuum lamination press apparatus in the vacuum lamination press is a resin material such as polyphenylene sulfide or polyimide, stainless steel, brass or the like. A film made of a composite material combined with a metal material is used.

離型フィルム20の熱収縮率は、加熱加圧処理を施す温度において、0.01〜0.9%の熱収縮率を持つ離型フィルム20を用いる。また、離型フィルム20の加熱加圧処理後における伸びの低下率が加熱加圧処理前の30%以下である離型フィルム20を用いる。   As the heat shrinkage rate of the release film 20, the release film 20 having a heat shrinkage rate of 0.01 to 0.9% is used at the temperature at which the heat and pressure treatment is performed. Moreover, the release film 20 whose elongation reduction rate after the heat-pressing process of the release film 20 is 30% or less before the heat-pressing process is used.

離型フィルム20の形態は、厚みが、10〜200μmの樹脂材料からなり、特に、離型フィルム20の表面に、JIS B0601に規定される平均粗さRaを300nm以上1500nm以下に粗面化処理(マット処理)を施した離型フィルム20を用いる。   The form of the release film 20 is made of a resin material having a thickness of 10 to 200 μm. In particular, the surface of the release film 20 has an average roughness Ra specified in JIS B0601 of 300 nm to 1500 nm. A release film 20 subjected to (mat treatment) is used.

図1(b)の工程で、支持基板10の外側に、樹脂リッチに調整した半硬化絶縁樹脂シート12aを重ね、その外側に積層金属シート13を重ね、その外側に、平均粗さRaを300nm以上1500nm以下に粗面化処理(マット処理)した離型フィルム20を重ねて、プレス板の間に挟んで、そのプレス板で加熱・加圧する真空積層プレス装置を用いて積層して積層基板100を製造する。   In the process of FIG. 1B, the resin-rich semi-cured insulating resin sheet 12a is overlaid on the outside of the support substrate 10, the laminated metal sheet 13 is overlaid on the outside, and the average roughness Ra is 300 nm on the outside. The laminated substrate 100 is manufactured by stacking the release films 20 having been roughened (matte treatment) to 1500 nm or less, sandwiching them between press plates, and laminating them using a vacuum laminating press that heats and presses the press plates. To do.

その際に、離型フィルム20の面のマット処理の効果により、図2(c)のように、積層金属シート13の外縁部の表面の上に、額縁部14の絶縁樹脂材料12と連結している薄い樹脂薄膜15が形成される。   At that time, due to the effect of the mat treatment on the surface of the release film 20, the insulating resin material 12 of the frame portion 14 is connected to the surface of the outer edge portion of the laminated metal sheet 13 as shown in FIG. A thin resin thin film 15 is formed.

この樹脂薄膜15が適切に形成されるように、離型フィルム20の面のマット処理と半硬化絶縁樹脂シート12aの樹脂リッチな度合いと真空積層プレスの加熱・加圧条件を調整する。それにより、加熱・加圧された半硬化絶縁樹脂シート12aの樹脂材料が積層金属シート13の外縁部の表面の上に適切に流れ出して、積層金属シート13の外縁部の上に絶縁樹脂材料12の樹脂薄膜15が厚さが3μm以下で、幅が0.1mm以上10mm以下の範囲の幅で形成される。   The matting treatment of the surface of the release film 20, the resin rich degree of the semi-cured insulating resin sheet 12a, and the heating / pressurizing conditions of the vacuum lamination press are adjusted so that the resin thin film 15 is appropriately formed. As a result, the resin material of the semi-cured insulating resin sheet 12 a that has been heated and pressurized appropriately flows out onto the surface of the outer edge portion of the laminated metal sheet 13, and the insulating resin material 12 is formed on the outer edge portion of the laminated metal sheet 13. The resin thin film 15 has a thickness of 3 μm or less and a width in the range of 0.1 mm to 10 mm.

これにより、積層基板100を、積層金属シート13のサイズが、積層基板100全体のサイズより小さく形成する。そして、図2(c)の部分断面図に示すとおり、積層金属シート13の外側である額縁部14の絶縁樹脂材料12が、積層金属シート13の内側の面と外側の端部と、積層金属シート13の露出面の外周部分とを、一体に覆うようにする。それにより積層基板を用いた基板製造工程での積層金属シート13の層の剥離を効果的に防止することができる。   As a result, the multilayer substrate 100 is formed such that the size of the multilayer metal sheet 13 is smaller than the overall size of the multilayer substrate 100. Then, as shown in the partial cross-sectional view of FIG. 2C, the insulating resin material 12 of the frame portion 14 that is the outside of the laminated metal sheet 13 includes the inner surface and the outer end of the laminated metal sheet 13, and the laminated metal. The outer peripheral portion of the exposed surface of the sheet 13 is integrally covered. Thereby, peeling of the layer of the laminated metal sheet 13 in the substrate manufacturing process using the laminated substrate can be effectively prevented.

積層基板100の樹脂薄膜15は、額縁部14の絶縁樹脂材料12と連結して、積層金属シート13のキャリア銅箔層13aと極薄銅箔層13bとの剥離の界面の境界線を絶縁樹脂材料12内に埋め込んで保護する効果がある。それにより、以降の製造工程のストレスで、積層金属シート13の、キャリア銅箔層13aと極薄銅箔層13bとの剥離の境界面が剥離することを防止でき、その界面の剥離による製造不良を防止できる効果がある。   The resin thin film 15 of the laminated substrate 100 is connected to the insulating resin material 12 of the frame portion 14 to insulate the boundary line of the peeling interface between the carrier copper foil layer 13a and the ultrathin copper foil layer 13b of the laminated metal sheet 13. It has the effect of being embedded in the material 12 for protection. Thereby, it is possible to prevent peeling of the boundary surface between the carrier copper foil layer 13a and the ultrathin copper foil layer 13b of the laminated metal sheet 13 due to stress in the subsequent manufacturing process, and manufacturing failure due to peeling of the interface. There is an effect that can be prevented.

特に、樹脂薄膜15の幅を0.1mm以上にすることで、積層金属シート13の剥離の界面の境界線が十分に保護される効果があり、それにより、基板の以降の製造工程において積層金属シート13が予期せず剥離する不具合を防止できる効果がある。一方、樹脂薄
膜15の幅を10mmより大きくすると、積層金属シート13が樹脂薄膜15で覆われない有効領域の面積が狭くなり製品コストを増加させてしまう。なお、好ましくは、この樹脂薄膜15が積層金属シート13を覆う幅を0.5μm以上5mm以下の幅となるように製造条件を調整することが望ましい。
In particular, by setting the width of the resin thin film 15 to be 0.1 mm or more, there is an effect that the boundary line of the peeling interface of the laminated metal sheet 13 is sufficiently protected. There is an effect of preventing a problem that the sheet 13 is unexpectedly peeled off. On the other hand, if the width of the resin thin film 15 is larger than 10 mm, the area of the effective region in which the laminated metal sheet 13 is not covered with the resin thin film 15 becomes narrow and the product cost increases. Preferably, the manufacturing conditions are adjusted so that the resin thin film 15 covers the laminated metal sheet 13 with a width of 0.5 μm or more and 5 mm or less.

この樹脂薄膜15と額縁部14の絶縁樹脂材料12の表面には、マット処理された離型フィルム20の、平均粗さRaが300nm以上1500nm以下の粗度の粗さが転写されている。それにより、後に形成する金属めっき層と、この樹脂薄膜15の表面及び額縁部14の絶縁樹脂材料12の表面との密着力を強くできる効果がある。Raが300nmより小さくなると発現される密着力が弱く、工程中に絶縁樹脂材料12表面に設けられる金属めっき層が剥離する。また、Raが1500nmより大きくなる場合、凸部となる絶縁樹脂材料12が脱離しやすく、この脱離物により工程中の歩留低下を発生させる。   On the surfaces of the resin thin film 15 and the insulating resin material 12 of the frame portion 14, the roughness of the matte release film 20 having an average roughness Ra of 300 nm to 1500 nm is transferred. Thereby, there is an effect that the adhesion force between the metal plating layer to be formed later and the surface of the resin thin film 15 and the surface of the insulating resin material 12 of the frame portion 14 can be increased. When Ra is smaller than 300 nm, the adhesive force expressed is weak, and the metal plating layer provided on the surface of the insulating resin material 12 peels during the process. Moreover, when Ra becomes larger than 1500 nm, the insulating resin material 12 which becomes a convex portion is easily detached, and this detached substance causes a decrease in yield during the process.

ここで、両面に銅箔11を有する支持基板10とその両面の外側に半硬化絶縁樹脂シート12aを重ねて積層する場合は、それらを積層金属シート13の間に挟んで積層して積層基板100を製造すると、その積層基板100が銅箔11で補強される効果がある。また、銅箔11により、積層基板100の表面の熱膨張係数が銅の熱膨張係数に整合され、後に積層基板100の外側にビルドアップして形成する銅の配線パターン33と積層基板100の表面の熱膨張係数の差が小さくなり、製造工程での熱処理により積層基板100と配線パターン33の界面に生じる熱ストレスを軽減できる効果がある。   Here, in the case where the support substrate 10 having the copper foil 11 on both sides and the semi-cured insulating resin sheet 12a are laminated on both sides of the laminate, the laminate substrate 100 is laminated by sandwiching them between the laminated metal sheets 13. Is produced, the laminated substrate 100 is reinforced with the copper foil 11. Also, the copper foil 11 matches the thermal expansion coefficient of the surface of the multilayer substrate 100 to the thermal expansion coefficient of copper, and later builds up the outer surface of the multilayer substrate 100 to form the copper wiring pattern 33 and the surface of the multilayer substrate 100. There is an effect that the difference in thermal expansion coefficient between the two can be reduced, and the thermal stress generated at the interface between the multilayer substrate 100 and the wiring pattern 33 due to the heat treatment in the manufacturing process can be reduced.

(層間絶縁樹脂層の形成工程)
次に、層間絶縁樹脂層31の形成のための前処理として、積層金属シート13の表面を、粒界腐食のエッチング処理により粗化処理するか、酸化還元処理による黒化処理、又は、過水硫酸系のソフトエッチング処理により粗化処理する。
(Interlayer insulating resin layer formation process)
Next, as a pretreatment for forming the interlayer insulating resin layer 31, the surface of the laminated metal sheet 13 is roughened by an intergranular corrosion etching process, a blackening process by an oxidation-reduction process, or an overwater Roughening is performed by sulfuric acid-based soft etching.

次に、図2(d)のように、積層金属シート13上に層間絶縁樹脂層31を、ロールラミネートまたは積層プレスで熱圧着させる。例えば厚さ45μmのエポキシ樹脂をロールラミネートする。ガラスエポキシ樹脂を使う場合は任意の厚さの銅箔を重ね合わせ積層プレスで熱圧着させる。   Next, as shown in FIG. 2D, the interlayer insulating resin layer 31 is thermocompression-bonded on the laminated metal sheet 13 by roll lamination or lamination press. For example, an epoxy resin having a thickness of 45 μm is roll laminated. When glass epoxy resin is used, copper foil of any thickness is stacked and thermocompression bonded with a lamination press.

層間絶縁樹脂層31の樹脂材料として、エポキシ樹脂、ビスマレイミド−トリアジン樹脂(以下、BT樹脂と称す)、ポリイミド樹脂、PPE樹脂、フェノール樹脂、PTFE樹脂、珪素樹脂、ポリブタジエン樹脂、ポリエステル樹脂、メラミン樹脂、ユリア樹脂、PPS樹脂、PPO樹脂、シアネート樹脂、シアネートエステル樹脂などの有機樹脂を使用することができる。また、これらの樹脂単独でも、複数樹脂を混合しあるいは化合物を作成するなどの樹脂の組み合わせも使用できる。更に、これらの材料に、ガラス繊維の補強材を混入させた層間絶縁樹脂層31を用いることができる。補強材には、アラミド不織布やアラミド繊維、ポリエステル繊維を用いることができる。   As a resin material of the interlayer insulating resin layer 31, epoxy resin, bismaleimide-triazine resin (hereinafter referred to as BT resin), polyimide resin, PPE resin, phenol resin, PTFE resin, silicon resin, polybutadiene resin, polyester resin, melamine resin Organic resins such as urea resin, PPS resin, PPO resin, cyanate resin, and cyanate ester resin can be used. In addition, these resins can be used alone, or a combination of resins such as mixing a plurality of resins or preparing a compound can be used. Furthermore, an interlayer insulating resin layer 31 in which a glass fiber reinforcing material is mixed into these materials can be used. As the reinforcing material, an aramid nonwoven fabric, an aramid fiber, or a polyester fiber can be used.

(ビアホール及び配線パターンの形成工程)
次に、図3(e)のように、層間接続用のビアホール下穴32aを、穴あけ加工用レーザー光線によって形成する。なお、層間絶縁樹脂層31の熱圧着に銅箔を使用した場合は、ビアホール下穴32aを形成する前処理として、その銅箔を全面エッチングするか、銅箔にビアホール下穴32a用の開口を形成するエッチング処理を行うか、あるいは、銅箔の表面処理を行うことでビアホール下穴32a部分の銅箔のレーザー吸収性を改善してレーザー光線によってビアホール下穴32aを形成する。このビアホール下穴32aは外側の穴径を80μm程度にし穴底の穴径を50μm程度に加工し、外側の穴径が穴底の径より大きい、円錐台を逆さにした形状に形成する。
(Via hole and wiring pattern formation process)
Next, as shown in FIG. 3E, a via hole prepared hole 32a for interlayer connection is formed by a laser beam for drilling. When copper foil is used for thermocompression bonding of the interlayer insulating resin layer 31, as a pretreatment for forming the via hole prepared hole 32a, the entire copper foil is etched, or an opening for the via hole prepared hole 32a is formed in the copper foil. By performing the etching process to be formed or the surface treatment of the copper foil, the laser absorption of the copper foil in the via hole pilot hole 32a is improved, and the via hole pilot hole 32a is formed by a laser beam. The via hole prepared hole 32a is formed to have an outer hole diameter of about 80 μm and a hole bottom hole diameter of about 50 μm, and the outer hole diameter is larger than the hole bottom diameter and the truncated cone is inverted.

次に、図3(f)のように、ビアホール下穴32aの壁面および層間絶縁樹脂層31の表面に無電解めっきを施し、その外側に電解銅めっきの層を形成し、銅めっきで充填したビアホール32を形成する。ビアホール32は、支持基板側を上側にし基板の外側を下側にすると、円錐台状に形成される。   Next, as shown in FIG. 3 (f), the wall surface of the via hole prepared hole 32a and the surface of the interlayer insulating resin layer 31 are subjected to electroless plating, and an electrolytic copper plating layer is formed on the outer side and filled with copper plating. A via hole 32 is formed. The via hole 32 is formed in a truncated cone shape when the support substrate side is on the upper side and the outer side of the substrate is on the lower side.

次に、電解銅めっきの層の面に感光性めっきレジストフィルムを形成して露光・現像することで、エッチングレジストのパターンを形成し、そのエッチングレジストで保護して電解銅めっきのパターンをエッチングし、次に、エッチングレジストのパターンを剥離することで、図3(g)のように、層間絶縁樹脂層31上にビアホールのランド32bと配線パターン33を形成する。   Next, a photosensitive plating resist film is formed on the surface of the electrolytic copper plating layer, exposed and developed to form an etching resist pattern, and the electrolytic copper plating pattern is etched while protecting with the etching resist. Next, the pattern of the etching resist is peeled to form via hole lands 32 b and wiring patterns 33 on the interlayer insulating resin layer 31 as shown in FIG.

そして、その配線パターン33と層間絶縁樹脂層31上に、同様のビルドアップ工法による層間絶縁樹脂層34の形成工程と、ビアホール35及び配線パターンの形成工程を繰り返して、図4(h)のように、積層基板100上に、層間絶縁樹脂層31及び34とビアホール32及び35と配線パターンを複数層ビルドアップした多層配線構造30を形成する。   Then, the formation process of the interlayer insulation resin layer 34 by the same build-up method and the formation process of the via hole 35 and the wiring pattern are repeated on the wiring pattern 33 and the interlayer insulation resin layer 31 as shown in FIG. Then, a multilayer wiring structure 30 is formed on the multilayer substrate 100 by building up a plurality of interlayer insulating resin layers 31 and 34, via holes 32 and 35, and wiring patterns.

次に、多層配線構造30の表面をマイクロエッチング剤で粗化処理した上にアゾール化合物の厚い被膜を形成させてソルダーレジストの接着性を向上させる処理を行う。粗化処理後に多層配線構造30とソルダーレジスト36との密着が確保できる場合は、アゾール化合物による処理は実施しなくても構わない。次に、感光性のソルダーレジストをロールコーター又は印刷により多層配線構造30の外面に塗布し、70℃で乾燥させてソルダーレジスト36の膜を形成する。   Next, the surface of the multilayer wiring structure 30 is roughened with a microetching agent, and then a thick coating of an azole compound is formed to improve the solder resist adhesion. When the adhesion between the multilayer wiring structure 30 and the solder resist 36 can be secured after the roughening treatment, the treatment with the azole compound may not be performed. Next, a photosensitive solder resist is applied to the outer surface of the multilayer wiring structure 30 by a roll coater or printing, and dried at 70 ° C. to form a solder resist 36 film.

次に、ソルダーレジススト36の膜に露光・現像しパッド部分を開口させ、180℃で加熱硬化させた後に100mJ/cmの紫外線照射処理によりソルダーレジスト36の膜の絶縁化処理を行う。 Next, the film of the solder resist 36 is exposed and developed, the pad portion is opened, and heat-cured at 180 ° C., and then the solder resist 36 is insulated by ultraviolet irradiation at 100 mJ / cm 2 .

次に、多層配線構造30の表面に、所望のサイズのエッチングレジストを張り付け、図4(i)の切断線16で多層配線構造30と積層基板100を切断することで額縁部14を切り離し、その切断面に積層金属シート13の剥離の境界線を露出させる。そして、図5(j)のように、露出させた剥離の境界線から積層金属シート13のキャリア銅箔層13aから極薄銅箔層13bを剥離することで、厚さ0.4mmの積層基板100から多層配線構造30を分離する。   Next, an etching resist of a desired size is pasted on the surface of the multilayer wiring structure 30, and the frame portion 14 is cut off by cutting the multilayer wiring structure 30 and the laminated substrate 100 along the cutting line 16 in FIG. The boundary line of peeling of the laminated metal sheet 13 is exposed on the cut surface. Then, as shown in FIG. 5 (j), the ultrathin copper foil layer 13b is peeled from the carrier copper foil layer 13a of the laminated metal sheet 13 from the exposed peeling boundary line, so that the laminated substrate having a thickness of 0.4 mm is obtained. The multilayer wiring structure 30 is separated from 100.

次に、そうして分離した多層配線構造30に対し、多層配線構造30の極薄銅箔層13bをクイックエッチングで除去し、図5(k)のように、層間絶縁樹脂層31に埋め込まれた逆円錐台状のビアホール32の、下底の径80μmよりも径が小さい径が50μmの上底を外側に露出させた多層配線構造30を得る。   Next, the ultrathin copper foil layer 13b of the multilayer wiring structure 30 is removed by quick etching from the multilayer wiring structure 30 thus separated, and is embedded in the interlayer insulating resin layer 31 as shown in FIG. A multilayer wiring structure 30 is obtained in which the upper base of the inverted frustoconical via hole 32 having a diameter smaller than the diameter of 80 μm of the lower base is exposed to the outside.

この露出させたビアホール32の上面(上底)の径は50μm程度で小さいので、そのビアホール32の上底にICチップのバンプ(接続端子)を接続することで、ピッチが130μm程度のICチップの高密度の部品端子と高い信頼性で電気接続することができる効果がある。   Since the diameter of the upper surface (upper bottom) of the exposed via hole 32 is as small as about 50 μm, an IC chip bump having a pitch of about 130 μm is connected to the upper bottom of the via hole 32 by connecting a bump (connection terminal) of the IC chip. There is an effect that electrical connection can be made with high density component terminals with high reliability.

(ランド部分のめっき)
次に、ソルダーレジスト36の開口部の部分及びビアホール32の上底面に、無電解Niめっきを3μm以上形成し、その上に無電解Pdめっきを介して無電解Auめっきを0.03μm以上形成する。無電解Auめっきは1μm以上形成しても良い。更にその上にはんだをプリコートすることも可能である。あるいは、ソルダーレジスト開口部に、電解Niめっきを3μm以上形成し、その上に電解Auめっきを0.5μm以上形成しても良い。更に、ソルダーレジスト開口部に、金属めっき以外に、有機防錆皮膜を形成しても良い。
(外形加工)
次に、多層配線構造30の外形をダイサーなどで加工して個片の多層配線板に分離する。
(Land plating)
Next, at least 3 μm of electroless Ni plating is formed on the opening portion of the solder resist 36 and the upper bottom surface of the via hole 32, and 0.03 μm or more of electroless Au plating is formed thereon via electroless Pd plating. . The electroless Au plating may be formed with a thickness of 1 μm or more. Furthermore, it is also possible to pre-coat solder thereon. Alternatively, electrolytic Ni plating may be formed at 3 μm or more in the solder resist opening, and electrolytic Au plating may be formed thereon at 0.5 μm or more. Furthermore, an organic rust preventive film may be formed in the solder resist opening in addition to the metal plating.
(Outline processing)
Next, the outer shape of the multilayer wiring structure 30 is processed with a dicer or the like and separated into individual multilayer wiring boards.

10・・・支持基板
11・・・銅箔
12・・・絶縁樹脂材料
12a・・・半硬化絶縁樹脂シート
13・・・積層金属シート
13a・・・キャリア銅箔層
13b・・・極薄銅箔層
14・・・額縁部
15・・・樹脂薄膜
16・・・切断線
20・・・離型フィルム
30・・・多層配線構造
31、34・・・層間絶縁樹脂層
32、35・・・ビアホール
32a・・・ビアホール下穴
32b・・・ビアホールのランド
33・・・配線パターン
36・・・ソルダーレジスト
100・・・積層基板
DESCRIPTION OF SYMBOLS 10 ... Support substrate 11 ... Copper foil 12 ... Insulating resin material 12a ... Semi-hardened insulating resin sheet 13 ... Laminated metal sheet 13a ... Carrier copper foil layer 13b ... Ultra-thin copper Foil layer 14 ... Frame 15 ... Resin thin film 16 ... Cutting line 20 ... Release film 30 ... Multilayer wiring structure 31, 34 ... Interlayer insulating resin layers 32, 35 ... Via hole 32a ... via hole pilot hole 32b ... via hole land 33 ... wiring pattern 36 ... solder resist 100 ... multilayer substrate

Claims (2)

層配線板の製造に用いる積層基板が、
支持基板の外側に半硬化絶縁樹脂シートと、
剥離可能な複数の金属層を有する多層構造の金属箔と、
を有し、
前記半硬化絶縁樹脂の絶縁樹脂材料で、前記多層構造の金属箔の外周部分を一体に覆う構造を備えることを特徴とする積層基板。
Laminated substrate used for manufacturing the multi-layer wiring board,
A semi-cured insulating resin sheet on the outside of the support substrate;
A multi-layer metal foil having a plurality of peelable metal layers;
Have
The semi-cured with an insulating resin material of the insulating resin, the laminated board, wherein Rukoto having a structure that covers the integral outer peripheral portion of the metal foil of the multilayer structure.
支持基板の外側に半硬化の絶縁樹脂シートを重ね、該半硬化の絶縁樹脂シートの外側に、該半硬化の絶縁樹脂シートよりも寸法が小さく、両面に複数の金属層が剥離可能に積層されて成る積層金属シートを、その極薄銅箔層を外側にして重ねて積層する工程と、
前記積層金属シートの外側に第1の層間絶縁樹脂層を積層する時に前記層間絶縁樹脂層の絶縁樹脂が前記多層構造の金属箔の外縁部の表面の上に流れ出すことにより、前記絶縁樹脂により前記多層構造の金属箔の外周部分を覆った積層基板を形成する工程と、
前記層間絶縁樹脂層の外側から穴あけ加工用レーザー光線によって前記積層金属シートの前記積層金属シートに達するビアホール下穴を形成する工程と、
銅めっきにより前記ビアホール下穴を充填した第1のビアホール及び前記第1の層間絶縁樹脂層の外側に前記第1のビアホールのランドと第1の配線パターンを形成する工程と、
前記第1の層間絶縁樹脂層と第1の配線パターンの外側に次の層間絶縁樹脂層と配線パターンの層を交互に積層して多層配線構造を形成する工程と、
前記積層金属シートを剥離することで、前記支持基板から前記多層配線構造を分離する工程と、
前記多層配線構造の極薄銅箔層をクイックエッチングすることで、前記層間絶縁樹脂層に埋め込まれた、上底の径が下底の径より小さい円錐台状のビアホールの上底を外側に露出させた多層配線板を形成する工程とを有することを特徴とする多層配線板の製造方法。
A semi-cured insulating resin sheet is stacked on the outside of the support substrate, and the outer surface of the semi-cured insulating resin sheet is smaller in size than the semi-cured insulating resin sheet, and a plurality of metal layers are laminated on both sides in a peelable manner. Laminating the laminated metal sheet with the ultra-thin copper foil layer on the outside,
When laminating the first interlayer insulating resin layer on the outside of the laminated metal sheet, the insulating resin of the interlayer insulating resin layer flows out onto the surface of the outer edge portion of the metal foil of the multilayer structure, whereby the insulating resin causes the Forming a laminated substrate covering the outer peripheral portion of the metal foil having a multilayer structure ;
Forming a via hole pilot hole reaching the laminated metal sheet of the laminated metal sheet by a laser beam for drilling from the outside of the interlayer insulating resin layer;
Forming a first via hole filled with the via hole prepared hole by copper plating and a land of the first via hole and a first wiring pattern outside the first interlayer insulating resin layer;
Forming a multilayer wiring structure by alternately laminating a next interlayer insulating resin layer and a wiring pattern layer outside the first interlayer insulating resin layer and the first wiring pattern;
Separating the multilayer wiring structure from the support substrate by peeling the laminated metal sheet; and
Quick etching of the ultra-thin copper foil layer of the multilayer wiring structure exposes the upper base of the frustoconical via hole embedded in the interlayer insulating resin layer to have a lower base diameter smaller than the lower base diameter And a step of forming the multilayer wiring board.
JP2012123153A 2012-05-30 2012-05-30 Multilayer substrate and method for manufacturing multilayer wiring board Active JP5998644B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012123153A JP5998644B2 (en) 2012-05-30 2012-05-30 Multilayer substrate and method for manufacturing multilayer wiring board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012123153A JP5998644B2 (en) 2012-05-30 2012-05-30 Multilayer substrate and method for manufacturing multilayer wiring board

Publications (2)

Publication Number Publication Date
JP2013251314A JP2013251314A (en) 2013-12-12
JP5998644B2 true JP5998644B2 (en) 2016-09-28

Family

ID=49849738

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012123153A Active JP5998644B2 (en) 2012-05-30 2012-05-30 Multilayer substrate and method for manufacturing multilayer wiring board

Country Status (1)

Country Link
JP (1) JP5998644B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016025306A (en) * 2014-07-24 2016-02-08 日立化成株式会社 Manufacturing method of wiring board
JP2016072320A (en) * 2014-09-29 2016-05-09 株式会社 大昌電子 Printed wiring board and method of manufacturing the same
CN110536538B (en) * 2018-05-25 2020-11-20 何崇文 Substrate structure and manufacturing method thereof
CN113826194A (en) * 2019-05-20 2021-12-21 三井金属矿业株式会社 Metal foil with carrier, and method for using and method for manufacturing same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4549692B2 (en) * 2004-02-27 2010-09-22 日本特殊陶業株式会社 Wiring board manufacturing method
JP2008147532A (en) * 2006-12-13 2008-06-26 Kyocer Slc Technologies Corp Manufacturing method of wiring board
JP5526746B2 (en) * 2009-12-04 2014-06-18 凸版印刷株式会社 Multilayer substrate manufacturing method and supporting substrate
JP5962094B2 (en) * 2012-03-16 2016-08-03 凸版印刷株式会社 Manufacturing method of laminated substrate

Also Published As

Publication number Publication date
JP2013251314A (en) 2013-12-12

Similar Documents

Publication Publication Date Title
JP5962094B2 (en) Manufacturing method of laminated substrate
KR101475109B1 (en) Multilayer Wiring Substrate and Method of Manufacturing the Same
US8238114B2 (en) Printed wiring board and method for manufacturing same
JP5526746B2 (en) Multilayer substrate manufacturing method and supporting substrate
KR102308402B1 (en) Support member, wiring substrate, method for manufacturing wiring substrate, and method for manufacturing semiconductor package
TWI492688B (en) Method of manufacturing multilayer wiring substrate
JP2009032918A (en) Wiring substrate, manufacturing method thereof, electronic component device, and manufacturing method thereof
JP2011199077A (en) Method of manufacturing multilayer wiring board
JP2012169591A (en) Multilayer wiring board
WO2014104328A1 (en) Layered body with support substrate, method for fabricating same, and method for fabricating multi-layer wiring substrate
CN106550554B (en) Protective structure for manufacturing a component carrier with a dummy core and two sheets of different materials thereon
JP2014154631A (en) Multilayer wiring board and manufacturing method of the same
JP5998644B2 (en) Multilayer substrate and method for manufacturing multilayer wiring board
JP5302920B2 (en) Manufacturing method of multilayer wiring board
JP4460013B2 (en) Wiring board manufacturing method
JP2013135080A (en) Manufacturing method of multilayer wiring board
JP2014146761A (en) Laminate substrate and manufacturing method therefor
JP6682963B2 (en) Method for manufacturing multilayer wiring board and laminated board for peeling
CN106550542B (en) Component carrier with a pure dielectric layer inserted into and adjacent to a protective structure
JP5998643B2 (en) Multilayer substrate and method for manufacturing multilayer wiring board
JP6107021B2 (en) Wiring board manufacturing method
JP5530955B2 (en) Multilayer wiring board
KR101205464B1 (en) Method for manufacturing a printed circuit board
JP5302927B2 (en) Manufacturing method of multilayer wiring board
JP5557320B2 (en) Wiring board manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150420

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160202

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160401

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160802

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160815

R150 Certificate of patent or registration of utility model

Ref document number: 5998644

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250