JP5526746B2 - Multilayer substrate manufacturing method and supporting substrate - Google Patents

Multilayer substrate manufacturing method and supporting substrate Download PDF

Info

Publication number
JP5526746B2
JP5526746B2 JP2009276261A JP2009276261A JP5526746B2 JP 5526746 B2 JP5526746 B2 JP 5526746B2 JP 2009276261 A JP2009276261 A JP 2009276261A JP 2009276261 A JP2009276261 A JP 2009276261A JP 5526746 B2 JP5526746 B2 JP 5526746B2
Authority
JP
Japan
Prior art keywords
copper foil
support substrate
resin layer
plating
peelable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009276261A
Other languages
Japanese (ja)
Other versions
JP2011119501A (en
Inventor
卓 石岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Inc filed Critical Toppan Inc
Priority to JP2009276261A priority Critical patent/JP5526746B2/en
Publication of JP2011119501A publication Critical patent/JP2011119501A/en
Application granted granted Critical
Publication of JP5526746B2 publication Critical patent/JP5526746B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Production Of Multi-Layered Print Wiring Board (AREA)

Description

本発明は、半導体素子搭載用パッケージに用いる板厚が極めて薄い多層基板の製造方法に関するものである。   The present invention relates to a method for manufacturing a multilayer substrate having a very thin plate thickness for use in a semiconductor element mounting package.

近年、電子機器の小型化、軽量化、多機能化が一段と進み、これに伴ない、配線の高集積化と小型化が急速に進み、配線の微細化が進んでいる。また、半導体チップとほぼ同等のサイズの、いわゆるチップサイズパッケージ(CSP;Chip Size/Scale Package)などの小型化したパッケージへの要求が強くなっている。一方、エッチングにより配線を形成するサブトラクティブ法で歩留り良く形成できる配線は、導体幅(L)/導体間隙(S)=50μm/50μm程度である。更に微細な導体幅/導体間隙=35μm/35μm程度の配線になると、基材表面に比較的薄い無電解金属めっき層を形成しておき、その上にめっきレジストを形成して、電解金属めっきで導体を必要な厚さに形成し、その後、レジスト剥離後に、その薄い金属めっき層をソフトエッチングで除去するというセミアディティブ法が必要になる。そのための技術として、特許文献1では、離脱が可能なピーラブル銅箔を2枚向かい合わせて、プリプレグと挟んで積層して支持基板を作成し、その支持基板の両面に層間絶縁樹脂層と配線パターンを順次ビルドアップして多層構造体を形成する。そして、支持基板の両面に形成した多層構造体を、ピーラブル銅箔を剥離して分離することで、微細な配線を有し、板厚が極めて薄い多層基板を製造する技術が開示されている。   In recent years, electronic devices have been further reduced in size, weight, and functionality, and along with this, higher integration and miniaturization of wiring are rapidly progressing, and miniaturization of wiring is progressing. In addition, there is an increasing demand for a downsized package such as a so-called chip size package (CSP; Chip Size / Scale Package) that is almost the same size as a semiconductor chip. On the other hand, the wiring that can be formed with good yield by the subtractive method of forming the wiring by etching is about conductor width (L) / conductor gap (S) = 50 μm / 50 μm. When the wiring becomes finer conductor width / conductor gap = about 35 μm / 35 μm, a relatively thin electroless metal plating layer is formed on the surface of the substrate, and a plating resist is formed thereon. A semi-additive method is required in which the conductor is formed to a required thickness, and then the thin metal plating layer is removed by soft etching after the resist is peeled off. As a technology for that purpose, in Patent Document 1, two peelable peelable copper foils are faced to each other and laminated with a prepreg to create a support substrate, and an interlayer insulating resin layer and a wiring pattern are formed on both sides of the support substrate. Are sequentially built up to form a multilayer structure. And the technique which manufactures a multilayer board | substrate which has fine wiring and is very thin by peeling the peelable copper foil and isolate | separating the multilayer structure formed in both surfaces of the support substrate is disclosed.

特開2005−101137号公報JP 2005-101137 A

しかし、特許文献1の技術では、支持基板の両面に貼り合せたピーラブル銅箔は、ピーラブル銅箔の剥離の境界線が支持基板の端面に露出しているため、多層基板の製造のストレスにより、その剥離の界面が製造途中で剥離し製造不良を生じる問題があった。本発明の目的は、多層基板の製造工程におけるストレスにより製造途中にピーラブル銅箔が剥離することを防止し、多層基板の製造歩留まりを向上させることを目的とする。   However, in the technique of Patent Document 1, the peelable copper foil bonded to both surfaces of the support substrate is exposed at the end surface of the support substrate because the peeling line of the peelable copper foil is exposed on the end surface of the support substrate. There was a problem that the peeling interface peeled off during the production, resulting in a production failure. An object of the present invention is to prevent peeling of the peelable copper foil during the manufacturing due to stress in the manufacturing process of the multilayer substrate, and to improve the manufacturing yield of the multilayer substrate.

本発明は、上記課題を解決するために、
少なくとも以下のaからeの工程を有することを特徴とする多層基板の製造方法である。a.両面に銅箔を有する銅張積層板の面上に、接着性樹脂層を介して前記銅張積層板よりも寸法が小さい、二層の銅層が密着されて一体化されたピーラブル銅箔を重ねて積層することで前記ピーラブル銅箔の周囲に前記接着性樹脂層の額縁部を形成し前記ピーラブル銅箔の端部を前記額縁部に埋め込んだ支持基板を形成する工程。
b.前記支持基板の両面への無電解銅めっき処理により、前記ピーラブル銅箔の表面を含む前記支持基板の表面の全面にめっき下地導電層を形成する工程。
c.前記支持基板にめっきレジストのパターンを形成し、次に、第1の配線パターンをパターンめっきし、次に、前記めっきレジストのパターンを剥離する工程。
d.層間絶縁樹脂層とビアホールと第2の配線パターンを前記支持基板上にビルドアップした多層構造を形成する工程。
e.前記支持基板上に前記多層構造を形成して成る基板の前記ピーラブル銅箔の端部を切断して前記額縁部を切り離すことで、前記ピーラブル銅箔を剥離し前記支持基板から前記多層構造を分離する工程。
また、本発明は、上記の多層基板の製造方法であって、前記工程cが、前記支持基板の前記接着性樹脂層の額縁部にアライメントマークを形成する工程と、前記支持基板に、前記アライメントマークに位置を合わせてめっきレジストのパターンを形成し、次に、第1の配線パターンをパターンめっきし、次に、前記めっきレジストのパターンを剥離する工程から成ることを特徴とする多層基板の製造方法である。
In order to solve the above problems, the present invention
A method for manufacturing a multilayer substrate, comprising at least the following steps a to e . a. On the surface of a copper clad laminate having copper foil on both sides, a peelable copper foil in which two layers of copper layers are in close contact and integrated with each other with an adhesive resin layer being smaller than the copper clad laminate. The process of forming the frame part of the said adhesive resin layer around the said peelable copper foil, and forming the support substrate which embedded the edge part of the said peelable copper foil in the said frame part by laminating | stacking.
b. Forming a plating base conductive layer on the entire surface of the support substrate including the surface of the peelable copper foil by electroless copper plating on both surfaces of the support substrate;
c. Forming a plating resist pattern on the support substrate, then pattern plating the first wiring pattern, and then peeling the plating resist pattern.
d. Forming a multilayer structure in which an interlayer insulating resin layer, a via hole, and a second wiring pattern are built up on the support substrate;
e. The peelable copper foil is peeled off and the multilayer structure is separated from the support substrate by cutting an edge of the peelable copper foil of the substrate formed by forming the multilayer structure on the support substrate and separating the frame portion. Process.
Further, the present invention is the above-described method for manufacturing a multilayer substrate, wherein the step c includes a step of forming an alignment mark on a frame portion of the adhesive resin layer of the support substrate, and the alignment on the support substrate. Manufacturing a multilayer substrate comprising the steps of forming a plating resist pattern in alignment with the mark, then pattern plating the first wiring pattern, and then stripping the plating resist pattern Is the method.

また、本発明は、両面に多層構造を設ける支持基板であって、Further, the present invention is a support substrate having a multilayer structure on both sides,
前記支持基板が、両面に銅箔を有する銅張積層板の面上に、The support substrate is on the surface of a copper clad laminate having copper foil on both sides,
前記銅張積層板の両面に接着性樹脂層を設け、An adhesive resin layer is provided on both sides of the copper-clad laminate,
前記接着性樹脂層に埋設される状態にて設けられた、二層の銅層が密着されて一体化されたピーラブル銅箔を有し、Provided in a state embedded in the adhesive resin layer, having a peelable copper foil in which two layers of copper layers are in close contact and integrated,
前記ピーラブル銅箔は前記銅張積層板及び前記接着性樹脂層より4辺のサイズが小さく、前記ピーラブル銅箔の外周部に前記接着性樹脂層からなる額縁部が形成され、The peelable copper foil is smaller in size than the copper-clad laminate and the adhesive resin layer, and a frame portion made of the adhesive resin layer is formed on the outer periphery of the peelable copper foil,
前記銅張積層板上の前記接着性樹脂層からなる額縁部と前記ピーラブル銅箔の表面とを含む全面に無電解銅めっき処理により形成しためっき下地導電層を有するA plating base conductive layer formed by electroless copper plating on the entire surface including the frame portion made of the adhesive resin layer on the copper-clad laminate and the surface of the peelable copper foil
ことを特徴とする支持基板である。This is a support substrate.
また、本発明は、上記の指示基板であって、前記接着性樹脂層からなる額縁部にアライメントマークが設けられていることを特徴とする支持基板である。In addition, the present invention is the support substrate according to the above-described instruction substrate, wherein an alignment mark is provided on a frame portion made of the adhesive resin layer.

本発明の多層基板の製造方法によると、ピーラブル銅箔の剥離の境界線を、ピーラブル銅箔より寸法が大きい接着性樹脂層で囲んで埋め込むことにより、ピーラブル銅箔の剥離の境界線が接着性樹脂層12で保護できる効果があり、剥離の界面が製造途中で剥離する製造不良を防止できる効果がある。   According to the method for manufacturing a multilayer substrate of the present invention, the boundary line of peelable copper foil is surrounded by an adhesive resin layer having a dimension larger than that of the peelable copper foil and embedded, so that the boundary line of peelable copper foil is adhesive. There is an effect that can be protected by the resin layer 12, and there is an effect that it is possible to prevent a manufacturing defect in which the peeling interface peels off during the manufacturing.

本発明の製造方法の実施形態を示す断面図である。It is sectional drawing which shows embodiment of the manufacturing method of this invention. 本発明の製造方法の実施形態を示す断面図である。It is sectional drawing which shows embodiment of the manufacturing method of this invention. 本発明の製造方法の実施形態を示す断面図である。It is sectional drawing which shows embodiment of the manufacturing method of this invention. 本発明の製造方法の実施形態を示す断面図である。It is sectional drawing which shows embodiment of the manufacturing method of this invention. 本発明の製造方法の実施形態を示す断面図である。It is sectional drawing which shows embodiment of the manufacturing method of this invention. 本発明の製造方法の実施形態を示す断面図である。It is sectional drawing which shows embodiment of the manufacturing method of this invention.

以下、図面を参照して本発明の実施形態を説明する。図1から図6は、本発明の多層配線板の製造方法の一実施形態を工程順に示す断面図である。
(支持基板の銅箔粗化処理工程)
先ず、図1(a)のように、支持基板10として、両面に厚み18μmの銅箔11を有する、厚み0.4mm、サイズ610×510mmのガラスエポキシの銅張積層板を用意し、その銅箔11の表面を粗化処理する。粗化処理は、研磨材によるサンドブラスト処理または酸化還元処理による黒化処理、過水硫酸系のソフトエッチング処理でも良い。
Hereinafter, embodiments of the present invention will be described with reference to the drawings. 1 to 6 are cross-sectional views showing an embodiment of the method for manufacturing a multilayer wiring board according to the present invention in the order of steps.
(Copper foil roughening process for support substrate)
First, as shown in FIG. 1A, a glass epoxy copper-clad laminate having a thickness of 0.4 mm and a size of 610 × 510 mm having a copper foil 11 having a thickness of 18 μm on both sides is prepared as a support substrate 10. The surface of the foil 11 is roughened. The roughening treatment may be a sand blast treatment with an abrasive or a blackening treatment by oxidation-reduction treatment or a perhydrosulfuric acid based soft etching treatment.

(ピーラブル銅箔の積層工程)
次に、図1(b)のように、支持基板10より小さいサイズ(例えば600×500mm)の市販品のピーラブル銅箔13(例えば、厚さ3μmまたは5μmの極薄銅箔13bに厚さ18μmのキャリア銅箔13aが真空密着された二層構造のピーラブル銅箔MT18SD−H5(三井金属鉱業株式会社製、商品名))を、キャリア銅箔を内側にして接着性樹脂層12を介して支持基板10にロールラミネートまたは積層プレスで両面または片面に熱圧着させ、図1(c)のような支持基板10’を形成する。例えば接着性樹脂層12としては、サイズ610×510mmで厚さが70μmのプリプレグを樹脂リッチに調整して成る接着性樹脂層12を用い、その上にサイズ600×500mmのピーラブル銅箔13を重ね合わせ、温度上昇速度を低くした真空積層プレスで熱圧着させることで、サイズ610×510mmの支持基板10上のサイズ600×500mmのピーラブル銅箔13の外周部を接着性樹脂層12による幅5mmの額縁部14で囲って保護した支持基板10’を形成する。
(Peelable copper foil lamination process)
Next, as shown in FIG. 1B, a commercially available peelable copper foil 13 having a size smaller than the support substrate 10 (for example, 600 × 500 mm) (for example, an ultrathin copper foil 13b having a thickness of 3 μm or 5 μm and a thickness of 18 μm). Two-layer peelable copper foil MT18SD-H5 (trade name, manufactured by Mitsui Mining & Smelting Co., Ltd.) in which the carrier copper foil 13a is vacuum-adhered is supported via the adhesive resin layer 12 with the carrier copper foil inside. A support substrate 10 'as shown in FIG. 1C is formed on the substrate 10 by thermo-compression on both sides or one side by roll laminating or laminating press. For example, as the adhesive resin layer 12, an adhesive resin layer 12 prepared by adjusting a resin-rich prepreg having a size of 610 × 510 mm and a thickness of 70 μm, and a peelable copper foil 13 having a size of 600 × 500 mm are stacked thereon. The outer peripheral portion of the peelable copper foil 13 of size 600 × 500 mm on the support substrate 10 of size 610 × 510 mm is bonded to the outer periphery of the size 610 × 510 mm by thermocompression bonding with a vacuum laminating press with a reduced temperature rise rate. A support substrate 10 ′ surrounded and protected by the frame portion 14 is formed.

ここで、樹脂リッチに調整して成る接着性樹脂層12を用いることで、支持基板10’の額縁部14の表面の高さとピーラブル銅箔13の表面の高さの差を1μm以内に合わせた同じ高さに合わせた表面を形成でき、これにより、ピーラブル銅箔13の表面を露出させつつ、ピーラブル銅箔13のキャリア銅箔13aと極薄銅箔13bとの剥離の境界線を接着性樹脂層12の額縁部14で囲んで埋め込んで保護することができる。それにより、以降の製造工程のストレスで、ピーラブル銅箔13の、キャリア銅箔13aと極薄銅箔13bの剥離の境界面が剥離することを防止でき、その界面の剥離による製造不良を防止できる効果がある。また、この支持基板10’は、両面に銅箔11を有する支持基板10上に接着性樹脂層12でピーラブル銅箔13を接着した支持基板10’に形成したため、銅箔11で補強される効果がある。また、銅箔11により、支持基板10’の表面の熱膨張係数が銅の熱膨張係数に整合され、支持基板10’の表面に形成する銅の配線パターン4と支持基板10’の表面の熱膨張係数の差が小さくなり、製造工程での熱処理により支持基板10’と配線パターン4の界面に生じる熱ストレスを軽減できる効果がある。   Here, by using the adhesive resin layer 12 adjusted to be resin-rich, the difference between the height of the surface of the frame portion 14 of the support substrate 10 ′ and the height of the surface of the peelable copper foil 13 is adjusted within 1 μm. The surface matched to the same height can be formed, thereby exposing the boundary of the peelable copper foil 13a and the ultrathin copper foil 13b to the adhesive resin while exposing the surface of the peelable copper foil 13. The frame 12 of the layer 12 can be enclosed and embedded for protection. Thereby, it is possible to prevent peeling of the boundary surface of the peelable copper foil 13 between the carrier copper foil 13a and the ultrathin copper foil 13b due to stress in the subsequent manufacturing process, and it is possible to prevent manufacturing defects due to peeling of the interface. effective. Further, since the support substrate 10 ′ is formed on the support substrate 10 ′ in which the peelable copper foil 13 is bonded with the adhesive resin layer 12 on the support substrate 10 having the copper foil 11 on both sides, the effect of being reinforced with the copper foil 11 is achieved. There is. The copper foil 11 matches the thermal expansion coefficient of the surface of the support substrate 10 ′ with the thermal expansion coefficient of copper, and the copper wiring pattern 4 formed on the surface of the support substrate 10 ′ and the heat of the surface of the support substrate 10 ′. The difference in the expansion coefficient is reduced, and there is an effect that the thermal stress generated at the interface between the support substrate 10 ′ and the wiring pattern 4 due to the heat treatment in the manufacturing process can be reduced.

接着性樹脂層12の樹脂材料として、ガラス繊維の補強材入りの、エポキシ樹脂、ビスマレイミド−トリアジン樹脂(以下、BT樹脂と称す)、ポリイミド樹脂、PPE樹脂、フェノール樹脂、PTFE樹脂、珪素樹脂、ポリブタジエン樹脂、ポリエステル樹脂、メラミン樹脂、ユリア樹脂、PPS樹脂、PPO樹脂などの有機樹脂を使用することができる。また、補強材は、ガラス繊維以外に、アラミド不織布やアラミド繊維、ポリエステル繊維を用いることもできる。   As the resin material of the adhesive resin layer 12, epoxy resin, bismaleimide-triazine resin (hereinafter referred to as BT resin), polyimide resin, PPE resin, phenol resin, PTFE resin, silicon resin containing glass fiber reinforcing material, Organic resins such as polybutadiene resin, polyester resin, melamine resin, urea resin, PPS resin, and PPO resin can be used. Moreover, an aramid nonwoven fabric, an aramid fiber, and a polyester fiber can also be used for a reinforcing material besides glass fiber.

(めっき下地導電層の形成工程)
次に、図2(d)のように、支持基板10’の両面への無電解銅めっき処理により、ピーラブル銅箔13の極薄銅箔13bの表面及び、その周囲に露出する接着性樹脂層12の幅5mmの額縁部14の表面の全面に、厚さ0.5μmから3μmのめっき下地導電層1を形成する。この無電解銅めっき処理は、次に配線パターン4を形成する電解銅めっきの下地の導電層を形成するものであるが、この無電解銅めっき処理を省略して、ピーラブル銅箔13に直接に電解銅めっき用の電極を接触させて、ピーラブル銅箔13上に直接に電解銅めっきして配線パターン4を形成しても良い。
(Plating foundation conductive layer formation process)
Next, as shown in FIG. 2 (d), the surface of the ultrathin copper foil 13b of the peelable copper foil 13 and the adhesive resin layer exposed around the surface of the peelable copper foil 13 by electroless copper plating on both surfaces of the support substrate 10 '. The plating base conductive layer 1 having a thickness of 0.5 μm to 3 μm is formed on the entire surface of the frame portion 14 having a width of 12 mm. In this electroless copper plating process, a conductive layer is formed as a base of the electrolytic copper plating that forms the wiring pattern 4 next. However, the electroless copper plating process is omitted and the electroless copper plating 13 is directly applied to the peelable copper foil 13. The wiring pattern 4 may be formed by bringing an electrode for electrolytic copper plating into contact and electrolytic copper plating directly on the peelable copper foil 13.

(配線パターンの形成工程)
次に、図2(e)のように、支持基板10’のピーラブル銅箔13の周囲の接着性樹脂層12の額縁部14に穴あけ加工してアライメントマーク2を形成する。このアライメントマーク2の形成の際には、ピーラブル銅箔13の領域から外れた接着性樹脂層12の額縁部14にアライメントマーク2の穴を形成するため、その穴あけ加工のストレスがピーラブル銅箔13に加わえることを防止できる効果がある。そのため、アライメントマーク2の形成によりピーラブル銅箔13が剥離の境界面から剥離する不具合を防止できる効果がある。
(Wiring pattern formation process)
Next, as shown in FIG. 2E, the alignment mark 2 is formed by drilling the frame portion 14 of the adhesive resin layer 12 around the peelable copper foil 13 of the support substrate 10 ′. When forming the alignment mark 2, the hole of the alignment mark 2 is formed in the frame portion 14 of the adhesive resin layer 12 that is out of the area of the peelable copper foil 13. There is an effect that can be prevented from joining. Therefore, the formation of the alignment mark 2 has an effect of preventing the trouble that the peelable copper foil 13 is peeled off from the peeling boundary surface.

次に、図2(f)のように、支持基板10’の両面に、感光性レジスト例えばドライフィルムのめっきレジストをロールラミネートで貼り付け、基板の額縁部14に形成したアライメントマーク2に、パターン露光用フィルムのパターンを位置合せして露光・現像して、支持基板10’の両面に配線パターン4の逆版のめっきレジストのパターン3を形成する。すなわち、めっきレジストのパターン3を、配線パターン4の部分でめっき下地導電層1を露出させた開口を有するパターンに形成する。次に、図2(g)のように、ピーラブル銅箔13側から導通をとり電解銅めっき処理により、配線パターン部分で露出しためっき下地導電層1の面上に銅めっきを15μmの厚さに厚付けするパターンめっきを行うことで配線パターン4を形成する。次に、図3(h)のように、めっきレジストを剥離し支持基板10’のピーラブル銅箔13上に配線パターン4を形成する。   Next, as shown in FIG. 2 (f), a photosensitive resist, for example, a dry film plating resist is attached to both surfaces of the support substrate 10 ′ by roll lamination, and the alignment mark 2 formed on the frame portion 14 of the substrate is patterned. The pattern of the exposure film is aligned, exposed and developed to form a pattern 3 of a reverse plating resist pattern of the wiring pattern 4 on both surfaces of the support substrate 10 '. That is, the plating resist pattern 3 is formed into a pattern having an opening in which the plating base conductive layer 1 is exposed at the wiring pattern 4 portion. Next, as shown in FIG. 2 (g), copper plating is applied to the surface of the plating base conductive layer 1 exposed at the wiring pattern portion by electroplating from the peelable copper foil 13 side to have a thickness of 15 μm. The wiring pattern 4 is formed by performing pattern plating for thickening. Next, as shown in FIG. 3H, the plating resist is peeled off and the wiring pattern 4 is formed on the peelable copper foil 13 of the support substrate 10 '.

(層間絶縁樹脂層の形成工程)
次に、層間絶縁樹脂層5の形成のための前処理として、以下のように配線パターン4の表面を粗化処理する。すなわち、脂肪酸カルボン酸1モルに対して2モル以上のアルカノールアミンを含有し銅イオン源とハロゲンイオン源を含有するマイクロエッチング剤で粗化し、次に、配線パターン4の表面にアゾール化合物と有機酸を含有する水溶液を接触させ配線パターン4の表面にアゾール化合物の厚い被膜を形成させることで後記する絶縁樹脂層形成時の樹脂の接着性を向上させる処理を行う。この処理のマイクロエッチング剤は腐食性が低いため、配線パターン4を侵さずに粗化できる。あるいは、銅の配線パターン4の表面の粗化処理として、酸化還元処理による黒化処理、又は、過水硫酸系のソフトエッチング処理を行うことも可能である。
(Interlayer insulating resin layer formation process)
Next, as a pretreatment for forming the interlayer insulating resin layer 5, the surface of the wiring pattern 4 is roughened as follows. That is, it is roughened with a microetching agent containing 2 mol or more of alkanolamine per mol of fatty acid carboxylic acid and containing a copper ion source and a halogen ion source, and then an azole compound and an organic acid are formed on the surface of the wiring pattern 4. A process for improving the adhesiveness of the resin at the time of forming an insulating resin layer, which will be described later, is carried out by bringing an aqueous solution containing the above into contact with each other to form a thick film of an azole compound on the surface of the wiring pattern 4. Since the microetching agent in this process has low corrosivity, it can be roughened without damaging the wiring pattern 4. Alternatively, as the surface roughening treatment of the copper wiring pattern 4, a blackening treatment by oxidation-reduction treatment or a perhydrosulfuric acid based soft etching treatment can be performed.

次に、図3(i)のように、支持基板10’と配線パターン4上に層間絶縁樹脂層5を、ロールラミネートまたは積層プレスで熱圧着させる。例えば厚さ45μmのエポキシ樹脂をロールラミネートする。ガラスエポキシ樹脂を使う場合は任意の厚さの銅箔を重ね合わせ積層プレスで熱圧着させる。   Next, as shown in FIG. 3I, the interlayer insulating resin layer 5 is thermocompression-bonded on the support substrate 10 'and the wiring pattern 4 by roll lamination or lamination press. For example, an epoxy resin having a thickness of 45 μm is roll laminated. When glass epoxy resin is used, copper foil of any thickness is stacked and thermocompression bonded with a lamination press.

層間絶縁樹脂層5の樹脂材料として、エポキシ樹脂、ビスマレイミド−トリアジン樹脂(以下、BT樹脂と称す)、ポリイミド樹脂、PPE樹脂、フェノール樹脂、PTFE樹脂、珪素樹脂、ポリブタジエン樹脂、ポリエステル樹脂、メラミン樹脂、ユリア樹脂、PPS樹脂、PPO樹脂などの有機樹脂を使用することができる。また、これらの樹脂単独でも、複数樹脂を混合しあるいは化合物を作成するなどの樹脂の組み合わせも使用できる。更に、これらの材料に、ガラス繊維の補強材を混入させた層間絶縁樹脂層5を用いることができる。補強材には、アラミド不織布やアラミド繊維、ポリエステル繊維を用いることができる。   As a resin material of the interlayer insulating resin layer 5, epoxy resin, bismaleimide-triazine resin (hereinafter referred to as BT resin), polyimide resin, PPE resin, phenol resin, PTFE resin, silicon resin, polybutadiene resin, polyester resin, melamine resin Organic resins such as urea resin, PPS resin, and PPO resin can be used. In addition, these resins can be used alone, or a combination of resins such as mixing a plurality of resins or preparing a compound can be used. Further, an interlayer insulating resin layer 5 in which a glass fiber reinforcing material is mixed with these materials can be used. As the reinforcing material, an aramid nonwoven fabric, an aramid fiber, or a polyester fiber can be used.

(ビアホール及び配線パターンの形成工程)
層間絶縁樹脂層5の熱圧着に銅箔を使用した場合、ビアホール下穴6をレーザ法あるいはフォトエッチング法で形成する前処理として、その銅箔を全面エッチングするか、あるいは、ビアホール形成部分をエッチングして銅箔に開口を形成するか、あるいは、銅箔をレーザーで除去するための銅箔のレーザー吸収性を改善するために銅箔の表面処理を行う。
(Via hole and wiring pattern formation process)
When copper foil is used for thermocompression bonding of the interlayer insulating resin layer 5, as a pretreatment for forming the via hole prepared hole 6 by a laser method or photoetching method, the copper foil is etched on the entire surface, or the via hole forming portion is etched. Then, an opening is formed in the copper foil, or surface treatment of the copper foil is performed to improve the laser absorbability of the copper foil for removing the copper foil with a laser.

次に、図3(j)のように、層間接続用のビアホール下穴6を、レーザ法あるいはフォトエッチング法で形成する。
(フォトエッチング法1)
層間絶縁樹脂層5が光硬化型の感光性樹脂からなる場合は、所定のビアホール下穴6部を遮光するパターンを形成したマスクフィルムを層間絶縁樹脂層5に密着させ、紫外線により露光し、未露光部を現像除去する。
(フォトエッチング法2)
層間絶縁樹脂層5が光分解型の感光性樹脂からなる場合は、所定のビアホール下穴6部以外を遮光するパターンを形成したマスクフィルムを層間絶縁樹脂層5に密着させ、紫外線により露光し、露光部を現像除去するフォトエッチング法によりビアホール下穴6を形成する。
(レーザ法)
層間絶縁樹脂層5が熱硬化性樹脂からなる場合は、レーザ光にてビアホール下穴6を形成する。レーザ光としては、高調波YAGレーザやエキシマレーザなどの紫外線レーザ、炭酸ガスレーザなどの赤外線レーザを用いることができる。このようにレーザの波長域としては赤外光領域から紫外光領域までが用いられる。レーザ光にてビアホール下穴6を形成した場合は、ビアホール下穴6の底に薄い樹脂膜が残る場合があり、その場合はデスミア処理を行う。このデスミア処理は、強アルカリにより樹脂を膨潤させ、その後、クロム酸、過マンガン酸塩水溶液などの酸化剤を使用して樹脂を分解除去する。また研磨材によるサンドブラスト処理やプラズマ処理にて除去してもよい。
Next, as shown in FIG. 3J, via hole prepared holes 6 for interlayer connection are formed by a laser method or a photo etching method.
(Photo Etching Method 1)
When the interlayer insulating resin layer 5 is made of a photo-curing type photosensitive resin, a mask film having a pattern for shielding a predetermined via hole pilot hole 6 part is brought into close contact with the interlayer insulating resin layer 5 and exposed to ultraviolet rays. The exposed portion is developed and removed.
(Photo etching method 2)
When the interlayer insulating resin layer 5 is made of a photodegradable photosensitive resin, a mask film on which a pattern for shielding light other than the predetermined via hole pilot hole 6 part is closely attached to the interlayer insulating resin layer 5 and exposed with ultraviolet rays, A via hole prepared hole 6 is formed by a photoetching method for developing and removing the exposed portion.
(Laser method)
When the interlayer insulating resin layer 5 is made of a thermosetting resin, the via hole prepared hole 6 is formed by laser light. As the laser light, an ultraviolet laser such as a harmonic YAG laser or an excimer laser, or an infrared laser such as a carbon dioxide gas laser can be used. Thus, the infrared light region to the ultraviolet light region are used as the laser wavelength region. When the via hole pilot hole 6 is formed by laser light, a thin resin film may remain on the bottom of the via hole pilot hole 6, and in this case, desmear processing is performed. In the desmear treatment, the resin is swollen with a strong alkali, and then the resin is decomposed and removed using an oxidizing agent such as chromic acid or a permanganate aqueous solution. Alternatively, it may be removed by sandblasting or plasma treatment with an abrasive.

層間絶縁樹脂層5にビアホール下穴6を形成した後、必要に応じて層間絶縁樹脂層5の表面を粗化する。一般的には、熱硬化性樹脂や熱可塑性樹脂を使用した場合、クロム酸、過マンガン酸塩の水溶液などの酸化剤による表面粗化処理などのウェットプロセスや、プラズマ処理やアッシング処理などのドライプロセスが有効である。   After the via hole pilot hole 6 is formed in the interlayer insulating resin layer 5, the surface of the interlayer insulating resin layer 5 is roughened as necessary. In general, when a thermosetting resin or thermoplastic resin is used, wet processes such as surface roughening with an oxidizing agent such as an aqueous solution of chromic acid or permanganate, or dry processes such as plasma treatment or ashing treatment are performed. The process is valid.

次に、ビアホール下穴6の壁面および層間絶縁樹脂層5の表面に無電解めっきを施す。
次に、表面に無電解めっきを施した層間絶縁樹脂層5の面に感光性レジスト例えばドライフィルムの感光性めっきレジストフィルムをロールラミネートで貼り付ける。その感光性めっきレジストフィルムを露光・現像することで、ビアホール下穴6の部分、及び、第2の配線パターン19の部分を開口した第2のめっきレジストのパターンを形成する。次に、第2のめっきレジストパターンの開口部分に、厚さ15μmの電解銅めっきを施すことで銅めっきを厚付けする。次に、第2のめっきレジストを剥離し、層間絶縁層上に残っている無電解めっきを過水硫酸系のフラッシュエッチングなどで除去することで、図4(k)のように、銅めっきで充填したビアホール7と第2の配線パターンを形成する。そして、層間絶縁樹脂層の形成工程と、ビアホール及び配線パターンの形成工程を繰り返して、前記支持基板上に、層間絶縁樹脂層5とビアホール7と第2の配線パターンを複数層ビルドアップした多層構造20を形成する。
Next, electroless plating is performed on the wall surface of the via hole prepared hole 6 and the surface of the interlayer insulating resin layer 5.
Next, a photosensitive resist, for example, a photosensitive plating resist film such as a dry film is attached to the surface of the interlayer insulating resin layer 5 whose surface has been electrolessly plated by roll lamination. By exposing and developing the photosensitive plating resist film, a pattern of a second plating resist having an opening in the via hole prepared hole 6 and the second wiring pattern 19 is formed. Next, the copper plating is thickened by performing electrolytic copper plating with a thickness of 15 μm on the opening of the second plating resist pattern. Next, the second plating resist is peeled off, and the electroless plating remaining on the interlayer insulating layer is removed by perhydrosulfuric acid-based flash etching or the like, as shown in FIG. A filled via hole 7 and a second wiring pattern are formed. A multilayer structure in which a plurality of interlayer insulating resin layers 5, via holes 7 and second wiring patterns are built up on the support substrate by repeating the interlayer insulating resin layer forming step and the via hole and wiring pattern forming step. 20 is formed.

次に、ソルダーレジスト8を形成するための前処理として、以下のように多層構造20の表面を粗化処理する。すなわち、脂肪酸カルボン酸1モルに対して2モル以上のアルカノールアミンを含有し銅イオン源とハロゲンイオン源を含有するマイクロエッチング剤で粗化し、次に、多層構造20の表面に、アゾール化合物と有機酸を含有する水溶液を接触させてアゾール化合物の厚い被膜を形成させることで、ソルダーレジストの接着性を向上させる処理を行う。次に、感光性液状ソルダーレジスト8をスプレーコート、ロールコート、カーテンコート、スクリーン法で約20μm厚に塗布し乾燥、または感光性ドライフィルム・ソルダーレジスト8をロールラミネートで貼り付ける。ソルダーレジスト8を露光・現像しパッド部分を開口させ、加熱硬化させる。   Next, as a pretreatment for forming the solder resist 8, the surface of the multilayer structure 20 is roughened as follows. That is, it is roughened with a microetching agent containing 2 moles or more of alkanolamine per mole of fatty acid carboxylic acid and containing a copper ion source and a halogen ion source, and then, on the surface of the multilayer structure 20, an azole compound and organic A treatment for improving the adhesiveness of the solder resist is performed by forming a thick film of an azole compound by contacting an aqueous solution containing an acid. Next, the photosensitive liquid solder resist 8 is applied to a thickness of about 20 μm by spray coating, roll coating, curtain coating, or screen method and dried, or the photosensitive dry film / solder resist 8 is applied by roll lamination. The solder resist 8 is exposed and developed to open the pad portion, and is cured by heating.

次に、多層構造20の表面に、所望のサイズのエッチングレジストを張り付け、図4(l)の切断線15で多層構造20と支持基板10’を切断することで額縁部14を切り離し、その切断面にピーラブル銅箔13の剥離の境界線を露出させる。そして、図5(m)のように、露出させた剥離の境界線からピーラブル銅箔13のキャリア箔13aから極薄銅箔13bを剥離することで、厚さ0.4mmの支持基板10’から多層構造20を分離する。   Next, an etching resist having a desired size is pasted on the surface of the multilayer structure 20, and the frame portion 14 is separated by cutting the multilayer structure 20 and the support substrate 10 ′ along the cutting line 15 in FIG. The boundary line of the peelable copper foil 13 is exposed on the surface. Then, as shown in FIG. 5 (m), by peeling the ultrathin copper foil 13b from the carrier foil 13a of the peelable copper foil 13 from the exposed peeling boundary line, from the support substrate 10 ′ having a thickness of 0.4 mm. The multilayer structure 20 is separated.

次に、硫酸-過酸化水素系ソフトエッチングを用いて極薄銅箔13bとめっき下地導電層1を除去することにより、図5(n)のように層間絶縁樹脂層5に埋め込まれた配線パターン4が露出した多層基板を得る。   Next, the ultrathin copper foil 13b and the plating base conductive layer 1 are removed by using sulfuric acid-hydrogen peroxide soft etching to embed the wiring pattern embedded in the interlayer insulating resin layer 5 as shown in FIG. A multilayer substrate with 4 exposed is obtained.

(ランド部分のめっき)
次に、図6(o)のように、露出させた配線パターン4上に、配線パターン4のランド部分に開口部を有するパターンのソルダーレジスト9を印刷する。次に、ソルダーレジスト9及び8の開口部のランド部分に、無電解Niめっきを3μm以上形成し、その上に無電解Auめっきを0.03μm以上形成する。無電解Auめっきは1μm以上形成しても良い。更にその上にはんだをプリコートすることも可能である。あるいは、ソルダーレジスト開口部に、電解Niめっきを3μm以上形成し、その上に電解Auめっきを0.5μm以上形成しても良い。更に、ソルダーレジスト開口部に、金属めっき以外に、有機防錆皮膜を形成しても良い。
(外形加工)
次に、多層基板の外形をダイサーなどで加工して個片に分離する。
(Land plating)
Next, as shown in FIG. 6 (o), a solder resist 9 having a pattern having an opening in the land portion of the wiring pattern 4 is printed on the exposed wiring pattern 4. Next, 3 μm or more of electroless Ni plating is formed on the land portions of the openings of the solder resists 9 and 8, and 0.03 μm or more of electroless Au plating is formed thereon. The electroless Au plating may be formed with a thickness of 1 μm or more. Furthermore, it is also possible to pre-coat solder thereon. Alternatively, electrolytic Ni plating may be formed at 3 μm or more in the solder resist opening, and electrolytic Au plating may be formed thereon at 0.5 μm or more. Furthermore, an organic rust preventive film may be formed in the solder resist opening in addition to the metal plating.
(Outline processing)
Next, the outer shape of the multilayer substrate is processed with a dicer or the like and separated into individual pieces.

1・・・めっき下地導電層
2・・・アライメントマーク
3・・・めっきレジストのパターン
4・・・配線パターン
5・・・層間絶縁樹脂層
6・・・ビアホール下穴
7・・・ビアホール
8、9・・・ソルダーレジスト
10、10’・・・支持基板
11・・・銅箔
12・・・接着性樹脂層
13・・・ピーラブル銅箔
13a・・・キャリア箔
13b・・・極薄銅箔
14・・・額縁部
15・・・切断線
20・・・多層構造
DESCRIPTION OF SYMBOLS 1 ... Plating foundation conductive layer 2 ... Alignment mark 3 ... Plating resist pattern 4 ... Wiring pattern 5 ... Interlayer insulation resin layer 6 ... Via hole pilot hole 7 ... Via hole 8, DESCRIPTION OF SYMBOLS 9 ... Solder resist 10, 10 '... Support substrate 11 ... Copper foil 12 ... Adhesive resin layer 13 ... Peelable copper foil 13a ... Carrier foil 13b ... Ultra-thin copper foil 14 ... Frame part 15 ... Cutting line 20 ... Multi-layer structure

Claims (4)

少なくとも以下のaからeの工程を有することを特徴とする多層基板の製造方法。
a.両面に銅箔を有する銅張積層板の面上に、接着性樹脂層を介して前記銅張積層板よりも寸法が小さい、二層の銅層が密着されて一体化されたピーラブル銅箔を重ねて積層することで前記ピーラブル銅箔の周囲に前記接着性樹脂層の額縁部を形成し前記ピーラブル銅箔の端部を前記額縁部に埋め込んだ支持基板を形成する工程。
b.前記支持基板の両面への無電解銅めっき処理により、前記ピーラブル銅箔の表面を含む前記支持基板の表面の全面にめっき下地導電層を形成する工程。
c.前記支持基板にめっきレジストのパターンを形成し、次に、第1の配線パターンをパターンめっきし、次に、前記めっきレジストのパターンを剥離する工程。
d.層間絶縁樹脂層とビアホールと第2の配線パターンを前記支持基板上にビルドアップした多層構造を形成する工程。
e.前記支持基板上に前記多層構造を形成して成る基板の前記ピーラブル銅箔の端部を切断して前記額縁部を切り離すことで、前記ピーラブル銅箔を剥離し前記支持基板から前記多層構造を分離する工程。
A method for producing a multilayer substrate, comprising at least the following steps a to e .
a. On the surface of a copper clad laminate having copper foil on both sides, a peelable copper foil in which two layers of copper layers are in close contact and integrated with each other with an adhesive resin layer being smaller than the copper clad laminate. The process of forming the frame part of the said adhesive resin layer around the said peelable copper foil, and forming the support substrate which embedded the edge part of the said peelable copper foil in the said frame part by laminating | stacking.
b. Forming a plating base conductive layer on the entire surface of the support substrate including the surface of the peelable copper foil by electroless copper plating on both surfaces of the support substrate;
c. Forming a plating resist pattern on the support substrate, then pattern plating the first wiring pattern, and then peeling the plating resist pattern.
d. Forming a multilayer structure in which an interlayer insulating resin layer, a via hole, and a second wiring pattern are built up on the support substrate;
e. The peelable copper foil is peeled off and the multilayer structure is separated from the support substrate by cutting an edge of the peelable copper foil of the substrate formed by forming the multilayer structure on the support substrate and separating the frame portion. Process.
請求項1に記載の多層基板の製造方法であって、前記工程cが、前記支持基板の前記接着性樹脂層の額縁部にアライメントマークを形成する工程と、前記支持基板に、前記アライメントマークに位置を合わせてめっきレジストのパターンを形成し、次に、第1の配線パターンをパターンめっきし、次に、前記めっきレジストのパターンを剥離する工程から成ることを特徴とする多層基板の製造方法。 2. The method for manufacturing a multilayer substrate according to claim 1, wherein the step c includes a step of forming an alignment mark on a frame portion of the adhesive resin layer of the support substrate, and a step of forming the alignment mark on the support substrate. A method of manufacturing a multilayer substrate comprising the steps of: forming a plating resist pattern by aligning positions; then pattern plating a first wiring pattern; and then peeling the plating resist pattern. 両面に多層構造を設ける支持基板であって、A support substrate having a multilayer structure on both sides,
前記支持基板が、両面に銅箔を有する銅張積層板の面上に、The support substrate is on the surface of a copper clad laminate having copper foil on both sides,
前記銅張積層板の両面に接着性樹脂層を設け、An adhesive resin layer is provided on both sides of the copper-clad laminate,
前記接着性樹脂層に埋設される状態にて設けられた、二層の銅層が密着されて一体化されたピーラブル銅箔を有し、Provided in a state embedded in the adhesive resin layer, having a peelable copper foil in which two layers of copper layers are in close contact and integrated,
前記ピーラブル銅箔は前記銅張積層板及び前記接着性樹脂層より4辺のサイズが小さく、前記ピーラブル銅箔の外周部に前記接着性樹脂層からなる額縁部が形成され、The peelable copper foil is smaller in size than the copper-clad laminate and the adhesive resin layer, and a frame portion made of the adhesive resin layer is formed on the outer periphery of the peelable copper foil,
前記銅張積層板上の前記接着性樹脂層からなる額縁部と前記ピーラブル銅箔の表面とを含む全面に無電解銅めっき処理により形成しためっき下地導電層を有するA plating base conductive layer formed by electroless copper plating on the entire surface including the frame portion made of the adhesive resin layer on the copper-clad laminate and the surface of the peelable copper foil
ことを特徴とする支持基板。A support substrate.
請求項3に記載の支持基板であって、前記接着性樹脂層からなる額縁部にアライメントマークが設けられていることを特徴とする支持基板。The support substrate according to claim 3, wherein an alignment mark is provided on a frame portion made of the adhesive resin layer.
JP2009276261A 2009-12-04 2009-12-04 Multilayer substrate manufacturing method and supporting substrate Active JP5526746B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009276261A JP5526746B2 (en) 2009-12-04 2009-12-04 Multilayer substrate manufacturing method and supporting substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009276261A JP5526746B2 (en) 2009-12-04 2009-12-04 Multilayer substrate manufacturing method and supporting substrate

Publications (2)

Publication Number Publication Date
JP2011119501A JP2011119501A (en) 2011-06-16
JP5526746B2 true JP5526746B2 (en) 2014-06-18

Family

ID=44284480

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009276261A Active JP5526746B2 (en) 2009-12-04 2009-12-04 Multilayer substrate manufacturing method and supporting substrate

Country Status (1)

Country Link
JP (1) JP5526746B2 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013030603A (en) * 2011-07-28 2013-02-07 Hitachi Chem Co Ltd Method of manufacturing wiring board
CN102548186A (en) * 2012-02-15 2012-07-04 深圳崇达多层线路板有限公司 Hexamethylene diisocyanate (HDI) plate with symmetrically pressed structure and manufacturing method thereof
JP5962094B2 (en) * 2012-03-16 2016-08-03 凸版印刷株式会社 Manufacturing method of laminated substrate
JP5998644B2 (en) * 2012-05-30 2016-09-28 凸版印刷株式会社 Multilayer substrate and method for manufacturing multilayer wiring board
TW201417162A (en) * 2012-09-28 2014-05-01 Nitto Denko Corp Method for manufacturing semiconductor device and bonding sheet
JP2014130856A (en) * 2012-12-28 2014-07-10 Kyocer Slc Technologies Corp Wiring board manufacturing method
JP6399422B2 (en) * 2013-02-15 2018-10-03 パナソニックIpマネジメント株式会社 Printed wiring board material, printed wiring board material manufacturing method, printed wiring board manufacturing method
JP2015144153A (en) * 2014-01-31 2015-08-06 京セラサーキットソリューションズ株式会社 Manufacturing method of wiring board
JP2016025306A (en) * 2014-07-24 2016-02-08 日立化成株式会社 Manufacturing method of wiring board
JP6358887B2 (en) * 2014-07-31 2018-07-18 新光電気工業株式会社 Support, wiring board, method for manufacturing the same, and method for manufacturing semiconductor package
JP2016134497A (en) * 2015-01-19 2016-07-25 凸版印刷株式会社 Wiring board laminate and semiconductor device manufacturing method using the same
JP6510897B2 (en) * 2015-06-09 2019-05-08 新光電気工業株式会社 Wiring board, method of manufacturing the same and electronic component device
JP6907765B2 (en) * 2017-07-04 2021-07-21 昭和電工マテリアルズ株式会社 Temporary fixing method for fan-out wafer level package
WO2020235537A1 (en) * 2019-05-20 2020-11-26 三井金属鉱業株式会社 Metal foil with carrier and use method and manufacturing method therefor

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4332162B2 (en) * 2006-04-03 2009-09-16 富士通株式会社 Wiring board manufacturing method
TWI385772B (en) * 2007-03-30 2013-02-11 Ngk Spark Plug Co Method of manufacturing wiring board
JP5410660B2 (en) * 2007-07-27 2014-02-05 新光電気工業株式会社 WIRING BOARD AND ITS MANUFACTURING METHOD, ELECTRONIC COMPONENT DEVICE AND ITS MANUFACTURING METHOD

Also Published As

Publication number Publication date
JP2011119501A (en) 2011-06-16

Similar Documents

Publication Publication Date Title
JP5526746B2 (en) Multilayer substrate manufacturing method and supporting substrate
KR101475109B1 (en) Multilayer Wiring Substrate and Method of Manufacturing the Same
US9060459B2 (en) Printed wiring board and method for manufacturing same
JP5962094B2 (en) Manufacturing method of laminated substrate
JP2009295949A (en) Printed circuit board with electronic component embedded therein and manufacturing method therefor
JP2009088429A (en) Printed wiring board, method of manufacturing the same, and semiconductor device
JP2010251688A (en) Component built-in printed wiring board and manufacturing method of the same
JPWO2009069683A1 (en) Manufacturing method of multilayer printed wiring board
JP2008300482A (en) Printed wiring board and manufacturing method thereof, and semiconductor device
JP2012169591A (en) Multilayer wiring board
JP2010118635A (en) Multilayer printed wiring board
TW201334647A (en) Multi-layer wiring substrate and method for manufacturing the same
KR20060026683A (en) Method for manufacturing package substrate using a electroless ni plating
JP5302920B2 (en) Manufacturing method of multilayer wiring board
TW201347639A (en) Method of manufacturing multilayer wiring substrate
JP2013123035A (en) Manufacturing method for multilayer wiring board
TWI459879B (en) Method for manufacturing multilayer flexible printed wiring board
JP5998644B2 (en) Multilayer substrate and method for manufacturing multilayer wiring board
JP2007299842A (en) Method for manufacturing multilayer wiring board, semiconductor package, and long-length wiring board
JP2014146761A (en) Laminate substrate and manufacturing method therefor
WO2007116622A1 (en) Multilayer circuit board having cable portion and method for manufacturing same
TWI486104B (en) Multilayer wiring board
JP2010278261A (en) Method of manufacturing multilayer printed wiring board
JP5998643B2 (en) Multilayer substrate and method for manufacturing multilayer wiring board
JP2004152935A (en) Printed wiring board

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110224

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121120

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130827

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130903

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131025

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140318

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140331

R150 Certificate of patent or registration of utility model

Ref document number: 5526746

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250