JP2008300482A - Printed wiring board and manufacturing method thereof, and semiconductor device - Google Patents

Printed wiring board and manufacturing method thereof, and semiconductor device Download PDF

Info

Publication number
JP2008300482A
JP2008300482A JP2007143077A JP2007143077A JP2008300482A JP 2008300482 A JP2008300482 A JP 2008300482A JP 2007143077 A JP2007143077 A JP 2007143077A JP 2007143077 A JP2007143077 A JP 2007143077A JP 2008300482 A JP2008300482 A JP 2008300482A
Authority
JP
Japan
Prior art keywords
layer
insulating resin
resin layer
substrate
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007143077A
Other languages
Japanese (ja)
Other versions
JP5092547B2 (en
Inventor
Taku Ishioka
卓 石岡
Toshiyuki Shima
利幸 島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Circuit Solutions Inc
Original Assignee
NEC Toppan Circuit Solutions Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Toppan Circuit Solutions Inc filed Critical NEC Toppan Circuit Solutions Inc
Priority to JP2007143077A priority Critical patent/JP5092547B2/en
Publication of JP2008300482A publication Critical patent/JP2008300482A/en
Application granted granted Critical
Publication of JP5092547B2 publication Critical patent/JP5092547B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1531Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
    • H01L2924/15311Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a ball array, e.g. BGA

Landscapes

  • Production Of Multi-Layered Print Wiring Board (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To reduce a solder resist peel defect by reducing curvature of a thin-plate-thickness printed wiring board for semiconductor element mounting. <P>SOLUTION: The printed wiring board is manufactured through: a first stage of repeating a build-up process of overlaying a support substrate with a first insulating resin layer, forming a first conductor layer on the surface thereof, overlaying the first conductor layer with a second insulating resin layer, boring a via hole in the insulating resin layer, and forming a second conductor layer on the surface thereof, and thus forming an inner layer substrate having the outermost layer coated with a second insulating resin layer; a second stage of removing the support substrate to make the inner layer substrate independent; a third stage of repeating a build-up process of forming via holes in insulating resin layers of outer layers on both the surfaces of the inner layer substrate and forming a conductor layer on the surface, and thus forming an insulating resin layer and the conductor layer, and increasing the number of layers of the inner layer substrate; and a fourth stage of forming solder resist of the outer layers of the inner layer substrate. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、半導体素子実装用の薄板厚の印刷配線板及びその製造方法ならびに印刷配線板に半導体素子を設置して成る半導体装置に関する。   The present invention relates to a printed wiring board having a thin plate thickness for mounting a semiconductor element, a manufacturing method thereof, and a semiconductor device in which a semiconductor element is installed on the printed wiring board.

従来の半導体素子実装用の薄板厚の印刷配線板の製造方法として、特許文献1では、第1に、金属の支持基板上にニッケル等の外部電極パッドを形成し、次に、支持基板と外部電極パッドを覆う第1の絶縁樹脂層を重ね、次に、第1の絶縁樹脂層に外部電極パッドに達する第1のビアホール下穴を形成し、次に、金属の支持基板を電極とする電解銅めっきにより、第1のビアホール下穴を銅で充填しビアホールを形成し第1の絶縁樹脂層の表面に銅の導体層の第1の配線パターンを形成する。第2に、第1の絶縁樹脂層と第1の配線パターンを覆う第2の絶縁樹脂層を重ね、次に、第2の絶縁樹脂層に外部電極パッドに達する第2のビアホール下穴を形成し、次に、金属の支持基板を電極とする電解銅めっきにより、第2のビアホール下穴を銅で充填しビアホールを形成し第2の絶縁樹脂層の表面に銅の導体層の第2の配線パターンを形成する。第3に、第2の絶縁樹脂層と第2の配線パターンを覆う第3の絶縁樹脂層を重ね、次に、第3の絶縁樹脂層に外部電極パッドに達する第3のビアホール下穴を形成し、次に、金属の支持基板を電極とする電解銅めっきにより、第3のビアホール下穴を銅で充填しビアホールを形成し第3の絶縁樹脂層の表面に銅の導体層の第3の配線パターンを形成する。第4に、第3の絶縁樹脂層と第3の配線パターンを覆うソルダーレジストを形成する。第5に、金属の支持基板をエッチングで除去することで、全層間厚がきわめて薄く薄板厚の印刷配線板を製造していた。   As a conventional method for manufacturing a thin printed wiring board for mounting semiconductor elements, in Patent Document 1, first, an external electrode pad such as nickel is formed on a metal support substrate, and then the support substrate and the external A first insulating resin layer covering the electrode pad is overlaid, then a first via hole pilot hole reaching the external electrode pad is formed in the first insulating resin layer, and then electrolysis using a metal support substrate as an electrode By copper plating, the first via hole pilot hole is filled with copper to form a via hole, and a first wiring pattern of a copper conductor layer is formed on the surface of the first insulating resin layer. Second, the first insulating resin layer and the second insulating resin layer covering the first wiring pattern are overlapped, and then a second via hole pilot hole reaching the external electrode pad is formed in the second insulating resin layer. Next, by electrolytic copper plating using a metal support substrate as an electrode, the second via hole pilot hole is filled with copper to form a via hole, and a second copper conductor layer is formed on the surface of the second insulating resin layer. A wiring pattern is formed. Third, the second insulating resin layer and the third insulating resin layer covering the second wiring pattern are overlapped, and then a third via hole pilot hole reaching the external electrode pad is formed in the third insulating resin layer. Next, by electrolytic copper plating using a metal support substrate as an electrode, the third via hole pilot hole is filled with copper to form a via hole, and a third copper conductor layer is formed on the surface of the third insulating resin layer. A wiring pattern is formed. Fourth, a solder resist that covers the third insulating resin layer and the third wiring pattern is formed. Fifth, a printed wiring board having a very thin total interlayer thickness is manufactured by removing the metal support substrate by etching.

以下に公知文献を記す。
特開2001−177010号公報
The known literature is described below.
JP 2001-177010 A

しかし、特許文献1の印刷配線板の製造方法では、製造工程の一番最後に支持基板を除去するまでは配線パターンの導体層の全体が支持基板と電気接続しているため、配線パターンとビアホールの断線や短絡を電気検査で発見することができない問題があった。すなわち、支持基板を除去した際に初めて配線パターンの回路が支持基板から独立するので、次に、電気検査装置で配線パターンとビアホールの不具合を発見していた。こうして、製造工程の初期の段階で発生した配線パターンあるいはビアホールの断線や短絡の不具合を最後の工程で発見するため、印刷配線板の製造歩留まりが悪い問題があった。また、この製造方法で層数が多い印刷配線板を製造する場合は、印刷配線板の全層を支持基板の片面に形成するため、製造工期が長くなる欠点があった。   However, in the printed wiring board manufacturing method of Patent Document 1, since the entire conductor layer of the wiring pattern is electrically connected to the supporting substrate until the supporting substrate is removed at the end of the manufacturing process, the wiring pattern and the via hole There was a problem that the disconnection or short circuit could not be found by electrical inspection. That is, since the circuit of the wiring pattern becomes independent from the supporting substrate for the first time when the supporting substrate is removed, the defect of the wiring pattern and the via hole was next discovered by the electric inspection apparatus. Thus, the wiring pattern or via hole disconnection or short-circuit defect that occurred in the initial stage of the manufacturing process is discovered in the last process, and there has been a problem that the manufacturing yield of the printed wiring board is poor. Further, when a printed wiring board having a large number of layers is produced by this production method, since all the layers of the printed wiring board are formed on one side of the support substrate, there is a disadvantage that the production period is long.

また、特許文献1の印刷配線板の製造方法では、両面にソルダーレジストを印刷する場合は、基板の片面にソルダーレジストを形成した後に支持基板を除去し、露出した面にソルダーレジストを形成すると、片面にソルダーレジストを形成するアンバランスなストレスにより、印刷配線板が反る問題があった。一方、金属の支持基板をエッチングで除去した後に、基板の両面にソルダーレジストを形成する場合も、ソルダーレジストを硬化させる際に加える加熱処理により印刷配線板が反る問題があった。鋭意研究の結果、この問題の原因は、片面形成した印刷配線板には、片面に偏ったストレスが残留するため、加熱処理により、上下面でアンバランスなストレスがあらわれ、そのストレスにより印刷配線板が反る知見を得た。   Further, in the printed wiring board manufacturing method of Patent Document 1, when printing a solder resist on both surfaces, after forming the solder resist on one side of the substrate, removing the support substrate, and forming the solder resist on the exposed surface, There was a problem that the printed wiring board warps due to unbalanced stress that forms a solder resist on one side. On the other hand, even when the solder resist is formed on both surfaces of the substrate after the metal support substrate is removed by etching, there is a problem that the printed wiring board is warped by the heat treatment applied when the solder resist is cured. As a result of diligent research, the cause of this problem is that the printed wiring board that is formed on one side has stress that is biased on one side, so unbalanced stress appears on the top and bottom surfaces due to heat treatment. Obtained warping knowledge.

更に、特許文献1の製造方法では、エッチングにより金属の支持基板を除去する際に、支持基板に接していた外部電極パッドがエッチング液に曝されると、外部電極パッドの絶縁樹脂層の隙間から外部電極パッドに電気接続する導体層の位置までエッチング液が侵入し導体面が腐食されることがある問題があった。また、その外部電極パッドを金めっきで形成した場合、その金めっき上にソルダーレジストを形成すると、金めっきとソルダーレジストとの密着が悪くなり、ソルダーレジスト剥がれ不良を発生する問題があった。   Furthermore, in the manufacturing method of Patent Document 1, when the external electrode pad that is in contact with the support substrate is exposed to the etching solution when the metal support substrate is removed by etching, the gap is formed between the insulating resin layers of the external electrode pad. There has been a problem that the etching liquid may invade to the position of the conductor layer electrically connected to the external electrode pad and the conductor surface may be corroded. Further, when the external electrode pad is formed by gold plating, if a solder resist is formed on the gold plating, there is a problem that the adhesion between the gold plating and the solder resist is deteriorated and the solder resist is peeled off.

本発明の課題は、半導体素子実装用の薄板厚の印刷配線板においてこれらの問題を解決することにある、すなわち、薄板厚の印刷配線板の反りを低減し、また、印刷配線板のソルダーレジスト剥がれ不良を低減することを課題とする。   An object of the present invention is to solve these problems in a thin printed wiring board for mounting a semiconductor element, that is, to reduce the warpage of the thin printed wiring board, and to reduce the solder resist of the printed wiring board. It is an object to reduce peeling defects.

本発明は、この課題を解決するために、支持基板上に第1の絶縁樹脂層を重ね、前記第1の絶縁樹脂層の面上に第1の導体層を形成し、前記第1の導体層に第2の絶縁樹脂層を重ねる処理と、前記第2の絶縁樹脂層内にビアホールを形成するとともに表面に第2の導体層を形成する処理により絶縁樹脂層と導体層を交互に重ねるビルドアップ処理を繰り返し前記支持基板の面上に最外層を前記第2の絶縁樹脂層で被覆した内層基板を形成する第1の工程を有し、次に、前記支持基板を除去し前記内層基板を独立させる第2の工程を有し、次に、前記内層基板の両面の外層の前記絶縁樹脂層内にビアホールを形成するとともに表面に第3の導体層を形成し、前記第3の導体層に第3の絶縁樹脂層を重ね更に導体層を形成するビルドアップ処理を繰り返し前記内層基板の層数を増す第3の工程を有し、次に、前記内層基板の外層にソルダーレジストを形成する第4の工程を有することを特徴とする印刷配線板の製造方法である。   In order to solve this problem, according to the present invention, a first insulating resin layer is stacked on a support substrate, a first conductor layer is formed on the surface of the first insulating resin layer, and the first conductor is formed. Build in which the insulating resin layer and the conductor layer are alternately stacked by the process of stacking the second insulating resin layer on the layer and the process of forming the via hole in the second insulating resin layer and forming the second conductor layer on the surface The first step of forming an inner layer substrate in which the outermost layer is coated with the second insulating resin layer on the surface of the support substrate is repeated, and then the support substrate is removed to remove the inner layer substrate. A second step of making the substrate independent, and then forming a via hole in the insulating resin layer of the outer layer on both sides of the inner layer substrate, forming a third conductor layer on the surface, and forming the third conductor layer on the surface Build-up process to overlap the third insulating resin layer and further form a conductor layer A method of manufacturing a printed wiring board comprising a third step of increasing the number of layers of the inner layer substrate repeatedly, and then a fourth step of forming a solder resist on the outer layer of the inner layer substrate. is there.

また、本発明は、表面に剥離層を形成した支持基板上の面上に第1の導体層を形成し、次に、前記第1の導体層に第1の絶縁樹脂層を重ねる処理と、前記第1の絶縁樹脂層内にビアホールを形成するとともに表面に第2の導体層を形成することで絶縁樹脂層と導体層を交互に重ねるビルドアップ処理を繰り返し前記支持基板の面上に最外層に前記第2の導体層を有する内層基板を形成する第1の工程を有し、次に、前記支持基板を除去し前記内層基板を独立させる第2の工程を有し、次に、前記内層基板の両面の外層の前記第1の導体層と前記第2の導体層に第3の絶縁樹脂層を重ねる処理と、次に、前記内層基板の両面の前記第3の絶縁樹脂層内にビアホールを形成するとともに表面に第3の導体層を形成し、前記第3の導体層に絶縁樹脂層を重ね更に導体層を形成するビルドアップ処理を繰り返し前記内層基板の層数を増す第3の工程を有し、次に、前記内層基板の外層にソルダーレジストを形成する第4の工程を有することを特徴とする印刷配線板の製造方法である。   Further, the present invention is a process of forming a first conductor layer on a surface on a support substrate having a release layer formed on the surface, and then superimposing a first insulating resin layer on the first conductor layer; A build-up process in which an insulating resin layer and a conductor layer are alternately stacked by repeatedly forming a via hole in the first insulating resin layer and forming a second conductor layer on the surface is repeated on the surface of the support substrate. A first step of forming an inner layer substrate having the second conductor layer, and then a second step of removing the support substrate and making the inner layer substrate independent, and then the inner layer. A process of superimposing a third insulating resin layer on the first conductor layer and the second conductor layer on the outer layers on both sides of the substrate, and then via holes in the third insulating resin layers on both sides of the inner layer substrate. And a third conductor layer is formed on the surface, and an insulating resin is formed on the third conductor layer. A third step of repeating the build-up process for forming a conductor layer and increasing the number of layers of the inner layer substrate, and then a fourth step of forming a solder resist on the outer layer of the inner layer substrate. A printed wiring board manufacturing method characterized by the above.

また、本発明は、上記第1の絶縁樹脂層を、補強材入りプリプレグ樹脂を用いて形成することを特徴とする上記の印刷配線板の製造方法である。   The present invention is also the above-described printed wiring board manufacturing method, wherein the first insulating resin layer is formed using a prepreg resin containing a reinforcing material.

また、本発明は、多層の導体層を有する印刷配線板であって、補強材入り絶縁樹脂層を内層の第1の絶縁樹脂層に有し、前記第1の絶縁樹脂層の上層に第2の絶縁樹脂層を有し、前記第1の絶縁樹脂層の下層と前記第2の絶縁樹脂層の上層の両面に同じ層数の第3の絶縁樹脂層を有し、前記両面の第3の絶縁樹脂層の外層の両面にソルダーレジストを有し、前記第2の絶縁樹脂層以上の絶縁樹脂層内のビアホールが上側の径が下側の径より大きい逆向きの円錐台形状のビアホールであり、前記第1の絶縁樹脂層以下の絶縁樹脂層のビアホールが上側の径が下側の径より小さい円錐台形状のビアホールであり、前記導体層間の前記各絶縁樹脂層の厚さが等しいことを特徴とする印刷配線板である。   The present invention is also a printed wiring board having a multi-layered conductor layer, having a reinforcing insulating resin layer in a first insulating resin layer as an inner layer, and a second layer above the first insulating resin layer. A third insulating resin layer having the same number of layers on both surfaces of the lower layer of the first insulating resin layer and the upper layer of the second insulating resin layer. A solder resist is provided on both sides of the outer layer of the insulating resin layer, and the via hole in the insulating resin layer equal to or higher than the second insulating resin layer is a frustoconical via hole having an upper diameter larger than the lower diameter. The via holes of the insulating resin layer below the first insulating resin layer are frustoconical via holes whose upper diameter is smaller than the lower diameter, and the thickness of each insulating resin layer between the conductor layers is equal. It is the printed wiring board characterized.

また、本発明は、上記ソルダーレジストの開口部の導体層に形成した外部電極パッドを有し、一部の前記外部電極パッドに固相点が235℃以下の第1のはんだがプリコートさ
れ、一部の前記外部電極パッドに固相点が240℃以上で250℃以下の第2のはんだで外部接続端子がはんだ付けされたことを特徴とする上記の印刷配線板である。
The present invention also includes an external electrode pad formed on the conductor layer in the opening of the solder resist, and a part of the external electrode pad is precoated with a first solder having a solid phase point of 235 ° C. or less. The above-mentioned printed wiring board, wherein the external connection terminal is soldered to the external electrode pad of a part with a second solder having a solid phase point of 240 ° C. or higher and 250 ° C. or lower.

また、本発明は、多層の導体層を有する印刷配線板の表層の外部電極パッドに半導体素子を接合した半導体装置であって、前記印刷配線板が補強材入り絶縁樹脂層を内層の第1の絶縁樹脂層に有し、前記第1の絶縁樹脂層の上層に第2絶縁樹脂層を有し、前記第1の絶縁樹脂層の下層と前記第2の絶縁樹脂層の上層の両面に同じ層数の第3の絶縁樹脂層を有し、前記両面の第3の絶縁樹脂層の外層の両面にソルダーレジストを有し、前記第2の絶縁樹脂層以上の絶縁樹脂層内のビアホールが上側の径が下側の径より大きい逆向きの円錐台形状のビアホールであり、前記第1の絶縁樹脂層以下の絶縁樹脂層のビアホールが上側の径が下側の径より小さい円錐台形状のビアホールであり、前記導体層間の前記各絶縁樹脂層の厚さが等しいことを特徴とする半導体装置である。   According to another aspect of the present invention, there is provided a semiconductor device in which a semiconductor element is bonded to an external electrode pad on a surface layer of a printed wiring board having a multi-layered conductor layer, wherein the printed wiring board includes an insulating resin layer containing a reinforcing material as a first inner layer. The insulating resin layer has a second insulating resin layer above the first insulating resin layer, and the same layer on both sides of the lower layer of the first insulating resin layer and the upper layer of the second insulating resin layer A plurality of third insulating resin layers, solder resists on both sides of the outer layers of the third insulating resin layers on both sides, and a via hole in the insulating resin layer that is higher than the second insulating resin layer on the upper side A reverse frustoconical via hole having a larger diameter than the lower diameter, and the via hole of the insulating resin layer below the first insulating resin layer is a frustoconical via hole whose upper diameter is smaller than the lower diameter. The thickness of each insulating resin layer between the conductor layers is equal. Which is a semiconductor device to be.

また、本発明は、上記外部電極パッドを上記半導体素子に第1のはんだで接合し、上記印刷配線板の表層の第2の外部電極パッドに第2のはんだで外部接続端子を接合した構造を有し、前記第1のはんだの固相点が235℃以下であり、前記第2のはんだの固相点が240℃以上で250℃以下であることを特徴とする上記の半導体装置である。   Further, the present invention has a structure in which the external electrode pad is bonded to the semiconductor element with a first solder, and an external connection terminal is bonded to the second external electrode pad on the surface layer of the printed wiring board with a second solder. The solid-state point of the first solder is 235 ° C. or lower, and the solid-state point of the second solder is 240 ° C. or higher and 250 ° C. or lower.

本発明は、内層基板の各絶縁樹脂層の厚さが薄い場合も、それらの絶縁樹脂層を複数層重ねた適度の厚さの内層基板を形成した後に支持基板を除去し、それ以降に、支持基板の無い内層基板を取り扱うので、その内層基板は厚さが適度であるため取り扱いが容易である。そのため、その内層基板を電気検査装置で検査することができ、それにより配線パターンとビアホールの欠陥を検査でき、不良品を早期に除外できるので、印刷配線板の歩留まりを向上させる効果がある。また、内層基板に適度な層数の配線パターンを形成し、支持基板を除去した後は、両面に絶縁樹脂層と配線パターンをビルドアップして2層ずつ形成していくので、それ以降の工程は、支持基板の片面にビルドアップしていく従来工法に比べビルドアップの工程数を半減させ製造工期を短縮できる効果がある。   In the present invention, even when the thickness of each insulating resin layer of the inner layer substrate is thin, the support substrate is removed after forming the inner layer substrate having an appropriate thickness by stacking a plurality of those insulating resin layers, and thereafter, Since the inner layer substrate without the supporting substrate is handled, the inner layer substrate is easy to handle because the thickness is appropriate. Therefore, the inner layer substrate can be inspected with an electric inspection device, whereby defects in the wiring pattern and the via hole can be inspected, and defective products can be excluded at an early stage, thereby improving the yield of the printed wiring board. In addition, after forming an appropriate number of wiring patterns on the inner layer substrate and removing the support substrate, the insulating resin layer and the wiring pattern are built up on both sides to form two layers, so the subsequent steps Compared to the conventional method of building up on one side of the support substrate, there is an effect that the number of build-up steps can be halved and the manufacturing period can be shortened.

また、本発明の印刷配線板は、内層基板の両面に第4の絶縁樹脂層を重ねて基板の両面の絶縁樹脂層にビアホールと第4の配線パターンを形成することで基板の上下に上下対称な層構成に絶縁樹脂層と配線パターンをビルドアップすることができる。それにより、板厚がきわめて薄い印刷配線板でありながら、その印刷配線板を加熱処理しても印刷配線板が反る問題が少ない良い品質の印刷配線板が得られる効果がある。特に、従来の基板の両面にソルダーレジストを印刷する際の加熱処理による印刷配線板の反りを改善できる効果がある。   The printed wiring board according to the present invention is vertically symmetrical with respect to the top and bottom of the substrate by forming a via hole and a fourth wiring pattern on the insulating resin layers on both sides of the substrate by overlapping the fourth insulating resin layer on both sides of the inner layer substrate. An insulating resin layer and a wiring pattern can be built up in a simple layer configuration. Thereby, although the printed wiring board is extremely thin, there is an effect that a printed wiring board of good quality can be obtained with few problems of warping of the printed wiring board even if the printed wiring board is heat-treated. In particular, there is an effect that the warp of the printed wiring board due to the heat treatment when printing the solder resist on both surfaces of the conventional substrate can be improved.

更に、本発明は、配線パターンを両面の絶縁樹脂層で被覆して配線パターンが露出しない内層基板から支持基板を除去するので、支持基板の除去の際の薬液による処理によって導体層が損傷することが無く、また、その後の製造工程でも内層基板の導体層が損傷することが無いので、印刷配線板の製造歩留まりを向上できる効果がある。   Furthermore, since the present invention removes the support substrate from the inner substrate where the wiring pattern is covered with the insulating resin layers on both sides and the wiring pattern is not exposed, the conductor layer may be damaged by the treatment with the chemical solution when removing the support substrate. In addition, since the conductor layer of the inner substrate is not damaged in the subsequent manufacturing process, the manufacturing yield of the printed wiring board can be improved.

以下、本発明の実施形態について図面を基に説明する。本実施形態は、図1から図4に示すように、支持基板1上に第1の絶縁樹脂層2を重ね、その第1の絶縁樹脂層2の面上に配線パターンを含む第1の導体層6を形成し、その第1の導体層6に第2の絶縁樹脂層2−2を重ね、その第2の絶縁樹脂層2−2内に第1の導体層6に接続するビアホール7−2を形成するとともに第2の絶縁樹脂層2−2の面上に第2の導体層6−2を金属めっきで形成する処理を繰り返すことで支持基板1に第2の絶縁樹脂層2−2と第2の導体層6−2を交互に重ねた基板を製造する第1の工程を有し、次に、その基板から支持基板1
を除去した内層基板8を製造する第2の工程を有し、その内層基板8の両面に金属めっきで第3の導体層6−4を形成し、内層基板8の両面に第3の絶縁樹脂層2−5を重ねるビルドアップ処理を繰り返すことで内層基板8の両面にビルドアップ層を形成する第3の工程と、次に最外層にソルダーレジスト9を形成する第4の工程を有する印刷配線板の製造方法である。以下、本実施形態の製造方法を図1から図4に基づき詳細に説明する。
Hereinafter, embodiments of the present invention will be described with reference to the drawings. In this embodiment, as shown in FIGS. 1 to 4, the first insulating resin layer 2 is overlaid on the support substrate 1, and the first conductor including the wiring pattern on the surface of the first insulating resin layer 2. A layer 6 is formed, a second insulating resin layer 2-2 is superimposed on the first conductive layer 6, and a via hole 7- connected to the first conductive layer 6 in the second insulating resin layer 2-2. 2 and the process of forming the second conductor layer 6-2 by metal plating on the surface of the second insulating resin layer 2-2 is repeated on the support substrate 1 to form the second insulating resin layer 2-2. And the second conductor layer 6-2 are alternately manufactured, and then the substrate is supported on the supporting substrate 1 from the substrate.
A second step of manufacturing the inner layer substrate 8 from which the inner layer substrate 8 is removed, the third conductor layer 6-4 is formed by metal plating on both surfaces of the inner layer substrate 8, and the third insulating resin is formed on both surfaces of the inner layer substrate 8. Printed wiring having a third step of forming buildup layers on both surfaces of the inner substrate 8 by repeating the buildup process of layer 2-5 and a fourth step of forming solder resist 9 on the outermost layer. It is a manufacturing method of a board. Hereinafter, the manufacturing method of this embodiment is demonstrated in detail based on FIGS.

<第1の実施形態>
(工程1)
図1(a)のように、支持基板1として金属板を用い、例えば250μmの銅板を支持基板1として用い、その支持基板1をCZ処理などで粗化処理する。粗化処理は、研磨材によるサンドブラスト処理または酸化還元処理による黒化処理、過水硫酸系のソフトエッチング処理でも良い。
(工程2)
次に、図1(b)のように、支持基板1に絶縁樹脂層2をロールラミネートまたは積層プレスで熱圧着させる。例えば厚さ30μmのエポキシ樹脂をロールラミネートする。
<First Embodiment>
(Process 1)
As shown in FIG. 1A, a metal plate is used as the support substrate 1, for example, a 250 μm copper plate is used as the support substrate 1, and the support substrate 1 is roughened by CZ processing or the like. The roughening treatment may be a sand blast treatment with an abrasive or a blackening treatment by oxidation-reduction treatment or a perhydrosulfuric acid based soft etching treatment.
(Process 2)
Next, as shown in FIG. 1B, the insulating resin layer 2 is thermocompression bonded to the support substrate 1 by roll lamination or lamination press. For example, an epoxy resin having a thickness of 30 μm is roll laminated.

(変形例1)
工程2の変形例として、第1の絶縁樹脂層2として、支持基板1上にガラス繊維やガラスフレークやフィラーなどの補強材入りプリプレグ樹脂を重ね、その上に厚さ12μmの銅箔を重ね合わせ、積層プレスで熱圧着させることで、銅箔付きの絶縁樹脂層2を支持基板1に接着して形成する。絶縁樹脂層2の材料としては、ガラス繊維入りエポキシ樹脂材、ガラス繊維入りビスマレイミド−トリアジン樹脂(以下、BT樹脂と称す)材、ガラス繊維入りポリイミド樹脂材、ガラス繊維入りPPE樹脂材を使用できる。絶縁樹脂層2にガラス繊維入りプリプレグ樹脂を用いることで、絶縁樹脂層2にクラックが発生しクラックが成長することを防ぐことができる。特に、絶縁樹脂層2には後工程による熱ストレスが何回も加わり熱ストレスにより内部にクラック不具合を生じ易くそのクラック不具合が拡大する恐れがあるので、絶縁樹脂層2にガラス繊維入りプリプレグ樹脂を用いることで、絶縁樹脂層2を強化しクラック不具合を防止する効果がある。そして、不具合を発生し易い絶縁樹脂層2をこのように補強することで製造する印刷配線板の信頼性を高くできる効果がある。また、プリプレグ樹脂の補強材としては、ガラス繊維以外に、アラミド不織布、アラミド繊維、ポリエステル繊維を使用することもできる。また、絶縁樹脂層2の補強材は、繊維状の補強材以外にフレーク状の補強材、または、フィラーで、例えばセラミックスや硫酸バリウム等のフィラーで強化した補強材入りプリプレグ樹脂を用いることができる。
(Modification 1)
As a modified example of the step 2, as the first insulating resin layer 2, a prepreg resin containing a reinforcing material such as glass fiber, glass flake, or filler is stacked on the support substrate 1, and a copper foil having a thickness of 12 μm is stacked thereon. The insulating resin layer 2 with a copper foil is bonded to the support substrate 1 by thermocompression bonding with a lamination press. As a material of the insulating resin layer 2, an epoxy resin material containing glass fiber, a bismaleimide-triazine resin (hereinafter referred to as BT resin) material containing glass fiber, a polyimide resin material containing glass fiber, and a PPE resin material containing glass fiber can be used. . By using the prepreg resin containing glass fiber for the insulating resin layer 2, it is possible to prevent the insulating resin layer 2 from being cracked and growing. In particular, since the thermal stress due to the subsequent process is applied to the insulating resin layer 2 many times, and the crack failure is likely to occur inside due to the thermal stress, the crack failure may be enlarged. By using it, there is an effect that the insulating resin layer 2 is strengthened and crack defects are prevented. And there exists an effect which can improve the reliability of the printed wiring board manufactured by reinforcing the insulating resin layer 2 which is easy to generate | occur | produce a defect in this way. Further, as the reinforcing material for the prepreg resin, an aramid nonwoven fabric, an aramid fiber, and a polyester fiber can be used in addition to the glass fiber. Further, as the reinforcing material of the insulating resin layer 2, a prepreg resin containing a reinforcing material reinforced with a flake-like reinforcing material or a filler, for example, a filler such as ceramics or barium sulfate, in addition to the fibrous reinforcing material can be used. .

絶縁樹脂層2の樹脂材料として、エポキシ樹脂、BT樹脂、ポリイミド、PPE、フェノール樹脂、PTFE樹脂、珪素樹脂、ポリブタジエン樹脂、ポリエステル樹脂、メラミン樹脂、ユリア樹脂、PPS樹脂、PPO樹脂などの有機樹脂を使用することができる。また、これらの樹脂単独でも、複数樹脂を混合しあるいは化合物を作成するなどの樹脂の組み合わせも使用できる。こうして、支持基板1にプリプレグと銅箔を積層して絶縁樹脂層2を形成した場合は、その銅箔を塩化第二鉄水溶液などのエッチング液で全面エッチングして絶縁樹脂層2の表面を露出させる。   As the resin material of the insulating resin layer 2, an organic resin such as epoxy resin, BT resin, polyimide, PPE, phenol resin, PTFE resin, silicon resin, polybutadiene resin, polyester resin, melamine resin, urea resin, PPS resin, PPO resin, etc. Can be used. In addition, these resins can be used alone, or a combination of resins such as mixing a plurality of resins or preparing a compound can be used. Thus, when the insulating resin layer 2 is formed by laminating the prepreg and the copper foil on the support substrate 1, the entire surface of the insulating resin layer 2 is exposed by etching the copper foil with an etching solution such as ferric chloride aqueous solution. Let

(工程3)
次に、必要に応じて絶縁樹脂層2の表面を粗化する。一般的には、クロム酸、過マンガン酸塩の水溶液などの酸化剤による表面粗化処理などのウェットプロセスや、プラズマ処理やアッシング処理などのドライプロセスが有効である。次に、図1(c)のように、無電解銅めっき処理により、絶縁樹脂層2の表面の全面に、厚さ0.5μmから3μmのめっき下地導電層3を形成する。
(工程4)
次に、図1(d)のように、めっきレジスト4として例えばドライフィルムの感光性レジストをロールラミネートで基板に貼り付け、次に、図1(e)のように、露光・現像し配線パターン部分5を開口して、その部分でめっき下地導電層3を露出させためっきレジスト4のパターンを形成する。
(工程5)
次に、図1(f)のように、めっき下地導電層3を電極にして電解銅めっき処理により、配線パターン部分5で露出しためっき下地導電層3の面上に銅めっきを15μmの厚さに厚付けした配線パターン6を形成した第1の導体層を形成する。
(工程6)
次に、めっきレジスト4を剥離する。次に、図2(g)のように、過水硫酸系のフラッシュエッチング処理により、絶縁樹脂層2上の第1の導体層に残っている厚さ0.5μmから3μmのめっき下地導電層3を除去し、絶縁樹脂層2に配線パターン6を残した第1の導体層を形成する。
(Process 3)
Next, the surface of the insulating resin layer 2 is roughened as necessary. In general, wet processes such as surface roughening with an oxidizing agent such as an aqueous solution of chromic acid or permanganate, and dry processes such as plasma treatment or ashing treatment are effective. Next, as shown in FIG. 1C, a plating base conductive layer 3 having a thickness of 0.5 μm to 3 μm is formed on the entire surface of the insulating resin layer 2 by electroless copper plating.
(Process 4)
Next, as shown in FIG. 1D, for example, a dry film photosensitive resist is applied as a plating resist 4 to the substrate by roll lamination, and then exposed and developed as shown in FIG. The part 5 is opened, and a pattern of the plating resist 4 in which the plating base conductive layer 3 is exposed at the part is formed.
(Process 5)
Next, as shown in FIG. 1 (f), copper plating is applied to the surface of the plating base conductive layer 3 exposed at the wiring pattern portion 5 by electrolytic copper plating using the plating base conductive layer 3 as an electrode to a thickness of 15 μm. A first conductor layer on which the thick wiring pattern 6 is formed is formed.
(Step 6)
Next, the plating resist 4 is peeled off. Next, as shown in FIG. 2G, the plating base conductive layer 3 having a thickness of 0.5 μm to 3 μm remaining in the first conductor layer on the insulating resin layer 2 by a perhydrosulfuric acid-based flash etching process. Then, a first conductor layer in which the wiring pattern 6 is left on the insulating resin layer 2 is formed.

(変形例2)
以上の工程3から工程6による配線パターン6の形成方法はセミアディティブ工法であるが、これ以外に、以下の製造方法でも同様に第1の導体層の配線パターン6を形成することができる。すなわち、第1に、絶縁樹脂層2の表面を粗化した後に、無電解銅めっき処理でめっき下地導電層3を形成し、第2に、めっき下地導電層3の全面に電解銅めっきを12μmの厚さで加えた第1の導体層を形成し、第3に、第1の導体層の表面にエッチングレジストパターンを形成することで第1の導体層をエッチングして配線パターン6を形成する。第4にエッチングレジストを剥離する。以上のサブトラクティブ工法によっても配線パターン6を形成し図2(g)の構造を製造できる。
(工程7)
次に、第1の導体層の配線パターン6の表面を粗化処理することで第2の絶縁樹脂層2−2を形成する準備をする。この粗化処理としては、CZ処理または酸化還元処理による黒化処理、過水硫酸系のソフトエッチング処理を実施する。
(Modification 2)
The method of forming the wiring pattern 6 in the above steps 3 to 6 is a semi-additive method, but the wiring pattern 6 of the first conductor layer can be similarly formed by the following manufacturing method in addition to this. That is, first, after the surface of the insulating resin layer 2 is roughened, the plating base conductive layer 3 is formed by electroless copper plating, and second, electrolytic copper plating is applied to the entire surface of the plating base conductive layer 3 by 12 μm. The first conductor layer added with the thickness of the first conductor layer is formed, and thirdly, an etching resist pattern is formed on the surface of the first conductor layer to etch the first conductor layer to form the wiring pattern 6. . Fourth, the etching resist is removed. The wiring pattern 6 can be formed also by the above subtractive construction method, and the structure of FIG.2 (g) can be manufactured.
(Step 7)
Next, the surface of the wiring pattern 6 of the first conductor layer is roughened to prepare for forming the second insulating resin layer 2-2. As the roughening treatment, blackening treatment by CZ treatment or oxidation-reduction treatment and perhydrosulfuric acid based soft etching treatment are performed.

次に、図2(h)のように、絶縁樹脂層2の厚さより配線パターン6の厚さだけ厚い第2の絶縁樹脂層2−2を、ロールラミネートまたは積層プレスで、配線パターン6および絶縁樹脂層2の面上に熱圧着させる。例えば厚さ45μmエポキシ樹脂をロールラミネートする。これにより、配線パターン6、すなわち第1の導体層の上の第2の絶縁樹脂層2−2の厚さを絶縁樹脂層2と同じ厚さにする。   Next, as shown in FIG. 2 (h), the second insulating resin layer 2-2, which is thicker than the thickness of the insulating resin layer 2 by the thickness of the wiring pattern 6, is applied to the wiring pattern 6 and the insulating film by roll lamination or lamination press. Thermocompression bonding is performed on the surface of the resin layer 2. For example, a 45 μm thick epoxy resin is roll laminated. As a result, the thickness of the wiring pattern 6, that is, the second insulating resin layer 2-2 on the first conductor layer is made the same as that of the insulating resin layer 2.

ここで、第2の絶縁樹脂層2−2を形成するために、ガラス繊維やガラスフレークやフィラーなどの補強材入りプリプレグ樹脂に厚さ12μmの銅箔を重ね合わせ、積層プレスで熱圧着させることで、銅箔付きの第2の絶縁樹脂層2−2を形成することが望ましい。第2の絶縁樹脂層2−2の材料としては、ガラス繊維入りエポキシ樹脂材、ガラス繊維入りビスマレイミド−トリアジン樹脂(以下、BT樹脂と称す)材、ガラス繊維入りポリイミド樹脂材、ガラス繊維入りPPE樹脂材を使用できる。ガラス繊維入りプリプレグ樹脂を用いることで、絶縁樹脂層2−2にクラックが発生することを防ぎ、また、クラックが絶縁樹脂層2−2で成長することを防ぐことができる効果がある。こうして、プリプレグと銅箔を熱圧着させて第2の絶縁樹脂層2−2を形成した場合は、その銅箔を全面エッチングする。エッチング液として、塩化第二鉄水溶液などが使用できる。   Here, in order to form the second insulating resin layer 2-2, a copper foil having a thickness of 12 μm is superposed on a prepreg resin containing a reinforcing material such as glass fiber, glass flake, or filler, and thermocompression-bonded by a lamination press. Thus, it is desirable to form the second insulating resin layer 2-2 with the copper foil. As the material of the second insulating resin layer 2-2, glass fiber-containing epoxy resin material, glass fiber-containing bismaleimide-triazine resin (hereinafter referred to as BT resin) material, glass fiber-containing polyimide resin material, glass fiber-containing PPE Resin material can be used. By using the prepreg resin with glass fiber, there is an effect that it is possible to prevent cracks from occurring in the insulating resin layer 2-2 and to prevent the cracks from growing in the insulating resin layer 2-2. In this way, when the second insulating resin layer 2-2 is formed by thermocompression bonding of the prepreg and the copper foil, the entire surface of the copper foil is etched. An aqueous ferric chloride solution or the like can be used as an etching solution.

(工程8)
次に、図2(i)のように、ビアホール下穴7を形成する。ビアホール下穴7は、レーザ法あるいはフォトエッチング法で形成する。フォトエッチング法で第2の絶縁樹脂層2−2にビアホール下穴7を形成する場合は、絶縁樹脂層2−2に光硬化型の感光性樹脂を用いる場合は、所定のビアホール下穴7の部分を遮光するパターンを形成したマスクを第
2の絶縁樹脂層2−2に密着させ、紫外線により露光し、未露光部を現像除去する。あるいは、第2の絶縁樹脂層2−2に光分解型の感光性樹脂を用いる場合は、所定のビアホール下穴7部以外を遮光するパターンを形成したマスクを第2の絶縁樹脂層2−2に密着させ、紫外線により露光し、露光部を現像除去するフォトエッチング法によりビアホール下穴7を形成する。
(Process 8)
Next, as shown in FIG. 2I, a via hole prepared hole 7 is formed. The via hole prepared hole 7 is formed by a laser method or a photo etching method. When the via hole pilot hole 7 is formed in the second insulating resin layer 2-2 by the photoetching method, when a photo-curing type photosensitive resin is used for the insulating resin layer 2-2, the predetermined via hole pilot hole 7 is formed. A mask formed with a pattern for shielding the part is brought into close contact with the second insulating resin layer 2-2, exposed to ultraviolet rays, and unexposed portions are developed and removed. Alternatively, in the case of using a photodegradable photosensitive resin for the second insulating resin layer 2-2, a mask formed with a pattern that shields light other than the predetermined via hole pilot hole 7 portion is used as the second insulating resin layer 2-2. The via hole prepared hole 7 is formed by a photo-etching method in which the exposed portion is exposed to ultraviolet light and exposed to ultraviolet light, and the exposed portion is developed and removed.

レーザ光にて第2の絶縁樹脂層2−2にビアホール下穴7を形成する場合は、レーザ光としては、高調波YAGレーザやエキシマレーザなどの紫外線レーザ光を用いるか、炭酸ガスレーザなどの赤外線レーザ光を用いる。このようにレーザ光の波長域としては赤外光領域から紫外光領域までを用いる。第2の絶縁樹脂層2−2が熱硬化性樹脂からなる場合は、レーザ光にてビアホール下穴7を形成することが望ましい。ここで、レーザ光でビアホール下穴7を形成した場合は、ビアホール下穴7は、その穴の開口部分の径がその穴の底部の穴の径より大きい、漏斗状の穴になる。   When the via hole pilot hole 7 is formed in the second insulating resin layer 2-2 with a laser beam, an ultraviolet laser beam such as a harmonic YAG laser or an excimer laser is used as the laser beam, or an infrared ray such as a carbon dioxide laser is used. Laser light is used. As described above, the wavelength range of the laser light is from the infrared light region to the ultraviolet light region. When the second insulating resin layer 2-2 is made of a thermosetting resin, it is desirable to form the via hole prepared hole 7 with a laser beam. Here, when the via hole pilot hole 7 is formed by laser light, the via hole pilot hole 7 becomes a funnel-shaped hole in which the diameter of the opening portion of the hole is larger than the diameter of the hole at the bottom of the hole.

ビアホール下穴7を形成した後にビアホール下穴7の底に薄い樹脂膜が残るため、デスミア処理により、その薄い樹脂膜を除去する。このデスミア処理は、強アルカリにより樹脂を膨潤させ、その後、クロム酸、過マンガン酸塩水溶液などの酸化剤を使用して樹脂を分解除去する。また研磨材によるサンドブラスト処理やプラズマ処理にて除去してもよい。   Since a thin resin film remains at the bottom of the via hole pilot hole 7 after the via hole pilot hole 7 is formed, the thin resin film is removed by a desmear process. In the desmear treatment, the resin is swollen with a strong alkali, and then the resin is decomposed and removed using an oxidizing agent such as chromic acid or a permanganate aqueous solution. Alternatively, it may be removed by sandblasting or plasma treatment with an abrasive.

第2の絶縁樹脂層2−2にビアホール下穴7を形成した後、必要に応じて第2の絶縁樹脂層2−2の表面を粗化する。一般的には、熱硬化性樹脂や熱可塑性樹脂を使用した場合、クロム酸、過マンガン酸塩の水溶液などの酸化剤による表面粗化処理などのウェットプロセスや、プラズマ処理やアッシング処理などのドライプロセスが有効である。
(工程9)
次に、工程3と同様にして、ビアホール下穴7の壁面および第2の絶縁樹脂層2−2の表面の全面に無電解銅めっき処理により厚さ0.5μmから3μmのめっき下地導電層3(図示せず)を第2の導体層として形成する。次に、工程4と同様にして、めっきレジスト4(図示せず)例えばドライフィルムの感光性レジストをロールラミネートで基板に貼り付け、次に、露光・現像して配線パターン部分5(図示せず)を開口しためっきレジスト4を形成する。
After forming the via hole prepared hole 7 in the second insulating resin layer 2-2, the surface of the second insulating resin layer 2-2 is roughened as necessary. In general, when a thermosetting resin or thermoplastic resin is used, wet processes such as surface roughening with an oxidizing agent such as an aqueous solution of chromic acid or permanganate, or dry processes such as plasma treatment or ashing treatment are performed. The process is valid.
(Step 9)
Next, in the same manner as in step 3, the plating base conductive layer 3 having a thickness of 0.5 μm to 3 μm is formed by electroless copper plating on the entire wall surface of the via hole pilot hole 7 and the surface of the second insulating resin layer 2-2. (Not shown) is formed as the second conductor layer. Next, in the same manner as in step 4, a plating resist 4 (not shown), for example, a dry film photosensitive resist is attached to the substrate by roll lamination, and then exposed and developed to form a wiring pattern portion 5 (not shown). A plating resist 4 having an opening is formed.

(工程10)
次に、めっき下地導電層3を電極にして電解銅めっき処理を行い、配線パターン部分5に露出しためっき下地導電層3の面上に電解銅めっき層を15μmの厚さに厚付けすることで配線パターン6−2を形成した第2の導体層を形成し、同時に、ビアホール下穴7を電解銅めっき層で充填したビアホール7−2を第2の絶縁樹脂層2−2に埋め込んで形成する。この際にビアホール7−2を形成するために、電解銅めっき浴としては、以下の組成のように平滑剤を含む電解銅めっき浴を用いることが望ましい。
(電解銅めっき浴組成)
硫酸銅:200〜250g/L
硫酸 :30〜50g/L
塩素 :30〜60ppm
ポリエチレングリコール(PEG):0.5〜1g/L
ビス(3−スルホプロピル)ジスルフィド(SPS):1〜10mg/L
平滑剤:ヤーヌスグリーンB(JGB)を1〜10mg/L。
(Process 10)
Next, electrolytic copper plating is performed using the plating base conductive layer 3 as an electrode, and the electrolytic copper plating layer is thickened to a thickness of 15 μm on the surface of the plating base conductive layer 3 exposed to the wiring pattern portion 5. A second conductor layer on which the wiring pattern 6-2 is formed is formed, and at the same time, a via hole 7-2 in which the via hole prepared hole 7 is filled with an electrolytic copper plating layer is embedded in the second insulating resin layer 2-2. . At this time, in order to form the via hole 7-2, it is desirable to use an electrolytic copper plating bath containing a smoothing agent as the following composition as the electrolytic copper plating bath.
(Electrolytic copper plating bath composition)
Copper sulfate: 200-250g / L
Sulfuric acid: 30-50g / L
Chlorine: 30-60ppm
Polyethylene glycol (PEG): 0.5-1g / L
Bis (3-sulfopropyl) disulfide (SPS): 1 to 10 mg / L
Smoothing agent: 1-10 mg / L of Janus Green B (JGB).

(工程11)
次に、めっきレジスト4を剥離する。次に、第2の絶縁樹脂層2−2上の第2の導体層に残っている厚さ0.5μmから3μmのめっき下地導電層3は除去し、厚さ15μmの
配線パターン6−2の大部分は残す過水硫酸系のフラッシュエッチング処理を行い、図2(k)のように、第2の絶縁樹脂層2−2にビアホール7−2を有し、その上に第2の導体層の配線パターン6−2を有する構造を形成する。この工程でレーザ光を用いて形成したビアホール下穴7は、その穴の開口部分の径がその穴の底部の穴の径より大きい、漏斗状の穴になるので、そのビアホール下穴7に形成されたビアホール7−2の径は、支持基板1側の径が、支持基板1から遠い側の径よりも小さい円錐台形に形成される。
(Step 11)
Next, the plating resist 4 is peeled off. Next, the plating base conductive layer 3 having a thickness of 0.5 μm to 3 μm remaining on the second conductor layer on the second insulating resin layer 2-2 is removed, and the wiring pattern 6-2 having a thickness of 15 μm is removed. Most of the remaining perhydrosulfuric acid-based flash etching is performed, and as shown in FIG. 2 (k), the second insulating resin layer 2-2 has a via hole 7-2, and the second conductor layer is formed thereon. A structure having the wiring pattern 6-2 is formed. The via hole prepared hole 7 formed by using the laser beam in this process is a funnel-shaped hole in which the diameter of the opening portion of the hole is larger than the diameter of the hole at the bottom of the hole. The diameter of the via hole 7-2 thus formed is formed in a truncated cone shape in which the diameter on the support substrate 1 side is smaller than the diameter on the side far from the support substrate 1.

(工程12)
次に、以下のように、工程7から工程11までを繰り返すことで、配線パターンの導体層を多層に形成する。先ず、工程7の処理により、図2(m)のように、絶縁樹脂層2−3を形成する。次に、工程8から工程11の処理により、図3(n)のように、配線パターン6−3の導体層と、絶縁樹脂層2−3に埋め込まれたビアホール7−3を形成する。こうして、工程3から工程12の処理により、配線パターン6と6−2と6−3の3層の導体層が形成できる。この工程でレーザ光を用いて形成したビアホール下穴7に形成されたビアホール7−3の径は、支持基板1側の径が、支持基板1から遠い側の径よりも小さい円錐台形に形成される。
(工程13)
次に、図3(p)のように、工程7の処理により絶縁樹脂層2−4を形成する。
(Step 12)
Next, by repeating steps 7 to 11 as described below, the conductor layer of the wiring pattern is formed in multiple layers. First, an insulating resin layer 2-3 is formed by the process of step 7, as shown in FIG. Next, as shown in FIG. 3 (n), via holes 7-3 embedded in the conductive layer of the wiring pattern 6-3 and the insulating resin layer 2-3 are formed by the processing from step 8 to step 11. In this way, the three conductor layers of the wiring patterns 6, 6-2, and 6-3 can be formed by the processing from step 3 to step 12. The diameter of the via hole 7-3 formed in the via hole pilot hole 7 formed using the laser beam in this step is formed in a truncated cone shape in which the diameter on the support substrate 1 side is smaller than the diameter on the side far from the support substrate 1. The
(Step 13)
Next, as shown in FIG. 3 (p), an insulating resin layer 2-4 is formed by the process of step 7.

(工程14)
次に、図3(q)のように、銅の支持基板1をエッチングし除去し両面を絶縁樹脂層2と絶縁樹脂層2−4で被覆した内層基板8を製造する。この際に用いるエッチング溶液として、例えばアンモニアを主成分としたアルカリエッチング液などを使用できる。あるいは、第二塩化鉄水溶液または第二塩化銅水溶液を使用しても良い。この内層基板8は、その各絶縁樹脂層2、2−2、2−3、2−4の厚さが薄い場合も、それらの絶縁樹脂層を複数層重ねた適度の厚さを有するので、その内層基板8の取り扱いが容易であり、これにより印刷配線板を製造することが容易である効果がある。また、内層基板8の両面の導体層が絶縁樹脂層2、2−4で保護され外に露出しないので、内層基板8から支持基板1を除去する際の取り扱いで導体層が損傷しない効果があり、それ以降の製造工程における取り扱いでも導体層が損傷しない効果があり、これにより、印刷配線板の製造歩留まりが向上する効果がある。
(Step 14)
Next, as shown in FIG. 3 (q), the copper support substrate 1 is removed by etching to produce an inner substrate 8 having both surfaces covered with the insulating resin layer 2 and the insulating resin layer 2-4. As an etching solution used at this time, for example, an alkaline etching solution mainly containing ammonia can be used. Alternatively, a ferric chloride aqueous solution or a cupric chloride aqueous solution may be used. Since this inner layer substrate 8 has an appropriate thickness obtained by stacking a plurality of these insulating resin layers even when the thickness of each insulating resin layer 2, 2-2, 2-3, 2-4 is thin, The inner layer substrate 8 is easy to handle, and thus there is an effect that it is easy to manufacture a printed wiring board. In addition, since the conductor layers on both sides of the inner layer substrate 8 are protected by the insulating resin layers 2 and 2-4 and are not exposed to the outside, there is an effect that the conductor layer is not damaged by the handling when removing the support substrate 1 from the inner layer substrate 8. In addition, there is an effect that the conductor layer is not damaged even in handling in the subsequent manufacturing process, thereby improving the manufacturing yield of the printed wiring board.

(変形例3)
以上の製造工程は、内層基板8に配線パターン6、6−2、6−3の3層の導体層を形成し、その両面を絶縁樹脂層2、2−4で被覆した内層基板8を製造するものであるが、これ以外の内層基板8として、配線パターン6、6−2の2層の導体層を形成し、3層の絶縁樹脂層2、2−2、2−3を形成し、内層基板8の両面の表層を絶縁樹脂層2、2−3にした内層基板8を製造することも可能である。更に、配線パターン6の1層の導体層を絶縁樹脂層2、2−2で被覆した内層基板8を製造することも可能である。
(Modification 3)
The above manufacturing process produces the inner layer substrate 8 in which the three conductor layers of the wiring patterns 6, 6-2, 6-3 are formed on the inner layer substrate 8 and both surfaces thereof are covered with the insulating resin layers 2, 2-4. However, as the inner layer substrate 8 other than this, the two conductive layers of the wiring patterns 6 and 6-2 are formed, the three insulating resin layers 2, 2-2 and 2-3 are formed, It is also possible to manufacture the inner layer substrate 8 in which the surface layers on both surfaces of the inner layer substrate 8 are the insulating resin layers 2 and 2-3. Furthermore, it is also possible to manufacture the inner substrate 8 in which one conductor layer of the wiring pattern 6 is covered with the insulating resin layers 2 and 2-2.

(変形例4)
また、工程1から工程14までは、金属の支持基板1を用いたが、支持基板1は金属に限定されず、表面に剥離層を形成したガラスエポキシ樹脂基板などのガラス繊維入り絶縁樹脂基板を支持基板1として用い、工程14で、支持基板1から内層基板8を剥離することで支持基板1を除去することも可能である。
(Modification 4)
Moreover, although the metal support substrate 1 was used from the process 1 to the process 14, the support substrate 1 is not limited to a metal, The insulating resin substrate containing glass fibers, such as a glass epoxy resin substrate which formed the peeling layer on the surface, is used. It is also possible to use the support substrate 1 and remove the support substrate 1 by peeling the inner layer substrate 8 from the support substrate 1 in Step 14.

(工程15)
次に、工程8と同様にして、内層基板8の絶縁樹脂層2−4と絶縁樹脂層2にレーザ光でビアホール下穴7を形成する。すなわち、ここでは、基板の片側のみではなく基板の両側にビアホール下穴7を形成する。この工程でレーザ光を用いて形成したビアホール下穴
7の内層基板8の中心側の底面の内径よりも内層基板8の外側の開口部の内径が大きい漏斗状に形成される。
(Step 15)
Next, via hole pilot holes 7 are formed in the insulating resin layer 2-4 and the insulating resin layer 2 of the inner substrate 8 by laser light in the same manner as in step 8. That is, here, via hole prepared holes 7 are formed not only on one side of the substrate but also on both sides of the substrate. In this step, a funnel shape is formed in which the inner diameter of the opening on the outer side of the inner layer substrate 8 is larger than the inner diameter of the bottom surface on the center side of the inner layer substrate 8 of the via hole pilot hole 7 formed using laser light.

(工程16)
次に、図3(r)のように、工程9から工程11と同様にして、ただし、基板の片側のみではなく基板の両側に金属めっきをする。すなわち、両面への金属めっきにより、絶縁樹脂層2−4の表面に形成した第3の導体層の配線パターン6−4と、絶縁樹脂層2−4に埋め込んだビアホール7−4を形成し、また、絶縁樹脂層2に重ねた配線パターン6−1と、絶縁樹脂層2に埋め込んだビアホール7−1を形成する。この工程で、先にレーザ光で形成したビアホール下穴7を金属めっきで充填したビアホール7−4と7−1は、その内層基板8の中心側の底部の径よりも内層基板8の外側の底部の径が大きい円錐台形状に形成される。
(Step 16)
Next, as shown in FIG. 3 (r), in the same manner as in Step 9 to Step 11, metal plating is performed not only on one side of the substrate but also on both sides of the substrate. That is, by metal plating on both surfaces, a wiring pattern 6-4 of the third conductor layer formed on the surface of the insulating resin layer 2-4 and a via hole 7-4 embedded in the insulating resin layer 2-4 are formed. In addition, a wiring pattern 6-1 overlaid on the insulating resin layer 2 and a via hole 7-1 embedded in the insulating resin layer 2 are formed. In this process, the via holes 7-4 and 7-1 in which the via hole prepared holes 7 previously formed by laser light are filled with metal plating are outside the inner layer substrate 8 with respect to the diameter of the bottom portion on the center side of the inner layer substrate 8. It is formed in a truncated cone shape with a large diameter at the bottom.

(工程17)
この図3(r)の内層基板8は厚さが約200μmあり電気検査装置で検査するための適度の厚さを有するので、電気検査の際の取り扱いが容易である効果がある。そのため、この内層基板8を電気検査装置に設置し、内層基板8の両面のビアホール下穴7に露出した配線パターン間の導通を検査する。これにより、内層基板8の全配線パターンと導体層間を接続するビアホールの不良を検出し、不良品の内層基板8を除外し以降の製造工程を進める。こうして配線パターンの電気接続の不具合を十分に検査し不具合を除外しつつ製造工程を進めることができ、印刷配線板の製造歩留まりを向上させられる効果がある。
(Step 17)
The inner layer substrate 8 shown in FIG. 3 (r) has a thickness of about 200 μm and an appropriate thickness for inspecting with an electric inspection apparatus, so that there is an effect that handling at the time of electric inspection is easy. Therefore, this inner layer substrate 8 is installed in an electrical inspection device, and the continuity between the wiring patterns exposed in the via hole pilot holes 7 on both surfaces of the inner layer substrate 8 is inspected. Thereby, the defect of the via hole connecting all the wiring patterns of the inner layer substrate 8 and the conductor layer is detected, and the defective inner layer substrate 8 is excluded, and the subsequent manufacturing process proceeds. Thus, it is possible to proceed with the manufacturing process while sufficiently inspecting the defects in the electrical connection of the wiring pattern and excluding the defects, and the production yield of the printed wiring board can be improved.

(変形例5)
ここまでの処理を以下のように変形して行うこともできる。すなわち、工程1では、支持基板1として、剥離層を接着した、ガラスエポキシ樹脂基板などのガラス繊維入り絶縁樹脂基板を用い、次に、工程3から工程6と同様に処理することでその支持基板1の面上に電気検査の電極用パッドおよび配線パターン6を形成する。次に、工程7と同様にして支持基板1上に絶縁樹脂層2−2を形成する。この変形例5では、絶縁樹脂層2−2はガラス繊維やフレークやフィラーなどの補強材入りプリプレグで形成することが特に望ましい。絶縁樹脂層2−2は、この変形例5では支持基板1の面上に最初に積層する絶縁樹脂層であるので、補強材入りプリプレグで形成することで絶縁樹脂層2−2が後工程の製造工程により加わる熱処理により劣化しないよう強化できる効果がある。次に、工程8から工程12までを行い配線パターン6−3までを形成する。次に、工程14で支持基板1を剥離し除去して、下面に電気検査の電極用パッドと配線パターンを露出させ上面に配線パターン6−3を露出させた内層基板8を製造することが可能である。次に、工程17でその内層基板の電気検査を行う。
(Modification 5)
The processes so far can be modified as follows. That is, in step 1, an insulating resin substrate containing glass fibers such as a glass epoxy resin substrate to which a release layer is bonded is used as the support substrate 1, and then the support substrate is processed in the same manner as in steps 3 to 6. An electrode pad for electrical inspection and a wiring pattern 6 are formed on the surface of 1. Next, an insulating resin layer 2-2 is formed on the support substrate 1 in the same manner as in step 7. In this modified example 5, it is particularly desirable that the insulating resin layer 2-2 be formed of a prepreg containing a reinforcing material such as glass fiber, flakes, or filler. Since the insulating resin layer 2-2 is an insulating resin layer that is first laminated on the surface of the support substrate 1 in the modified example 5, the insulating resin layer 2-2 is formed by a prepreg with a reinforcing material so that the insulating resin layer 2-2 is formed in a later process. There is an effect that it can be strengthened so as not to deteriorate due to heat treatment applied by the manufacturing process. Next, Step 8 to Step 12 are performed to form the wiring pattern 6-3. Next, it is possible to manufacture the inner substrate 8 with the support substrate 1 peeled off and removed in step 14 to expose the electrode pads and the wiring pattern for electrical inspection on the lower surface and the wiring pattern 6-3 on the upper surface. It is. Next, in step 17, an electrical inspection of the inner layer substrate is performed.

(工程18)
次に、図3(s)のように、工程7と同様にして、基板の両面に第3の絶縁樹脂層2−5(上面)と2−6(下面)を形成する。この際に、導体層の上の第3の絶縁樹脂層の厚さを第1の絶縁樹脂層2の厚さと同じ厚さに形成する。
(Step 18)
Next, as shown in FIG. 3S, third insulating resin layers 2-5 (upper surface) and 2-6 (lower surface) are formed on both surfaces of the substrate in the same manner as in step 7. At this time, the thickness of the third insulating resin layer on the conductor layer is formed to be the same as the thickness of the first insulating resin layer 2.

(工程19)
以下、必要な層数が得られるまで、工程18に続いて工程15から工程16を繰り返し、図4(t)のように、絶縁樹脂層2−5の内部に埋め込んだビアホール7−5と絶縁樹脂層2−5の表面に形成した導体層の配線パターン6−5を形成し、絶縁樹脂層2−6の内部に埋め込んだビアホール7−6と絶縁樹脂層2−6の表面に形成した導体層の配線パターン6−6を形成する。この工程でレーザ光を用いて形成したビアホール下穴7に形成したビアホール7−5と7−6は、その内層基板8の中心側の底部の径よりも内層基板8の外側の底部の径が大きい円錐台形状に形成される。この基板の最外層の絶縁樹脂層2−5および2−6は、補強材入りプリプレグで形成することが望ましい。絶縁樹脂層2−5および2−6は、この製造方法で製造した印刷配線板をマザー基板に実装する場合に、そのマザー基板との接合部分で熱的機械的ストレスを受け易いが、これらの絶縁樹脂層を補強材入りプリプレグで形成することで、この印刷配線板をマザー基板に実装した後の印刷配線板の耐久性および寿命を延長させることができる効果がある。なお、先の工程15から工程17による基板の両面に配線パターンを形成するビルドアップ処理を行った後に、工程18と工程19を経ずに、直ぐに次の工程20の処理に進んでも良い。
(Step 19)
Thereafter, until the required number of layers is obtained, the process 15 to the process 16 are repeated following the process 18 to insulate the via hole 7-5 embedded in the insulating resin layer 2-5 as shown in FIG. Conductor layer wiring pattern 6-5 formed on the surface of resin layer 2-5, and via hole 7-6 embedded in insulating resin layer 2-6 and conductor formed on the surface of insulating resin layer 2-6 A layer wiring pattern 6-6 is formed. In the via holes 7-5 and 7-6 formed in the via hole pilot hole 7 formed by using laser light in this step, the diameter of the bottom portion outside the inner layer substrate 8 is larger than the diameter of the bottom portion on the center side of the inner layer substrate 8. It is formed in a large truncated cone shape. The outermost insulating resin layers 2-5 and 2-6 of this substrate are preferably formed of a prepreg containing a reinforcing material. Insulating resin layers 2-5 and 2-6 are susceptible to thermal mechanical stress at the junction with the mother substrate when the printed wiring board manufactured by this manufacturing method is mounted on the mother substrate. Forming the insulating resin layer with a prepreg containing a reinforcing material has an effect of extending the durability and life of the printed wiring board after the printed wiring board is mounted on the mother board. In addition, after performing the build-up process which forms a wiring pattern on both surfaces of the board | substrate by the previous process 15 to the process 17, you may progress to the process of the following process 20 immediately without passing through the process 18 and the process 19.

(工程20)
次に、図4(u)のように、基板の両面にソルダーレジスト9を形成する。ソルダーレジスト9の形成手順は、前処理として、配線パターン6−4および配線パターン6−5の粗化処理に例えばCZ処理を施す。次に、感光性液状ソルダーレジスト9をスプレーコート、ロールコート、カーテンコート、スクリーン法で約20μm厚に塗布し乾燥、または感光性ドライフィルム・ソルダーレジスト9をロールラミネートで貼り付ける。次に、図4(v)のように、ソルダーレジスト9を露光・現像することで外部電極を形成するためのパッド用開口部10をソルダーレジスト9に形成する。次にソルダーレジスト9を加熱硬化させる。
(Step 20)
Next, as shown in FIG. 4 (u), solder resists 9 are formed on both sides of the substrate. The solder resist 9 is formed by performing, for example, a CZ process on the roughening process of the wiring pattern 6-4 and the wiring pattern 6-5 as a pre-process. Next, the photosensitive liquid solder resist 9 is applied to a thickness of about 20 μm by spray coating, roll coating, curtain coating, or screen method and dried, or the photosensitive dry film / solder resist 9 is applied by roll lamination. Next, as shown in FIG. 4 (v), the solder resist 9 is exposed and developed to form pad openings 10 in the solder resist 9 for forming external electrodes. Next, the solder resist 9 is cured by heating.

(工程21)
次に、ソルダーレジスト9のパッド用開口部10に露出した配線パターン6−5と6−6に、無電解ニッケルめっき層を3μm以上形成し、その上に無電解金めっき層を0.03μm以上形成して外部電極パッド10−1と10−2を形成する。外部電極パッド10−1と10−2の無電解金めっき層は1μm以上のこともある。更に外部電極パッド10−1には、固相点が217〜227℃程度のSn−Ag−Cuはんだや固相点が213℃程度のSn−Bi−AgはんだやSnPbはんだ等の、固相点が235℃以下のはんだをプリコートする。このプリコートはんだは、固相点が230℃以下のはんだを選んで用いることが望ましい。また、外部電極パッド10−1と10−2には、無電解ニッケルめっきのかわりに電解ニッケルめっき層を3μm以上形成し、その上に電解金めっき層を0.5μm以上形成した外部電極パッドを形成しても良い。あるいは、金属めっき層のかわりに、イミダゾール化合物やベンズイミダゾール化合物等から成る水溶性プリフラックスによる水溶液有機防錆皮膜を外部電極パッド10−1と10−2に形成することも可能である。
(工程22)
次に、この基板をダイサーなどで加工することで、1つの基板から、個片に分離した複数の印刷配線板を得る。
(Step 21)
Next, an electroless nickel plating layer is formed to 3 μm or more on the wiring patterns 6-5 and 6-6 exposed in the pad opening 10 of the solder resist 9, and an electroless gold plating layer is formed to 0.03 μm or more thereon. Then, external electrode pads 10-1 and 10-2 are formed. The electroless gold plating layers of the external electrode pads 10-1 and 10-2 may be 1 μm or more. Further, the external electrode pad 10-1 has a solid phase point such as Sn—Ag—Cu solder having a solid phase point of about 217 to 227 ° C., Sn—Bi—Ag solder or SnPb solder having a solid phase point of about 213 ° C. Is pre-coated with solder at 235 ° C. or lower. As this precoat solder, it is desirable to select and use a solder having a solid phase point of 230 ° C. or lower. Further, the external electrode pads 10-1 and 10-2 are formed by forming an electrolytic nickel plating layer of 3 μm or more instead of electroless nickel plating, and forming an external electrode pad of 0.5 μm or more on the electrolytic gold plating layer thereon. It may be formed. Alternatively, instead of the metal plating layer, an aqueous organic rust preventive film made of a water-soluble preflux made of an imidazole compound or a benzimidazole compound can be formed on the external electrode pads 10-1 and 10-2.
(Step 22)
Next, by processing this substrate with a dicer or the like, a plurality of printed wiring boards separated into individual pieces are obtained from one substrate.

以上の製造方法により、導体層間の絶縁樹脂層の厚さを同じ厚さに形成した印刷配線板が得られる。ここで、ソルダーレジスト形成後に外部電極パッド10−1、10−2の金めっき等を形成するので、外部電極パッド10−1、10−2の部分でのソルダーレジスト剥がれが無い良好な品質の印刷配線板が得られる効果がある。また、最良の実施形態として、各絶縁樹脂層2と2−2と2−3と2−4と2−5と2−6をガラス繊維入り絶縁樹脂層で形成する。そして、この印刷配線板は、内層基板8の両面の絶縁樹脂層にビアホールと配線パターンを形成することで、基板の上下に上下対称な層構成に絶縁樹脂層と配線パターンをビルドアップするので、ストレスを基板の片面側に偏って残留させない効果がある。そのため、板厚がきわめて薄い印刷配線板でありながら、この印刷配線板にソルダーレジストを印刷する際の加熱処理による熱ストレスや、後工程のはんだ付けの際の加熱処理などの熱ストレスを加えても印刷配線板が反る問題が少ない良い品質の印刷配線板が得られる効果がある。   By the above manufacturing method, a printed wiring board in which the insulating resin layers between the conductor layers are formed to the same thickness can be obtained. Here, since the gold plating or the like of the external electrode pads 10-1 and 10-2 is formed after the solder resist is formed, printing with good quality with no peeling of the solder resist at the portions of the external electrode pads 10-1 and 10-2. There is an effect that a wiring board is obtained. Moreover, as the best embodiment, each insulating resin layer 2, 2-2, 2-3, 2-4, 2-5, and 2-6 are formed of an insulating resin layer containing glass fibers. And this printed wiring board builds up the insulating resin layer and the wiring pattern in a vertically symmetrical layer configuration by forming via holes and wiring patterns in the insulating resin layers on both sides of the inner layer substrate 8, There is an effect that stress is not biased and left on one side of the substrate. Therefore, even though the printed wiring board is very thin, heat stress such as heat treatment when solder resist is printed on this printed wiring board or heat treatment such as heat treatment when soldering in the subsequent process is applied. Also, there is an effect that a printed wiring board of good quality can be obtained with few problems of warping the printed wiring board.

更に、その支持基板1を除去する工程14以前に内層基板8の絶縁樹脂層2−2と2−
3に埋め込んで形成したビアホールは、上底の径が下底の径より大きい逆向きの円錐台形状に形成される。支持基板1を除去した後に絶縁樹脂層2に形成したビアホールは、印刷配線板の中心に対して上下対称な向きに形成され、ビアホールの円錐台形状の印刷配線板の中心側に面する下底の径よりも印刷配線板の外側に面する上底の径の方が大きく形成される。そのため、印刷配線板で絶縁樹脂層2−2と2−3と2−4と2−5との4層の絶縁樹脂層に埋め込まれたビアホールは上側の径が下側の径より大きい逆向きの円錐台形状に形成され、絶縁樹脂層2と2−6との2層の絶縁層に埋め込まれたビアホールは上側の径が下側の径より小さい円錐台形状に形成される。このように、本実施形態で製造した印刷配線板は、その上層側の絶縁樹脂層が、上側の径が下側の径より大きい逆向きの円錐台形状を有するビアホールを有し、下層側の絶縁樹脂層が含むビアホールが、その上下が逆の円錐台形状を有するビアホールであり、上層側の絶縁樹脂層の層数が下層側の絶縁樹脂層の層数より多い独特な形状の印刷配線板が製造される。この印刷配線板は、この印刷配線板の不具合の解析の際に、断面を観察し各層のビアホールの上下の向きを確認することで、支持基板1上にビルドアップして形成した内層基板の部分とその外側の両面にビルドアップして形成した外側の層を容易に区別することができ、異なる製造プロセスに起因する不具合を容易に区別して解析できる効果がある。
Further, before the step 14 of removing the supporting substrate 1, the insulating resin layers 2-2 and 2-
The via hole formed by being embedded in 3 is formed in a truncated conical shape with the upper base diameter larger than the lower base diameter. The via hole formed in the insulating resin layer 2 after the support substrate 1 is removed is formed in a vertically symmetric orientation with respect to the center of the printed wiring board, and the lower bottom facing the center side of the frustoconical printed wiring board of the via hole The diameter of the upper base facing the outside of the printed wiring board is formed larger than the diameter of the printed wiring board. Therefore, the via hole embedded in the insulating resin layers 2-2, 2-3, 2-4, and 2-5 on the printed wiring board has the upper diameter opposite to the lower diameter. The via hole embedded in the two insulating layers of the insulating resin layers 2 and 2-6 is formed in a truncated cone shape whose upper diameter is smaller than the lower diameter. As described above, the printed wiring board manufactured in the present embodiment has a via hole having an inverted frustoconical shape in which the upper insulating resin layer has a larger upper diameter than the lower diameter. The via hole included in the insulating resin layer is a via hole having a truncated cone shape that is upside down, and the number of layers of the upper insulating resin layer is larger than the number of lower insulating resin layers. Is manufactured. This printed wiring board is a part of the inner layer substrate formed by building up on the support substrate 1 by observing the cross section and confirming the vertical direction of the via hole in each layer when analyzing the defect of the printed wiring board. And an outer layer formed by building up on both sides of the outer surface can be easily distinguished, and there is an effect that defects caused by different manufacturing processes can be easily distinguished and analyzed.

(工程23)
次に、図5(w)のように、外部電極パッド10−1のプリコートはんだを加熱して再溶融させて半導体素子11のバンプ12にはんだ付けするフリップチップ接続処理を行う。次に、封止樹脂13を半導体素子11と絶縁樹脂層2−5との間の空間に流し込み硬化させることで半導体素子11を絶縁樹脂層2−5とその上面のソルダーレジスト9上に実装する。
(工程24)
次に、図5(x)のように、外部電極パッド10−2にはんだボールの外部接続端子14を装着しボールグリッドアレイ構造の半導体装置を製造する。
(Step 23)
Next, as shown in FIG. 5 (w), a flip chip connection process is performed in which the precoat solder of the external electrode pad 10-1 is heated and remelted and soldered to the bumps 12 of the semiconductor element 11. Next, the sealing resin 13 is poured into the space between the semiconductor element 11 and the insulating resin layer 2-5 and cured to mount the semiconductor element 11 on the insulating resin layer 2-5 and the solder resist 9 on the upper surface thereof. .
(Step 24)
Next, as shown in FIG. 5 (x), a solder ball external connection terminal 14 is mounted on the external electrode pad 10-2 to manufacture a semiconductor device having a ball grid array structure.

(変形例6)
半導体装置の変形例として、外部電極パッド10−2に装着する外部接続端子14として金属のピン端子を用い、そのピン端子を外部電極パッド10−2に装着してピングリッドアレイ構造を形成することもできる。外部接続端子14に用いるピン端子は、例えばピン端子の銅合金の基材の表面にニッケルめっきし、その上に金めっきをした構造のピン端子を用いる。また、ピン端子の、外部電極パッド10−2に装着する部分を面状端子にし、面状端子にピンを立てた構造のピン端子を用いる。そして、ピン端子のはんだ付けは、工程23において、半導体素子11を絶縁樹脂層2−5上に設置する以前に、ピン端子の面状端子を、固相点が240℃以上で250℃以下のはんだで、外部電極パッド10−2にはんだ付けする。この条件を満足するはんだにはSn−5Sbはんだ(固相点が240℃)やSn−Sb−Pbはんだ等がある。ピン端子をはんだ付けするはんだの固相点が250℃を超えるとそのはんだ付け温度が絶縁樹脂層を劣化させる問題があり、固相点が240℃未満の場合は、次の工程で、半導体素子11のバンプ12を印刷配線板の外部電極パッド10−1へはんだ付けする際にピン端子の接合部分が外れたり劣化する問題が発生する。このように、外部電極パッド10−2に固相点が240℃以上で250℃以下のはんだで外部接続端子14をはんだ付けすることで、外部電極パッド10−1に半導体素子11やその他の電子部品をはんだ付けする際の印刷配線板の加熱処理で外部接続端子の接合部分が耐えることができる効果がある。
(Modification 6)
As a modification of the semiconductor device, a metal pin terminal is used as the external connection terminal 14 to be attached to the external electrode pad 10-2, and the pin terminal is attached to the external electrode pad 10-2 to form a pin grid array structure. You can also. As the pin terminal used for the external connection terminal 14, for example, a pin terminal having a structure in which the surface of a copper alloy base material of the pin terminal is nickel-plated and gold-plated thereon is used. In addition, a pin terminal having a structure in which a portion of the pin terminal attached to the external electrode pad 10-2 is a planar terminal and a pin is raised on the planar terminal is used. The soldering of the pin terminal is performed in step 23, before the semiconductor element 11 is placed on the insulating resin layer 2-5, the planar terminal of the pin terminal has a solidus point of 240 ° C. or higher and 250 ° C. or lower. The external electrode pad 10-2 is soldered with solder. Examples of solder that satisfies this condition include Sn-5Sb solder (solid phase point is 240 ° C.), Sn—Sb—Pb solder, and the like. When the solid phase point of the solder for soldering the pin terminal exceeds 250 ° C., there is a problem that the soldering temperature deteriorates the insulating resin layer. When the eleven bumps 12 are soldered to the external electrode pads 10-1 of the printed wiring board, there arises a problem that the joint portion of the pin terminal is detached or deteriorated. As described above, the external connection terminal 14 is soldered to the external electrode pad 10-2 with a solder having a solid phase point of 240 ° C. or higher and 250 ° C. or lower, so that the semiconductor element 11 and other electrons are connected to the external electrode pad 10-1. There is an effect that the joint portion of the external connection terminal can withstand the heat treatment of the printed wiring board when soldering the component.

また、外部電極パッド10−1へ半導体素子11のバンプ12をはんだ付けする際に、工程21でプリコートしたはんだで、固相点が235℃以下のはんだを再溶融させる。すなわち、先の工程21において、外部電極パッド10−1および外部電極パッド10−2に、それぞれにはんだ付けする部品に応じたはんだを予めプリコートしておく。すなわち
、工程21では、印刷配線板の外部電極パッド10−1には固相点が235℃以下のはんだをプリコートし、外部電極パッド10−2には固相点が240℃以上で250℃以下のはんだをプリコートする。そして、工程23で、外部電極パッド10−2にピン端子の外部接続端子14をはんだ付けしてピングリッドアレイ構造を形成し、次に、外部電極パッド10−1に235℃以下の温度で半導体素子11のバンプ12をはんだ付けして半導体装置を製造する。
Further, when the bumps 12 of the semiconductor element 11 are soldered to the external electrode pads 10-1, the solder having a solid phase point of 235 ° C. or lower is remelted with the solder pre-coated in step 21. That is, in the previous step 21, the external electrode pad 10-1 and the external electrode pad 10-2 are pre-coated with solder corresponding to the components to be soldered to each other in advance. That is, in step 21, the external electrode pad 10-1 of the printed wiring board is pre-coated with a solder having a solid phase point of 235 ° C. or less, and the external electrode pad 10-2 has a solid phase point of 240 ° C. or more and 250 ° C. or less. Precoat with solder. In step 23, the external connection terminals 14 of the pin terminals are soldered to the external electrode pads 10-2 to form a pin grid array structure, and then the semiconductor is applied to the external electrode pads 10-1 at a temperature of 235 ° C. or lower. A bump 12 of the element 11 is soldered to manufacture a semiconductor device.

なお、半導体素子11などをはんだ付けする以前に印刷配線板に接合する外部接続端子14は、ピン端子に限られない。例えば、電子部品を印刷配線板にはんだ付け以前に、金属バンプの外部接続端子14を外部電極パッド10−2にはんだ付け接合した印刷配線板、あるいは表層の導体層の一部に金属スティフナーをはんだ付けした印刷配線板、を形成する場合も同様に固相点が240℃以上で250℃以下のはんだでそれらの外部接続端子14等を導体層の一部に接合することが望ましい。   Note that the external connection terminals 14 to be joined to the printed wiring board before the semiconductor element 11 or the like is soldered are not limited to pin terminals. For example, before soldering the electronic component to the printed wiring board, the printed wiring board in which the external connection terminals 14 of the metal bumps are soldered to the external electrode pads 10-2, or the metal stiffener is soldered to a part of the surface conductor layer. Similarly, when the attached printed wiring board is formed, it is desirable that the external connection terminals 14 and the like are joined to a part of the conductor layer with a solder having a solid phase point of 240 ° C. or higher and 250 ° C. or lower.

以上の工程で製造する半導体装置は、半導体素子11及び外部接続端子14は、印刷配線板に対して図5とは上下逆に設置することも可能である。更に、半導体素子11および外部接続端子14を印刷配線板の下面に設置し、外部接続端子14も半導体素子11も印刷配線板の同じ下面に設置することも可能である。   In the semiconductor device manufactured by the above steps, the semiconductor element 11 and the external connection terminal 14 can be installed upside down with respect to the printed wiring board as shown in FIG. Furthermore, the semiconductor element 11 and the external connection terminal 14 can be installed on the lower surface of the printed wiring board, and the external connection terminal 14 and the semiconductor element 11 can be installed on the same lower surface of the printed wiring board.

以上の工程で製造した半導体装置は、半導体素子11を実装する印刷配線板が、第1の絶縁樹脂層の上層に第2絶縁樹脂層を有し、前記第1の絶縁樹脂層の下層と前記第2の絶縁樹脂層の上層の両面に同じ層数の第3の絶縁樹脂層を有し、前記両面の第3の絶縁樹脂層の外層の両面にソルダーレジストを有し、前記第2の絶縁樹脂層以上の絶縁樹脂層内のビアホールが上側の径が下側の径より大きい逆向きの円錐台形状のビアホールであり、前記第1の絶縁樹脂層以下の絶縁樹脂層のビアホールが上側の径が下側の径より小さい円錐台形状のビアホールである構造を有する。そのように、この半導体素子11を実装する印刷配線板のビアホールの円錐台形状の向きが印刷配線板の層構造の中心層に対して非対称な向きに配置されている。そのため、この半導体装置をマザー基板に実装する熱ストレスが加わった際に、その半導体装置の印刷配線板は、層構造の中心層に対する非対称な構造を反映して、印刷配線板の同じ側の片側に反る傾向を持つ。それにより、反りの対策や補正および反りの管理が容易になる効果がある。   In the semiconductor device manufactured by the above steps, the printed wiring board on which the semiconductor element 11 is mounted has a second insulating resin layer above the first insulating resin layer, and the lower layer of the first insulating resin layer and the above A second insulating resin layer having the same number of third insulating resin layers on both surfaces; and a solder resist on both surfaces of the outer surfaces of the third insulating resin layers on both surfaces; The via hole in the insulating resin layer above the resin layer is a frustoconical via hole whose upper diameter is larger than the lower diameter, and the via hole of the insulating resin layer below the first insulating resin layer has an upper diameter. Is a frustoconical via hole smaller than the lower diameter. As such, the direction of the frustoconical shape of the via hole of the printed wiring board on which the semiconductor element 11 is mounted is arranged in an asymmetric direction with respect to the central layer of the layer structure of the printed wiring board. Therefore, when thermal stress is applied to the semiconductor device mounted on the mother board, the printed wiring board of the semiconductor device reflects an asymmetric structure with respect to the central layer of the layer structure, and is on one side of the printed wiring board. Tend to warp. Thereby, there is an effect that the countermeasure and correction of the warp and the management of the warp become easy.

<第2の実施形態>
(工程1)
第2の実施形態では、第1の実施形態で用いる支持基板1を、単体の基板ではなく、例えば125μmの銅板2枚を接着して用いる。あるいは、銅板のかわりに、厚さ125μmに形成した銅箔の支持基板1を2枚接着して用いることができる。支持基板1の接着の前処理として、2枚の支持基板1の片面の銅の面をCZ処理などで粗化処理する。粗化処理は、酸化還元処理による黒化処理、過水硫酸系のソフトエッチング処理でも良い。次に、粗化処理した面を対向させ2枚の銅板の支持基板1の端部を15mm幅で接着する。その接着材としては絶縁樹脂層2の中央部をプレス加工等でくり貫いたものを用い、接着剤の材料に応じて、積層プレスまたはロールラミネートで熱圧着させる。あるいは、この接着剤としては、液状熱硬化性接着剤をディスペンサ、あるいはスクリーン印刷等で支持基板1に塗布して支持基板1を張り合せることもできる。
<Second Embodiment>
(Process 1)
In the second embodiment, the support substrate 1 used in the first embodiment is not a single substrate but is used by bonding two 125 μm copper plates, for example. Alternatively, instead of a copper plate, two copper foil supporting substrates 1 formed to a thickness of 125 μm can be adhered and used. As a pretreatment for bonding the support substrate 1, the copper surface on one side of the two support substrates 1 is roughened by CZ treatment or the like. The roughening treatment may be a blackening treatment by oxidation-reduction treatment or a perhydrosulfuric acid based soft etching treatment. Next, the roughened surfaces are opposed to each other, and the end portions of the support substrate 1 of the two copper plates are bonded with a width of 15 mm. As the adhesive, a material obtained by punching the center of the insulating resin layer 2 by pressing or the like is used, and thermocompression bonding is performed by a laminating press or roll lamination depending on the material of the adhesive. Alternatively, as the adhesive, a liquid thermosetting adhesive can be applied to the support substrate 1 by a dispenser or screen printing, and the support substrate 1 can be attached.

(工程2)
こうして得られた2枚1組の銅板を支持基板1に用い、その2枚1組の銅板の支持基板1の両面に絶縁樹脂層2を形成する。
(工程3から工程13)
第1の実施形態の工程3から工程14と同様にして、ただし、2枚1組の支持基板1の
両面に導体層と絶縁樹脂層をビルドアップする。
(工程14)
2枚1組の支持基板1の両面それぞれで必要なビルドアップの層数の導体層と絶縁樹脂層を得たら、次に、2枚1組の支持基板1の接着部の端部15mmをルータ加工などで切断し、2枚1組の支持基板1を2枚に分離する。そして、第1の実施形態の工程14と同様にして、支持基板1を除去して内層基板8を形成する。
(工程15から工程22)
第1の実施形態の工程15から工程22と同様に処理して内層基板8の両面にビルドアップ層を形成して印刷配線板を製造する。
(Process 2)
A set of two copper plates obtained in this way is used for the support substrate 1, and the insulating resin layers 2 are formed on both surfaces of the support substrate 1 of the set of two copper plates.
(Step 3 to Step 13)
In the same manner as Step 3 to Step 14 of the first embodiment, however, a conductor layer and an insulating resin layer are built up on both surfaces of a set of two support substrates 1.
(Step 14)
After obtaining the necessary number of build-up layers of conductive layers and insulating resin layers on both sides of the two sets of support substrates 1, next, the end 15mm of the bonding portion of the two sets of support substrates 1 is connected to the router. It cut | disconnects by process etc. and the support substrate 1 of 2 sheets 1 set is isolate | separated into 2 sheets. Then, in the same manner as in step 14 of the first embodiment, the support substrate 1 is removed to form the inner layer substrate 8.
(Step 15 to Step 22)
A printed wiring board is manufactured by forming build-up layers on both surfaces of the inner layer substrate 8 by performing the same processes as in steps 15 to 22 of the first embodiment.

(変形例7)
なお、第2の実施形態の変形例として、工程1において、銅板のかわりに、ガラスエポキシ樹脂基板などのガラス繊維入り絶縁樹脂基板の両面に剥離層を形成した支持基板1を用いて、工程3から工程13で、その両面に絶縁樹脂層と導体層をビルドアップし、工程14では、剥離層で内層基板8を剥離する。以降の工程15から工程22では、第1の実施形態と同様に処理して印刷配線板を製造する。
(変形例8)
第二の実施形態の変形例として、工程1において、2枚の銅の支持基板1の間に熱発泡性シートを挟んで支持基板1を積層プレスで加熱・加圧することで接着させ、工程3から工程13で、その両面に絶縁樹脂層と導体層をビルドアップし、工程14では、積層温度以上の熱、例えば220℃を加えて、5分間処理することで、支持基板1を分離する。オーブン等でこの熱履歴を掛けることで、熱発泡シートの残渣なく2枚の支持基板1を分離する。以降の工程15から工程22では、第1の実施形態と同様に処理して印刷配線板を製造する。
(Modification 7)
As a modification of the second embodiment, in step 1, instead of the copper plate, a support substrate 1 in which release layers are formed on both surfaces of an insulating resin substrate containing glass fibers such as a glass epoxy resin substrate is used. In Step 13, the insulating resin layer and the conductor layer are built up on both surfaces thereof, and in Step 14, the inner layer substrate 8 is peeled off by the peeling layer. In subsequent steps 15 to 22, processing is performed in the same manner as in the first embodiment to manufacture a printed wiring board.
(Modification 8)
As a modification of the second embodiment, in step 1, the support substrate 1 is bonded by heating and pressurizing with a laminating press with a thermally foamable sheet sandwiched between two copper support substrates 1, and step 3 From Step 13 to Step 13, the insulating resin layer and the conductor layer are built up on both surfaces. In Step 14, heat equal to or higher than the lamination temperature, for example, 220 ° C. is applied, and the support substrate 1 is separated by treatment for 5 minutes. By applying this heat history in an oven or the like, the two support substrates 1 are separated without any residue of the thermally foamed sheet. In subsequent steps 15 to 22, processing is performed in the same manner as in the first embodiment to manufacture a printed wiring board.

本発明の印刷配線板の第1の実施形態の製造工程を示す断面図である。It is sectional drawing which shows the manufacturing process of 1st Embodiment of the printed wiring board of this invention. 本発明の印刷配線板の第1の実施形態の製造工程を示す断面図である。It is sectional drawing which shows the manufacturing process of 1st Embodiment of the printed wiring board of this invention. 本発明の印刷配線板の第1の実施形態の製造工程を示す断面図である。It is sectional drawing which shows the manufacturing process of 1st Embodiment of the printed wiring board of this invention. 本発明の印刷配線板の第1の実施形態の製造工程を示す断面図である。It is sectional drawing which shows the manufacturing process of 1st Embodiment of the printed wiring board of this invention. 本発明の半導体装置の第1の実施形態の製造工程を示す断面図である。It is sectional drawing which shows the manufacturing process of 1st Embodiment of the semiconductor device of this invention.

符号の説明Explanation of symbols

1・・・支持基板
2、2−2、2−3、2−4、2−5、2−6・・・絶縁樹脂層
3・・・めっき下地導電層
4・・・めっきレジスト
5・・・配線パターン部分
6、6−1、6−2、6−3、6−4、6−5、6−6・・・配線パターン
7・・・ビアホール下穴
7−1、7−2、7−3、7−4、7−5、7−6・・・ビアホール
8・・・内層基板
9・・・ソルダーレジスト
10・・・パッド用開口部
10−1、10−2・・・外部電極パッド
11・・・半導体素子
12・・・バンプ
13・・・封止樹脂
14・・・外部接続端子
DESCRIPTION OF SYMBOLS 1 ... Support substrate 2, 2-2, 2-3, 2-4, 2-5, 2-6 ... Insulating resin layer 3 ... Plating ground conductive layer 4 ... Plating resist 5 ... -Wiring pattern portions 6, 6-1, 6-2, 6-3, 6-4, 6-5, 6-6 ... wiring pattern 7 ... via hole pilot holes 7-1, 7-2, 7 -3, 7-4, 7-5, 7-6 ... via hole 8 ... inner substrate 9 ... solder resist 10 ... pad opening 10-1, 10-2 ... external electrode Pad 11 ... Semiconductor element 12 ... Bump 13 ... Sealing resin 14 ... External connection terminal

Claims (7)

支持基板上に第1の絶縁樹脂層を重ね、前記第1の絶縁樹脂層の面上に第1の導体層を形成し、前記第1の導体層に第2の絶縁樹脂層を重ねる処理と、前記第2の絶縁樹脂層内にビアホールを形成するとともに表面に第2の導体層を形成する処理により絶縁樹脂層と導体層を交互に重ねるビルドアップ処理を繰り返し前記支持基板の面上に最外層を前記第2の絶縁樹脂層で被覆した内層基板を形成する第1の工程を有し、次に、前記支持基板を除去し前記内層基板を独立させる第2の工程を有し、次に、前記内層基板の両面の外層の前記絶縁樹脂層内にビアホールを形成するとともに表面に第3の導体層を形成し、前記第3の導体層に第3の絶縁樹脂層を重ね更に導体層を形成するビルドアップ処理を繰り返し前記内層基板の層数を増す第3の工程を有し、次に、前記内層基板の外層にソルダーレジストを形成する第4の工程を有することを特徴とする印刷配線板の製造方法。   A process of stacking a first insulating resin layer on a support substrate, forming a first conductor layer on a surface of the first insulating resin layer, and stacking a second insulating resin layer on the first conductor layer; Then, a build-up process in which an insulating resin layer and a conductor layer are alternately overlapped by a process of forming a via hole in the second insulating resin layer and forming a second conductor layer on the surface is repeated on the surface of the support substrate. A first step of forming an inner layer substrate whose outer layer is covered with the second insulating resin layer, and then a second step of removing the support substrate and making the inner layer substrate independent, Forming a via hole in the insulating resin layer on the outer layer on both sides of the inner layer substrate, forming a third conductive layer on the surface, superimposing the third insulating resin layer on the third conductive layer, and further forming a conductive layer A third build-up process is repeated to increase the number of layers of the inner layer substrate. And a step, then, a method of manufacturing a printed wiring board and having a fourth step of forming a solder resist on the outer layer of the inner layer substrate. 表面に剥離層を形成した支持基板上の面上に第1の導体層を形成し、次に、前記第1の導体層に第1の絶縁樹脂層を重ねる処理と、前記第1の絶縁樹脂層内にビアホールを形成するとともに表面に第2の導体層を形成することで絶縁樹脂層と導体層を交互に重ねるビルドアップ処理を繰り返し前記支持基板の面上に最外層に前記第2の導体層を有する内層基板を形成する第1の工程を有し、次に、前記支持基板を除去し前記内層基板を独立させる第2の工程を有し、次に、前記内層基板の両面の外層の前記第1の導体層と前記第2の導体層に第3の絶縁樹脂層を重ねる処理と、次に、前記内層基板の両面の前記第3の絶縁樹脂層内にビアホールを形成するとともに表面に第3の導体層を形成し、前記第3の導体層に絶縁樹脂層を重ね更に導体層を形成するビルドアップ処理を繰り返し前記内層基板の層数を増す第3の工程を有し、次に、前記内層基板の外層にソルダーレジストを形成する第4の工程を有することを特徴とする印刷配線板の製造方法。   Forming a first conductor layer on a surface of a support substrate having a release layer formed on the surface, and then superimposing a first insulating resin layer on the first conductor layer; and the first insulating resin. A build-up process in which an insulating resin layer and a conductor layer are alternately stacked by forming a via hole in the layer and forming a second conductor layer on the surface is repeated, and the second conductor is formed on the outermost layer on the surface of the support substrate. A first step of forming an inner layer substrate having a layer, and then a second step of removing the support substrate and making the inner layer substrate independent, and then forming outer layers on both sides of the inner layer substrate. A process of superimposing a third insulating resin layer on the first conductor layer and the second conductor layer, and then forming a via hole in the third insulating resin layer on both surfaces of the inner substrate and forming a surface on the surface A third conductor layer is formed, an insulating resin layer is overlaid on the third conductor layer, and further a conductor A third step of increasing the number of layers of the inner layer substrate by repeating the build-up process for forming the inner layer, and then a fourth step of forming a solder resist on the outer layer of the inner layer substrate. A method for manufacturing a wiring board. 前記第1の絶縁樹脂層を、補強材入りプリプレグ樹脂を用いて形成することを特徴とする請求項1又は2に記載の印刷配線板の製造方法。   The method for manufacturing a printed wiring board according to claim 1, wherein the first insulating resin layer is formed using a prepreg resin containing a reinforcing material. 多層の導体層を有する印刷配線板であって、補強材入り絶縁樹脂層を内層の第1の絶縁樹脂層に有し、前記第1の絶縁樹脂層の上層に第2の絶縁樹脂層を有し、前記第1の絶縁樹脂層の下層と前記第2の絶縁樹脂層の上層の両面に同じ層数の第3の絶縁樹脂層を有し、前記両面の第3の絶縁樹脂層の外層の両面にソルダーレジストを有し、前記第2の絶縁樹脂層以上の絶縁樹脂層内のビアホールが上側の径が下側の径より大きい逆向きの円錐台形状のビアホールであり、前記第1の絶縁樹脂層以下の絶縁樹脂層のビアホールが上側の径が下側の径より小さい円錐台形状のビアホールであり、前記導体層間の前記各絶縁樹脂層の厚さが等しいことを特徴とする印刷配線板。   A printed wiring board having a multi-layered conductor layer, having an insulating resin layer with a reinforcing material in an inner first insulating resin layer and an upper layer of the first insulating resin layer having a second insulating resin layer. And having the same number of third insulating resin layers on both sides of the lower layer of the first insulating resin layer and the upper layer of the second insulating resin layer, and the outer layers of the third insulating resin layers on both sides. Solder resist is provided on both sides, and the via hole in the insulating resin layer equal to or higher than the second insulating resin layer is a frustoconical-shaped via hole having an upper diameter larger than the lower diameter, and the first insulating A printed wiring board, wherein a via hole in an insulating resin layer below the resin layer is a frustoconical via hole whose upper diameter is smaller than the lower diameter, and the thickness of each insulating resin layer between the conductor layers is equal . 前記ソルダーレジストの開口部の導体層に形成した外部電極パッドを有し、一部の前記外部電極パッドに固相点が235℃以下の第1のはんだがプリコートされ、一部の前記外部電極パッドに固相点が240℃以上で250℃以下の第2のはんだで外部接続端子がはんだ付けされたことを特徴とする請求項4記載の印刷配線板。   An external electrode pad formed on a conductor layer in an opening of the solder resist, and a part of the external electrode pad is precoated with a first solder having a solid phase point of 235 ° C. or less; The printed wiring board according to claim 4, wherein the external connection terminals are soldered with a second solder having a solid point of 240 ° C. or higher and 250 ° C. or lower. 多層の導体層を有する印刷配線板の表層の外部電極パッドに半導体素子を接合した半導体装置であって、前記印刷配線板が補強材入り絶縁樹脂層を内層の第1の絶縁樹脂層に有し、前記第1の絶縁樹脂層の上層に第2絶縁樹脂層を有し、前記第1の絶縁樹脂層の下層と前記第2の絶縁樹脂層の上層の両面に同じ層数の第3の絶縁樹脂層を有し、前記両面の第3の絶縁樹脂層の外層の両面にソルダーレジストを有し、前記第2の絶縁樹脂層以上の絶縁樹脂層内のビアホールが上側の径が下側の径より大きい逆向きの円錐台形状のビアホールであり、前記第1の絶縁樹脂層以下の絶縁樹脂層のビアホールが上側の径が下側の径より小さい円錐台形状のビアホールであり、前記導体層間の前記各絶縁樹脂層の厚さが等
しいことを特徴とする半導体装置。
A semiconductor device in which a semiconductor element is bonded to an external electrode pad on a surface layer of a printed wiring board having a multi-layered conductor layer, wherein the printed wiring board has an insulating resin layer with a reinforcing material in an inner first insulating resin layer A third insulating resin layer having a second insulating resin layer above the first insulating resin layer and having the same number of layers on both sides of the lower layer of the first insulating resin layer and the upper layer of the second insulating resin layer. A resin layer, a solder resist on both sides of the outer layer of the third insulating resin layer on both sides, and a via hole in the insulating resin layer equal to or higher than the second insulating resin layer having a lower diameter on the upper side A larger frustoconical via hole in the reverse direction, and the via hole in the insulating resin layer below the first insulating resin layer is a frustoconical via hole in which the upper diameter is smaller than the lower diameter; A thickness of each insulating resin layer is equal. .
前記外部電極パッドを前記半導体素子に第1のはんだで接合し、前記印刷配線板の表層の第2の外部電極パッドに第2のはんだで外部接続端子を接合した構造を有し、前記第1のはんだの固相点が235℃以下であり、前記第2のはんだの固相点が240℃以上で250℃以下であることを特徴とする請求項6記載の半導体装置。   The external electrode pad is joined to the semiconductor element with a first solder, and the external connection terminal is joined to the second external electrode pad on the surface layer of the printed wiring board with a second solder, 7. The semiconductor device according to claim 6, wherein a solid phase point of the solder is 235 ° C. or lower, and a solid phase point of the second solder is 240 ° C. or higher and 250 ° C. or lower.
JP2007143077A 2007-05-30 2007-05-30 Method for manufacturing printed wiring board Expired - Fee Related JP5092547B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007143077A JP5092547B2 (en) 2007-05-30 2007-05-30 Method for manufacturing printed wiring board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007143077A JP5092547B2 (en) 2007-05-30 2007-05-30 Method for manufacturing printed wiring board

Publications (2)

Publication Number Publication Date
JP2008300482A true JP2008300482A (en) 2008-12-11
JP5092547B2 JP5092547B2 (en) 2012-12-05

Family

ID=40173737

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007143077A Expired - Fee Related JP5092547B2 (en) 2007-05-30 2007-05-30 Method for manufacturing printed wiring board

Country Status (1)

Country Link
JP (1) JP5092547B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011016555A1 (en) * 2009-08-07 2011-02-10 日本電気株式会社 Semiconductor device and method for manufacturing same
JP2012004440A (en) * 2010-06-18 2012-01-05 Shinko Electric Ind Co Ltd Wiring board
JP2012009606A (en) * 2010-06-24 2012-01-12 Shinko Electric Ind Co Ltd Wiring board
JP2013084998A (en) * 2013-02-08 2013-05-09 Shinko Electric Ind Co Ltd Method for manufacturing semiconductor package, and semiconductor package
JP2014063801A (en) * 2012-09-20 2014-04-10 Shinko Electric Ind Co Ltd Wiring board and method of manufacturing the same
CN104168726A (en) * 2013-05-17 2014-11-26 深南电路有限公司 Coreless substrate processing method
US9006103B2 (en) 2012-09-24 2015-04-14 Shinko Electric Industries Co., Ltd. Method of manufacturing wiring substrate
US9456494B2 (en) 2011-10-21 2016-09-27 Murata Manufacturing Co., Ltd. Multilayer wiring substrate, probe card, and method for manufacturing multilayer wiring substrate
US9468100B2 (en) 2012-01-27 2016-10-11 Murata Manufacturing Co., Ltd. Multilayer wiring substrate
US9844138B2 (en) 2013-05-08 2017-12-12 Murata Manufacturing Co., Ltd. Multilayer wiring board
US9877390B2 (en) 2013-11-07 2018-01-23 Murata Manufacturing Co., Ltd. Multilayer substrate and method for manufacturing the same
US9961768B2 (en) 2013-04-26 2018-05-01 Murata Manufacturing Co., Ltd. Multilayer wiring substrate, manufacturing method therefor, and substrate for probe card
CN115397110A (en) * 2022-08-02 2022-11-25 中山芯承半导体有限公司 Manufacturing method of substrate with step groove and embedded circuit

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002353394A (en) * 2001-03-21 2002-12-06 Kyocera Corp Wiring board with pin and electronic device using it
JP2004235323A (en) * 2003-01-29 2004-08-19 Fujitsu Ltd Manufacturing method of wiring substrate
JP2004327744A (en) * 2003-04-24 2004-11-18 Kyocera Corp Multilayer wiring board and manufacturing method therefor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002353394A (en) * 2001-03-21 2002-12-06 Kyocera Corp Wiring board with pin and electronic device using it
JP2004235323A (en) * 2003-01-29 2004-08-19 Fujitsu Ltd Manufacturing method of wiring substrate
JP2004327744A (en) * 2003-04-24 2004-11-18 Kyocera Corp Multilayer wiring board and manufacturing method therefor

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2011016555A1 (en) * 2009-08-07 2013-01-17 日本電気株式会社 Semiconductor device and manufacturing method thereof
WO2011016555A1 (en) * 2009-08-07 2011-02-10 日本電気株式会社 Semiconductor device and method for manufacturing same
US8692364B2 (en) 2009-08-07 2014-04-08 Nec Corporation Semiconductor device and method for manufacturing the same
JP2012004440A (en) * 2010-06-18 2012-01-05 Shinko Electric Ind Co Ltd Wiring board
JP2012009606A (en) * 2010-06-24 2012-01-12 Shinko Electric Ind Co Ltd Wiring board
US9456494B2 (en) 2011-10-21 2016-09-27 Murata Manufacturing Co., Ltd. Multilayer wiring substrate, probe card, and method for manufacturing multilayer wiring substrate
US9468100B2 (en) 2012-01-27 2016-10-11 Murata Manufacturing Co., Ltd. Multilayer wiring substrate
JP2014063801A (en) * 2012-09-20 2014-04-10 Shinko Electric Ind Co Ltd Wiring board and method of manufacturing the same
US9006103B2 (en) 2012-09-24 2015-04-14 Shinko Electric Industries Co., Ltd. Method of manufacturing wiring substrate
JP2013084998A (en) * 2013-02-08 2013-05-09 Shinko Electric Ind Co Ltd Method for manufacturing semiconductor package, and semiconductor package
US9961768B2 (en) 2013-04-26 2018-05-01 Murata Manufacturing Co., Ltd. Multilayer wiring substrate, manufacturing method therefor, and substrate for probe card
US9844138B2 (en) 2013-05-08 2017-12-12 Murata Manufacturing Co., Ltd. Multilayer wiring board
CN104168726A (en) * 2013-05-17 2014-11-26 深南电路有限公司 Coreless substrate processing method
CN104168726B (en) * 2013-05-17 2017-08-01 深南电路有限公司 The processing method of coreless substrate
US9877390B2 (en) 2013-11-07 2018-01-23 Murata Manufacturing Co., Ltd. Multilayer substrate and method for manufacturing the same
CN115397110A (en) * 2022-08-02 2022-11-25 中山芯承半导体有限公司 Manufacturing method of substrate with step groove and embedded circuit
CN115397110B (en) * 2022-08-02 2023-06-09 中山芯承半导体有限公司 Manufacturing method of substrate with step groove and embedded circuit

Also Published As

Publication number Publication date
JP5092547B2 (en) 2012-12-05

Similar Documents

Publication Publication Date Title
JP5092662B2 (en) Method for manufacturing printed wiring board
JP5092547B2 (en) Method for manufacturing printed wiring board
US9060459B2 (en) Printed wiring board and method for manufacturing same
KR101475109B1 (en) Multilayer Wiring Substrate and Method of Manufacturing the Same
TWI451536B (en) Multi-layer wiring board and method of manufacturing the same
JP5526746B2 (en) Multilayer substrate manufacturing method and supporting substrate
JP2010251688A (en) Component built-in printed wiring board and manufacturing method of the same
WO2007069789A1 (en) Multilayer printed wiring plate, and method for fabricating the same
JP2010135720A (en) Printed circuit board comprising metal bump and method of manufacturing the same
KR20120085673A (en) Multilayer wiring substrate
TW201334647A (en) Multi-layer wiring substrate and method for manufacturing the same
JP5221887B2 (en) Wiring board manufacturing method
JP2018032660A (en) Printed wiring board and method for manufacturing the same
JP2010226075A (en) Wiring board and method for manufacturing the same
JP2013135080A (en) Manufacturing method of multilayer wiring board
JP2013251314A (en) Multilayer wiring board and manufacturing method of the same
US11516910B1 (en) Circuit board structure and manufacturing method thereof
TW201927090A (en) Wiring board and manufacturing method thereof
JP2012074487A (en) Method of manufacturing semiconductor package
JP4779619B2 (en) Support plate, multilayer circuit wiring board, and semiconductor package using the same
CN102686024A (en) Multilayer wiring board
JP7052464B2 (en) Manufacturing method of coreless substrate with fine wiring layer and manufacturing method of semiconductor package
JP6234132B2 (en) Wiring board manufacturing method
JP2012156325A (en) Manufacturing method of multilayer wiring board and mask for paste printing
JP2004031828A (en) Multi-layer printed circuit board

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090708

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20110224

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110224

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110728

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110927

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120605

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120712

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120821

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120903

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150928

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees