JP2010251688A - Component built-in printed wiring board and manufacturing method of the same - Google Patents

Component built-in printed wiring board and manufacturing method of the same Download PDF

Info

Publication number
JP2010251688A
JP2010251688A JP2009179642A JP2009179642A JP2010251688A JP 2010251688 A JP2010251688 A JP 2010251688A JP 2009179642 A JP2009179642 A JP 2009179642A JP 2009179642 A JP2009179642 A JP 2009179642A JP 2010251688 A JP2010251688 A JP 2010251688A
Authority
JP
Japan
Prior art keywords
land
wiring board
printed wiring
via hole
opening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009179642A
Other languages
Japanese (ja)
Inventor
Taku Ishioka
卓 石岡
Yutaka Akimoto
豊 秋元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Circuit Solutions Inc
Original Assignee
NEC Toppan Circuit Solutions Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Toppan Circuit Solutions Inc filed Critical NEC Toppan Circuit Solutions Inc
Priority to JP2009179642A priority Critical patent/JP2010251688A/en
Publication of JP2010251688A publication Critical patent/JP2010251688A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/18High density interconnect [HDI] connectors; Manufacturing methods related thereto
    • H01L24/19Manufacturing methods of high density interconnect preforms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/04105Bonding areas formed on an encapsulation of the semiconductor or solid-state body, e.g. bonding areas on chip-scale packages
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/18High density interconnect [HDI] connectors; Manufacturing methods related thereto
    • H01L2224/19Manufacturing methods of high density interconnect preforms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/91Methods for connecting semiconductor or solid state bodies including different methods provided for in two or more of groups H01L2224/80 - H01L2224/90
    • H01L2224/92Specific sequence of method steps
    • H01L2224/921Connecting a surface with connectors of different types
    • H01L2224/9212Sequential connecting processes
    • H01L2224/92142Sequential connecting processes the first connecting process involving a layer connector
    • H01L2224/92144Sequential connecting processes the first connecting process involving a layer connector the second connecting process involving a build-up interconnect
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/14Integrated circuits

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a component built-in printed wiring board which has high reliability without causing a defect of electrical connection of an inner layer even when soldering an electronic component onto an outer layer. <P>SOLUTION: The component built-in printed wiring board is provided with a land wiring pattern 56b which has a land opening hole on a first insulating resin layer, a chip component is bonded on a wiring pattern with a non-conductive adhesive resin film 7, an electrode 31 of the chip component is abutted on the land, an opening prepreg on which a prepreg opening portion to avoid the chip component is formed on the insulating resin layer and wiring pattern, and a filled via-hole 55b electrically connects a part of land and an electrode on a land opening hole with metal plating from the first insulating resin layer side. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、多層の配線層と、多層のチップ部品の設置層を有する部品内蔵印刷配線板及びその製造方法に関する。   The present invention relates to a component built-in printed wiring board having a multilayer wiring layer and a multilayer chip component installation layer, and a method for manufacturing the same.

近年、半導体実装技術の発展により半導体装置を実装する印刷配線板においては、高密度、高精度の配線層を有する多層の印刷配線板が要求されている。高密度を実現する一つの方法として、集積回路チップを内蔵した印刷配線板が開発されている。従来技術における部品内蔵印刷配線板の製造方法は、特許文献1のように、はんだにより集積回路チップのバンプ電極をベースプレートのランドに接続する。そして、集積回路チップを設置した部品付き内層基板を層間絶縁層を介して積層して部品内蔵印刷配線板を製造していた。   2. Description of the Related Art In recent years, a printed wiring board on which a semiconductor device is mounted has been required due to the development of semiconductor mounting technology, and a multilayer printed wiring board having a high-density and high-precision wiring layer is required. As one method for realizing high density, a printed wiring board incorporating an integrated circuit chip has been developed. In a conventional method for manufacturing a component-embedded printed wiring board, as disclosed in Patent Document 1, bump electrodes of an integrated circuit chip are connected to lands of a base plate by solder. Then, the component built-in printed wiring board is manufactured by laminating the component-attached inner layer substrate on which the integrated circuit chip is installed via the interlayer insulating layer.

特開2005−142178号公報JP 2005-142178 A

この従来技術の部品内蔵印刷配線板は、部品内蔵印刷配線板の外層への部品のはんだ付け工程におけるはんだリフロー処理により、内蔵された集積回路チップの複数のバンプ電極を内層のランドにはんだ付けしていたはんだが再熔融し、隣接するランドのはんだ同士が接触して内層のランド間をはんだで短絡させてしまう恐れがある問題があった。この問題を避けるため、電子部品の電極をランドに高温はんだではんだ付けする改善策が考えられるが、その場合は、その高温はんだのはんだ付け温度が高いため、電子部品をはんだ付けしたベースプレートの損傷が大きくなり、部品内蔵印刷配線板の品質を悪化させる問題があった。   This conventional printed wiring board with built-in components solders a plurality of built-in integrated circuit chip bump electrodes to the inner land by a solder reflow process in the soldering process of the components to the outer layer of the built-in printed wiring board. There was a problem that the solder which had been melted may be remelted, and the solders of adjacent lands may come into contact with each other to short-circuit the lands of the inner layer with the solder. In order to avoid this problem, there can be an improvement measure to solder the electrode of the electronic component to the land with high-temperature solder. In that case, since the soldering temperature of the high-temperature solder is high, the base plate to which the electronic component is soldered is damaged. There is a problem that the quality of the printed wiring board with built-in components deteriorates.

また、集積回路チップのバンプ電極をベースプレートのランドに金−金接合、金−はんだ接合する技術もあるが、この接合は金属めっき接続に比べ接続信頼性が劣る問題があった。   In addition, there is a technique in which a bump electrode of an integrated circuit chip is bonded to a land of a base plate by gold-gold bonding or gold-solder bonding. However, this bonding has a problem that connection reliability is inferior to metal plating connection.

本発明は上記問題に鑑み考案されたもので、製造コストを上昇させずに、集積回路チップのバンプ電極を高い接続信頼性でベースプレートのランドに電気接続させることを課題とする。   The present invention has been devised in view of the above problems, and an object thereof is to electrically connect bump electrodes of an integrated circuit chip to lands of a base plate with high connection reliability without increasing manufacturing costs.

本発明は、上記課題を解決するために、第1の絶縁樹脂層の上にランドを有する配線パターンを形成し、前記配線パターンの上に非導電接着樹脂膜によりチップ部品を接着することで前記ランドに前記チップ部品の電極を当接させる第1の工程と、前記第1の絶縁樹脂層と前記配線パターンの上に前記チップ部品を避けるプリプレグ開口部を形成した開口プリプレグを設置し、前記開口プリプレグ上に前記チップ部品を避ける開口部を形成した内層基板を設置して前記内層基板上にBステージ状態の熱硬化性絶縁樹脂フィルムを設置し、積層し加熱・加圧することで印刷配線板中間体を製造する第2の工程と、前記印刷配線板中間体の前記第1の絶縁樹脂層側からレーザ穴あけにより、前記ランドと前記非導電接着樹脂膜を貫通して前記ランドの一部と前記電極の一部を露出させたビアホール用穴を形成する第3の工程と、前記ビアホール用穴に金属めっきして前記ランドと前記電極を電気接続させるビアホールを形成する第4の工程を少なくとも有することを特徴とする部品
内蔵印刷配線板の製造方法である。
In order to solve the above problems, the present invention forms a wiring pattern having lands on a first insulating resin layer, and adheres a chip component to the wiring pattern with a non-conductive adhesive resin film. A first step of bringing the electrode of the chip component into contact with the land, and an opening prepreg in which a prepreg opening for avoiding the chip component is formed on the first insulating resin layer and the wiring pattern, and the opening Install an inner layer substrate with an opening to avoid the chip parts on the prepreg, install a B-stage thermosetting insulating resin film on the inner layer substrate, laminate, heat and pressurize the printed wiring board A second step of manufacturing a body, and through the land and the non-conductive adhesive resin film by laser drilling from the first insulating resin layer side of the printed wiring board intermediate body. Forming a via hole exposing a part of the electrode and a part of the electrode, and forming a via hole for electrically connecting the land to the electrode by metal plating the via hole. It is a manufacturing method of the component built-in printed wiring board characterized by having a process at least.

また、本発明は、上記の部品内蔵印刷配線板の製造方法において、上記チップ部品が集積回路チップであり、上記電極がバンプ電極であることを特徴とする部品内蔵印刷配線板の製造方法である。   According to another aspect of the present invention, there is provided a method of manufacturing a component built-in printed wiring board, wherein the chip component is an integrated circuit chip and the electrode is a bump electrode. .

また、本発明は、上記の部品内蔵印刷配線板の製造方法において、上記第1の工程において、上記ランドをランド開口穴を有するパターンに形成し、上記第3の工程で、上記レーザ穴あけにより上記ランド開口穴を貫通させて上記電極を露出させるビアホール用穴を形成することを特徴とする部品内蔵印刷配線板の製造方法である。   According to the present invention, in the manufacturing method of the component built-in printed wiring board, in the first step, the land is formed into a pattern having a land opening hole, and the laser drilling is performed in the third step. A method of manufacturing a printed wiring board with built-in components, wherein a via hole for exposing the electrode is formed through a land opening hole.

また、本発明は、上記の部品内蔵印刷配線板の製造方法において、上記第1の工程において、上記第1の工程において、上記ランドを厚さが10μmから15μmの銅のパターンで形成し、上記第3の工程で、上記レーザ穴あけにより上記ランドの銅のパターンを貫通させて上記電極を露出させるビアホール用穴を形成することを特徴とする部品内蔵印刷配線板の製造方法である。   According to the present invention, in the manufacturing method of the component-embedded printed wiring board, in the first step, the land is formed with a copper pattern having a thickness of 10 μm to 15 μm in the first step, In the third step, a via-hole for exposing the electrode is formed by penetrating the copper pattern of the land by the laser drilling.

また、本発明は、上記の部品内蔵印刷配線板の製造方法において、上記内層基板が、内層貫通フィルドビアホールを有し、上記第3の工程が、上記印刷配線板中間体の両面から前記内層貫通フィルドビアホールに至る第2のビアホール用穴を形成し、上記第4の工程が、上記第2のビアホール用穴にビアホールめっきを形成することを特徴とする部品内蔵印刷配線板の製造方法である。   In the method for manufacturing a printed wiring board with a built-in component according to the present invention, the inner layer substrate has an inner layer through filled via hole, and the third step passes through the inner layer from both sides of the printed wiring board intermediate. A second via hole for reaching a filled via hole is formed, and the fourth step is a method of manufacturing a component built-in printed wiring board, wherein via hole plating is formed in the second via hole.

また、本発明は、第1の絶縁樹脂層上にランド開口穴を有するランドの配線パターンを備え、前記配線パターン上にチップ部品が、非導電接着樹脂膜により接着され、前記チップ部品の電極が前記ランドに当接され、前記絶縁樹脂層と前記配線パターン上に前記チップ部品を避けるプリプレグ開口部を形成した開口プリプレグと、前記チップ部品を避ける開口部を形成した内層基板を有し、前記第1の絶縁樹脂層側から前記ランドの一部と前記ランド開口穴の上の前記電極を金属めっきで電気接続させたビアホールを有することを特徴とする部品内蔵印刷配線板である。   The present invention further includes a land wiring pattern having land opening holes on the first insulating resin layer, wherein a chip component is adhered to the wiring pattern by a non-conductive adhesive resin film, and the electrode of the chip component is An opening prepreg which is in contact with the land and has an prepreg opening for avoiding the chip component on the insulating resin layer and the wiring pattern; and an inner layer substrate having an opening for avoiding the chip component; A printed wiring board with a built-in component, comprising a via hole in which a part of the land and the electrode on the land opening hole are electrically connected by metal plating from the insulating resin layer side of 1.

また、本発明は、上記の部品内蔵印刷配線板において、上記チップ部品が集積回路チップであり、上記電極がバンプ電極であることを特徴とする部品内蔵印刷配線板である。   According to another aspect of the invention, there is provided the printed wiring board with built-in components, wherein the chip component is an integrated circuit chip and the electrodes are bump electrodes.

また、本発明は、上記の部品内蔵印刷配線板において、上記内層基板上に熱硬化性絶縁樹脂層を有し、上記内層基板が内層貫通フィルドビアホールを有し、上記内層基板の下の上記第1の絶縁樹脂層の下側から前記内層貫通フィルドビアホールに達するビアホールめっきと、上記内層基板の上の上記熱硬化性絶縁樹脂層の上側から前記内層貫通フィルドビアホールに達するビアホールめっきを有することを特徴とする部品内蔵印刷配線板である。   Further, the present invention provides the above-described component built-in printed wiring board, further comprising a thermosetting insulating resin layer on the inner layer substrate, the inner layer substrate having an inner layer through-filled via hole, and the first layer under the inner layer substrate. A via hole plating reaching the inner through-hole filled via hole from the lower side of one insulating resin layer and a via hole plating reaching the inner through-hole filled via hole from the upper side of the thermosetting insulating resin layer on the inner layer substrate. This is a printed wiring board with built-in components.

本発明の部品内蔵印刷配線板では、集積回路チップのバンプ電極とベースプレートのランドの接続が金属めっきにより接続されているので、この部品内蔵印刷配線板を他の印刷配線板にはんだ付けする際の加熱処理によってもバンプ電極とランドの接続強度が変わらず、高い信頼性の電気接続が得られる効果がある。   In the component built-in printed wiring board of the present invention, the bump electrode of the integrated circuit chip and the land of the base plate are connected by metal plating. Therefore, when soldering this component built-in printed wiring board to another printed wiring board, Even with the heat treatment, the connection strength between the bump electrode and the land does not change, and there is an effect that a highly reliable electrical connection can be obtained.

本発明の実施形態のベースプレートの製造工程を模式的に示す断面図である。It is sectional drawing which shows typically the manufacturing process of the baseplate of embodiment of this invention. 本発明の実施形態の部品付き内層基板の製造工程を模式的に示す断面図である。It is sectional drawing which shows typically the manufacturing process of the inner layer board | substrate with components of embodiment of this invention. 本発明の実施形態の印刷配線板中間体の製造工程を模式的に示す断面図である。It is sectional drawing which shows typically the manufacturing process of the printed wiring board intermediate body of embodiment of this invention. 本発明の実施形態の印刷配線板中間体の製造工程を模式的に示す断面図である。It is sectional drawing which shows typically the manufacturing process of the printed wiring board intermediate body of embodiment of this invention. 本発明の実施形態の部品内蔵印刷配線板の製造工程を模式的に示す断面図である。It is sectional drawing which shows typically the manufacturing process of the component built-in printed wiring board of embodiment of this invention. 本発明の実施形態の部品内蔵印刷配線板の製造工程を模式的に示す断面図である。It is sectional drawing which shows typically the manufacturing process of the component built-in printed wiring board of embodiment of this invention. 本発明の実施形態の部品内蔵印刷配線板の製造工程を模式的に示す断面図である。It is sectional drawing which shows typically the manufacturing process of the component built-in printed wiring board of embodiment of this invention. 本発明の実施形態の部品内蔵印刷配線板の製造工程を模式的に示す断面図である。It is sectional drawing which shows typically the manufacturing process of the component built-in printed wiring board of embodiment of this invention. 本発明の第3の実施形態の部品内蔵印刷配線板の製造工程を模式的に示す断面図である。It is sectional drawing which shows typically the manufacturing process of the component built-in printed wiring board of the 3rd Embodiment of this invention. 本発明の第3の実施形態の部品内蔵印刷配線板の製造工程を模式的に示す断面図である。It is sectional drawing which shows typically the manufacturing process of the component built-in printed wiring board of the 3rd Embodiment of this invention. 本発明の第3の実施形態の部品内蔵印刷配線板の製造工程を模式的に示す断面図である。It is sectional drawing which shows typically the manufacturing process of the component built-in printed wiring board of the 3rd Embodiment of this invention. 本発明の第3の実施形態の部品内蔵印刷配線板の製造工程を模式的に示す断面図である。It is sectional drawing which shows typically the manufacturing process of the component built-in printed wiring board of the 3rd Embodiment of this invention. 本発明の第3の実施形態の部品内蔵印刷配線板の製造工程を模式的に示す断面図である。It is sectional drawing which shows typically the manufacturing process of the component built-in printed wiring board of the 3rd Embodiment of this invention. 本発明の第3の実施形態の部品内蔵印刷配線板の製造工程を模式的に示す断面図である。It is sectional drawing which shows typically the manufacturing process of the component built-in printed wiring board of the 3rd Embodiment of this invention.

以下、本発明の実施形態について図1から図8を基に説明する。
<第1の実施形態>
(工程1)
図1(a)のように、支持基板1として金属板を用い、例えば250μmの銅板を支持基板1として用い、その支持基板1をCZ処理などで粗化処理する。粗化処理は、研磨材によるサンドブラスト処理または酸化還元処理による黒化処理、過水硫酸系のソフトエッチング処理でも良い。次に、支持基板1に絶縁樹脂層2をロールラミネートまたは積層プレスで熱圧着させる。厚さ20μmから30μmのエポキシ樹脂をロールラミネートする。絶縁樹脂層2はガラス繊維やガラスフレークやフィラーなどの補強材入り絶縁樹脂層を用いることもできる。特に、絶縁樹脂層2には後工程による熱ストレスが何回も加わり熱ストレスにより内部にクラック不具合を生じ易くそのクラック不具合が拡大する恐れがあるので、絶縁樹脂層2にガラス繊維を入れることで、絶縁樹脂層2を強化しクラック不具合を防止する効果がある。なお、支持基板1を用いずにフィルム状の絶縁樹脂層2を単独で用いる事も可能である。
Hereinafter, embodiments of the present invention will be described with reference to FIGS.
<First Embodiment>
(Process 1)
As shown in FIG. 1A, a metal plate is used as the support substrate 1, for example, a 250 μm copper plate is used as the support substrate 1, and the support substrate 1 is roughened by CZ processing or the like. The roughening treatment may be a sand blast treatment with an abrasive or a blackening treatment by oxidation-reduction treatment or a perhydrosulfuric acid based soft etching treatment. Next, the insulating resin layer 2 is thermocompression bonded to the support substrate 1 by roll lamination or lamination press. An epoxy resin having a thickness of 20 μm to 30 μm is roll-laminated. As the insulating resin layer 2, an insulating resin layer containing a reinforcing material such as glass fiber, glass flake, or filler can be used. In particular, the insulating resin layer 2 is subjected to thermal stress due to the subsequent process many times, and the crack failure is likely to occur inside due to the thermal stress. There is an effect of strengthening the insulating resin layer 2 and preventing crack defects. In addition, it is also possible to use the film-like insulating resin layer 2 alone without using the support substrate 1.

絶縁樹脂層2の樹脂材料として、エポキシ樹脂、ビスマレイミド−トリアジン樹脂(以下、BT樹脂と称す)、ポリイミド樹脂、PPE樹脂、フェノール樹脂、PTFE樹脂、珪素樹脂、ポリブタジエン樹脂、ポリエステル樹脂、メラミン樹脂、ユリア樹脂、PPS樹脂、PPO樹脂などの有機樹脂を使用することができる。また、これらの樹脂単独でも、複数樹脂を混合しあるいは化合物を作成するなどの樹脂の組み合わせも使用できる。更に、これらの材料に、ガラス繊維の補強材を混入させた絶縁樹脂層2を用いることができる。補強材には、アラミド不織布やアラミド繊維、ポリエステル繊維を用いることができる。   As a resin material of the insulating resin layer 2, epoxy resin, bismaleimide-triazine resin (hereinafter referred to as BT resin), polyimide resin, PPE resin, phenol resin, PTFE resin, silicon resin, polybutadiene resin, polyester resin, melamine resin, Organic resins such as urea resin, PPS resin, and PPO resin can be used. In addition, these resins can be used alone, or a combination of resins such as mixing a plurality of resins or preparing a compound can be used. Furthermore, the insulating resin layer 2 in which a glass fiber reinforcing material is mixed into these materials can be used. As the reinforcing material, an aramid nonwoven fabric, an aramid fiber, or a polyester fiber can be used.

(工程2)
次に、必要に応じて絶縁樹脂層2の表面を粗化する。一般的には、クロム酸、過マンガ
ン酸塩の水溶液などの酸化剤による表面粗化処理などのウェットプロセスや、プラズマ処理やアッシング処理などのドライプロセスが有効である。次に、無電解銅めっき処理により、絶縁樹脂層2の表面の全面に、厚さ0.5μmから3μmのめっき下地導電層3を形成する。次に、図1(b)のように、配線パターン部分5を開口して、その部分でめっき下地導電層3を露出させためっきレジスト4のパターンを形成する。次に、図1(c)のように、めっき下地導電層3を電極にして電解銅めっき処理により、配線パターン部分5で露出しためっき下地導電層3の面上に銅めっきを15μmの厚さに厚付けした配線パターン6を形成する。次に、めっきレジスト4を剥離する。次に、図1(d)のように、過水硫酸系のフラッシュエッチング処理により、絶縁樹脂層2上に残っている厚さ0.5μmから3μmのめっき下地導電層3を除去し、絶縁樹脂層2に配線パターン6を形成したベースプレート10を製造する。ここで、配線パターン6のうちには、集積回路チップ30のバンプ電極31を設置する位置に、直径が30μmから60μmのランド開口穴6aを有するドーナツ状のランド6bを含む配線パターン6を形成する。このランド開口穴6aは、後の工程7におけるレーザ穴あけの際に、そのレーザ穴あけによってランド6bの銅の面も露出させられる大きさに形成する。
(Process 2)
Next, the surface of the insulating resin layer 2 is roughened as necessary. In general, wet processes such as surface roughening with an oxidizing agent such as an aqueous solution of chromic acid or permanganate, and dry processes such as plasma treatment or ashing treatment are effective. Next, a plating base conductive layer 3 having a thickness of 0.5 μm to 3 μm is formed on the entire surface of the insulating resin layer 2 by electroless copper plating. Next, as shown in FIG. 1B, the wiring pattern portion 5 is opened, and a pattern of the plating resist 4 in which the plating base conductive layer 3 is exposed at that portion is formed. Next, as shown in FIG. 1C, copper plating is applied to the surface of the plating base conductive layer 3 exposed at the wiring pattern portion 5 by electrolytic copper plating using the plating base conductive layer 3 as an electrode to a thickness of 15 μm. A thick wiring pattern 6 is formed. Next, the plating resist 4 is peeled off. Next, as shown in FIG. 1 (d), the plating base conductive layer 3 having a thickness of 0.5 μm to 3 μm remaining on the insulating resin layer 2 is removed by a perhydrosulfuric acid-based flash etching process, and the insulating resin is removed. The base plate 10 having the wiring pattern 6 formed on the layer 2 is manufactured. Here, in the wiring pattern 6, a wiring pattern 6 including a donut-shaped land 6 b having a land opening hole 6 a having a diameter of 30 μm to 60 μm is formed at a position where the bump electrode 31 of the integrated circuit chip 30 is installed. . The land opening 6a is formed to have a size that allows the copper surface of the land 6b to be exposed by laser drilling when laser drilling in the subsequent step 7 is performed.

(変形例1)
以上の工程2による配線パターン6の形成方法はセミアディティブ工法であるが、これ以外に、以下の製造方法でも同様に配線パターン6を形成することができる。すなわち、第1に、絶縁樹脂層2の表面を粗化した後に、無電解銅めっき処理でめっき下地導電層3を形成し、第2に、めっき下地導電層3の全面に電解銅めっきを12μmの厚さで加えた導体層を形成し、第3に、その導体層の表面にエッチングレジストパターンを形成することで導体層をエッチングして配線パターン6を形成する。第4にエッチングレジストを剥離する。以上のサブトラクティブ工法によっても配線パターン6を形成し図1(d)のベースプレート10を製造できる。
(Modification 1)
Although the method for forming the wiring pattern 6 in the above step 2 is a semi-additive method, the wiring pattern 6 can be similarly formed by the following manufacturing method. That is, first, after the surface of the insulating resin layer 2 is roughened, the plating base conductive layer 3 is formed by electroless copper plating, and second, electrolytic copper plating is applied to the entire surface of the plating base conductive layer 3 by 12 μm. The conductor layer added with the thickness of is formed, and thirdly, an etching resist pattern is formed on the surface of the conductor layer to etch the conductor layer to form the wiring pattern 6. Fourth, the etching resist is removed. The wiring pattern 6 can be formed also by the above subtractive construction method, and the base plate 10 of FIG.1 (d) can be manufactured.

(工程3)
次に、図2(a)のように、ベースプレート10の集積回路チップ30の設置領域の絶縁樹脂層2と配線パターン6上に、NCF(Non Conductive Film:非導電フィルム)を貼り、あるいは、NCP(Non Conductiveresin Paste:非導電ペースト)を塗布して、非導電接着樹脂膜7を形成する。次に、図2(b)のように、その非導電接着樹脂膜7に、高さが300μm以下の集積回路チップ30で、銅や金などの金属のバンプ電極31を有する集積回路チップ30をフェイスダウンした熱圧着で、金属のバンプ電極31を侵入させることで非導電接着樹脂膜7を流動させて、金属のバンプ電極31を非導電接着樹脂膜7下の配線パターン6に接触させる。こうして、非導電接着樹脂膜7を形成した部品付き内層基板20を作成する。
(Process 3)
Next, as shown in FIG. 2A, an NCF (Non Conductive Film) is pasted on the insulating resin layer 2 and the wiring pattern 6 in the installation area of the integrated circuit chip 30 of the base plate 10, or the NCP (Non Conductiveresin Paste) is applied to form a non-conductive adhesive resin film 7. Next, as shown in FIG. 2B, an integrated circuit chip 30 having a bump electrode 31 of a metal such as copper or gold is formed on the non-conductive adhesive resin film 7 with an integrated circuit chip 30 having a height of 300 μm or less. The non-conductive adhesive resin film 7 is caused to flow by intruding the metal bump electrode 31 by face-down thermocompression bonding, and the metal bump electrode 31 is brought into contact with the wiring pattern 6 under the non-conductive adhesive resin film 7. In this way, the component-attached inner layer substrate 20 on which the non-conductive adhesive resin film 7 is formed is produced.

次に、図2(b)の部品付き内層基板20上の銅の配線パターン6の表面の粗化処理として、脂肪酸カルボン酸1モルに対して2モル以上のアルカノールアミンを含有し銅イオン源とハロゲンイオン源を含有するマイクロエッチング剤で粗化し、次に、配線パターン6の表面にアゾール化合物と有機酸を含有する水溶液を接触させ配線パターン6の表面にアゾール化合物の厚い被膜を形成させることで後記する絶縁樹脂層形成時の樹脂の接着性を向上させる処理を行う。この処理のマイクロエッチング剤は腐食性が低いため、配線パターン6を侵さずに粗化できる。あるいは、銅の配線パターン6の表面の粗化処理として、酸化還元処理による黒化処理、又は、過水硫酸系のソフトエッチング処理を行うことも可能である。   Next, as a roughening treatment of the surface of the copper wiring pattern 6 on the component inner layer substrate 20 of FIG. 2B, 2 mol or more of alkanolamine is contained per 1 mol of fatty acid carboxylic acid, and a copper ion source By roughening with a microetching agent containing a halogen ion source, and then contacting the surface of the wiring pattern 6 with an aqueous solution containing an azole compound and an organic acid, a thick film of the azole compound is formed on the surface of the wiring pattern 6. A treatment for improving the adhesiveness of the resin when forming an insulating resin layer to be described later is performed. Since the microetching agent in this process has low corrosivity, it can be roughened without damaging the wiring pattern 6. Alternatively, as the roughening treatment of the surface of the copper wiring pattern 6, blackening treatment by oxidation-reduction treatment or perhydrosulfuric acid based soft etching treatment may be performed.

(工程4)
次に、図3のように、厚さが約40μmのプリプレグの所定位置に、ドリル加工、パンチング、レーザー加工等の孔加工により集積回路チップ30の大きさのプリプレグ開口部
41を形成した開口プリプレグ40を形成する。次に、厚さが約60μmの内層基板8に、集積回路チップ30の大きさの開口部8aを形成する。ここで、プリプレグ開口部41及び開口部8aは、集積回路チップ30の大きさに合わせた孔を加工してあるため、後記する印刷配線板中間体50を形成する際、加熱、加圧成型時の加圧圧力が集積回路チップ30に集中しないようにできる効果がある。また、開口プリプレグ40の絶縁材料は、硬化後の基板面方向の熱膨張係数(JIS−C6481で試験した30から120℃における熱膨張係数)が8〜12×10−6/ケルビン程度の小さい値であり、処理条件TMAで試験して得られるガラス転移温度Tg値が160〜170℃程度の高いTgを有する材料を使用する。この特性を有する材料を使用することにより、ベースプレート10の絶縁性樹脂板の特性と整合し、以降の製造工程において基板内部にストレスが残留せず基板が反らず製造が安定する効果がある。
(Process 4)
Next, as shown in FIG. 3, an opening prepreg having a prepreg opening 41 of the size of the integrated circuit chip 30 formed in a predetermined position of the prepreg having a thickness of about 40 μm by drilling, punching, laser processing or the like. 40 is formed. Next, an opening 8 a having a size of the integrated circuit chip 30 is formed in the inner layer substrate 8 having a thickness of about 60 μm. Here, since the prepreg opening 41 and the opening 8a are processed with holes according to the size of the integrated circuit chip 30, when forming the printed wiring board intermediate 50 to be described later, during heating and pressure molding There is an effect that it is possible to prevent the pressurizing pressure from being concentrated on the integrated circuit chip 30. The insulating material of the opening prepreg 40 has a small coefficient of thermal expansion in the direction of the substrate surface after curing (thermal expansion coefficient at 30 to 120 ° C. tested according to JIS-C6481) of about 8 to 12 × 10 −6 / Kelvin. A material having a high Tg with a glass transition temperature Tg value of about 160 to 170 ° C. obtained by testing under processing conditions TMA is used. By using a material having this characteristic, there is an effect that it is consistent with the characteristic of the insulating resin plate of the base plate 10, and in the subsequent manufacturing process, no stress remains in the substrate and the substrate is not warped and the manufacturing is stabilized.

(工程5)
そして、図3のように、支持基板1を含む部品付き内層基板20と、その上に、プリプレグ開口部41と開口部8aによって集積回路チップ30を避けた開口プリプレグ40と内層基板8を重ね、その上に、Bステージ状態の熱硬化性絶縁樹脂フィルム42を重ねて積層する。Bステージ状態の熱硬化性絶縁樹脂フィルム42としてABF(味の素株式会社製商品名)を用いた。ABFは、PET(ポリエチレンテレフタレート)フィルム44の表面に熱硬化性絶縁樹脂層43(厚さ40μm)が形成されている。この熱硬化性絶縁樹脂フィルム42の熱硬化性絶縁樹脂層43の面を開口部8aを有する内層基板8に向けて設置し、真空度133Pa以下、85℃から95℃で40秒から60秒間処理した後、大気圧に戻すことによってラミネートを行い、熱硬化性絶縁樹脂層43を開口部8aに充填した。
(Process 5)
Then, as shown in FIG. 3, the inner layer substrate 20 with components including the support substrate 1, and the opening prepreg 40 and the inner layer substrate 8 avoiding the integrated circuit chip 30 by the prepreg opening 41 and the opening 8a are stacked thereon, On top of this, a B-stage thermosetting insulating resin film 42 is laminated and laminated. ABF (trade name, manufactured by Ajinomoto Co., Inc.) was used as the thermosetting insulating resin film 42 in the B stage state. In the ABF, a thermosetting insulating resin layer 43 (thickness: 40 μm) is formed on the surface of a PET (polyethylene terephthalate) film 44. The surface of the thermosetting insulating resin layer 43 of this thermosetting insulating resin film 42 is placed toward the inner layer substrate 8 having the opening 8a, and the degree of vacuum is 133 Pa or less, and the treatment is performed at 85 to 95 ° C. for 40 to 60 seconds. After that, laminating was performed by returning to atmospheric pressure, and the thermosetting insulating resin layer 43 was filled in the opening 8a.

次に、PETフィルム44を剥離した後、真空プレスを用いて積層することで、図4のように印刷配線板中間体50を製造した。この積層工程の条件は、積層開始時点から約30分から60分の間の真空度を4kPa以下に減圧し、その後、大気圧に戻す。基板の加圧は、積層開始時点から10〜30分の間は0.5MPaで加圧し、その後に2〜3MPaに圧力を上げて加圧する。真空プレスの熱盤温度は80℃から130℃まで1.5〜2.5分で昇温し、真空度を大気圧に戻した後に基板温度が170℃以上に達するようにし、その基板温度に達したら加熱保持時間40分以上(例えば45分)保持して積層する。真空度は、基板温度が170℃以上に達する以前に大気圧に戻すが、このタイミングで真空度を大気圧に戻さないと樹脂中に気泡が発生する不具合を生じる。また、基板温度を170℃以上で40分以上保持しないと開口プリプレグ40からの樹脂による印刷配線板中間体50のチップ部品30aの集積回路チップ30と開口プリプレグ40の間の間隙の樹脂による充填性が悪くなる不具合を生じる。   Next, after peeling the PET film 44, the printed wiring board intermediate body 50 was manufactured as shown in FIG. 4 by stacking using a vacuum press. The condition of this lamination process is that the degree of vacuum between about 30 minutes and 60 minutes from the start of lamination is reduced to 4 kPa or less, and then returned to atmospheric pressure. Pressurization of the substrate is performed at 0.5 MPa for 10 to 30 minutes from the start of lamination, and then the pressure is increased to 2 to 3 MPa. The hot press temperature of the vacuum press is raised from 80 ° C. to 130 ° C. in 1.5 to 2.5 minutes, and after returning the degree of vacuum to atmospheric pressure, the substrate temperature reaches 170 ° C. or higher. When it reaches, it is laminated while maintaining the heating holding time of 40 minutes or more (for example, 45 minutes). The degree of vacuum is returned to the atmospheric pressure before the substrate temperature reaches 170 ° C. or higher. However, if the degree of vacuum is not returned to the atmospheric pressure at this timing, there is a problem that bubbles are generated in the resin. Further, if the substrate temperature is not kept at 170 ° C. or more for 40 minutes or more, the filling property by the resin of the gap between the integrated circuit chip 30 and the opening prepreg 40 of the chip component 30a of the printed wiring board intermediate body 50 by the resin from the opening prepreg 40 is achieved. This causes a problem that makes it worse.

この積層の加熱・加圧の際に開口プリプレグ40から樹脂が融け出して集積回路チップ30との間の間隙を充填する効果がある。こうして、図4に示すように、ベースプレート10上に集積回路チップ30を実装した内層基板20に、開口プリプレグ40と内層基板8と熱硬化性絶縁樹脂層43が積層された印刷配線板中間体50を製造する。   During the heating and pressurization of this lamination, the resin melts from the opening prepreg 40 and has an effect of filling the gap between the integrated circuit chip 30. In this way, as shown in FIG. 4, the printed wiring board intermediate 50 in which the opening prepreg 40, the inner layer substrate 8, and the thermosetting insulating resin layer 43 are laminated on the inner layer substrate 20 on which the integrated circuit chip 30 is mounted on the base plate 10. Manufacturing.

(変形例2)
以上の工程5に変えて、熱硬化性絶縁樹脂フィルム42を用いずに以下の製造工程で印刷配線板中間体50を形成することもできる。すなわち、図3のように、支持基板1を含む部品付き内層基板20と、その上に、プリプレグ開口部41と開口部8aによって集積回路チップ30を避けた開口プリプレグ40と内層基板8を重ね、その上に、厚さ約30μmのプリプレグと、その上に厚さ約12μmの銅箔を重ね、真空プレスを用いて積層することで、積層の加熱・加圧の際に上層のプリプレグと下層の開口プリプレグ40から樹脂が融け出して集積回路チップ30との間の間隙を充填する。次に、上層の厚さ約12μ
mの銅箔をクイックエッチングで除去する。こうして、図4のようにプリプレグが硬化して成る熱硬化性絶縁樹脂層43を有する印刷配線板中間体50を製造することができる。
(Modification 2)
Instead of the above process 5, the printed wiring board intermediate 50 can be formed by the following manufacturing process without using the thermosetting insulating resin film 42. That is, as shown in FIG. 3, the inner substrate 20 with components including the support substrate 1, and the opening prepreg 40 and the inner substrate 8 avoiding the integrated circuit chip 30 by the prepreg opening 41 and the opening 8a are stacked thereon, On top of that, a prepreg having a thickness of about 30 μm and a copper foil having a thickness of about 12 μm are stacked on top of each other and laminated by using a vacuum press. Resin melts from the opening prepreg 40 and fills the gap with the integrated circuit chip 30. Next, the thickness of the upper layer is about 12 μm
m copper foil is removed by quick etching. In this way, the printed wiring board intermediate body 50 having the thermosetting insulating resin layer 43 formed by curing the prepreg as shown in FIG. 4 can be manufactured.

(工程6)
次に、図5(a)のように、印刷配線板中間体50に樹脂付き銅箔をロールラミネートまたは積層プレスで熱圧着させる。例えば厚さ20μmから30μmのエポキシ樹脂などの絶縁樹脂層52と銅箔51から成る樹脂付き銅箔を印刷配線板中間体50にロールラミネートする。絶縁樹脂層52はガラス繊維やガラスフレークやフィラーなどの補強材入り絶縁樹脂層を用いることもできる。次に、図5(b)のように、樹脂付き銅箔をラミネートした印刷配線板中間体50から、外層の銅箔51と銅板の支持基板1をエッチングして除去する。なお、この製造方法の変形例として、銅箔を有さない樹脂フィルムのみを印刷配線板中間体50にロールラミネートすることで印刷配線板中間体50の上に絶縁樹脂層52を形成することもできる。
(Step 6)
Next, as shown in FIG. 5A, the resin-coated copper foil is thermocompression bonded to the printed wiring board intermediate 50 by roll lamination or lamination press. For example, an insulating resin layer 52 such as an epoxy resin having a thickness of 20 μm to 30 μm and a copper foil with resin made of copper foil 51 are roll-laminated on the printed wiring board intermediate 50. As the insulating resin layer 52, an insulating resin layer containing a reinforcing material such as glass fiber, glass flake, or filler can be used. Next, as shown in FIG. 5B, the outer layer copper foil 51 and the copper plate support substrate 1 are removed by etching from the printed wiring board intermediate 50 laminated with the resin-coated copper foil. As a modification of this manufacturing method, the insulating resin layer 52 may be formed on the printed wiring board intermediate 50 by roll laminating only the resin film having no copper foil on the printed wiring board intermediate 50. it can.

(工程7)
次に、図6(a)のように、以上の製造工程を経た印刷配線板中間体50にドリル加工で直径が0.06mmから2mmのスルホール下孔53を形成する。次に、絶縁樹脂層2の下から、高調波YAGレーザやエキシマレーザなどの紫外線レーザ、炭酸ガスレーザなどの赤外線レーザで穴開け加工することで、配線パターン6のランド6b上に、直径が0.04mmから0.2mmの穴で、ランド6bの銅の面を露出させるとともに直径が0.03mmから0.06mmのランド開口穴6aを貫通して、ランド開口穴6aに充填された非導電接着樹脂膜7に穴開けしてバンプ電極31を露出させてビアホール用穴54を形成する。ここで、ランド開口穴6aは加工用レーザのビーム直径より小さく形成でき、そのランド開口穴6aから小さなバンプ電極31の領域のみを露出させ、それ以外の集積回路チップ30の領域には加工用レーザを照射させないので、レーザ加工の際の集積回路チップ30に対する負荷を小さくできる効果がある。また、微細なバンプ電極31にランド開口穴6aを精密に位置合わせできる効果がある。
(Step 7)
Next, as shown in FIG. 6A, a through-hole prepared hole 53 having a diameter of 0.06 mm to 2 mm is formed by drilling in the printed wiring board intermediate body 50 that has undergone the above manufacturing process. Next, a hole is drilled from below the insulating resin layer 2 with an ultraviolet laser such as a harmonic YAG laser or an excimer laser, or an infrared laser such as a carbon dioxide laser, so that the diameter of the land 6b of the wiring pattern 6 is 0. Non-conductive adhesive resin filled in the land opening hole 6a through the land opening hole 6a having a diameter of 0.03 mm to 0.06 mm while exposing the copper surface of the land 6b with a hole of 04 mm to 0.2 mm A via hole 54 is formed by making a hole in the film 7 to expose the bump electrode 31. Here, the land opening hole 6a can be formed smaller than the beam diameter of the processing laser, and only the small bump electrode 31 region is exposed from the land opening hole 6a, and the processing laser is formed in the other regions of the integrated circuit chip 30. Therefore, the load on the integrated circuit chip 30 during laser processing can be reduced. Further, there is an effect that the land opening hole 6a can be precisely aligned with the fine bump electrode 31.

(工程8)
次に、絶縁樹脂層2と52の表面に粗化処理を施す。粗化処理は、過マンガン酸処理などのウェット処理、又は、プラズマデスミアなどのドライ処理を用いることができる。次に、めっき触媒付与及び無電解銅めっきを行って、めっき下地層(図示せず)を形成する。次に、めっき下地層の外側に、レジストを塗布するか、感光性ドライフィルムを貼着するかの方法で感光層を形成し、パターン露光、現像等の一連のパターニング処理を行ってめっきレジストパターンを形成する。次に、硫酸銅めっき浴中に浸漬し、めっき下地層をカソードにして電解銅めっきを行うことで、図6(b)のように、絶縁樹脂層2と52の表面に配線パターン56を形成し、配線パターン56と一体に、ビアホール用穴54を銅めっきで充填したフィルドビアホール55を形成し、スルホール下孔53の側壁面に銅めっきによるスルホールめっき57を形成する。次に、めっきレジストパターンを剥離処理し、めっきレジストパターン下部にあっためっき下地層をフラッシュエッチングで除去し、配線パターン56を形成する。
(Step 8)
Next, the surface of the insulating resin layers 2 and 52 is roughened. For the roughening treatment, wet treatment such as permanganic acid treatment or dry treatment such as plasma desmear can be used. Next, plating catalyst provision and electroless copper plating are performed to form a plating underlayer (not shown). Next, a photosensitive layer is formed by applying a resist or a photosensitive dry film on the outside of the plating base layer, and a series of patterning processes such as pattern exposure and development are performed to form a plating resist pattern. Form. Next, the wiring pattern 56 is formed on the surfaces of the insulating resin layers 2 and 52 as shown in FIG. 6B by dipping in a copper sulfate plating bath and performing electrolytic copper plating using the plating base layer as a cathode. Then, a filled via hole 55 in which the via hole hole 54 is filled with copper plating is formed integrally with the wiring pattern 56, and a through hole plating 57 by copper plating is formed on the side wall surface of the through hole lower hole 53. Next, the plating resist pattern is peeled off, and the plating base layer located under the plating resist pattern is removed by flash etching to form a wiring pattern 56.

ここで、フィルドビアホール55は、ランド6bに形成したランド開口穴6aを貫通してバンプ電極31に達するビアホール用穴54に金属めっきして形成するため、金属めっきで集積回路チップ30のバンプ電極31と強固に電気接続させることができ、バンプ電極31との電気接続の信頼性を高くできる効果がある。また、フィルドビアホール55は、ビアホール用穴54に露出したランド6bの銅の面にもめっきされて形成されるため、ランド6bとも強固に電気接続させることができ、結局、バンプ電極31とランド6bとをめっきにより強固に接続させた接続信頼性の高い電気接続が得られる効果がある。   Here, since the filled via hole 55 is formed by metal plating in the via hole hole 54 that reaches the bump electrode 31 through the land opening hole 6a formed in the land 6b, the bump electrode 31 of the integrated circuit chip 30 is formed by metal plating. Thus, there is an effect that the electrical connection with the bump electrode 31 can be improved. Further, since the filled via hole 55 is formed by plating also on the copper surface of the land 6b exposed in the via hole 54, it can be firmly connected to the land 6b. As a result, the bump electrode 31 and the land 6b are finally formed. There is an effect that electrical connection with high connection reliability can be obtained.

以上の処理では、配線パターン56の形成に、セミアディティブ法を用いたが、これに限定されない。すなわち、先ず、絶縁樹脂層2と5絶縁樹脂層52の表面のめっき下地層をカソードにした電解銅めっきにより全面に導体層を形成し、それと一体のフィルドビアホール55とスルホールめっき57を形成する。次に、全面形成された導体層の外側に、感光性ドライフィルムを貼着して感光層を形成し、パターン露光、現像等の一連のパターニング処理を行ってエッチングレジストパターンを形成する。そして、そのエッチングレジストパターンを保護膜にして導体層をエッチングして図6(b)の配線パターン56を形成することもできる。   In the above processing, the semi-additive method is used to form the wiring pattern 56, but the present invention is not limited to this. That is, first, a conductive layer is formed on the entire surface by electrolytic copper plating using the plating base layer on the surfaces of the insulating resin layers 2 and 5 as a cathode, and a filled via hole 55 and a through-hole plating 57 integral therewith are formed. Next, a photosensitive dry film is attached to the outside of the conductor layer formed on the entire surface to form a photosensitive layer, and a series of patterning processes such as pattern exposure and development are performed to form an etching resist pattern. Then, the conductor layer can be etched using the etching resist pattern as a protective film to form the wiring pattern 56 of FIG.

(工程9)
次に、図7(a)のように、この基板の両面に絶縁樹脂層52bを形成する。
(工程10)
次に、図7(b)のように、絶縁樹脂層52bの所定位置にビアホール用穴54bを形成する。
(工程11)
次に、図8(a)のように、銅めっきにより、ビアホール用穴54bにフィルドビアホール55bを形成し、絶縁樹脂層52bの表面に配線パターン56bを形成する。さらに必要であれば、絶縁樹脂層、フィルドビアホール55b及び配線パターン56b形成を所定回数繰り返すことにより、所望の層数の配線パターン56bを形成する。
(Step 9)
Next, as shown in FIG. 7A, insulating resin layers 52b are formed on both surfaces of the substrate.
(Process 10)
Next, as shown in FIG. 7B, a via hole 54b is formed at a predetermined position of the insulating resin layer 52b.
(Step 11)
Next, as shown in FIG. 8A, a filled via hole 55b is formed in the via hole 54b by copper plating, and a wiring pattern 56b is formed on the surface of the insulating resin layer 52b. If necessary, the wiring pattern 56b having a desired number of layers is formed by repeating the formation of the insulating resin layer, the filled via hole 55b, and the wiring pattern 56b a predetermined number of times.

(工程12)
次に、この基板の配線パターン56bの電解めっきの粗化処理としてCZ処理を施す。次に、感光性ソルダーレジストをスプレーコート、ロールコート、カーテンコート、スクリーン法で約20μmの厚さに塗布し乾燥させて外層にソルダーレジストを形成する。または、感光性ドライフィルム・ソルダーレジストをロールラミネートで基板に貼り付けてソルダーレジストを形成する。次に、図8(b)のように、ソルダーレジストを露光・現像し外部接続パッド用開口部を開口させ、加熱硬化させてソルダーレジストパターン58を形成する。次に、ソルダーレジストパターン58の外部接続パッド用開口部に、無電解Niめっきを3μm以上形成し、その上に無電解Auめっきを0.03μm以上形成する。無電解Auめっきは1μm以上形成することも可能である。更にその上にはんだプリコートすることも可能である。また、無電解めっきでなく、電解Niめっきを3μm以上形成し、その上に電解Auめっきを0.5μm以上形成することも可能である。あるいは、めっき処理以外に、タフエースなどの有機防錆皮膜を形成することも可能である。
(工程13)
出来上がった基板の外形をダイサーなどで加工することで、個々の部品内蔵印刷配線板を得る。
(Step 12)
Next, a CZ process is performed as a roughening process for the electrolytic plating of the wiring pattern 56b of the substrate. Next, a photosensitive solder resist is applied to a thickness of about 20 μm by spray coating, roll coating, curtain coating, or screen method, and dried to form a solder resist on the outer layer. Alternatively, a photosensitive dry film / solder resist is attached to the substrate by roll lamination to form a solder resist. Next, as shown in FIG. 8B, the solder resist is exposed and developed to open the external connection pad opening, and is cured by heating to form a solder resist pattern 58. Next, 3 μm or more of electroless Ni plating is formed in the external connection pad opening of the solder resist pattern 58, and 0.03 μm or more of electroless Au plating is formed thereon. The electroless Au plating can be formed to 1 μm or more. Further, it is possible to pre-coat with solder. Further, instead of electroless plating, electrolytic Ni plating can be formed to 3 μm or more, and electrolytic Au plating can be formed thereon to 0.5 μm or more. Alternatively, an organic rust preventive film such as tough ace can be formed in addition to the plating treatment.
(Step 13)
The printed circuit board with built-in components is obtained by processing the outer shape of the finished board with a dicer or the like.

また、本実施形態で、図6(b)のスルホールめっき57を、スルホール下孔53の孔の空間全体を充填する充填型のスルホールめっき57で形成することも可能である。   In this embodiment, the through-hole plating 57 shown in FIG. 6B can be formed by a filling-type through-hole plating 57 that fills the entire space of the through-hole lower hole 53.

本実施形態では、集積回路チップ30をフェイスダウンで、NCFあるいはNCPの非導電接着樹脂膜7によりベースプレート10に接着して設置した上で、集積回路チップ30のバンプ電極31が接するランド6bにランド開口穴6aを形成しておき、ベースプレート10の絶縁樹脂層2側からレーザ穴あけで、ランド開口穴6aを貫通させてバンプ電極31を露出させるとともにランド6bの金属面を露出させるビアホール用穴54を形成する。そして、それを金属めっきで充填するフィルドビアホール55により、バンプ電極31とランド6bの強固な信頼性の高い電気接続を行える効果がある。   In the present embodiment, the integrated circuit chip 30 is installed face-down with the NCF or NCP non-conductive adhesive resin film 7 adhered to the base plate 10 and then landed on the land 6b with which the bump electrode 31 of the integrated circuit chip 30 contacts. An opening hole 6a is formed, and a hole 54 for a via hole that exposes the bump electrode 31 through the land opening hole 6a and exposes the metal surface of the land 6b by laser drilling from the insulating resin layer 2 side of the base plate 10 is formed. Form. Then, the filled via hole 55 filled with metal plating has an effect of making a strong and reliable electrical connection between the bump electrode 31 and the land 6b.

<第2の実施形態>
本発明の第2の実施形態では、第1の実施形態の工程2に対応する工程2において、配
線パターン6のランド6bは、ランド開口穴6aを形成せず、厚さが約10μmから15μmの銅のランド6bを形成する。そして、第1の実施形態の工程7に対応する工程7において、厚さが約10μmから15μmのランド6bの銅のパターンをレーザ穴あけのレーザで貫通させて、バンプ電極31を露出させるビアホール用穴54を形成する。これら以外の製造工程は、第1の実施形態と同じ製造工程で部品内蔵印刷配線板を製造する。
<Second Embodiment>
In the second embodiment of the present invention, in step 2 corresponding to step 2 of the first embodiment, the land 6b of the wiring pattern 6 does not form the land opening hole 6a and has a thickness of about 10 μm to 15 μm. A copper land 6b is formed. Then, in step 7 corresponding to step 7 of the first embodiment, a via hole hole for exposing the bump electrode 31 by penetrating the copper pattern of the land 6b having a thickness of about 10 μm to 15 μm with a laser drilling laser. 54 is formed. The manufacturing process other than these manufactures the component built-in printed wiring board in the same manufacturing process as in the first embodiment.

<第3の実施形態>
本発明の第3の実施形態では、第1の実施形態の工程4で用いた内層基板8として内層貫通フィルドビアホール59を形成した内層基板8を用いる。また、第1の実施形態の変形例2と同様にして、銅箔60に、ガラスクロスや有機繊維クロス等のフィラー入りのプリプレグ43bを熱硬化性絶縁樹脂43としたBステージ状態の樹脂を重ねた樹脂付き銅箔の熱硬化性絶縁樹脂フィルム42を用いる。
<Third Embodiment>
In the third embodiment of the present invention, the inner layer substrate 8 in which the inner layer through filled via hole 59 is formed is used as the inner layer substrate 8 used in step 4 of the first embodiment. Similarly to the second modification of the first embodiment, a B-stage resin in which a prepreg 43b containing a filler such as glass cloth or organic fiber cloth is used as the thermosetting insulating resin 43 is layered on the copper foil 60. A thermosetting insulating resin film 42 of a copper foil with resin is used.

(工程1から工程3)
図9の下部に示すように、第1の実施形態の図1から図2に示す工程1から工程3までと同様な工程により、支持基板1の上に20μmから30μmの厚さの絶縁樹脂層2を形成し、その上に、中にランド開口穴6aを有するランド6bのパターンを有する配線パターン6を形成したベースプレート10を製造する。このベースプレート10として、支持基板1を用いずに絶縁樹脂層2を単独で用いたベースプレート10を用いる製造方法も可能である。そのベースプレート10の配線パターン6のランド6bとランド開口穴6aの上に、非導電接着樹脂膜7で集積回路チップ30や積層セラミックスコンデンサチップあるいは抵抗チップなどのチップ部品30aのバンプ電極31やコンデンサの端子などの電極31aを接着・接触させて、第1の実施形態の図2(b)の構造を形成する。
(Step 1 to Step 3)
As shown in the lower part of FIG. 9, an insulating resin layer having a thickness of 20 μm to 30 μm is formed on the support substrate 1 by the same process as the process 1 to the process 3 shown in FIGS. 1 to 2 of the first embodiment. 2 is manufactured, and the base plate 10 is formed on which the wiring pattern 6 having the pattern of the land 6b having the land opening hole 6a therein is formed. As the base plate 10, a manufacturing method using the base plate 10 using the insulating resin layer 2 alone without using the support substrate 1 is also possible. A bump electrode 31 of a chip component 30a such as an integrated circuit chip 30, a laminated ceramic capacitor chip or a resistor chip is formed on the land 6b and the land opening hole 6a of the wiring pattern 6 of the base plate 10 by a non-conductive adhesive resin film 7. An electrode 31a such as a terminal is adhered and brought into contact with each other to form the structure of FIG. 2B of the first embodiment.

チップ部品30aは、撮像カメラで観察しつつ、微細なランド6bに精密に位置合わせして、非導電接着樹脂膜7を介して絶縁樹脂層2と配線パターン6の表面に接着する。それにより、チップ部品30aを微細なランド6bに精度良く位置合わせして設置することができる効果がある。チップ部品30aを配線パターン6に精密に位置合わせして設置することで、後でそのチップ部品30aを挿入する開口プリプレグ40のプリプレグ開口部41とチップ部品30aとの間の隙間を小さく形成できる効果がある。また、チップ部品30aの外形の位置合わせ誤差を見込んで形成する内層基板8の開口部8aの形を、チップ部品30aとの間の隙間を小さく形成できる効果がある。そのようにチップ部品30aと内層基板8の開口部8aとの隙間を小さくできるので、その隙間を充填させるために積層時にプリプレグから流れ出させる樹脂の量を少なくできる効果がある。そのため、積層時に、内層基板8の上に重ねるBステージの熱硬化性絶縁樹脂フィルム42のプリプレグ43bの厚さを薄くでき、それにより基板の厚さを薄くできる効果がある。   The chip component 30 a is precisely aligned with the fine land 6 b while being observed with the imaging camera, and is adhered to the surface of the insulating resin layer 2 and the wiring pattern 6 through the non-conductive adhesive resin film 7. Accordingly, there is an effect that the chip component 30a can be accurately positioned and installed on the fine land 6b. The effect of being able to form a small gap between the prepreg opening 41 of the opening prepreg 40 into which the chip component 30a is inserted later and the chip component 30a by precisely positioning the chip component 30a on the wiring pattern 6 and installing it. There is. In addition, there is an effect that the gap between the chip part 30a and the shape of the opening 8a of the inner layer substrate 8 formed in consideration of the alignment error of the outer shape of the chip part 30a can be formed. As described above, the gap between the chip component 30a and the opening 8a of the inner layer substrate 8 can be reduced, so that the amount of resin flowing out from the prepreg during stacking can be reduced in order to fill the gap. Therefore, at the time of lamination, the thickness of the prepreg 43b of the thermosetting insulating resin film 42 of the B stage that is stacked on the inner layer substrate 8 can be reduced, thereby reducing the thickness of the substrate.

(工程4)
次に、図9に示すように、30μmから40μmの厚さのプリプレグの所定位置に、ドリル加工、パンチング、レーザー加工等の孔加工によりチップ部品30aの大きさのプリプレグ開口部41を形成した開口プリプレグ40を形成する。その開口プリプレグ40を、チップ部品30aをプリプレグ開口部41に挿入して、ベースプレート10の上の絶縁樹脂層2と配線パターン6の上に重ねる。また、厚さが約60μmの内層基板8に、直径が40μmから150μmの貫通孔を形成し、その貫通孔に銅めっきを充填して形成した柱状の内層貫通フィルドビアホール59を形成する。更に、この内層基板8にチップ部品30aの大きさの開口部8aを形成する。この内層基板8を、チップ部品30aを開口部8aに嵌め込むように位置合わせして、開口プリプレグ40の上に重ねることで、ベースプレート10の上の絶縁樹脂層2と配線パターン6の上に、開口プリプレグ40、その上に内層基板8を重ねた構造を作成する。
(Process 4)
Next, as shown in FIG. 9, an opening in which a prepreg opening 41 having the size of the chip component 30a is formed at a predetermined position of a prepreg having a thickness of 30 μm to 40 μm by drilling, punching, laser processing or the like. A prepreg 40 is formed. The opening prepreg 40 is overlaid on the insulating resin layer 2 and the wiring pattern 6 on the base plate 10 by inserting the chip component 30 a into the prepreg opening 41. Further, a through hole having a diameter of 40 μm to 150 μm is formed in the inner substrate 8 having a thickness of about 60 μm, and a columnar inner layer through filled via hole 59 formed by filling the through hole with copper plating is formed. Further, an opening 8 a having a size of the chip component 30 a is formed in the inner layer substrate 8. By aligning the inner layer substrate 8 so that the chip component 30a is fitted into the opening 8a and overlapping the opening prepreg 40, the inner layer substrate 8 is placed on the insulating resin layer 2 and the wiring pattern 6 on the base plate 10. A structure in which the opening prepreg 40 and the inner layer substrate 8 are stacked thereon is formed.

ここで、プリプレグ開口部41及び開口部8aは、チップ部品30aの大きさに合わせた孔を加工してあるため、後記する印刷配線板中間体50を形成する際、加熱、加圧成型時の加圧圧力がチップ部品30aに集中しないようにできる効果がある。また、開口プリプレグ40の絶縁材料は、硬化後の基板面方向の熱膨張係数(JIS−C6481で試験した30から120℃における熱膨張係数)が8〜12×10−6/ケルビン程度の小さい値であり、処理条件TMAで試験して得られるガラス転移温度Tg値が160〜170℃程度の高いTgを有する材料を使用する。この特性を有する材料を使用することにより、ベースプレート10の絶縁性樹脂板の特性と整合し、以降の製造工程において基板内部にストレスが残留せず基板が反らず製造が安定する効果がある。また、特に、内層基板8では、その開口部8aに嵌め込むチップ部品30aの位置が配線パターン6に精密に位置合わせでき設置の位置誤差が少ないので、チップ部品30aの位置ずれを見込んだ開口部8aとチップ部品30aとの間の隙間を小さく設計できる効果がある。それにより、開口部8aとチップ部品30aとの間の隙間が少量の絶縁樹脂で充填できる効果がある。   Here, since the prepreg opening 41 and the opening 8a are processed with holes according to the size of the chip component 30a, when forming the printed wiring board intermediate 50 to be described later, heating and pressure molding are performed. There is an effect that the pressurizing pressure can be prevented from being concentrated on the chip component 30a. The insulating material of the opening prepreg 40 has a small coefficient of thermal expansion in the direction of the substrate surface after curing (thermal expansion coefficient at 30 to 120 ° C. tested according to JIS-C6481) of about 8 to 12 × 10 −6 / Kelvin. A material having a high Tg with a glass transition temperature Tg value of about 160 to 170 ° C. obtained by testing under processing conditions TMA is used. By using a material having this characteristic, there is an effect that it is consistent with the characteristic of the insulating resin plate of the base plate 10, and in the subsequent manufacturing process, no stress remains in the substrate and the substrate is not warped and the manufacturing is stabilized. In particular, in the inner substrate 8, since the position of the chip component 30a to be fitted into the opening 8a can be precisely aligned with the wiring pattern 6 and the installation positional error is small, the opening that allows for the positional deviation of the chip component 30a. There is an effect that the gap between 8a and the chip component 30a can be designed to be small. Accordingly, there is an effect that the gap between the opening 8a and the chip component 30a can be filled with a small amount of insulating resin.

(工程5)
そして、図9のように、支持基板1を含む部品付き内層基板20と、その上に、プリプレグ開口部41と開口部8aによってチップ部品30aを避けた開口プリプレグ40と内層基板8を重ね、その上に、30μmの厚さのBステージ状態の熱硬化性絶縁樹脂フィルム42を重ねて積層する。Bステージ状態の熱硬化性絶縁樹脂フィルム42としては、第1の実施形態の変形例2のように、厚さ12μmの銅箔60に厚さ30μmのプリプレグ43bを重ね合わせた樹脂付き銅箔を用いる。この熱硬化性絶縁樹脂フィルム42のプリプレグ43bの面を開口部8aを有する内層基板8に向けて設置する。
(Process 5)
Then, as shown in FIG. 9, the inner layer substrate 20 with the component including the support substrate 1, and the opening prepreg 40 and the inner layer substrate 8 avoiding the chip component 30a by the prepreg opening 41 and the opening 8a are stacked thereon, A thermosetting insulating resin film 42 in a B-stage state having a thickness of 30 μm is stacked thereon. As the thermosetting insulating resin film 42 in the B-stage state, as in Modification 2 of the first embodiment, a copper foil with resin in which a prepreg 43b with a thickness of 30 μm is superimposed on a copper foil 60 with a thickness of 12 μm is used. Use. The surface of the prepreg 43b of the thermosetting insulating resin film 42 is placed toward the inner layer substrate 8 having the opening 8a.

次に、真空プレスを用いて積層し、開口プリプレグ40とプリプレグ43bの樹脂を加熱して流動させて開口部8aに樹脂を充填し、硬化させて熱硬化性絶縁樹脂層43を形成する。積層後に銅箔60をクイックエッチングで除去することで、図10のように印刷配線板中間体50を製造する。この積層工程の条件は、積層開始時点から約30分から60分の間の真空度を4kPa以下に減圧し、その後、大気圧に戻す。基板の加圧は、積層開始時点から10〜30分の間は0.5MPaで加圧し、その後に2〜3MPaに圧力を上げて加圧する。真空プレスの熱盤温度は80℃から130℃まで1.5〜2.5分で昇温し、真空度を大気圧に戻した後に基板温度が170℃以上に達するようにし、その基板温度に達したら加熱保持時間40分以上(例えば45分)保持して積層する。真空度は、基板温度が170℃以上に達する以前に大気圧に戻すが、このタイミングで真空度を大気圧に戻さないと樹脂中に気泡が発生する不具合を生じる。また、基板温度を170℃以上で40分以上保持しないと開口プリプレグ40からの樹脂による印刷配線板中間体50のチップ部品30aと開口プリプレグ40の間の間隙の樹脂による充填性が悪くなる不具合を生じる。   Next, lamination is performed using a vacuum press, and the resin of the opening prepreg 40 and the prepreg 43b is heated and fluidized to fill the opening 8a with the resin, and is cured to form the thermosetting insulating resin layer 43. The printed wiring board intermediate 50 is manufactured as shown in FIG. 10 by removing the copper foil 60 by quick etching after the lamination. The condition of this lamination process is that the degree of vacuum between about 30 minutes and 60 minutes from the start of lamination is reduced to 4 kPa or less, and then returned to atmospheric pressure. Pressurization of the substrate is performed at 0.5 MPa for 10 to 30 minutes from the start of lamination, and then the pressure is increased to 2 to 3 MPa. The hot press temperature of the vacuum press is raised from 80 ° C. to 130 ° C. in 1.5 to 2.5 minutes, and after returning the degree of vacuum to atmospheric pressure, the substrate temperature reaches 170 ° C. or higher. When it reaches, it is laminated while maintaining the heating holding time of 40 minutes or more (for example, 45 minutes). The degree of vacuum is returned to the atmospheric pressure before the substrate temperature reaches 170 ° C. or higher. However, if the degree of vacuum is not returned to the atmospheric pressure at this timing, there is a problem that bubbles are generated in the resin. In addition, if the substrate temperature is not maintained at 170 ° C. or higher for 40 minutes or more, the filling property by the resin of the gap between the chip component 30a of the printed wiring board intermediate body 50 by the resin from the opening prepreg 40 and the opening prepreg 40 is deteriorated. Arise.

この積層の加熱・加圧の際に開口プリプレグ40とプリプレグ43bから樹脂が融けだしてチップ部品30aとの間の間隙を充填する効果がある。こうして、図10に示すように、ベースプレート10上にチップ部品30aを実装した内層基板20に、開口プリプレグ40と内層基板8と熱硬化性絶縁樹脂層43が積層された印刷配線板中間体50を製造する。なお、以上の製造工程により、チップ部品30aを配線パターン6に精密に位置合わせできるため、チップ部品30aと内層基板8の開口部8aとの隙間を小さくできる。そのため、その隙間を充填させるために積層時にプリプレグから流れ出させる樹脂の量を少なくできるので、積層の際に、開口プリプレグ40の樹脂の融け出しのみでチップ部品30aと内層基板8の開口部8aとの隙間を埋めることも可能になる効果がある。そのため、熱硬化性絶縁樹脂フィルム42を用いない印刷配線板中間体50を製造することも可能である。すなわち、開口プリプレグ40の樹脂の融け出しのみでチップ部品30aと内層基板8の開口部8aとの隙間を埋めた印刷配線板中間体50を製造することも可能であ
る。
During the heating and pressurization of this lamination, the resin melts from the opening prepreg 40 and the prepreg 43b, and the gap between the chip component 30a is filled. Thus, as shown in FIG. 10, the printed wiring board intermediate 50 in which the opening prepreg 40, the inner layer substrate 8, and the thermosetting insulating resin layer 43 are laminated on the inner layer substrate 20 on which the chip component 30 a is mounted on the base plate 10. To manufacture. Since the chip component 30a can be precisely aligned with the wiring pattern 6 by the above manufacturing process, the gap between the chip component 30a and the opening 8a of the inner layer substrate 8 can be reduced. Therefore, since the amount of resin flowing out from the prepreg at the time of stacking can be reduced to fill the gap, the chip component 30a and the opening 8a of the inner substrate 8 can be obtained only by melting the resin of the opening prepreg 40 at the time of stacking. It is also possible to fill the gaps. Therefore, it is also possible to manufacture the printed wiring board intermediate body 50 that does not use the thermosetting insulating resin film 42. That is, it is also possible to manufacture the printed wiring board intermediate 50 in which the gap between the chip component 30a and the opening 8a of the inner substrate 8 is filled by only melting the resin of the opening prepreg 40.

(工程6)
次に、図11(a)のように、印刷配線板中間体50に樹脂付き銅箔をロールラミネートまたは積層プレスで熱圧着させる。例えば厚さ20μmから30μmのエポキシ樹脂などの絶縁樹脂層52と銅箔51から成る樹脂付き銅箔をロールラミネートする。絶縁樹脂層52はガラス繊維やガラスフレークやフィラーなどの補強材入り絶縁樹脂層を用いることもできる。次に、図11(b)のように、印刷配線板中間体50の外層の銅箔51と銅板の支持基板1をエッチングして除去する。ここで、銅箔を用いない樹脂フィルムをロールラミネートして絶縁樹脂層52を形成することもできる。
(Step 6)
Next, as shown in FIG. 11 (a), a copper foil with resin is thermocompression bonded to the printed wiring board intermediate body 50 by roll lamination or lamination press. For example, an insulating resin layer 52 such as an epoxy resin having a thickness of 20 μm to 30 μm and a copper foil with resin composed of the copper foil 51 are roll-laminated. As the insulating resin layer 52, an insulating resin layer containing a reinforcing material such as glass fiber, glass flake, or filler can be used. Next, as shown in FIG. 11B, the copper foil 51 as the outer layer of the printed wiring board intermediate 50 and the support substrate 1 of the copper plate are removed by etching. Here, the insulating resin layer 52 can also be formed by roll laminating a resin film that does not use copper foil.

(工程7)
次に、図12(a)のように、印刷配線板中間体50の下の絶縁樹脂層2の下から、高調波YAGレーザやエキシマレーザなどの紫外線レーザ、炭酸ガスレーザなどの赤外線レーザで穴開け加工することで、配線パターン6のランド6b上に、漏斗状の穴で、底面の直径が40μmで開口部の直径が60μmのビアホール用穴54を形成して、その穴の底面にランド6bの銅の面と電極31aを露出させる。すなわち、ビアホール用穴54は、直径は0.03mmから0.06mmのランド開口穴6aを貫通して、ランド開口穴6aに充填された非導電接着樹脂膜7に穴開けして電極31aを露出させる。
(Step 7)
Next, as shown in FIG. 12A, a hole is formed from below the insulating resin layer 2 below the printed wiring board intermediate 50 with an ultraviolet laser such as a harmonic YAG laser or an excimer laser, or an infrared laser such as a carbon dioxide gas laser. By processing, a via hole 54 having a bottom surface diameter of 40 μm and an opening diameter of 60 μm is formed on the land 6 b of the wiring pattern 6 on the land 6 b, and the land 6 b is formed on the bottom surface of the hole. The copper surface and the electrode 31a are exposed. That is, the via hole 54 penetrates the land opening hole 6a having a diameter of 0.03 mm to 0.06 mm, and opens the non-conductive adhesive resin film 7 filled in the land opening hole 6a to expose the electrode 31a. Let

更に、同じく、レーザによる穴開け加工で、印刷配線板中間体50の下から、絶縁樹脂層2と開口プリプレグ40を貫通させて、内層基板8の内層貫通フィルドビアホール59の下面に達するビアホール用穴61を形成する。ビアホール用穴61は、漏斗状の穴の底面の直径が80μmで開口部の直径が100μmに形成して、その穴の底面に内層貫通フィルドビアホール59の下面を露出させる。更に、レーザによる穴開け加工で、印刷配線板中間体50の上から、絶縁樹脂層52と熱硬化性絶縁樹脂層43を貫通させて、内層基板8の内層貫通フィルドビアホール59の上面に達するビアホール用穴61を形成する。これにより、このビアホール用穴61の底面に内層貫通フィルドビアホール59の上面を露出させる。ここで、内層貫通フィルドビアホール59の上下のビアホール用穴61は、上下とも、同じ厚さの、20μmから30μmの厚さの絶縁樹脂層2あるいは絶縁樹脂層52と、30μmから40μmの厚さの開口プリプレグ40あるいはプリプレグ43bから成る熱硬化性絶縁樹脂層43とを貫通させて形成するので、ビアホール用穴61の製造条件を変えずに上下のビアホール用穴61を連続した工程で速やかに加工できる効果がある。   Further, similarly, a hole for a via hole reaching the lower surface of the inner layer through filled via hole 59 of the inner layer substrate 8 through the insulating resin layer 2 and the opening prepreg 40 from below the printed wiring board intermediate body 50 by drilling with a laser. 61 is formed. The via hole 61 is formed such that the bottom of the funnel-shaped hole has a diameter of 80 μm and the opening has a diameter of 100 μm, and the lower surface of the inner layer filled filled via hole 59 is exposed at the bottom of the hole. Further, a via hole reaching the upper surface of the inner layer through filled via hole 59 of the inner layer substrate 8 through the insulating resin layer 52 and the thermosetting insulating resin layer 43 from above the printed wiring board intermediate 50 by drilling with a laser. A hole 61 is formed. As a result, the upper surface of the inner layer through filled via hole 59 is exposed at the bottom surface of the via hole 61. Here, the upper and lower via-hole holes 61 of the inner layer through-filled via hole 59 have the same thickness, the insulating resin layer 2 or the insulating resin layer 52 having a thickness of 20 μm to 30 μm, and a thickness of 30 μm to 40 μm. Since the opening prepreg 40 or the thermosetting insulating resin layer 43 made of the prepreg 43b is formed so as to penetrate, the upper and lower via hole holes 61 can be quickly processed in a continuous process without changing the manufacturing conditions of the via hole holes 61. effective.

(工程8)
次に、絶縁樹脂層2と絶縁樹脂層52の表面に粗化処理を施す。粗化処理は、過マンガン酸処理などのウェット処理、又は、プラズマデスミアなどのドライ処理を用いることができる。次に、めっき触媒付与及び無電解銅めっきを行って、めっき下地層(図示せず)を形成する。次に、めっき下地層の外側に、レジストを塗布するか、感光性ドライフィルムを貼着するかの方法で感光層を形成し、パターン露光、現像等の一連のパターニング処理を行ってめっきレジストパターンを形成する。次に、硫酸銅めっき浴中に浸漬し、めっき下地層をカソードにして電解銅めっきを行うことで、図12(b)のように、絶縁樹脂層2と52の表面に配線パターン56を形成し、配線パターン56と一体に、ビアホール用穴54を銅めっきで充填したフィルドビアホール55を形成し、ビアホール用穴61の側壁面に銅めっきによるビアホールめっき62を形成する。次に、めっきレジストパターンを剥離処理し、めっきレジストパターン下部にあっためっき下地層をフラッシュエッチングで除去し、配線パターン56を形成する。
(Step 8)
Next, a roughening process is performed on the surfaces of the insulating resin layer 2 and the insulating resin layer 52. For the roughening treatment, wet treatment such as permanganic acid treatment or dry treatment such as plasma desmear can be used. Next, plating catalyst provision and electroless copper plating are performed to form a plating underlayer (not shown). Next, a photosensitive layer is formed by applying a resist or a photosensitive dry film on the outside of the plating base layer, and a series of patterning processes such as pattern exposure and development are performed to form a plating resist pattern. Form. Next, the wiring pattern 56 is formed on the surfaces of the insulating resin layers 2 and 52 as shown in FIG. 12B by dipping in a copper sulfate plating bath and performing electrolytic copper plating using the plating base layer as a cathode. Then, a filled via hole 55 in which the via hole 54 is filled with copper plating is formed integrally with the wiring pattern 56, and a via hole plating 62 is formed on the side wall surface of the via hole 61 by copper plating. Next, the plating resist pattern is peeled off, and the plating base layer located under the plating resist pattern is removed by flash etching to form a wiring pattern 56.

ここで、フィルドビアホール55は、ランド6bの中のランド開口穴6aを貫通して電
極31aに達するビアホール用穴54に金属めっきして形成するため、金属めっきでチップ部品30aの電極31aと強固に電気接続させることができ、電極31aとの電気接続の信頼性を高くできる効果がある。また、フィルドビアホール55は、ビアホール用穴54に露出したランド6bの銅の面にも電解銅めっきが形成されるため、ランド6bとも強固に電気接続させることができ、結局、チップ部品30aの電極31aとランド6bとをめっきにより強固に接続させた接続信頼性の高い電気接続が得られる効果がある。これにより、チップ部品30aの電極31aが、それに最も近い絶縁樹脂層2の上の層の配線パターン6に、ハンダ付けよりも高い信頼性で電気接続される効果がある。しかも、この電気接続は、従来技術において多量のハンダを用いてチップ部品30aの電極31aをランド6bに電気接続させていた従来技術に比べて、小さな寸法のランド6bのパターンを配線パターン6に形成するだけで、強固な電気接続をすることができるので、絶縁樹脂層2の上の配線パターン6の配線密度を高くできる効果がある。
Here, since the filled via hole 55 is formed by metal plating in the via hole hole 54 that reaches the electrode 31a through the land opening hole 6a in the land 6b, the filled via hole 55 is firmly attached to the electrode 31a of the chip component 30a by metal plating. Electrical connection can be achieved, and the reliability of electrical connection with the electrode 31a can be increased. Further, since the filled via hole 55 is also formed by electrolytic copper plating on the copper surface of the land 6b exposed in the via hole 54, it can be firmly connected to the land 6b. There is an effect that electrical connection with high connection reliability in which 31a and land 6b are firmly connected by plating can be obtained. As a result, there is an effect that the electrode 31a of the chip component 30a is electrically connected to the wiring pattern 6 on the insulating resin layer 2 closest to the chip component 30a with higher reliability than soldering. In addition, this electrical connection is formed in the wiring pattern 6 with a pattern of the land 6b having a smaller size than in the prior art in which the electrode 31a of the chip component 30a is electrically connected to the land 6b using a large amount of solder in the prior art. By doing so, it is possible to make a strong electrical connection, so that the wiring density of the wiring pattern 6 on the insulating resin layer 2 can be increased.

また、電極31aに接する絶縁樹脂層2の上面の配線パターン6と、絶縁樹脂層2の下面に後に形成する配線パターン56とに配線パターンを形成できるので、両配線層を利用することで高い配線密度が得られる効果がある。更に、電極31aに接続するフィルドビアホール55は、絶縁樹脂層2を貫通して形成されるので、絶縁樹脂層2の厚さ以上の厚さを有する十分な高さを有する効果がある。また、フィルドビアホール55は、それに強固に接続されるランド6bが絶縁樹脂層2を上から支え、更に、フィルドビアホール55と一体に形成される配線パターン56が絶縁樹脂層2を下から支え、絶縁樹脂層2を上下から支える構造を構成するため、十分強い機械的強度で絶縁樹脂層2に固定され、機械的に信頼性が高い構造に形成でき、その強固な構造で電極31aを支えることができるので電極31aを強固に固定できる効果がある。   Further, since the wiring pattern can be formed on the wiring pattern 6 on the upper surface of the insulating resin layer 2 in contact with the electrode 31a and the wiring pattern 56 to be formed later on the lower surface of the insulating resin layer 2, high wiring can be obtained by using both wiring layers. There is an effect that density can be obtained. Further, since the filled via hole 55 connected to the electrode 31a is formed through the insulating resin layer 2, the filled via hole 55 has an effect of having a sufficient height having a thickness equal to or larger than the thickness of the insulating resin layer 2. Further, the filled via hole 55 has a land 6b firmly connected thereto supporting the insulating resin layer 2 from above, and a wiring pattern 56 formed integrally with the filled via hole 55 supports the insulating resin layer 2 from below to insulate. Since the structure that supports the resin layer 2 from above and below is configured, the resin layer 2 is fixed to the insulating resin layer 2 with sufficiently strong mechanical strength, can be formed into a mechanically reliable structure, and the electrode 31a can be supported by the strong structure. As a result, the electrode 31a can be firmly fixed.

以上の処理では、配線パターン56の形成に、セミアディティブ法を用いたが、これに限定されない。すなわち、先ず、絶縁樹脂層2と5絶縁樹脂層52の表面のめっき下地層をカソードにした電解銅めっきにより全面に導体層を形成し、それと一体のフィルドビアホール55とビアホールめっき62を形成する。次に、全面形成された導体層の外側に、感光性ドライフィルムを貼着して感光層を形成し、パターン露光、現像等の一連のパターニング処理を行ってエッチングレジストパターンを形成する。そして、そのエッチングレジストパターンを保護膜にして導体層をエッチングして図6(b)の配線パターン56を形成することもできる。   In the above processing, the semi-additive method is used to form the wiring pattern 56, but the present invention is not limited to this. That is, first, a conductive layer is formed on the entire surface by electrolytic copper plating using the plating base layer on the surfaces of the insulating resin layers 2 and 5 as the cathode, and a filled via hole 55 and a via hole plating 62 integrated therewith are formed. Next, a photosensitive dry film is attached to the outside of the conductor layer formed on the entire surface to form a photosensitive layer, and a series of patterning processes such as pattern exposure and development are performed to form an etching resist pattern. Then, the conductor layer can be etched using the etching resist pattern as a protective film to form the wiring pattern 56 of FIG.

(工程9)
次に、図13(a)のように、この基板の両面に、厚さ30μmのプリプレグに厚さ9μmの銅箔64を重ねて成る樹脂付き銅箔を重ね、積層プレスで熱圧着させ、プリプレグを硬化させた絶縁樹脂層63を形成する。

(工程10)
次に、図13(b)のように、この基材の両面に、炭酸ガスレーザによる穴開け加工で、厚さ9μmの銅箔64とその下地の絶縁樹脂層63を貫通させて、漏斗状の穴の底面の直径が55μmで開口の直径が75μmのビアホール用穴54bを形成する。次に、クイックエッチングすることで銅箔64を除去する。
(工程11)
次に、図14(a)のように、銅めっきにより、ビアホール用穴54bにフィルドビアホール55bを形成し、絶縁樹脂層63の表面に配線パターン56bを形成する。さらに必要であれば、絶縁樹脂層、フィルドビアホール55b及び配線パターン56b形成を所定回数繰り返すことにより、所望の層数の配線パターン56bを形成する。
(Step 9)
Next, as shown in FIG. 13 (a), a copper foil with a resin in which a copper foil 64 having a thickness of 9 μm is laminated on a prepreg having a thickness of 30 μm is stacked on both surfaces of the substrate, and thermocompression-bonded by a laminating press. The insulating resin layer 63 is cured.
.
(Process 10)
Next, as shown in FIG. 13B, the both sides of the base material are punched with a carbon dioxide laser so that the copper foil 64 having a thickness of 9 μm and the underlying insulating resin layer 63 are penetrated to form a funnel-like shape. A via hole 54b having a hole bottom diameter of 55 μm and an opening diameter of 75 μm is formed. Next, the copper foil 64 is removed by quick etching.
(Step 11)
Next, as shown in FIG. 14A, a filled via hole 55 b is formed in the via hole 54 b by copper plating, and a wiring pattern 56 b is formed on the surface of the insulating resin layer 63. If necessary, the wiring pattern 56b having a desired number of layers is formed by repeating the formation of the insulating resin layer, the filled via hole 55b, and the wiring pattern 56b a predetermined number of times.

(工程12)
次に、第1の実施形態と同様にして、外層にソルダーレジストパターン58を形成し、その外部接続パッド用開口部に、無電解Niめっきを3μm以上形成し、その上に無電解Auめっきを0.03μm以上形成する。
(工程13)
出来上がった基板の外形をダイサーなどで加工することで、個々の部品内蔵印刷配線板を得る。
(Step 12)
Next, in the same manner as in the first embodiment, a solder resist pattern 58 is formed on the outer layer, an electroless Ni plating is formed at 3 μm or more on the external connection pad opening, and an electroless Au plating is formed thereon. 0.03 μm or more is formed.
(Step 13)
The printed circuit board with built-in components is obtained by processing the outer shape of the finished board with a dicer or the like.

第3の実施形態では、内層貫通フィルドビアホール59を有する内層基板8を用いるため、チップ部品30aを内蔵した印刷配線板中間体50を貫通するスルホール下孔53を形成する必要が無く、印刷配線板中間体50の両面からレーザ穴あけ加工で内層貫通フィルドビアホール59に達するビアホール用穴61をあけてビアホールめっき62を形成することで印刷配線板中間体50の表裏を導通させることができる。それにより、スルホール下孔53の加工位置とレーザ穴あけで形成するビアホール用穴54との加工位置のミスマッチが少なくなり、ビアホール用穴54等と配線パターン56との位置合わせ精度も良くなり、精度の良い部品内蔵印刷配線板が得られる効果がある。   In the third embodiment, since the inner layer substrate 8 having the inner layer through filled via hole 59 is used, it is not necessary to form the through hole lower hole 53 penetrating the printed wiring board intermediate body 50 containing the chip component 30a, and the printed wiring board. The via hole plating 61 is formed by laser drilling from both sides of the intermediate body 50 to reach the inner layer through filled via hole 59 to form the via hole plating 62, whereby the printed wiring board intermediate body 50 can be made conductive. As a result, the mismatch between the processing position of the through-hole lower hole 53 and the processing position of the via hole 54 formed by laser drilling is reduced, and the alignment accuracy between the via hole 54 and the wiring pattern 56 is improved. There is an effect that a good printed wiring board with built-in components is obtained.

第1の実施形態から第3の実施形態の製造方法により、集積回路チップなどのチップ部品30aをフェイスダウンで、そのバンプ電極などの電極31aをNCFあるいはNCPの非導電接着樹脂膜7により絶縁樹脂層2上のランド6bに接触させた構造で、絶縁樹脂層2の下から形成してランド6bを貫通して電極31aに達するビアホール用穴54に金属めっきが充填されたフィルドビアホール55により電極31aとランド6bが電気接続された部品内蔵印刷配線板が得られる。この電極31aとランド6bの接続が金属めっきにより接続されているので、この部品内蔵印刷配線板を他の印刷配線板にはんだ付けする際の加熱処理によっても電極31aとランド6bの接続強度が変わらす、高い信頼性の電気接続が得られる効果がある。また、電極31aとランド6bを高いはんだ付け温度で接続する必要が無いので、ベースプレート10に与える損傷を少なくできるので品質の良い部品内蔵印刷配線板が得られる効果がある。   According to the manufacturing method of the first to third embodiments, the chip component 30a such as an integrated circuit chip is face down, and the electrode 31a such as the bump electrode is insulated by the non-conductive adhesive resin film 7 of NCF or NCP. The electrode 31a is formed by a filled via hole 55 having a structure in contact with the land 6b on the layer 2 and penetrating through the land 6b and reaching the electrode 31a through the land 6b and filled with metal plating. Thus, a component built-in printed wiring board in which the lands 6b are electrically connected can be obtained. Since the connection between the electrode 31a and the land 6b is connected by metal plating, the connection strength between the electrode 31a and the land 6b is also changed by heat treatment when soldering the component built-in printed wiring board to another printed wiring board. There is an effect that a highly reliable electrical connection can be obtained. In addition, since it is not necessary to connect the electrode 31a and the land 6b at a high soldering temperature, damage to the base plate 10 can be reduced, and there is an effect that a printed wiring board with a good quality can be obtained.

なお、本発明のベースプレート10は、金属板以外の樹脂基板の支持基板1を用いることも可能である。また、支持基板1を用いずにフィルム状の絶縁樹脂層2を単独で用いたベースプレート10を用いることも可能である。   The base plate 10 of the present invention can also use the support substrate 1 of a resin substrate other than a metal plate. Moreover, it is also possible to use the base plate 10 using the film-like insulating resin layer 2 alone without using the support substrate 1.

1・・・支持基板
2、52、52b、63・・・絶縁樹脂層
3・・・めっき下地導電層
4・・・めっきレジスト
5・・・配線パターン部分
6、56、56b・・・配線パターン
6a・・・ランド開口穴
6b・・・ランド
7・・・非導電接着樹脂膜
8・・・内層基板
8a・・・開口部
10・・・ベースプレート
20・・・部品付き内層基板
30・・・集積回路チップ
30a・・・チップ部品
31・・・バンプ電極
31a・・・電極
40・・・開口プリプレグ
41・・・プリプレグ開口部
42・・・熱硬化性絶縁樹脂フィルム
43・・・熱硬化性絶縁樹脂層
43b・・・プリプレグ
44・・・PETフィルム
50・・・印刷配線板中間体
51、60、64・・・銅箔
53・・・スルホール下孔
54、54b、61・・・ビアホール用穴
55、55b・・・フィルドビアホール
57・・・スルホールめっき
58・・・ソルダーレジストパターン
59・・・内層貫通フィルドビアホール
62・・・ビアホールめっき
DESCRIPTION OF SYMBOLS 1 ... Support substrate 2, 52, 52b, 63 ... Insulating resin layer 3 ... Plating ground conductive layer 4 ... Plating resist 5 ... Wiring pattern part 6, 56, 56b ... Wiring pattern 6a ... Land opening hole 6b ... Land 7 ... Non-conductive adhesive resin film 8 ... Inner layer substrate 8a ... Opening 10 ... Base plate 20 ... Inner layer substrate 30 with parts ... Integrated circuit chip 30a ... chip component 31 ... bump electrode 31a ... electrode 40 ... open prepreg 41 ... prepreg opening 42 ... thermosetting insulating resin film 43 ... thermosetting Insulating resin layer 43b ... prepreg 44 ... PET film 50 ... printed wiring board intermediates 51, 60, 64 ... copper foil 53 ... through-hole lower holes 54, 54b, 61 ... for via holes Hole 55, 55 ... filled via holes 57 ... through-hole plating 58 ... solder resist pattern 59 ... the inner layer through-filled via holes 62 ... hole plating

Claims (8)

第1の絶縁樹脂層の上にランドを有する配線パターンを形成し、前記配線パターンの上に非導電接着樹脂膜によりチップ部品を接着することで前記ランドに前記チップ部品の電極を当接させる第1の工程と、前記第1の絶縁樹脂層と前記配線パターンの上に前記チップ部品を避けるプリプレグ開口部を形成した開口プリプレグを設置し、前記開口プリプレグ上に前記チップ部品を避ける開口部を形成した内層基板を設置して前記内層基板上にBステージ状態の熱硬化性絶縁樹脂フィルムを設置し、積層し加熱・加圧することで印刷配線板中間体を製造する第2の工程と、前記印刷配線板中間体の前記第1の絶縁樹脂層側からレーザ穴あけにより、前記ランドと前記非導電接着樹脂膜を貫通して前記ランドの一部と前記電極の一部を露出させたビアホール用穴を形成する第3の工程と、前記ビアホール用穴に金属めっきして前記ランドと前記電極を電気接続させるビアホールを形成する第4の工程を少なくとも有することを特徴とする部品内蔵印刷配線板の製造方法。   A wiring pattern having lands is formed on the first insulating resin layer, and a chip component is adhered on the wiring pattern by a non-conductive adhesive resin film, whereby the electrodes of the chip component are brought into contact with the lands. 1 and an opening prepreg in which a prepreg opening for avoiding the chip component is formed on the first insulating resin layer and the wiring pattern, and an opening for avoiding the chip component is formed on the opening prepreg. A second step of manufacturing the printed wiring board intermediate by installing the inner layer substrate, placing a B-stage thermosetting insulating resin film on the inner layer substrate, laminating, heating and pressurizing, and the printing By laser drilling from the first insulating resin layer side of the wiring board intermediate body, a part of the land and a part of the electrode were exposed through the land and the non-conductive adhesive resin film. A printed wiring with a built-in component comprising at least a third step of forming an hole for a hole and a fourth step of forming a via hole for electrically connecting the land and the electrode by metal plating the via hole. A manufacturing method of a board. 請求項1記載の部品内蔵印刷配線板の製造方法において、前記チップ部品が集積回路チップであり、前記電極がバンプ電極であることを特徴とする部品内蔵印刷配線板の製造方法。   2. The method of manufacturing a component built-in printed wiring board according to claim 1, wherein the chip component is an integrated circuit chip and the electrode is a bump electrode. 請求項1記載の部品内蔵印刷配線板の製造方法において、前記第1の工程において、前記ランドをランド開口穴を有するパターンに形成し、前記第3の工程で、前記レーザ穴あけにより前記ランド開口穴を貫通させて前記電極を露出させるビアホール用穴を形成することを特徴とする部品内蔵印刷配線板の製造方法。   2. The method of manufacturing a component built-in printed wiring board according to claim 1, wherein in the first step, the land is formed into a pattern having a land opening hole, and in the third step, the land opening hole is formed by the laser drilling. A method of manufacturing a printed wiring board with a built-in component, wherein a hole for a via hole that exposes the electrode is formed by penetrating a wire. 請求項1記載の部品内蔵印刷配線板の製造方法において、前記第1の工程において、前記ランドを厚さが10μmから15μmの銅のパターンで形成し、前記第3の工程で、前記レーザ穴あけにより前記ランドの銅のパターンを貫通させて前記電極を露出させるビアホール用穴を形成することを特徴とする部品内蔵印刷配線板の製造方法。   2. The method of manufacturing a component-embedded printed wiring board according to claim 1, wherein in the first step, the land is formed with a copper pattern having a thickness of 10 μm to 15 μm, and in the third step, the laser drilling is performed. A method of manufacturing a printed wiring board with built-in components, wherein a via hole for exposing the electrode is formed by penetrating a copper pattern of the land. 請求項1乃至4の何れか一項に記載の部品内蔵印刷配線板の製造方法において、前記内層基板が、内層貫通フィルドビアホールを有し、前記第3の工程が、前記印刷配線板中間体の両面から前記内層貫通フィルドビアホールに至る第2のビアホール用穴を形成し、前記第4の工程が、前記第2のビアホール用穴にビアホールめっきを形成することを特徴とする部品内蔵印刷配線板の製造方法。   5. The method of manufacturing a component built-in printed wiring board according to claim 1, wherein the inner layer substrate has an inner layer through-filled via hole, and the third step is a step of forming the printed wiring board intermediate. Forming a second via hole from both sides to the inner layer filled filled via hole, wherein the fourth step forms via hole plating in the second via hole; Production method. 第1の絶縁樹脂層上にランド開口穴を有するランドの配線パターンを備え、前記配線パターン上にチップ部品が、非導電接着樹脂膜により接着され、前記チップ部品の電極が前記ランドに当接され、前記絶縁樹脂層と前記配線パターン上に前記チップ部品を避けるプリプレグ開口部を形成した開口プリプレグと、前記チップ部品を避ける開口部を形成した内層基板を有し、前記第1の絶縁樹脂層側から前記ランドの一部と前記ランド開口穴の上の前記電極を金属めっきで電気接続させたビアホールを有することを特徴とする部品内蔵印刷配線板。   A land wiring pattern having a land opening hole is provided on the first insulating resin layer, a chip component is adhered to the wiring pattern by a non-conductive adhesive resin film, and an electrode of the chip component is brought into contact with the land. And an opening prepreg formed with a prepreg opening for avoiding the chip component on the insulating resin layer and the wiring pattern, and an inner layer substrate formed with an opening for avoiding the chip component, the first insulating resin layer side A printed wiring board with a built-in component comprising a via hole in which a part of the land and the electrode on the land opening hole are electrically connected by metal plating. 請求項6記載の部品内蔵印刷配線板において、前記チップ部品が集積回路チップであり、前記電極がバンプ電極であることを特徴とする部品内蔵印刷配線板。   7. The component built-in printed wiring board according to claim 6, wherein the chip component is an integrated circuit chip and the electrode is a bump electrode. 請求項6記載の部品内蔵印刷配線板において、前記内層基板上に熱硬化性絶縁樹脂層を有し、前記内層基板が内層貫通フィルドビアホールを有し、前記内層基板の下の前記第1の絶縁樹脂層の下側から前記内層貫通フィルドビアホールに達するビアホールめっきと、前記内層基板の上の前記熱硬化性絶縁樹脂層の上側から前記内層貫通フィルドビアホールに達するビアホールめっきを有することを特徴とする部品内蔵印刷配線板。   The printed wiring board with a built-in component according to claim 6, further comprising a thermosetting insulating resin layer on the inner layer substrate, the inner layer substrate having an inner layer through filled via hole, and the first insulating layer under the inner layer substrate. A component having via hole plating reaching the inner layer through filled via hole from the lower side of the resin layer and via hole plating reaching the inner layer through filled via hole from the upper side of the thermosetting insulating resin layer on the inner layer substrate. Built-in printed wiring board.
JP2009179642A 2009-03-25 2009-07-31 Component built-in printed wiring board and manufacturing method of the same Pending JP2010251688A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009179642A JP2010251688A (en) 2009-03-25 2009-07-31 Component built-in printed wiring board and manufacturing method of the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009073574 2009-03-25
JP2009179642A JP2010251688A (en) 2009-03-25 2009-07-31 Component built-in printed wiring board and manufacturing method of the same

Publications (1)

Publication Number Publication Date
JP2010251688A true JP2010251688A (en) 2010-11-04

Family

ID=43313659

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009179642A Pending JP2010251688A (en) 2009-03-25 2009-07-31 Component built-in printed wiring board and manufacturing method of the same

Country Status (1)

Country Link
JP (1) JP2010251688A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012164720A1 (en) * 2011-06-02 2012-12-06 株式会社メイコー Substrate with built-in component, and method for producing said substrate
JP2012256804A (en) * 2011-06-10 2012-12-27 Dainippon Printing Co Ltd Component-built-in wiring board
JP2014107553A (en) * 2012-11-29 2014-06-09 Samsung Electro-Mechanics Co Ltd Circuit board with built-in electronic component and manufacturing method therefor
JP2014131040A (en) * 2012-12-31 2014-07-10 Samsung Electro-Mechanics Co Ltd Multilayered substrate and method of manufacturing multilayered substrate
JP2014192354A (en) * 2013-03-27 2014-10-06 Nippon Mektron Ltd Method for manufacturing component mounting printed-wiring board and component mounting printed-wiring board
KR20150034617A (en) * 2013-09-26 2015-04-03 제네럴 일렉트릭 컴퍼니 Embedded semiconductor device package and method of manufacturing thereof
JP2015130443A (en) * 2014-01-08 2015-07-16 富士通株式会社 Method of manufacturing component built-in substrate
JP2016054188A (en) * 2014-09-03 2016-04-14 大日本印刷株式会社 Component build-in wiring board, manufacturing method of the same, and intermediate wiring layer for manufacturing the same
US10256196B2 (en) 2015-07-03 2019-04-09 J-Devices Corporation Semiconductor device and method for manufacturing same
CN110602876A (en) * 2019-10-25 2019-12-20 四川普瑞森电子有限公司 Thin circuit board and manufacturing method thereof
CN113891582A (en) * 2021-09-26 2022-01-04 东莞康源电子有限公司 Novel method for processing embedded chip carrier plate
WO2024070919A1 (en) * 2022-09-27 2024-04-04 京セラ株式会社 Wiring board and method for producing same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004311736A (en) * 2003-04-08 2004-11-04 Nec Toppan Circuit Solutions Inc Method for manufacturing built-up multilayer wiring board incorporating chip comp0nents
JP2005223223A (en) * 2004-02-06 2005-08-18 Tdk Corp Semiconductor ic built-in substrate, its manufacturing method, and semiconductor ic built-in module
JP2008544511A (en) * 2005-06-16 2008-12-04 イムベラ エレクトロニクス オサケユキチュア Circuit board manufacturing method and circuit board structure

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004311736A (en) * 2003-04-08 2004-11-04 Nec Toppan Circuit Solutions Inc Method for manufacturing built-up multilayer wiring board incorporating chip comp0nents
JP2005223223A (en) * 2004-02-06 2005-08-18 Tdk Corp Semiconductor ic built-in substrate, its manufacturing method, and semiconductor ic built-in module
JP2008544511A (en) * 2005-06-16 2008-12-04 イムベラ エレクトロニクス オサケユキチュア Circuit board manufacturing method and circuit board structure

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012164720A1 (en) * 2011-06-02 2012-12-06 株式会社メイコー Substrate with built-in component, and method for producing said substrate
JP2012256804A (en) * 2011-06-10 2012-12-27 Dainippon Printing Co Ltd Component-built-in wiring board
JP2014107553A (en) * 2012-11-29 2014-06-09 Samsung Electro-Mechanics Co Ltd Circuit board with built-in electronic component and manufacturing method therefor
JP2014131040A (en) * 2012-12-31 2014-07-10 Samsung Electro-Mechanics Co Ltd Multilayered substrate and method of manufacturing multilayered substrate
JP2014192354A (en) * 2013-03-27 2014-10-06 Nippon Mektron Ltd Method for manufacturing component mounting printed-wiring board and component mounting printed-wiring board
US9209151B2 (en) 2013-09-26 2015-12-08 General Electric Company Embedded semiconductor device package and method of manufacturing thereof
TWI634632B (en) * 2013-09-26 2018-09-01 通用電機股份有限公司 Embedded semiconductor device package and method of manufacturing thereof
CN104681520A (en) * 2013-09-26 2015-06-03 通用电气公司 Embedded semiconductor device package and method of manufacturing thereof
KR102295990B1 (en) * 2013-09-26 2021-09-02 제네럴 일렉트릭 컴퍼니 Embedded semiconductor device package and method of manufacturing thereof
EP2854168A3 (en) * 2013-09-26 2015-08-05 General Electric Company Embedded semiconductor device package and method of manufacturing thereof
KR20150034617A (en) * 2013-09-26 2015-04-03 제네럴 일렉트릭 컴퍼니 Embedded semiconductor device package and method of manufacturing thereof
TWI679737B (en) * 2013-09-26 2019-12-11 美商通用電機股份有限公司 Embedded power module with power overlay structure
JP2015070269A (en) * 2013-09-26 2015-04-13 ゼネラル・エレクトリック・カンパニイ Embedded semiconductor device package and method of manufacturing the same
JP2015130443A (en) * 2014-01-08 2015-07-16 富士通株式会社 Method of manufacturing component built-in substrate
JP2016054188A (en) * 2014-09-03 2016-04-14 大日本印刷株式会社 Component build-in wiring board, manufacturing method of the same, and intermediate wiring layer for manufacturing the same
US10256196B2 (en) 2015-07-03 2019-04-09 J-Devices Corporation Semiconductor device and method for manufacturing same
CN110602876A (en) * 2019-10-25 2019-12-20 四川普瑞森电子有限公司 Thin circuit board and manufacturing method thereof
CN110602876B (en) * 2019-10-25 2021-07-23 四川普瑞森电子有限公司 Thin circuit board and manufacturing method thereof
CN113891582A (en) * 2021-09-26 2022-01-04 东莞康源电子有限公司 Novel method for processing embedded chip carrier plate
WO2024070919A1 (en) * 2022-09-27 2024-04-04 京セラ株式会社 Wiring board and method for producing same

Similar Documents

Publication Publication Date Title
JP2010251688A (en) Component built-in printed wiring board and manufacturing method of the same
JP5290455B2 (en) Manufacturing method of laminate
TWI451536B (en) Multi-layer wiring board and method of manufacturing the same
US8466372B2 (en) Wiring board with built-in electronic component and method for manufacturing the same
KR101475109B1 (en) Multilayer Wiring Substrate and Method of Manufacturing the Same
US20110127076A1 (en) Electronic component-embedded printed circuit board and method of manufacturing the same
JP4673207B2 (en) Multilayer printed wiring board and manufacturing method thereof
JP4192657B2 (en) Manufacturing method of build-up multilayer wiring board with built-in chip parts
WO2006046510A1 (en) Multilayer printed wiring board and method for manufacturing multilayer printed wiring board
JP2009295949A (en) Printed circuit board with electronic component embedded therein and manufacturing method therefor
JP2009088429A (en) Printed wiring board, method of manufacturing the same, and semiconductor device
JP2014513438A (en) Printed circuit board and manufacturing method thereof
JP2011119501A (en) Method of manufacturing multilayer substrate
JP4592891B2 (en) Multilayer circuit board and semiconductor device
WO2013065099A1 (en) Method for manufacturing substrate having built-in component, and substrate having built-in component manufactured using same
US20120011716A1 (en) Method of manufacturing printed circuit board including outmost fine circuit pattern
JP6033872B2 (en) Manufacturing method of component-embedded substrate
JP2010226075A (en) Wiring board and method for manufacturing the same
KR100699237B1 (en) Manufacturing Method for Embedded Printed Circuit Board
JP2009272435A (en) Circuit board including built-in component and method for manufacturing the same
JPH1154926A (en) One-sided circuit board and its manufacture
JP2010283300A (en) Wiring board with bump electrode, and method of manufacturing the same
JP5766387B2 (en) Electronic component built-in type two-layer wiring board and electronic component built-in type two-layer wiring board
JP2009117753A (en) Printed circuit board with built-in components and its manufacturing method
JP2010123799A (en) Circuit board and multilayer circuit board

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120711

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130418

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20131008