JP2013030603A - Method of manufacturing wiring board - Google Patents

Method of manufacturing wiring board Download PDF

Info

Publication number
JP2013030603A
JP2013030603A JP2011165383A JP2011165383A JP2013030603A JP 2013030603 A JP2013030603 A JP 2013030603A JP 2011165383 A JP2011165383 A JP 2011165383A JP 2011165383 A JP2011165383 A JP 2011165383A JP 2013030603 A JP2013030603 A JP 2013030603A
Authority
JP
Japan
Prior art keywords
metal foil
laminate
wiring board
support substrate
foil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011165383A
Other languages
Japanese (ja)
Inventor
Takanori Nishida
貴紀 西田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2011165383A priority Critical patent/JP2013030603A/en
Publication of JP2013030603A publication Critical patent/JP2013030603A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Production Of Multi-Layered Print Wiring Board (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method of manufacturing a wiring board capable of suppressing occurrence of unevenness of copper foil which becomes an external layer of the wiring board when manufacturing the wiring board by a coreless method using a support board.SOLUTION: A method of manufacturing a wiring board includes: a process in which a metal foil plated laminated plate, adhesion layers and multilayer metal foil to be a support board are constituted in this order, insulation layers and metal foil to be a part of a laminate are constituted on the multilayer metal foil in this order and they are heated and pressed in a lump to form the laminate laminated on the support board; a process in which the metal foil and other metal foil of the multilayer metal foil are physically peeled to separate the laminate with one metal foil of the multilayer metal foil from the support substrate; and a process in which an external layer circuit is formed by etching the one metal foil of the separated laminate.

Description

本発明は、電子部品素子を搭載する配線基板の製造方法に関する。   The present invention relates to a method for manufacturing a wiring board on which electronic component elements are mounted.

近年、電子機器の小型化、軽量化、多機能化が一段と進み、これらに用いられる配線基板においても、多層化や配線の微細化とともに、配線基板の薄型化が求められている。これに伴い、配線基板の製造プロセスにおいては、より薄型の配線基板を取り扱う必要が生じている。つまり、従来、一般の電子部品素子搭載用の配線基板は、いわゆるビルドアップ工法により製造されており、これは、コア基板となる薄型の配線基板の両側に、絶縁樹脂層と配線パターンとからなる配線層を積み上げて配線基板を製造する製法であるため、配線層の層数が少ない段階では、例えば0.1mm以下の薄型の配線基板の状態で製造プロセスを進める必要があるためである。薄型の配線基板は製造プロセスの中で、寸法変動による反りや、製造装置内での引っかかりによる折れ、破損などが生じ易いため、取り扱いが困難になっている。このような薄型の配線基板の取り扱いを容易にする方法としては、配線基板の1枚1枚に、機械的な強度を持たせる目的で、治具や支持基板を取付ける方法が考えられる。しかしながら、この方法では、大幅に工数が増加し、コストアップとなる問題がある。   In recent years, electronic devices have been further reduced in size, weight, and functionality, and the wiring boards used for these have been required to have thinner wiring boards as well as multilayers and wiring miniaturization. Along with this, in the manufacturing process of the wiring board, it is necessary to handle a thinner wiring board. That is, conventionally, a wiring board for mounting a general electronic component element has been manufactured by a so-called build-up method, which is composed of an insulating resin layer and a wiring pattern on both sides of a thin wiring board serving as a core board. This is because it is a manufacturing method in which wiring layers are stacked to manufacture a wiring board, and therefore, in a stage where the number of wiring layers is small, it is necessary to proceed with the manufacturing process with a thin wiring board having a thickness of 0.1 mm or less, for example. Thin wiring boards are difficult to handle because they are prone to warpage due to dimensional fluctuations, breakage, breakage, etc. due to catching in the manufacturing apparatus during the manufacturing process. As a method for facilitating the handling of such a thin wiring board, a method of attaching a jig or a supporting board for the purpose of giving mechanical strength to each of the wiring boards can be considered. However, this method has a problem that the number of man-hours is greatly increased and the cost is increased.

このような問題を回避するための方法としては、図8(1)、(2)に示すように、両面にピーラブル銅箔9(キャリア銅箔付き極薄銅箔)を有する支持基板17を準備し、この支持基板17の両面のピーラブル銅箔9上に配線基板(図示しない。)を形成した後、ピーラブル銅箔9の剥離作用を利用して、配線基板と支持基板17を分離する方法(特許文献1)が開示されている。また、図9(1)、(2)に示すように、絶縁層14の両面に銅箔13を有する金属張り積層板12を支持基板17として準備し、この支持基板17の両面の銅箔13上に、ひとまわり小さい銅箔A19を直接重ねて配置し、この銅箔A19上に絶縁層3金属箔20を積み重ねて、層間接続や導体回路を形成して配線基板(図示しない。)を形成した後、支持基板17の銅箔13と銅箔A19が直接重ねられた領域は接着しないことを利用して、切断箇所24を切断することによって、配線基板と支持基板17とを分離する方法(特許文献2、3)などが開示されている。これらの製法は、従来のビルドアップ工法と違い、製造される配線基板自体の構成には、支持基板となるコア基板を必要としない。このため、このような製法を、本発明においては、以下、コアレス工法という。   As a method for avoiding such a problem, as shown in FIGS. 8A and 8B, a support substrate 17 having a peelable copper foil 9 (an ultrathin copper foil with a carrier copper foil) on both sides is prepared. And after forming a wiring board (not shown) on the peelable copper foil 9 of both surfaces of this support substrate 17, the wiring board and the support substrate 17 are separated using the peeling action of the peelable copper foil 9 ( Patent Document 1) is disclosed. Further, as shown in FIGS. 9A and 9B, a metal-clad laminate 12 having copper foils 13 on both surfaces of the insulating layer 14 is prepared as a support substrate 17, and the copper foils 13 on both surfaces of the support substrate 17 are prepared. A small copper foil A19 is placed directly on top of each other, and an insulating layer 3 metal foil 20 is stacked on the copper foil A19 to form an interlayer connection and a conductor circuit to form a wiring board (not shown). After that, the method of separating the wiring substrate and the support substrate 17 by cutting the cut portion 24 by utilizing the fact that the region where the copper foil 13 and the copper foil A19 of the support substrate 17 are directly overlapped is not adhered ( Patent documents 2, 3) and the like are disclosed. Unlike the conventional build-up method, these manufacturing methods do not require a core substrate serving as a support substrate in the configuration of the manufactured wiring substrate itself. For this reason, such a manufacturing method is hereinafter referred to as a coreless construction method in the present invention.

これらのコアレス工法によれば、支持基板の機械的強度に加え、配線基板が2枚分の厚みとなるため、層数の少ない段階の薄型の配線基板の状態であっても、支持基板と配線基板を含めた全体の厚みが厚くなり、剛性が増すので、製造設備内での引っかかりによる折れ、破損などを抑制できる。また、支持基板の両側に、対称な構成で配線基板が形成されるため、製造プロセスの中で寸法変動による反りが生じても、反りによる応力が支持基板の両側でほぼ釣り合うことにより、支持基板と配線基板を含めた全体としては、反りを抑制することができる。さらに、特許文献2、3のコアレス工法では、従来のビルドアップ法のように内層となるコア基板の両側に配線層を積み上げるのではなく、銅箔Aの片側にだけ配線層を積み上げることになる。このため、配線基板の最外層の一方の導体層は、銅箔Aだけで構成できるので、微細配線パターンの形成に有利となる。なお、支持基板の両側に形成される配線基板を個別にみれば、従来のビルドアップ工法のように、内層となるコア基板の両側に、1回の積層工程で同時に配線層を積み上げるのではなく、片側にだけ配線層を積み上げることになるが、1回の積層工程で2枚分の積層を行うことになるので、従来のビルドアップ法と同等の生産性を維持することができる。   According to these coreless construction methods, in addition to the mechanical strength of the support substrate, the thickness of the wiring substrate is two, so even in the state of a thin wiring substrate with a small number of layers, the support substrate and the wiring Since the entire thickness including the substrate is increased and the rigidity is increased, it is possible to suppress breakage, breakage, and the like due to catching in the manufacturing facility. In addition, since the wiring substrate is formed in a symmetric configuration on both sides of the support substrate, even if warpage due to dimensional variation occurs in the manufacturing process, the stress due to the warpage is almost balanced on both sides of the support substrate. As a whole including the wiring board, warpage can be suppressed. Further, in the coreless construction methods of Patent Documents 2 and 3, the wiring layers are stacked only on one side of the copper foil A, instead of stacking the wiring layers on both sides of the core substrate that is the inner layer as in the conventional build-up method. . For this reason, since one conductor layer of the outermost layer of a wiring board can be comprised only with the copper foil A, it becomes advantageous for formation of a fine wiring pattern. In addition, if the wiring boards formed on both sides of the support board are viewed individually, the wiring layers are not stacked simultaneously in one laminating process on both sides of the core board as the inner layer as in the conventional build-up method. The wiring layers are stacked only on one side, but since two sheets are stacked in one stacking process, productivity equivalent to that of the conventional build-up method can be maintained.

特許第4273895号公報Japanese Patent No. 4273895 特開2009−252827号公報JP 2009-252827 A 特開2010−080595号公報JP 2010-080595 A

一方で、電子部品素子を搭載する配線基板の用途として、SAW(Surface Acoustic Wave:表面弾性波)デバイスを構成する配線基板としての用途があるが、小型化・薄型化の要求に伴い、ファイスダウンでフリップチップ接続されたSAW圧電素子の活性面(表面弾性波の振動部分)と配線基板表面の第1層配線パターンとの隙間に形成される振動空間が、より狭く(例えば、10μm程度)なるように設計される傾向がある。このため、配線基板表面の第1層配線パターンの表面の高低差が大きいと、配線パターンとSAW圧電素子の活性面が接触する可能性があり、フィルタとしての機能を確保できない問題がある。   On the other hand, as a wiring board for mounting electronic component elements, there is a use as a wiring board constituting a SAW (Surface Acoustic Wave) device. The vibration space formed in the gap between the active surface (vibration portion of the surface acoustic wave) of the SAW piezoelectric element flip-chip connected to the first layer wiring pattern on the surface of the wiring board becomes narrower (for example, about 10 μm). Tend to be designed to be For this reason, if the height difference of the surface of the first layer wiring pattern on the surface of the wiring board is large, there is a possibility that the wiring pattern and the active surface of the SAW piezoelectric element may come into contact with each other, and there is a problem that the function as a filter cannot be secured.

特許文献1では、両面にピーラブル銅箔(キャリア銅箔付き極薄銅箔)を有する支持基板を準備する際に、プリプレグの両側にピーラブル銅箔を構成し、加熱・加圧により積層するが、支持基板としての剛性を確保するためには、ガラス繊維を有するプリプレグを使う必要があるため、ガラス繊維によってピーラブル銅箔にうねりが生じる傾向がある。このうねりを生じたピーラブル銅箔上にビルドアップ法で配線基板を形成した後、ピーラブル銅箔のキャリア銅箔と極薄銅箔との間で、配線基板と支持基板とを分離して、ピーラブル銅箔の極薄銅箔を配線基板側に転写するため、この極薄銅箔はうねりを有している。SAW圧電素子を搭載する配線基板では、めっき等による凹凸の要因を無くすため、めっき等に曝されていない銅箔をそのままエッチングして外層回路を形成する工法(銅箔エッチング工法)が望ましい。しかし、うねりが生じたままの極薄銅箔を使用して外層回路を形成すると、SAW圧電素子を搭載する外層回路にうねりによる高低差が生じてしまい、SAWフィルタとしての特性に影響する問題がある。   In Patent Document 1, when preparing a support substrate having a peelable copper foil (ultra-thin copper foil with a carrier copper foil) on both sides, the peelable copper foil is configured on both sides of the prepreg and laminated by heating and pressurization. In order to secure the rigidity as the support substrate, it is necessary to use a prepreg having glass fibers, and thus the glass fibers tend to cause undulations in the peelable copper foil. After forming the wiring board on the peelable copper foil with this undulation by the build-up method, the wiring board and the supporting board are separated between the carrier copper foil and the ultra-thin copper foil of the peelable copper foil, In order to transfer the ultra-thin copper foil of the copper foil to the wiring board side, this ultra-thin copper foil has undulations. In a wiring board on which a SAW piezoelectric element is mounted, a method (copper foil etching method) in which an outer layer circuit is formed by directly etching a copper foil that has not been exposed to plating or the like is desirable in order to eliminate the cause of unevenness due to plating or the like. However, if an outer layer circuit is formed using ultrathin copper foil with undulations, the outer layer circuit on which the SAW piezoelectric element is mounted has a difference in height due to undulations, which affects the characteristics of the SAW filter. is there.

特許文献2、3では、特許文献1と同様に、支持基板のガラス繊維による銅箔のうねりが生じることに加えて、以下の問題がある。すなわち、特許文献2、3では、図9(1)、(2)に示すように、支持基板17の両面の銅箔13上に、ひとまわり小さい銅箔A19を直接重ねて配置するため、銅箔A19の外周部には銅箔A19の厚さ分の段差を有している。このため、銅箔A19の上に配置する絶縁層3の厚みが薄いと、この段差箇所に空隙23が生じる場合がある。そこで、段差があっても絶縁層3を追従するように、銅箔20上にクッション材を配置することが考えられるが、クッション材は柔らかいため、積層の際に、クッション材の動きによって銅箔A19が位置ずれを起こす場合がある。このため、銅箔A19の上に配置する絶縁層3の厚みを厚くすることにより、銅箔Aの段差を埋める必要があるが、この場合は、絶縁層3が厚くなるため、絶縁層3のガラス繊維によっても、銅箔A19にうねりが生じる。したがって、この銅箔Aをエッチングして外層回路を形成すると、SAW圧電素子を搭載する外層回路にうねりによる高低差が生じてしまい、SAWフィルタとしての特性に影響する問題がある。   In Patent Documents 2 and 3, as in Patent Document 1, in addition to the undulation of the copper foil caused by the glass fibers of the support substrate, there are the following problems. That is, in Patent Documents 2 and 3, as shown in FIGS. 9 (1) and 9 (2), a small copper foil A 19 is placed directly on the copper foil 13 on both sides of the support substrate 17. The outer periphery of the foil A19 has a level difference corresponding to the thickness of the copper foil A19. For this reason, if the thickness of the insulating layer 3 arranged on the copper foil A19 is thin, the gap 23 may be generated at this stepped portion. Therefore, it is conceivable to dispose a cushion material on the copper foil 20 so as to follow the insulating layer 3 even if there is a step. However, since the cushion material is soft, the copper foil is moved by the movement of the cushion material during lamination. A19 may cause a positional shift. For this reason, it is necessary to fill the step of the copper foil A by increasing the thickness of the insulating layer 3 disposed on the copper foil A19. In this case, however, the insulating layer 3 becomes thicker, so The glass fiber also causes undulation in the copper foil A19. Therefore, when the outer layer circuit is formed by etching the copper foil A, the height difference due to the undulation is generated in the outer layer circuit on which the SAW piezoelectric element is mounted, and there is a problem that affects the characteristics as the SAW filter.

本発明は、上記問題点に鑑みなされたものであり、支持基板を用いたコアレス工法によって配線基板を作製する場合に、配線基板の外層回路のうねりによる高低差を抑制可能な配線基板の製造方法を提供することを目的とする。   The present invention has been made in view of the above problems, and in the case of manufacturing a wiring board by a coreless method using a support substrate, a method of manufacturing a wiring board capable of suppressing a height difference due to undulation of an outer layer circuit of the wiring board. The purpose is to provide.

本発明は、以下のものに関する。
(1) 支持基板となる金属箔張り積層板と接着層と複層金属箔とをこの順番に構成し、前記複層金属箔上に、積層体の一部となる絶縁層と金属箔とをこの順番に構成した後、一括して加熱加圧することにより、支持基板上に積層された積層体を形成する工程と、前記複層金属箔の金属箔同士を物理的に剥離することにより、前記複層金属箔の一方の金属箔とともに、積層体を支持基板から分離する工程と、前記分離した積層体の一方の金属箔をエッチングすることにより、外層回路を形成する工程と、を有する配線基板の製造方法。
(2) 項(1)において、複層金属箔が、複数の金属箔を剥離層を介して積層して形成されたものであり、積層体を支持基板から分離する工程では、前記積層体側に残る一方の金属箔と剥離層との間で物理的に剥離する配線基板の製造方法。
(3) 項(1)または(2)において、積層体を支持基板から分離する工程では、前記積層体側に残る一方の金属箔の厚みが9〜35μmである配線基板の製造方法。
(4) 項(1)から(3)の何れかにおいて、複層金属箔が、積層体側に残る一方の金属箔の厚みが、支持基板側に残る他方の金属箔の厚みよりも厚い配線基板の製造方法。
(5) 項(1)から(4)の何れかにおいて、支持基板上に接着された積層体を形成する工程の後、前記積層体を支持基板から分離する工程の前に、前記積層体には、所望の層数の絶縁層及び導体回路並びに層間接続とを設ける工程を有する配線基板の製造方法。
The present invention relates to the following.
(1) A metal foil-clad laminate, an adhesive layer, and a multilayer metal foil to be a support substrate are configured in this order, and an insulating layer and a metal foil that are part of the laminate are formed on the multilayer metal foil. After configuring in this order, the step of forming a laminate laminated on a support substrate by collectively heating and pressing, and by physically peeling the metal foils of the multilayer metal foil, A wiring board having a step of separating the laminate from the support substrate together with one metal foil of the multilayer metal foil, and a step of forming an outer layer circuit by etching one metal foil of the separated laminate. Manufacturing method.
(2) In the item (1), the multilayer metal foil is formed by laminating a plurality of metal foils via a release layer, and in the step of separating the laminate from the support substrate, A method of manufacturing a wiring board in which physical separation is performed between the remaining metal foil and the release layer.
(3) The method for manufacturing a wiring board according to item (1) or (2), wherein in the step of separating the laminate from the support substrate, the thickness of one metal foil remaining on the laminate side is 9 to 35 μm.
(4) The wiring board according to any one of items (1) to (3), wherein the thickness of one metal foil remaining on the laminate side is greater than the thickness of the other metal foil remaining on the support board side Manufacturing method.
(5) In any one of items (1) to (4), after the step of forming the laminated body bonded on the support substrate, before the step of separating the laminated body from the support substrate, The manufacturing method of the wiring board which has the process of providing the insulating layer of a desired number of layers, a conductor circuit, and interlayer connection.

本発明によれば、支持基板を用いたコアレス工法によって配線基板を作製する場合に、配線基板の外層回路のうねりによる高低差を抑制可能な配線基板の製造方法を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, when producing a wiring board by the coreless construction method using a support substrate, the manufacturing method of the wiring board which can suppress the height difference by the wave | undulation of the outer layer circuit of a wiring board can be provided.

本発明に用いる複層金属箔の断面図である。It is sectional drawing of the multilayer metal foil used for this invention. 本発明の配線基板の製造方法の一部を表すフロー図である。It is a flowchart showing a part of manufacturing method of the wiring board of this invention. 本発明の配線基板の製造方法の一部を表すフロー図である。It is a flowchart showing a part of manufacturing method of the wiring board of this invention. 本発明の配線基板の製造方法の一部を表すフロー図である。It is a flowchart showing a part of manufacturing method of the wiring board of this invention. 本発明の配線基板の製造方法の一部を表すフロー図である。It is a flowchart showing a part of manufacturing method of the wiring board of this invention. 本発明の配線基板の製造方法の一部を表すフロー図である。It is a flowchart showing a part of manufacturing method of the wiring board of this invention. 本発明の配線基板の製造方法の一部を表すフロー図である。It is a flowchart showing a part of manufacturing method of the wiring board of this invention. 従来の配線基板の製造方法の一部を表すフロー図である。It is a flowchart showing a part of manufacturing method of the conventional wiring board. 他の従来の配線基板の製造方法の一部を表すフロー図である。It is a flowchart showing a part of manufacturing method of the other conventional wiring board.

本発明の配線基板の製造方法の一例について、図1〜図7を用いて以下に説明する。   An example of a method for manufacturing a wiring board according to the present invention will be described below with reference to FIGS.

まず、図1に示すように、複層金属箔9を準備する。複層金属箔9としては、2層以上の金属箔(例えば、第1金属箔10と第2金属箔11)を有する複層金属箔9であって、少なくとも1箇所の間(例えば、第1金属箔10と第2金属箔11との間)が物理的に剥離可能なものを用いる。第1金属箔10と第2金属箔11の間には、両者を物理的に剥離可能とし、また剥離強度を安定化するための剥離層16が形成されていてもよい。このような複合金属箔9としては、キャリアとなる比較的厚い金属箔上に、これよりも薄く物理的に剥離可能な金属箔を形成した、市販のいわゆるキャリア銅箔付き極薄銅箔を用いることができるが、本願発明においては、従来用いられるように、必ずしも厚いキャリア銅箔を第2金属箔11(支持基板17側)とし、薄い極薄銅箔を第1金属箔10(配線基板1側)とする必要はなく、これとは反対に、厚いキャリア銅箔を第1金属箔10(配線基板1側)とし、薄い極薄銅箔を第2金属箔11(支持基板17側)としてもよい。つまり、キャリア銅箔付き極薄銅箔の中で、配線基板1の外層回路2として必要な厚みを有する方の銅箔を第1金属箔10(配線基板1側)に用いればよい。   First, as shown in FIG. 1, a multilayer metal foil 9 is prepared. The multi-layer metal foil 9 is a multi-layer metal foil 9 having two or more metal foils (for example, the first metal foil 10 and the second metal foil 11), and is between at least one place (for example, the first metal foil 10). A material that is physically peelable between the metal foil 10 and the second metal foil 11 is used. Between the 1st metal foil 10 and the 2nd metal foil 11, the peeling layer 16 for making both physically peelable and stabilizing the peeling strength may be formed. As such a composite metal foil 9, a commercially available ultra-thin copper foil with a carrier copper foil in which a metal foil that is thinner and physically peelable is formed on a relatively thick metal foil that becomes a carrier is used. However, in the present invention, as conventionally used, the thick carrier copper foil is necessarily the second metal foil 11 (support substrate 17 side), and the thin ultrathin copper foil is the first metal foil 10 (wiring substrate 1). On the contrary, the thick carrier copper foil is used as the first metal foil 10 (wiring board 1 side), and the thin ultra-thin copper foil is used as the second metal foil 11 (supporting board 17 side). Also good. That is, among the ultra-thin copper foils with carrier copper foil, the copper foil having the necessary thickness as the outer layer circuit 2 of the wiring board 1 may be used for the first metal foil 10 (wiring board 1 side).

第1金属箔10は、支持基板17上に形成される配線基板1の外層回路2となるものである。エッチングによって回路加工が可能であって、配線基板1の導体回路として機能するものであれば特に限定はないが、汎用性や取り扱い性の点で、材質としては銅箔やアルミニウム箔が好ましく、エッチングによる微細な回路形成の点から、厚みとしては1〜70μmを使用することができる。外層回路2としての強度と微細回路形成性のバランスから、特には9〜35μmが好ましい。また、第1金属箔10と第2金属箔11との間には、両者を物理的に剥離可能とし、また剥離強度を安定化するための剥離層16が設けられる。剥離層16としては、絶縁層3と積層する際の加熱・加圧を複数回行っても剥離強度が安定化しているものが好ましい。このような剥離層16としては、特開2003−181970号公報に開示された金属酸化物層と有機剤層を形成したものや、特開2003−094553号公報に開示されたCu−Ni−Mo合金からなるものが挙げられる。なお、この剥離層16は、第1金属箔10と第2金属箔11との間で物理的に剥離する際には、第2金属箔11側(支持基板17側)に付着した状態で剥離し、第1金属箔10側(配線基板1側)の表面には残留しないものが望ましい。   The first metal foil 10 serves as the outer layer circuit 2 of the wiring substrate 1 formed on the support substrate 17. There is no particular limitation as long as the circuit can be processed by etching and functions as a conductor circuit of the wiring board 1, but in terms of versatility and handleability, the material is preferably copper foil or aluminum foil. From the point of fine circuit formation by 1 to 70 μm can be used as the thickness. From the balance of strength as the outer layer circuit 2 and fine circuit formability, 9 to 35 μm is particularly preferable. Moreover, between the 1st metal foil 10 and the 2nd metal foil 11, the peeling layer 16 for making both physically peelable and stabilizing the peeling strength is provided. As the release layer 16, it is preferable that the peel strength is stabilized even when the heating and pressurization at the time of lamination with the insulating layer 3 are performed a plurality of times. As such a release layer 16, a metal oxide layer and an organic agent layer disclosed in JP-A-2003-181970 are formed, or Cu-Ni-Mo disclosed in JP-A-2003-094553. The thing which consists of alloys is mentioned. In addition, when this peeling layer 16 peels physically between the 1st metal foil 10 and the 2nd metal foil 11, it peels in the state adhering to the 2nd metal foil 11 side (support substrate 17 side). However, it is desirable that the surface does not remain on the surface of the first metal foil 10 side (wiring substrate 1 side).

第2金属箔11は、複層金属箔9を絶縁層14と積層して支持基板17を作成する際に、絶縁層14と積層される側に位置するものであり、第2金属箔11との間で物理的に剥離可能とされる。支持基板17の接着層15と積層される際に、接着層15との接着性を有していれば特に材質や厚みは問わないが、汎用性や取り扱い性の点で、材質としては銅箔やアルミニウム箔が好ましく、厚みとしては1〜70μmを使用できる。また、第1金属箔10との間には、間での剥離強度を安定化するため、上述したような剥離層16を設けるのが好ましい。   The second metal foil 11 is positioned on the side laminated with the insulating layer 14 when the multilayer metal foil 9 is laminated with the insulating layer 14 to form the support substrate 17. It can be physically peeled between. When laminated with the adhesive layer 15 of the support substrate 17, the material and the thickness are not particularly limited as long as they have adhesiveness with the adhesive layer 15. However, in terms of versatility and handleability, the material is copper foil. Or aluminum foil is preferable, and a thickness of 1 to 70 μm can be used. In addition, in order to stabilize the peel strength between the first metal foil 10, it is preferable to provide the release layer 16 as described above.

次に、図2(1)、(2)に示すように、支持基板17となる金属箔張り積層板12と接着層15と複層金属箔9とをこの順番に構成し、前記複層金属箔9上に、積層体22の一部となる絶縁層3と金属箔20とをこの順番に構成した後、一括して加熱加圧することにより、支持基板17上に積層された積層体22を形成する。金属箔張り積層板12は、予め準備したものを用いてもよいし、金属箔張り積層板12を形成するための絶縁層14と金属箔13を構成し、その上に上述した接着層15等の他の部材を構成して、これらの他の部材とともに加熱加圧して形成してもよい。このようにして形成された支持基板17上に積層された積層体22は、支持基板17が、金属箔張り積層板12を有するので、金属箔張り積層板12の絶縁層14と金属箔13の両者により剛性を確保することができる。しかも、金属箔張り積層板12の金属箔13上に、直接、積層体22の一部を構成する複合金属箔9が配置されるのではなく、接着層15を介して接着されているため、金属箔張り積層板12の金属箔13が絶縁層14のガラス繊維によるうねりを有していたとしても、接着層15がこのうねりを吸収するので、複合金属箔9にうねりが転写するのを抑制することができる。   Next, as shown in FIGS. 2 (1) and 2 (2), a metal foil-clad laminate 12, an adhesive layer 15 and a multilayer metal foil 9 to be a support substrate 17 are configured in this order, and the multilayer metal After the insulating layer 3 and the metal foil 20 that are part of the laminate 22 are configured in this order on the foil 9, the laminate 22 laminated on the support substrate 17 is collectively heated and pressed. Form. As the metal foil-clad laminate 12, those prepared in advance may be used, or the insulating layer 14 and the metal foil 13 for forming the metal foil-clad laminate 12 are formed, and the adhesive layer 15 described above is formed thereon. Other members may be configured and heated and pressed together with these other members. In the laminate 22 laminated on the support substrate 17 formed in this way, since the support substrate 17 has the metal foil-clad laminate 12, the insulating layer 14 and the metal foil 13 of the metal foil-clad laminate 12 are formed. Both can ensure rigidity. Moreover, since the composite metal foil 9 constituting a part of the laminate 22 is not directly disposed on the metal foil 13 of the metal foil-clad laminate 12, but is bonded through the adhesive layer 15. Even if the metal foil 13 of the metal foil-clad laminate 12 has a swell due to the glass fiber of the insulating layer 14, the adhesive layer 15 absorbs this swell, so that the transfer of the swell to the composite metal foil 9 is suppressed. can do.

支持基板17は、複層金属箔9を用いて、配線基板1を製造する際に支持体となるものであり、剛性を確保することによって、作業性を向上させること、およびハンドリング時の損傷を防いで歩留りを向上させるのを主な役割とするものである。このため、絶縁層14としては、ガラス繊維等の補強材を有するものが望ましく、例えば、ガラスエポキシ、ガラスポリイミド等のプリプレグを、金属箔13と重ねて、熱プレス等を用いて加熱・加圧して積層一体化することで形成できる。   The support substrate 17 serves as a support when the wiring substrate 1 is manufactured using the multilayer metal foil 9. By ensuring rigidity, workability is improved and damage during handling is prevented. Its main role is to prevent and improve yield. For this reason, the insulating layer 14 preferably has a reinforcing material such as glass fiber. For example, a prepreg such as glass epoxy or glass polyimide is overlapped with the metal foil 13 and heated and pressurized using a hot press or the like. Can be formed by stacking and integrating.

接着層15は、金属箔張り積層板12と複層金属箔9とを接着するものであり、金属箔張り積層板12の金属箔13の表面に浮き出た絶縁層14中の補強繊維等によるうねりを吸収する作用を有するものである。接着層15としては、配線基板1の絶縁層として使用されるものを使用することができるが、補強繊維を有しないものがうねりの緩衝性能の点で望ましい。   The adhesive layer 15 is for bonding the metal foil-clad laminate 12 and the multilayer metal foil 9 and swells due to reinforcing fibers or the like in the insulating layer 14 raised on the surface of the metal foil 13 of the metal foil-clad laminate 12. It has the effect | action which absorbs. As the adhesive layer 15, those used as the insulating layer of the wiring substrate 1 can be used, but those having no reinforcing fiber are desirable in terms of swell cushioning performance.

次に、図3(3)、(4)に示すように、層間接続孔21を形成し、層間接続5や内層回路6を形成する。層間接続5は、例えば、いわゆるコンフォーマル工法を用いて層間接続孔21を形成した後、この層間接続孔21内をめっきすることで形成することができる。このめっきには、下地めっきとして薄付け無電解銅めっきを行った後、厚付けめっきとして無電解銅めっきや電気銅めっき、フィルドビアめっき等を用いることができる。エッチングする導体層の厚みを薄くして微細回路を形成し易くするためには、金属箔20及び層間接続孔21に薄付けの下地めっきを行った後、めっきレジストを形成し、電気銅めっきやフィルドビアめっきで、厚付けのパターンめっき(図示しない。)を行うのが望ましい。内層回路6は、例えば、層間接続孔21へのめっきを行った後、エッチングによって不要部分の導体層を除去することにより形成することができる。   Next, as shown in FIGS. 3 (3) and 3 (4), an interlayer connection hole 21 is formed, and an interlayer connection 5 and an inner layer circuit 6 are formed. The interlayer connection 5 can be formed, for example, by forming the interlayer connection hole 21 by using a so-called conformal method and then plating the interlayer connection hole 21. In this plating, electroless copper plating, electrolytic copper plating, filled via plating, or the like can be used as the thick plating after thin electroless copper plating is performed as the base plating. In order to reduce the thickness of the conductor layer to be etched and facilitate the formation of a fine circuit, after performing thin base plating on the metal foil 20 and the interlayer connection hole 21, a plating resist is formed, It is desirable to perform thick pattern plating (not shown) by filled via plating. The inner layer circuit 6 can be formed, for example, by plating the interlayer connection hole 21 and then removing an unnecessary portion of the conductor layer by etching.

次に、図4(5)、(6)及び図5(7)、(8)に示すように、内層回路6や層間接続5の上に、さらに絶縁層3と金属箔20を形成し、図3(3)、(4)のときと同様にして、所望の層数となるように、内層回路6や層間接続5、外層回路となるパターンめっき18を形成する。   Next, as shown in FIGS. 4 (5), (6) and FIGS. 5 (7), (8), the insulating layer 3 and the metal foil 20 are further formed on the inner layer circuit 6 and the interlayer connection 5, In the same manner as in FIGS. 3 (3) and 3 (4), the inner layer circuit 6, the interlayer connection 5, and the pattern plating 18 serving as the outer layer circuit are formed so as to have a desired number of layers.

次に、図6(9)に示すように、複層金属箔の第1金属箔10と第2金属箔11との間で、金属箔同士を物理的に剥離することにより、第1金属箔10とともに、積層体22を支持基板17から分離する。   Next, as shown in FIG. 6 (9), the first metal foil is physically peeled between the first metal foil 10 and the second metal foil 11 of the multilayer metal foil to thereby form the first metal foil. 10, the laminate 22 is separated from the support substrate 17.

次に、図7(10)、(11)に示すように、分離した積層体22の第1の金属箔10に対しては、エッチングレジストを形成し、銅箔エッチングによる回路加工により、外層回路2を形成する。積層体22のパターンめっき18を行った面については、全面をエッチングすることにより、厚みの薄い部分は導体層が消失して絶縁層3が露出し、パターンめっき18を行った部分のみが外層回路7となる。なお、図7(10)〜(12)は、図6(9)のように分離した積層体22のうち、下側の部分のみを表している。これにより、金属箔10をエッチングして形成した外層回路2は、うねりによる高低差が抑制されており、SAW圧電素子の特性に対するうねりの影響を低減することが可能になる。   Next, as shown in FIGS. 7 (10) and (11), an etching resist is formed on the first metal foil 10 of the separated laminate 22, and the outer layer circuit is formed by circuit processing by copper foil etching. 2 is formed. By etching the entire surface of the laminated body 22 on which the pattern plating 18 is performed, the conductive layer disappears in the thin portion and the insulating layer 3 is exposed, and only the portion on which the pattern plating 18 is performed is the outer layer circuit. 7 7 (10) to (12) show only the lower part of the stacked body 22 separated as shown in FIG. 6 (9). As a result, in the outer layer circuit 2 formed by etching the metal foil 10, the height difference due to the undulation is suppressed, and the influence of the undulation on the characteristics of the SAW piezoelectric element can be reduced.

次に、図7(12)に示すように、必要に応じてソルダーレジスト4や保護めっき8を形成してもよい。保護めっき8としては、配線基板1の接続端子の保護めっき8として用いられるニッケルめっきと金めっきが望ましい。   Next, as shown in FIG. 7 (12), a solder resist 4 and a protective plating 8 may be formed as necessary. As the protective plating 8, nickel plating and gold plating used as the protective plating 8 for the connection terminals of the wiring board 1 are desirable.

以下に、本発明の実施例を説明するが、本発明は本実施例に限定されない。   Examples of the present invention will be described below, but the present invention is not limited to the examples.

まず、図1に示すように、第1金属箔10と第2金属箔11と有する複層金属箔9として、ピーラブル銅箔FD−P9/18(古河サーキットフォイル株式会社製、商品名)を準備した。第1金属箔10は18μmの銅箔を、第2金属箔11は9μmの極薄銅箔を用いている。第1金属箔10と第2金属箔11との間には、物理的な剥離が可能である。   First, as shown in FIG. 1, a peelable copper foil FD-P9 / 18 (trade name, manufactured by Furukawa Circuit Foil Co., Ltd.) is prepared as a multilayer metal foil 9 having a first metal foil 10 and a second metal foil 11. did. The first metal foil 10 is a 18 μm copper foil, and the second metal foil 11 is a 9 μm ultrathin copper foil. Physical separation is possible between the first metal foil 10 and the second metal foil 11.

次に、図2(1)、(2)に示すように、支持基板17となる金属箔張り積層板12と接着層15と複層金属箔9とをこの順番に構成し、前記複層金属箔9上に、積層体22の一部となる絶縁層3と金属箔20とをこの順番に構成した後、一括して加熱加圧することにより、支持基板17上に積層された積層体22を形成した。なお、金属箔張り積層板12としては、MCL−E−679(日立化成工業株式会社製、商品名)、板厚0.2mm、銅箔厚さ18μm、500mm×600mmのものを用い、接着層15としては、ガラス繊維を有しないエポキシ系の接着シートであるAS−2600(日立化成工業株式会社製、商品名)、厚さ25μmを用いた。   Next, as shown in FIGS. 2 (1) and 2 (2), a metal foil-clad laminate 12, an adhesive layer 15 and a multilayer metal foil 9 to be a support substrate 17 are configured in this order, and the multilayer metal After the insulating layer 3 and the metal foil 20 that are part of the laminate 22 are configured in this order on the foil 9, the laminate 22 laminated on the support substrate 17 is collectively heated and pressed. Formed. In addition, as the metal foil-clad laminate 12, MCL-E-679 (manufactured by Hitachi Chemical Co., Ltd., trade name), plate thickness of 0.2 mm, copper foil thickness of 18 μm, 500 mm × 600 mm, and adhesive layer are used. No. 15, AS-2600 (trade name, manufactured by Hitachi Chemical Co., Ltd.), which is an epoxy adhesive sheet having no glass fiber, and a thickness of 25 μm were used.

次に、図3(3)、(4)に示すように、層間接続5や内層回路6を形成した。層間接続5は、コンフォーマル工法を用いて層間接続孔21を形成した後、この層間接続孔21内をめっきすることで形成した。このめっきには、下地めっきとして薄付け無電解銅めっきを行った後、感光性のめっきレジストを形成し、厚付けのパターンめっきを硫酸銅電気めっきで行った。この後、エッチングによって不要部分の銅箔20を除去することにより内層回路6を形成した。   Next, as shown in FIGS. 3 (3) and (4), an interlayer connection 5 and an inner layer circuit 6 were formed. The interlayer connection 5 was formed by forming the interlayer connection hole 21 using a conformal method and then plating the interior of the interlayer connection hole 21. In this plating, thin electroless copper plating was performed as a base plating, a photosensitive plating resist was formed, and thick pattern plating was performed by copper sulfate electroplating. Thereafter, the inner layer circuit 6 was formed by removing the unnecessary copper foil 20 by etching.

次に、図4(5)、(6)および図5(7)、(8)に示すように、内層回路6や層間接続5の上に、さらに絶縁層3と銅箔20を形成し、内層回路6や層間接続5、外層回路となるパターンめっき18を形成して、4層の導体層を有する積層体22を形成した。   Next, as shown in FIGS. 4 (5), (6) and FIGS. 5 (7), (8), the insulating layer 3 and the copper foil 20 are further formed on the inner layer circuit 6 and the interlayer connection 5, The inner layer circuit 6, the interlayer connection 5, and the pattern plating 18 to be the outer layer circuit were formed to form a laminate 22 having four conductive layers.

次に、図6(9)に示すように、複層金属箔9の第1金属箔10と第2金属箔11との間で、積層体22を第1金属箔10とともに支持基板17から物理的に剥離して分離した。   Next, as shown in FIG. 6 (9), between the first metal foil 10 and the second metal foil 11 of the multilayer metal foil 9, the laminated body 22 is physically separated from the support substrate 17 together with the first metal foil 10. Peeled off and separated.

次に、図7(10)、(11)に示すように、分離した積層体22の第1金属箔10を銅箔エッチングにより回路加工して、外層回路2を形成した。また、同時に、パターンめっき18部分を残して、外層回路7を形成した。   Next, as shown in FIGS. 7 (10) and (11), the first metal foil 10 of the separated laminate 22 was processed by copper foil etching to form the outer layer circuit 2. At the same time, the outer layer circuit 7 was formed leaving the pattern plating 18 portion.

次に、図7(12)に示すように、感光性のソルダーレジスト4を形成し、その後、保護めっき8として、無電解ニッケルめっきと無電解金めっきを行い、配線基板1を形成した。   Next, as shown in FIG. 7 (12), a photosensitive solder resist 4 was formed, and then, as the protective plating 8, electroless nickel plating and electroless gold plating were performed to form the wiring board 1.

(比較例1)
図8(1)、(2)に示すように、支持基板17を作成する際に、絶縁層14上に複層金属箔9を直接配置して構成し、複層金属箔9上に積層体22の一部となる絶縁層3と金属箔20とをこの順番に構成した後、一括して加熱加圧することにより、支持基板17上に積層された積層体22を形成した。絶縁層3は、GEN−679N(日立化成工業株式会社製、商品名)、公称厚さ60μmを2枚用いた。つまり、支持基板17は、絶縁層14の上に直接複層金属箔9を配置し、金属箔張り積層板や接着層は用いないで形成しているが、その他の点については、実施例と同様である。
(Comparative Example 1)
As shown in FIGS. 8A and 8B, when the support substrate 17 is formed, the multilayer metal foil 9 is directly arranged on the insulating layer 14, and the laminate is formed on the multilayer metal foil 9. After the insulating layer 3 and the metal foil 20 that are a part of the structure 22 were configured in this order, the laminated body 22 laminated on the support substrate 17 was formed by heating and pressing all at once. As the insulating layer 3, two pieces of GEN-679N (trade name, manufactured by Hitachi Chemical Co., Ltd.) and a nominal thickness of 60 μm were used. That is, the support substrate 17 is formed by disposing the multilayer metal foil 9 directly on the insulating layer 14 and without using a metal foil-clad laminate or an adhesive layer. It is the same.

(比較例2)
図9(1)、(2)に示すように、絶縁層14の両面に銅箔13を有する金属張り積層板12を支持基板17として準備し、この支持基板17の両面の銅箔13上に、ひとまわり小さい銅箔A19を直接重ねて配置し、この銅箔A19上に絶縁層3と金属箔20を積み重ねて構成した後、一括して加熱加圧することにより、支持基板17上に積層された積層体22を形成した。なお、金属箔張り積層板12としては、MCL−E−679(日立化成工業株式会社製、商品名)、板厚0.4mm、銅箔厚さ18μmを用い、銅箔A19としては、EC−M3−VLP−23(古河サーキットフォイル株式会社製、商品名)を用いた。絶縁層3としては、GEN−679N(日立化成工業株式会社製、商品名)、公称厚さ60μmを用いた。
(Comparative Example 2)
As shown in FIGS. 9A and 9B, a metal-clad laminate 12 having copper foils 13 on both sides of the insulating layer 14 is prepared as a support substrate 17, and the copper foils 13 on both sides of the support substrate 17 are formed on the support substrate 17. A small copper foil A19 is directly stacked, and the insulating layer 3 and the metal foil 20 are stacked on the copper foil A19. A laminated body 22 was formed. In addition, as the metal foil-clad laminate 12, MCL-E-679 (manufactured by Hitachi Chemical Co., Ltd., trade name), a plate thickness of 0.4 mm and a copper foil thickness of 18 μm was used, and as the copper foil A19, EC- M3-VLP-23 (Furukawa Circuit Foil, product name) was used. As the insulating layer 3, GEN-679N (manufactured by Hitachi Chemical Co., Ltd., trade name) having a nominal thickness of 60 μm was used.

表1に、実施例、比較例1、比較例2の方法で作製した積層体を支持基板と分離した後、銅箔エッチングにより外層回路を形成して配線基板とした場合の外層回路の表面(実施例及び比較例1においては第1金属箔、比較例2においては銅箔A19)の高低差を測定した結果を示す。なお、外層回路は、SAW圧電素子をフリップチップ接続するためのフリップチップ端子を、1ピース(10mm×10mm)当り、数10個形成したものであり、また、500mm×600mmの大きさの積層板全体では、約2000ピースが配置されている。この積層板全体を縦横3等分して全部で9分割した領域毎に1ピースを選択し、さらにピース毎に6個ずつのフリップチップ端子を選択して、絶縁層を基準として高さを測定した。基準となる絶縁層の高さは、高さを測定するフリップチップ端子の近傍の絶縁層表面とした。また、高低差の評価は、ピース毎に最も高いものと最も低いものとの高低差を算出し、このピース毎の高低差の積層板全体における最大値、最小値、平均値を求めることにより行った。高低差の測定は、レーザーフォーカス変位計LT−8010(KEYENCE社製、商品名)を用いて、フリップチップ端子の中央部を測定した。   In Table 1, after separating the laminated body produced by the method of Example, Comparative Example 1 and Comparative Example 2 from the support substrate, the outer layer circuit surface when the outer layer circuit is formed by copper foil etching to form a wiring substrate ( The results of measuring the height difference of the first metal foil in Example and Comparative Example 1 and the copper foil A19) in Comparative Example 2 are shown. The outer layer circuit is formed by forming several tens of flip chip terminals for flip chip connection of SAW piezoelectric elements per piece (10 mm × 10 mm), and a laminate having a size of 500 mm × 600 mm. In total, about 2000 pieces are arranged. Select one piece for each area that is divided into 9 parts by dividing the whole laminate into 3 parts vertically and horizontally, and select 6 flip chip terminals for each piece, and measure the height based on the insulating layer. did. The height of the reference insulating layer was the surface of the insulating layer in the vicinity of the flip chip terminal whose height is to be measured. In addition, the height difference is evaluated by calculating the height difference between the highest and lowest for each piece, and determining the maximum, minimum, and average values for the entire laminate of the height difference for each piece. It was. The height difference was measured using a laser focus displacement meter LT-8010 (manufactured by KEYENCE, trade name) at the center of the flip chip terminal.

表1に示すように、実施例は、外層回路であるフリップチップ端子のうねり(高低差)が平均1.94μmであるのに対して、比較例1は平均5.79μm、比較例2は6.81μmであり、実施例では比較例1、2に比べて、うねりを抑制できることを確認した。   As shown in Table 1, in the example, the swell (height difference) of the flip chip terminal which is the outer layer circuit is 1.94 μm on the average, while Comparative Example 1 has the average of 5.79 μm, and Comparative Example 2 has 6 It was 0.81 μm, and it was confirmed that the swell could be suppressed in the example as compared with Comparative Examples 1 and 2.

Figure 2013030603
Figure 2013030603

1:配線基板
2:外層回路
3:絶縁層
4:ソルダーレジスト
5:層間接続
6:内層回路または導体回路
7:外層回路または導体回路
8:保護めっき
9:複層金属箔またはピーラブル銅箔またはキャリア銅箔付き極薄銅箔
10:第1金属箔または一方の金属箔
11:第2金属箔または他方の金属箔
12:金属箔張り積層板
13:(金属箔張り積層板の)金属箔または銅箔
14:(金属箔張り積層板の)絶縁層
15:接着層
16:剥離層
17:支持基板または支持基板材料
18:パターンめっき
19:銅箔A
20:(積層体の)金属箔または銅箔
21:層間接続孔
22:積層体または積層体材料
23:空隙
24:切断箇所
1: Wiring board 2: Outer layer circuit 3: Insulating layer 4: Solder resist 5: Interlayer connection 6: Inner layer circuit or conductor circuit 7: Outer layer circuit or conductor circuit 8: Protective plating 9: Multi-layer metal foil or peelable copper foil or carrier Ultrathin copper foil with copper foil 10: first metal foil or one metal foil 11: second metal foil or the other metal foil 12: metal foil-clad laminate 13: metal foil or copper (of metal foil-clad laminate) Foil 14: Insulating layer 15 (of metal foil-clad laminate) 15: Adhesive layer 16: Release layer 17: Support substrate or support substrate material 18: Pattern plating 19: Copper foil A
20: Metal foil (copper) or copper foil 21: Interlayer connection hole 22: Laminate or laminate material 23: Air gap 24: Cut location

Claims (5)

支持基板となる金属箔張り積層板と接着層と複層金属箔とをこの順番に構成し、前記複層金属箔上に、積層体の一部となる絶縁層と金属箔とをこの順番に構成した後、一括して加熱加圧することにより、支持基板上に積層された積層体を形成する工程と、
前記複層金属箔の金属箔同士を物理的に剥離することにより、前記複層金属箔の一方の金属箔とともに、積層体を支持基板から分離する工程と、
前記分離した積層体の一方の金属箔をエッチングすることにより、外層回路を形成する工程と、
を有する配線基板の製造方法。
A metal foil-clad laminate, a bonding layer, and a multilayer metal foil that serve as a support substrate are configured in this order, and an insulating layer and a metal foil that are part of the laminate are formed in this order on the multilayer metal foil. After forming, a step of forming a laminated body laminated on the support substrate by collectively heating and pressing; and
Step of separating the laminate from the support substrate together with one metal foil of the multilayer metal foil by physically peeling the metal foils of the multilayer metal foil,
Etching one metal foil of the separated laminate to form an outer layer circuit;
A method of manufacturing a wiring board having
請求項1において、
複層金属箔が、複数の金属箔を剥離層を介して積層して形成されたものであり、積層体を支持基板から分離する工程では、前記積層体側に残る一方の金属箔と剥離層との間で物理的に剥離する配線基板の製造方法。
In claim 1,
The multilayer metal foil is formed by laminating a plurality of metal foils via a release layer, and in the step of separating the laminate from the support substrate, one metal foil and the release layer remaining on the laminate side A method of manufacturing a wiring board that physically peels between.
請求項1または2において、
積層体を支持基板から分離する工程では、前記積層体側に残る一方の金属箔の厚みが9〜35μmである配線基板の製造方法。
In claim 1 or 2,
In the step of separating the laminate from the support substrate, a method of manufacturing a wiring substrate in which the thickness of one metal foil remaining on the laminate is 9 to 35 μm.
請求項1から3の何れかにおいて、
複層金属箔が、積層体側に残る一方の金属箔の厚みが、支持基板側に残る他方の金属箔の厚みよりも厚い配線基板の製造方法。
In any one of Claim 1 to 3,
A method of manufacturing a wiring board in which the thickness of one metal foil in which the multilayer metal foil remains on the laminate side is thicker than the thickness of the other metal foil on the support substrate side.
請求項1から4の何れかにおいて、
支持基板上に接着された積層体を形成する工程の後、前記積層体を支持基板から分離する工程の前に、前記積層体には、所望の層数の絶縁層及び導体回路並びに層間接続とを設ける工程を有する配線基板の製造方法。
In any one of Claims 1-4,
After the step of forming the laminated body bonded on the support substrate, and before the step of separating the laminate from the support substrate, the laminate includes the desired number of insulating layers and conductor circuits, and interlayer connections. A method for manufacturing a wiring board, comprising the step of providing
JP2011165383A 2011-07-28 2011-07-28 Method of manufacturing wiring board Pending JP2013030603A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011165383A JP2013030603A (en) 2011-07-28 2011-07-28 Method of manufacturing wiring board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011165383A JP2013030603A (en) 2011-07-28 2011-07-28 Method of manufacturing wiring board

Publications (1)

Publication Number Publication Date
JP2013030603A true JP2013030603A (en) 2013-02-07

Family

ID=47787373

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011165383A Pending JP2013030603A (en) 2011-07-28 2011-07-28 Method of manufacturing wiring board

Country Status (1)

Country Link
JP (1) JP2013030603A (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015035560A (en) * 2013-08-09 2015-02-19 新光電気工業株式会社 Method of manufacturing wiring board
CN104476902A (en) * 2014-12-30 2015-04-01 烟台柳鑫新材料科技有限公司 PCB ( printed circuit board) back-drilled cover plate and manufacturing method thereof
CN104540326A (en) * 2014-12-31 2015-04-22 广州兴森快捷电路科技有限公司 Core-less board manufacturing component and manufacturing method for core-less board
CN104540339A (en) * 2014-12-31 2015-04-22 广州兴森快捷电路科技有限公司 Core-less board manufacturing component, core-less board and manufacturing method for core-less board
CN104582329A (en) * 2014-12-31 2015-04-29 广州兴森快捷电路科技有限公司 Coreless board manufacturing member, coreless board and coreless board manufacturing method
WO2015108191A1 (en) * 2014-01-17 2015-07-23 Jx日鉱日石金属株式会社 Surface-treated copper foil, copper foil with carrier, printed wiring board, copper-clad laminate, laminate and method for producing printed wiring board
JP2015211219A (en) * 2014-04-28 2015-11-24 旭徳科技股▲ふん▼有限公司 Substrate structure and manufacturing method thereof
JP2016025306A (en) * 2014-07-24 2016-02-08 日立化成株式会社 Manufacturing method of wiring board
JP6023366B1 (en) * 2015-06-17 2016-11-09 Jx金属株式会社 Copper foil with carrier, laminate, printed wiring board manufacturing method and electronic device manufacturing method
JP6023367B1 (en) * 2015-06-17 2016-11-09 Jx金属株式会社 Copper foil with carrier, laminate, printed wiring board manufacturing method and electronic device manufacturing method
JP2017011118A (en) * 2015-06-23 2017-01-12 日立化成株式会社 Carrier member for substrate manufacture, and manufacturing method of substrate
JP6099778B1 (en) * 2015-01-21 2017-03-22 Jx金属株式会社 A copper foil with a carrier, a laminate, a printed wiring board, a printed wiring board manufacturing method, and an electronic device manufacturing method.
WO2017141983A1 (en) * 2016-02-18 2017-08-24 三井金属鉱業株式会社 Printed circuit board production method
TWI633816B (en) * 2017-11-08 2018-08-21 欣興電子股份有限公司 Method for manufacturing circuit board
US10178775B2 (en) 2015-01-21 2019-01-08 Jx Nippon Mining & Metals Corporation Copper foil provided with carrier, laminate, printed wiring board, and method for fabricating printed wiring board
CN111251366A (en) * 2020-01-17 2020-06-09 珠海纵航科技有限公司 PCB drilling cover plate

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61133695A (en) * 1984-12-03 1986-06-20 日立化成工業株式会社 Manufacture of wiring board
JP2005243986A (en) * 2004-02-27 2005-09-08 Ngk Spark Plug Co Ltd Method for manufacturing wiring board
JP2008218450A (en) * 2007-02-28 2008-09-18 Shinko Electric Ind Co Ltd Manufacturing method of wiring board and manufacturing method of electronic component device
US20080280032A1 (en) * 2007-05-11 2008-11-13 Unimicron Technology Corp. Process of embedded circuit structure
JP2009289848A (en) * 2008-05-28 2009-12-10 Ngk Spark Plug Co Ltd Intermediate multilayer wiring board product, and method for manufacturing multilayer wiring board
JP2011119501A (en) * 2009-12-04 2011-06-16 Toppan Printing Co Ltd Method of manufacturing multilayer substrate

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61133695A (en) * 1984-12-03 1986-06-20 日立化成工業株式会社 Manufacture of wiring board
JP2005243986A (en) * 2004-02-27 2005-09-08 Ngk Spark Plug Co Ltd Method for manufacturing wiring board
JP2008218450A (en) * 2007-02-28 2008-09-18 Shinko Electric Ind Co Ltd Manufacturing method of wiring board and manufacturing method of electronic component device
US20080280032A1 (en) * 2007-05-11 2008-11-13 Unimicron Technology Corp. Process of embedded circuit structure
JP2009289848A (en) * 2008-05-28 2009-12-10 Ngk Spark Plug Co Ltd Intermediate multilayer wiring board product, and method for manufacturing multilayer wiring board
JP2011119501A (en) * 2009-12-04 2011-06-16 Toppan Printing Co Ltd Method of manufacturing multilayer substrate

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015035560A (en) * 2013-08-09 2015-02-19 新光電気工業株式会社 Method of manufacturing wiring board
WO2015108191A1 (en) * 2014-01-17 2015-07-23 Jx日鉱日石金属株式会社 Surface-treated copper foil, copper foil with carrier, printed wiring board, copper-clad laminate, laminate and method for producing printed wiring board
JP2015211219A (en) * 2014-04-28 2015-11-24 旭徳科技股▲ふん▼有限公司 Substrate structure and manufacturing method thereof
JP2016025306A (en) * 2014-07-24 2016-02-08 日立化成株式会社 Manufacturing method of wiring board
CN104476902A (en) * 2014-12-30 2015-04-01 烟台柳鑫新材料科技有限公司 PCB ( printed circuit board) back-drilled cover plate and manufacturing method thereof
CN104540326A (en) * 2014-12-31 2015-04-22 广州兴森快捷电路科技有限公司 Core-less board manufacturing component and manufacturing method for core-less board
CN104540339A (en) * 2014-12-31 2015-04-22 广州兴森快捷电路科技有限公司 Core-less board manufacturing component, core-less board and manufacturing method for core-less board
CN104582329A (en) * 2014-12-31 2015-04-29 广州兴森快捷电路科技有限公司 Coreless board manufacturing member, coreless board and coreless board manufacturing method
JP2017108141A (en) * 2015-01-21 2017-06-15 Jx金属株式会社 Copper foil provided with carrier, laminate, printed wiring board, method for fabricating printed wiring board, and method for fabricating electronic equipment
US10178775B2 (en) 2015-01-21 2019-01-08 Jx Nippon Mining & Metals Corporation Copper foil provided with carrier, laminate, printed wiring board, and method for fabricating printed wiring board
JP6099778B1 (en) * 2015-01-21 2017-03-22 Jx金属株式会社 A copper foil with a carrier, a laminate, a printed wiring board, a printed wiring board manufacturing method, and an electronic device manufacturing method.
JP2017106092A (en) * 2015-01-21 2017-06-15 Jx金属株式会社 Copper foil provided with carrier, laminate, printed wiring board, method for fabricating printed wiring board, and method for fabricating electronic equipment
JP2017007326A (en) * 2015-06-17 2017-01-12 Jx金属株式会社 Manufacturing method of copper foil with carrier, laminate and printed wiring board and manufacturing method of electronic device
JP2017007327A (en) * 2015-06-17 2017-01-12 Jx金属株式会社 Manufacturing method of copper foil with carrier, laminate, and printed wiring board and manufacturing method of electronic device
JP6023367B1 (en) * 2015-06-17 2016-11-09 Jx金属株式会社 Copper foil with carrier, laminate, printed wiring board manufacturing method and electronic device manufacturing method
JP6023366B1 (en) * 2015-06-17 2016-11-09 Jx金属株式会社 Copper foil with carrier, laminate, printed wiring board manufacturing method and electronic device manufacturing method
JP2017011118A (en) * 2015-06-23 2017-01-12 日立化成株式会社 Carrier member for substrate manufacture, and manufacturing method of substrate
CN108464062A (en) * 2016-02-18 2018-08-28 三井金属矿业株式会社 The manufacturing method of printed circuit board
WO2017141983A1 (en) * 2016-02-18 2017-08-24 三井金属鉱業株式会社 Printed circuit board production method
CN108464062B (en) * 2016-02-18 2020-10-27 三井金属矿业株式会社 Method for manufacturing printed circuit board
TWI633816B (en) * 2017-11-08 2018-08-21 欣興電子股份有限公司 Method for manufacturing circuit board
CN111251366A (en) * 2020-01-17 2020-06-09 珠海纵航科技有限公司 PCB drilling cover plate

Similar Documents

Publication Publication Date Title
JP2013030603A (en) Method of manufacturing wiring board
JP5700241B2 (en) Multilayer wiring board and manufacturing method thereof
KR101988923B1 (en) Method and support member for manufacturing wiring substrate, and structure member for wiring substrate
JP4518113B2 (en) Electronic component built-in substrate and manufacturing method thereof
JP5527585B2 (en) Multilayer wiring board and manufacturing method thereof
KR20120022593A (en) Multilayer wiring substrate
JP2011199077A (en) Method of manufacturing multilayer wiring board
CN106340461B (en) A kind of processing method and structure of ultra-thin centreless package substrate
KR20110067921A (en) A carrier member for manufacturing a substrate and a method of manufacturing a substrate using the same
JP6226168B2 (en) Multilayer wiring board
JP6036837B2 (en) Multilayer wiring board and method for manufacturing multilayer wiring board
JP2014086651A (en) Printed wiring board and manufacturing method for printed wiring board
JPWO2015141004A1 (en) Multilayer circuit board, semiconductor device, and method for manufacturing the multilayer circuit board
JP2014154631A (en) Multilayer wiring board and manufacturing method of the same
JP6084283B2 (en) Component built-in substrate and manufacturing method thereof
JP2007288109A (en) Semiconductor device, and its manufacturing method
JP5672524B2 (en) Manufacturing method of package substrate for mounting semiconductor device
JP2016025306A (en) Manufacturing method of wiring board
JP2013115315A (en) Manufacturing method of wiring board
JP5716948B2 (en) Manufacturing method of package substrate for mounting semiconductor device
KR20120028566A (en) Carrier member and method of manufacturing pcb using the same
JP5527586B2 (en) Multilayer wiring board
JP2013115316A (en) Manufacturing method of wiring board
JP2013120792A (en) Support substrate and wiring board manufacturing method
JP2018082038A (en) Wiring board with support plate and method of manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140627

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150312

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150326

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150525

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160107