WO2017141983A1 - Printed circuit board production method - Google Patents

Printed circuit board production method Download PDF

Info

Publication number
WO2017141983A1
WO2017141983A1 PCT/JP2017/005572 JP2017005572W WO2017141983A1 WO 2017141983 A1 WO2017141983 A1 WO 2017141983A1 JP 2017005572 W JP2017005572 W JP 2017005572W WO 2017141983 A1 WO2017141983 A1 WO 2017141983A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
etching
copper
copper layer
etching sacrificial
Prior art date
Application number
PCT/JP2017/005572
Other languages
French (fr)
Japanese (ja)
Inventor
光由 松田
哲聡 ▲高▼梨
浩人 飯田
吉川 和広
翼 加藤
金子 智一
Original Assignee
三井金属鉱業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三井金属鉱業株式会社 filed Critical 三井金属鉱業株式会社
Priority to KR1020187019109A priority Critical patent/KR20180113987A/en
Priority to JP2018500168A priority patent/JP6836579B2/en
Priority to CN201780006592.XA priority patent/CN108464062B/en
Publication of WO2017141983A1 publication Critical patent/WO2017141983A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • H05K3/4644Manufacturing multilayer circuits by building the multilayer layer by layer, i.e. build-up multilayer circuits
    • H05K3/4652Adding a circuit layer by laminating a metal foil or a preformed metal foil pattern
    • H05K3/4655Adding a circuit layer by laminating a metal foil or a preformed metal foil pattern by using a laminate characterized by the insulating layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/02Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding
    • H05K3/022Processes for manufacturing precursors of printed circuits, i.e. copper-clad substrates
    • H05K3/025Processes for manufacturing precursors of printed circuits, i.e. copper-clad substrates by transfer of thin metal foil formed on a temporary carrier, e.g. peel-apart copper
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits

Definitions

  • the present invention relates to a method for manufacturing a printed wiring board.
  • Such a printed wiring board is used for the purpose of weight reduction and size reduction in many portable electronic devices.
  • This printed wiring board is required to further reduce the thickness of the interlayer insulating layer and to further reduce the weight as a wiring board.
  • a printed wiring board method for forming an insulating layer and a wiring layer as a build-up layer on a support has been proposed, and one of them is a metal layer on the support surface.
  • a manufacturing method using a coreless buildup method in which a wiring layer is formed thereon, a buildup layer is further formed, and then a support is separated is employed.
  • 8 and 9 show a conventional example of a method for manufacturing a printed wiring board by a coreless buildup method using a copper foil with a carrier as a member for a support having a metal layer on the surface. In the example shown in FIGS.
  • a copper foil 110 with a carrier including a carrier 112, a release layer 114, and a copper foil 116 in this order is laminated on a coreless support 118 such as a prepreg.
  • a photoresist pattern 120 is formed on the copper foil 116, and a wiring pattern 124 is formed through pattern plating (electro copper plating) 122 and peeling of the photoresist pattern 120.
  • a pre-stacking process such as a roughening process is performed on the pattern plating as necessary to form the first wiring layer 126.
  • a copper foil 130 with a carrier (a carrier 132, a release layer 134, and a seed layer of the insulating layer 128 and, if necessary, the second wiring layer 138 to form the build-up layer 142).
  • the copper foil 136 is provided), the carrier 132 is peeled off, and the copper foil 136 and the insulating layer 128 immediately below it are punched with a laser or the like.
  • patterning is performed by electroless copper plating, photoresist processing, electrolytic copper plating, photoresist stripping, flash etching, and the like to form the second wiring layer 138, and this patterning is repeated as necessary to repeat the nth wiring layer. Up to 140 (n is an integer of 2 or more).
  • the coreless support 118 is peeled off together with the carrier 112 to form a build-up wiring board 144 (also referred to as a coreless wiring board), and the copper foil 116 exposed between the wiring patterns of the first wiring layer 126 and the build if present.
  • the copper foil 136 exposed between the wiring patterns of the n-th wiring layer 140 of the up layer 142 is removed by flash etching to obtain a predetermined wiring pattern, and a printed wiring board 146 is obtained.
  • Patent Document 1 Japanese Patent Laid-Open No. 2014-63950
  • an etching stopper layer formed of nickel is provided, and this etching stopper layer is removed by selective etching, thereby suppressing uneven dissolution of the copper circuit.
  • Patent Document 1 Japanese Patent Laid-Open No. 2014-63950
  • the present inventors By adopting an etching sacrificial layer whose etching rate is higher than that of Cu instead of the etching stopper layer, the present inventors have been able to uniformly perform copper in-plane by Cu etching without requiring an additional etching step. It was found that the etching of the layer can be performed and the occurrence of local circuit dents can be suppressed.
  • an object of the present invention is to provide a printed wiring board capable of uniformly etching a copper layer in a plane by Cu etching and suppressing the occurrence of local circuit dents without requiring an additional etching step. It is to provide a manufacturing method.
  • a support is obtained using a metal foil having a surface copper layer and an etching sacrificial layer in this order, or a metal foil having a surface copper layer, an etching sacrificial layer and an additional copper layer in this order.
  • Process Forming a buildup wiring layer including at least a copper first wiring layer and an insulating layer on the surface copper layer to obtain a laminate with a buildup wiring layer; The surface copper layer and the etching sacrificial layer, or the surface copper layer, the etching sacrificial layer, and the additional copper layer are removed with an etching solution to expose the first wiring layer, thereby forming the build-up wiring layer.
  • Obtaining a printed wiring board including: And a method for producing a printed wiring board, wherein the etching sacrificial layer has an etching rate higher than that of Cu.
  • the present invention of a printed wiring board is a method for manufacturing a printed wiring board.
  • a support is first obtained using a metal foil having at least a surface copper layer and an etching sacrificial layer.
  • this metal foil may be provided with a surface copper layer 11 and an etching sacrificial layer 12 in this order, like the metal foil 10 shown in FIG.
  • the surface copper layer 11, the etching sacrificial layer 12, and the additional copper layer 13 may be provided in this order. That is, the additional copper layer 13 is an arbitrary copper layer provided as desired.
  • a build-up wiring layer including at least a copper first wiring layer 26 and an insulating layer 28 is formed on the surface copper layer 11 to form a laminate with a build-up wiring layer.
  • the first wiring layer 26 is drawn for the sake of simplification.
  • the nth wiring layer 40 (n is an integer of 2 or more) is formed. Needless to say, a multilayer build-up wiring layer can be used. Thereafter, the surface copper layer 11, the etching sacrificial layer 12, and the additional copper layer 13 (if present) are removed with an etching solution to expose the first wiring layer 26, thereby obtaining a printed wiring board including a build-up wiring layer. .
  • the etching sacrificial layer 12 is characterized by its etching rate being higher than that of Cu.
  • Cu etching can be performed without requiring an additional etching process.
  • the copper layer can be uniformly etched in the plane, and the occurrence of local circuit dents can be suppressed.
  • the etching sacrificial layer 12 may be non-uniformly dissolved and / or accidentally exist in the etching sacrificial layer 12 during Cu etching. Even if Cu (Cu of the surface copper layer 11 or the first wiring layer 26) is locally exposed due to pinholes or the like, the underlying surface copper layer 11 or the first wiring layer 26 (copper layer) is caused by a local battery reaction. ) Is suppressed. As a result, the surface copper layer 11 is etched uniformly in the plane, and the occurrence of local circuit dents in the first wiring layer 26 can be suppressed.
  • the etching sacrificial layer 12 is dissolved and removed along with the Cu etching, so that an additional step for removing the etching sacrificial layer 12 is not required, and the productivity is improved. Furthermore, there is an advantage that the circuit dents can be reduced on the average in the plane of the first wiring layer 26 by the effect of the high etching rate itself. In this regard, as described above, when the method of Patent Document 1 is adopted, as conceptually shown in FIG. 7, not only the copper foil 116 to be removed but also not originally removed in the copper etching process.
  • the etching stopper layer 115 elutes slightly, and the underlying copper circuit (first wiring layer 126) is locally exposed due to pinholes or the like generated at the stage of forming the etching stopper layer 115. There is a fear. When the copper circuit (first wiring layer 126) is locally exposed in this way, dissolution of Cu constituting the copper circuit is accelerated, and a large circuit recess 126a is locally generated. In the first place, when the etching stopper layer 115 is provided, a selective etching step for removing the etching stopper layer 115 is separately required, and thus the number of manufacturing steps is increased. On the other hand, according to the method for manufacturing a printed wiring board of the present invention, these technical problems can be solved conveniently.
  • the build-up wiring layer 42 is formed by providing the metal foil 14 with a carrier on one side of the coreless support 18 for the sake of simplicity of explanation. It is desirable to provide the metal foil 14 with a carrier on both surfaces of the support 18 and form the build-up wiring layer 42 on both surfaces.
  • metal foil 10 provided with surface copper layer 11 and etching sacrificial layer 12 in this order, or surface copper layer 11, etching sacrificial layer 12 and additional copper layer.
  • a support is obtained using a metal foil 10 ′ having 13 in this order. That is, the additional copper layer 13 is an arbitrary layer provided as desired.
  • the metal foil 10 or the metal foil 14 with a carrier including the metal foil 10 itself may be used as a support, or the surface copper layer 11 or the metal foil with a carrier 14 is laminated on one side or both sides of the coreless support 18 as described later. The laminate obtained in this way may be used as a support.
  • the etching sacrificial layer 12 is not particularly limited as long as the etching rate is higher than that of Cu. If the etching rate is higher than Cu, it can be simultaneously dissolved and removed by Cu etching, and even if the etching sacrificial layer 12 is dissolved non-uniformly and Cu is locally exposed, the underlying first wiring layer is caused by local cell reaction. The dissolution of 26 (copper layer) is suppressed, whereby the surface copper layer 11 can be etched uniformly in the plane and the occurrence of local circuit dents can be suppressed.
  • This etching rate is the same as that of the etching sacrificial layer 12 and the copper foil sample as a reference sample is processed for the same time in the etching process, and the change in thickness of each sample due to etching is determined by the dissolution time. It is calculated by dividing. The thickness change may be determined by measuring the weight reduction amount of both samples and converting the thickness from the density of each metal.
  • a preferable etching rate is 1.2 times or more of Cu etching rate, more preferably 1.25 times or more, and further preferably 1.3 times or more. The upper limit of the etching rate is not particularly limited.
  • the dissolution rate of the etching sacrificial layer 12 in the plane is 5.0 times or less.
  • the etching rate is preferably 4.5 times or less, more preferably 4.0 times or less, particularly preferably 3.5 times or less, and most preferably 3.0 times or less.
  • the etching solution a known solution capable of dissolving copper by an oxidation-reduction reaction can be employed.
  • the etching solution examples include cupric chloride (CuCl 2 ) aqueous solution, ferric chloride (FeCl 3 ) aqueous solution, ammonium persulfate aqueous solution, sodium persulfate aqueous solution, potassium persulfate aqueous solution, sulfuric acid / hydrogen peroxide aqueous solution and the like. Etc.
  • the Cu etching rate can be precisely controlled, and from the viewpoint of ensuring a difference in etching time with the etching sacrificial layer 12, a sodium persulfate aqueous solution, a potassium persulfate aqueous solution, and a sulfuric acid / hydrogen peroxide solution are preferable.
  • sulfuric acid / hydrogen peroxide solution is most preferable.
  • a spray method, a dipping method, or the like can be employed as an etching method.
  • the etching temperature can be appropriately set within the range of 25 to 70 ° C.
  • the etching rate in the present invention is adjusted by a combination of the above etching solution and etching method and the selection of the material of the etching sacrificial layer 12 described below.
  • the material constituting the etching sacrificial layer 12 is preferably an electrochemically base metal rather than Cu.
  • a preferable metal include a Cu—Zn alloy, a Cu—Sn alloy, a Cu—Mn alloy, and Cu—Al. Alloys, Cu—Mg alloys, Zn metals, Co metals, Mo metals, and oxides thereof, and combinations thereof can be mentioned, and Cu—Zn alloys are particularly preferable.
  • the Cu—Zn alloy that can constitute the etching sacrificial layer 12 preferably contains 40% by weight or more of Zn, more preferably 50% by weight or more, and even more preferably 60% by weight or more.
  • the Zn content in the Cu—Zn alloy is preferably 98 from the viewpoints of maintaining the uniform in-plane dissolution rate of the etching sacrificial layer 12 and the in-plane uniform action of the local cell reaction with the surface copper layer 11. % By weight or less, more preferably 96% by weight or less, and still more preferably 94% by weight or less.
  • the etching sacrificial layer 12 preferably has a thickness of 0.1 to 5 ⁇ m, more preferably 0.1 to 4.5 ⁇ m, still more preferably 0.2 to 4 ⁇ m, particularly preferably 0.2 to 3.5 ⁇ m, Most preferably, it is 0.3 to 3 ⁇ m.
  • the surface copper layer 11 may have a known configuration and is not particularly limited.
  • the surface copper layer 11 may be formed by a wet film formation method such as an electroless plating method and an electrolytic plating method, a dry film formation method such as sputtering and chemical vapor deposition, or a combination thereof.
  • the surface copper layer 11 preferably has a thickness of 0.1 to 2.5 ⁇ m, more preferably 0.1 to 2 ⁇ m, still more preferably 0.1 to 1.5 ⁇ m, particularly preferably 0.2 to 1 ⁇ m, Most preferably, it is 0.2 to 0.8 ⁇ m.
  • the surface copper layer 11 can be roughened.
  • the roughened particles formed by the roughening treatment are attached to the surface of the surface copper layer 11, thereby facilitating the image inspection after the wiring pattern is formed and the photoresist pattern.
  • Adhesion with 20 can be improved.
  • the roughened particles preferably have an average particle size D of 0.04 to 0.53 ⁇ m by image analysis, more preferably 0.08 to 0.13 ⁇ m, still more preferably 0.09 to 0.12 ⁇ m. .
  • the roughened surface has an appropriate roughness and ensures excellent adhesion to the photoresist, while achieving good opening of the unnecessary areas of the photoresist during photoresist development.
  • the average particle diameter D by image analysis of the roughened particles is obtained by taking an image at a magnification such that a predetermined number (for example, 1000 to 3000) of particles enters one field of view of a scanning electron microscope (SEM). Measurement is preferably performed by performing image processing with commercially available image analysis software. For example, 200 particles arbitrarily selected may be used as an object, and the average diameter of these particles may be adopted as the average particle diameter D.
  • the roughened particles preferably have a particle density ⁇ by image analysis of 4 to 200 particles / ⁇ m 2 , more preferably 40 to 170 particles / ⁇ m 2 , and 70 to 100 particles / ⁇ m 2 .
  • a development residue of the photoresist is likely to be generated, but if it is within the above-mentioned preferred range, such a development residue is difficult to be generated.
  • the developability of the photoresist pattern 20 is also excellent. Therefore, it can be said that it is suitable for fine formation of the wiring pattern 24 within the above-mentioned preferable range.
  • the particle density ⁇ based on the image analysis of the roughened particles is obtained by taking an image at a magnification such that a predetermined number (for example, 1000 to 3000) of particles enters one field of view of a scanning electron microscope (SEM). It is preferable to perform measurement by performing image processing using commercially available image analysis software. For example, in a field where 200 particles enter, the value obtained by dividing the number of particles (for example, 200) by the field area is used as the particle density ⁇ . do it.
  • SEM scanning electron microscope
  • the surface of the surface copper layer 11 can be subjected to rust prevention treatment such as nickel-zinc / chromate treatment, coupling treatment with a silane coupling agent, etc., in addition to the adhesion of the roughened particles by the roughening treatment described above.
  • rust prevention treatment such as nickel-zinc / chromate treatment, coupling treatment with a silane coupling agent, etc.
  • the additional copper layer 13 may also have a known configuration and is not particularly limited. By providing the additional copper layer 13, it becomes possible to control the sacrificial layer 12 having a high dissolution rate in the pre-treatment in the Cu etching process so as not to be exposed, and the releasability from the following release layer is easy. There is an advantage that can be done.
  • the additional copper layer 13 may be formed by a wet film formation method such as an electroless plating method and an electrolytic plating method, a dry film formation method such as sputtering and chemical vapor deposition, or a combination thereof.
  • the additional copper layer 13 preferably has a thickness of 0.1 to 2.5 ⁇ m, more preferably 0.1 to 2 ⁇ m, still more preferably 0.2 to 1.5 ⁇ m, particularly preferably 0.2 to 1 ⁇ m, Most preferably, it is 0.3 to 0.8 ⁇ m.
  • the number of pinholes per unit area of the additional copper layer 13 is preferably 2 / mm 2 or less.
  • the number of pinholes in the additional copper layer 13 is small as described above, the number of pinholes that can be generated in the etching sacrificial layer 12 and the surface copper layer 11 plated on the additional copper layer 13 is also small in the manufacturing process of the metal foil 10 ′. can do. As a result, defects such as defects due to chemical erosion during Cu etching can be further reduced.
  • Another layer may be present.
  • the surface copper layer 11, the etched sacrificial layer 12, and the additional copper layer 13 may be provided in the form of a carrierless copper foil or as shown in FIGS. Alternatively, it may be provided in the form of 14 ', but is preferably provided in the form of metal foil with carrier 14 or 14'.
  • the carrier-attached metal foil may include a carrier 15, a release layer 16, an additional copper layer 13 (if present), an etching sacrificial layer 12, and a surface copper layer 11 in this order, or the carrier 15.
  • the additional copper layer 13 (if present), the etching sacrificial layer 12, and the surface copper layer 11 may be provided in this order. That is, the release layer 16 may be provided, or the release layer 16 may not be provided as a single layer.
  • the carrier 15 is a layer (typically a foil) for supporting the metal foil and improving its handleability.
  • the carrier include an aluminum foil, a copper foil, a stainless steel foil, a resin film, a resin film whose surface is metal-coated, a glass plate, and the like, preferably a copper foil.
  • the copper foil may be a rolled copper foil or an electrolytic copper foil.
  • the thickness of the carrier is typically 250 ⁇ m or less, preferably 12 ⁇ m to 200 ⁇ m.
  • the release layer 16 has a function of reducing the peeling strength of the carrier 15, ensuring the stability of the strength, and further suppressing interdiffusion that may occur between the carrier and the metal foil during press molding at a high temperature. It is.
  • the release layer is generally formed on one side of the carrier, but may be formed on both sides.
  • the release layer may be either an organic release layer or an inorganic release layer. Examples of organic components used in the organic release layer include nitrogen-containing organic compounds, sulfur-containing organic compounds, carboxylic acids and the like. Examples of nitrogen-containing organic compounds include triazole compounds, imidazole compounds, and the like. Among these, triazole compounds are preferred in terms of easy release stability.
  • triazole compounds examples include 1,2,3-benzotriazole, carboxybenzotriazole, N ′, N′-bis (benzotriazolylmethyl) urea, 1H-1,2,4-triazole and 3-amino- And 1H-1,2,4-triazole.
  • sulfur-containing organic compound examples include mercaptobenzothiazole, thiocyanuric acid, 2-benzimidazolethiol and the like.
  • carboxylic acid examples include monocarboxylic acid and dicarboxylic acid.
  • examples of inorganic components used in the inorganic release layer include Ni, Mo, Co, Cr, Fe, Ti, W, P, Zn, a chromate-treated film, and a carbon layer.
  • the release layer may be formed by bringing the release layer component-containing solution into contact with at least one surface of the carrier and adsorbing the release layer component on the surface of the carrier in the solution.
  • this contact may be performed by immersion in the release layer component-containing solution, spraying of the release layer component-containing solution, flowing down of the release layer component-containing solution, or the like.
  • a method of forming a release layer component by a plating method such as electrolytic plating or electroless plating, or a vapor phase method such as vapor deposition or sputtering.
  • the release layer component may be fixed to the carrier surface by drying the release layer component-containing solution, electrodeposition of the release layer component in the release layer component-containing solution, or the like.
  • the thickness of the release layer is typically 1 nm to 1 ⁇ m, preferably 5 nm to 500 nm.
  • the peel strength between the release layer 16 and the carrier is preferably 7 gf / cm to 50 gf / cm, more preferably 10 gf / cm to 40 gf / cm, and more preferably 15 gf / cm to 30 gf / cm.
  • the metal foil 10 or the metal foil 10 ′ or the metal foil 14 with the carrier or the metal foil 14 ′ with the carrier is laminated on one or both sides of the coreless support 18 and laminated. You may form a body. This lamination may be performed in accordance with known conditions and techniques adopted for lamination of copper foil and prepreg in a normal printed wiring board manufacturing process.
  • the coreless support 18 typically comprises a resin, preferably an insulating resin.
  • the coreless support 18 is preferably a prepreg and / or a resin sheet, more preferably a prepreg.
  • the prepreg is a general term for composite materials in which a synthetic resin is impregnated or laminated on a base material such as a synthetic resin plate, a glass plate, a glass woven fabric, a glass nonwoven fabric, and paper.
  • a synthetic resin plate such as a synthetic resin plate, a glass plate, a glass woven fabric, a glass nonwoven fabric, and paper.
  • the insulating resin impregnated in the prepreg include epoxy resin, cyanate resin, bismaleimide triazine resin (BT resin), polyphenylene ether resin, phenol resin, polyamide resin and the like.
  • the insulating resin constituting the resin sheet include insulating resins such as an epoxy resin, a polyimide resin, and a polyester resin (liquid crystal polymer).
  • the coreless support 18 may contain filler particles made of various inorganic particles such as silica and alumina from the viewpoint of lowering the thermal expansion coefficient and increasing rigidity.
  • the thickness of the coreless support 18 is not particularly limited, but is preferably 3 to 1000 ⁇ m, more preferably 5 to 400 ⁇ m, and still more preferably 10 to 200 ⁇ m.
  • a buildup wiring layer 42 including at least a copper first wiring layer 26 and an insulating layer 28 is formed on the surface copper layer 11.
  • a laminate with a build-up wiring layer is obtained.
  • the insulating layer 28 may be made of the insulating resin as described above.
  • the build-up wiring layer 42 may be formed according to a known method for manufacturing a printed wiring board, and is not particularly limited.
  • the first wiring layer 26 is formed by performing (i) forming a photoresist pattern, (ii) performing electrolytic copper plating, and (iii) stripping the photoresist pattern. After that, (iv) the build-up wiring layer 42 is formed.
  • a photoresist pattern 20 is formed on the surface of the surface copper layer 11.
  • the formation of the photoresist pattern 20 may be performed by either a negative resist or a positive resist, and the photoresist may be either a film type or a liquid type.
  • the developing solution may be a developing solution such as sodium carbonate, sodium hydroxide, an amine-based aqueous solution, etc., and may be carried out in accordance with various methods and conditions generally used in the production of printed wiring boards, and is not particularly limited.
  • electrolytic copper plating 22 is applied to the surface copper layer 11 on which the photoresist pattern 20 is formed.
  • the formation of the electrolytic copper plating 22 is not particularly limited as long as it is performed in accordance with various pattern plating methods and conditions generally used in the production of printed wiring boards such as a copper sulfate plating solution and a copper pyrophosphate plating solution.
  • (Iii) Stripping of photoresist pattern The photoresist pattern 20 is stripped to form a wiring pattern 24. Stripping of the photoresist pattern 20 is not particularly limited as long as an aqueous sodium hydroxide solution, an amine-based solution or an aqueous solution thereof is employed, and may be performed in accordance with various stripping methods and conditions generally used in the manufacture of printed wiring boards. Thus, a wiring pattern 24 in which wiring portions (lines) made of the first wiring layer 26 are arranged with a gap (space) therebetween is directly formed on the surface of the surface copper layer 11.
  • the line / space (L / S) is highly fine, such as 13 ⁇ m or less / 13 ⁇ m or less (for example, 12 ⁇ m / 12 ⁇ m, 10 ⁇ m / 10 ⁇ m, 5 ⁇ m / 5 ⁇ m, 2 ⁇ m / 2 ⁇ m). It is preferable to form a simplified wiring pattern.
  • Build-up wiring layer 42 is formed on surface copper layer 11, and a laminated body with a build-up wiring layer is produced.
  • the insulating layer 28 and the second wiring layer 38 can be formed in order to form the build-up wiring layer 42.
  • the insulating layer 28 and the carrier-attached copper foil 30 are laminated to form the build-up wiring layer 42, and the carrier 32 is peeled off.
  • the copper foil 36 and the insulating layer 28 immediately below it may be laser processed by a carbon dioxide laser or the like.
  • patterning is performed by electroless copper plating, photoresist processing, electrolytic copper plating, photoresist stripping, flash etching, or the like to form the second wiring layer 38, and this patterning is repeated as needed to repeat the nth wiring layer.
  • the method for forming the build-up layer after the second wiring layer 38 is not limited to the above method, but is a subtractive method, an MSAP (Modified Semi-Additive Process) method, an SAP (Semi-Additive) method, or a full additive method. Etc. can be used.
  • MSAP Modified Semi-Additive Process
  • SAP Semi-Additive
  • Etc. can be used.
  • a metal foil typified by a resin layer and a copper foil is bonded together by pressing
  • the panel plating layer and the metal foil are etched in combination with the formation of interlayer conduction means such as via hole formation and panel plating.
  • a wiring pattern can be formed.
  • a wiring pattern can be formed on the surface by a semi-additive method.
  • n-th wiring layer 40 (n is an integer of 2 or more) is formed. It is preferable to obtain a laminate. This process may be repeated until a desired number of build-up wiring layers are formed. At this stage, if necessary, solder resist, bumps for mounting such as pillars, and the like may be formed on the outer layer surface. Further, an outer layer wiring pattern may be formed on the outermost layer surface of the build-up wiring layer in a later outer layer processing step.
  • the laminate with build-up wiring layer is separated from the release layer 16. Etc. can be separated.
  • the carrier-attached metal foil comprises the carrier 15, the release layer 16, the additional copper layer 13 (if present), the etching sacrificial layer 12, and the surface copper layer 11 in this order
  • the method of the present invention can be removed by an etching solution described later.
  • the separation method physical peeling is preferable, and for this peeling method, a machine or jig, manual work, or a combination thereof may be employed.
  • the metal foil with carrier comprises the carrier 15, the additional copper layer 13 (if present), the etching sacrificial layer 12, and the surface copper layer 11 in this order (that is, when the release layer 16 is not provided as a single layer).
  • a build-up wiring layer is attached between the carrier 15 and the etching sacrificial layer 12, between the additional copper layer 13 and the etching sacrificial layer 12, or inside the etching sacrificial layer 12, prior to removal with an etching solution described later. It is preferable to separate the stacked body to expose the etching sacrificial layer 12.
  • the surface copper layer 11, the etching sacrificial layer 12, and the additional copper layer 13 (if present) are removed with an etching solution to remove the first wiring layer 26.
  • the printed wiring board 46 including the build-up wiring layer 42 is obtained by exposing.
  • the printed wiring board 46 is preferably a multilayer printed wiring board. In any case, due to the presence of the etching sacrificial layer 12, it is possible to efficiently remove each layer uniformly by etching in the surface by Cu etching without the need for an additional etching step, and local circuit dents are generated. Can be suppressed.
  • the surface copper layer 11 and the sacrificial etching layer 12 are removed by the etching solution, or the surface copper layer 11, the etching sacrificial layer 12 and the additional copper layer 13 are removed by the etching solution in one step. be able to.
  • the etching solution and etching method used at this time are as described above.
  • the printed wiring board 46 as shown in FIG. 5 can be processed into an outer layer by various methods.
  • an insulating layer and a wiring layer as build-up wiring layers may be further laminated on the first wiring layer 26 of the printed wiring board 46 as an arbitrary number of layers, or a solder resist layer is formed on the surface of the first wiring layer 26.
  • surface treatment as an outer layer pad such as Ni—Au plating, Ni—Pd—Au plating, or water-soluble preflux treatment may be performed.
  • a columnar pillar or the like may be provided on the outer layer pad.
  • the first wiring layer 26 formed using the etching sacrificial layer in the present invention can maintain the uniformity of the circuit thickness in the plane, and the surface of the first wiring layer 26 has a local circuit depression. Is less likely to occur. For this reason, there is a low incidence of defects such as local processing failures and solder-resist residue failures in the surface treatment process caused by extremely thin parts of the circuit thickness, circuit depressions, etc., and mounting failures due to mounting pad irregularities. A printed wiring board having excellent mounting reliability can be obtained.
  • Rotating cathode and anode are copper sulfate having a copper concentration of 80 g / L, a sulfuric acid concentration of 260 g / L, a bis (3-sulfopropyl) disulfide concentration of 30 mg / L, a diallyldimethylammonium chloride polymer concentration of 50 mg / L, and a chlorine concentration of 40 mg / L. It was immersed in a solution and electrolyzed at a solution temperature of 45 ° C. and a current density of 55 A / dm 2 to obtain an electrolytic copper foil having a thickness of 18 ⁇ m as a carrier.
  • the electrode surface side of the pickled carrier is placed in a CBTA aqueous solution having a CBTA (carboxybenzotriazole) concentration of 1 g / L, a sulfuric acid concentration of 150 g / L, and a copper concentration of 10 g / L, at a liquid temperature of 30 ° C. So as to adsorb the CBTA component on the electrode surface of the carrier.
  • a CBTA layer was formed as an organic release layer on the surface of the electrode surface of the carrier copper foil.
  • the carrier on which the organic peeling layer is formed is immersed in a solution having a nickel concentration of 20 g / L prepared using nickel sulfate, and the liquid temperature is 45 ° C., the pH is 3, and the current density is 5 A / dm 2. Under the conditions, nickel having a thickness equivalent to 0.001 ⁇ m was deposited on the organic release layer. Thus, a nickel layer was formed as an auxiliary metal layer on the organic release layer.
  • etching sacrificial layer Table 1 shows carriers (Examples 1 to 8 and 11) on which an additional copper layer (ultra thin copper foil) is formed or carriers (Example 10) on which an auxiliary metal layer is formed. It was immersed in a plating bath and electrolyzed under the plating conditions shown in Table 1, and an etching sacrificial layer having the composition and thickness shown in Table 2 was formed on the additional copper layer or the auxiliary metal layer. On the other hand, in Example 9, the etching sacrificial layer was not formed.
  • Rust prevention treatment The surface of the metal foil with carrier thus formed was subjected to a rust prevention treatment comprising zinc-nickel alloy plating treatment and chromate treatment.
  • a rust prevention treatment comprising zinc-nickel alloy plating treatment and chromate treatment.
  • an electrolytic solution having a zinc concentration of 0.2 g / L, a nickel concentration of 2 g / L, and a potassium pyrophosphate concentration of 300 g / L, under conditions of a liquid temperature of 40 ° C. and a current density of 0.5 A / dm 2 , the metal foil and the carrier A zinc-nickel alloy plating treatment was performed on the surface of the substrate.
  • a chromate treatment was performed on the surface on which the zinc-nickel alloy plating treatment was performed using a 3 g / L aqueous solution of chromic acid under the conditions of pH 10 and a current density of 5 A / dm 2 .
  • Silane coupling agent treatment A silane coupling agent is prepared by adsorbing an aqueous solution containing 2 g / L of 3-glycidoxypropyltrimethoxysilane to the surface of the carrier-side metal foil and evaporating water with an electric heater. Processed. At this time, the silane coupling agent treatment was not performed on the metal foil side.
  • the etching rate of Example 9 thus obtained is the etching rate of Cu, and the etching rates of Examples 1 to 8, 10 and 11 are the etching rates of the respective etching sacrificial layers. Then, the etching rate ratio r was calculated by dividing the etching rate of the etching sacrificial layer by the etching rate of Cu. The results were as shown in Table 2.
  • Evaluation 2 The number of pinholes per unit area
  • the carrier whose outermost surface obtained in (4) is an additional copper layer (ultra-thin copper foil)
  • An attached ultra-thin copper foil (that is, an intermediate product in which an additional copper layer having a thickness of 0.3 ⁇ m was formed and an etching sacrificial layer was not formed and thereafter processed) was prepared.
  • This ultrathin copper foil with a carrier is laminated so that the additional copper layer (ultrathin copper foil) side is in contact with an insulating resin base material (prepreg made by Panasonic Corporation, R-1661, thickness 0.1 mm), and the pressure is 4.0 MPa.
  • Evaluation 3 Circuit recess
  • the carrier-side metal foil obtained in (8) above is in contact with the first insulating resin base material (Panasonic Corporation prepreg, R-1661, thickness 0.1 mm) on the carrier side. And thermocompression bonded at a pressure of 4.0 MPa and a temperature of 190 ° C. for 90 minutes.
  • a second insulating resin base material (prepreg made by Panasonic Corporation, R-1661, thickness 0.1 mm) was laminated on the surface of the laminated plate on which the five linear circuits were formed, and the pressure was 4.0 MPa, Thermocompression bonding was performed at a temperature of 190 ° C. for 90 minutes. Thereafter, the carrier and the first insulating resin substrate to which it was adhered were peeled off with the release layer as a boundary. Etching was performed on the side of the remaining second insulating resin base material where the metal foil was exposed, using the same etching solution prepared in Evaluation 1 until the metal foil disappeared.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)

Abstract

Provided is a printed circuit board production method that makes it possible to uniformly Cu etch a copper layer in-plane without the need for a separate additional etching step and that also makes it possible to suppress the occurrence of local circuit depressions. This production method includes: a step for obtaining a support using a metal foil that comprises, in order, a surface copper layer and an etching sacrificial layer or a metal foil that comprises, in order, a surface copper layer, an etching sacrificial layer, and an additional copper layer; a step for obtaining a laminate with a buildup wiring layer by forming, upon the surface copper layer, a buildup wiring layer that includes at least a copper first wiring layer and an insulating layer; and a step for exposing the first wiring layer by using an etching liquid to remove the surface copper layer and the etching sacrificial layer or the surface copper layer, the etching sacrificial layer, and the additional copper layer and thereby obtaining a printed circuit board that includes a buildup wiring layer. The etching rate of the etching sacrificial layer is higher than the etching rate of Cu.

Description

プリント配線板の製造方法Method for manufacturing printed wiring board
 本発明は、プリント配線板の製造方法に関する。 The present invention relates to a method for manufacturing a printed wiring board.
 近年、プリント配線板の実装密度を上げて小型化するために、プリント配線板の多層化が広く行われるようになってきている。このようなプリント配線板は、携帯電子機器の多くで、軽量化や小型化を目的として利用されている。そして、このプリント配線板には、層間絶縁層の更なる厚みの低減、及び配線板としてのより一層の軽量化が要求されている。 Recently, in order to increase the mounting density of printed wiring boards and reduce the size, multilayered printed wiring boards have been widely used. Such a printed wiring board is used for the purpose of weight reduction and size reduction in many portable electronic devices. This printed wiring board is required to further reduce the thickness of the interlayer insulating layer and to further reduce the weight as a wiring board.
 このような要求を満足させる技術として、支持体(コア)上に絶縁層及び配線層をビルドアップ層として形成するプリント配線板の工法が提案されており、その一つとして支持体表面の金属層上に配線層を形成し、更にビルドアップ層を形成した後、支持体を分離するコアレスビルドアップ法を用いた製造方法が採用されている。表面に金属層が備わった支持体用の部材としてキャリア付銅箔を用いたコアレスビルドアップ法によるプリント配線板の製造方法の従来例が図8及び9に示される。図8及び9に示される例では、まず、キャリア112、剥離層114及び銅箔116をこの順に備えたキャリア付銅箔110を、プリプレグ等のコアレス支持体118に積層する。次いで、銅箔116にフォトレジストパターン120を形成し、パターンめっき(電気銅めっき)122の形成及びフォトレジストパターン120の剥離を経て配線パターン124を形成する。そして、パターンめっきに必要に応じて粗化処理等の積層前処理を施して第一配線層126とする。次いで、図9に示されるように、ビルドアップ層142を形成すべく絶縁層128、及び必要に応じて第二配線層138のシード層となるキャリア付銅箔130(キャリア132、剥離層134及び銅箔136を備える)を積層し、キャリア132を剥離し、かつ、レーザー等により銅箔136及びその直下の絶縁層128を穴あけ加工する。続いて、無電解銅めっき、フォトレジスト加工、電解銅めっき、フォトレジスト剥離及びフラッシュエッチング等によりパターニングを行って第二配線層138を形成し、このパターニングを必要に応じて繰り返して第n配線層140(nは2以上の整数)まで形成する。そして、コアレス支持体118をキャリア112とともに剥離してビルドアップ配線板144(コアレス配線板とも呼ばれる)とし、第一配線層126の配線パターン間に露出する銅箔116と、存在する場合にはビルドアップ層142の第n配線層140の配線パターン間に露出する銅箔136とをフラッシュエッチングにより除去して所定の配線パターンとし、プリント配線板146を得る。 As a technique for satisfying such a requirement, a printed wiring board method for forming an insulating layer and a wiring layer as a build-up layer on a support (core) has been proposed, and one of them is a metal layer on the support surface. A manufacturing method using a coreless buildup method in which a wiring layer is formed thereon, a buildup layer is further formed, and then a support is separated is employed. 8 and 9 show a conventional example of a method for manufacturing a printed wiring board by a coreless buildup method using a copper foil with a carrier as a member for a support having a metal layer on the surface. In the example shown in FIGS. 8 and 9, first, a copper foil 110 with a carrier including a carrier 112, a release layer 114, and a copper foil 116 in this order is laminated on a coreless support 118 such as a prepreg. Next, a photoresist pattern 120 is formed on the copper foil 116, and a wiring pattern 124 is formed through pattern plating (electro copper plating) 122 and peeling of the photoresist pattern 120. Then, a pre-stacking process such as a roughening process is performed on the pattern plating as necessary to form the first wiring layer 126. Next, as shown in FIG. 9, a copper foil 130 with a carrier (a carrier 132, a release layer 134, and a seed layer of the insulating layer 128 and, if necessary, the second wiring layer 138 to form the build-up layer 142). The copper foil 136 is provided), the carrier 132 is peeled off, and the copper foil 136 and the insulating layer 128 immediately below it are punched with a laser or the like. Subsequently, patterning is performed by electroless copper plating, photoresist processing, electrolytic copper plating, photoresist stripping, flash etching, and the like to form the second wiring layer 138, and this patterning is repeated as necessary to repeat the nth wiring layer. Up to 140 (n is an integer of 2 or more). Then, the coreless support 118 is peeled off together with the carrier 112 to form a build-up wiring board 144 (also referred to as a coreless wiring board), and the copper foil 116 exposed between the wiring patterns of the first wiring layer 126 and the build if present. The copper foil 136 exposed between the wiring patterns of the n-th wiring layer 140 of the up layer 142 is removed by flash etching to obtain a predetermined wiring pattern, and a printed wiring board 146 is obtained.
 ところで、このようなコアレス配線板製造工程におけるフラッシュエッチング工程では、露出している銅箔116に存在する微小なピンホールや、フラッシュエッチング液の面内液被着圧の不均一性等が影響して、第一配線層126の面内でフラッシュエッチングされる量が不均一になりがちである。この場合、図6に概念的に示されるように、除去されるべき銅箔116のみならず、残されるべき銅回路(第一配線層126)の一部までもが不均一にエッチングされてしまい、規格値を超える不均一な回路凹み126aが発生してしまう。このような不均一な回路凹み126aは、プリント配線板の実装工程や信頼性試験環境下において、接続不良や断線等の不具合につながるおそれがある。そこで、かかる配線層のエッチングを低減するための試みが提案されている。例えば、特許文献1(特開2014-63950号公報)には、ニッケルで形成されるエッチングストッパー層を設け、このエッチングストッパー層を選択エッチングにより除去することにより、銅回路の不均一な溶解を抑制し、面内で不均一に発生する回路凹みを抑制することが開示されている。 By the way, in such a flash etching process in the manufacturing process of the coreless wiring board, there are influences such as minute pinholes existing in the exposed copper foil 116 and unevenness of the in-plane liquid deposition pressure of the flash etching liquid. Therefore, the amount of flash etching in the plane of the first wiring layer 126 tends to be non-uniform. In this case, as conceptually shown in FIG. 6, not only the copper foil 116 to be removed but also a part of the copper circuit (the first wiring layer 126) to be left is etched unevenly. As a result, a non-uniform circuit recess 126a exceeding the standard value is generated. Such a non-uniform circuit recess 126a may lead to defects such as poor connection or disconnection in the printed wiring board mounting process or reliability test environment. Therefore, an attempt to reduce the etching of the wiring layer has been proposed. For example, in Patent Document 1 (Japanese Patent Laid-Open No. 2014-63950), an etching stopper layer formed of nickel is provided, and this etching stopper layer is removed by selective etching, thereby suppressing uneven dissolution of the copper circuit. However, it is disclosed to suppress a circuit dent that occurs non-uniformly in a plane.
特開2014-63950号公報JP 2014-63950 A
 しかしながら、特許文献1の手法を採用した場合、図7に概念的に示されるように、銅エッチング工程で、除去されるべき銅箔116のみならず、本来除去されないはずのエッチングストッパー層115が僅かながら溶出してしまう場合がある。また、エッチングストッパー層115を形成する時にも僅かながらピンホールが存在する場合は、銅エッチング工程において、銅回路(第一配線層126)が局所的に露出してしまうこともあり得る。こうして不均一な溶出により銅回路(第一配線層126)が局所的に露出してしまうと、銅回路を構成するCuの溶解が加速され、局所的に大きな回路凹み126aが生じてしまう。そもそも、エッチングストッパー層115を設けた場合、エッチングストッパー層115を除去するための選択エッチング工程が別途必要となるため、製造工程が多くなる。 However, when the method of Patent Document 1 is employed, as conceptually shown in FIG. 7, not only the copper foil 116 that should be removed but also the etching stopper layer 115 that should not be removed in the copper etching process is slightly present. Elution may occur. In addition, if pinholes are present slightly when the etching stopper layer 115 is formed, the copper circuit (first wiring layer 126) may be locally exposed in the copper etching process. Thus, if the copper circuit (first wiring layer 126) is locally exposed due to non-uniform elution, dissolution of Cu constituting the copper circuit is accelerated, and a large circuit recess 126a is locally generated. In the first place, when the etching stopper layer 115 is provided, a selective etching step for removing the etching stopper layer 115 is separately required, and thus the number of manufacturing steps is increased.
 本発明者らは、今般、エッチングストッパー層に代えて、エッチングレートがCuよりも高いエッチング犠牲層を採用することにより、追加のエッチング工程を別途要することなく、Cuエッチングにより面内で均一に銅層のエッチングを行えるとともに、局所的な回路凹みの発生を抑制できるとの知見を得た。 By adopting an etching sacrificial layer whose etching rate is higher than that of Cu instead of the etching stopper layer, the present inventors have been able to uniformly perform copper in-plane by Cu etching without requiring an additional etching step. It was found that the etching of the layer can be performed and the occurrence of local circuit dents can be suppressed.
 したがって、本発明の目的は、追加のエッチング工程を別途要することなく、Cuエッチングにより面内で均一に銅層のエッチングを行えるとともに、局所的な回路凹みの発生を抑制可能な、プリント配線板の製造方法を提供することにある。 Therefore, an object of the present invention is to provide a printed wiring board capable of uniformly etching a copper layer in a plane by Cu etching and suppressing the occurrence of local circuit dents without requiring an additional etching step. It is to provide a manufacturing method.
 本発明の一態様によれば、表面銅層及びエッチング犠牲層をこの順に備えた金属箔、又は表面銅層、エッチング犠牲層及び追加銅層をこの順に備えた金属箔を用いて支持体を得る工程と、
 前記表面銅層上に、銅製の第一配線層と絶縁層とを少なくとも含むビルドアップ配線層を形成してビルドアップ配線層付積層体を得る工程と、
 前記表面銅層及び前記エッチング犠牲層、又は前記表面銅層、前記エッチング犠牲層、及び前記追加銅層をエッチング液により除去して前記第一配線層を露出させ、それにより前記ビルドアップ配線層を含むプリント配線板を得る工程と、
を含み、前記エッチング犠牲層のエッチングレートがCuよりも高いものである、プリント配線板の製造方法が提供される。
According to one aspect of the present invention, a support is obtained using a metal foil having a surface copper layer and an etching sacrificial layer in this order, or a metal foil having a surface copper layer, an etching sacrificial layer and an additional copper layer in this order. Process,
Forming a buildup wiring layer including at least a copper first wiring layer and an insulating layer on the surface copper layer to obtain a laminate with a buildup wiring layer;
The surface copper layer and the etching sacrificial layer, or the surface copper layer, the etching sacrificial layer, and the additional copper layer are removed with an etching solution to expose the first wiring layer, thereby forming the build-up wiring layer. Obtaining a printed wiring board including:
And a method for producing a printed wiring board, wherein the etching sacrificial layer has an etching rate higher than that of Cu.
本発明の方法に用いられる金属箔を含むキャリア付金属箔の一例を示す断面模式図である。It is a cross-sectional schematic diagram which shows an example of the metal foil with a carrier containing the metal foil used for the method of this invention. 本発明の方法に用いられる金属箔を含むキャリア付金属箔の他の一例を示す断面模式図である。It is a cross-sectional schematic diagram which shows another example of the metal foil with a carrier containing the metal foil used for the method of this invention. 本発明の方法におけるエッチング犠牲層の機能を説明するための断面模式図である。It is a cross-sectional schematic diagram for demonstrating the function of the etching sacrificial layer in the method of this invention. 本発明の方法が適用されたコアレスビルドアップ法を用いたプリント配線板の製造方法の一例における、前半の工程を示す図である。It is a figure which shows the process of the first half in an example of the manufacturing method of the printed wiring board using the coreless buildup method to which the method of this invention was applied. 本発明の方法が適用されたコアレスビルドアップ法を用いたプリント配線板の製造方法の一例における、図4に示される工程に続く後半の工程を示す。The latter half process following the process shown by FIG. 4 in an example of the manufacturing method of the printed wiring board using the coreless buildup method to which the method of this invention was applied is shown. 従来の方法における銅回路の不均一エッチングを説明するための断面模式図である。It is a cross-sectional schematic diagram for demonstrating the non-uniform etching of the copper circuit in the conventional method. 従来の方法におけるエッチングストッパー層及び銅回路の不均一エッチングを説明するための断面模式図である。It is a cross-sectional schematic diagram for demonstrating the non-uniform etching of the etching stopper layer and copper circuit in the conventional method. コアレスビルドアップ法を用いたプリント配線板の製造方法の従来例における、前半の工程を示す図である。It is a figure which shows the process of the first half in the prior art example of the manufacturing method of the printed wiring board using a coreless buildup method. コアレスビルドアップ法を用いたプリント配線板の製造方法の従来例における、図8に示される工程に続く後半の工程を示す。The latter half process following the process shown by FIG. 8 in the prior art example of the manufacturing method of the printed wiring board using a coreless buildup method is shown.
 プリント配線板の製造方法
 本発明はプリント配線板の製造方法に関する。本発明の方法においては、まず、少なくとも表面銅層及びエッチング犠牲層を備えた金属箔を用いて支持体を得る。具体的には、この金属箔は、図1に示される金属箔10のように、表面銅層11及びエッチング犠牲層12をこの順に備えたものであってもよいし、図2及び図3(a)に示される金属箔10’のように、表面銅層11、エッチング犠牲層12及び追加銅層13をこの順に備えたものであってもよい。すなわち、追加銅層13は所望により設けられる任意の銅層である。次いで、図3に模式的に示されるように、表面銅層11上に、銅製の第一配線層26と絶縁層28とを少なくとも含むビルドアップ配線層を形成してビルドアップ配線層付積層体を得る。なお、図3では説明の簡略化のため第一配線層26のみが描かれているが、後述する図5に示されるように、第n配線層40(nは2以上の整数)まで形成された多層のビルドアップ配線層を採用可能であることはいうまでもない。その後、表面銅層11、エッチング犠牲層12及び追加銅層13(存在する場合)をエッチング液により除去して第一配線層26を露出させ、それによりビルドアップ配線層を含むプリント配線板を得る。そして、エッチング犠牲層12はそのエッチングレートがCuのエッチングレートよりも高いことによって特性付けられる。このように、引用文献1に記載されるようなエッチングストッパー層に代えて、エッチングレートがCuよりも高いエッチング犠牲層12を採用することにより、追加のエッチング工程を別途要することなく、Cuエッチングにより面内で均一に銅層のエッチングを行えるとともに、局所的な回路凹みの発生を抑制することができる。
TECHNICAL FIELD The present invention of a printed wiring board is a method for manufacturing a printed wiring board. In the method of the present invention, a support is first obtained using a metal foil having at least a surface copper layer and an etching sacrificial layer. Specifically, this metal foil may be provided with a surface copper layer 11 and an etching sacrificial layer 12 in this order, like the metal foil 10 shown in FIG. Like the metal foil 10 ′ shown in a), the surface copper layer 11, the etching sacrificial layer 12, and the additional copper layer 13 may be provided in this order. That is, the additional copper layer 13 is an arbitrary copper layer provided as desired. Next, as schematically shown in FIG. 3, a build-up wiring layer including at least a copper first wiring layer 26 and an insulating layer 28 is formed on the surface copper layer 11 to form a laminate with a build-up wiring layer. Get. In FIG. 3, only the first wiring layer 26 is drawn for the sake of simplification. However, as shown in FIG. 5 to be described later, the nth wiring layer 40 (n is an integer of 2 or more) is formed. Needless to say, a multilayer build-up wiring layer can be used. Thereafter, the surface copper layer 11, the etching sacrificial layer 12, and the additional copper layer 13 (if present) are removed with an etching solution to expose the first wiring layer 26, thereby obtaining a printed wiring board including a build-up wiring layer. . The etching sacrificial layer 12 is characterized by its etching rate being higher than that of Cu. Thus, by using the etching sacrificial layer 12 whose etching rate is higher than that of Cu instead of the etching stopper layer as described in the cited document 1, Cu etching can be performed without requiring an additional etching process. The copper layer can be uniformly etched in the plane, and the occurrence of local circuit dents can be suppressed.
 すなわち、図3(b)及び(c)に概念的に示されるように、Cuエッチングの際にエッチング犠牲層12が不均一に溶解して且つ/又はエッチング犠牲層12に偶発的に存在しうるピンホール等に起因してCu(表面銅層11又は第一配線層26のCu)が局所的に露出したとしても、局部電池反応により下地の表面銅層11又は第一配線層26(銅層)の溶解が抑制される。その結果、面内で均一に表面銅層11がエッチングされるとともに、第一配線層26の局所的な回路凹みの発生を抑制することができる。しかも、この方法によれば、エッチング犠牲層12はCuエッチングに伴い溶解除去されるので、エッチング犠牲層12を除去するための追加工程が不要になり、生産性も向上する。さらには、高エッチングレートであること自体の効果により、第一配線層26の面内において回路凹みを平均的に低減できるとの利点もある。この点、前述したように、特許文献1の手法を採用した場合、図7に概念的に示されるように、銅エッチング工程で、除去されるべき銅箔116のみならず、本来除去されないはずのエッチングストッパー層115が僅かながら溶出してしまう他、エッチングストッパー層115を形成する段階に発生するピンホール等に起因して、下層である銅回路(第一配線層126)が局所的に露出するおそれがある。こうして銅回路(第一配線層126)が局所的に露出してしまうと、銅回路を構成するCuの溶解が加速され、局所的に大きな回路凹み126aが生じてしまう。そもそも、エッチングストッパー層115を設けた場合、エッチングストッパー層115を除去するための選択エッチング工程が別途必要となるため、製造工程が多くなる。これに対し、本発明のプリント配線板の製造方法によれば、これらの技術的課題を好都合に解消することができる。 That is, as conceptually shown in FIGS. 3B and 3C, the etching sacrificial layer 12 may be non-uniformly dissolved and / or accidentally exist in the etching sacrificial layer 12 during Cu etching. Even if Cu (Cu of the surface copper layer 11 or the first wiring layer 26) is locally exposed due to pinholes or the like, the underlying surface copper layer 11 or the first wiring layer 26 (copper layer) is caused by a local battery reaction. ) Is suppressed. As a result, the surface copper layer 11 is etched uniformly in the plane, and the occurrence of local circuit dents in the first wiring layer 26 can be suppressed. In addition, according to this method, the etching sacrificial layer 12 is dissolved and removed along with the Cu etching, so that an additional step for removing the etching sacrificial layer 12 is not required, and the productivity is improved. Furthermore, there is an advantage that the circuit dents can be reduced on the average in the plane of the first wiring layer 26 by the effect of the high etching rate itself. In this regard, as described above, when the method of Patent Document 1 is adopted, as conceptually shown in FIG. 7, not only the copper foil 116 to be removed but also not originally removed in the copper etching process. The etching stopper layer 115 elutes slightly, and the underlying copper circuit (first wiring layer 126) is locally exposed due to pinholes or the like generated at the stage of forming the etching stopper layer 115. There is a fear. When the copper circuit (first wiring layer 126) is locally exposed in this way, dissolution of Cu constituting the copper circuit is accelerated, and a large circuit recess 126a is locally generated. In the first place, when the etching stopper layer 115 is provided, a selective etching step for removing the etching stopper layer 115 is separately required, and thus the number of manufacturing steps is increased. On the other hand, according to the method for manufacturing a printed wiring board of the present invention, these technical problems can be solved conveniently.
 以下、図1及び2に加え、図4及び5に示される工程図をも適宜参照しながら、本発明の方法の態様について説明する。なお、図4及び5に示される態様は説明の簡略化のためにコアレス支持体18の片面にキャリア付金属箔14を設けてビルドアップ配線層42を形成するように描かれているが、コアレス支持体18の両面にキャリア付金属箔14を設けて当該両面に対してビルドアップ配線層42を形成するのが望ましい。 Hereinafter, an embodiment of the method of the present invention will be described with reference to the process diagrams shown in FIGS. 4 and 5 in addition to FIGS. 4 and 5 are drawn so that the build-up wiring layer 42 is formed by providing the metal foil 14 with a carrier on one side of the coreless support 18 for the sake of simplicity of explanation. It is desirable to provide the metal foil 14 with a carrier on both surfaces of the support 18 and form the build-up wiring layer 42 on both surfaces.
(1)金属箔を用いた支持体の用意
 本発明の方法では、表面銅層11及びエッチング犠牲層12をこの順に備えた金属箔10、又は表面銅層11、エッチング犠牲層12及び追加銅層13をこの順に備えた金属箔10’を用いて支持体を得る。すなわち、追加銅層13は所望により設けられる任意の層である。金属箔10又はそれを含むキャリア付金属箔14そのものを支持体として用いてもよいし、あるいは後述するように表面銅層11又はキャリア付金属箔14をコアレス支持体18の片面又は両面に積層して得た積層体を支持体として用いてもよい。
(1) Preparation of support using metal foil In the method of the present invention, metal foil 10 provided with surface copper layer 11 and etching sacrificial layer 12 in this order, or surface copper layer 11, etching sacrificial layer 12 and additional copper layer. A support is obtained using a metal foil 10 ′ having 13 in this order. That is, the additional copper layer 13 is an arbitrary layer provided as desired. The metal foil 10 or the metal foil 14 with a carrier including the metal foil 10 itself may be used as a support, or the surface copper layer 11 or the metal foil with a carrier 14 is laminated on one side or both sides of the coreless support 18 as described later. The laminate obtained in this way may be used as a support.
 エッチング犠牲層12は、エッチングレートがCuよりも高いものであれば特に限定されない。エッチングレートがCuより高ければCuエッチングによって同時に溶解除去することができるとともに、エッチング犠牲層12が不均一に溶解してCuが局所的に露出したとしても、局部電池反応により下地の第一配線層26(銅層)の溶解が抑制され、それにより面内で均一に表面銅層11のエッチングを行えるとともに、局所的な回路凹みの発生を抑制することができる。このエッチングレートは、エッチング犠牲層12と同じ材料で構成される箔サンプルと、参照試料としての銅箔サンプルとを、エッチング工程において同じ時間処理を行い、エッチングによる各サンプルの厚み変化を溶解時間で除することにより算出されるものである。なお、厚み変化は両サンプルの重量減少量を測定して、それぞれの金属の密度から厚さに換算することにより決定されてもよい。好ましいエッチングレートは、Cuのエッチングレートの1.2倍以上であり、より好ましくは1.25倍以上、さらに好ましくは1.3倍以上である。エッチングレートの上限は特に限定されないが、面内におけるエッチング犠牲層12の溶解速度を均一に保ち、表面銅層11との局部電池反応を面内均一に作用させるためには、5.0倍以下のエッチングレートが好ましく、より好ましくは4.5倍以下であり、さらに好ましくは4.0倍以下であり、特に好ましくは3.5倍以下であり、最も好ましくは3.0倍以下である。ここで、エッチング液としては、酸化還元反応により銅を溶解できる公知の液が採用可能である。エッチング液の例としては、塩化第二銅(CuCl)水溶液、塩化第二鉄(FeCl)水溶液、過硫酸アンモニウム水溶液、過硫酸ナトリウム水溶液、過硫酸カリウム水溶液、硫酸/過酸化水素水等の水溶液等が挙げられる。この中でもCuのエッチングレートを精密に制御でき、エッチング犠牲層12とのエッチング時間差を確保するのに好適な点から、過硫酸ナトリウム水溶液、過硫酸カリウム水溶液、及び硫酸/過酸化水素水が好ましく、この中でも硫酸/過酸化水素水が最も好ましい。エッチング方式としては、スプレー法、浸漬法等が採用できる。また、エッチング温度としては、25~70℃の範囲で適宜設定されうるものである。本発明におけるエッチングレートは、上記エッチング液やエッチング方式等の組合せと、下記に示すエッチング犠牲層12の材料の選択とによって調整されるものである。 The etching sacrificial layer 12 is not particularly limited as long as the etching rate is higher than that of Cu. If the etching rate is higher than Cu, it can be simultaneously dissolved and removed by Cu etching, and even if the etching sacrificial layer 12 is dissolved non-uniformly and Cu is locally exposed, the underlying first wiring layer is caused by local cell reaction. The dissolution of 26 (copper layer) is suppressed, whereby the surface copper layer 11 can be etched uniformly in the plane and the occurrence of local circuit dents can be suppressed. This etching rate is the same as that of the etching sacrificial layer 12 and the copper foil sample as a reference sample is processed for the same time in the etching process, and the change in thickness of each sample due to etching is determined by the dissolution time. It is calculated by dividing. The thickness change may be determined by measuring the weight reduction amount of both samples and converting the thickness from the density of each metal. A preferable etching rate is 1.2 times or more of Cu etching rate, more preferably 1.25 times or more, and further preferably 1.3 times or more. The upper limit of the etching rate is not particularly limited. However, in order to keep the dissolution rate of the etching sacrificial layer 12 in the plane uniform and cause the local cell reaction with the surface copper layer 11 to act uniformly in the plane, it is 5.0 times or less. The etching rate is preferably 4.5 times or less, more preferably 4.0 times or less, particularly preferably 3.5 times or less, and most preferably 3.0 times or less. Here, as the etching solution, a known solution capable of dissolving copper by an oxidation-reduction reaction can be employed. Examples of the etching solution include cupric chloride (CuCl 2 ) aqueous solution, ferric chloride (FeCl 3 ) aqueous solution, ammonium persulfate aqueous solution, sodium persulfate aqueous solution, potassium persulfate aqueous solution, sulfuric acid / hydrogen peroxide aqueous solution and the like. Etc. Among these, the Cu etching rate can be precisely controlled, and from the viewpoint of ensuring a difference in etching time with the etching sacrificial layer 12, a sodium persulfate aqueous solution, a potassium persulfate aqueous solution, and a sulfuric acid / hydrogen peroxide solution are preferable. Of these, sulfuric acid / hydrogen peroxide solution is most preferable. As an etching method, a spray method, a dipping method, or the like can be employed. The etching temperature can be appropriately set within the range of 25 to 70 ° C. The etching rate in the present invention is adjusted by a combination of the above etching solution and etching method and the selection of the material of the etching sacrificial layer 12 described below.
 エッチング犠牲層12を構成する材料はCuよりも電気化学的に卑な金属が好ましく、そのような好ましい金属の例としては、Cu-Zn合金、Cu-Sn合金、Cu-Mn合金、Cu-Al合金、Cu-Mg合金、Zn金属、Co金属、Mo金属、及びこれらの酸化物、並びにこれらの組合せが挙げられ、特に好ましくはCu-Zn合金である。エッチング犠牲層12を構成しうるCu-Zn合金は、高い犠牲効果を得る観点から、Znを40重量%以上含むのが好ましく、より好ましくは50重量%以上、さらに好ましくは60重量%以上、特に好ましくは70重量%以上である。また、Cu-Zn合金におけるZn含有量は、上述したエッチング犠牲層12の面内溶解速度の均一な保持、及び表面銅層11との局部電池反応の面内均一作用の観点から、好ましくは98重量%以下、より好ましくは96重量%以下であり、さらに好ましくは94重量%以下である。エッチング犠牲層12は0.1~5μmの厚さを有するのが好ましく、より好ましくは0.1~4.5μm、さらに好ましくは0.2~4μm、特に好ましくは0.2~3.5μm、最も好ましくは0.3~3μmである。 The material constituting the etching sacrificial layer 12 is preferably an electrochemically base metal rather than Cu. Examples of such a preferable metal include a Cu—Zn alloy, a Cu—Sn alloy, a Cu—Mn alloy, and Cu—Al. Alloys, Cu—Mg alloys, Zn metals, Co metals, Mo metals, and oxides thereof, and combinations thereof can be mentioned, and Cu—Zn alloys are particularly preferable. From the viewpoint of obtaining a high sacrificial effect, the Cu—Zn alloy that can constitute the etching sacrificial layer 12 preferably contains 40% by weight or more of Zn, more preferably 50% by weight or more, and even more preferably 60% by weight or more. Preferably it is 70 weight% or more. In addition, the Zn content in the Cu—Zn alloy is preferably 98 from the viewpoints of maintaining the uniform in-plane dissolution rate of the etching sacrificial layer 12 and the in-plane uniform action of the local cell reaction with the surface copper layer 11. % By weight or less, more preferably 96% by weight or less, and still more preferably 94% by weight or less. The etching sacrificial layer 12 preferably has a thickness of 0.1 to 5 μm, more preferably 0.1 to 4.5 μm, still more preferably 0.2 to 4 μm, particularly preferably 0.2 to 3.5 μm, Most preferably, it is 0.3 to 3 μm.
 表面銅層11は、公知の構成であってよく特に限定されない。例えば、表面銅層11は、無電解めっき法及び電解めっき法等の湿式成膜法、スパッタリング及び化学蒸着等の乾式成膜法、又はそれらの組合せにより形成したものであってよい。表面銅層11は0.1~2.5μmの厚さを有するのが好ましく、より好ましくは0.1~2μm、さらに好ましくは0.1~1.5μm、特に好ましくは0.2~1μm、最も好ましくは0.2~0.8μmである。 The surface copper layer 11 may have a known configuration and is not particularly limited. For example, the surface copper layer 11 may be formed by a wet film formation method such as an electroless plating method and an electrolytic plating method, a dry film formation method such as sputtering and chemical vapor deposition, or a combination thereof. The surface copper layer 11 preferably has a thickness of 0.1 to 2.5 μm, more preferably 0.1 to 2 μm, still more preferably 0.1 to 1.5 μm, particularly preferably 0.2 to 1 μm, Most preferably, it is 0.2 to 0.8 μm.
 所望により、表面銅層11には、粗化処理を施すこともできる。配線パターン形成後に外観画像検査を行う場合、表面銅層11の表面に粗化処理により形成された粗化粒子が付着されていることで配線パターン形成後の画像検査をしやすくするとともにフォトレジストパターン20との密着性を向上することができる。粗化粒子は画像解析による平均粒径Dが0.04~0.53μmであるのが好ましく、より好ましくは0.08~0.13μmであり、さらに好ましくは0.09~0.12μmである。上記好適範囲内であると、粗化面に適度な粗さを持たせてフォトレジストとの優れた密着性を確保しながら、フォトレジスト現像時にフォトレジストの不要領域の開口性を良好に実現することができ、その結果、十分に開口しきれなかったフォトレジストに起因してめっきされにくくなることで生じうるパターンめっき22のライン欠損を効果的に防止することができる。したがって、上記好適範囲内であるとフォトレジスト現像性とパターンめっき性に優れるといえ、それ故、配線パターン24の微細形成に適する。なお、粗化粒子の画像解析による平均粒径Dは、走査型電子顕微鏡(SEM)の一視野に粒子が所定数(例えば1000~3000個)入る倍率にて像を撮影し、その像に対して市販の画像解析ソフトで画像処理を行うことにより測定するのが好ましく、例えば任意に選択した200個の粒子を対象とし、それら粒子の平均直径を平均粒径Dとして採用すればよい。 If desired, the surface copper layer 11 can be roughened. When performing an appearance image inspection after the wiring pattern is formed, the roughened particles formed by the roughening treatment are attached to the surface of the surface copper layer 11, thereby facilitating the image inspection after the wiring pattern is formed and the photoresist pattern. Adhesion with 20 can be improved. The roughened particles preferably have an average particle size D of 0.04 to 0.53 μm by image analysis, more preferably 0.08 to 0.13 μm, still more preferably 0.09 to 0.12 μm. . Within the above preferable range, the roughened surface has an appropriate roughness and ensures excellent adhesion to the photoresist, while achieving good opening of the unnecessary areas of the photoresist during photoresist development. As a result, it is possible to effectively prevent line deficiency of the pattern plating 22 that may be caused by difficulty in plating due to the photoresist that cannot be fully opened. Therefore, it can be said that it is excellent in photoresist developability and pattern plating property within the above-mentioned preferable range, and is therefore suitable for fine formation of the wiring pattern 24. The average particle diameter D by image analysis of the roughened particles is obtained by taking an image at a magnification such that a predetermined number (for example, 1000 to 3000) of particles enters one field of view of a scanning electron microscope (SEM). Measurement is preferably performed by performing image processing with commercially available image analysis software. For example, 200 particles arbitrarily selected may be used as an object, and the average diameter of these particles may be adopted as the average particle diameter D.
 また、粗化粒子は画像解析による粒子密度ρが4~200個/μmであるのが好ましく、より好ましくは40~170個/μm、70~100個/μmである。表面銅層11表面の粗化粒子が緻密で密集している場合にはフォトレジストの現像残渣が発生しやすいが、上記好適範囲内であるとそのような現像残渣が発生しにくく、それ故、フォトレジストパターン20の現像性にも優れる。したがって、上記好適範囲内であると配線パターン24の微細形成に適するといえる。なお、粗化粒子の画像解析による粒子密度ρは、走査型電子顕微鏡(SEM)の一視野に粒子が所定数(例えば1000~3000個)入る倍率にて像を撮影し、その像に対して市販の画像解析ソフトを用いて画像処理を行うことにより測定するのが好ましく、例えば粒子200個が入る視野においてそれらの粒子個数(例えば200個)を視野面積で除算した値を粒子密度ρとして採用すればよい。 The roughened particles preferably have a particle density ρ by image analysis of 4 to 200 particles / μm 2 , more preferably 40 to 170 particles / μm 2 , and 70 to 100 particles / μm 2 . When the roughened particles on the surface copper layer 11 surface are dense and dense, a development residue of the photoresist is likely to be generated, but if it is within the above-mentioned preferred range, such a development residue is difficult to be generated. The developability of the photoresist pattern 20 is also excellent. Therefore, it can be said that it is suitable for fine formation of the wiring pattern 24 within the above-mentioned preferable range. The particle density ρ based on the image analysis of the roughened particles is obtained by taking an image at a magnification such that a predetermined number (for example, 1000 to 3000) of particles enters one field of view of a scanning electron microscope (SEM). It is preferable to perform measurement by performing image processing using commercially available image analysis software. For example, in a field where 200 particles enter, the value obtained by dividing the number of particles (for example, 200) by the field area is used as the particle density ρ. do it.
 表面銅層11の表面は、上述した粗化処理による粗化粒子の付着の他、ニッケル-亜鉛/クロメート処理等の防錆処理や、シランカップリング剤によるカップリング処理等を施すこともできる。これらの表面処理により金属箔表面の化学的安定性の向上や、絶縁層積層時の密着性の向上を図ることができる。 The surface of the surface copper layer 11 can be subjected to rust prevention treatment such as nickel-zinc / chromate treatment, coupling treatment with a silane coupling agent, etc., in addition to the adhesion of the roughened particles by the roughening treatment described above. By these surface treatments, it is possible to improve the chemical stability of the surface of the metal foil and to improve the adhesion when the insulating layer is laminated.
 追加銅層13もまた公知の構成であってよく特に限定されない。追加銅層13を備えることでCuエッチング工程における前処理等で溶解速度の速い犠牲層12を露出させないように制御することが可能になる、また、下記剥離層との剥離性を容易なものとすることができるといった利点がある。追加銅層13は、無電解めっき法及び電解めっき法等の湿式成膜法、スパッタリング及び化学蒸着等の乾式成膜法、又はそれらの組合せにより形成したものであってよい。追加銅層13は0.1~2.5μmの厚さを有するのが好ましく、より好ましくは0.1~2μm、さらに好ましくは0.2~1.5μm、特に好ましくは0.2~1μm、最も好ましくは0.3~0.8μmである。 The additional copper layer 13 may also have a known configuration and is not particularly limited. By providing the additional copper layer 13, it becomes possible to control the sacrificial layer 12 having a high dissolution rate in the pre-treatment in the Cu etching process so as not to be exposed, and the releasability from the following release layer is easy. There is an advantage that can be done. The additional copper layer 13 may be formed by a wet film formation method such as an electroless plating method and an electrolytic plating method, a dry film formation method such as sputtering and chemical vapor deposition, or a combination thereof. The additional copper layer 13 preferably has a thickness of 0.1 to 2.5 μm, more preferably 0.1 to 2 μm, still more preferably 0.2 to 1.5 μm, particularly preferably 0.2 to 1 μm, Most preferably, it is 0.3 to 0.8 μm.
 追加銅層13の単位面積当たりのピンホール数が2個/mm以下であるのが好ましい。追加銅層13におけるピンホール数が上記のとおり少ないと、金属箔10’の製造プロセスにおいて、追加銅層13にめっきされるエッチング犠牲層12及び表面銅層11において発生しうるピンホールもまた少なくすることができる。その結果、Cuエッチング時の薬液浸食による欠損等の不具合をより一層低減することができる。 The number of pinholes per unit area of the additional copper layer 13 is preferably 2 / mm 2 or less. When the number of pinholes in the additional copper layer 13 is small as described above, the number of pinholes that can be generated in the etching sacrificial layer 12 and the surface copper layer 11 plated on the additional copper layer 13 is also small in the manufacturing process of the metal foil 10 ′. can do. As a result, defects such as defects due to chemical erosion during Cu etching can be further reduced.
 所望により、表面銅層11とエッチング犠牲層12の間、及び/又は追加銅層13(存在する場合)とエッチング犠牲層12との間には、エッチング犠牲層12の犠牲効果を妨げないかぎり、別の層が存在していてもよい。 If desired, between the surface copper layer 11 and the etching sacrificial layer 12 and / or between the additional copper layer 13 (if present) and the etching sacrificial layer 12, as long as the sacrificial effect of the etching sacrificial layer 12 is not disturbed. Another layer may be present.
 表面銅層11、エッチング犠牲層12、及び追加銅層13(存在する場合)は、キャリア無し銅箔の形態で提供されてもよいし、図1及び2に示されるようにキャリア付金属箔14又は14’の形態で提供されてもよいが、キャリア付金属箔14又は14’の形態で提供されるのが好ましい。この場合、キャリア付金属箔は、キャリア15、剥離層16、追加銅層13(存在する場合)、エッチング犠牲層12、及び表面銅層11を順に備えるものであってもよいし、あるいはキャリア15、追加銅層13(存在する場合)、エッチング犠牲層12、及び表面銅層11を順に備えるものであってもよい。すなわち、剥離層16を有していてもよいし、剥離層16を単独の層として有しない構成であってもよい。 The surface copper layer 11, the etched sacrificial layer 12, and the additional copper layer 13 (if present) may be provided in the form of a carrierless copper foil or as shown in FIGS. Alternatively, it may be provided in the form of 14 ', but is preferably provided in the form of metal foil with carrier 14 or 14'. In this case, the carrier-attached metal foil may include a carrier 15, a release layer 16, an additional copper layer 13 (if present), an etching sacrificial layer 12, and a surface copper layer 11 in this order, or the carrier 15. The additional copper layer 13 (if present), the etching sacrificial layer 12, and the surface copper layer 11 may be provided in this order. That is, the release layer 16 may be provided, or the release layer 16 may not be provided as a single layer.
 キャリア15は、金属箔を支持してそのハンドリング性を向上させるための層(典型的には箔)である。キャリアの例としては、アルミニウム箔、銅箔、ステンレス箔、樹脂フィルム、表面をメタルコーティングした樹脂フィルム、ガラス板等が挙げられ、好ましくは銅箔である。銅箔は圧延銅箔及び電解銅箔のいずれであってもよい。キャリアの厚さは典型的には250μm以下であり、好ましくは12μm~200μmである。 The carrier 15 is a layer (typically a foil) for supporting the metal foil and improving its handleability. Examples of the carrier include an aluminum foil, a copper foil, a stainless steel foil, a resin film, a resin film whose surface is metal-coated, a glass plate, and the like, preferably a copper foil. The copper foil may be a rolled copper foil or an electrolytic copper foil. The thickness of the carrier is typically 250 μm or less, preferably 12 μm to 200 μm.
 剥離層16は、キャリア15の引き剥がし強度を弱くし、該強度の安定性を担保し、さらには高温でのプレス成形時にキャリアと金属箔の間で起こりうる相互拡散を抑制する機能を有する層である。剥離層は、キャリアの一方の面に形成されるのが一般的であるが、両面に形成されてもよい。剥離層は、有機剥離層及び無機剥離層のいずれであってもよい。有機剥離層に用いられる有機成分の例としては、窒素含有有機化合物、硫黄含有有機化合物、カルボン酸等が挙げられる。窒素含有有機化合物の例としては、トリアゾール化合物、イミダゾール化合物等が挙げられ、中でもトリアゾール化合物は剥離性が安定し易い点で好ましい。トリアゾール化合物の例としては、1,2,3-ベンゾトリアゾール、カルボキシベンゾトリアゾール、N’,N’-ビス(ベンゾトリアゾリルメチル)ユリア、1H-1,2,4-トリアゾール及び3-アミノ-1H-1,2,4-トリアゾール等が挙げられる。硫黄含有有機化合物の例としては、メルカプトベンゾチアゾール、チオシアヌル酸、2-ベンズイミダゾールチオール等が挙げられる。カルボン酸の例としては、モノカルボン酸、ジカルボン酸等が挙げられる。一方、無機剥離層に用いられる無機成分の例としては、Ni、Mo、Co、Cr、Fe、Ti、W、P、Zn、クロメート処理膜、炭素層等が挙げられる。なお、剥離層の形成はキャリアの少なくとも一方の表面に剥離層成分含有溶液を接触させ、剥離層成分をキャリアの表面に溶液中で吸着されること等により行えばよい。キャリアを剥離層成分含有溶液に接触させる場合、この接触は、剥離層成分含有溶液への浸漬、剥離層成分含有溶液の噴霧、剥離層成分含有溶液の流下等により行えばよい。その他、電解めっきや無電解めっき等のめっき法、蒸着やスパッタリング等による気相法で剥離層成分を被膜形成する方法も採用可能である。また、剥離層成分のキャリア表面への固定は、剥離層成分含有溶液の乾燥、剥離層成分含有溶液中の剥離層成分の電着等により行えばよい。剥離層の厚さは、典型的には1nm~1μmであり、好ましくは5nm~500nmである。なお、剥離層16とキャリアとの剥離強度は7gf/cm~50gf/cmであることが好ましく、より好ましくは10gf/cm~40gf/cm、より好ましくは15gf/cm~30gf/cmである。 The release layer 16 has a function of reducing the peeling strength of the carrier 15, ensuring the stability of the strength, and further suppressing interdiffusion that may occur between the carrier and the metal foil during press molding at a high temperature. It is. The release layer is generally formed on one side of the carrier, but may be formed on both sides. The release layer may be either an organic release layer or an inorganic release layer. Examples of organic components used in the organic release layer include nitrogen-containing organic compounds, sulfur-containing organic compounds, carboxylic acids and the like. Examples of nitrogen-containing organic compounds include triazole compounds, imidazole compounds, and the like. Among these, triazole compounds are preferred in terms of easy release stability. Examples of triazole compounds include 1,2,3-benzotriazole, carboxybenzotriazole, N ′, N′-bis (benzotriazolylmethyl) urea, 1H-1,2,4-triazole and 3-amino- And 1H-1,2,4-triazole. Examples of the sulfur-containing organic compound include mercaptobenzothiazole, thiocyanuric acid, 2-benzimidazolethiol and the like. Examples of the carboxylic acid include monocarboxylic acid and dicarboxylic acid. On the other hand, examples of inorganic components used in the inorganic release layer include Ni, Mo, Co, Cr, Fe, Ti, W, P, Zn, a chromate-treated film, and a carbon layer. The release layer may be formed by bringing the release layer component-containing solution into contact with at least one surface of the carrier and adsorbing the release layer component on the surface of the carrier in the solution. When the carrier is brought into contact with the release layer component-containing solution, this contact may be performed by immersion in the release layer component-containing solution, spraying of the release layer component-containing solution, flowing down of the release layer component-containing solution, or the like. In addition, it is also possible to employ a method of forming a release layer component by a plating method such as electrolytic plating or electroless plating, or a vapor phase method such as vapor deposition or sputtering. The release layer component may be fixed to the carrier surface by drying the release layer component-containing solution, electrodeposition of the release layer component in the release layer component-containing solution, or the like. The thickness of the release layer is typically 1 nm to 1 μm, preferably 5 nm to 500 nm. The peel strength between the release layer 16 and the carrier is preferably 7 gf / cm to 50 gf / cm, more preferably 10 gf / cm to 40 gf / cm, and more preferably 15 gf / cm to 30 gf / cm.
 所望により、ビルドアップ配線層付積層体の形成に先立ち、金属箔10若しくは金属箔10’又はキャリア付金属箔14若しくはキャリア付金属箔14’をコアレス支持体18の片面又は両面に積層して積層体を形成してもよい。この積層は、通常のプリント配線板製造プロセスにおいて銅箔とプリプレグ等との積層に採用される公知の条件及び手法に従って行えばよい。コアレス支持体18は、典型的には樹脂、好ましくは絶縁樹脂を含んでなる。コアレス支持体18はプリプレグ及び/又は樹脂シートであるのが好ましく、より好ましくはプリプレグである。プリプレグとは、合成樹脂板、ガラス板、ガラス織布、ガラス不織布、紙等の基材に合成樹脂を含浸又は積層させた複合材料の総称である。プリプレグに含浸される絶縁樹脂の好ましい例としては、エポキシ樹脂、シアネート樹脂、ビスマレイミドトリアジン樹脂(BT樹脂)、ポリフェニレンエーテル樹脂、フェノール樹脂、ポリアミド樹脂等が挙げられる。また、樹脂シートを構成する絶縁樹脂の例としては、エポキシ樹脂、ポリイミド樹脂、ポリエステル樹脂(液晶ポリマー)等の絶縁樹脂が挙げられる。また、コアレス支持体18には熱膨脹係数を下げ、剛性を上げる等の観点からシリカ、アルミナ等の各種無機粒子からなるフィラー粒子等が含有されていてもよい。コアレス支持体18の厚さは特に限定されないが、3~1000μmが好ましく、より好ましくは5~400μmであり、さらに好ましくは10~200μmである。 If desired, prior to the formation of the laminate with the build-up wiring layer, the metal foil 10 or the metal foil 10 ′ or the metal foil 14 with the carrier or the metal foil 14 ′ with the carrier is laminated on one or both sides of the coreless support 18 and laminated. You may form a body. This lamination may be performed in accordance with known conditions and techniques adopted for lamination of copper foil and prepreg in a normal printed wiring board manufacturing process. The coreless support 18 typically comprises a resin, preferably an insulating resin. The coreless support 18 is preferably a prepreg and / or a resin sheet, more preferably a prepreg. The prepreg is a general term for composite materials in which a synthetic resin is impregnated or laminated on a base material such as a synthetic resin plate, a glass plate, a glass woven fabric, a glass nonwoven fabric, and paper. Preferable examples of the insulating resin impregnated in the prepreg include epoxy resin, cyanate resin, bismaleimide triazine resin (BT resin), polyphenylene ether resin, phenol resin, polyamide resin and the like. Examples of the insulating resin constituting the resin sheet include insulating resins such as an epoxy resin, a polyimide resin, and a polyester resin (liquid crystal polymer). The coreless support 18 may contain filler particles made of various inorganic particles such as silica and alumina from the viewpoint of lowering the thermal expansion coefficient and increasing rigidity. The thickness of the coreless support 18 is not particularly limited, but is preferably 3 to 1000 μm, more preferably 5 to 400 μm, and still more preferably 10 to 200 μm.
(2)ビルドアップ配線層付積層体の形成
 本発明の方法においては、表面銅層11上に、銅製の第一配線層26と絶縁層28とを少なくとも含むビルドアップ配線層42を形成してビルドアップ配線層付積層体を得る。絶縁層28は上述したような絶縁樹脂で構成すればよい。ビルドアップ配線層42の形成は、公知のプリント配線板の製造方法に従って行えばよく、特に限定されない。本発明の好ましい態様によれば、以下に述べるように、(i)フォトレジストパターンを形成、(ii)電気銅めっき、及び(iii)フォトレジストパターンの剥離を行って第一配線層26を形成した後、(iv)ビルドアップ配線層42が形成される。
(2) Formation of a laminate with a buildup wiring layer In the method of the present invention, a buildup wiring layer 42 including at least a copper first wiring layer 26 and an insulating layer 28 is formed on the surface copper layer 11. A laminate with a build-up wiring layer is obtained. The insulating layer 28 may be made of the insulating resin as described above. The build-up wiring layer 42 may be formed according to a known method for manufacturing a printed wiring board, and is not particularly limited. According to a preferred embodiment of the present invention, as described below, the first wiring layer 26 is formed by performing (i) forming a photoresist pattern, (ii) performing electrolytic copper plating, and (iii) stripping the photoresist pattern. After that, (iv) the build-up wiring layer 42 is formed.
(i)フォトレジストパターンを形成
 まず、表面銅層11の表面にフォトレジストパターン20を形成する。フォトレジストパターン20の形成は、ネガレジスト及びポジレジストのいずれの方式で行ってもよく、フォトレジストはフィルムタイプ及び液状タイプのいずれであってもよい。また、現像液としては炭酸ナトリウム、水酸化ナトリウム、アミン系水溶液等の現像液であってよく、プリント配線板の製造に一般的に用いられる各種手法及び条件に従い行えばよく特に限定されない。
(I) Forming a photoresist pattern First, a photoresist pattern 20 is formed on the surface of the surface copper layer 11. The formation of the photoresist pattern 20 may be performed by either a negative resist or a positive resist, and the photoresist may be either a film type or a liquid type. Further, the developing solution may be a developing solution such as sodium carbonate, sodium hydroxide, an amine-based aqueous solution, etc., and may be carried out in accordance with various methods and conditions generally used in the production of printed wiring boards, and is not particularly limited.
(ii)電気銅めっき
 次に、フォトレジストパターン20が形成された表面銅層11に電気銅めっき22を施す。電気銅めっき22の形成は、例えば硫酸銅めっき液やピロリン酸銅めっき液等のプリント配線板の製造に一般的に用いられる各種パターンめっき手法及び条件に従い行えばよく特に限定されない。
(Ii) Electrolytic copper plating Next, electrolytic copper plating 22 is applied to the surface copper layer 11 on which the photoresist pattern 20 is formed. The formation of the electrolytic copper plating 22 is not particularly limited as long as it is performed in accordance with various pattern plating methods and conditions generally used in the production of printed wiring boards such as a copper sulfate plating solution and a copper pyrophosphate plating solution.
(iii)フォトレジストパターンの剥離
 フォトレジストパターン20を剥離して配線パターン24を形成する。フォトレジストパターン20の剥離は、水酸化ナトリウム水溶液や、アミン系溶液ないしその水溶液等が採用され、プリント配線板の製造に一般的に用いられる各種剥離手法及び条件に従い行えばよく特に限定されない。こうして、表面銅層11の表面には第一配線層26からなる配線部(ライン)が間隙部(スペース)を隔てて配列された配線パターン24が直接形成されることになる。例えば、回路の微細化のためには、ライン/スペース(L/S)が13μm以下/13μm以下(例えば12μm/12μm、10μm/10μm、5μm/5μm、2μm/2μm)といった程度にまで高度に微細化された配線パターンを形成することが好ましい。
(Iii) Stripping of photoresist pattern The photoresist pattern 20 is stripped to form a wiring pattern 24. Stripping of the photoresist pattern 20 is not particularly limited as long as an aqueous sodium hydroxide solution, an amine-based solution or an aqueous solution thereof is employed, and may be performed in accordance with various stripping methods and conditions generally used in the manufacture of printed wiring boards. Thus, a wiring pattern 24 in which wiring portions (lines) made of the first wiring layer 26 are arranged with a gap (space) therebetween is directly formed on the surface of the surface copper layer 11. For example, for circuit miniaturization, the line / space (L / S) is highly fine, such as 13 μm or less / 13 μm or less (for example, 12 μm / 12 μm, 10 μm / 10 μm, 5 μm / 5 μm, 2 μm / 2 μm). It is preferable to form a simplified wiring pattern.
(iv)ビルドアップ配線層の形成
 表面銅層11上にビルドアップ配線層42を形成してビルドアップ配線層付積層体を作製する。例えば、表面銅層11上に既に形成されている第一配線層26に加え、絶縁層28及び第二配線層38が順に形成されてビルドアップ配線層42とされうる。例えば、図5に示されるように、ビルドアップ配線層42を形成すべく絶縁層28及びキャリア付銅箔30(キャリア32、剥離層34及び銅箔36を備える)を積層し、キャリア32を剥離し、かつ、炭酸ガスレーザー等により銅箔36及びその直下の絶縁層28をレーザー加工してもよい。続いて、無電解銅めっき、フォトレジスト加工、電解銅めっき、フォトレジスト剥離及びフラッシュエッチング等によりパターニングを行って第二配線層38を形成し、このパターニングを必要に応じて繰り返して第n配線層40(nは2以上の整数)まで形成してもよい。
(Iv) Formation of build-up wiring layer Build-up wiring layer 42 is formed on surface copper layer 11, and a laminated body with a build-up wiring layer is produced. For example, in addition to the first wiring layer 26 already formed on the surface copper layer 11, the insulating layer 28 and the second wiring layer 38 can be formed in order to form the build-up wiring layer 42. For example, as shown in FIG. 5, the insulating layer 28 and the carrier-attached copper foil 30 (including the carrier 32, the release layer 34, and the copper foil 36) are laminated to form the build-up wiring layer 42, and the carrier 32 is peeled off. In addition, the copper foil 36 and the insulating layer 28 immediately below it may be laser processed by a carbon dioxide laser or the like. Subsequently, patterning is performed by electroless copper plating, photoresist processing, electrolytic copper plating, photoresist stripping, flash etching, or the like to form the second wiring layer 38, and this patterning is repeated as needed to repeat the nth wiring layer. You may form to 40 (n is an integer greater than or equal to 2).
 第二配線層38以降のビルドアップ層の形成方法についての工法は上記手法に限定されず、サブトラクティブ法、MSAP(モディファイド・セミ・アディティブ・プロセス)法、SAP(セミアディティブ)法、フルアディティブ法等が使用可能である。例えば、樹脂層及び銅箔に代表される金属箔を同時にプレス加工で張り合わせる場合は、ビアホール形成及びパネルめっき等の層間導通手段の形成と組み合わせて、当該パネルめっき層及び金属箔をエッチング加工して、配線パターンを形成することができる。また、表面銅層11の表面に樹脂層のみをプレス又はラミネート加工により張り合わせる場合は、その表面にセミアディティブ法で配線パターンを形成することもできる。 The method for forming the build-up layer after the second wiring layer 38 is not limited to the above method, but is a subtractive method, an MSAP (Modified Semi-Additive Process) method, an SAP (Semi-Additive) method, or a full additive method. Etc. can be used. For example, when a metal foil typified by a resin layer and a copper foil is bonded together by pressing, the panel plating layer and the metal foil are etched in combination with the formation of interlayer conduction means such as via hole formation and panel plating. Thus, a wiring pattern can be formed. When only the resin layer is bonded to the surface of the surface copper layer 11 by pressing or laminating, a wiring pattern can be formed on the surface by a semi-additive method.
 上記工程を必要に応じて繰り返して、ビルドアップ配線層付積層体を得る。この工程では樹脂層と配線パターンを含む配線層とを交互に積層配置したビルドアップ配線層を形成して、第n配線層40(nは2以上の整数)まで形成されたビルドアップ配線層付積層体を得るのが好ましい。この工程の繰り返しは所望の層数のビルドアップ配線層が形成されるまで行えばよい。この段階で、必要に応じて、外層面にソルダーレジストや、ピラー等の実装用のバンプ等を形成してもよい。また、ビルドアップ配線層の最外層面は後の外層加工工程で外層配線パターンを形成してもよい。 The above process is repeated as necessary to obtain a laminate with a build-up wiring layer. In this process, a build-up wiring layer in which a resin layer and a wiring layer including a wiring pattern are alternately stacked is formed, and the n-th wiring layer 40 (n is an integer of 2 or more) is formed. It is preferable to obtain a laminate. This process may be repeated until a desired number of build-up wiring layers are formed. At this stage, if necessary, solder resist, bumps for mounting such as pillars, and the like may be formed on the outer layer surface. Further, an outer layer wiring pattern may be formed on the outermost layer surface of the build-up wiring layer in a later outer layer processing step.
(3)ビルドアップ配線層を含むプリント配線板の形成
(i)ビルドアップ配線層付積層体の分離
 ビルドアップ配線層付積層体を形成した後は、ビルドアップ配線層付積層体を剥離層16等で分離することができる。キャリア付金属箔が、キャリア15、剥離層16、追加銅層13(存在する場合)、エッチング犠牲層12、及び表面銅層11を順に備える場合、本発明の方法は、後述のエッチング液による除去に先立ち、剥離層16でビルドアップ配線層付積層体を分離してエッチング犠牲層12又は追加銅層13を露出させるのが好ましい。分離の方法は、物理的な引き剥がしが好ましく、この引き剥がし方法については、機械若しくは冶具、手作業又はこれらの組合せによる方法が採用され得る。
(3) Formation of printed wiring board including build-up wiring layer (i) Separation of laminate with build-up wiring layer After forming the laminate with build-up wiring layer, the laminate with build-up wiring layer is separated from the release layer 16. Etc. can be separated. When the carrier-attached metal foil comprises the carrier 15, the release layer 16, the additional copper layer 13 (if present), the etching sacrificial layer 12, and the surface copper layer 11 in this order, the method of the present invention can be removed by an etching solution described later. Prior to the step, it is preferable to separate the stacked body with the buildup wiring layer by the release layer 16 to expose the etching sacrificial layer 12 or the additional copper layer 13. As the separation method, physical peeling is preferable, and for this peeling method, a machine or jig, manual work, or a combination thereof may be employed.
 一方、キャリア付金属箔が、キャリア15、追加銅層13(存在する場合)、エッチング犠牲層12、及び表面銅層11を順に備えてなる場合(すなわち剥離層16を単独の層として有しない場合)、本発明の方法は、後述のエッチング液による除去に先立ち、キャリア15とエッチング犠牲層12の間又は追加銅層13とエッチング犠牲層12の間又はエッチング犠牲層12内部でビルドアップ配線層付積層体を分離して、エッチング犠牲層12を露出させるのが好ましい。 On the other hand, when the metal foil with carrier comprises the carrier 15, the additional copper layer 13 (if present), the etching sacrificial layer 12, and the surface copper layer 11 in this order (that is, when the release layer 16 is not provided as a single layer). In the method of the present invention, a build-up wiring layer is attached between the carrier 15 and the etching sacrificial layer 12, between the additional copper layer 13 and the etching sacrificial layer 12, or inside the etching sacrificial layer 12, prior to removal with an etching solution described later. It is preferable to separate the stacked body to expose the etching sacrificial layer 12.
(ii)エッチング犠牲層及び銅層のエッチング
 本発明の方法においては、表面銅層11、エッチング犠牲層12及び追加銅層13(存在する場合)をエッチング液により除去して第一配線層26を露出させ、それによりビルドアップ配線層42を含むプリント配線板46を得る。プリント配線板46は好ましくは多層プリント配線板である。いずれにしても、エッチング犠牲層12の存在により、追加のエッチング工程を別途要することなく、Cuエッチングにより面内で均一に各層のエッチングによる除去を効率的に行えるとともに、局所的な回路凹みの発生を抑制することができる。したがって、本発明の方法によれば、表面銅層11及びエッチング犠牲層12のエッチング液による除去、又は表面銅層11、エッチング犠牲層12及び追加銅層13のエッチング液による除去を1工程で行うことができる。この際に用いるエッチング液及びエッチング工法は、上述したとおりである。
(Ii) Etching of etching sacrificial layer and copper layer In the method of the present invention, the surface copper layer 11, the etching sacrificial layer 12, and the additional copper layer 13 (if present) are removed with an etching solution to remove the first wiring layer 26. The printed wiring board 46 including the build-up wiring layer 42 is obtained by exposing. The printed wiring board 46 is preferably a multilayer printed wiring board. In any case, due to the presence of the etching sacrificial layer 12, it is possible to efficiently remove each layer uniformly by etching in the surface by Cu etching without the need for an additional etching step, and local circuit dents are generated. Can be suppressed. Therefore, according to the method of the present invention, the surface copper layer 11 and the sacrificial etching layer 12 are removed by the etching solution, or the surface copper layer 11, the etching sacrificial layer 12 and the additional copper layer 13 are removed by the etching solution in one step. be able to. The etching solution and etching method used at this time are as described above.
(iii)外層加工
 図5に示されるようなプリント配線板46は様々な工法により外層を加工することが可能である。例えば、プリント配線板46の第一配線層26にさらにビルドアップ配線層としての絶縁層と配線層を任意の層数として積層してもよく、或いは第一配線層26の表面にソルダ―レジスト層を形成し、Ni-Auめっき、Ni-Pd-Auめっき、水溶性プレフラックス処理等の外層パッドとしての表面処理を施してもよい。さらには外層パッドに柱状のピラー等を設けてもよい。この際、本発明におけるエッチング犠牲層を用いて作成された第一配線層26は、面内で回路厚さの均一性を保持できるとともに、第一配線層26の表面は、局所的な回路凹みの発生が少ないものとなる。このため、回路厚さの極端に薄い部位や回路凹み等に起因する表面処理工程における局所的な処理不良やソルダ―レジスト残渣不良、更には実装パッドの凹凸による実装不良等の不具合発生率の少ない、実装信頼性に優れたプリント配線板を得ることができる。
(Iii) Outer layer processing The printed wiring board 46 as shown in FIG. 5 can be processed into an outer layer by various methods. For example, an insulating layer and a wiring layer as build-up wiring layers may be further laminated on the first wiring layer 26 of the printed wiring board 46 as an arbitrary number of layers, or a solder resist layer is formed on the surface of the first wiring layer 26. And surface treatment as an outer layer pad such as Ni—Au plating, Ni—Pd—Au plating, or water-soluble preflux treatment may be performed. Furthermore, a columnar pillar or the like may be provided on the outer layer pad. At this time, the first wiring layer 26 formed using the etching sacrificial layer in the present invention can maintain the uniformity of the circuit thickness in the plane, and the surface of the first wiring layer 26 has a local circuit depression. Is less likely to occur. For this reason, there is a low incidence of defects such as local processing failures and solder-resist residue failures in the surface treatment process caused by extremely thin parts of the circuit thickness, circuit depressions, etc., and mounting failures due to mounting pad irregularities. A printed wiring board having excellent mounting reliability can be obtained.
 本発明を以下の例によってさらに具体的に説明する。 The present invention will be described more specifically with reference to the following examples.
 例1~11
 本発明の金属箔の作製及び各種評価を以下のようにして行った。
Examples 1-11
Production and various evaluations of the metal foil of the present invention were performed as follows.
(1)キャリアの準備
 回転陰極として表面を#2000のバフで研磨したチタン製の回転電極を用意した。また、陽極にはDSA(寸法安定性陽極)を用意した。回転陰極及び陽極を、銅濃度80g/L、硫酸濃度260g/L、ビス(3-スルホプロピル)ジスルフィド濃度30mg/L、ジアリルジメチルアンモニウムクロライド重合体濃度50mg/L、塩素濃度40mg/Lの硫酸銅溶液に浸漬して、溶液温度45℃、電流密度55A/dmで電解し、厚さ18μmの電解銅箔をキャリアとして得た。
(1) Preparation of carrier A rotating electrode made of titanium whose surface was polished with a buff of # 2000 was prepared as a rotating cathode. Further, a DSA (dimensional stability anode) was prepared for the anode. Rotating cathode and anode are copper sulfate having a copper concentration of 80 g / L, a sulfuric acid concentration of 260 g / L, a bis (3-sulfopropyl) disulfide concentration of 30 mg / L, a diallyldimethylammonium chloride polymer concentration of 50 mg / L, and a chlorine concentration of 40 mg / L. It was immersed in a solution and electrolyzed at a solution temperature of 45 ° C. and a current density of 55 A / dm 2 to obtain an electrolytic copper foil having a thickness of 18 μm as a carrier.
(2)剥離層の形成
 酸洗処理されたキャリアの電極面側を、CBTA(カルボキシベンゾトリアゾール)濃度1g/L、硫酸濃度150g/L及び銅濃度10g/LのCBTA水溶液に、液温30℃で30秒間浸漬し、CBTA成分をキャリアの電極面に吸着させた。こうして、キャリア用銅箔の電極面の表面にCBTA層を有機剥離層として形成した。
(2) Formation of Release Layer The electrode surface side of the pickled carrier is placed in a CBTA aqueous solution having a CBTA (carboxybenzotriazole) concentration of 1 g / L, a sulfuric acid concentration of 150 g / L, and a copper concentration of 10 g / L, at a liquid temperature of 30 ° C. So as to adsorb the CBTA component on the electrode surface of the carrier. Thus, a CBTA layer was formed as an organic release layer on the surface of the electrode surface of the carrier copper foil.
(3)補助金属層の形成
 有機剥離層が形成されたキャリアを、硫酸ニッケルを用いて作製されたニッケル濃度20g/Lの溶液に浸漬して、液温45℃、pH3、電流密度5A/dm2の条件で、厚さ0.001μm相当の付着量のニッケルを有機剥離層上に付着させた。こうして有機剥離層上にニッケル層を補助金属層として形成した。
(3) Formation of Auxiliary Metal Layer The carrier on which the organic peeling layer is formed is immersed in a solution having a nickel concentration of 20 g / L prepared using nickel sulfate, and the liquid temperature is 45 ° C., the pH is 3, and the current density is 5 A / dm 2. Under the conditions, nickel having a thickness equivalent to 0.001 μm was deposited on the organic release layer. Thus, a nickel layer was formed as an auxiliary metal layer on the organic release layer.
(4)追加銅層(極薄銅箔)の形成
 例1~8及び11については、補助金属層が形成されたキャリアを、銅濃度60g/L、硫酸濃度200g/Lの硫酸銅溶液に浸漬して、溶液温度50℃、電流密度5~30A/dmで電解し、厚さ0.3μmの追加銅層(極薄銅箔)を補助金属層上に形成した。一方、例9及び10については、追加銅層の形成を行わなかった。
(4) Formation of additional copper layer (ultra thin copper foil) In Examples 1 to 8 and 11, the carrier on which the auxiliary metal layer was formed was immersed in a copper sulfate solution having a copper concentration of 60 g / L and a sulfuric acid concentration of 200 g / L. Then, electrolysis was performed at a solution temperature of 50 ° C. and a current density of 5 to 30 A / dm 2 to form an additional copper layer (ultra thin copper foil) having a thickness of 0.3 μm on the auxiliary metal layer. On the other hand, in Examples 9 and 10, no additional copper layer was formed.
(5)エッチング犠牲層の形成
 追加銅層(極薄銅箔)が形成されたキャリア(例1~8及び11)又は補助金属層が形成されたキャリア(例10)を、表1に示されるめっき浴に浸漬して、表1に示されるめっき条件で電解し、表2に示される組成及び厚さのエッチング犠牲層を追加銅層上又は補助金属層上に形成した。一方、例9については、エッチング犠牲層の形成を行わなかった。
(5) Formation of etching sacrificial layer Table 1 shows carriers (Examples 1 to 8 and 11) on which an additional copper layer (ultra thin copper foil) is formed or carriers (Example 10) on which an auxiliary metal layer is formed. It was immersed in a plating bath and electrolyzed under the plating conditions shown in Table 1, and an etching sacrificial layer having the composition and thickness shown in Table 2 was formed on the additional copper layer or the auxiliary metal layer. On the other hand, in Example 9, the etching sacrificial layer was not formed.
(6)表面銅層の形成
 エッチング犠牲層が形成されたキャリア(例1~8、10及び11)又は補助金属層が形成されたキャリア(例9)を、銅濃度60g/L、硫酸濃度145g/Lの硫酸銅溶液に浸漬して、溶液温度45℃、電流密度30A/dmで電解し、表2に示される厚さの表面銅層をエッチング犠牲層上又は補助金属層上に形成した。
(6) Formation of surface copper layer Carrier (Examples 1 to 8, 10 and 11) on which an etching sacrificial layer was formed or carrier (Example 9) on which an auxiliary metal layer was formed was subjected to a copper concentration of 60 g / L and a sulfuric acid concentration of 145 g. / L copper sulfate solution and electrolysis at a solution temperature of 45 ° C. and a current density of 30 A / dm 2 to form a surface copper layer having a thickness shown in Table 2 on the etching sacrificial layer or the auxiliary metal layer. .
(7)防錆処理
 こうして形成されたキャリア付金属箔の表面に、亜鉛-ニッケル合金めっき処理及びクロメート処理からなる防錆処理を行った。まず、亜鉛濃度0.2g/L、ニッケル濃度2g/L及びピロリン酸カリウム濃度300g/Lの電解液を用い、液温40℃、電流密度0.5A/dmの条件で、金属箔及びキャリアの表面に亜鉛-ニッケル合金めっき処理を行った。次いで、クロム酸3g/L水溶液を用い、pH10、電流密度5A/dmの条件で、亜鉛-ニッケル合金めっき処理を行った表面にクロメート処理を行った。
(7) Rust prevention treatment The surface of the metal foil with carrier thus formed was subjected to a rust prevention treatment comprising zinc-nickel alloy plating treatment and chromate treatment. First, using an electrolytic solution having a zinc concentration of 0.2 g / L, a nickel concentration of 2 g / L, and a potassium pyrophosphate concentration of 300 g / L, under conditions of a liquid temperature of 40 ° C. and a current density of 0.5 A / dm 2 , the metal foil and the carrier A zinc-nickel alloy plating treatment was performed on the surface of the substrate. Next, a chromate treatment was performed on the surface on which the zinc-nickel alloy plating treatment was performed using a 3 g / L aqueous solution of chromic acid under the conditions of pH 10 and a current density of 5 A / dm 2 .
(8)シランカップリング剤処理
 3-グリシドキシプロピルトリメトキシシラン2g/L含む水溶液をキャリア付金属箔のキャリア側の表面に吸着させ、電熱器により水分を蒸発させることにより、シランカップリング剤処理を行った。このとき、シランカップリング剤処理は金属箔側には行わなかった。
(8) Silane coupling agent treatment A silane coupling agent is prepared by adsorbing an aqueous solution containing 2 g / L of 3-glycidoxypropyltrimethoxysilane to the surface of the carrier-side metal foil and evaporating water with an electric heater. Processed. At this time, the silane coupling agent treatment was not performed on the metal foil side.
(9)評価
 こうして得られたキャリア付金属箔及びその構成層について、各種評価を以下のとおり行った。
(9) Evaluation Various evaluations were performed on the metal foil with a carrier thus obtained and its constituent layers as follows.
 評価1:エッチングレート比r
 Cuのエッチングレートに対する、エッチング犠牲層12のエッチングレートの比r(以下、エッチングレート比rという)を測定するために、例1~8、10及び11については、上記(5)で得られた最表面がエッチング犠牲層であるキャリア(すなわちエッチング犠牲層までが形成され、表面銅層の形成及びその後の処理が行われていない中間製品)を用意した。また、例9については、上記(6)で得られた最表面が表面銅層であるキャリア付金属箔(すなわち表面銅層までが形成され、その後の処理が行われていない中間製品)を用意した。一方、水に市販の95wt%濃硫酸と30wt%過酸化水素水を溶解させて、硫酸濃度5.9wt%、過酸化水素濃度2.1wt%のエッチング液を作製した。各キャリア付金属箔サンプルをエッチング液に25℃で一定時間浸漬して溶解させ、溶解前後のめっき皮膜の厚み変化を蛍光X線膜厚計(フィッシャー・インストルメンツ社製、Fischerscope X-Ray XDAL-FD)で測定した。得られた厚み変化を溶解時間で除することにより、対象となる各めっき皮膜のエッチングレートを求めた。こうして求めた例9のエッチングレートがCuのエッチングレートであり、例1~8、10及び11のエッチングレートが各エッチング犠牲層のエッチングレートである。そして、エッチング犠牲層のエッチングレートをCuのエッチングレートで除することにより、エッチングレート比rを算出した。結果は、表2に示されるとおりであった。
Evaluation 1 : Etching rate ratio r
In order to measure the ratio r of the etching rate of the etching sacrificial layer 12 to the etching rate of Cu (hereinafter referred to as the etching rate ratio r), Examples 1 to 8, 10 and 11 were obtained in the above (5). A carrier whose outermost surface is an etching sacrificial layer (that is, an intermediate product in which the etching sacrificial layer is formed and the surface copper layer is not formed and processed thereafter) was prepared. Further, for Example 9, a metal foil with a carrier whose outermost surface obtained in (6) is a surface copper layer (that is, an intermediate product in which the surface copper layer is formed and the subsequent treatment is not performed) is prepared. did. On the other hand, commercially available 95 wt% concentrated sulfuric acid and 30 wt% hydrogen peroxide water were dissolved in water to produce an etching solution having a sulfuric acid concentration of 5.9 wt% and a hydrogen peroxide concentration of 2.1 wt%. Each metal foil sample with a carrier is immersed in an etching solution at 25 ° C. for a certain period of time and dissolved, and the thickness change of the plating film before and after dissolution is measured by a fluorescent X-ray film thickness meter (Fischerscope X-Ray XDAL-, manufactured by Fischer Instruments). FD). The etching rate of each target plating film was determined by dividing the obtained thickness change by the dissolution time. The etching rate of Example 9 thus obtained is the etching rate of Cu, and the etching rates of Examples 1 to 8, 10 and 11 are the etching rates of the respective etching sacrificial layers. Then, the etching rate ratio r was calculated by dividing the etching rate of the etching sacrificial layer by the etching rate of Cu. The results were as shown in Table 2.
 評価2:単位面積当たりのピンホール数
 追加銅層の単位面積当たりのピンホール数を測定するために、上記(4)で得られた最表面が追加銅層(極薄銅箔)であるキャリア付極薄銅箔(すなわち厚み0.3μmの追加銅層までが形成され、エッチング犠牲層の形成及びその後の処理が行われていない中間製品)を用意した。このキャリア付極薄銅箔を絶縁樹脂基材(パナソニック株式会社製プリプレグ、R-1661、厚さ0.1mm)に追加銅層(極薄銅箔)側が接するように積層し、圧力4.0MPa、温度190℃で90分間熱圧着した。その後、キャリアを剥離して積層板を得た。この積層板を、暗室中でバックライトを当てながら、光学顕微鏡で観察して、ピンホールの数を数えた。こうして1mmあたりのピンホール数を測定したところ、例1~8及び11のいずれにおいても、追加銅層の単位面積当たりのピンホール数は2個/mm以下であった。
Evaluation 2 : The number of pinholes per unit area In order to measure the number of pinholes per unit area of the additional copper layer, the carrier whose outermost surface obtained in (4) is an additional copper layer (ultra-thin copper foil) An attached ultra-thin copper foil (that is, an intermediate product in which an additional copper layer having a thickness of 0.3 μm was formed and an etching sacrificial layer was not formed and thereafter processed) was prepared. This ultrathin copper foil with a carrier is laminated so that the additional copper layer (ultrathin copper foil) side is in contact with an insulating resin base material (prepreg made by Panasonic Corporation, R-1661, thickness 0.1 mm), and the pressure is 4.0 MPa. And thermocompression bonded at a temperature of 190 ° C. for 90 minutes. Thereafter, the carrier was peeled off to obtain a laminate. This laminated plate was observed with an optical microscope while applying a backlight in a dark room, and the number of pinholes was counted. Thus, when the number of pinholes per 1 mm 2 was measured, in any of Examples 1 to 8 and 11, the number of pinholes per unit area of the additional copper layer was 2 / mm 2 or less.
 評価3:回路凹み
 上記(8)で得られたキャリア付金属箔を、第一の絶縁樹脂基材(パナソニック株式会社製プリプレグ、R-1661、厚さ0.1mm)に対してキャリア側が接するように積層し、圧力4.0MPa,温度190℃で90分間熱圧着した。こうして得られた積層板に対し、金属箔側に厚さ19μmのドライフィルムをラミネートし、ライン/スペース(L/S)=10/10μmのマスクを用いて露光し、現像を行った。現像後の積層板に対しめっき高さが17μmとなるようにパターンめっきを行った後、ドライフィルムを剥離し、L/S=10/10の5本の直線回路を形成した。次に、積層板の5本の直線回路が形成された表面に第二の絶縁樹脂基材(パナソニック株式会社製プリプレグ、R-1661、厚さ0.1mm)を積層し、圧力4.0MPa,温度190℃で90分間熱圧着した。その後、剥離層を境として、キャリア及びそれが接着された第一の絶縁樹脂基材を剥離した。残った第二の絶縁樹脂基材のうち金属箔が露出している側に対し、評価1で作製したのと同じエッチング液を用い、金属箔が消失するまでエッチングを行った。この状態で断面を光学顕微鏡を用いて2,000倍で観察し、5本の回路について第二の絶縁樹脂基材の上端から回路の上端までの距離を回路凹みとして測定し、以下の基準に従い格付け評価した。
・評価A:5本の中での最大値が2.0μm未満のもの
・評価B:5本の中での最大値が2.0μm以上2.5μm未満のもの
・評価C:5本の中での最大値が2.5μm以上(実際には3.0μm以上)のもの
Evaluation 3 : Circuit recess The carrier-side metal foil obtained in (8) above is in contact with the first insulating resin base material (Panasonic Corporation prepreg, R-1661, thickness 0.1 mm) on the carrier side. And thermocompression bonded at a pressure of 4.0 MPa and a temperature of 190 ° C. for 90 minutes. The laminated plate thus obtained was laminated with a 19 μm-thick dry film on the metal foil side, exposed using a line / space (L / S) = 10/10 μm mask, and developed. After pattern development was performed on the laminate after development so that the plating height was 17 μm, the dry film was peeled off to form five linear circuits of L / S = 10/10. Next, a second insulating resin base material (prepreg made by Panasonic Corporation, R-1661, thickness 0.1 mm) was laminated on the surface of the laminated plate on which the five linear circuits were formed, and the pressure was 4.0 MPa, Thermocompression bonding was performed at a temperature of 190 ° C. for 90 minutes. Thereafter, the carrier and the first insulating resin substrate to which it was adhered were peeled off with the release layer as a boundary. Etching was performed on the side of the remaining second insulating resin base material where the metal foil was exposed, using the same etching solution prepared in Evaluation 1 until the metal foil disappeared. In this state, the cross section was observed at 2,000 times using an optical microscope, and the distance from the upper end of the second insulating resin substrate to the upper end of the circuit was measured as a circuit recess for five circuits, and the following criteria were used. Rating rating.
・ Evaluation A: The maximum value among 5 pieces is less than 2.0 μm ・ Evaluation B: The maximum value among 5 pieces is less than 2.0 μm and less than 2.5 μm ・ Evaluation C: Among 5 pieces With a maximum value of 2.5 μm or more (actually 3.0 μm or more)

Figure JPOXMLDOC01-appb-T000001
 

Figure JPOXMLDOC01-appb-T000001
 
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002

Claims (8)

  1.  表面銅層及びエッチング犠牲層をこの順に備えた金属箔、又は表面銅層、エッチング犠牲層及び追加銅層をこの順に備えた金属箔を用いて支持体を得る工程と、
     前記表面銅層上に、銅製の第一配線層と絶縁層とを少なくとも含むビルドアップ配線層を形成してビルドアップ配線層付積層体を得る工程と、
     前記表面銅層及び前記エッチング犠牲層、又は前記表面銅層、前記エッチング犠牲層、及び前記追加銅層をエッチング液により除去して前記第一配線層を露出させ、それにより前記ビルドアップ配線層を含むプリント配線板を得る工程と、
    を含み、前記エッチング犠牲層のエッチングレートがCuよりも高いものである、プリント配線板の製造方法。
    A step of obtaining a support using a metal foil provided with a surface copper layer and an etching sacrificial layer in this order, or a metal foil provided with a surface copper layer, an etching sacrificial layer and an additional copper layer in this order;
    Forming a buildup wiring layer including at least a copper first wiring layer and an insulating layer on the surface copper layer to obtain a laminate with a buildup wiring layer;
    The surface copper layer and the etching sacrificial layer, or the surface copper layer, the etching sacrificial layer, and the additional copper layer are removed with an etching solution to expose the first wiring layer, thereby forming the build-up wiring layer. Obtaining a printed wiring board including:
    And the etching sacrificial layer has a higher etching rate than Cu.
  2.  前記エッチング犠牲層が、Cu-Zn合金、Cu-Sn合金、Cu-Mn合金、Cu-Al合金、Cu-Mg合金、Zn金属、Co金属、Mo金属及びこれらの酸化物からなる群から選択される少なくとも1種で構成される、請求項1に記載の方法。 The etching sacrificial layer is selected from the group consisting of Cu—Zn alloy, Cu—Sn alloy, Cu—Mn alloy, Cu—Al alloy, Cu—Mg alloy, Zn metal, Co metal, Mo metal and oxides thereof. The method according to claim 1, comprising at least one selected from the group consisting of:
  3.  前記エッチング犠牲層が、Znを40重量%以上含むCu-Zn合金で構成される、請求項1又は2に記載の方法。 The method according to claim 1 or 2, wherein the etching sacrificial layer is made of a Cu-Zn alloy containing 40 wt% or more of Zn.
  4.  前記エッチング犠牲層が0.1~5μmの厚さを有する、請求項1~3のいずれか一項に記載の方法。 The method according to any one of claims 1 to 3, wherein the etching sacrificial layer has a thickness of 0.1 to 5 袖 m.
  5.  前記表面銅層、前記エッチング犠牲層、及び存在する場合には前記追加銅層が、金属箔又はキャリア付金属箔の形態で提供される、請求項1~4のいずれか一項に記載の方法。 The method according to any one of claims 1 to 4, wherein the surface copper layer, the etching sacrificial layer, and the additional copper layer, if present, are provided in the form of a metal foil or a metal foil with a carrier. .
  6.  前記表面銅層、前記エッチング犠牲層、及び存在する場合には前記追加銅層が、キャリア付金属箔の形態で提供され、該キャリア付金属箔が、キャリア、剥離層、存在する場合には前記追加銅層、前記エッチング犠牲層、及び前記表面銅層を順に備えてなり、
     前記方法が、前記エッチング液による除去に先立ち、前記剥離層で前記ビルドアップ配線層付積層体を分離して前記エッチング犠牲層又は前記追加銅層を露出させる工程をさらに含む、請求項1~5のいずれか一項に記載の方法。
    The surface copper layer, the etching sacrificial layer, and the additional copper layer, if present, are provided in the form of a metal foil with a carrier, and the metal foil with carrier is a carrier, a release layer, if present An additional copper layer, the etching sacrificial layer, and the surface copper layer in order,
    The method further includes the step of separating the stacked body with the buildup wiring layer by the release layer to expose the etching sacrificial layer or the additional copper layer prior to the removal by the etching solution. The method as described in any one of.
  7.  前記表面銅層、前記エッチング犠牲層、及び存在する場合には前記追加銅層が、キャリア付金属箔の形態で提供され、該キャリア付金属箔が、キャリア、存在する場合には前記追加銅層、前記エッチング犠牲層、及び前記表面銅層を順に備えてなり、
     前記方法が、前記エッチング液による除去に先立ち、前記キャリアと前記エッチング犠牲層の間又は前記追加銅層とエッチング犠牲層の間又はエッチング犠牲層内部で前記ビルドアップ配線層付積層体を分離して、前記エッチング犠牲層を露出させる工程をさらに含む、請求項1~5のいずれか一項に記載の方法。
    The surface copper layer, the etching sacrificial layer, and the additional copper layer, if present, are provided in the form of a metal foil with a carrier, the carrier-added metal foil when present, the additional copper layer. , The etching sacrificial layer, and the surface copper layer in order,
    Prior to the removal by the etching solution, the method separates the stacked body with the build-up wiring layer between the carrier and the etching sacrificial layer or between the additional copper layer and the etching sacrificial layer or inside the etching sacrificial layer. The method according to any one of claims 1 to 5, further comprising exposing the etching sacrificial layer.
  8.  前記表面銅層及び前記エッチング犠牲層のエッチング液による除去、又は前記表面銅層、前記エッチング犠牲層、及び前記追加銅層のエッチング液による除去が1工程で行われる、請求項1~7のいずれか一項に記載の方法。
     
     

     
    The removal of the surface copper layer and the etching sacrificial layer with an etchant or the removal of the surface copper layer, the etching sacrificial layer, and the additional copper layer with an etchant is performed in one step. The method according to claim 1.



PCT/JP2017/005572 2016-02-18 2017-02-15 Printed circuit board production method WO2017141983A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020187019109A KR20180113987A (en) 2016-02-18 2017-02-15 Manufacturing method of printed wiring board
JP2018500168A JP6836579B2 (en) 2016-02-18 2017-02-15 Manufacturing method of printed wiring board
CN201780006592.XA CN108464062B (en) 2016-02-18 2017-02-15 Method for manufacturing printed circuit board

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016-028693 2016-02-18
JP2016028693 2016-02-18
JP2016076251 2016-09-07
JPPCT/JP2016/076251 2016-09-07

Publications (1)

Publication Number Publication Date
WO2017141983A1 true WO2017141983A1 (en) 2017-08-24

Family

ID=59625148

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/005572 WO2017141983A1 (en) 2016-02-18 2017-02-15 Printed circuit board production method

Country Status (5)

Country Link
JP (1) JP6836579B2 (en)
KR (1) KR20180113987A (en)
CN (1) CN108464062B (en)
TW (1) TWI650240B (en)
WO (1) WO2017141983A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11576267B2 (en) * 2017-10-26 2023-02-07 Mitsui Mining & Smelting Co., Ltd. Ultra-thin copper foil, ultra-thin copper foil with carrier, and method for manufacturing printed wiring board
JP7449921B2 (en) 2019-03-27 2024-03-14 三井金属鉱業株式会社 Metal foil for printed wiring boards, metal foil with carrier, metal-clad laminate, and method for manufacturing printed wiring boards using the same

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI669034B (en) * 2018-05-11 2019-08-11 南亞電路板股份有限公司 Printed circuit board structure and method of forming the same
CN112586098B (en) * 2018-09-28 2021-09-21 三井金属矿业株式会社 Method for manufacturing multilayer wiring board

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6380412A (en) * 1986-09-24 1988-04-11 古河電気工業株式会社 Cu based substrate for electric circuit board and manufacture thereof
JP2013030603A (en) * 2011-07-28 2013-02-07 Hitachi Chem Co Ltd Method of manufacturing wiring board
US20140138142A1 (en) * 2012-05-24 2014-05-22 Unimicron Technology Corp. Interposed substrate and manufacturing method thereof
JP2014130856A (en) * 2012-12-28 2014-07-10 Kyocer Slc Technologies Corp Wiring board manufacturing method
JP2015061937A (en) * 2013-08-20 2015-04-02 Jx日鉱日石金属株式会社 Surface-treated copper foil and laminated board, printed wiring board and electronic device using same, as well as method for producing printed wiring board
JP2015214750A (en) * 2014-04-24 2015-12-03 Jx日鉱日石金属株式会社 Copper foil with carrier, printed wiring board, laminate, electronic apparatus and manufacturing method of printed wiring board

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4736703B2 (en) * 2005-10-14 2011-07-27 宇部興産株式会社 Method for producing copper wiring polyimide film
JP6092555B2 (en) * 2012-09-24 2017-03-08 新光電気工業株式会社 Wiring board manufacturing method
CN107031143A (en) * 2013-03-04 2017-08-11 Jx日矿日石金属株式会社 Copper foil with carrier, the manufacture method using its copper-cover laminated plate, printing distributing board, e-machine and printing distributing board

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6380412A (en) * 1986-09-24 1988-04-11 古河電気工業株式会社 Cu based substrate for electric circuit board and manufacture thereof
JP2013030603A (en) * 2011-07-28 2013-02-07 Hitachi Chem Co Ltd Method of manufacturing wiring board
US20140138142A1 (en) * 2012-05-24 2014-05-22 Unimicron Technology Corp. Interposed substrate and manufacturing method thereof
JP2014130856A (en) * 2012-12-28 2014-07-10 Kyocer Slc Technologies Corp Wiring board manufacturing method
JP2015061937A (en) * 2013-08-20 2015-04-02 Jx日鉱日石金属株式会社 Surface-treated copper foil and laminated board, printed wiring board and electronic device using same, as well as method for producing printed wiring board
JP2015214750A (en) * 2014-04-24 2015-12-03 Jx日鉱日石金属株式会社 Copper foil with carrier, printed wiring board, laminate, electronic apparatus and manufacturing method of printed wiring board

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11576267B2 (en) * 2017-10-26 2023-02-07 Mitsui Mining & Smelting Co., Ltd. Ultra-thin copper foil, ultra-thin copper foil with carrier, and method for manufacturing printed wiring board
JP7449921B2 (en) 2019-03-27 2024-03-14 三井金属鉱業株式会社 Metal foil for printed wiring boards, metal foil with carrier, metal-clad laminate, and method for manufacturing printed wiring boards using the same

Also Published As

Publication number Publication date
KR20180113987A (en) 2018-10-17
TWI650240B (en) 2019-02-11
JPWO2017141983A1 (en) 2018-12-06
TW201741145A (en) 2017-12-01
JP6836579B2 (en) 2021-03-03
CN108464062B (en) 2020-10-27
CN108464062A (en) 2018-08-28

Similar Documents

Publication Publication Date Title
WO2017141985A1 (en) Copper foil for printed circuit board production, copper foil with carrier, and copper-clad laminate plate, and printed circuit board production method using copper foil for printed circuit board production, copper foil with carrier, and copper-clad laminate plate
CN110382745B (en) Roughened copper foil, copper foil with carrier, copper-clad laminate, and printed wiring board
JPH0818401B2 (en) Composite foil and its manufacturing method
JP7166335B2 (en) Roughened copper foil, copper foil with carrier, copper clad laminate and printed wiring board
WO2020105289A1 (en) Surface-treated copper foil, carrier-attached copper foil, copper-clad laminate, and printed wiring board
WO2017141983A1 (en) Printed circuit board production method
WO2014192895A1 (en) Copper foil, copper foil with carrier, copper-clad laminate, printed circuit board, circuit forming substrate for semiconductor package, semiconductor package, electronic device, resin substrate, circuit forming method, semiadditive method, and printed circuit board manufacturing method
CN108029202B (en) Method for manufacturing printed circuit board
JP2014053636A (en) Electronic circuit and formation method therefor, and copper-clad laminate for electronic circuit formation
JPWO2012132573A1 (en) Composite copper foil and method for producing the same
WO2020195748A1 (en) Metal foil for printed wiring board, metal foil with carrier, and metal-clad laminate, and method for manufacturing printed wiring board using same
JP6140480B2 (en) Copper foil with carrier, method for producing copper foil with carrier, printed wiring board, printed circuit board, copper-clad laminate, and method for producing printed wiring board
JP5467009B2 (en) RESIST-FORMED WIRING BOARD AND ELECTRONIC CIRCUIT MANUFACTURING METHOD
JP6329727B2 (en) Copper foil with carrier, method for producing copper foil with carrier, printed wiring board, printed circuit board, copper-clad laminate, and method for producing printed wiring board
JP6271134B2 (en) Copper foil with carrier, method for producing copper foil with carrier, printed wiring board, printed circuit board, copper-clad laminate, and method for producing printed wiring board
JP2011210993A (en) Copper foil for printed wiring board and layered body which have superior etching property
JP2014195036A (en) Copper foil with carrier, manufacturing method of copper foil with carrier, printed wiring board, printed circuit board, copper clad laminate and manufacturing method of printed wiring board
JP2013028823A (en) Laminate and printed wiring board using the same
JP2011210984A (en) Copper foil for printed wiring board and layered body which have superior heating discoloration resistance and etching property
JP2012235061A (en) Laminate and printed wiring board using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17753239

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018500168

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17753239

Country of ref document: EP

Kind code of ref document: A1