JP2011154148A - 電子カメラ - Google Patents

電子カメラ Download PDF

Info

Publication number
JP2011154148A
JP2011154148A JP2010015013A JP2010015013A JP2011154148A JP 2011154148 A JP2011154148 A JP 2011154148A JP 2010015013 A JP2010015013 A JP 2010015013A JP 2010015013 A JP2010015013 A JP 2010015013A JP 2011154148 A JP2011154148 A JP 2011154148A
Authority
JP
Japan
Prior art keywords
changing
imaging
change
focus
prediction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
JP2010015013A
Other languages
English (en)
Inventor
Daisuke Mizuguchi
大介 水口
Kazuhiro Tsujino
和廣 辻野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2010015013A priority Critical patent/JP2011154148A/ja
Publication of JP2011154148A publication Critical patent/JP2011154148A/ja
Ceased legal-status Critical Current

Links

Images

Landscapes

  • Automatic Focus Adjustment (AREA)
  • Studio Devices (AREA)
  • Focusing (AREA)

Abstract

【構成】イメージセンサ16は、フォーカスレンズ12を通して被写界を捉える撮像面を有し、撮像面で生成された被写界像を繰り返し出力する。イメージセンサ16から出力された被写界像の高周波成分に相当するフォーカス評価値は、AF評価回路24によって生成される。CPU26は、イメージセンサ16の撮像処理と並列してフォーカスレンズ12の位置を繰り返し変更し、これと並列してAF評価回路24から出力されたフォーカス評価値に基づいて合焦点が存在する方向を予測し、そしてレンズ位置の変更方向を予測された方向に制限する。CPU26はまた、共通のレンズ位置に対応してAF評価回路24から出力されたフォーカス評価値に基づいて光軸に沿う被写体の動きを予測し、レンズ位置の変更量を予測された動きに基づいて調整する。
【効果】被写体の動きを考慮した継続的な合焦調整が実現される。
【選択図】図2

Description

この発明は、電子カメラに関し、特にコンティニュアスAF方式を採用するビデオカメラに適用され、フォーカスレンズから撮像面までの距離を継続的に調整する、電子カメラに関する。
この種のカメラの一例が、特許文献1に開示されている。この背景技術によれば、フォーカスモータ(ステッピングモータ)は、1フィールド相当の駆動期間と4フィールド相当の停止期間とを繰り返す態様でウォブリングされる。高周波成分データAは駆動期間に先立つ1フィールドの停止期間に検出され、高周波成分データBは駆動期間に続く1フィールドの停止期間に検出される。また、高周波成分データCは、高周波成分データBが検出された停止期間よりも2フィールド先の停止期間に検出される。駆動期間の前後における高周波成分の差分は、“差分=(A−B)−(B−C)”の演算式に従って算出される。次回の駆動期間におけるフォーカスモータの回転方向および回転速度は、こうして算出された差分に基づいて決定される。
特開平8−32862号公報
しかし、フォーカスモードの回転方向および回転速度を決定するにあたって、被写界に存在する物体の動きが参照されることはない。このため、背景技術では合焦性能に限界がある。
それゆえに、この発明の主たる目的は、被写体の動きを考慮した継続的な合焦調整を実現できる、電子カメラを提供することである。
この発明に従う電子カメラ(10:実施例で相当する参照符号。以下同じ)は、フォーカスレンズ(12)を通して被写界を捉える撮像面で生成された被写界像を繰り返し出力する撮像手段(16)、フォーカスレンズから撮像面までの距離を撮像手段の撮像処理と並列して繰り返し変更する変更手段(S31~S33, S9)、変更手段の変更処理と並列して撮像手段から出力された複数の被写界像に基づいて合焦点が存在する方向を予測する第1予測手段(S43~S49)、変更手段の変更方向を第1予測手段によって予測された方向に制限する制限手段(S59~S61)、変更手段によって定義された共通の距離に対応して撮像手段から出力された複数の被写界像に基づいて光軸に沿う被写体の動きを予測する第2予測手段(S65)、および第2予測手段によって予測された動きに基づいて変更手段の変更量を調整する調整手段(S67)を備える。
好ましくは、変更手段は距離の変更方向を拡大方向および縮小方向の間で交互に反転させる反転手段(S31)を含み、制限手段は第1予測手段によって予測された方向と異なる方向に対応して変更手段の変更量を抑制する抑制手段(S61)を含む。
好ましくは、第2予測手段によって予測される動きは動き方向をパラメータとして含み、調整手段は、動き方向が合焦点に近づく方向であるとき調整方向をマイナスに設定し、動き方向が合焦点から遠ざかる方向であるとき調整方向をプラスに設定する。
好ましくは、第2予測手段によって予測される動きは動き速度をパラメータとして含み、調整手段は、動き速度の増大に応じて調整量を増大させ、動き速度の減少に応じて調整量を減少させる。
好ましくは、調整手段は制限手段の制限処理の後に調整処理を実行する。
好ましくは、調整手段によって調整された変更量に従う変更手段の変更処理と並列して撮像手段から出力された被写界像に基づいて合焦点を探索する探索手段(S17)、および探索手段の探索処理に関連して変更手段の変更周期を短縮する短縮手段(S41)がさらに備えられる。
好ましくは、撮像手段から出力された被写界像の高周波成分を抽出する抽出手段(24)がさらに備えられ、第1予測手段および第2予測手段の各々は抽出手段によって抽出された高周波成分に基づいて予測処理を実行する。
この発明に従う合焦制御プログラムは、フォーカスレンズ(12)を通して被写界を捉える撮像面で生成された被写界像を繰り返し出力する撮像手段(16)を備える電子カメラ(10)のプロセッサ(26)に、フォーカスレンズから撮像面までの距離を撮像手段の撮像処理と並列して繰り返し変更する変更ステップ(S31~S33, S9)、変更ステップの変更処理と並列して撮像手段から出力された複数の被写界像に基づいて合焦点が存在する方向を予測する第1予測ステップ(S43~S49)、変更ステップの変更方向を第1予測ステップによって予測された方向に制限する制限ステップ(S59~S61)、変更ステップによって定義された共通の距離に対応して撮像手段から出力された複数の被写界像に基づいて光軸に沿う被写体の動きを予測する第2予測ステップ(S65)、および第2予測ステップによって予測された動きに基づいて変更ステップの変更量を調整する調整ステップ(S67)を実行させるための、合焦制御プログラムである。
この発明に従う合焦制御方法は、フォーカスレンズ(12)を通して被写界を捉える撮像面で生成された被写界像を繰り返し出力する撮像手段(16)を備える電子カメラ(10)によって実行される合焦制御方法であって、フォーカスレンズから撮像面までの距離を撮像手段の撮像処理と並列して繰り返し変更する変更ステップ(S31~S33, S9)、変更ステップの変更処理と並列して撮像手段から出力された複数の被写界像に基づいて合焦点が存在する方向を予測する第1予測ステップ(S43~S49)、変更ステップの変更方向を第1予測ステップによって予測された方向に制限する制限ステップ(S59~S61)、変更ステップによって定義された共通の距離に対応して撮像手段から出力された複数の被写界像に基づいて光軸に沿う被写体の動きを予測する第2予測ステップ(S65)、および第2予測ステップによって予測された動きに基づいて変更ステップの変更量を調整する調整ステップ(S67)を備える。
この発明によれば、フォーカスレンズから撮像面までの距離は繰り返し変更され、合焦点が存在する方向はこのような変更処理と並列して生成された複数の被写界像に基づいて予測される。また、光軸に沿う被写体の動きは共通の距離に対応して生成された複数の被写界像に基づいて予測される。距離の変更方向は予測された方向に制限され、距離の変更量は予測された動きに基づいて調整される。これによって、被写体の動きを考慮した継続的な合焦調整が実現される。
この発明の上述の目的,その他の目的,特徴および利点は、図面を参照して行う以下の実施例の詳細な説明から一層明らかとなろう。
この発明の基本的構成を示すブロック図である。 この発明の一実施例の構成を示すブロック図である。 撮像面における評価エリアの割り当て状態の一例を示す図解図である。 レンズ位置に対するフォーカス評価値の変化の一例を示すグラフである。 レンズ位置に対する相対比の変化の一例を示すグラフである。 図2実施例に適用されるレジスタの構成の一例を示す図解図である。 方向判断時のフォーカスレンズの動作の一部を示す図解図である。 方向判断時のフォーカスレンズの動作の他の一部を示す図解図である。 図2実施例に適用されるCPUの動作の一部を示すフロー図である。 図2実施例に適用されるCPUの動作の他の一部を示すフロー図である。 図2実施例に適用されるCPUの動作のその他の一部を示すフロー図である。 図2実施例に適用されるCPUの動作のさらにその他の一部を示すフロー図である。 図2実施例に適用されるCPUの動作の他の一部を示すフロー図である。 図2実施例に適用されるCPUの動作のその他の一部を示すフロー図である。
以下、この発明の実施の形態を図面を参照しながら説明する。
[基本的構成]
図1を参照して、この発明の電子カメラは、基本的に次のように構成される。撮像手段1は、フォーカスレンズ7を通して被写界を捉える撮像面で生成された被写界像を繰り返し出力する。変更手段2は、フォーカスレンズ7から撮像面までの距離を撮像手段1の撮像処理と並列して繰り返し変更する。第1予測手段3は、変更手段2の変更処理と並列して撮像手段1から出力された複数の被写界像に基づいて合焦点が存在する方向を予測する。制限手段4は、変更手段2の変更方向を第1予測手段3によって予測された方向に制限する。第2予測手段5は、変更手段2によって定義された共通の距離に対応して撮像手段1から出力された複数の被写界像に基づいて光軸に沿う被写体の動きを予測する。調整手段6は、第2予測手段5によって予測された動きに基づいて変更手段2の変更量を調整する。
フォーカスレンズ7から撮像面までの距離は繰り返し変更され、合焦点が存在する方向はこのような変更処理と並列して生成された複数の被写界像に基づいて予測される。また、光軸に沿う被写体の動きは共通の距離に対応して生成された複数の被写界像に基づいて予測される。距離の変更方向は予測された方向に制限され、距離の変更量は予測された動きに基づいて調整される。これによって、被写体の動きを考慮した継続的な合焦調整が実現される。
[実施例]
図2を参照して、この実施例のビデオカメラ10は、ドライバ18aおよび18bによってそれぞれ駆動されるフォーカスレンズ12および絞り機構14を含む。被写界の光学像は、フォーカスレンズ12および絞り機構14を経てイメージセンサ16の撮像面に照射され、光電変換を施される。これによって、被写界像を表す電荷が撮像面で生成される。
電源が投入されると、CPU26は、動画取り込み処理のために撮像タスクの下でドライバ18cを起動する。ドライバ18cは、1/60秒毎に発生する垂直同期信号Vsyncに応答して、撮像面を露光し、撮像面で生成された電荷をラスタ走査態様で読み出す。イメージセンサ16からは、被写界を表す生画像データが60fpsのフレームレートで出力される。
信号処理回路20は、イメージセンサ16から出力された生画像データに白バランス調整,色分離,YUV変換などの処理を施し、これによって作成されたYUV形式の画像データをメモリ制御回路30を通してSDRAM32に書き込む。LCDドライバ34は、SDRAM32に格納された画像データをメモリ制御回路30を通して読み出し、読み出された画像データに基づいてLCDモニタ36を駆動する。この結果、被写界のリアルタイム動画像(スルー画像)がモニタ画面に表示される。
キー入力装置28に向けて記録開始操作が行われると、CPU26は、ファイル作成&オープンをI/F38に命令する。I/F38は、動画ファイルが記録媒体40に新規に作成し、かつ作成された動画ファイルをオープンする。
CPU26は続いて、垂直同期信号Vsyncが発生する毎に、記録処理の実行をI/F38に命令する。I/F38は、SDRAM32に格納された1フレームの画像データをメモリ制御回路30を通して読み出し、読み出された画像データを圧縮状態で動画ファイルに書き込む。キー入力装置28に向けて記録終了操作が行われると、CPU26はファイルクローズをI/F38に命令する。I/F38は、画像データの読み出しを停止し、オープン状態にある動画ファイルをクローズする。
図3を参照して、撮像面の中央には評価エリアEVAが割り当てられる。評価エリアEVAは、垂直方向および水平方向の各々において16分割される。したがって、評価エリアEVAは、合計256個の分割エリアの集合に相当する。
AE評価回路22は、信号処理回路20から出力されたYデータのうち評価エリアEVAに属するYデータを垂直同期信号Vsyncに応答して積分する。積分値は、垂直同期信号Vsyncが発生する毎に、AE評価値としてAE評価回路22から出力される。
CPU26は、AE評価回路24から出力されたAE評価値をAE制御タスクの下で繰り返し取り込み、取り込まれたAE評価値に基づいてイメージセンサ16の露光量を調整する。この結果、LCDモニタ36に表示されるスルー画像の明るさが適度に調整される。
AF評価回路24は、評価エリアEVAに属する一部のYデータを信号処理回路20の出力から切り出し、切り出されたYデータのうちカットオフ周波数CF_Lを上回る周波数成分およびカットオフ周波数CF_Hを上回る周波数成分を垂直同期信号Vsyncに応答して個別に積分する。なお、カットオフ周波数CF_Hは、カットオフ周波数CF_Lよりも大きい。
カットオフ周波数CF_Lを上回る周波数成分の積分値は、フォーカス評価値AF_LとしてAF評価回路24から出力される。また、カットオフ周波数CF_Hを上回る周波数成分の積分値は、フォーカス評価値AF_HとしてAF評価回路24から出力される。
CPU26は、こうして出力されたフォーカス評価値AF_LおよびAF_HをコンティニュアスAFタスクの下で取り込み、取り込まれたフォーカス評価値AF_LおよびAF_Hに基づいてフォーカスレンズ12の位置を継続的に調整する。
なお、フォーカス評価値AF_Lがフォーカスレンズ12の位置に対して図4に示す曲線Cf_Lを描く場合、フォーカス評価値AF_Hはフォーカスレンズ12の位置に対して図4に示す曲線Cf_Hを描く。さらに、曲線Cf_Lに対するCf_Hの変化つまりフォーカス評価値AF_LおよびAF_Hの相対比は、図5に示す曲線CV1で表される。
コンティニュアスAFタスクは、大まかに、方向判断処理,山登り処理および監視処理によって構成される。方向判断処理は、合焦点が存在する方向つまり合焦方向を特定する処理である。山登り処理は、特定された合焦方向にフォーカスレンズ12を移動させて合焦点を探索する処理である。監視処理は、被写界に動きが発生したか否かを監視する処理である。方向判断処理,山登り処理および監視処理は、垂直同期信号Vsyncが発生する毎に択一的に実行される。
フォーカス評価値AF_LおよびAF_Hは、これらの処理から独立してAF評価回路24から繰り返し取得され、数1に従う相対比RTの算出処理のために参照される。フォーカス評価値AF_L,AF_Hおよび相対比RTは、方向判断処理,山登り処理および監視処理の各々で必要に応じて参照される。
[数1]
RT=AF_H/AF_L
方向判断処理では、まず、実行回数カウンタC1のカウント値が判別される。実行回数カウンタC1は方向判断処理の実行回数を測定するためのカウンタであり、“0”を初期値として1フレーム毎にインクリメントされる。
実行回数カウンタC1のカウント値が“0”であれば、後述する片方向駆動カウンタC3がクリアされ、フォーカスレンズ12の移動方向が至近方向に設定され、そしてフォーカスレンズ12の移動量が“W_S/2”に設定される。現フレームの方向判断処理は、実行回数カウンタC1のインクリメント処理を経て終了される。
実行回数カウンタC1のカウント値が偶数であれば、実行回数カウンタC1のインクリメント処理のみが実行される。現フレームの方向判断処理は、その後に終了される。
実行回数カウンタC1のカウント値が奇数であれば、フォーカスレンズ12の移動方向が反転され、フォーカスレンズ12の移動量が“W_S”に設定される。フォーカスレンズ12の移動量の設定は、次フレームのレンズ移動処理にのみ反映される。したがって、フォーカスレンズ12は、図7に示す要領で至近方向および無限方向に交互に移動する。
実行回数カウンタC1のカウント値が奇数であれば、フォーカスレンズ12の移動方向および移動量の設定が完了した後に、評価値レジスタR1の設定が更新される。図6を参照して、評価値レジスタR1は、2フレーム前に取得されたフォーカス評価値AF_Hをフォーカス評価値AF_H(−2)として保持するカラムCL1と、4フレーム前の取得されたフォーカス評価値AF_Hをフォーカス評価値AF_H(−4)として保持するカラムCL2を有する。評価値レジスタR1は、このような保持状態を維持するべく、1フレーム毎に更新される。したがって、評価値レジスタR1の設定は、コンティニュアスAFタスクの開始から4フレーム期間が経過した後に意味をなす。
評価値レジスタR1の更新が完了すると、方向カウンタC2のカウント値の絶対値が閾値Aを上回るか否かが判別される。注目する絶対値が閾値A以下であれば、合焦方向は確定していないとみなされる。このときは、実行回数カウンタC1のインクリメント処理を経て現フレームの方向判断処理が終了される。注目する絶対値が閾値Aを上回れば、合焦方向が確定したとみなされ、動作モードが山登りモードに設定される。この結果、方向判断処理が終了され、代わりに後述する山登り処理が開始される。
実行回数カウンタC1のカウント値が“5”以上の奇数を示すときは、フォーカスレンズ12の移動方向および移動量の設定に先立って以下の処理が実行される。
まず、至近側の評価値と無限側の評価値との間の大小関係が評価値レジスタR1に登録されたフォーカス評価値AF_(−2)およびAF_(−4)に基づいて判別され、判別結果に応じて異なる態様で方向カウンタC2が更新される。方向カウンタC2は、至近側の評価値が無限側の評価値よりも大きいときインクリメントされ、至近側の評価値が無限側の評価値以下のときディクリメントされる。至近側の評価値が大きい状態が継続したとき、方向カウンタC2のカウント値は図7に示す要領で増大する。
評価値の大小関係は、合焦方向が至近方向および無限方向のいずれであるかによって相違する。つまり、合焦方向が至近方向であれば至近側の評価値が無限側の評価値よりも大きくなり、合焦方向が無限方向であれば無限側の評価値が至近側の評価値よりも大きくなる。したがって、方向カウンタC2のカウント値がプラスの極性を示せば、合焦方向は至近方向と予測される。また、方向カウンタC2のカウント値がマイナスの極性を示せば、合焦方向が無限方向と予測される。
なお、フォーカスレンズ12から撮像面までの距離が拡大する方向が至近方向であり、フォーカスレンズ12から撮像面までの距離が縮小する方向が無限方向である。
続いて、方向カウンタC2のカウント値の絶対値が閾値BおよびCの各々と比較され、片方向駆動カウンタC3のカウント値が比較結果に応じて異なる態様で調整される。片方向駆動カウンタC3は、注目する絶対値が閾値Bを上回るときインクリメントされ、注目する絶対値が閾値B以下でかつ閾値Cを上回るとき現状維持とされ、注目する絶対値が閾値C以下のときクリアされる。なお、閾値A,BおよびCは、A→B→Cの順で減少する。
フォーカスレンズ12の移動方向を反転させかつフォーカスレンズ12の移動量を“W_S”に設定する処理は、方向カウンタC2および片方向駆動カウンタC3のカウント値がこうして調整された後に実行される。
片方向駆動カウンタC3のカウント値が“0”を上回るときは、フォーカスレンズ12の移動方向および移動量が設定された後に、以下の処理が実行される。片方向駆動カウンタC3は方向カウンタC2のカウント値の絶対値が閾値Bを上回るときにインクリメントされるため、以下の処理は合焦方向に関する予測結果がB回以上連続して一致するときに実行される。
まず、方向カウンタC2のカウント値の極性がフォーカスレンズ12の移動方向と一致するか否かが判別され、片方向駆動カウンタC3のカウント値が閾値Dを上回るか否かが判別される。
方向カウンタC2のカウント値の極性がフォーカスレンズ12の移動方向と相違すれば、フォーカスレンズ12の移動量は“W_S”から“0”に変更される。上述のように、フォーカスレンズ12の移動方向は、実行回数カウンタC1のカウント値が奇数を示す毎につまり垂直同期信号Vsyncが2回発生する毎に反転される。したがって、フォーカスレンズ12の移動方向と合焦方向との間の相違は垂直同期信号Vsyncが2回発生する毎に発生し、このときのフォーカスレンズ12の移動量が“0”に設定される。
移動量=0の設定は、次フレームのレンズ移動処理にのみ反映される。この結果、合焦方向の予測結果が連続して一致する回数が閾値Bを上回った後、フォーカスレンズ12は、垂直同期信号Vsyncが4回発生する毎に予測合焦方向に向けて“W_S”ずつ移動される。予測合焦方向が至近方向でかつ閾値Bが“10”であれば、フォーカスレンズ12は図8に示す要領で至近方向に移動する。
方向カウンタC2のカウント値の極性がフォーカスレンズ12の移動方向と一致し、かつ片方向駆動カウンタC3のカウント値が閾値Dを上回れば、光軸に沿った被写体の動きが数2に従って予測される。数2によれば、フォーカス評価値AF_H(−2)からフォーカス評価値AF_H(−4)が減算され、減算値がフォーカス評価値AF_H(−4)によって割り算される。こうして被写体の動きを表す動き係数MVが算出される。
[数2]
MV={AF_H(−2)−AF_H(−4)}/AF_H(−4)
MV:被写体の動きを表す動き係数
被写体の動きを予測する処理は、実行回数カウンタC1のカウント値が奇数を示し、かつ方向カウンタC2の極性とフォーカスレンズ12の移動方向とが一致するときに実行される。また、フォーカス評価値AF_Hの検出処理は、撮像面の露光処理から2フレーム遅れで実行される。このため、数2で注目されるフォーカス評価値AF_H(−2)およびAF_H(−4)は、共通のレンズ位置に対応して取得された評価値に相当する。
また、数2に従って算出される動き係数MVは動き方向および動き速度をパラメータとして含み、動き係数MVの極性が動き方向を表す一方、動き係数MVの大きさが動き速度を表す。動き係数MVの極性は、被写体が合焦点に近づいているときにプラスを示し、被写体が合焦点から遠ざかっているときにマイナスを示す。
フォーカスレンズ12の移動量である“W_S”は、このような動き係数MVを数3に適用して補正される。この結果、フォーカスレンズ12の移動量は、被写体が合焦点に近づいているときに減少し、被写体が合焦点から遠ざかっているときに増大する。
[数3]
W_S=W_S−MV*α
α:定数
このように、フォーカスレンズ12は繰り返し移動され、合焦方向はこれと並列して生成されたフォーカス評価値AF_Hに基づいて予測される。また、光軸に沿う被写体の動きは共通のレンズ位置に対応して生成されたフォーカス評価値AF_H(−2)および(−4)に基づいて予測される。フォーカスレンズ12の移動方向は予測された合焦方向に制限され、フォーカスレンズ12の移動量は予測された被写体の動きに基づいて調整される。この結果、フォーカレンズ12は、被写体の動きを考慮しつつ合焦方向に移動する。
山登り処理では、予測された合焦方向に向けてフォーカスレンズ12が移動され、AF評価回路24によって検出されたフォーカス評価値AF_Hの最大値が最大値レジスタR2に設定される。ダウンカウンタC4は、最大値レジスタR2の更新に応答して“0”に設定され、その後に検出されたフォーカス評価値AF_Hが最大値レジスタR2の設定値を下回る毎にインクリメントされる。ダウンカウンタC4のカウント値が閾値Eを上回ると、フォーカスレンズ12は合焦点を越えたとみなされる。フォーカスレンズ12の移動方向は反転され、続いて監視処理が開始される。
監視処理では、被写界に動きが発生したか否かが相対比RTまたはフォーカス評価値AF_Hを参照して判別される。この判別処理は、垂直同期信号Vsyncが発生する毎に実行される。監視カウンタC5は、判別結果が肯定的であるときにインクリメントされ、判別結果が否定的であるときに“0”に設定される。監視カウンタC5のカウント値が閾値Fを上回ると、方向判断処理が再起動される。
コンティニュアスAFタスクは、図9〜図14に示すフロー図に従って実行される。なお、コンティニュアスAFタスクを含む複数のタスクに対応する制御プログラムは、フラッシュメモリ42に記憶される。
図9を参照して、ステップS1では初期化処理を実行する。動作モードは方向判断モードに設定され、方向カウンタC2および実行回数カウンタC1のカウント値は“0”に設定される。また、レンズ移動量は“0”に設定され、評価値レジスタR1はクリアされる。
垂直同期信号Vsyncが発生するとステップS3でYESと判断し、ステップS5でフォーカス評価値AF_LおよびAF_HをAF評価回路24から取得する。ステップS7では上述の数1に従って相対比RTを算出し、ステップS9ではレンズ移動処理を実行する。ステップS9の処理を最初に実行する時点では、レンズ移動量は“0”でかつ移動方向は未定である。したがって、フォーカスレンズ12は当初、現在位置に停止し続ける。
ステップS11では現時点の動作モードが方向判断モードであるか否かを判別し、ステップS13では動作モードが山登りモードであるか否かを判別する。ステップS11でYESであればステップS15で方向判断処理を実行し、ステップS13でYESであればステップS17で山登り処理を実行し、そしてステップS13でNOであればステップS19で監視処理を実行する。ステップS15,S17またはS19の処理が完了するとステップS3に戻る。
ステップS15の方向判断処理は、図10〜図12に示すサブルーチンに従って実行される。まず、実行回数カウンタC1のカウント値が“0”であるか否かをステップS21で判別し、実行回数カウンタC1のカウント値が奇数であるか否かをステップS27で判別する。ステップS21の判別結果がYESであればステップS23に進み、片方向駆動カウンタC3をクリアするとともに、フォーカスレンズ12の移動方向および移動量を“至近方向”および“W_S/2”に設定する。ステップS25では実行回数カウンタC1をインクリメントし、その後に上階層のルーチンに復帰する。ステップS21の判別結果およびステップS27の判別結果がいずれもNOであれば、ステップS25の処理を経て上階層のルーチンに復帰する。
ステップS21の判別結果がNOでかつステップS27の判別結果がYESであれば、実行回数カウンタC1のカウント値が“4”を上回るか否かをステップS29で判別する。判別結果がNOであればそのままステップS31に進む一方、判別結果がYESであればステップS43〜S57の処理を経てステップS31に進む。
ステップS31ではフォーカスレンズ12の移動方向を反転させ、ステップS33ではフォーカスレンズ12の移動量を“W_S”に設定する。ステップS35では片方向駆動カウンタC3のカウント値が“0”を上回るか否かを判別し、判別結果がNOであればそのままステップS37に進む一方、判別結果がYESであればステップS59〜S67の処理を経てステップS37に進む。
ステップS37では、レジスタR1のカラムCL1に登録されたフォーカス評価値AF_H(−2)をフォーカス評価値AF_H(−4)としてレジスタR1のカラムCL2に登録し、直前のステップS5で取得されたフォーカス評価値AF_Hをフォーカス評価値AF_H(−2)としてレジスタR1のカラムCL1に登録する。
ステップS39では、方向カウンタC2のカウント値の絶対値が閾値Aを上回るか否かを判別する。判別結果がNOであればステップS25の処理を経て上階層のルーチンに復帰し、判別結果がYESであればステップS41の処理を経て上階層のルーチンに復帰する。ステップS41では、動作モードを山登りモードに設定し、ダウンカウンタC4を“0”に設定し、そして最大値レジスタR2をクリアする。
図11に示すステップS43では、評価値レジスタR2を参照してフォーカス評価値AF_(−2)をフォーカス評価値AF_(−2)と比較する。ステップS45では、至近側の評価値が無限側の評価値よりも高いか否かを、ステップS43の比較結果に基づいて判別する。判別結果がYESであればステップS47で方向カウンタC2をインクリメントする一方、判別結果がNOであればステップS49で方向カウンタC2をディクリメントする。
ステップS47またはS49の処理が完了すると、方向カウンタC2のカウント値の絶対値が閾値Bを上回るか否かをステップS51で判別し、方向カウンタC2のカウント値の絶対値が閾値C以下であるか否かをステップS53で判別する。
ステップS51の判別結果がYESであれば、ステップS55で片方向駆動カウンタC3をインクリメントしてからステップS31に進む。ステップS53の判別結果がYESであれば、ステップS57で片方向駆動カウンタC3をクリアしてからステップS31に進む。ステップS51の判別結果およびステップS53の判別結果がいずれもNOであれば、そのままステップS31に進む。
図12に示すステップS59では、方向カウンタC2のカウント値の極性がフォーカスレンズ12の移動方向と一致するか否かを判別する。また、ステップS63では、片方向駆動カウンタC3のカウント値が閾値Dを上回るか否かを判別する。
ステップS59の判別結果がNOであれば、ステップS61でフォーカスレンズ12の移動量を“0”に設定し、その後にステップS37に進む。ステップS59の判別結果がYESでかつステップS63の判別結果がNOであれば、そのままステップS37に進む。ステップS59の判別結果およびステップS63の判別結果のいずれもがYESであれば、ステップS65の進み、光軸に沿った被写体の動きを数2に従って予測する。ステップS67では、フォーカスレンズ12の移動量である“W_S”を数3に従って補正する。補正処理が完了すると、ステップS37に進む。
図9に示すステップS17の山登り処理は、図13に示すサブルーチンに従って実行される。ステップS71では、現フォーカス評価値AF_Hが最大値レジスタR2の設定値を上回るか否かを判別する。判別結果がYESであれば、ステップS73で現フォーカス評価値AF_Hを最大値レジスタR2に設定し、ステップS75でダウンカウンタC4を“0”に設定する。一方、判別結果がNOであれば、ステップS77でダウンカウンタC4をインクリメントする。ステップS75またはS77の処理が完了すると、ダウンカウンタC4のカウント値が閾値Eを上回るか否かをステップS79で判別する。
判別結果がNOであれば、フォーカスレンズ12は未だ合焦点を越えていないとみなし、そのまま上階層のルーチンに復帰する。判別結果がYESであれば、フォーカスレンズ12は合焦点を越えたとみなし、ステップS81でフォーカスレンズ12の移動方向を反転させる。続くステップS83では、動作モードを監視モードに設定し、監視カウンタC5を“0”に設定する。ステップS83の処理が完了すると、上階層のルーチンに復帰する。
図9に示すステップS19の監視処理は、図13に示すサブルーチンに従って実行される。ステップS91では、被写界に動きが発生したか否かを相対比RTまたは現フォーカス評価値AF_Hを参照して判別する。判別結果がYESであればステップS93で監視カウンタC5をインクリメントする一方、判別結果がNOであればステップS95で監視カウンタC5を“0”に設定する。
ステップS97では監視カウンタC5のカウント値が閾値Fを上回ったか否かを判別する。判別結果がNOであれば、そのまま上階層のルーチンに復帰する。判別結果がYESであれば、ステップS99で上述のステップS1と同様の初期化処理を実行してから上階層のルーチンに復帰する。
以上の説明から分かるように、イメージセンサ16は、フォーカスレンズ12を通して被写界を捉える撮像面を有し、撮像面で生成された被写界像を繰り返し出力する。イメージセンサ16から出力された被写界像の高周波成分に相当するフォーカス評価値AF_Hは、AF評価回路24からCPU26に与えられる。CPU26は、イメージセンサ16の撮像処理と並列してフォーカスレンズ12の位置を繰り返し変更し(S31~S33, S9)、これと並列してAF評価回路24から出力されたフォーカス評価値AF_Hに基づいて合焦方向を予測し(S43~S49)、そしてレンズ位置の変更方向を予測された方向に制限する(S59~S61)。CPU26はまた、共通のレンズ位置に対応してAF評価回路24から出力されたフォーカス評価値AF_Hに基づいて光軸に沿う被写体の動きを予測し(S65)、レンズ位置の変更量を予測された動きに基づいて調整する(S67)。
このように、フォーカスレンズ12の位置は繰り返し変更され、合焦方向はこれと並列して生成されたフォーカス評価値AF_Hに基づいて予測される。また、光軸に沿う被写体の動きは共通のレンズ位置に対応して生成されたフォーカス評価値AF_Hに基づいて予測される。レンズ位置の変更方向は予測された方向に制限され、レンズ位置の変更量は予測された動きに基づいて調整される。これによって、被写体の動きを考慮した継続的な合焦調整が実現される。
なお、この実施例では、フォーカス調整にあたってフォーカスレンズ12を光軸方向に移動させるようにしているが、フォーカスレンズ12に代えてあるいはフォーカスレンズ12とともにイメージセンサ16を光軸方向に移動させるようにしてもよい。
10 …ビデオカメラ
12 …フォーカスレンズ
16 …イメージセンサ
22 …AE評価回路
24 …AF評価回路
26 …CPU
28 …キー入力装置

Claims (9)

  1. フォーカスレンズを通して被写界を捉える撮像面で生成された被写界像を繰り返し出力する撮像手段、
    前記フォーカスレンズから前記撮像面までの距離を前記撮像手段の撮像処理と並列して繰り返し変更する変更手段、
    前記変更手段の変更処理と並列して前記撮像手段から出力された複数の被写界像に基づいて合焦点が存在する方向を予測する第1予測手段、
    前記変更手段の変更方向を前記第1予測手段によって予測された方向に制限する制限手段、
    前記変更手段によって定義された共通の距離に対応して前記撮像手段から出力された複数の被写界像に基づいて光軸に沿う被写体の動きを予測する第2予測手段、および
    前記第2予測手段によって予測された動きに基づいて前記変更手段の変更量を調整する調整手段を備える、電子カメラ。
  2. 前記変更手段は前記距離の変更方向を拡大方向および縮小方向の間で交互に反転させる反転手段を含み、
    前記制限手段は前記第1予測手段によって予測された方向と異なる方向に対応して前記変更手段の変更量を抑制する抑制手段を含む、請求項1記載の電子カメラ。
  3. 前記第2予測手段によって予測される動きは動き方向をパラメータとして含み、
    前記調整手段は、前記動き方向が前記合焦点に近づく方向であるとき調整方向をマイナスに設定し、前記動き方向が前記合焦点から遠ざかる方向であるとき前記調整方向をプラスに設定する、請求項1または2記載の電子カメラ。
  4. 前記第2予測手段によって予測される動きは動き速度をパラメータとして含み、
    前記調整手段は、前記動き速度の増大に応じて調整量を増大させ、前記動き速度の減少に応じて調整量を減少させる、請求項1ないし3のいずれかに記載の電子カメラ。
  5. 前記調整手段は前記制限手段の制限処理の後に調整処理を実行する、請求項1ないし4のいずれかに記載の電子カメラ。
  6. 前記調整手段によって調整された変更量に従う前記変更手段の変更処理と並列して前記撮像手段から出力された被写界像に基づいて前記合焦点を探索する探索手段、および
    前記探索手段の探索処理に関連して前記変更手段の変更周期を短縮する短縮手段をさらに備える、請求項1ないし5のいずれかに記載の電子カメラ。
  7. 前記撮像手段から出力された被写界像の高周波成分を抽出する抽出手段をさらに備え、
    前記第1予測手段および前記第2予測手段の各々は前記抽出手段によって抽出された高周波成分に基づいて予測処理を実行する、請求項1ないし6のいずれかに記載の電子カメラ。
  8. フォーカスレンズを通して被写界を捉える撮像面で生成された被写界像を繰り返し出力する撮像手段を備える電子カメラのプロセッサに、
    前記フォーカスレンズから前記撮像面までの距離を前記撮像手段の撮像処理と並列して繰り返し変更する変更ステップ、
    前記変更ステップの変更処理と並列して前記撮像手段から出力された複数の被写界像に基づいて合焦点が存在する方向を予測する第1予測ステップ、
    前記変更ステップの変更方向を前記第1予測ステップによって予測された方向に制限する制限ステップ、
    前記変更ステップによって定義された共通の距離に対応して前記撮像手段から出力された複数の被写界像に基づいて光軸に沿う被写体の動きを予測する第2予測ステップ、および
    前記第2予測ステップによって予測された動きに基づいて前記変更ステップの変更量を調整する調整ステップを実行させるための、合焦制御プログラム。
  9. フォーカスレンズを通して被写界を捉える撮像面で生成された被写界像を繰り返し出力する撮像手段を備える電子カメラによって実行される合焦制御方法であって、
    前記フォーカスレンズから前記撮像面までの距離を前記撮像手段の撮像処理と並列して繰り返し変更する変更ステップ、
    前記変更ステップの変更処理と並列して前記撮像手段から出力された複数の被写界像に基づいて合焦点が存在する方向を予測する第1予測ステップ、
    前記変更ステップの変更方向を前記第1予測ステップによって予測された方向に制限する制限ステップ、
    前記変更ステップによって定義された共通の距離に対応して前記撮像手段から出力された複数の被写界像に基づいて光軸に沿う被写体の動きを予測する第2予測ステップ、および
    前記第2予測ステップによって予測された動きに基づいて前記変更ステップの変更量を調整する調整ステップを備える、合焦制御方法。
JP2010015013A 2010-01-27 2010-01-27 電子カメラ Ceased JP2011154148A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010015013A JP2011154148A (ja) 2010-01-27 2010-01-27 電子カメラ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010015013A JP2011154148A (ja) 2010-01-27 2010-01-27 電子カメラ

Publications (1)

Publication Number Publication Date
JP2011154148A true JP2011154148A (ja) 2011-08-11

Family

ID=44540178

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010015013A Ceased JP2011154148A (ja) 2010-01-27 2010-01-27 電子カメラ

Country Status (1)

Country Link
JP (1) JP2011154148A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9519202B2 (en) 2012-03-15 2016-12-13 Panasonic Intellectual Property Management Co., Ltd. Auto-focusing device and image pickup device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05308557A (ja) * 1992-04-28 1993-11-19 Olympus Optical Co Ltd 自動合焦装置
JPH0832862A (ja) * 1994-07-12 1996-02-02 Sony Corp ビデオカメラ装置
JPH08129129A (ja) * 1994-11-02 1996-05-21 Nikon Corp 自動焦点調節装置および自動焦点調節装置を備えたカメ ラ
JP2008177785A (ja) * 2007-01-17 2008-07-31 Canon Inc 撮像装置及びその制御方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05308557A (ja) * 1992-04-28 1993-11-19 Olympus Optical Co Ltd 自動合焦装置
JPH0832862A (ja) * 1994-07-12 1996-02-02 Sony Corp ビデオカメラ装置
JPH08129129A (ja) * 1994-11-02 1996-05-21 Nikon Corp 自動焦点調節装置および自動焦点調節装置を備えたカメ ラ
JP2008177785A (ja) * 2007-01-17 2008-07-31 Canon Inc 撮像装置及びその制御方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9519202B2 (en) 2012-03-15 2016-12-13 Panasonic Intellectual Property Management Co., Ltd. Auto-focusing device and image pickup device

Similar Documents

Publication Publication Date Title
JP6204644B2 (ja) 撮像装置およびその制御方法
JP2010050798A (ja) 電子カメラ
KR20150078275A (ko) 움직이는 피사체 촬영 장치 및 방법
JP2011182151A (ja) 画像合成装置
JP5335408B2 (ja) 焦点調節装置及び方法
JP2009157130A (ja) 電子カメラ
US20090207299A1 (en) Electronic camera
JP2010176061A (ja) 撮影装置、及びプログラム
JP2010266701A (ja) 電子カメラ
JP5219905B2 (ja) 電子カメラ
JP6087536B2 (ja) 撮像装置およびその制御方法
JP2011154148A (ja) 電子カメラ
JP5225187B2 (ja) ビデオカメラ
JP6164978B2 (ja) 焦点調整装置、その制御方法、および制御プログラム、並びに撮像装置
JP5882745B2 (ja) 焦点調節装置
JP4936799B2 (ja) 電子カメラ
JP5322842B2 (ja) 自動合焦装置、自動合焦方法及びプログラム
JP4777001B2 (ja) 自動焦点調節装置および撮像装置
JP2003121721A (ja) 撮像装置及びその合焦制御方法、並びにプログラム
JP2010117616A (ja) 電子カメラ
JP2006039254A (ja) カメラ
JP5173170B2 (ja) ビデオカメラ
JP2008294667A (ja) 撮像装置及びその制御方法及びプログラム及び記憶媒体
JP2008058556A (ja) ビデオカメラ
JP2010273194A (ja) 電子カメラ

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121226

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20130404

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20130521

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131126

A045 Written measure of dismissal of application [lapsed due to lack of payment]

Free format text: JAPANESE INTERMEDIATE CODE: A045

Effective date: 20140325