JP2011141246A - 光ファイバ型振動計 - Google Patents

光ファイバ型振動計 Download PDF

Info

Publication number
JP2011141246A
JP2011141246A JP2010003237A JP2010003237A JP2011141246A JP 2011141246 A JP2011141246 A JP 2011141246A JP 2010003237 A JP2010003237 A JP 2010003237A JP 2010003237 A JP2010003237 A JP 2010003237A JP 2011141246 A JP2011141246 A JP 2011141246A
Authority
JP
Japan
Prior art keywords
magnetic field
light
optical fiber
vibration
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010003237A
Other languages
English (en)
Other versions
JP5374392B2 (ja
Inventor
Yutaka Miki
豊 三木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitutoyo Corp
Mitsutoyo Kiko Co Ltd
Original Assignee
Mitutoyo Corp
Mitsutoyo Kiko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitutoyo Corp, Mitsutoyo Kiko Co Ltd filed Critical Mitutoyo Corp
Priority to JP2010003237A priority Critical patent/JP5374392B2/ja
Priority to EP11000049.4A priority patent/EP2354772B1/en
Priority to US12/984,986 priority patent/US8393220B2/en
Publication of JP2011141246A publication Critical patent/JP2011141246A/ja
Application granted granted Critical
Publication of JP5374392B2 publication Critical patent/JP5374392B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01HMEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
    • G01H9/00Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by using radiation-sensitive means, e.g. optical means
    • G01H9/004Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by using radiation-sensitive means, e.g. optical means using fibre optic sensors

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)

Abstract

【課題】光ファイバを用いる長所を生かしながら、複雑な構成をとることなく高精度な計測が可能となる。
【解決手段】光源104と、光源104の光を導光する入射側光ファイバ114と、導光された光が入射される振動プローブ130と、振動プローブ130に配置されたおもり156及び可動コイル158の振動により変調された光を光電変換して電気信号として出力する受光器120と、電気信号を処理して振動の状態を出力電圧値Voutとして出力する処理部170と、を有する光ファイバ型振動計100であって、おもり156及び可動コイル158の振動で生じるおもり156及び可動コイル158の速度を電流に変換する速度ピックアップ部150と、電流により磁界を発生させるソレノイドコイル部148と、磁界の強さに応じて振動プローブ130に導光された光量を減衰させる磁界センサ部131と、を備える。
【選択図】図2

Description

本発明は、光源と、該光源の光を導光する光ファイバと、該導光された光が入射される振動プローブと、該振動プローブに配置された可動部材の振動により変調された光を光電変換して電気信号として出力する受光器と、該電気信号を処理して前記振動の状態を出力電圧値として出力する処理部と、を有する光ファイバ型振動計に係り、特に、高精度な計測が可能な光ファイバ型振動計に関する。
従来の振動計には各種方式がある。例えば光ファイバ方式とそれ以外の方式とに分けると、光ファイバ方式以外の振動計では、非特許文献1に示されるように、振動プローブからの出力が電気信号となる。そのため、その振動プローブからのケーブルを長くすると、電磁誘導ノイズを受けやすくなる。同時に、ケーブルにおける伝送ロスも無視できず、信号品質が劣化するおそれがあった。
これに対して光ファイバ方式の振動計は、振動プローブから光ファイバを伝送路として光出力する(例えば特許文献1)。そのため、光ファイバ方式は、その光ファイバケーブルを長くしても、信号品質の劣化がほとんど無く、電磁誘導ノイズの影響も受けずに高い防爆性を保てるという長所を有する。
特開平3−22595号公報
ミツトヨ、振動ピックアップ、カタログNo.4351
しかしながら、特許文献1で示される光ファイバ方式の振動計は、サイズモ系におけるおもり(可動部材)の変位が、振動による加速度に比例するとして加速度出力を得ている。このため、特許文献1では、加速度出力に静的な重力の影響がでてしまい、オフセット誤差が生じる。
この対策として、加速度出力をハイパスフィルタに通したり、データ平均値を除去したり、加速度出力を電気的にゼロセットしたりすることなどが考えられる。しかし、前二者では非対称振動だったり、平均化するデータ長が振動波長の整数倍でなかったりすると誤差が残ってしまう。後者では振動ゼロの状態が確保できない状況では使えない、という問題点が残る。更には、これらの処理を行うために、振動プローブからの信号を処理する処理部が複雑になってしまうおそれがあった。
本発明は、前記問題点を解決するべくなされたもので、光ファイバを用いる長所を生かしながら、複雑な構成をとることなく高精度な計測が可能な光ファイバ型振動計を提供することを課題とする。
本願の請求項1に係る発明は、光源と、該光源の光を導光する光ファイバと、該導光された光が入射される振動プローブと、該振動プローブに配置された可動部材の振動により変調された光を光電変換して電気信号として出力する受光器と、該電気信号を処理して前記振動の状態を出力電圧値として出力する処理部と、を有する光ファイバ型振動計であって、前記可動部材の振動で生じる前記可動部材の速度を電流に変換する速度ピックアップ部と、該電流により磁界を発生させるソレノイドコイル部と、該磁界の強さに応じて前記振動プローブに導光された光量を減衰させる磁界センサ部と、を備えたことにより、前記課題を解決したものである。
本願の請求項2に係る発明は、前記磁界センサ部で、前記ソレノイドコイル部で発生する磁界の向きによっても前記振動プローブに導光された光量を変化させたものである。
本願の請求項3に係る発明は、前記磁界センサ部が、前記振動プローブに導光された光を直線偏光させる偏光子と、該偏光子を通過した光を前記磁界の強さにより偏光回転させるファラデー回転子と、を備えるようにしたものである。
本願の請求項4に係る発明は、前記速度ピックアップ部が前記ソレノイドコイル部に接続されたコイルと該コイルに磁界を与える永久磁石とを有し、該永久磁石に対して該コイルが相対的に振動するようにしたものである。
本願の請求項5に係る発明は、前記速度ピックアップ部を該速度ピックアップ部以外からの磁界の影響を遮断するためのシールドケースで覆うようにしたものである。
本願の請求項6に係る発明は、前記振動プローブにおいて、前記可動部材の振動軸と前記ソレノイドコイル部で発生する磁界の方向軸と磁界センサ部における磁界測定軸とが同一若しくは平行とされて、前記速度ピックアップ部とソレノイドコイル部と磁界センサ部とを一体的に構成するようにしたものである。
本願の請求項7に係る発明は、前記光源が複数の波長の光を前記光ファイバに導光させ、前記振動プローブで該光ファイバから出射された光を、各波長に分光させて前記複数の波長と同数の前記速度ピックアップ部で検出される前記振動で変調することとしたものである。
本願の請求項8に係る発明は、前記処理部が前記電気信号を自乗する自乗手段を有することとしたものである。
本願の請求項9に係る発明は、前記処理部が微分手段を有して前記振動の状態を表す加速度を前記出力電圧値として出力するようにしたものである。
本発明によれば、光ファイバを用いる長所を生かしながら、複雑な構成をとることなく高精度な計測が可能である。即ち、振動プローブから出力される信号品質を保ったまま長距離信号伝送が可能であり、その際に給電が不要である。同時に発熱も少なく、スリムで軽量とすることができる。更に高い防爆性を保つことができる。同時に、静的重力によるオフセット誤差を防止することができる。
本発明の第1実施形態に係る光ファイバ型振動計の全体模式図 同じく振動プローブの拡大模式図 同じく振動プローブの磁界センサ部の拡大模式図 偏光子の偏光軸と透過光量との関係を説明する模式図 本発明の第1実施形態に係る速度ピックアップ部の拡大模式図 同じく振動プローブの受光器以降の信号の様子を表す模式図 本発明の第2実施形態に係る速度ピックアップ部の拡大模式図 本発明の第3実施形態に係る光ファイバ型振動計の検出部の概略模式図 同じく振動プローブの拡大模式図 本発明の第4実施形態に係る速度ピックアップ部の拡大模式図 本発明の第5実施形態に係る振動プローブの拡大模式図 本発明の第6実施形態に係る磁界センサ部の拡大模式図 同じく振動プローブの拡大模式図 本発明の第7実施形態に係る振動プローブの拡大模式図
以下、図面を参照して、本発明の実施形態の一例を詳細に説明する。
最初に、第1実施形態に係る光ファイバ型振動計の概略について、図1、図2を用いて説明する。
光ファイバ型振動計100は、図1、図2に示す如く、光源104と、光源104の光を導光する入射側光ファイバ114(光ファイバ)と、導光された光が入射される振動プローブ130と、振動プローブ130に配置されたおもり156及び可動コイル158(可動部材)の振動により変調された光を光電変換して電気信号として出力する受光器120と、電気信号を処理して振動の状態(速度)を出力電圧値Voutとして出力する処理部170と、を有する。
そして、光ファイバ型振動計100は、図2に示す如く、おもり156及び可動コイル158の振動で生じるおもり156及び可動コイル158の速度を(速度に比例する)電流に変換する速度ピックアップ部150と、電流により磁界を発生させるソレノイドコイル部148と、磁界の強さに応じて振動プローブ130に導光された光量を減衰させる磁界センサ部131と、を備える。
以下、光ファイバ型振動計100の構成を図1、図2、図5に基づいてより詳細に説明していく。
光ファイバ型振動計100は、図1に示す如く、検出部102と処理部170とを有する。検出部102は、図1に示す如く、光源104と、入射側光ファイバ114と、光ファイバカプラ116と、出射側光ファイバ118と、受光器120と、振動プローブ130と、を備えている。
図1に示す如く、光源104は、レーザダイオードやLEDなどを有している。入射側光ファイバ114は、光源104に接続され、光源104の光を振動プローブ130まで導光する。なお、振動プローブ130に導かれる光の一部は、図示しない別の受光器により光電変換された出力をモニターしてもよい。そのモニターされる出力によって、受光回路174で受光器120から出力される電気信号が規格化された電圧値とされる。光ファイバカプラ116は、入射側光ファイバ114と出射側光ファイバ118とを溶融接合させたもので、振動プローブ130から入射側光ファイバ114に戻ってきた光を出射側光ファイバ118へ分岐する。出射側光ファイバ118は、受光器120に接続されている。受光器120では、出射側光ファイバ118を通過してきた光を光電変換して電気信号として処理部170に出力する。なお、入射側光ファイバ114と出射側光ファイバ118とには、シングルモードファイバやマルチモードファイバや偏波面保存型光ファイバなどを用いることができる。
振動プローブ130は、図2に示す如く、磁界センサ部131とソレノイドコイル部148と速度ピックアップ部150とを備える。これらは、プローブケース166に一体的に構成されている。その際、おもり156及び可動コイル158の振動軸Pとソレノイドコイル部148で発生する磁界の方向軸と磁界センサ部131における磁界測定軸Oとが同一とされている。
前記磁界センサ部131は、図3に示す如く、レンズ132と偏光子134(偏光板)と第1ファラデー回転子136と第2ファラデー回転子138と永久磁石140とミラー142とを備える。
図3に示す如く、レンズ132は、入射側光ファイバ114で導いた光をコリメートして偏光子134に入射させる。偏光子134は、入射側光ファイバ114から出射されてコリメートされた光を直線偏光させる。第1ファラデー回転子136(ファラデー回転子)は、偏光子134を通過した光を磁界測定軸O方向における磁界の強さにより直線偏光された光(単に直線偏光とも称する)の透過軸(偏光軸と称する)を回転させる(偏光回転させる)。第2ファラデー回転子138は、第1ファラデー回転子136とは別に第1ファラデー回転子136の後段に配置されている。第2ファラデー回転子138の外周には、リング状の永久磁石140が配置されている。この永久磁石140は第2ファラデー回転子138にバイアス磁界を印加することで、第2ファラデー回転子138は第1ファラデー回転子136から出射される光の偏光回転された角度(偏光回転角と称する)に22.5度の偏光回転角を更に与える。
図3に示す如く、磁界センサ部131の終端に、ミラー142が配置されている。ミラー142により、第2ファラデー回転子138で偏光回転された光は垂直反射される。ミラー142で反射された光には再び第2ファラデー回転子138で22.5度の偏光回転角が与えられる。即ち、偏光子134の偏光軸に対する第1ファラデー回転子136から出射される光の偏光回転角に、第2ファラデー回転子138により45度の一定の偏光回転角が更に与えられる。そして、ミラー142で反射された光は偏光子134に入射する。なお、第1、第2ファラデー回転子136、138とも、ファラデー効果を有する材質(主にYIG結晶など)を用いることができる。その際にベルデ定数の大きいYIG結晶が、より好ましい。
ここで、第2ファラデー回転子138が、偏光子134の偏光軸に対する第1ファラデー回転子136から出射される光の偏光回転角に、45度の一定の偏光回転角を更に与えることについて、図4を用いて説明する。ただし、ここでは説明のため、偏光子134での偏光軸方向成分の光は、100%透過するものとする(偏光方向によるロス以外は無視する)。
図4において、偏光子134の偏光軸Qと直線偏光A1とが平行(偏光軸Qに対する直線偏光の偏光回転角(方位角と称する)が0度)のときには、偏光子134に対して直線偏光A1は100%透過していく。しかし、偏光軸Qと直線偏光A5とが直交する(方位角90度)ときには、偏光子134に対して直線偏光A5は全く透過しない(0%透過)。この中間である、偏光軸Qと直線偏光A3とが45度(方位角45度)のときには、偏光子134に対して直線偏光A3は70.7%(COS45度=0.707より)透過していくことなる。即ち、本実施形態では、磁界が存在しなくても、偏光子134による直線偏光に第2ファラデー回転子138で偏光回転角45度を付与することとなる。このため、磁界が存在しなくても、偏光子134を介して入射側光ファイバ114に戻る光量は、偏光子134から出射した直線偏光の光量の70.7%だけに減衰(変調)される。
なお、永久磁石140による第1ファラデー回転子136への影響を低減するために、永久磁石140の外周に磁界シールドを設けてもよい。磁界シールドは、例えば第2ファラデー回転子138と永久磁石140とミラー142の外周を覆い、光の通過する部分のみに開口を有するように構成することができる。磁界シールドとしては、例えばパーマロイなどを使用できる。なお、磁界シールドを設けずに、永久磁石140が第1ファラデー回転子136に磁界的な影響を与えないように、永久磁石140と第1ファラデー回転子136との距離を十分離すように配置してもよい。
なお、ファラデー効果は、磁界の強さに比例して偏光面が回転する現象であり、式(1)が成り立つ。
Φ ∝ V×H×L (1)
符号Φはファラデー回転角(光の偏光回転角)である。符号Vはベルデ定数であり、ファラデー回転子の材質によって変わる。符号Hは光の伝播方向(磁界検出軸O方向)の磁界の強さを示す。符号Lはファラデー回転子の磁界検出軸O方向の長さである。
ここで、(直線偏光された)光の偏光回転は、磁界の光の伝播方向(磁界検出軸O方向)における成分が存在するときに発生する。詳しく説明すると、ファラデー効果では、磁界の向きと光の進む向きが同じときは、光の進む向きに対して右ねじが回転する方向に光が偏光回転する。磁界の向きと光の進む向きが逆のときは、光の進む向きに対して左ねじが回転する方向に光が偏光回転する。
前記ソレノイドコイル部148は、図2、図3に示す如く、第1ファラデー回転子136の外周に配置されたコイルである。ソレノイドコイル部148は、後述する速度ピックアップ部150の可動コイル158と電気的に接続されている。
なお、ソレノイドコイル部148で発生する磁束密度は、アンペールの法則より電流に比例し、式(2)の関係が成り立つ。なお、磁束密度は磁界の強さに比例する。
B1 ∝ n1×L1×I (2)
符号B1はソレノイドコイル部148内側の軸方向の磁束密度で、符号n1はソレノイドコイル部148の軸方向の単位長さあたりのコイル巻数で、符号L1はソレノイドコイル部148の軸方向の長さで、符号Iはソレノイドコイル部148に流れる電流である。
前記速度ピックアップ部150は、図2、図5に示す如く、ばね154とおもり156と可動コイル158と永久磁石160とヨーク164とを備える。これらは、速度ピックアップ部150以外からの磁界の影響を遮断するためのシールドケース152で覆われている。即ち、本実施形態では、シールドケース152は、磁界センサ部131の永久磁石140の磁界やソレノイドコイル部148で発生する磁界の影響も遮断することができる。
図2、図5に示す如く、ばね154は、外周がシールドケース152に固定されて、その中央でおもり156を振動軸P方向に変位可能に支持している(ダイヤフラム構造)。おもり156にはその下側に凹部が設けられ、且つその凹部の周方向に沿うリング状の可動コイル158が一体的におもり156の下側に固定されている。可動コイル158は、シールドケース152に設けられた貫通孔152Aを通過して、ソレノイドコイル部148と電気的に接続され閉回路を構成している。即ち、可動コイル158は、ソレノイドコイル部148に接続されたコイルとされている。可動コイル158の内側には、可動コイル158の内側に沿う形状の永久磁石160が配置されている。
永久磁石160の外周と可動コイル158の内周との間隔は、周方向で均等とされている。永久磁石160は、可動コイル158の外周を所定の間隔Gで囲むヨーク164に固定されている。このため、永久磁石160とヨーク164との間で磁束(磁界)が発生するので、永久磁石160は可動コイル158に磁界を与えている状態となる。なお、永久磁石160に対して、可動コイル158が振動することとなる。即ち、速度ピックアップ部150では、直接的に振動の速度を検出することとなる。このような原理により、速度ピックアップ部150は、比較的低い周波数から高い周波数まで(数Hzから数kHz)振動を検出することが可能である。
符号162は、磁性流体であり、可動コイル158の動きをダンピングする機能を有している。磁性流体162を使用することで、永久磁石160とヨーク164との間にダンピング材料を安定してとどめることができるが、ダンピング材料が必ずしも磁性流体である必要はない。例えば、空気でもよいし、水やオイルなどの気体や液体などでもよい。
なお、速度ピックアップ部150の出力電流は、フレミングの右手の法則より振動の速度成分に比例し、式(3)が成り立つ。
I ∝ B2×L2 (3)
符号Iは可動コイル158に流れる電流で、符号B2は永久磁石160とヨーク164との間隔Gにおける磁束密度で、符号L2は磁束を横切る可動コイル158の長さである。
処理部170は、図1に示す如く、発光回路172と受光回路174と自乗手段である自乗回路176とオフセット手段であるオフセット回路178とを備える。また、処理部170には、微分手段である微分回路180を備えてもよい。
図1に示す如く、発光回路172は、光源104に安定した発光をさせる。受光回路174は、受光器120から出力された電気信号を規格化された電圧値として自乗回路176に出力する。自乗回路176は、受光回路174から出力された電圧値を自乗して出力する。このとき、自乗回路176で出力される自乗電圧値は、規格化された電圧値が規格値に対して70.7%の値のときに、0.5(=0.7072;規格化された自乗電圧値に対して50%の値)となる。オフセット回路178は、自乗電圧値の0.5をオフセットして、ゲイン調整を行い、必要に応じてプラスマイナスの符号を反転させ、その値を出力電圧値Voutとして出力する。即ち、出力電圧値Voutは振動の速度出力に相当する。微分回路180は、オフセット回路178の出力電圧値Voutの微分を行う。この処理は、出力電圧値Voutが振動の速度出力に相当するため、振動の加速度出力を得たい場合に追加される(その場合には加速度出力を出力電圧値としてもよい)。
次に、本実施形態における光ファイバ型振動計100の動作について、主に図1、図2を用いて説明する。
振動プローブ130が振動軸P方向に振動すると、速度ピックアップ部150のおもり156がシールドケース152に対して振動する。シールドケース152には永久磁石160及びヨーク164が固定されている。一方、おもり156には、可動コイル158が固定されている。このため、おもり156の振動により可動コイル158が永久磁石160とヨーク164との間に発生している磁束を横切ることとなる。このため、フレミングの右手の法則により、可動コイル158の速度に比例した電流が可動コイル158に発生する。
可動コイル158に発生した電流は、そのままソレノイドコイル部148を流れる。すると、アンペールの法則によりソレノイドコイル部148の内側に磁束(磁界)が発生する。即ち、第1ファラデー回転子136の内側において、磁界測定軸O方向に磁界が発生する。
一方、発光回路172により光源104から光が出射される。光源104から出射された光は入射側光ファイバ114で導光される。
導光された光は、入射側光ファイバ114から出射され、レンズ132でコリメートされる。コリメートされた光は、偏光子134に入射し、直線偏光とされる。直線偏光された光は、第1ファラデー回転子136で、磁界測定軸O方向に発生した磁界の強さにより偏光回転される。偏光回転された光は、第2ファラデー回転子138で更に22.5度で偏光回転される。そして、光は、ミラー142で垂直反射され、再び、第2ファラデー回転子138で更に22.5度で偏光回転される。即ち、第2ファラデー回転子138で合計45度の一定の偏光回転角が与えられる。また、第1ファラデー回転子136でも、第2ファラデー回転子138を通過した光を更に偏光回転させる。その光は、偏光子134に入射して、偏光子134の偏光軸に対する方位角に従い、減衰して透過する(変調される)。
減衰した(変調された)光はレンズ132で再び入射側光ファイバ114に戻る。即ち、磁界センサ部131ではソレノイドコイル部148で発生した磁界の強さに応じて振動プローブ130に導光された光量を減衰させて戻している。その戻り光は、光ファイバカプラ116を介して、出射側光ファイバ118で受光器120に導かれる。
受光器120では、戻り光の光量(光ファイバ帰還光量)に比例して光電変換して電気信号を出力する。この電気信号は受光回路174で規格化された電圧値として出力される。この電圧値の一例を図6(A)に示す。この電圧値は、偏光子134による減衰特性から、正弦波特性で示される曲線(SIN波)上の値として示される。そして、磁界がない場合A3にも、第2ファラデー回転子138(及び永久磁石140)で光に一定の偏光回転角として45度が与えられている。このため、磁界がない状態A3の方位角45度では電圧値は極大値や極小値とはならず、電圧値は0.707となる。磁界がマイナスである場合A2には、方位角は45度より小さくなる。このため、電圧値が0.707よりも大きな値となる。逆に、磁界がプラスである場合A4には、方位角は45度より大きくなる。このため、電圧値が0.707よりも小さな値となる。
即ち、磁界センサ部131は、ソレノイドコイル部148で発生する磁界の向きによっても振動プローブ130に導光された光量を変化させている。言い換えれば、偏光子134の偏光軸に対する第1ファラデー回転子136から出射される光の偏光回転角に、90n(n;整数)度ではない一定の偏光回転角がバイアスとして与えられていることで、磁界のプラスマイナス、即ち磁界の向きを受光量に比例する電圧値から容易に判別することができる。
受光回路174から出力される電圧値は、自乗回路176で自乗される。即ち、自乗回路176から出力される自乗電圧値は、一例として図6(B)のように示すことができる。即ち、磁界がない状態A3の電圧値0.707は、自乗電圧値0.5となる。同時に、正弦波特性で示された曲線は、自乗電圧値0.5を中心とする範囲Bにおいては、極めて直線に近づけることができる。即ち、方位角45度を中心として範囲Bの間では、自乗電圧値に比例して方位角を求めることができる。つまり、磁界の向きを含めて、磁界の強さを複雑な構成をとることなく正確に求めることができる。
自乗回路176の出力はオフセット回路178で、符号合わせ、オフセット調整、及びゲイン調整される。即ち、オフセット回路178から出力される電圧値は、一例として図6(C)のように示すことができる。このため、磁界の向きを含めて、磁界の強さを簡単な構成で、容易にかつ正確に求めることができる。ここで、速度ピックアップ部150で検出されるのは速度であるので、オフセット回路178から出力される磁界の強さを表す電圧値により、正確に振動の速度を求めることができる。
オフセット回路178から出力される電圧値は、微分回路180で微分演算される。即ち、オフセット回路178で得られるのが速度であることから、微分回路180を追加すれば加速度を正確に求めることができる。
本実施形態では、直接的に振動の速度を検出している。そして、速度ピックアップ部150は、比較的低い周波数から高い周波数まで(数Hzから数kHz)振動を検出することができる。即ち、本実施形態は、地震観測や機械振動などや設備診断などに幅広く適用することができる。
また、本実施形態では、永久磁石140を用いて第2ファラデー回転子138にバイアス磁界を印加しているので、振動プローブ130に入射側光ファイバ114以外に外部から配線する必要がない。そのため、振動プローブ130の配置の自由度が大きく、且つ第2ファラデー回転子138や速度ピックアップ部150を外部から制御することなく、振動プローブ130から安定した出力を得ることができる。
また、本実施形態では、ミラー142を用いて光を反射させることで、それぞれ第1、第2ファラデー回転子136、138の磁界測定軸O方向に光を往復させている。このため、第1、第2ファラデー回転子136、138の磁界測定軸O方向の長さを短くすることができるので、振動プローブ130を小型とすることができる。また、ミラー142が機能的には磁界センサ部131の終端部材なので、ミラー142の外側に光ファイバなどの部材が配置されずに、容易に振動プローブ130へ組込むことができる。
また、本実施形態においては、振動プローブ130において、おもり156及び可動コイル158の振動軸Pとソレノイドコイル部148で発生する磁界の方向軸と磁界センサ部131における磁界測定軸Oとが同一とされて、速度ピックアップ部150とソレノイドコイル部148と磁界センサ部131とを一体的に構成している。このため、振動プローブ130の扱いが容易であり、且つ、振動測定対象物への振動軸Pの軸合わせや振動プローブ130自体の組立てを容易に行うことができる。
また、本実施形態では、速度ピックアップ部150を、速度ピックアップ部150以外からの磁界の影響を遮断するためのシールドケース152で覆っている。このため、速度ピックアップ部150に対して、磁界センサ部131やソレノイドコイル部148や外部磁界(電磁界を含む)の影響を遮断することができる。即ち、検出される振動の状態の信頼性を向上させることができる。
即ち、本実施形態では、光ファイバを用いる長所を生かしながら、複雑な構成をとることなく高精度な計測が可能である。即ち、振動プローブ130から出力される信号品質を保ったまま長距離信号伝送が可能であり、その際に給電が不要である。同時に発熱も少なく、スリムで軽量とすることができる。更に高い防爆性を保つことができる。同時に、速度ピックアップ部150では直接速度を検出することで、静的重力によるオフセット誤差を防止することができる。
本実施形態においては、第2ファラデー回転子138を用いて、永久磁石140による第1ファラデー回転子136への影響を与えないようにすることが望ましいとしていたが、本発明はこれに限定されない。第2ファラデー回転子を用いずに、第1ファラデー回転子に永久磁石でバイアス磁界を印加して、第1ファラデー回転子で一定の偏光回転角を与えるようにし、ソレノイドコイル部に発生する磁界がこれに重畳されるようにしてもよい。
また、本実施形態においては、光ファイバカプラ116を用いたが、本発明はこれに限定されない。例えば光ファイバ型ではないビームスプリッタを用いてもよい。
また、本実施形態においては、処理部170に、自乗手段として自乗回路176、オフセット手段としてオフセット回路178、微分手段として微分回路180を備えていたが、本発明はこれに限定されない。回路という形ではなく、受光回路の出力をA/D変換してソフトウェア的に演算処理することで自乗手段やオフセット手段や微分手段を実現しても良い。
また、本実施形態においては、第1ファラデー回転子136の後段に第2ファラデー回転子138が配置され、第2ファラデー回転子138の外周に永久磁石140が配置されていたが、本発明はこれに限定されない。第2ファラデー回転子が第1ファラデー回転子の前段に配置されていてもよい。また、永久磁石は磁界検出軸O方向で第2ファラデー回転子から離れて配置されていてもよいし、永久磁石の形状がリング状でなくてもよい。
また、本実施形態においては、円板形状のばね154でおもり156が支持され、速度ピックアップ部150の永久磁石160が可動コイル158の内周に沿う形状で配置され、且つ可動コイル158の外側にヨーク164がリング状に配置されていたが、本発明はこれに限定されない。例えば、図7に示す本発明の第2実施形態に係る速度ピックアップ部250の如く、おもりと一体の可動コイル258が、板ばね254で片持ちされた状態であってもよい。そして、永久磁石260が可動コイル258の内側のヨーク264部分に対向するように、2つの角型の永久磁石260を外側のヨーク264部分に固定させてもよい。もちろん、可動コイルの内側と外側の両方に永久磁石を配置してもよい。その際の配置は2方向に限られない。そして、その磁極の方向はいずれであってもよい。
また、上記実施形態においては、振動プローブにおいて、おもり及び可動コイルの振動軸Pとソレノイドコイル部で発生する磁界の方向軸と磁界センサ部における磁界測定軸Oとが同一とされて、速度ピックアップ部とソレノイドコイル部と磁界センサ部とを一体的に構成していたが、本発明はこれに限定されない。磁界センサ部とソレノイドコイル部とが一体とされ、速度ピックアップ部だけが別に設けられてもよいし、これらが一体であっても軸が一致せず平行、若しくは軸同士が角度を有していてもよい。
次に、本発明の第3実施形態について、図8、図9を用いて説明する。
本実施形態は、第1実施形態の反射型の振動プローブ130を多軸化したものである。その概略構成は図8、図9に示す通りであり、光源304が複数の波長λ1〜λ3の光を入射側光ファイバ(光ファイバ)314に導光させ、振動プローブ330で入射側光ファイバ314から出射された光を、各波長λ1〜λ3に分光させて複数の波長λ1〜λ3と同数の速度ピックアップ部350X〜350Zで検出される振動で変調している(減衰させている)。その際には、入射側光ファイバ314から出射された光は2個のダイクロイックミラー333Y、333Zで各波長に分光されている。具体的な構成を以下に説明する。なお、多軸化に係る部分以外については、適宜説明を省略する。
光源304は、図8に示す如く、例えば3個のLED306X〜306Zと、4個のレンズ308X〜308Z、312と、1個のミラー310Xと2個のダイクロイックミラー310Y、310Zと、を備えている。3個のLED306X〜306Zは、それぞれ波長λ1〜λ3が異なる光を発光する。LED306X〜306Zから出射された光は、それぞれレンズ308X〜308Zでコリメートされる。コリメートされた光は、ミラー310X及びダイクロイックミラー310Y、310Zで反射され、レンズ312に入射する。レンズ312によって、それぞれ波長λ1〜λ3が異なる光は、1本の入射側光ファイバ314により振動プローブ330に導光される。
振動プローブ330は、図9に示す如く、磁界センサ部331とソレノイドコイル部348X〜348Zと速度ピックアップ部350X〜350Zとを備える。
磁界センサ部331は、図9に示す如く、レンズ332のみを共通にして、3個のセンサ先端部335X〜335Zを備えている。センサ先端部335X〜335Zは、それぞれ、ミラー333X若しくはダイクロイックミラー333Y、333Zと偏光子334X〜334Zと、第1ファラデー回転子336X〜336Zと、第2ファラデー回転子338X〜338Zと、永久磁石340X〜340Zと、ミラー342X〜342Zと、を備える。
入射側光ファイバ314から出射された光は、図9に示す如く、レンズ332でコリメートされる。コリメートされた光はダイクロイックミラー333Zに入射する。ここで、ダイクロイックミラー333Zは、波長λ1、λ2の光を反射させ、波長λ3の光を透過させる。ダイクロイックミラー333Zで反射された光は、ダイクロイックミラー333Yに入射する。ダイクロイックミラー333Yは、波長λ1の光を透過させ、波長λ2の光を反射させる。ダイクロイックミラー333Yを透過した光は、ミラー333Xで反射される。ミラー333X及びダイクロイックミラー333Y、333Zで分光された光はそれぞれ、偏光子334X〜334Z、第1ファラデー回転子336X〜336Z、及び第2ファラデー回転子338X〜338Zを介して、ミラー342X〜342Zに入射する。ミラー342X〜342Zで反射された光はそれぞれ、ミラー333X及びダイクロイックミラー333Y、333Zを介して、入射側光ファイバ314に導光される。磁界センサ部331のこれ以外の構成と動作は第1実施形態と同様なので、説明を省略する。
図9において、各ソレノイドコイル部348X〜348Zと、速度ピックアップ部350X〜350Zの構成と動作は第1実施形態と同様なので、説明を省略する。ただし、速度ピックアップ部350X〜350Zは互いに直交するように配置固定される。このため、磁界センサ部331の磁界測定軸Ox〜Ozと速度ピックアップ部350X〜350Zの振動軸Px〜Pzとはそれぞれ同一とはならず、異なる配置関係とされている。このとき、磁界センサ部331とソレノイドコイル部348X〜348Zとは一体化され、且つ速度ピックアップ部350X〜350Zは一体化される。一方で、磁界センサ部331と速度ピックアップ部350X〜350Zとの位置関係は一定に固定してもよいし、フレキシブルに変化可能としてもよい。
受光器320は、図8に示す如く、レンズ322と、ミラー324X及びダイクロイックミラー324Y、324Zと、光電式センサ326X〜326Zと、を備える。出射側光ファイバ318から出射された光はレンズ322でコリメートされ、ダイクロイックミラー324Y、324Zで、波長λ1〜λ3毎に分光されて、各光電式センサ326X〜326Zで受光される。光電式センサ326X〜326Zで受光された光は光電変換され、電気信号として処理部に出力される。
処理部は、第1実施形態と同様の構成であり、同様の動作を行うので、その説明は省略する。処理部は、波長の数だけ並列に備えてもよいし、異なる波長毎に適宜兼用化してもよい。
このように、各波長λ1〜λ3毎にセンサ先端部335X〜335Zを備えて、速度ピックアップ部350X〜350Zの振動軸Px〜Pzを互いに直交させるように配置することで、3次元方向の振動の状態を測定することが可能になる。即ち、各軸で得られた出力電圧値Voutをベクトル合成することで振動(の速度)の向きと大きさを求めることができる(振動の加速度についても同様)。
なお、多軸化に際しては、反射型の振動センサ部331を用いているので、センサ先端部335X〜335Zの配置が容易である。同時に、2個のダイクロイックミラー333Y、333Zを用いていることで、振動プローブ330を相乗的にコンパクトにまとめることができる。なお、受光器320においても2個のダイクロイックミラー324Y、324Zが用いられているので、受光器320もコンパクトにまとめることができる。
本実施形態においては、第1実施形態で示した速度ピックアップ部150と同一の構成を各速度ピックアップ部350X〜350Zに用いていたが、第2実施形態で示した速度ピックアップ部250(図7)を用いて多軸化を実現してもよい(図10に示す第4実施形態)。
また、上記実施形態においては、磁界センサ部をミラー及びダイクロイックミラーで複数のセンサ先端部に分割し、そのセンサ先端部とはそれぞれ位置関係が異なる速度ピックアップ部を備えていたが、本発明はこれに限定されない。例えば、図11で示す第5実施形態に示す如く、振動プローブ530を、センサ先端部535X〜535Zと速度ピックアップ部550X〜550Zとが一体的に構成された3個のプローブ先端部568X〜568Zを互いに直交させることで構成してもよい。振動プローブ530では、レンズ532を共通として、3個のプローブ先端部568X〜568Zを、ダイクロイックミラー533Y、533Zで直接に互いに直交させている。なお、プローブ先端部568X〜568Zは、センサ先端部535X〜535Zの磁界測定軸Ox〜Ozと速度ピックアップ部550X〜550Zの振動軸Px〜Pzとをそれぞれ一致させて、プローブケース566X〜566Zで一体的に構成している。
また、上記実施形態においては、3つの波長λ1〜λ3で3軸方向の振動の状態を求めたが、本発明はこれに限定されず、更に多くの数の軸に対しても適用可能である。光ファイバを用いる限りにおいて、波長の多重化は容易で、かつ光ファイバ自体は1本で済み、更に振動プローブになんら電気信号を這わす必要がない。このため、数の多い多軸化であっても容易に振動プローブの構成が可能で、たとえ振動プローブが光源と受光器とから遠く離れて配置されても、各軸で振動の状態を安定して求めることができる。
また、上記実施形態においては、入射側光ファイバから出射された光が、2個のダイクロイックミラーで各波長λ1〜λ3に分光されていたが、本発明はこれに限定されない。別の波長選択性のある光学素子をダイクロイックミラーの代わりに用いてもよい。
次に、本発明の第6実施形態について、図12、図13を用いて説明する。
本実施形態は、図12、図13に示す如く、第1実施形態とは異なり、透過型の磁界センサ部631を用いている。即ち、第1実施形態における第2ファラデー回転子138と永久磁石140とミラー142及び偏光子134(反射光が戻るとき)の代わりに、検光子644を用いている。
検光子644は、偏光子634とは偏光軸の角度が異なるように配置されている(例えば45度)。そして、検光子644を通過した光は、レンズ646により集光され、直接に出射側光ファイバ618に入射されている。即ち、検光子644は、偏光子634の偏光軸から45度異なる偏光軸(45度の偏光回転角の付与)で、偏光子634の代わりに第1ファラデー回転子636から出射される光を通過させる。このため、第1実施形態に比べると、検光子644が、偏光子634の偏光軸に対する第1ファラデー回転子636から出射される光の偏光回転角に、90n(n;整数)度ではない一定の偏光回転角(例えば45度)をバイアスとして更に与え、偏光回転角に応じて、受光器に導光される光の光量を減衰させている。
振動プローブ630としては、図13に示す如く、第1実施形態と同一の速度ピックアップ部を用いることができる。このとき、磁界センサ部631では、速度ピックアップ部側の出射側光ファイバ618が、折り曲げられて入射側光ファイバ614と同じ方向に向けられている。この場合は、磁界センサ部631の磁界測定軸Oと速度ピックアップ部650の振動軸Pとが一致しないものの平行とされて、磁界センサ部631とソレノイドコイル部648と速度ピックアップ部650とが一体的に構成されている。
このため、本実施形態においても、第1実施形態で説明した光ファイバ型振動計100と同様の動作が可能である。更に、本実施形態では、第1ファラデー回転子636だけしか使用しないので、第1実施形態に比べてコストダウンが可能である。更に、バイアス磁界の印加のための永久磁石も使用しないので、永久磁石による第1ファラデー回転子636への影響を考慮せずに、振動プローブ630を構成・配置することができる。
また、本実施形態においては、第1実施形態で示した速度ピックアップ部を用いた振動プローブ630が示されたが、本発明はこれに限定されない。例えば、図14に示す第7実施形態の如く、第2実施形態で示した速度ピックアップ部を用いることもできる。この場合においても、磁界センサ部731と速度ピックアップ部750とが一体的に構成されていてもよいし、配置変更可能としていてもよい。
また、本実施形態の透過型の振動プローブ630を用いて、第3〜第5実施形態で示した多軸化を行ってもよい。
本発明について上記実施形態を上げて説明したが、本発明は上記実施形態に限定されるものではない。即ち、本発明の要旨を逸脱しない範囲においての改良並びに設計の変更が可能なことはいうまでもない。
上記実施形態においては、一定の偏光回転角が45度であったが、本発明はこれに限定されない。一定の偏光回転角が45度のときは、磁界の向きがいずれであっても、直線近似すると磁界の強さを同等の広い範囲で正確に求めることができる(例えば図6(B)では、方位角でそれぞれB/2の範囲)。このため、バイアスとして与える一定の偏光回転角は、45度+90m(m;整数)度であることが望ましいが、90n(n;整数)度でない角度であればよい。その場合には、受光量において磁界のない状態は正弦波特性で示される曲線上の極大値や極小値とならない。このため、磁界の向きが変わることで受光量(電圧値、自乗電圧値、若しくは出力電圧値)が変化するため、磁界の向きを判別することができる。
また、上記実施形態においては、偏光子や検光子としては偏光膜をガラスで挟んだ偏光板を想定していたが、本発明はこれに限定されない。例えば、偏光ビームスプリッタや、複屈折性結晶(方解石など)の偏光素子でも良い。
また、上記実施形態においては、光源としてレーザダイオード、LEDを用いていたが、それ以外のものでもよい。ただし、ファラデー回転子の材質に対して透明な光波長を発するものが好ましい。例えば、YIG結晶に対しては、波長約1μmの光源であることが好ましい。
また、上記実施形態においては、処理部が電気信号を自乗する自乗手段としての自乗回路を有していたが、本発明はこれに限定されず、自乗手段を有さなくてもよい。
また、上記実施形態においては、磁界センサ部がソレノイドコイル部で発生する磁界の向きによっても振動プローブに導光された光量を変化させていたが、必ずしも、本発明はこれに限定されない。
また、上記実施形態においては、磁界センサ部が、振動プローブに導光された光を直線偏光させる偏光子と、偏光子を通過した光を磁界の強さにより偏光回転させる第1ファラデー回転子と、を備えるとしていた。しかし、必ずしも、本発明はこれに限定されずに、磁界の強さで結果として光量を減衰させる素子であれば用いることができる。
また、上記実施形態においては、速度ピックアップ部がソレノイドコイル部に接続された可動コイルと可動コイルに磁界を与える永久磁石とを有し、永久磁石に対して可動コイルが振動していたが、本発明はこれに限定されない。例えば、シールドケースに固定されたコイルがソレノイドコイル部に接続されて、そのコイルに対してばねで支持された永久磁石が振動するようにしてもよい。
また、上記実施形態においては、速度ピックアップ部が速度ピックアップ部以外からの磁界の影響を遮断するためのシールドケースで覆われていたが、本発明はこれに限定されず、シールドケースを備えていなくてもよい。
100、300…光ファイバ型振動計
102、302…検出部
104、304…光源
114、214、314、514、614、714…入射側光ファイバ
116、316…光ファイバカプラ
118、318、618、718…出射側光ファイバ
120、320、326X、326Y、326Z…受光器(光電式センサ)
130、330、530、630、730…振動プローブ
131、331、631、731…磁界センサ部
132、308X、308Y、308Z、312、322、332、532、632、646、732、746…レンズ
134、334X、334Y、334Z、534X、634、734…偏光子
136、336X、336Y、336Z、536X、636、736…第1ファラデー回転子
138、338X、338Y、338Z、538X…第2ファラデー回転子
140、160、260、340X、340Y、340Z、360X、360Y、360Z、460X、460Y、460Z、540X、560X、660、760…永久磁石
142、310X、324X、333X、342X、342Y、342Z、542X…ミラー
148、348X、348Y、348Z、548X、548Y、548Z、648、748…ソレノイドコイル部
150、250、350X、350Y、350Z、450X、450Y、450Z、550X、550Y、550Z、650、750…速度ピックアップ部
152、352X、352Y、352Z、552X、652…シールドケース
154、254、354X、354Y、354Z、454X、454Y、454Z、554X、654、754…ばね
156、356X、356Y、356Z、556X、656…おもり
158、258、358X、358Y、358Z、458X、458Y、458Z、558X、658、758…可動コイル
162、262、362X、362Y、362Z、462X、462Y、462Z、662、762…磁性流体
164、264、364X、364Y、364Z、464X、464Y、464Z、564X、664、764…ヨーク
166、566X、566Y、566Z、666…プローブケース
170…処理部
172…発光回路
174…受光回路
176…自乗回路
178…オフセット回路
180…微分回路
306X、306Y、306Z…LED
310Y、310Z、324Y、324Z、333Y、333Z、533Y、533Z…ダイクロイックミラー
335X、335Y、335Z、535X、535Y、535Z…センサ先端部
644、744…検光子

Claims (9)

  1. 光源と、該光源の光を導光する光ファイバと、該導光された光が入射される振動プローブと、該振動プローブに配置された可動部材の振動により変調された光を光電変換して電気信号として出力する受光器と、該電気信号を処理して前記振動の状態を出力電圧値として出力する処理部と、を有する光ファイバ型振動計であって、
    前記可動部材の振動で生じる前記可動部材の速度を電流に変換する速度ピックアップ部と、
    該電流により磁界を発生させるソレノイドコイル部と、
    該磁界の強さに応じて前記振動プローブに導光された光量を減衰させる磁界センサ部と、
    を備えることを特徴とする光ファイバ型振動計。
  2. 前記磁界センサ部は、前記ソレノイドコイル部で発生する磁界の向きによっても前記振動プローブに導光された光量を変化させることを特徴とする請求項1に記載の光ファイバ型振動計。
  3. 前記磁界センサ部が、前記振動プローブに導光された光を直線偏光させる偏光子と、該偏光子を通過した光を前記磁界の強さにより偏光回転させるファラデー回転子と、を備えることを特徴とする請求項2に記載の光ファイバ型振動計。
  4. 前記速度ピックアップ部が前記ソレノイドコイル部に接続されたコイルと該コイルに磁界を与える永久磁石とを有し、該永久磁石に対して該コイルが相対的に振動することを特徴とする請求項1乃至3のいずれかに記載の光ファイバ型振動計。
  5. 前記速度ピックアップ部が該速度ピックアップ部以外からの磁界の影響を遮断するためのシールドケースで覆われていることを特徴とする請求項4に記載の光ファイバ型振動計。
  6. 前記振動プローブにおいて、前記可動部材の振動軸と前記ソレノイドコイル部で発生する磁界の方向軸と磁界センサ部における磁界測定軸とが同一若しくは平行とされて、
    前記速度ピックアップ部とソレノイドコイル部と磁界センサ部とが一体的に構成されていることを特徴とする請求項1乃至5のいずれかに記載の光ファイバ型振動計。
  7. 前記光源が複数の波長の光を前記光ファイバに導光させ、前記振動プローブで該光ファイバから出射された光が、各波長に分光されて前記複数の波長と同数の前記速度ピックアップ部で検出される前記振動で変調されることを特徴とする請求項1乃至6のいずれかに記載の光ファイバ型振動計。
  8. 前記処理部は前記電気信号を自乗する自乗手段を有することを特徴とする請求項1乃至7のいずれかに記載の光ファイバ型振動計。
  9. 前記処理部は微分手段を有して前記振動の状態を表す加速度を前記出力電圧値として出力することを特徴とする請求項1乃至8のいずれかに記載の光ファイバ型振動計。
JP2010003237A 2010-01-08 2010-01-08 光ファイバ型振動計 Expired - Fee Related JP5374392B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2010003237A JP5374392B2 (ja) 2010-01-08 2010-01-08 光ファイバ型振動計
EP11000049.4A EP2354772B1 (en) 2010-01-08 2011-01-05 Optical fiber type vibration meter and vibration detection method
US12/984,986 US8393220B2 (en) 2010-01-08 2011-01-05 Optical fiber type vibration meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010003237A JP5374392B2 (ja) 2010-01-08 2010-01-08 光ファイバ型振動計

Publications (2)

Publication Number Publication Date
JP2011141246A true JP2011141246A (ja) 2011-07-21
JP5374392B2 JP5374392B2 (ja) 2013-12-25

Family

ID=43971077

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010003237A Expired - Fee Related JP5374392B2 (ja) 2010-01-08 2010-01-08 光ファイバ型振動計

Country Status (3)

Country Link
US (1) US8393220B2 (ja)
EP (1) EP2354772B1 (ja)
JP (1) JP5374392B2 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013170999A (ja) * 2012-02-22 2013-09-02 Hitachi Cable Ltd 光ファイバ振動センサ
KR101365258B1 (ko) * 2012-11-13 2014-02-20 에스제이포토닉스 주식회사 전기시설물의 충격 감지장치
JP2014190741A (ja) * 2013-03-26 2014-10-06 Tokyo Electric Power Co Inc:The 雷電流計測装置及び雷電流計測方法
CN111323613A (zh) * 2020-03-21 2020-06-23 哈尔滨工程大学 基于光纤干涉仪的矢量光纤传感探头及井下矢量加速度计

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105222883B (zh) * 2015-10-26 2018-03-27 国家电网公司 膜片耦合式非本征光纤法布里珀罗传感器探头
FR3099572B1 (fr) * 2019-07-29 2021-08-27 Safran Dispositif de mesure comprenant une fibre optique de connexion et un équipement de mesure pour l’instrumentation d’un appareillage aéronautique, et un appareillage aéronautique comprenant un tel dispositif de mesure
CN117061003A (zh) * 2022-05-06 2023-11-14 华为技术有限公司 光信号的状态信息检测方法和运行该检测方法的光电装置

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0322595A (ja) * 1989-06-20 1991-01-30 Nec Corp 屋外用表示装置の内部熱排出装置
JPH09243445A (ja) * 1996-03-08 1997-09-19 Mitsubishi Heavy Ind Ltd 音波検出装置
JP2000292433A (ja) * 1999-04-05 2000-10-20 Japan Science & Technology Corp 光学式振動センサ及び光学式振動評価方法
JP2002005735A (ja) * 2000-06-15 2002-01-09 Katsumi Yamakawa 振動感知計
US20030133657A1 (en) * 2001-12-11 2003-07-17 Vladimir Kochergin Magneto-optical sensing employing phase-shifted transmission bragg gratings
JP2007240396A (ja) * 2006-03-10 2007-09-20 Tokyo Univ Of Agriculture & Technology 振動検出センサ、防振装置、及び露光装置
US20080041162A1 (en) * 2006-08-15 2008-02-21 Siemens Power Generation, Inc. High bandwidth fiber optic vibration sensor
JP2011039026A (ja) * 2009-07-16 2011-02-24 Mitsutoyo Corp 光学式変位計
JP2011141172A (ja) * 2010-01-06 2011-07-21 Mitsutoyo Corp 光ファイバ型磁界センサ

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59145977A (ja) 1984-02-03 1984-08-21 Hitachi Ltd 磁界測定装置
JP2937545B2 (ja) * 1991-05-30 1999-08-23 株式会社東芝 軸振動計
US5264909A (en) * 1991-11-22 1993-11-23 Hughes Aircraft Company Measurement of optical fiber diameter
FI101017B (fi) * 1996-03-29 1998-03-31 Soundek Oy Optisen kuidun vetojännityksen mittari
US6314214B1 (en) * 1999-09-28 2001-11-06 Corning Incorporated System and method for measuring stress during processing of an optical fiber
JP2001349872A (ja) * 2000-06-06 2001-12-21 Shimadzu Corp 磁気センサ
CA2511960C (en) * 2003-08-12 2009-11-17 Bussan Nanotech Research Institute, Inc. Detection apparatus, optical path length measuring apparatus, device for measurement, method for evaluating optical member, and method for detecting change in temperature
US7729035B2 (en) * 2003-09-22 2010-06-01 Hyeung-Yun Kim Acousto-optic modulators for modulating light signals

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0322595A (ja) * 1989-06-20 1991-01-30 Nec Corp 屋外用表示装置の内部熱排出装置
JPH09243445A (ja) * 1996-03-08 1997-09-19 Mitsubishi Heavy Ind Ltd 音波検出装置
JP2000292433A (ja) * 1999-04-05 2000-10-20 Japan Science & Technology Corp 光学式振動センサ及び光学式振動評価方法
JP2002005735A (ja) * 2000-06-15 2002-01-09 Katsumi Yamakawa 振動感知計
US20030133657A1 (en) * 2001-12-11 2003-07-17 Vladimir Kochergin Magneto-optical sensing employing phase-shifted transmission bragg gratings
JP2007240396A (ja) * 2006-03-10 2007-09-20 Tokyo Univ Of Agriculture & Technology 振動検出センサ、防振装置、及び露光装置
US20080041162A1 (en) * 2006-08-15 2008-02-21 Siemens Power Generation, Inc. High bandwidth fiber optic vibration sensor
JP2011039026A (ja) * 2009-07-16 2011-02-24 Mitsutoyo Corp 光学式変位計
JP2011141172A (ja) * 2010-01-06 2011-07-21 Mitsutoyo Corp 光ファイバ型磁界センサ

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013170999A (ja) * 2012-02-22 2013-09-02 Hitachi Cable Ltd 光ファイバ振動センサ
KR101365258B1 (ko) * 2012-11-13 2014-02-20 에스제이포토닉스 주식회사 전기시설물의 충격 감지장치
JP2014190741A (ja) * 2013-03-26 2014-10-06 Tokyo Electric Power Co Inc:The 雷電流計測装置及び雷電流計測方法
US9983237B2 (en) 2013-03-26 2018-05-29 Mitsubishi Heavy Industries, Ltd. Lightning current measuring device and lightning current measuring method
CN111323613A (zh) * 2020-03-21 2020-06-23 哈尔滨工程大学 基于光纤干涉仪的矢量光纤传感探头及井下矢量加速度计
CN111323613B (zh) * 2020-03-21 2021-12-24 哈尔滨工程大学 基于光纤干涉仪的矢量光纤传感探头及井下矢量加速度计

Also Published As

Publication number Publication date
EP2354772A1 (en) 2011-08-10
US8393220B2 (en) 2013-03-12
US20110167916A1 (en) 2011-07-14
JP5374392B2 (ja) 2013-12-25
EP2354772B1 (en) 2016-12-14

Similar Documents

Publication Publication Date Title
JP5374392B2 (ja) 光ファイバ型振動計
CA2345561C (en) Fiber-optic current sensor
JP5853288B2 (ja) 2芯光ファイバ磁界センサ
JP5083321B2 (ja) 光ファイバ電流計測装置および電流計測方法
WO2010008029A1 (ja) 光ファイバ電流センサ、電流測定方法、及び事故区間検出装置
RU2677990C2 (ru) Оптический датчик с двулучепреломляющим измерительным spun-волокном
RU2650615C2 (ru) Устройство для измерения электрического тока
KR102098626B1 (ko) 광섬유 전류 센서
JPWO2003075018A1 (ja) 電流測定装置
JP5437085B2 (ja) 光ファイバ型磁界センサ
US8773665B1 (en) Compact fiber optic gyroscope
JP2014025835A (ja) 光電流センサ
EP2230484A1 (en) Depolarizer for a fiber optic gyroscope (fog) using high birefringence photonic crystal fiber
JP2017015576A (ja) サニャック干渉型光電流センサ及びその信号処理方法
CN104535819B (zh) 光纤电流互感器的y波导环路的偏振误差抑制装置及方法
JP2004361196A (ja) 光ファイバ電流センサ
JP2020016525A (ja) 干渉型光ファイバジャイロ及びセンシングコイル機構
JP2013253922A (ja) 光電流センサ
JP2006276156A (ja) 光通信装置におけるレンズアクチュエータ構造
JP2011214958A (ja) 光ファイバ電流センサおよび電流測定方法
JP2008175642A (ja) 振動検出装置
US6404503B1 (en) Apparatus with a retracing optical circuit for the measurement of physical quantities having high rejection of environmental noise
JP2019020140A (ja) 光電流センサ
EP4198542A1 (en) Atomic sensor system
JP2751599B2 (ja) 光フアイバジヤイロ

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121203

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130902

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130917

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130920

R150 Certificate of patent or registration of utility model

Ref document number: 5374392

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees