JP2011078306A - インバータの作動方法及びインバータ - Google Patents

インバータの作動方法及びインバータ Download PDF

Info

Publication number
JP2011078306A
JP2011078306A JP2010223640A JP2010223640A JP2011078306A JP 2011078306 A JP2011078306 A JP 2011078306A JP 2010223640 A JP2010223640 A JP 2010223640A JP 2010223640 A JP2010223640 A JP 2010223640A JP 2011078306 A JP2011078306 A JP 2011078306A
Authority
JP
Japan
Prior art keywords
voltage
circuit
power supply
intermediate circuit
inverter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010223640A
Other languages
English (en)
Other versions
JP5677006B2 (ja
Inventor
Schoenlinner Markus
マルクス・シェーンリナー
Norbert Huber
ノルベルト・フーバー
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dr Johannes Heidenhain GmbH
Original Assignee
Dr Johannes Heidenhain GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dr Johannes Heidenhain GmbH filed Critical Dr Johannes Heidenhain GmbH
Publication of JP2011078306A publication Critical patent/JP2011078306A/ja
Application granted granted Critical
Publication of JP5677006B2 publication Critical patent/JP5677006B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/46Controlling of the sharing of output between the generators, converters, or transformers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/22The renewable source being solar energy
    • H02J2300/24The renewable source being solar energy of photovoltaic origin
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0067Converter structures employing plural converter units, other than for parallel operation of the units on a single load
    • H02M1/007Plural converter units in cascade
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • H02M7/487Neutral point clamped inverters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)
  • Dc-Dc Converters (AREA)
  • Control Of Electrical Variables (AREA)

Abstract

【課題】インバータの効率を改善する。
【解決手段】太陽発電機Gの直流電圧+U_ZL、−U_ZLを、電源Nに供給するために交流電圧U_Netzに変換するために、インバータは、昇圧回路H、中間回路Z、及び降圧回路Tを備えている。昇圧回路Hは、直流電圧+U_ZL、−U_ZLが、電源電圧U_Netzのピーク・ピーク最大値より小さいときに直流電圧+U_ZL、−U_ZLを昇圧し、降圧回路Tは、中間回路電圧+U_ZH、−U_ZHを、電源Nにおいて実際に必要とされるより低い電圧U_Netzに降圧する。昇圧回路Hは、直流電圧+U_ZL、−U_ZLを、実際に電源Nにおいて必要とされる値に動的に昇圧し、一時的に、中間回路電圧+U_ZH、−U_ZHに対してほぼ正弦波形の電圧曲線を提供する。
【選択図】図1

Description

本発明は、インバータの作動方法及びこのために適したインバータに関するものである。このようなインバータは、例えば交流電圧を交流電源に供給するために、存在する直流電圧を交流電圧に変換することに使用される。特に太陽光発電の分野における適用においては、できるだけ高い変換効率が要求されている。
ドイツ特許公開第102006010694号は、従来技術のソーラ・インバータを開示している。該インバータにおいては、2つの直流電源又は太陽発電機が直列に接続され、これらの接続点は、第1の電圧レベルである中間電圧を形成する。太陽発電機の外側の2つの接続点はそれぞれ正又は負の電圧レベルを形成する。発電電圧が最高電源電圧より低い場合、これらの両方のレベルから、それぞれ1つの昇圧器により、発電電圧は最高の正又は負の電源電圧を超えて昇圧される。即ち、回路は5つの異なる固定電圧レベルで作動する。次に、電源相には、降圧器を介して、それぞれ絶対値として次に高い電圧レベルから給電され、この場合、絶対値として次に低い電圧レベルを上回るようにフリーホイーリングが行われる。比較的高い回路費用のほかに、昇圧器又は降圧器が不必要なスイッチング損失を発生することが欠点であり、その理由は、特定の作動状態において、発電電圧がある値に昇圧され、その値から、降圧器により本来必要とされる電圧レベルが発生されなければならないからである。さらに、このインバータの作動のために2つの太陽発電機が必要とされ、2つの太陽発電機はできるだけ同じ出力を提供しなければならない。しかしながら、例えばモジュールを1つに統一したときにおいても、常にこれが保証されるとは限らない。
ドイツ特許第102007026393号にはソーラ・インバータが記載され、このソーラ・インバータにおいては、昇圧器が発電電圧を確かに常により高いレベルにもたらすが、拡張作動モードにおいて、発電電圧が、蓄積チョークを希望どおりにもはや磁化可能ではないほど低いときにのみ、出力がこのレベルから呼び出される。この場合、昇圧器は固定電圧レベルで作動し、この電圧レベルから、再び、同様に降圧器が実際に必要とされる電圧レベルを発生しなければならない。
したがって、本発明の目的は、改善された効率を可能にするインバータの作動方法並びに該方法を実行するためのインバータを提供することである。
上記した目的は、太陽発電機の直流電圧を電源に供給するために交流電圧に変換するための昇圧回路、中間回路、及び降圧回路を備えたインバータの作動方法及びインバータにより達成される。昇圧回路は、直流電圧、電源電圧の現在値より小さいときに、直流電圧を昇圧する。降圧回路は、必要に応じて、中間回路電圧を電源内において実際に必要とされるより低い電圧に降圧する。この場合、昇圧回路は、直流電圧を、実際に電源内において必要とされる値に動的に昇圧し、これにより、一時的に、中間回路電圧に対してほぼ正弦波形の電圧曲線を提供する。したがって、以下において動的中間回路又は動的中間回路電圧に関して記載する場合、中間回路が固定電圧に保持される通常の中間回路とは異なり、中間回路電圧を実際に電源内において必要とされる電圧に少なくとも一時的に適合させることを意味している。
本発明に係るインバータは、動的中間回路を有し、動的中間回路に発電機から直流電圧が供給され、直流電圧は、必要とされる電源電圧が発電電圧を超えている場合に、動的中間回路の前段に接続された2つの対称の昇圧器により昇圧される。動的中間回路から電源にエネルギが供給され、該供給された電圧は、動的中間回路電圧が実際に必要とされる値を超えている場合、動的中間回路の後段に接続された2つの対称の降圧器により降圧される。
インバータは、直流電源として1つの太陽発電機のみを必要とするにすぎない。直流電圧は中間の電圧レベルに対して対称に存在する。太陽発電機から供給された直流電圧が実際に必要とされる電源電圧よりも低い場合、昇圧器は、直流電圧をしたがって動的中間回路電圧を、必要とされる電源電圧に正確に昇圧する。これにより、同時に降圧器が作動されなければならないことが回避される。降圧器は、発電電圧が実際に必要とされる電源電圧を超えているときにのみ、作動する。
さらに、回路は3つの電圧レベルで作動し、給電は、正及び負の電圧レベルで行われることが好ましく、戻り過程では、正及び負の電圧レベルの中間の電圧レベルとなる。中間の電圧レベルは接地されていてもよい。
上記の説明により、太陽発電機から電源の各相に給電可能である。例えば三相電源に給電するために、この回路が3回使用されてもよい。しかしながら、これらの相には全てただ1つの動的中間回路から給電されることが好ましい。このとき、それぞれの発電機に付属された両方の昇圧器に対して、これらの昇圧器が発電電圧を実際に必要とされる全ての相電圧の最高電圧に昇圧しなければならない。個々の相にはこのとき、別々の降圧器を介して給電され、降圧器は動的中間回路電圧をそれぞれに必要とされる相電圧に降圧しなければならない。
本発明のその他の利点並びに詳細は好ましい実施形態の図面による以下の説明から理解されるであろう。
電源の相に給電するためのソーラ・インバータ回路を示す回路図である。 電源の相の1周期分のインバータの種々の作動領域を示す波形図である。 複数の電圧源及び3つの電源相のためのソーラ・インバータ回路を示すブロック図である。
図1の回路は、太陽発電機Gを備えている。この太陽発電機は直流電圧を提供し、この直流電圧は、基本的に実際の照度の関数であるが、作動温度又はモジュール劣化等の他のパラメータの関数でもある。直列に接続され且つ発電機Gに並列に接続された2つのコンデンサC1及びC2により中間の電圧レベルが形成され、中間の電圧レベルはここでは0Vである。このレベルは接地レベルでもよいが、接地レベルでなくてもよい。C1及びC2の接続位置において接地されていない場合、発電機Gには電圧リップルが発生せず、これにより、作動点は、太陽発電機Gが最大効率を有するいわゆる最大パワー・ポイント(MPP)に、より良好に保持可能であるか、ないしは動的中間回路の容量は同じMPP効率に対してより小さく選択可能である。
発電機Gの正の電圧レベル+U_ZLは、第1のダイオードD1を介して動的な中間回路Zと接続されている。さらに、電圧レベル+U_ZLは、インダクタンスL1及び半導体スイッチング素子T1を介して中間の電圧レベルとも接続されている。発電電圧が動的中間回路Zを少なくとも実際に電源Nの給電されるべき相内において必要とされる電圧に充電するのに十分であるかぎり、スイッチング素子T1は遮断され、発電電圧はダイオードD1を介して動的中間回路Zに供給される。
しかしながら、発電電圧が低すぎる場合、スイッチング素子T1において脈動が開始される。これにより、スイッチング素子T1の遮断時にインダクタンスL1において電圧を上昇させる電流が短時間流れる。この既知の原理により作動する、直流電圧をより高い直流電圧に変圧する回路は、昇圧器又はセットアップ変換器と称せられる。インダクタンスL1とスイッチング素子T1との動作により、昇圧された電圧が第2のダイオードD2によりピック・アップされ、動的中間回路Zに供給される。図1において+U_ZHとして表わされている電位は、このとき太陽発電機Gの出力電圧+U_ZLより高いので、ダイオードD1は遮断されて、発電機Gを動的中間回路Zから切り離す。
負の発電電圧−U_ZLに対する、インダクタンスL2及び半導体スイッチング素子T5を備えた同様な構成及び機能の下部昇圧器も必要に応じて備えられる。下部昇圧器が作動しないとき、ダイオードD6は発電機Gを直接動的中間回路Zと接続し、一方、ダイオードD7は、下部昇圧器により昇圧された負の発電電圧を動的中間回路Zに導く。正及び負の発電電圧に対する両方の昇圧器は、中間の電圧レベルに対して対称に配置され、図1に示すように昇圧回路Hを形成している。この回路はのちに参照されるが、そのときは再度詳細には説明しない。
動的中間回路Zは、直列に接続された2つのコンデンサC3及びC4によりフィルタリングされ、コンデンサC3及びC4の共通の接続点は同様に中間の電圧レベルとなる。この共通の接続点は、昇圧回路Hの中間の電圧レベルと接続されていることが好ましい。ただし、この接続は必ずしも必要ではないので、図1においては、破線で接続を示されている。この位置を接地することも可能であるが、上記の理由から、図示の実施例においては、接地は省略されている。
動的中間回路Zには降圧回路Tが接続されており、該降圧回路Tは、正又は負の動的中間回路の電圧+U_ZH又は−U_ZHを、半導体スイッチング素子T2〜T6のオン・オフ制御(脈動)により、必要に応じて、電源N内において実際に必要とされるより低い電圧U_Netzに降圧するために、同様に既知の2つの降圧器を含む。この場合、電源Nの正の半波の間においては電圧が動的中間回路Zの正の電位+U_ZHから得られ、電源Nの負の半波の間においては電圧が動的中間回路Zの負の電位−U_ZHから得られる。この場合、動的中間回路の中間の電圧レベルへ又は中間の電圧レベルから、それぞれ対応して接続された半導体スイッチング素子T3及びT4を介してフリーホイール動作が行われる。このために、スイッチング素子T3及びT4にフリーホイール・ダイオードD3及びD4が直列に接続されている。電源電圧の正の半波の間にスイッチング素子T3は導通し、スイッチング素子T4は遮断される。負の半波の間においては、スイッチング素子T3は遮断され、スイッチング素子T4は導通する。
正及び負の電源電圧に対する両方の降圧器は中間の電圧レベルに対して対称に配置され、図1に示すように降圧回路Tを形成している。
電源N内への本来の給電は最終的に電源チョークL3を介して行われる。
図2は、正及び負の発電電圧+U_ZL及び−U_ZLが、絶対値として、電源N内の最大の正及び負の電圧より小さい場合における、ソーラ・インバータ回路の種々の作動状態を示す。言い換えると、この場合、発電電圧は電源電圧のピーク・ピーク最大値より小さいことになる。
電源電圧U_Netzの正の半波の間のAで表わされる領域内においては、必要とされる供給電圧は発電機により提供される電圧を下回っている。この場合、動的中間回路Zは、ダイオードD1を介して発電機Gにより充電され、即ち、正の中間回路電位+U_ZHは正の発電電圧+U_ZLに匹敵する。このときには降圧回路Tの上部の降圧器が作動し、昇圧回路Hは作動していない。
電源電圧U_Netzの正の半波の間の領域B内においては、必要とされる供給電圧は発電機Gにより提供される電圧を超えている。この場合、昇圧回路Hの上部昇圧器が作動して正の発電電圧+U_ZLを電圧+U_ZHに昇圧し、電圧+U_ZHはダイオードD2を介して動的中間回路に作用し、一方、ダイオードD1は発電機Gを動的中間回路Zから切り離す。この場合、昇圧器は、電圧+U_ZHが必要とされる供給電圧に正確に対応するように作動される。図2の領域B内においては、動的中間回路の電圧+U_ZHが正確に電源電圧U_Netzの正弦波形に追従する。これにより、降圧回路Tを作動させる必要がないので、昇圧回路H及び降圧回路Tの同時作動による不必要なスイッチング損失を回避することができる。
昇圧器及び降圧器を動作させるために、既知のように制御回路が使用され、該制御回路は、目標電圧及び実際電圧に基づき、種々の半導体スイッチング素子に対する適切なオン・オフ操作パターンを発生する。
電源電圧の負の半波に対しては、領域C及び領域Dに対して、負の発電電圧−U_ZLを、絶対値として、実際に必要とされる供給電圧に昇圧させるために、同様にインバータ回路の作動が反復され、領域C内においては、降圧回路Tの下部降圧器のみが作動し、領域D内においては、昇圧回路Hの下部昇圧器のみが作動する。同様に、正弦波形電圧−U_ZHの提供により、領域D内において降圧回路Tの同時作動が回避される。
図1に示された回路は、太陽発電機又はいわゆるストリング、即ち複数のソーラ・モジュールからなる一連の回路の直流電圧を、電源相に供給するために交流電圧に変換するのに適している。これは数kWの出力を有する小型装置に対しても十分に使用可能である。しかしながら、より高い出力の太陽光発電装置に対しては、供給電源の3つの全ての相への給電が必要である。このために、ソーラ・モジュールにおける最大システム電圧は1000V(無負荷)を超えてはならないので、きわめて多数のソーラ・モジュールを1つのストリング内に直列接続することは不可能となる。これにより、作動電圧は約750Vに制限されている。したがって、より高い出力の装置においては、複数のストリングが並列に作動される。この場合、各ストリングは他のストリングとは別々に、最大パワー・ポイントにおいて作動可能であり、即ち電流及び電圧が各ストリングに対して別々に選択可能であることが好ましい。
この要求は、図1に示された回路を用いて、簡単な拡張変更により達成可能である。
図3に示すように、各ストリングG(4つのストリングGが示されているが、この数はこれより多くても又は少なくてもよい)に対して、図1に示した1つの昇圧回路Hが提供されている。これにより、各ストリングGをそれぞれの最大パワー・ポイントにおいて作動させることが可能である。
全ての昇圧回路Hは1つの共通の動的中間回路Zに給電し、この動的中間回路Zの構成は図1のそれに対応する。昇圧回路は相互にいわゆる並列に接続されている。
動的中間回路Zに、電源Nの各相U、V、Wに対して、それぞれ1つの降圧回路Tが続き、降圧回路Tからそれぞれの電源相に給電される。通常のように三相交流電源に給電されるべきとき、3つのこのような降圧回路Tが必要となる。これらの降圧回路Tも同様に、相互に並列に接続されている。図1に示すのと同様に構成された、昇圧回路Hのみならず降圧回路Tもまた具備されているが、図3においては、それぞれの接続及びこれらの相互接続のみが示されている。
共通の動的中間回路に給電するための複数の昇圧回路Hのこのタイプの並列接続は、個々の昇圧回路Hの作動における変化を可能にする。はじめに、実際に最高の出力電圧を提供するストリングGがいわゆるマスタ・ストリングである。このマスタ・ストリング、詳細にはそれに付属されている昇圧回路Hは、図1に関して説明されたように作動され、このマスタ・ストリングの電圧が実際に必要とされる3つの供給電圧の最高を下回ったときには常に昇圧回路Hが作動される。即ち、このとき、昇圧回路Hは、全ての電源相の実際に最高の電圧に調整されていなければならない。即ち、図2に示すようにストリング電圧が電源内のピーク電圧を下回っている場合、昇圧回路Hは本質的に開放され且つ場合により継続して使用されるが、この場合、さらに、それぞれの昇圧回路Hが実際に最高の電源電圧の正弦波形に追従するように適用され、これにより、この作動状態においては、少なくともこれらの相に対して降圧回路Tが作動される必要はない。また、その他の相に給電するために、場合により昇圧回路H及び降圧回路Tの同時作動が必要となることがあっても、これは必要最小限に低減される。
その他のストリングG及びそれらの昇圧回路Hに対して、これらが常に、マスタ・ストリングと同じ電圧を動的中間回路Zに提供しなければならない。そのために、それぞれの昇圧回路Hは継続して作動されなければならない。この場合、これらの昇圧回路Hは、一定の電圧レベル、即ちマスタ・ストリングの電圧レベルを発生するか、又はマスタ・ストリングの昇圧回路Hと同様に、実際に必要とされる最高供給電圧の正弦波形に追従する。
図1又は図3に示された回路の利点は、降圧回路の半導体スイッチング素子T2、T3、T4及びT6の制御により、給電が中間の電圧レベルを介して行われることである。例えば、負の電源電圧においては中間の電圧レベルから正の電流が供給され、電圧−U_ZHを介してフリーホイールが行われる。これにより、供給された電流の位相角は変化可能であり、したがって電源に無効電力を供給可能である。これは電源ドライバの要求であり、電源ドライバは、供給された太陽エネルギ又は風力エネルギを常により大きく寄与させるために、無効電力におけるそれぞれの需要に対してフレキシブルに応答可能である。
G 太陽発電機(ストリング)
H 昇圧回路
N 交流電源
T 降圧回路
Z 動的中間回路

Claims (9)

  1. 太陽発電機(G)の直流電圧(+U_ZL、−U_ZL)を、電源(N)に供給するために交流電圧(U_Netz)に変換するための、昇圧回路(H)、中間回路(Z)及び降圧回路(T)を備えたインバータの作動方法であって、前記昇圧回路(H)は、前記直流電圧(+U_ZL、−U_ZL)が、電源電圧(U_Netz)のピーク・ピーク最大値より小さいときに前記直流電圧(+U_ZL、−U_ZL)を昇圧し、及び前記降圧回路(T)は、必要に応じて、中間回路電圧(+U_ZH、−U_ZH)を、電源(N)内において実際に必要とされるより低い電圧(U_Netz)に降圧する、インバータの作動方法において、
    前記昇圧回路(H)は、前記直流電圧(+U_ZL、−U_ZL)を、実際に電源(N)内において必要とされる値に動的に昇圧し、且つ、一時的に、前記中間回路電圧(+U_ZH、−U_ZH)に対してほぼ正弦波形の電圧曲線を提供する
    ことを特徴とするインバータの作動方法。
  2. 請求項1記載の作動方法において、前記昇圧回路(H)は、太陽発電機(G)の正又は負の電圧レベル(+U_ZL、−U_ZL)を、中間の電圧レベル(0V)に対して、絶対値として、実際に電源(N)内において必要とされる値(U_Netz)に昇圧し、これにより、前記正又は負の電圧レベル(+U_ZL、−U_ZL)が、中間の電圧レベル(0V)に対して、絶対値として、実際に電源(N)内において必要とされる電圧(U_Netz)より小さいときに、前記動的中間回路電圧(+U_ZH、−U_ZH)をこの値に昇圧することを特徴とする作動方法。
  3. 請求項1又は2記載の作動方法において、前記動的中間回路(Z)から3つの電源相(U、V、W)に給電され、前記動的中間回路(Z)から、電源相の各相(U、V、W)に対して固有の降圧回路(T)に給電されることを特徴とする作動方法。
  4. 請求項3記載の作動方法において、前記直流電圧(+U_ZL、−U_ZL)が前記電源相(U、V、W)内において実際に必要とされる最高供給電圧より低い場合、前記昇圧回路(H)がこの最高供給電圧に動的に制御することを特徴とする作動方法。
  5. 請求項1−4いずれかに記載の作動方法において、複数の太陽発電機(G)が、それぞれに付属された昇圧回路(H)を介して前記動的中間回路(Z)に給電することを特徴とする作動方法。
  6. 請求項5記載の作動方法において、
    実際に最高の直流電圧を提供する太陽発電機(G)がマスタ・ストリングであり、
    その他の太陽発電機(G)に付属された昇圧回路(H)は、前記マスタ・ストリング又はそれに付属された昇圧回路(H)から前記動的中間回路(Z)に与えられた電圧に対応する電圧を提供する
    ことを特徴とする作動方法。
  7. 太陽発電機(G)の直流電圧(+U_ZL、−U_ZL)を、電源(N)に供給するために交流電圧(U_Netz)に変換するための、昇圧回路(H)、中間回路(Z)及び降圧回路(T)を備えたインバータであって、前記昇圧回路(H)は、前記直流電圧(+U_ZL、−U_ZL)が、電源電圧(U_Netz)のピーク・ピーク最大値より小さいときに前記直流電圧(+U_ZL、−U_ZL)を昇圧し、及び前記降圧回路(T)は、必要に応じて、中間回路電圧(+U_ZH、−U_ZH)を、電源(N)内において実際に必要とされるより低い電圧(U_Netz)に降圧する、インバータにおいて、
    前記昇圧回路(H)は、前記直流電圧(+U_ZL、−U_ZL)を、実際に電源(N)内において必要とされる値に動的に昇圧し、且つ、一時的に、前記中間回路電圧(+U_ZH、−U_ZH)に対してほぼ正弦波形の電圧曲線を提供する
    ことを特徴とするインバータ。
  8. 請求項7記載のインバータにおいて、それぞれ1つの昇圧回路(H)が付属されている複数の太陽発電機(G)が、前記動的中間回路(Z)に給電することを特徴とするインバータ。
  9. 請求項7又は8記載のインバータにおいて、前記動的中間回路(Z)から、電源相(U、V、W)にそれぞれ付属された降圧回路(T)を介して、複数の電源相(U、V、W)に給電されることを特徴とするインバータ。
JP2010223640A 2009-10-01 2010-10-01 インバータの作動方法及びインバータ Expired - Fee Related JP5677006B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102009047936.8 2009-10-01
DE102009047936A DE102009047936A1 (de) 2009-10-01 2009-10-01 Verfahren zum Betreiben eines Wechselrichters und Wechselrichter

Publications (2)

Publication Number Publication Date
JP2011078306A true JP2011078306A (ja) 2011-04-14
JP5677006B2 JP5677006B2 (ja) 2015-02-25

Family

ID=43705625

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010223640A Expired - Fee Related JP5677006B2 (ja) 2009-10-01 2010-10-01 インバータの作動方法及びインバータ

Country Status (5)

Country Link
US (1) US8472222B2 (ja)
EP (1) EP2325993B1 (ja)
JP (1) JP5677006B2 (ja)
CN (1) CN102035418B (ja)
DE (1) DE102009047936A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014516242A (ja) * 2011-06-07 2014-07-07 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング ステップアップコンバータ
JP2014523225A (ja) * 2011-07-08 2014-09-08 エスエムエー ソーラー テクノロジー アーゲー Dc/acコンバータ、発電プラント、および、dc/acコンバータのための動作方法
WO2015105081A1 (ja) * 2014-01-09 2015-07-16 住友電気工業株式会社 電力変換装置及び三相交流電源装置
WO2016006273A1 (ja) * 2014-07-08 2016-01-14 住友電気工業株式会社 電力変換装置及び三相交流電源装置

Families Citing this family (66)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11881814B2 (en) 2005-12-05 2024-01-23 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US10693415B2 (en) 2007-12-05 2020-06-23 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US8319483B2 (en) 2007-08-06 2012-11-27 Solaredge Technologies Ltd. Digital average input current control in power converter
US11569659B2 (en) 2006-12-06 2023-01-31 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US8013472B2 (en) 2006-12-06 2011-09-06 Solaredge, Ltd. Method for distributed power harvesting using DC power sources
US11687112B2 (en) 2006-12-06 2023-06-27 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US8963369B2 (en) 2007-12-04 2015-02-24 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US9088178B2 (en) 2006-12-06 2015-07-21 Solaredge Technologies Ltd Distributed power harvesting systems using DC power sources
US8384243B2 (en) 2007-12-04 2013-02-26 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US9112379B2 (en) 2006-12-06 2015-08-18 Solaredge Technologies Ltd. Pairing of components in a direct current distributed power generation system
US11309832B2 (en) 2006-12-06 2022-04-19 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US8816535B2 (en) 2007-10-10 2014-08-26 Solaredge Technologies, Ltd. System and method for protection during inverter shutdown in distributed power installations
US11855231B2 (en) 2006-12-06 2023-12-26 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US8618692B2 (en) 2007-12-04 2013-12-31 Solaredge Technologies Ltd. Distributed power system using direct current power sources
US11728768B2 (en) 2006-12-06 2023-08-15 Solaredge Technologies Ltd. Pairing of components in a direct current distributed power generation system
US11296650B2 (en) 2006-12-06 2022-04-05 Solaredge Technologies Ltd. System and method for protection during inverter shutdown in distributed power installations
US8319471B2 (en) 2006-12-06 2012-11-27 Solaredge, Ltd. Battery power delivery module
US11888387B2 (en) 2006-12-06 2024-01-30 Solaredge Technologies Ltd. Safety mechanisms, wake up and shutdown methods in distributed power installations
US8947194B2 (en) 2009-05-26 2015-02-03 Solaredge Technologies Ltd. Theft detection and prevention in a power generation system
US8473250B2 (en) 2006-12-06 2013-06-25 Solaredge, Ltd. Monitoring of distributed power harvesting systems using DC power sources
US9130401B2 (en) 2006-12-06 2015-09-08 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11735910B2 (en) 2006-12-06 2023-08-22 Solaredge Technologies Ltd. Distributed power system using direct current power sources
US11264947B2 (en) 2007-12-05 2022-03-01 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US8049523B2 (en) 2007-12-05 2011-11-01 Solaredge Technologies Ltd. Current sensing on a MOSFET
JP2011507465A (ja) 2007-12-05 2011-03-03 ソラレッジ テクノロジーズ リミテッド 分散型電力据付における安全機構、ウェークアップ方法およびシャットダウン方法
WO2009073867A1 (en) 2007-12-05 2009-06-11 Solaredge, Ltd. Parallel connected inverters
EP4145691A1 (en) 2008-03-24 2023-03-08 Solaredge Technologies Ltd. Switch mode converter including auxiliary commutation circuit for achieving zero current switching
EP2294669B8 (en) 2008-05-05 2016-12-07 Solaredge Technologies Ltd. Direct current power combiner
US10673222B2 (en) 2010-11-09 2020-06-02 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US10673229B2 (en) 2010-11-09 2020-06-02 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US10230310B2 (en) 2016-04-05 2019-03-12 Solaredge Technologies Ltd Safety switch for photovoltaic systems
GB2485527B (en) 2010-11-09 2012-12-19 Solaredge Technologies Ltd Arc detection and prevention in a power generation system
GB2486408A (en) 2010-12-09 2012-06-20 Solaredge Technologies Ltd Disconnection of a string carrying direct current
GB2483317B (en) 2011-01-12 2012-08-22 Solaredge Technologies Ltd Serially connected inverters
KR101300391B1 (ko) * 2011-10-14 2013-08-26 전남대학교산학협력단 짝수-레벨 인버터
DE102011017601A1 (de) * 2011-04-27 2012-10-31 Robert Bosch Gmbh Ansteuerverfahren für einen Wechselrichter und Wechselrichteranordnung, insbesondere Solarzelleninverter
EP2525491B1 (en) * 2011-05-16 2021-03-10 Vincotech GmbH Switching loss reduction in converter modules
US8570005B2 (en) * 2011-09-12 2013-10-29 Solaredge Technologies Ltd. Direct current link circuit
GB2498365A (en) 2012-01-11 2013-07-17 Solaredge Technologies Ltd Photovoltaic module
WO2013107292A2 (zh) * 2012-01-18 2013-07-25 Zhu Qiuhua 一种高效率的并网逆变电路
CN102437759B (zh) * 2012-01-18 2016-01-06 朱秋花 一种高效率的并网逆变电路
GB2498791A (en) 2012-01-30 2013-07-31 Solaredge Technologies Ltd Photovoltaic panel circuitry
GB2498790A (en) 2012-01-30 2013-07-31 Solaredge Technologies Ltd Maximising power in a photovoltaic distributed power system
US9853565B2 (en) 2012-01-30 2017-12-26 Solaredge Technologies Ltd. Maximized power in a photovoltaic distributed power system
GB2499991A (en) 2012-03-05 2013-09-11 Solaredge Technologies Ltd DC link circuit for photovoltaic array
US9413268B2 (en) * 2012-05-10 2016-08-09 Futurewei Technologies, Inc. Multilevel inverter device and method
US10115841B2 (en) 2012-06-04 2018-10-30 Solaredge Technologies Ltd. Integrated photovoltaic panel circuitry
KR101350532B1 (ko) * 2012-06-29 2014-01-15 전남대학교산학협력단 멀티 레벨 컨버터, 이를 갖는 인버터 및 이를 갖는 태양광 전원 공급 장치
CN102761286B (zh) * 2012-07-23 2014-12-03 阳光电源股份有限公司 一种四电平逆变拓扑单元及四电平逆变器
CN102780411B (zh) * 2012-07-31 2015-06-24 阳光电源股份有限公司 逆变单元及具有该逆变单元的五电平逆变器
CN102769402B (zh) * 2012-07-31 2014-12-03 阳光电源股份有限公司 逆变单元及具有该逆变单元的五电平逆变器
US9548619B2 (en) 2013-03-14 2017-01-17 Solaredge Technologies Ltd. Method and apparatus for storing and depleting energy
EP3506370B1 (en) 2013-03-15 2023-12-20 Solaredge Technologies Ltd. Bypass mechanism
DE102014005124A1 (de) 2014-04-08 2015-10-08 Karlsruher Institut für Technologie Schaltungsanordnung und Verfahren zum Austausch elektrischer Energie
EP2975757A1 (en) * 2014-07-14 2016-01-20 ABB Technology AG Three-phase transformerless DC to AC inverter
FR3033962A1 (fr) * 2015-03-20 2016-09-23 Francecol Tech Onduleur pour source d’energie continue
CN107153212B (zh) 2016-03-03 2023-07-28 太阳能安吉科技有限公司 用于映射发电设施的方法
US11081608B2 (en) 2016-03-03 2021-08-03 Solaredge Technologies Ltd. Apparatus and method for determining an order of power devices in power generation systems
US10599113B2 (en) 2016-03-03 2020-03-24 Solaredge Technologies Ltd. Apparatus and method for determining an order of power devices in power generation systems
US12057807B2 (en) 2016-04-05 2024-08-06 Solaredge Technologies Ltd. Chain of power devices
US11018623B2 (en) 2016-04-05 2021-05-25 Solaredge Technologies Ltd. Safety switch for photovoltaic systems
US11177663B2 (en) 2016-04-05 2021-11-16 Solaredge Technologies Ltd. Chain of power devices
DE102017212462A1 (de) * 2017-07-20 2019-01-24 Siemens Aktiengesellschaft Galvanisch gekoppelter elektrischer Wandler
EP3605813A1 (de) * 2018-07-30 2020-02-05 Fronius International GmbH Wechselrichter mit zwischenkreisschutz
US11218086B2 (en) * 2020-03-23 2022-01-04 Hamilton Sundstrand Corporation Power conversion systems and methods
WO2021208044A1 (zh) * 2020-04-16 2021-10-21 华为技术有限公司 一种电源系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11318042A (ja) * 1998-05-07 1999-11-16 Sharp Corp 太陽光発電用電力変換装置
JP2000152651A (ja) * 1998-11-10 2000-05-30 Matsushita Electric Ind Co Ltd 系統連系インバータ装置
JP2007295797A (ja) * 2004-10-20 2007-11-08 Siemens Vdo Electric Drives Inc 電力システムの動作方法並びに第1の一次電源および第2の一次電源の動作方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19635606A1 (de) * 1996-09-02 1998-03-05 Werner Prof Dr Ing Kleinkauf Vorrichtung zur Erzeugung einer höheren Wechselspannung aus mehreren niedrigeren Gleichspannungen und dafür geeigneter Bausatz
DE19642522C1 (de) * 1996-10-15 1998-04-23 Dietrich Karschny Wechselrichter
JP2000270564A (ja) * 1999-03-15 2000-09-29 Mitsubishi Electric Corp 連系装置
WO2005109614A2 (de) * 2004-05-03 2005-11-17 Siemens Ag Österreich Verfahren zum betrieb eines wechselrichters und anordnung zur durchführung des verfahrens
AU2005253207B2 (en) * 2004-06-08 2010-05-20 Siemens Aktiengesellschaft Method for operating an electronically controlled inverter and arrangement for carrying out said method
AT500919B1 (de) * 2004-09-23 2009-04-15 Siemens Ag Isterreich Verfahren zum betrieb eines wechselrichters und anordnung zur durchfuhrung des verfahrens
DE102005046379B4 (de) * 2005-09-28 2008-08-07 Siemens Ag Österreich Wechselrichter für zwei Gleichstromquellen und Verfahren zum Betrieb des Wechselrichters
DE102006010694B4 (de) 2006-03-08 2010-01-07 Refu Elektronik Gmbh Wechselrichterschaltung für erweiterten Eingangsspannungsbereich
TWI327812B (en) * 2006-11-28 2010-07-21 Ind Tech Res Inst Inverter circuit and control circuit thereof
DE102007026393B4 (de) 2007-06-06 2009-03-12 Refu Elektronik Gmbh Schaltungsanordnung und Steuerungsverfahren für einen Wechselrichter mit Hochsetzsteller
US8018748B2 (en) * 2007-11-14 2011-09-13 General Electric Company Method and system to convert direct current (DC) to alternating current (AC) using a photovoltaic inverter
US8023297B2 (en) * 2008-06-27 2011-09-20 General Electric Company High efficiency photovoltaic inverter
WO2010030957A1 (en) * 2008-09-11 2010-03-18 Eetrex Incorporated Bi-directional inverter-charger

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11318042A (ja) * 1998-05-07 1999-11-16 Sharp Corp 太陽光発電用電力変換装置
JP2000152651A (ja) * 1998-11-10 2000-05-30 Matsushita Electric Ind Co Ltd 系統連系インバータ装置
JP2007295797A (ja) * 2004-10-20 2007-11-08 Siemens Vdo Electric Drives Inc 電力システムの動作方法並びに第1の一次電源および第2の一次電源の動作方法

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014516242A (ja) * 2011-06-07 2014-07-07 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング ステップアップコンバータ
JP2014523225A (ja) * 2011-07-08 2014-09-08 エスエムエー ソーラー テクノロジー アーゲー Dc/acコンバータ、発電プラント、および、dc/acコンバータのための動作方法
WO2015105081A1 (ja) * 2014-01-09 2015-07-16 住友電気工業株式会社 電力変換装置及び三相交流電源装置
JPWO2015105081A1 (ja) * 2014-01-09 2017-03-23 住友電気工業株式会社 電力変換装置及び三相交流電源装置
US9722508B2 (en) 2014-01-09 2017-08-01 Sumitomo Electric Industries, Ltd. Power conversion device and three-phase alternating current power supply device
WO2016006273A1 (ja) * 2014-07-08 2016-01-14 住友電気工業株式会社 電力変換装置及び三相交流電源装置
JP2016019367A (ja) * 2014-07-08 2016-02-01 住友電気工業株式会社 電力変換装置及び三相交流電源装置
US10193434B2 (en) 2014-07-08 2019-01-29 Sumitomo Electric Industries, Ltd. Power conversion device and three-phase AC power supply device
TWI663826B (zh) * 2014-07-08 2019-06-21 日商住友電氣工業股份有限公司 Power conversion device and three-phase AC power supply device

Also Published As

Publication number Publication date
JP5677006B2 (ja) 2015-02-25
EP2325993B1 (de) 2015-07-01
CN102035418A (zh) 2011-04-27
US8472222B2 (en) 2013-06-25
DE102009047936A1 (de) 2011-04-07
EP2325993A2 (de) 2011-05-25
CN102035418B (zh) 2015-05-13
EP2325993A3 (de) 2012-02-22
US20110080147A1 (en) 2011-04-07

Similar Documents

Publication Publication Date Title
JP5677006B2 (ja) インバータの作動方法及びインバータ
US8378656B2 (en) Quasi-AC, photovoltaic module for unfolder photovoltaic inverter
US20160268809A1 (en) Novel Inverter Circuit
US11515709B2 (en) System and device for exporting power, and method of configuring thereof
US20160211663A1 (en) Energy storage device comprising a dc voltage supply circuit and method for providing a dc voltage from an energy storage device
KR20090101338A (ko) 태양광발전기용 멀티스트링 인버터를 작동시키는 방법
US10135252B2 (en) Intra-module DC-DC converter and a PV-module comprising same
US10356861B2 (en) Constant output current LED driver
WO2012069646A1 (en) Multilevel inverter circuit
US20140169055A1 (en) Non-isolated dc/ac inverter
CN106300935A (zh) 用于将直流电力转换成交流电力的系统、方法和设备
JP2017511103A (ja) 電力変換電子機器
KR101130320B1 (ko) 풍력발전장치의 대기전력 공급장치
KR101697855B1 (ko) H-브리지 멀티 레벨 인버터
JP2001312319A (ja) 太陽光発電システムとそれに用いる昇圧ユニット
de Melo Bento et al. Dual input single switch DC-DC converter for renewable energy applications
JP4768535B2 (ja) 電力変換装置
JP6261367B2 (ja) 太陽光発電システムにおける電力変換装置、ならびにこれに含まれる接続箱およびパワーコンディショナ
JP2005080414A (ja) 電力変換装置及びそれを用いたパワーコンディショナ
Porselvi et al. Implementation and Performance Analysis of Various Converter fed Inverter with PV Applications
JP2003134842A (ja) 昇降圧コンバータ及びこれを用いた系統連系インバータ
Srinithi et al. Symmetric multilevel inverter using DC-DC zeta converter
Prakash et al. Analysis of Extended Z-source Inverter for Photovoltaic System
JP6515006B2 (ja) 太陽光発電システム
WO2013098844A2 (en) Grid tie inverter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130405

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140430

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140508

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140730

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140822

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141114

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141202

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141226

R150 Certificate of patent or registration of utility model

Ref document number: 5677006

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees