JP2011048021A - 集光光学系及び投写型画像表示装置 - Google Patents

集光光学系及び投写型画像表示装置 Download PDF

Info

Publication number
JP2011048021A
JP2011048021A JP2009194534A JP2009194534A JP2011048021A JP 2011048021 A JP2011048021 A JP 2011048021A JP 2009194534 A JP2009194534 A JP 2009194534A JP 2009194534 A JP2009194534 A JP 2009194534A JP 2011048021 A JP2011048021 A JP 2011048021A
Authority
JP
Japan
Prior art keywords
light
green
red
blue
collimating lens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009194534A
Other languages
English (en)
Other versions
JP5436097B2 (ja
JP2011048021A5 (ja
Inventor
Muneharu Kuwata
宗晴 桑田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2009194534A priority Critical patent/JP5436097B2/ja
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to PCT/JP2010/005207 priority patent/WO2011024442A1/ja
Priority to KR1020127004720A priority patent/KR101321631B1/ko
Priority to US13/389,584 priority patent/US8840251B2/en
Priority to EP10811500.7A priority patent/EP2472315B1/en
Priority to CN201080037574.6A priority patent/CN102483564B/zh
Publication of JP2011048021A publication Critical patent/JP2011048021A/ja
Publication of JP2011048021A5 publication Critical patent/JP2011048021A5/ja
Application granted granted Critical
Publication of JP5436097B2 publication Critical patent/JP5436097B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B33/00Colour photography, other than mere exposure or projection of a colour film
    • G03B33/10Simultaneous recording or projection
    • G03B33/12Simultaneous recording or projection using beam-splitting or beam-combining systems, e.g. dichroic mirrors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/09Beam shaping, e.g. changing the cross-sectional area, not otherwise provided for
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2006Lamp housings characterised by the light source
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3102Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM] using two-dimensional electronic spatial light modulators
    • H04N9/3111Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM] using two-dimensional electronic spatial light modulators for displaying the colours sequentially, e.g. by using sequentially activated light sources
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3141Constructional details thereof
    • H04N9/317Convergence or focusing systems

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Optics & Photonics (AREA)
  • Projection Apparatus (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)

Abstract

【課題】簡単な構成でありながら、光利用効率の高い集光光学系及びこの集光光学系を用いた投写型画像表示装置を提供する。
【解決手段】集光光学系1及び投写型画像表示装置2は、発光面12r、12g、12bは、同じ大きさの矩形形状で、インテグレータロッド20の入射面21と相似形状であり、コリメートレンズ13r、13g、13bからコンデンサレンズ19までの光学距離が略同一となるように、コリメートレンズ13r、13g、13bが配置され、発光面12r、12g、12bからコリメートレンズ13r、13g、13bまでの光学距離Lr、Lg、Lbは、Lb<Lg<Lrを満たし、且つ、コリメートレンズ13r、13g、13b及びコンデンサレンズ19がインテグレータロッド20の入射面21上に結像させる発光面が互いに略同じ大きさになるように面発光光源11r、11g、11bを配置した。
【選択図】図1

Description

本発明は、集光光学系及びこれを用いた投写型画像表示装置に関する。
従来、投写型画像表示装置の光源には、主としてランプ光源が用いられていた。しかし、ランプ光源は、赤色の光量が少なく、寿命が短い等の欠点を有する。そこで、近年、ランプ光源に代えて、面発光光源、例えば、ランプ光源よりも長い寿命を有する発光ダイオード(LED)が用いられるようになってきた。LEDが放射する光は波長範囲が狭いので、投写型画像表示装置の光源として、赤(R)、緑(G)、青(B)の各色のLEDを組み合わせて用いることにより、広い色再現域を実現することができる。
例えば、特許文献1には、R、G、Bの各色のLED及びインテグレータロッドを用いた照明システムが提案されている。このシステムにおいては、各色のLEDから放射された各色の光を、各色に対応したコリメートレンズにより平行光化した上でダイクロイックミラー等により合成し、合成された光を共通のコンデンサレンズによりインテグレータロッドの入射面に集光させている。
特開2005−242364号公報
しかしながら、軸上色収差は、ガラス材の屈折率が、波長が短いほど高くなるという特性の違いにより発生する。このため、各色のLEDに対応して備えられた各色用のコリメートレンズを同じ構造のものとし、各色のLEDの発光面から対応する各色用のコリメートレンズまでの距離を同じにした場合であっても、コリメートレンズによって軸上色収差が発生し、さらに、コンデンサレンズによって軸上色収差が強められる。このため、インテグレータロッドの入射面近傍に形成されるLEDの発光面の2次光源像の結像位置が色ごとに異なってしまい、その結果、インテグレータロッドの入射面における集光効率が色ごとに異なってしまうという問題がある。例えば、緑色光の集光効率を最大化しようとすると、赤色光及び青色光の集光効率が低下し、全体として光利用効率が低下してしまうという問題がある。
また、各色のLEDから放射された光のそれぞれを、異なる構造を持つ各色用のコリメートレンズによって完全に平行光化した場合であっても、コンデンサレンズによって軸上色収差が発生するので、光利用効率が低下してしまうという問題は存在する。
さらに、コリメートレンズ及びコンデンサレンズを色消しレンズとすることによって色収差の問題を解消することも考えられるが、レンズ枚数の増大に伴って構成が複雑になり、その結果、製品コストが高くなるという別の問題が生じる。
そこで、本発明は、上記従来技術の課題を解決するためになされたものであり、その目的は、簡単な構成でありながら、光利用効率の高い集光光学系及びこの集光光学系を用いた投写型画像表示装置を提供することである。
本発明に係る集光光学系は、赤色用の発光面を有し、該赤色用の発光面から赤色光を放射する赤色用の面発光光源と、緑色用の発光面を有し、該緑色用の発光面から緑色光を放射する緑色用の面発光光源と、青色用の発光面を有し、該青色用の発光面から青色光を放射する青色用の面発光光源と、前記赤色用の発光面から放射された赤色光を平行光化する、正のパワーを有する赤色用のコリメートレンズと、前記緑色用の発光面から放射された緑色光を平行光化する、正のパワーを有する緑色用のコリメートレンズと、前記青色用の発光面から放射された青色光を平行光化する、正のパワーを有する青色用のコリメートレンズと、前記赤色用のコリメートレンズを通過した赤色光と、前記緑色用のコリメートレンズを通過した緑色光と、前記青色用のコリメートレンズを通過した青色光とを合成する光合成手段と、前記合成された光を集光する、正のパワーを有するコンデンサレンズと、前記コンデンサレンズで集光された光が入射する入射面及び光強度分布が均一化された光を出射する出射面を有する光強度分布均一化素子とを備え、前記赤色用の発光面、前記緑色用の発光面、及び前記青色用の発光面は、同じ大きさの矩形形状であり、且つ、前記光強度分布均一化素子の入射面と相似形状であり、前記赤色用のコリメートレンズ、前記緑色用のコリメートレンズ、及び前記青色用のコリメートレンズは、互いに同じ構造を有し、前記赤色用のコリメートレンズから前記コンデンサレンズまでの光学距離、前記緑色用のコリメートレンズから前記コンデンサレンズまでの光学距離、及び前記青色用のコリメートレンズから前記コンデンサレンズまでの光学距離が略同一となるように、前記赤色用のコリメートレンズ、前記緑色用のコリメートレンズ、及び前記青色用のコリメートレンズが配置され、前記赤色用の発光面から前記赤色用のコリメートレンズまでの赤色光の光学距離は前記緑色用の発光面から前記緑色用のコリメートレンズまでの緑色光の光学距離より長く、前記緑色光の光学距離は前記青色用の発光面から前記青色用のコリメートレンズまでの青色光の光学距離より長くなるように、且つ、前記赤色用のコリメートレンズ及び前記コンデンサレンズが前記光強度分布均一化素子の入射面上に結像させる前記赤色用の発光面の2次光源像と、前記緑色用のコリメートレンズ及び前記コンデンサレンズが前記光強度分布均一化素子の入射面上に結像させる前記緑色用の発光面の2次光源像と、前記青色用のコリメートレンズ及び前記コンデンサレンズが前記光強度分布均一化素子の入射面上に結像させる前記青色用の発光面の2次光源像とが、互いに同じ大きさになるように、前記赤色用の面発光光源、前記緑色用の面発光光源、及び前記青色用の面発光光源を配置したことを特徴としている。
また、本発明に係る投写型画像表示装置は、前記集光光学系と、前記集光光学系から出射された光が入射され、該入射した光を変調して映像光を生成する画像表示素子と、前記画像表示素子で生成された前記映像光を拡大投写する投写光学系とを備えたことを特徴としている。
本発明に係る集光光学系は、赤色用の発光面から赤色用のコリメートレンズまでの赤色光の光学距離は緑色用の発光面から緑色用のコリメートレンズまでの緑色光の光学距離より長く、前記緑色光の光学距離は青色用の発光面から青色用のコリメートレンズまでの青色光の光学距離より長くなるように、且つ、赤色用の発光面の2次光源像と、緑色用の発光面の2次光源像と、青色用の発光面の2次光源像とが、互いに同じ大きさになるように、赤色用の面発光光源、緑色用の面発光光源、及び青色用の面発光光源を配置したことによって、簡単な構成でありながら、光強度分布均一化素子における光量損失を招くことがなく、高い光利用効率を実現することを可能にしている。
また、本発明に係る投写型画像表示装置によれば、構成の簡単な集光光学系を用いて、高輝度な画像を表示することができる。
本発明の実施の形態1に係る集光光学系及び投写型画像表示装置の構成を概略的に示す図である。 実施の形態1に係る集光光学系の光路を示す図である。 比較例の集光光学系における軸上色収差を説明するための図である。 実施の形態1に係る集光光学系の主光線を示す図である。 出射光がランバーシアン分布を有する面発光光源を示す図である。 フォトニクス結晶体を備えた面発光光源を示す図である。 実施の形態1に係る集光光学系の主光線を示す図である。 コリメートレンズとコンデンサレンズ間の距離を大きくした場合の主光線を示す図である。 本発明の実施の形態2に係る集光光学系及び投写型画像表示装置の構成を概略的に示す図である。 クロスダイクロイックミラーの構造を概略的に示す図である。 本発明の実施の形態3に係る集光光学系及び投写型画像表示装置の構成を概略的に示す図である。
実施の形態1.
図1は、本発明の実施の形態1に係る集光光学系1及び投写型画像表示装置2の構成を概略的に示す図である。図1に示されるように、実施の形態1に係る集光光学系1は、赤(R)色用の発光面12rを有し、この赤色用の発光面12rから赤色光を放射する赤色用の面発光光源11rと、緑(G)色用の発光面12gを有し、この緑色用の発光面12gから緑色光を放射する緑色用の面発光光源11gと、青(B)色用の発光面12bを有し、この青色用の発光面12bから青色光を放射する青色用の面発光光源11bとを備えている。面発光光源11r、11g、11bとしては、LED、エレクトロルミネッセンス素子、半導体レーザ等を用いることができるが、以下の説明では、面発光光源がLEDである場合を説明する。
また、実施の形態1に係る集光光学系1は、赤色用の発光面12rから放射された赤色光を平行光化する(すなわち、略平行光にする)、正のパワーを有する赤色用のコリメートレンズ13rと、緑色用の発光面12gから放射された緑色光を平行光化する(すなわち、略平行光にする)、正のパワーを有する緑色用のコリメートレンズ13gと、青色用の発光面13から放射された青色光を平行光化する(すなわち、略平行光にする)、正のパワーを有する青色用のコリメートレンズ13bとを備えている。
また、実施の形態1に係る集光光学系1は、赤色用のコリメートレンズ13rを通過した赤色光と、緑色用のコリメートレンズ13gを通過した緑色光と、青色用のコリメートレンズ13bを通過した青色光とを合成する光合成手段を備えている。図1において、光合成手段は、例えば、互いに直交する2枚のダイクロイックミラー17、18を含むクロスダイクロイックミラーから構成されている。ダイクロイックミラー17、18は、特定の波長帯域の光を透過又は反射させる特性を有する。実施の形態1においては、光合成手段は、緑色光及び青色光を透過させ赤色光を反射するダイクロイックミラー17と、赤色光及び緑色光を透過させ青色光を反射するダイクロイックミラー18とを備えている。ダイクロイックミラー17、18からなるクロスダイクロイックミラーは、2枚のダイクロイックミラーを互いに離して配置する場合に比べて、ミラー配置スペースを小さくでき、よりコンパクトな集光光学系を実現できる。なお、光合成手段の構成は、図示の構成に限定されない。
さらに、集光光学系1は、光合成手段によって合成された光を集光する、正のパワーを有するコンデンサレンズ19と、コンデンサレンズ19で集光された光が入射する入射面21及び光強度分布が均一化された光を出射する出射面22を有する光強度分布均一化素子としてのインテグレータロッド20とを備えている。コンデンサレンズ19は、R、G、Bの各色の光に共通の構成であり、ダイクロイックミラー17、18により合成された光を受け、この合成された光を所望の角度でインテグレータロッド20の入射面21に集光させる。インテグレータロッド20は、断面が矩形である四角柱状のガラスから構成されており、入射面21は、R、G、Bの各色の面発光光源11r、11g、11bの発光面12r、12g、12b及び画像表示素子(図1の符号24)と相似形の矩形形状を有している。インテグレータロッド20の入射面21に入射した光は、ガラスと空気の界面での全反射を繰り返しながらインテグレータロッド内部を伝播することで、各色の光が均一化され、出射面22から出射される。なお、光強度分布均一化素子は、インテグレータロッド20に限定されず、他の構成の素子であってもよい。
実施の形態1においては、赤色用の発光面12r、緑色用の発光面12g、及び青色用の発光面12bは、同じ大きさの矩形形状の平面であり、且つ、インテグレータロッド20の入射面21と相似形状である。ここでいう相似形状とは、完全な相似形状だけでなく、略相似形状である場合を含む。また、発光面12r、12g、12bは、発光面全域に亘って略均一の輝度を有する。
赤色用のコリメートレンズ13r、緑色用のコリメートレンズ13g、及び青色用のコリメートレンズ13bは、互いに同じ構造を有し、その結果、同じ光学性能を有している。コリメートレンズ13r、13g、13bは、面発光光源11r、11g、11bの発光面12r、12g、12bから大きな広がり角で放射される光を受け、面発光光源11r、11g、11bの発光面12r、12g、12bから放射される広がり角よりも小さい広がり角の光に変換する。赤色用のコリメートレンズ13r、緑色用のコリメートレンズ13g、青色用のコリメートレンズ13b、及びコンデンサレンズ19のそれぞれは、例えば、1枚以上のレンズから構成され、且つ、同じガラス材から構成される。
また、実施の形態1においては、赤色用のコリメートレンズ13rからコンデンサレンズ19までの光学距離(Dr+Dw)、緑色用のコリメートレンズ13gからコンデンサレンズ19までの光学距離(Dg+Dw)、及び青色用のコリメートレンズ13bからコンデンサレンズ19までの光学距離(Db+Dw)が同一(略同一を含む。)となるように、赤色用のコリメートレンズ13r、緑色用のコリメートレンズ13g、及び青色用のコリメートレンズ13bが配置されている。図1に示されるように、Drは赤色用のコリメートレンズ13rからダイクロイックミラー17と18の交点までの距離、Dgは緑色用のコリメートレンズ13gからダイクロイックミラー17と18の交点までの距離、Dbは青色用のコリメートレンズ13bからダイクロイックミラー17と18の交点までの距離、Dwはダイクロイックミラー17と18の交点からコンデンサレンズ19までの距離を示す。
さらに、実施の形態1においては、赤色用の発光面12rから赤色用のコリメートレンズ13rまでの赤色光の光学距離Lrは緑色用の発光面12gから緑色用のコリメートレンズ13gまでの緑色光の光学距離Lgより長く、緑色光の光学距離Lgは青色用の発光面13bから青色用のコリメートレンズ13bまでの青色光の光学距離Lbより長くなるように(すなわち、Lb<Lg<Lrを満たすように)、赤色用の面発光光源11r、緑色用の面発光光源11g、及び青色用の面発光光源11bが配置されている。加えて、赤色用のコリメートレンズ13r及びコンデンサレンズ19がインテグレータロッド20の入射面21上に結像させる赤色用の発光面12rの2次光源像と、緑色用のコリメートレンズ13g及びコンデンサレンズ19がインテグレータロッド20の入射面21上に結像させる緑色用の発光面12gの2次光源像と、青色用のコリメートレンズ13b及びコンデンサレンズ19がインテグレータロッド20の入射面21上に結像させる青色用の発光面12bの2次光源像とが、互いに同じ大きさになるように、赤色用の面発光光源11r、緑色用の面発光光源11g、及び青色用の面発光光源11bが配置されている。ここでいう、同じ大きさとは、完全に同一の大きさだけでなく、略同一の大きさをも含む。
また、図1に示されるように、投写型画像表示装置2は、集光光学系1と、集光光学系1から出射されて光強度分布が均一化された光が入射される照明光学系23と、照明光学系23を通過した光を変調して映像光を生成する画像表示素子24と、画像表示素子24で生成された映像光をスクリーン27に拡大投写する投写光学系26とを備えている。
照明光学系23は、インテグレータロッド20から出射した光を、画像表示素子24の表示面25に照射させる。このとき、インテグレータロッド20の出射面22と画像表示素子24の表示面25が共役な関係となっており、均一な輝度を有する矩形のインテグレータロッド20の出射面22が、画像表示素子24の表示面25上に結像される。よって、面発光光源11r(又は11g又は11b)の発光面12r(又は12g又は12b)、及び、インテグレータロッド20の入射面21、及び、画像表示素子24の表示面25をそれぞれ互いに相似な形状とすることにより、効率良く画像表示素子24の表示面25を照明することができ、高い光利用効率を得ることができる。
画像表示素子24は、例えば、透過型若しくは反射型の液晶パネル、又はDMD(Digital Micro−Mirror Device)であり、表示面25に多数の画素が二次元的に配列された構造を有している。画像表示素子24は、照明光学系23により照射された光を映像信号に応じて画素毎に強度変調することにより、映像光を生成する。
投写光学系26は、レンズ、又は、反射ミラー、又は、それらの組み合わせ等で構成され、画像表示素子24により生成された映像光をスクリーン27に向けて拡大投写し、スクリーン27に画像を表示する。
投写型画像表示装置2においては、R、G、B各色の面発光光源11r、11g、11bの発光面12r、12g、12bから放射される光は、対応するコリメートレンズ13r、13g、13bを透過し、ダイクロイックミラー17、18により合成され、コンデンサレンズ19によりインテグレータロッド20の入射面21に集光する。インテグレータロッド20により光強度分布が均一化された光は、レンズなどから構成される照明光学系23を通過して、画像表示素子24に照射され、画像表示素子24により変調された画像光は、投写光学系26によりスクリーン27に拡大投写され、スクリーン27に画像が表示される。
次に、面発光光源11r、11g、11bの発光面12r、12g、12bのサイズと、インテグレータロッド20の入射面21のサイズと、画像表示素子24の表示面25のサイズとの関係についてより詳細に説明する。実施の形態1においては、面発光光源11r、11g、11bの発光面12r、12g、12bとインテグレータロッド20の入射面21は共役な関係になっており、且つ、インテグレータロッド20の出射面22と画像表示素子24の表示面25は共役な関係になっている。よって、面発光光源11r、11g、11bの発光面12r、12g、12bとインテグレータロッド20の入射面21は、ともに画像表示素子24と略相似形とすることが、高い光利用効率を得る上で望ましい。
一般に、集光光学系及び照明光学系を設計する際に考慮される概念として、Etendue(エタンデュ)という量がある。Etendueの概念を実施の形態1に係る集光光学系1及び投写型画像表示装置2に適用すると、面発光光源11r、11g、11bの発光面12r、12g、12bから出射される光束の配光分布をランバーシアン分布(完全拡散)と仮定したときの面発光光源11r、11g、11b、インテグレータロッド20、画像表示素子14のEtendueは、発光面又は受光面の面積と、発光面から放射される光又は受光面で受光される光の立体角との積で定義され、以下の式(1)〜(3)で表される。
Es=As×π×sin(θs) …(1)
Ei=Ai×π×sin(θi) …(2)
El=Al×π×sin(θl) …(3)
式(1)において、Esは、面発光光源11r、11g、11bのEtendueであり、Asは、面発光光源11r、11g、11bの発光面12r、12g、12bの面積であり、θsは、面発光光源11r、11g、11bの発光面12r、12g、12bから放射され、コリメータレンズ13r、13g、13bで取り込もうとする光線のうち、最も大きな広がり角で放射される光線の、発光面12r、12g、12bの法線に対する角度(取込角)である。
式(2)において、Eiは、インテグレータロッド20のEtendueであり、Aiは、インテグレータロッド20の入射面21の面積であり、θiは、前記取込角にて面発光光源11r、11g、11bの発光面12r、12g、12bから放射され、インテグレータロッド20の入射面21に入射する光線の、インテグレータロッド20の入射面21の法線に対する角度(集光角)である。
式(3)において、Elは、画像表示素子24のEtendueであり、Alは、画像表示素子24の表示面25の面積であり、θlは、前記集光角にてインテグレータロッド20の入射面21に入射後、画像表示素子24の表示面25に入射する光線の、表示面25の法線に対する角度(照明角)である。なお、πは円周率である。
一般に、集光光学系及び照明光学系は、上記Es、Ei、Elの値が等しくなるよう設計される。例えば、面発光光源11r、11g、11bの発光面12r、12g、12bのサイズが3mm×4mm(対角寸法5mm)であり、発光面12r、12g、12bから半球状に放射された(θs=90°)光束の配光分布がランバーシアン分布であるとすると、面発光光源11r、11g、11bのEtendueは、式(1)を用いて以下のように計算でき、約37.7となる。
Es=As×π×sin(θs)
=(3×4)×π×sin(90°)
=12×π≒37.7
これに対応し、画像表示素子24の表示面25のサイズを12mm×16mm(対角寸法20mm)とし、画像表示素子24の表示面25を照明する光のF値を2.0(θl≒14.5°)と設定すれば、画像表示素子24のEtendueは、式(2)を用いて以下のように計算でき、約37.7となり、面発光光源11r、11g、11bのEtendueと等しくすることができる。
Ei=Ai×π×sin(θi)
=(12×16)×π×sin(14.5°)
≒192×π×0.0627≒37.7
また、インテグレータロッド20の入射面21に入射する光のF値を1.0(θi=30°)とすると、インテグレータロッド20の入射面21のサイズを6mm×8mm(対角寸法10mm)と設定すれば、インテグレータロッド20のEtendueは、式(3)を用いて以下のように計算でき、約37.7となり、面発光光源11r、11g、11bのEtendue及び画像表示素子24のEtendueの両方と等しくすることができる。
El=Al×π×sin(θl)
=(6×8)×π×sin(30°)
=48×π×0.25≒37.7
上記の例の場合、コリメートレンズ13r、13g、13b及びコンデンサレンズ19からなる光学系は、面発光光源11r、11g、11bの発光面12r、12g、12b(サイズ:3mm×4mm)を2倍に拡大してインテグレータロッド20の入射面21(サイズ:6mm×8mm)に結像させることになる。このとき、コリメートレンズ13r、13g、13b及びコンデンサレンズ19からなる光学系の有する収差が大きく、面発光光源11r、11g、11bの発光面12r、12g、12bの2次光源像が、インテグレータロッド20の入射面21よりも大きく結像されると、インテグレータロッド20の入射面21の外側にも光が照射され(入射面21に入射されない光が存在し)、光量損失が生じてしまう。
また、コリメートレンズ13r、13g、13b及びコンデンサレンズ19からなる光学系の倍率を所望の値よりも小さくすると、面発光光源11r、11g、11bの発光面12r、12g、12bの2次光源像がより小さくなり、インテグレータロッド20の入射面21の外側に照射される光はなくなる。しかし、インテグレータロッド20の入射面21に入射する光の集光角が大きくなるため、画像表示素子24の表示面25に入射する光の照明角も大きくなり、光量損失が生じるか、又は、投写光学系の大型化を招くこととなってしまう。よって、集光光学系1は、面発光光源11r、11g、11bの発光面12r、12g、12bから所定の取込角で放射される光を、所定の集光角で所定のサイズに結像させる必要があり、この所定の集光角及び結像サイズを超えると、光量損失等が生じてしまう。
ただし、面発光光源11r、11g、11bから放射される光をすべて(θs=90°まで)取り込むことは困難であること、また、製造誤差や均一性を考慮して、画像表示素子24の表示面25を照明する際には、表示面25よりもやや大きめに照明すること等により、実際には、光学系の仕様に合わせて取込角やインテグレータロッド20の入射面21のサイズ等は適宜最適化してもよい。
図2は、実施の形態1に係る集光光学系1の光路を示す図である。また、図3は、比較例の集光光学系における軸上色収差を説明するための図である。図2及び図3においては、説明を簡単にするために、ダイクロイックミラー17,18を省略しており、光路を直線状に示しており、各色の光路を重ねて示している。また、図2において、81r、81g、81bはそれぞれ、面発光光源11r、11g、11bの発光面12r、12g、12bの中心から同一の所望の取込角で放射される光、AX1は光軸、f0はコリメートレンズ13r、13g、13bの(発光面から放射される)緑色の波長における前側焦点、f1はコンデンサレンズ19の(発光面から放射される)緑色の波長における後側焦点を示す。
コリメートレンズ13r、13g、13b及びコンデンサレンズ19は、面発光光源11r、11g、11bの発光面12r、12g、12bをインテグレータロッド20の入射面21上に高い結像性能をもって結像させる必要がある。そのためには、コリメートレンズ13r、13g、13b及びコンデンサレンズ19の構成材料として、比較的高屈折率のガラス材を使用するのが収差補正上好ましい。しかし、図3(比較例)に同一位置の発光面92r、92g、92bからの光の集光点95r、95g、95bで示されるように、高屈折率のガラス材は一般に分散が大きいため、正のパワーを持つコリメートレンズ93r、93g、93bとコンデンサレンズ94の軸上色収差が強めあい、軸上色収差が一層大きくなってしまう。
一方、実施の形態1に係る集光光学系1では、各色の面発光光源11r、11g、11bの発光面12r、12g、12bから対応する各コリメートレンズ13r、13g、13bまでの距離は、Lb<Lg<Lrとなっており、かつ、面発光光源11gの発光面12gは、コリメートレンズ13gの(発光面から放射される)緑色の波長における前側焦点f0を含むように(発光面12g上に(発光面から放射される)緑色の波長における前側焦点f0が位置するように)配置されている。よって、コリメートレンズ13r、13g、13bを透過した緑色光81gは平行化されているが、コリメートレンズ13bを透過した青色光81bは発散した状態となり、コリメートレンズ13rを透過した赤色光81rは収束した状態となっている。各色の光81r、81g、81bがコンデンサレンズ19に入射すると、緑色光81gは、コンデンサレンズ19の(発光面から放射される)緑色の波長における後側焦点f1に所望の集光角で集光する。また、発散した状態の青色光81bは、コンデンサレンズ19の分散により緑色光よりも強い正のパワーで屈折され、緑色光81gと同一の集光角で(発光面から放射される)緑色の波長における後側焦点f1に集光する。同様に、収束した状態の赤色光81rは、コンデンサレンズ19の分散により緑色光よりも弱い正のパワーで屈折され、赤色光81gと同一の集光角で(発光面から放射される)緑色の波長における後側焦点f1に集光する。よって、R、G、Bの各色間に軸上色収差が生じることなく、各色とも、同一の取込角にて面発光光源11r、11g、11bの発光面12r、12g、12bから放射された光が、同一の所望の集光角でインテグレータロッド20の入射面21に集光する。すなわち、各色の面発光光源11r、11g、11bの発光面12r、12g、12bから対応する各コリメートレンズ13r、13g、13bまでの距離Lr、Lg、Lbを、Lb<Lg<Lrのように設定することにより、コリメートレンズ13r、13g、13b及びコンデンサレンズ19の軸上色収差を補正でき、コリメートレンズ13r、13g、13b及びコンデンサレンズ19を色消しレンズとする必要をなくすることができる。よって、コリメートレンズ13r、13g、13b及びコンデンサレンズ19をすべて同一のガラス材とすることもできる。また、コリメートレンズ13r、13g、13b及びコンデンサレンズ19を、分散は大きいが収差補正に有利な高屈折率のガラス材を使用することができる。これにより、集光光学系1の構成の簡素化及び高い光利用効率が実現できる。
仮定として、光線を逆進させた場合を考えると、インテグレータロッド20の入射面21がコンデンサレンズ19及びコリメートレンズ13r、13g、13bにより面発光光源11r、11g、11b側に結像される。この場合には、コリメートレンズ13r、13g、13bを基準にしてインテグレータロッド20の反対側に赤色の像、緑色の像、青色の像が形成されるが、コリメートレンズ13r、13g、13bから最も遠い位置に赤色の像が形成され、次に遠い位置に緑色の像が形成され、最も近い位置に青色の像が形成される。実施の形態1に係る集光光学系1における面発光光源11r、11g、11bの発光面12r、12g、12bの各位置は、上記仮定の場合の、赤色の像の位置、緑色の像の位置、青色の像の位置である。
図4は、R、G、Bの各色の面発光光源11r、11g、11bの発光面12r、12g、12bの隅からの主光線の光路を示す図である。図4において、図2に示される要素と同一の要素には、同一の符号を付している。図4において、82r、82g、82bはそれぞれ、R、G、Bの各色の面発光光源11r、11g、11bの発光面12r、12g、12bの隅から放射される主光線、f2はコリメートレンズ13r、13g、13bの(発光面から放射される)緑色の波長における後側焦点である。コリメートレンズ13r、13g、13b及びコンデンサレンズ19からなる光学系は、面発光光源11r、11g、11b側にテレセントリックな光学系を構成している。面発光光源11gの発光面12gの隅から、発光面12gの法線方向(光軸AX3に平行)に出射した主光線82gは、コリメートレンズ13gにより屈折された後、コリメートレンズ13gの(発光面から放射される)緑色の波長における後側焦点f2を通り、コンデンサレンズ19に入射し、該コンデンサレンズ19により屈折された後、光軸AX3に対して平行となり、インテグレータロッド20の入射面21の対応する隅に入射する。すなわち、コンデンサレンズ19は、このコンデンサレンズ19の(発光面から放射される)緑色の波長における前側焦点がコリメートレンズ13gの(発光面から放射される)緑色の波長における後側焦点f2と一致するように配置されているため、コリメートレンズ13r、13g、13b及びコンデンサレンズ19からなる光学系は、緑色光に対してインテグレータロッド20側についてもテレセントリックな光学系を構成している。
また、青色用の面発光光源11bの発光面12bの隅から光軸AX3に平行に出射した主光線82bは、コリメートレンズ13bにより、光線82gよりも強く屈折された後、コリメートレンズ13bの(発光面から放射される)緑色の波長における後側焦点f2よりもコリメートレンズ13b側を通った後、コンデンサレンズ19により緑色光82gよりも強く屈折され、収束した状態でコンデンサレンズ19を出射し、インテグレータロッド20の入射面21上で緑色光の主光線25gと交わる。
同様に、赤色用の面発光光源11rの発光面12rから光軸AX3に平行に出射した主光線82rは、コリメートレンズ13rにより、光線82gよりも弱く屈折された後、コリメートレンズ13rの(発光面から放射される)緑色の波長における後側焦点f2よりもコンデンサレンズ19側を通った後、コンデンサレンズ19により緑色光82gよりも弱く屈折され、発散した状態でコンデンサレンズ19を出射し、インテグレータロッド20の入射面21上で緑色光の主光線82gと交わる。よって、実施の形態1においては、R、G、Bの各色間に倍率色収差が生じることなく、各色とも、インテグレータロッド20の入射面21上に同一の大きさの2次光源像を結像させる。
図5及び図6に、面発光光源11r、11g、11bの発光面12r、12g、12bから放射される光の放射強度分布を模式的に示す。図5は、ランバーシアン分布62を有する面発光光源11r、11g、11bを示し、図6は、図5の面発光光源11r、11g、11bにフォトニクス結晶体61r、61g、61bを備えることによって放射光の指向性を高めた分布63を示す。
図5に示すように、面発光光源11r、11g、11bの発光面12r、12g、12bから放射される光は通常ランバーシアン分布を示し、発光面12r、12g、12bを含む球状に放射される。一方、フォトニクス結晶体61r、61g、61bを用いれば、該フォトニクス結晶体に入射した光の進行方向を制御できることが知られている。図6は図5に示す面発光光源の発光面12r、12g、12b上にフォトニクス結晶体61r、61g、61bを設けたものであり、面発光光源11r、11g、11bの発光面12r、12g、12bの法線方向及びその近傍範囲における放射強度を高め、その他の方向の放射強度を弱くしている。
実施の形態1に係る集光光学系では、面発光光源11r、11g、11bの発光面12r、12g、12bのそれぞれに、フォトニクス結晶体を設けることができる。コリメートレンズ13r、13g、13b及びコンデンサレンズ19からなる光学系は、前述の通り、面発光光源11r、11g、11b側にテレセントリックな光学系を構成しているため、フォトニクス結晶体を設けて指向性を高めた面発光光源11r、11g、11bを用いれば、放射強度の高い、面発光光源11r、11g、11bの発光面12r、12g、12bの法線方向の光を優先的に集光光学系に取り込めるため、一層高い光利用効率を得ることができる。
ここで、コリメートレンズ13r、13g、13bからコンデンサレンズ19までの距離を各色略同一とすることによって生じる効果を説明する。図7及び図8は、同一のコリメートレンズ13r、13g、13bとコンデンサレンズ19を、異なる距離に配置した場合の主光線の光路を概略的に示す図である。図7及び図8において、図4に示される要素と同一の要素には同一の符号を付している。図7及び図8において、83、84はそれぞれ、面発光光源11r、11g、11bの発光面12r、12g、12bの隅からの主光線、f3はコンデンサレンズの前側焦点、AX4、AX5は光軸である。図7においては、コンデンサレンズ19の前側焦点f3が、コリメートレンズ13r、13g、13bの後側焦点f2と一致しているため(f2=f3)、主光線83は、コンデンサレンズ19を出射後、光軸AX4に対して平行となってインテグレータロッドの入射面21に入射する。一方、図8では、コリメートレンズ13r、13g、13bからコンデンサレンズ19までの距離を大きくしているため、主光線32は、コンデンサレンズ19を出射後、光軸AX5に対して大きく収束した状態でインテグレータロッドの入射面21に入射する。よって、色によってコリメートレンズ13r、13g、13bとコンデンサレンズ19までの距離が異なると、インテグレータロッド13r、13g、13bの入射面21に入射する主光線の角度が色によって異なることとなり、光利用効率の低下や輝度の均一性の劣化を招くこととなる。これに対し、実施の形態1に係る集光光学系においては、コリメートレンズ13r、13g、13b及びコンデンサレンズ19までの距離をR、G、Bの各色とも略同一としているので、高い光利用効率と輝度の均一性を実現することができる。
以上説明したように、実施の形態1に係る集光光学系1及び投写型画像表示装置2によれば、簡単な構成でありながら、インテグレータロッド20での光量損失を招くことがなく、高い光利用効率を実現することができる。
なお、以上の説明においては、緑色用の面発光光源11gをコンデンサレンズ19に対向させ、赤色用及び青色用の面発光光源11r、11bを緑色用の面発光光源11gと直交する方向を向くに配置することとしたが、本発明はこのような形態に限定されない。例えば、青色用の面発光光源11bをコンデンサレンズ19に対向させ、赤色用及び緑色用の面発光光源11r、11gを青色用の面発光光源11bと直交する方向に配置すること、又は、赤色用の面発光光源11rをコンデンサレンズ19に対向させ、緑色用及び青色用の面発光光源11g、11bを赤色用の面発光光源11rと直交する方向に配置することも可能である。
また、以上の説明においては、コンデンサレンズ13r、13g、13b及びコリメートレンズ19は、それぞれ1枚の凸レンズとして表したが、本発明はこのような形態に限定されず、取込角や倍率等、集光光学系の仕様に応じて、それぞれ2枚以上のレンズを用いて構成することも可能である。また、コンデンサレンズ13r、13g、13b及びコリメートレンズ19は、球面レンズに限らず、非球面レンズや自由曲面レンズ等を用いることも可能である。
さらに、以上の説明においては、光強度分布均一化素子がインテグレータロッドである場合を説明したが、これに限らず、中空のライトトンネル等の他の光強度分布均一化素子を用いてもよい。
さらにまた、以上の説明においては、R、G、Bの各色の面発光光源11r、11g、11bから放射される光を合成する手段をダイクロイックミラーとしたが、これに限らず、ダイクロイックプリズム等の他の光合成手段を用いてもよい。
また、以上の説明は、前側焦点等を用い、主として近軸理論に基づく説明であるが、上記説明の趣旨を逸脱しない範囲内において、構成の変形が可能である。
実施の形態2.
図9は、本発明の実施の形態2に係る集光光学系3及び投写型画像表示装置4の構成を概略的に示す図である。図9において、図1に示される要素と同一の要素には同一の符号を付している。
図9において、面発光光源31、32、33は、R、G、Bの各色の面発光光源(例えば、LED)である。図9に示す面発光光源31、32、33は、例えば、R、G、Bの面発光光源に対応するが、これには限定されず、面発光光源31、32、33とR、G、Bの各色との対応関係は、他の対応関係であってもよい。ダイクロイックミラー37、38での透過及び反射特性は、面発光光源31、32、33が放射する光の色に基づいて、決定される。ダイクロイックミラー37は、面発光光源31の発光面から放射される波長帯の光(第1の光)を反射させるとともに、面発光光源32の発光面から放射される波長帯の光(第2の光)及び面発光光源33の発光面から放射される波長帯の光(第3の光)を透過させる波長特性を有し、ダイクロイックミラー38は、第2の光を反射させるとともに、第3の光を透過させる波長特性を有する。
実施の形態2に係る集光光学系3は、実施の形態1に係る集光光学系1において、面発光光源31、32、33及びダイクロイックミラー37、38の配置を変更したものである。各色のコリメートレンズ34、35、36からコンデンサレンズ39までの光学距離(ダイクロイックミラー37、38を除去して、すべての要素を直線状に配置したと仮定した場合における、各色のコリメートレンズ34、35、36からコンデンサレンズ39までの距離)は、各色間で略同一となっている。
図10は、比較のためにクロスダイクロイックミラーの構造を概略的に示す図である。図10に示すように、一般に、クロスダイクロイックミラーは、1枚の大きなミラー(第1のミラー)17を挟み込むように、2枚の小さなミラー(第2、第3のミラー)18が配置される。このとき、第2、第3のミラー18の端面であって、第1のミラー17面に対向する面51、52は、波長特性を有しない(すなわち、特定の波長の光だけを透過及び反射する特性を持たない)。また、第2、第3のミラー端面51及び52と、第1のミラー17の表面との間には多少の間隙が生じる。よって、ミラー端面51、52や間隙により、クロスダイクロイックミラーには所望の波長特性を発揮しえない無効領域が存在し、僅かではあるが光量損失を招いてしまう。これに対し、実施の形態2に係る集光光学系3においては、無効領域がなく、ミラー端面や間隙に起因する光量損失を招くことはない。
また、クロスダイクロイックミラーは、1枚のダイクロイックミラーを第2及び第3のダイクロイックミラー18に分割しているため、組立誤差が生じやすく、光量損失を招くことがある。これに対し、実施の形態2に係る集光光学系3においては、ダイクロイックミラーを分割する必要がないので、組立誤差に起因する光量損失を招くことはない。
以上説明したように、実施の形態2に係る集光光学系3及び投写型画像表示装置4によれば、光量損失を招くことがなく、より高い光利用効率を実現することができる。
なお、実施の形態2において、上記以外の点は、上記実施の形態1の場合と同じである。
実施の形態3.
図11は、本発明の実施の形態3に係る集光光学系5及び投写型画像表示装置6の構成を概略的に示す図である。図11において、図1に示される要素と同一の要素には同一の符号を付している。
図11において、面発光光源41、42、43は、R、G、Bの各色の面発光光源(例えば、LED)である。図11に示す面発光光源41、42、43は、例えば、R、G、Bの面発光光源に対応するが、これには限定されず、面発光光源41、42、43とR、G、Bの各色との対応関係は、他の対応関係であってもよい。ダイクロイックミラー47、48での透過及び反射特性は、面発光光源41、42、43が放射する光の色に基づいて、決定される。ダイクロイックミラー47は、面発光光源42の発光面から放射される波長帯の光(第2の光)を反射させるとともに、面発光光源43の発光面から放射される波長帯の光(第3の光)を透過させる波長特性を有し、ダイクロイックミラー48は、面発光光源41の発光面から放射される波長帯の光(第1の光)を反射させるとともに、第2の光及び第3の光を透過させる波長特性を有する。反射ミラー49は、第1乃至第3の光をコンデンサレンズ50に入射させる。
実施の形態3に係る集光光学系5は、実施の形態2に係る集光光学系3において、ダイクロイックミラー34からコンデンサレンズ37までの距離を大きくし、その光路間に反射ミラー50を配置して光路を略直角に折り曲げたものである。各色のコリメートレンズ44、45、46からコンデンサレンズ50までの光学距離(ダイクロイックミラー47、48及び反射ミラー49を除去して、すべての要素を直線状に配置したと仮定した場合における、各色のコリメートレンズ44、45、46からコンデンサレンズ50までの距離)は、各色間で略同一となっている。実施の形態3においては、反射ミラー49により、インテグレータロッド20の長さ方向に対して直角方向に光路を折り曲げているので、集光光学系5のインテグレータロッド20の長さ方向のサイズを小さくすることができる。
以上説明したように、実施の形態3に係る集光光学系5及び投写型画像表示装置6によれば、光量損失を招くことがなく、高い光利用効率を実現することができる。
なお、実施の形態3において、上記以外の点は、上記実施の形態1又は2の場合と同じである。
1、3、5 集光光学系、 2、4、6 投写型画像表示装置、 11b、11g、11r 面発光光源、 12b、12g、12r 面発光光源の発光面、 13r、13g、13b コリメートレンズ、 17、18、37、38、47、48 ダイクロイックミラー、 19、39、50 コンデンサレンズ、 20 インテグレータロッド、 21 インテグレータロッドの入射面、 22 インテグレータロッドの出射面、 23 照明光学系、 24 画像表示素子、 25 画像表示素子の表示面、 26 投写光学系、 27 スクリーン、 31〜33、41〜43 面発光光源、 34〜36、44〜46 コリメートレンズ、 49 ミラー、 61r、61g、61b フォトニクス結晶体。

Claims (7)

  1. 赤色用の発光面を有し、該赤色用の発光面から赤色光を放射する赤色用の面発光光源と、
    緑色用の発光面を有し、該緑色用の発光面から緑色光を放射する緑色用の面発光光源と、
    青色用の発光面を有し、該青色用の発光面から青色光を放射する青色用の面発光光源と、
    前記赤色用の発光面から放射された赤色光を平行光化する、正のパワーを有する赤色用のコリメートレンズと、
    前記緑色用の発光面から放射された緑色光を平行光化する、正のパワーを有する緑色用のコリメートレンズと、
    前記青色用の発光面から放射された青色光を平行光化する、正のパワーを有する青色用のコリメートレンズと、
    前記赤色用のコリメートレンズを通過した赤色光と、前記緑色用のコリメートレンズを通過した緑色光と、前記青色用のコリメートレンズを通過した青色光とを合成する光合成手段と、
    前記合成された光を集光する、正のパワーを有するコンデンサレンズと、
    前記コンデンサレンズで集光された光が入射する入射面及び光強度分布が均一化された光を出射する出射面を有する光強度分布均一化素子と
    を備え、
    前記赤色用の発光面、前記緑色用の発光面、及び前記青色用の発光面は、同じ大きさの矩形形状であり、且つ、前記光強度分布均一化素子の入射面と相似形状であり、
    前記赤色用のコリメートレンズ、前記緑色用のコリメートレンズ、及び前記青色用のコリメートレンズは、互いに同じ構造を有し、
    前記赤色用のコリメートレンズから前記コンデンサレンズまでの光学距離、前記緑色用のコリメートレンズから前記コンデンサレンズまでの光学距離、及び前記青色用のコリメートレンズから前記コンデンサレンズまでの光学距離が略同一となるように、前記赤色用のコリメートレンズ、前記緑色用のコリメートレンズ、及び前記青色用のコリメートレンズが配置され、
    前記赤色用の発光面から前記赤色用のコリメートレンズまでの赤色光の光学距離は前記緑色用の発光面から前記緑色用のコリメートレンズまでの緑色光の光学距離より長く、前記緑色光の光学距離は前記青色用の発光面から前記青色用のコリメートレンズまでの青色光の光学距離より長くなるように、且つ、前記赤色用のコリメートレンズ及び前記コンデンサレンズが前記光強度分布均一化素子の入射面上に結像させる前記赤色用の発光面の2次光源像と、前記緑色用のコリメートレンズ及び前記コンデンサレンズが前記光強度分布均一化素子の入射面上に結像させる前記緑色用の発光面の2次光源像と、前記青色用のコリメートレンズ及び前記コンデンサレンズが前記光強度分布均一化素子の入射面上に結像させる前記青色用の発光面の2次光源像とが、互いに同じ大きさになるように、前記赤色用の面発光光源、前記緑色用の面発光光源、及び前記青色用の面発光光源を配置した
    ことを特徴とする集光光学系。
  2. 前記赤色用のコリメートレンズ、前記緑色用のコリメートレンズ、前記青色用のコリメートレンズ、及び前記コンデンサレンズは、それぞれ1枚以上のレンズから構成され、且つ、同じガラス材から構成されることを特徴とする請求項1に記載の集光光学系。
  3. 前記光合成手段は、互いに直交して配置された2枚のダイクロイックミラーを有することを特徴とする請求項1又は2に記載の集光光学系。
  4. 前記光合成手段は、互いに平行に配置された2枚のダイクロイックミラーを有することを特徴とする請求項1又は2に記載の集光光学系。
  5. 前記光合成手段と前記コンデンサレンズとの間に、前記合成された光の光路を前記コンデンサレンズに向けるように変える反射ミラーを備えたことを特徴とする請求項4に記載の集光光学系。
  6. 前記集光光学系は、前記赤色用の面発光光源側、前記緑色用の面発光光源側、及び前記青色用の面発光光源側のそれぞれにテレセントリックな光学系であり、
    前記赤色用の発光面、前記緑色用の発光面、及び前記青色用の発光面のそれぞれに、フォトニクス結晶体を備えた
    ことを特徴とする請求項1乃至5のいずれか1項に記載の集光光学系。
  7. 請求項1乃至6のいずれか1項に記載の集光光学系と、
    前記集光光学系から出射された光が入射され、該入射した光を変調して映像光を生成する画像表示素子と、
    前記画像表示素子で生成された前記映像光を拡大投写する投写光学系と
    を備えたことを特徴とする投写型画像表示装置。
JP2009194534A 2009-08-25 2009-08-25 集光光学系及び投写型画像表示装置 Active JP5436097B2 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2009194534A JP5436097B2 (ja) 2009-08-25 2009-08-25 集光光学系及び投写型画像表示装置
KR1020127004720A KR101321631B1 (ko) 2009-08-25 2010-08-24 집광 광학계 및 투사형 화상 표시 장치
US13/389,584 US8840251B2 (en) 2009-08-25 2010-08-24 Light collecting optical system and projection-type image display apparatus
EP10811500.7A EP2472315B1 (en) 2009-08-25 2010-08-24 Light collecting optical system and projection-type image display device
PCT/JP2010/005207 WO2011024442A1 (ja) 2009-08-25 2010-08-24 集光光学系及び投写型画像表示装置
CN201080037574.6A CN102483564B (zh) 2009-08-25 2010-08-24 会聚光学系统以及投影型图像显示装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009194534A JP5436097B2 (ja) 2009-08-25 2009-08-25 集光光学系及び投写型画像表示装置

Publications (3)

Publication Number Publication Date
JP2011048021A true JP2011048021A (ja) 2011-03-10
JP2011048021A5 JP2011048021A5 (ja) 2012-09-27
JP5436097B2 JP5436097B2 (ja) 2014-03-05

Family

ID=43627562

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009194534A Active JP5436097B2 (ja) 2009-08-25 2009-08-25 集光光学系及び投写型画像表示装置

Country Status (6)

Country Link
US (1) US8840251B2 (ja)
EP (1) EP2472315B1 (ja)
JP (1) JP5436097B2 (ja)
KR (1) KR101321631B1 (ja)
CN (1) CN102483564B (ja)
WO (1) WO2011024442A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4904431B1 (ja) * 2011-02-22 2012-03-28 パナソニック株式会社 画像表示装置
JP2013148702A (ja) * 2012-01-19 2013-08-01 Konica Minolta Inc 画像投映装置
CN103424972A (zh) * 2012-05-15 2013-12-04 三菱电机株式会社 投影型显示装置
WO2014030206A1 (ja) * 2012-08-21 2014-02-27 Necディスプレイソリューションズ株式会社 照明光学系、プロジェクターおよびプロジェクターシステム
US11644179B2 (en) 2020-09-18 2023-05-09 Nichia Corporation Light emitting device
WO2023243538A1 (ja) * 2022-06-17 2023-12-21 日亜化学工業株式会社 光源ユニット及び映像表示装置

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103471992B (zh) * 2013-09-03 2016-06-01 华中科技大学 一种光谱椭偏仪中氙灯光源的光强平滑处理装置及方法
WO2015056381A1 (ja) * 2013-10-17 2015-04-23 ソニー株式会社 光源装置、及び画像表示装置
EP3435132A3 (en) * 2014-05-10 2019-04-17 Innovations in Optics, Inc. Light emitting diode digital micromirror device illuminator
US9971135B2 (en) 2014-05-10 2018-05-15 Innovations In Optics, Inc. Light emitting diode digital micromirror device illuminator
JP6805150B2 (ja) 2014-12-31 2020-12-23 ドルビー ラボラトリーズ ライセンシング コーポレイション 画像プロジェクタ用の高コントラスト個別入力プリズム
WO2017154371A1 (ja) * 2016-03-07 2017-09-14 ソニー株式会社 光源装置および電子機器
EP3495883B1 (en) * 2016-08-02 2021-02-24 Sony Corporation Projection-type display apparatus
EP3570085A4 (en) * 2017-01-10 2020-01-01 Sony Corporation LIGHT SOURCE DEVICE, LIGHT SOURCE CONTROL METHOD, AND IMAGE ACQUISITION SYSTEM
US10268113B2 (en) * 2017-01-23 2019-04-23 Seiko Epson Corporation Illumination device and projector having light shaping optical system including free-form surface
CN108020926A (zh) * 2018-02-07 2018-05-11 北京镭创高科光电科技有限公司 一种激光显示系统及其匀光装置
CN110858050A (zh) * 2018-08-22 2020-03-03 宁波舜宇车载光学技术有限公司 照明准直系统及其设计方法
WO2023055861A1 (en) * 2021-09-28 2023-04-06 Light Field Lab, Inc. Relay systems

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07226825A (ja) * 1994-02-15 1995-08-22 Fuji Xerox Co Ltd カラー画像読取装置
JP2000056410A (ja) * 1998-06-05 2000-02-25 Seiko Epson Corp 光源装置および表示装置
JP2004138669A (ja) * 2002-10-15 2004-05-13 Sony Corp 照明装置及び画像表示装置
JP2006171662A (ja) * 2004-12-14 2006-06-29 Videomail Japan Kk 投射型表示装置の面光源装置
JP2007206668A (ja) * 2006-01-06 2007-08-16 Sharp Corp 画像表示装置
JP2008176195A (ja) * 2007-01-22 2008-07-31 Seiko Epson Corp プロジェクタ
JP2008216923A (ja) * 2007-03-07 2008-09-18 Sharp Corp 照明装置及び投影型映像表示装置

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5561538A (en) * 1992-11-17 1996-10-01 Sharp Kabushiki Kaisha Direct-view display apparatus
FR2718538B1 (fr) * 1994-04-12 1996-04-26 Sextant Avionique Boîte à lumière pour valve optique.
ATE344936T1 (de) * 1998-06-05 2006-11-15 Seiko Epson Corp Lichtquelle und anzeigevorrichtung
US6410432B1 (en) 1999-04-27 2002-06-25 Tokyo Electron Limited CVD of integrated Ta and TaNx films from tantalum halide precursors
JP2001343706A (ja) * 2000-05-31 2001-12-14 Sony Corp 映像表示装置
JP2002189263A (ja) 2000-12-21 2002-07-05 Seiko Epson Corp 投射型表示装置
US7270425B2 (en) * 2002-12-26 2007-09-18 Sanyo Electric Co., Ltd. Projection type video display
US7152977B2 (en) * 2003-04-24 2006-12-26 Qubic Light Corporation Solid state light engine optical system
US7092259B2 (en) 2003-05-09 2006-08-15 Jacobs Mark E Active clamp DC/DC converter with resonant transition system
JP4222098B2 (ja) 2003-05-14 2009-02-12 セイコーエプソン株式会社 照明装置および投射型表示装置
US7212344B2 (en) 2004-02-27 2007-05-01 Philips Lumileds Lighting Company, Llc Illumination system with aligned LEDs
JP2006018196A (ja) * 2004-07-05 2006-01-19 Sanyo Electric Co Ltd 照明装置及び投写型映像表示装置
JP4222285B2 (ja) * 2004-10-06 2009-02-12 セイコーエプソン株式会社 プロジェクタ
KR20060111793A (ko) * 2005-04-25 2006-10-30 삼성전자주식회사 조명유니트 및 이를 채용한 화상투사장치
JP4796803B2 (ja) 2005-08-18 2011-10-19 Necディスプレイソリューションズ株式会社 投写型表示装置の光学系とその光学系を備えた投写型表示装置
JP2007114603A (ja) 2005-10-21 2007-05-10 Matsushita Electric Ind Co Ltd 照明装置及び投写型画像表示装置
JP2007178672A (ja) 2005-12-27 2007-07-12 Matsushita Electric Ind Co Ltd 照明装置及びそれを用いた投写型画像表示装置
WO2007108504A1 (ja) 2006-03-23 2007-09-27 Matsushita Electric Industrial Co., Ltd. 投写型ディスプレイ装置及び光源装置
JP2008003270A (ja) 2006-06-22 2008-01-10 Matsushita Electric Ind Co Ltd 照明装置及びそれを用いた投写型画像表示装置
CN101496170B (zh) 2006-07-31 2011-06-29 3M创新有限公司 集成光源模块
JP4302164B2 (ja) 2006-12-15 2009-07-22 三洋電機株式会社 照明装置及び投写型映像表示装置
JP2008281829A (ja) 2007-05-11 2008-11-20 Konica Minolta Opto Inc 照明光学系
KR100842617B1 (ko) * 2007-05-29 2008-06-30 삼성전자주식회사 프로젝터
CN101315405B (zh) 2007-06-01 2010-11-03 致茂电子股份有限公司 具可分离电性检测系统的半导体组件测试机台
JP2009036650A (ja) * 2007-08-02 2009-02-19 Minebea Co Ltd 半導体リングレーザジャイロ

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07226825A (ja) * 1994-02-15 1995-08-22 Fuji Xerox Co Ltd カラー画像読取装置
JP2000056410A (ja) * 1998-06-05 2000-02-25 Seiko Epson Corp 光源装置および表示装置
JP2004138669A (ja) * 2002-10-15 2004-05-13 Sony Corp 照明装置及び画像表示装置
JP2006171662A (ja) * 2004-12-14 2006-06-29 Videomail Japan Kk 投射型表示装置の面光源装置
JP2007206668A (ja) * 2006-01-06 2007-08-16 Sharp Corp 画像表示装置
JP2008176195A (ja) * 2007-01-22 2008-07-31 Seiko Epson Corp プロジェクタ
JP2008216923A (ja) * 2007-03-07 2008-09-18 Sharp Corp 照明装置及び投影型映像表示装置

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4904431B1 (ja) * 2011-02-22 2012-03-28 パナソニック株式会社 画像表示装置
JP2013148702A (ja) * 2012-01-19 2013-08-01 Konica Minolta Inc 画像投映装置
CN103424972A (zh) * 2012-05-15 2013-12-04 三菱电机株式会社 投影型显示装置
US9033512B2 (en) 2012-05-15 2015-05-19 Mitsubishi Electric Corporation Projection display having LED arrays controlled to turn on/off a same shaped group of LEDs
WO2014030206A1 (ja) * 2012-08-21 2014-02-27 Necディスプレイソリューションズ株式会社 照明光学系、プロジェクターおよびプロジェクターシステム
JPWO2014030206A1 (ja) * 2012-08-21 2016-07-28 Necディスプレイソリューションズ株式会社 照明光学系、照明光学系の色むら改善方法、プロジェクターおよびプロジェクターシステム
US9575403B2 (en) 2012-08-21 2017-02-21 Nec Display Solutions, Ltd. Illumination optical system, projector, and projector system
US11644179B2 (en) 2020-09-18 2023-05-09 Nichia Corporation Light emitting device
WO2023243538A1 (ja) * 2022-06-17 2023-12-21 日亜化学工業株式会社 光源ユニット及び映像表示装置

Also Published As

Publication number Publication date
EP2472315A4 (en) 2015-06-17
CN102483564A (zh) 2012-05-30
US8840251B2 (en) 2014-09-23
EP2472315A1 (en) 2012-07-04
WO2011024442A1 (ja) 2011-03-03
KR101321631B1 (ko) 2013-10-23
EP2472315B1 (en) 2019-10-23
KR20120040250A (ko) 2012-04-26
JP5436097B2 (ja) 2014-03-05
CN102483564B (zh) 2015-04-01
US20120140186A1 (en) 2012-06-07

Similar Documents

Publication Publication Date Title
JP5436097B2 (ja) 集光光学系及び投写型画像表示装置
US9575401B2 (en) Light source apparatus and image display apparatus
JP6424828B2 (ja) 光源装置、及び画像表示装置
US8955985B2 (en) Lighting device and projection-type display device using same
JP5954845B2 (ja) 照明光学系、照明光学系の色むら改善方法、プロジェクターおよびプロジェクターシステム
JP2011048021A5 (ja)
JP2020154024A (ja) 光源光学系、光源装置及び画像投射装置
CN105264437A (zh) 照明光学系统和投影仪
US11640106B2 (en) Light source optical system, light source device, and image projection apparatus
WO2013114665A1 (ja) 集光光学系および投写型画像表示装置
US20180149955A1 (en) Illumination device and projector
JP2011248327A (ja) 照明装置及びそれを備えた投写型表示装置
JP2015132666A (ja) 光源光学系、光源装置およびプロジェクタ装置
CN111258159A (zh) 照明系统及投影装置
JP7009910B2 (ja) 光源装置およびプロジェクター
JP2007178672A (ja) 照明装置及びそれを用いた投写型画像表示装置
JP7400417B2 (ja) 光源光学系、光源装置及び画像表示装置
JP2017032964A (ja) 光学系およびそれを用いた画像表示装置
WO2018142589A1 (ja) 光源装置及び投写型表示装置
JP5515200B2 (ja) 照明光学系及びプロジェクタ装置
WO2016140049A1 (ja) プリズムユニットおよびプロジェクター
JP6696297B2 (ja) 投射装置
JP4893780B2 (ja) 照明装置及びこれを備えたプロジェクタ
JP6711705B2 (ja) 照明装置およびこれを用いた投射型表示装置
JP2006292792A (ja) 光投射装置及びプロジェクタ

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120809

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120809

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131112

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131210

R150 Certificate of patent or registration of utility model

Ref document number: 5436097

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250