JP2011026565A - 電解質膜の製造方法 - Google Patents

電解質膜の製造方法 Download PDF

Info

Publication number
JP2011026565A
JP2011026565A JP2010142325A JP2010142325A JP2011026565A JP 2011026565 A JP2011026565 A JP 2011026565A JP 2010142325 A JP2010142325 A JP 2010142325A JP 2010142325 A JP2010142325 A JP 2010142325A JP 2011026565 A JP2011026565 A JP 2011026565A
Authority
JP
Japan
Prior art keywords
polymer
mol
film
electrolyte membrane
dihalide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010142325A
Other languages
English (en)
Inventor
Masaya Adachi
眞哉 足立
Mayumi Tomokuni
まゆみ 友國
Masayuki Kidai
聖幸 希代
Yuka Yachi
佑佳 矢地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2010142325A priority Critical patent/JP2011026565A/ja
Publication of JP2011026565A publication Critical patent/JP2011026565A/ja
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Processes Of Treating Macromolecular Substances (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Polyethers (AREA)
  • Fuel Cell (AREA)

Abstract

【課題】高温低加湿下での発電特性と耐久性のバランスの優れた電解質膜を高品位に低コストで生産する。
【解決手段】ジオールモノマー類とジハライドモノマー類の脱塩重縮合によって得られる、加水分解性基およびイオン性基を含有するポリマーからなる膜状物を前駆体とする電解質膜の製造方法であって、(1)加水分解性基を有するジオールモノマーとジハライドモノマー類を、イオン性基を有するジオールモノマーおよびイオン性基を有するジハライドモノマーの合計含有量が0〜20モル%となるようにして、加熱脱水する工程
(2)脱水量が量論値の50%に到達後にジオールモノマー類とイオン性基を有するジハライドを20〜100モル%含むジハライド類を、添加し、加熱脱水する工程(3)遠心分離法で固液分離する工程(4)ポリマー溶液を基材上に流延塗工し、膜状物とする工程(5)前記膜状物を前駆体とし、酸性水溶液と接触させて電解質膜とする工程。
【選択図】なし

Description

本発明は電解質膜の製造方法に関するものである。
燃料電池は、水素、メタノールなどの燃料を電気化学的に酸化することによって、電気エネルギーを取り出す一種の発電装置であり、近年、クリーンなエネルギー供給源として注目されている。なかでも高分子電解質型燃料電池は、標準的な作動温度が100℃前後と低く、かつ、エネルギー密度が高いことから、比較的小規模の分散型発電施設、自動車や船舶など移動体の発電装置として幅広い応用が期待されている。また、小型移動機器、携帯機器の電源としても注目されており、ニッケル水素電池やリチウムイオン電池などの二次電池に替わり、携帯電話やパソコンなどへの搭載が期待されている。
燃料電池は通常、発電を担う反応の起こるアノードとカソードの電極と、アノードとカソード間のプロトン伝導体となる高分子電解質膜とが、膜電極複合体(以降、MEAと略称することがある。)を構成し、このMEAがセパレータによって挟まれたセルをユニットとして構成されている。高分子電解質膜は高分子電解質材料を主として構成される。高分子電解質材料は電極触媒層のバインダー等にも用いられる。
高分子電解質材料としては、耐熱性、化学的安定性の点から芳香族ポリエーテルケトンや芳香族ポリエーテルスルホンについて特に活発に検討がなされてきた。
また、芳香族ポリエーテルケトン(以降、PEKと略称することがある。)(ビクトレックス PEEK−HT(ビクトレックス製)等が挙げられる)のスルホン化物(例えば、特許文献1および2)においては、その高い結晶性ゆえに低いスルホン酸基密度の組成を有するポリマーは、結晶が残存することにより溶剤に不溶で加工性不良となる問題、逆に加工性を高めるためにスルホン酸基密度を増加させるとポリマーは結晶性でなくなることにより水中で著しく膨潤し、ポリマーの精製が非常に困難となり、製造が容易ではかった。
スルホン酸基量を制御する方法として、芳香族ポリエーテルスルホン系においては、スルホン酸基を導入したモノマーを用いて重合し、スルホン酸基量が制御されたスルホン化芳香族ポリエーテルスルホンの報告がなされている(例えば、特許文献3参照)。しかしながら、ここにおいても高温高湿下で作製した膜が膨潤する問題は改善されず、特にメタノールなど燃料水溶液中やスルホン酸基密度が高くなる組成においてはその傾向が顕著で、このような耐熱水性や耐熱メタノール性に劣る高分子電解質膜ではメタノールなどの燃料クロスオーバーを十分に抑制すること、膨潤乾燥サイクルに耐えうる機械強度を付与することは困難であった。
このように、従来技術による高分子電解質材料は経済性、加工性、プロトン伝導性、燃料クロスオーバー、機械強度、ひいては長期耐久性を向上する手段としては不十分であり、産業上有用な燃料電池用高分子電解質材料とはなり得ていなかった。
これらを解決する発明として特許文献では、結晶化能を有するポリマーに保護基(加水分解性可溶性付与基)を導入することで溶液化し、溶液製膜後、脱保護(加水分解)する方法が提案され、機械特性評価、化学構造と耐熱水性、耐熱メタノール性および加工性等との関係を改善し、プロトン伝導性に優れ、かつ、燃料遮断性、機械強度、耐熱水性、耐熱メタノール性、加工性、化学的安定性に優れた電解質膜を提供できるとしている。しかしながら、さらなる改良が望まれていた。 一方、特許文献5、特許文献6には疎水性セグメント(非イオン性領域)と親水性セグメント(イオン性領域)のブロック共重合体からなる電解質膜が開示されている。しかしながら、これらもまた産業上有用な燃料電池用高分子電解質材料とはなり得ていなかった。
特開平6−93114号公報 特表2004−528683号公報 米国特許出願公開第2002/0091225号明細書 特開2006−261103号公報 特開2003−31232号公報 特表2006−512428号公報
特許文献4では、非晶性のポリマーのみで構成されているため、発電を伴う電解質膜の湿潤と開回路状態での乾燥を繰り返す耐久性試験(乾湿サイクル試験)性能の更なる向上が望まれていた。さらに、自動車用途など80℃を越える高温で相対湿度60%以下の低加湿条件下で作動する燃料電池用途には、高いレベルのプロトン伝導性と耐久性の両立を図る必要があった。本発明者らは、より高いスルホン酸基密度で、かつ高い結晶能を有する電解質膜を作製しようと試みたが、その両立は困難であった。
そこで本発明者らは、ポリマーをブロック化することで、スルホン酸基密度が同じでもより高いレベルのプロトン伝導性が得られ、結晶能においてもより高くなり耐久性との両立が図れるのではないかと着想した。 ここで、特許文献5、特許文献6にブロックポリマーの記載があるが、一般的なブロックポリマーの製法のとおりに、まず、疎水性セグメント(非イオン性領域)あるいは親水性セグメント(イオン性領域)のプレポリマーを単離させてブロック共重合の原料として使用している。特許文献5ではプレポリマーを単離する際に沈殿精製を行った旨が明記されており、特許文献6においてもプレポリマーを単離したのであれば、同様に沈殿精製という一般的手法を採ったものと考えられる。ここで、親水性セグメント(イオン性領域)のプレポリマーのイオン性基密度を高めた場合、共重合せずにブレンドされているだけのポリマーが水に溶出しやすく、燃料電池として使用する際に期待したプロトン伝導度が持続して得られない場合があると考えられる。
さて、特許文献4に開示されている芳香族炭化水素系電解質ポリマーは脱塩重縮合で合成されているので、単離精製時には、副生成物である塩を除去するため、重合溶液を多量の水に投入して沈殿精製を行い、乾燥後、再溶解して溶液製膜用塗液としている。
その際、水と接触しても、保護基(加水分解性可溶性付与基)の大部分は水のみとの接触だけでは加水分解されにくく、ポリマーの可溶性を維持するレベルの保護基(加水分解性可溶性付与基)は残存するが、どうしても部分的に脱保護(加水分解)が進行し、溶解性に劣るゲル状物が発生してしまうという課題があった。精製工程で生産性が低下するだけでなく、製膜工程においても膜の濁りや欠陥が発生しやすくなり、機械的特性ひいては長期耐久性を低下させる場合があった。また、乾燥工程においてもゲル状物は極めて大量の水分を含むので、乾燥時間が長くなるなど生産性が低下する。さらに、プレポリマーを単離する際にゲル状物が発生してしまうと、その後のブロック共重合時に悪影響を及ぼすと考えられる。
本発明は、高温低加湿下での発電特性と耐久性のバランスの優れた電解質膜を高品位に低コストで生産するという課題を解決するために、次のような手段を採用するものである。
すなわち、本発明は、ジオールモノマー類とジハライドモノマー類の脱塩重縮合によって得られる、加水分解性基およびイオン性基を含有するポリマーからなる膜状物を前駆体とする電解質膜の製造方法であって、下記工程を有することが特徴である。
(1)加水分解性基を有するジオールモノマーを20〜100モル%含むジオールモノマー類とジハライドモノマー類を、イオン性基を有するジオールモノマーおよびイオン性基を有するジハライドモノマーの合計含有量が0〜20モル%となるようにして、溶剤に溶解し、塩基性化合物と接触させて加熱脱水する工程
(2)前記加熱脱水工程(1)の脱水量が量論値の50%に到達後にジオールモノマー類とイオン性基を有するジハライドを20〜100モル%含むジハライド類を、イオン性基を有するジオールモノマーおよびイオン性基を有するジハライドモノマーの合計含有量が10〜100モル%となるようにしてさらに添加し、加熱脱水する工程
(3)前記加熱脱水工程(2)後のポリマー溶液を、直接遠心分離法で固液分離する工程
(4)前記固液分離工程(3)後のポリマー溶液を基材上に流延塗工し、溶媒を加熱蒸発することにより膜状物とする工程
(5)前記膜状物を前駆体とし、酸性水溶液と接触させて電解質膜とする工程
また、本発明の別の態様(第2の態様)としては、下記工程を有することが特徴である。
(1)ジオールモノマー類とイオン性基を有するジハライドを20〜100モル%含むジハライド類を、イオン性基を有するジオールモノマーおよびイオン性基を有するジハライドモノマーの合計含有量が10〜100モル%となるようにして、溶剤に溶解し、塩基性化合物と接触させて加熱脱水する工程
(2)前記加熱脱水工程(1)の脱水量が量論値の50%に到達後に加水分解性基を有するジオールモノマーを20〜100モル%含むジオールモノマー類とジハライドモノマー類を、イオン性基を有するジオールモノマーおよびイオン性基を有するジハライドモノマーの合計含有量が0〜20モル%となるようにしてさらに添加し、加熱脱水する工程
(3)前記加熱脱水工程(2)後のポリマー溶液を、直接遠心分離法で固液分離する工程
(4)前記固液分離工程(3)後のポリマー溶液を基材上に流延塗工し、溶媒を加熱蒸発することにより膜状物とする工程
(5)前記膜状物を前駆体とし、酸性水溶液と接触させて電解質膜とする工程
さらには、本発明の別の態様(第3の態様)としては、下記工程を有することが特徴である。
(1)加水分解性基を有するジオールモノマーを20〜100モル%含むジオールモノマー類とジハライドモノマー類を、イオン性基を有するジオールモノマーおよびイオン性基を有するジハライドモノマーの合計含有量が0〜20モル%となるようにして、溶剤に溶解し、塩基性化合物と接触させて加熱脱水する工程
(2)ジオールモノマー類とイオン性基を有するジハライド20〜100モル%を含むジハライド類を、イオン性基を有するジオールモノマーおよびイオン性基を有するジハライドモノマーの合計含有量が10〜100モル%となるようにして、溶剤に溶解し、塩基性化合物と接触できる状態で加熱脱水する工程
(3)前記加熱脱水工程(1)の溶液および前記加熱脱水工程(2)の溶液を、いずれかの脱水量が量論値の50%に到達後に、直接混合し、加熱脱水する工程
(4)前記加熱脱水工程(3)後のポリマー溶液を、直接遠心分離法で固液分離する工程
(5)前記固液分離工程(4)後のポリマー溶液を基材上に流延塗工し、溶媒を加熱蒸発することにより膜状物とする工程
(6)前記膜状物を前駆体とし、酸性水溶液と接触させて電解質膜とする工程
本発明によれば、高品位でかつプロトン伝導性と耐久性が向上した電解質膜の製造方法を提供でき、特に、本発明によって得られた電解質膜を使用した固体高分子型燃料電池は、80℃以上の高温で相対湿度60%以下の高温低加湿条件下でも高出力が得られ、発電を伴う電解質膜の湿潤と開回路状態での乾燥を繰り返す耐久性試験(乾湿サイクル試験)で優れた耐久性を示す。
以下、本発明について詳細に説明する。
本発明は、前記課題、つまり、高温低加湿条件下においても優れたプロトン伝導性を有し、なおかつ耐久性に優れる電解質膜の製造方法である。特に、固体高分子型燃料電池としたときに80℃以上の高温で相対湿度60%以下の高温低加湿条件下でも高出力が得られ、発電を伴う電解質膜の湿潤と開回路状態での乾燥を繰り返す耐久性試験(乾湿サイクル試験)で優れた耐久性を達成することができる高品位な電解質膜の生産性に優れた製造方法をについて鋭意検討し、(1)プロトン伝導機能を主に担うポリマーユニットと(2)機械的強度など耐久性に関連する機能を主に担うポリマーユニットを重合時から意図的に分離した機能分離構造を有する電解質膜を安定して効率的に製造できる発明に成功した。
特に機械的強度など耐久性に関連する機能を主に担うポリマーユニットの結晶化能または結晶化率が電解質膜の耐久性能を大きく左右すると考え、該ポリマーユニットを安定的に形成する重合方法および精製、製膜方法を発明したことにより、プロトン伝導性機能を主に担うポリマーユニットのスルホン酸基密度の向上が可能となり、プロトン伝導性と耐久性に極めて優れた電解質膜が製造できる。
本発明の電解質膜の製造方法は、ジオールモノマー類とジハライドモノマー類の脱塩重縮合によって得られる、加水分解性基およびイオン性基を含有するポリマーからなる膜状物を前駆体とする電解質膜の製造方法である。
本発明の電解質膜の製造法に適用できるポリマーは、ジオールモノマー類とジハライドモノマー類の脱塩重縮合によって得られる、加水分解性基およびイオン性基を含有するポリマーであれば、特に限定されるものではないが、機械強度、物理的耐久性および化学的安定性などの点から、炭化水素系ポリマーが好ましく、中でも主鎖に芳香環を有するポリマーがさらに好ましい。主鎖構造は例えばエンジニアリングプラスチックとして使用されるような十分な機械強度、物理的耐久性を有するものが好ましい。
具体例としては、ポリスルホン、ポリエーテルスルホン、ポリフェニレンオキシド、ポリアリーレンエーテル系ポリマー、ポリフェニレンスルフィド、ポリフェニレンスルフィドスルホン、ポリパラフェニレン、ポリアリーレン系ポリマー、ポリアリーレンケトン、ポリエーテルケトン、ポリアリーレンホスフィンホキシド、ポリエーテルホスフィンホキシド、ポリベンズオキサゾール、ポリベンズチアゾール、ポリベンズイミダゾール、ポリアミド、ポリイミド、ポリエーテルイミド、ポリイミドスルホン等の構成成分の少なくとも1種を含むポリマーが挙げられる。
なお、ここでいうポリスルホン、ポリエーテルスルホン、ポリエーテルケトン等は、その分子鎖にスルホン結合、エーテル結合、ケトン結合を有しているポリマーの総称であり、ポリエーテルケトンケトン、ポリエーテルエーテルケトン、ポリエーテルエーテルケトンケトン、ポリエーテルケトンエーテルケトンケトン、ポリエーテルケトンスルホンなどを含むとともに、特定のポリマー構造を限定するものではない。
前記ポリマーのなかでも、ポリエーテルケトン、ポリエーテルケトンスルホン等のポリマーが、機械強度、物理的耐久性、加工性および耐加水分解性の面からより好ましい。
本発明のジオールモノマー類とジハライドモノマー類の脱塩重縮合は、実質的に十分な高分子量化が可能な方法であれば特に限定されるものではない。ジオールモノマーとは重合可能な複数のヒドロキシ基を有し、特に限定されるものではない。例えば各種芳香族ジヒドロキシ化合物が挙げられ、また、これらの芳香族ジヒドロキシ化合物にスルホン酸基が導入されたものをモノマーとして用いることもできる。芳香族ジヒドロキシ化合物の好適な具体例としては、下記一般式(X−1)〜(X−29)で示される基を例示できる。ここではヒドロキシ基は省略しており、nおよびmは1以上の整数、Rpは任意の有機基を表す。
Figure 2011026565
Figure 2011026565
Figure 2011026565
これらは置換基ならびにイオン性基を有していてもよい。側鎖に芳香環を有するものも好ましい具体例である。また、これらは必要に応じて併用することも可能である。
なかでも、結晶性、寸法安定性や機械強度の観点から、一般式(X−1)〜(X−9)で示される基がより好ましく、さらに好ましくは最も好ましくは一般式(X−1)〜(X−5)で示される基、最も好ましくは一般式(X−2)または(X−3)で示される基である。
ジハライドモノマーは重合可能な塩素、臭素、フッ素などのハロゲンを有し、芳香族活性ジハライド化合物が機械的強度や耐久性の観点から好ましい例として挙げられる。本発明の脱塩重縮合に使用するモノマー類は、例えば芳香族活性ジハライド化合物と芳香族ジヒドロキシ化合物の芳香族求核置換反応、またはハロゲン化芳香族フェノール化合物の芳香族求核置換反応を利用して合成することができることが好ましい。
芳香族活性ジハライド化合物のより好適な具体例としては、4,4’−ジクロロジフェニルスルホン、4,4’−ジフルオロジフェニルスルホン、4,4’−ジクロロジフェニルケトン、4,4’−ジフルオロジフェニルケトン、4,4’−ジクロロジフェニルフェニルホスフィンオキシド、4,4’−ジフルオロジフェニルフェニルホスフィンオキシド、2,6−ジクロロベンゾニトリル、2,6−ジフルオロベンゾニトリル、等を挙げることができる。中でも4,4’−ジクロロジフェニルケトン、4,4’−ジフルオロジフェニルケトンが結晶性付与、機械強度や物理的耐久性、耐水性、対メタノール性、燃料クロスオーバー抑制効果の点からより好ましく、重合活性の点から4,4’−ジフルオロジフェニルケトンが最も好ましい。これら芳香族活性ジハライド化合物は、単独で使用することができるが、複数の芳香族活性ジハライド化合物を併用することも可能である。
また、ジオールやジハライドモノマーの代わりにハロゲン化芳香族ヒドロキシ化合物の仕様も特に制限されることはない。具体的には、4−ヒドロキシ−4’−クロロベンゾフェノン、4−ヒドロキシ−4’−フルオロベンゾフェノン、4−ヒドロキシ−4’−クロロジフェニルスルホン、4−ヒドロキシ−4’−フルオロジフェニルスルホン、4−(4’−ヒドロキシビフェニル)(4−クロロフェニル)スルホン、4−(4’−ヒドロキシビフェニル)(4−フルオロフェニル)スルホン、4−(4’−ヒドロキシビフェニル)(4−クロロフェニル)ケトン、4−(4’−ヒドロキシビフェニル)(4−フルオロフェニル)ケトン、等を例として挙げることができる。これらは、単独で使用することができるほか、2種以上の混合物として使用することもできる。さらに、活性化ジハロゲン化芳香族化合物と芳香族ジヒドロキシ化合物の反応においてこれらのハロゲン化芳香族ヒドロキシ化合物を共に反応する場合は高分子量化の観点から有効である。
本発明の電解質膜の製造方法では、加水分解性基を含有するポリマーを前駆体として使用するが、本発明中の加水分解性基とは、加水分解性基が導入されていない場合に溶媒に溶解困難なポリマーに導入し、後の工程で加水分解によって除去することを前提に、溶液製膜や濾過が容易に実施できるように一時的に導入する可溶性付与を目的とした置換基である。加水分解性基は反応性や収率、加水分解性基含有状態の安定性、製造コスト等を考慮して適宜選択することが可能である。また、重合反応において加水分解性基を導入する段階としては、モノマー段階からでも、オリゴマー段階からでも、ポリマー段階でもよく、適宜選択することが可能であるが、生産性の観点からモノマー段階で導入するのが好ましい。
加水分解性基の活用例は、最終的にはケトンとなる部位をアセタールまたはケタール部位に変形し加水分解性基とし、溶液製膜後にこの部位を加水分解しケトン部位に変化させる方法を挙げることができる。また、ケトン部位をアセタールまたはケタール部位のヘテロ原子類似体、例えばチオアセタールやチオケタールとする方法が挙げられる。また、スルホン酸を可溶性エステル誘導体とする方法や、芳香環に可溶性基としてt−ブチル基を導入し、酸で脱t−ブチル化する方法等も同様な思想で用いることが可能であるが、後述の結晶能を付与する観点から、最終的にはケトンとなる部位をケタール部位に変形し加水分解性基とすることが好ましい。
加水分解性基は、一般的な溶剤に対する溶解性を向上させ、結晶性を低減する観点から、立体障害が大きいという点で脂肪族基、特に環状部分を含む脂肪族基が好ましく用いられる。
加水分解性基を導入する官能基の位置としては、ポリマーの主鎖であることがより好ましい。主鎖に導入することで加水分解性基導入時と加水分解後に安定な基に変化させた後の状態の差が大きく、ポリマー鎖のパッキングが強くなり、溶媒可溶性から不溶性に変化し、機械的強度や耐水性が強くなる傾向にある。ここで、ポリマーの主鎖に存在する官能基とは、その官能基を削除した場合にポリマー鎖が切れてしまう官能基と定義する。例えば、芳香族ポリエーテルケトンのケトン基を削除するとベンゼン環とベンゼン環が切れてしまうことを意味するものである。
本発明の電解質膜の製造方法において、加水分解性基を含む構成単位として、より好ましくは下記一般式(P3)および(P4)から選ばれる少なくとも1種を含有するものである。
Figure 2011026565
(式(P3)および(P4)において、Ar〜Arは任意の2価のアリーレン基、RおよびRはHおよびアルキル基から選ばれた少なくとも1種の基、Rは任意のアルキレン基、EはOまたはSを表し、それぞれが2種類以上の基を表しても良い。式(P3)および(P4)で表される基は任意に置換されていてもよい。)
なかでも、化合物の臭いや反応性、安定性等の点で、前記一般式(P3)および(P4)において、EがOである、すなわち、ケトン部位をケタール部位とする方法が最も好ましい。
一般式(P3)中のRおよびRとしては、安定性の点でアルキル基であることがより好ましく、さらに好ましくは炭素数1〜6のアルキル基、最も好ましく炭素数1〜3のアルキル基である。また、一般式(P4)中のRとしては、安定性の点で炭素数1〜7のアルキレン基であることがより好ましく、最も好ましくは炭素数1〜4のアルキレン基である。Rの具体例としては、−CHCH−、−CH(CH )CH −、−CH(CH)CH(CH)−、−C(CH3 )CH −、−C(CH CH(CH)−、−C(CHO(CH−、−CHCHCH −、−CHC(CHCH−等があげられるが、これらに限定されるものではない。
前記一般式(P3)または(P4)構成単位のなかでも、工程中の耐加水分解性などの安定性、溶媒への溶解性の点から少なくとも前記一般式(P4)を有するものがより好ましく用いられる。さらに、前記一般式(P4)のRとしては炭素数1〜7のアルキレン基、すなわち、Cn12n1(n1は1〜7の整数)で表される基であることが好ましく、安定性、合成の容易さの点から−CHCH−、−CH(CH )CH −、または−CHCHCH−から選ばれた少なくとも1種であることが最も好ましい。
前記一般式(P3)および(P4)中のAr〜Arとして好ましい有機基は、フェニレン基、ナフチレン基、またはビフェニレン基である。これらは任意に置換されていてもよい。本発明では、溶解性および原料入手の容易さから、前記一般式(P4)中のArおよびArが共にフェニレン基であることがより好ましく、最も好ましくはArおよびArが共にp−フェニレン基である。
本発明において、ケトン部位をケタール等の加水分解性基する方法としては、ケトン基を有する前駆体化合物を、酸触媒存在下で1官能および/または2官能アルコールと反応させる方法が挙げられる。例えば、ケトン前駆体の4,4’−ジヒドロキシベンゾフェノンと1官能および/または2官能アルコール、脂肪族又は芳香族炭化水素などの溶媒中で臭化水素などの酸触媒の存在下で反応させることによって製造できる。アルコールは炭素数1〜20の脂肪族アルコールである。
本発明の電解質膜の製造方法に適用するモノマーのうち加水分解性基を有することが好ましい例としては、芳香族ジヒドロキシ化合物としてそれぞれ下記一般式(P3−1)および(P4−1)で表される化合物が挙げられ、芳香族活性ジハライド化合物との芳香族求核置換反応により合成することが可能である。加水分解性基を有するモノマーは前記一般式(P3)および(P4)で表される構成単位が芳香族ジヒドロキシ化合物、芳香族活性ジハライド化合物のどちら側由来でも構わないが、モノマーの反応性を考慮して芳香族ジヒドロキシ化合物由来とする方がより好ましい。
Figure 2011026565
(一般式(P3−1)および(P4−1)において、Ar1〜Ar4は任意の2価のアリーレン基、RおよびRはHおよびアルキル基から選ばれた少なくとも1種の基、Rは任意のアルキレン基、EはOまたはSを表す。一般式(P3−1)および一般式(P4−1)で表される化合物は任意に置換されていてもよい。)
本発明に使用する、特に好ましい加水分解性基を有する芳香族ジヒドロキシ化合物の具体例としては、下記一般式(r1)〜(r10)で表される化合物、並びにこれらの化合物由来の誘導体を挙げることができる。
Figure 2011026565
これら芳香族ジヒドロキシ化合物のなかでも、安定性の点から一般式(r4)〜(r10)で表される化合物がより好ましく、さらに好ましくは一般式(r4)、(r5)および(r9)で表される化合物、最も好ましくは一般式(r4)で表される化合物である。
本発明の製造方法は、特に結晶化可能な性質(本明細書中では結晶能と称することがある)を有するポリマーへの適用が効果的である。本発明において、「結晶能」とはポリマーが昇温すると結晶化されうる、結晶化可能な性質を有する、あるいは既に結晶化していることを意味する。また、非晶性ポリマーとは、結晶性ポリマーではない、実質的に結晶化が進行しないポリマーを意味する。
本発明におけるポリマーの結晶性の有無、結晶と非晶の状態については、広角X線回折(XRD)における結晶由来のピークや示差走査熱量分析法(DSC)における結晶化ピーク等によって評価することができる。例えば、示差走査熱量分析法によって測定される結晶化熱量が0.1J/g以上あるいは広角X線回折によって測定される結晶化度が0.5%以上の電解質膜の製造に適している。
結晶能を有することにより、例えば高温水中、高温メタノール中での寸法変化(膨潤)が小さい、すなわち耐熱水性、耐熱メタノール性に優れた電解質膜が得られる。この寸法変化が小さい場合には、電解質膜として使用している途中に膜が破損しにくく、また、膨潤で電極触媒層と剥離しにくいため発電性能や耐久性が良好となる。特に、発電を伴う電解質膜の湿潤と開回路状態での乾燥を繰り返す耐久性試験(乾湿サイクル試験)で優れた耐久性を示す。
従って高いプロトン伝導性とこれら耐熱水性、耐熱メタノール性の特性のバランスは高分子電解質形燃料電池に使用される電解質膜に要求される重要な特性であり、本発明の電解質膜の製造方法によりはじめて工業的に使用できる電解質膜の製造が可能となる。
また、本発明の電解質膜の製造方法では、イオン性基を含有するポリマーの前駆体の膜状物を使用するが、本発明のイオン性基とは、負電荷を有する原子団であれば特に限定されるものではないが、プロトン交換能を有するものが好ましい。このような官能基としては、スルホン酸基、スルホンイミド基、硫酸基、ホスホン酸基、リン酸基、カルボン酸基が好ましく用いられる。かかるイオン性基は塩となっている場合を含むものとする。前記塩を形成するカチオンとしては、任意の金属カチオン、NR4+(Rは任意の有機基)等を例として挙げることができる。金属カチオンの場合、その価数等特に限定されるものではなく、使用することができる。好ましい金属イオンの具体例を挙げるとすれば、Li、Na、K、Rh、Mg、Ca、Sr、Ti、Al、Fe、Pt、Rh、Ru、Ir、Pd等が挙げられる。中でも、安価で、溶解性に悪影響を与えず、容易にプロトン置換可能なNa、Kがより好ましく使用される。
これらのイオン性基は前記ポリマー中に2種類以上含むことができ、組み合わせることにより好ましくなる場合がある。組み合わせはポリマーの構造などにより適宜決められる。中でも、高プロトン伝導度の点から少なくともスルホン酸基、スルホンイミド基、硫酸基を有することがより好ましく、耐加水分解性の点から少なくともスルホン酸基を有することが最も好ましい。
本発明が活用できるイオン性基の量は例えばスルホン酸基とした場合、スルホン酸基密度(mmol/g)の値として示すことができる。ここで、イオン性基密度とは、乾燥した高分子電解質材料1グラムあたりに導入されたイオン性基のモル数であり、値が大きいほどイオン性基の量が多いことを示す。イオン性基密度は、元素分析、中和滴定、キャピラリー電気泳動法により求めることが可能である。
本発明のイオン性基を有する電解質には本発明の目的を阻害しない範囲において、他の成分、例えば導電性若しくはイオン伝導性を有さない不活性なポリマーや有機あるいは無機の化合物が含有されていても構わない。
本発明の電解質膜の製造方法に使用するポリマーに対してイオン性基を導入する方法は、イオン性基を有するモノマーを用いて重合する方法が必須であるが、高分子反応でイオン性基を導入する方法を組み合わせてもよい。
また、イオン性基は例えばスルホン酸基を例に挙げると−SO3H型でも−SO3M型(Mは金属)でもよいが、溶媒の一部を除去して、基材上に膜状物を得る工程を含む本発明の場合は−SO3M型(Mは金属)が好ましい。溶媒乾燥時に熱安定性の点と、製造設備のコスト低減が可能となる。前記の金属Mはスルホン酸と塩を形成しうるものであればよいが、価格および環境負荷の点からはLi、Na、K、Rb、Cs、Mg、Ca、Sr、Ba、Ti、V、Mn、Fe、Co、Ni、Cu、Zn、Zr、Mo、Wなどが好ましく、これらの中でもLi、Na、K、Ca、Sr、Baがより好ましく、Li、Na、Kがさらに好ましい。
本発明の電解質膜の製造方法が適用できるポリマーの平均スルホン酸基密度は、プロトン伝導性および耐久性の点から0.5〜5mmol/gが好ましく、より好ましくは1.0〜3mmol/g、最も好ましくは1.5〜2.5mmol/gである。スルホン酸基密度を0.5mmol/g以上とすることにより、伝導度すなわち出力性能を維持することができ、また5mmol/g以下とすることで、燃料電池用電解質膜として使用する際に、十分な含水時の機械強度、長期耐久性を得ることができる。
次に、本発明の電解質膜の製造方法は下記工程を有することが必須であるので詳細に説明する。
(1)加水分解性基を有するジオールモノマーを20〜100モル%含むジオールモノマー類とジハライドモノマー類を、イオン性基を有するジオールモノマーおよびイオン性基を有するジハライドモノマーの合計含有量が0〜20モル%となるようにして、溶剤に溶解し、塩基性化合物と接触させて加熱脱水する工程
(2)前記加熱脱水工程(1)の脱水量が量論値の50%に到達後にジオールモノマー類とイオン性基を有するジハライドを20〜100モル%含むジハライド類を、イオン性基を有するジオールモノマーおよびイオン性基を有するジハライドモノマーの合計含有量が10〜100モル%となるようにしてさらに添加し、加熱脱水する工程
(3)前記加熱脱水工程(2)後のポリマー溶液を、直接遠心分離法で固液分離する工程
(4)前記固液分離工程(3)後のポリマー溶液を基材上に流延塗工し、溶媒を加熱蒸発することにより膜状物とする工程
(5)前記膜状物を前駆体とし、酸性水溶液と接触させて電解質膜とする工程
工程(1)は耐久性に関連する機能を主に担うポリマー構造を形成する目的で実施する。加水分解性基を有するジオールモノマーの加水分解性基およびジオールは前述のとおりである。
ジオールモノマー類の内、加水分解性基を有するジオールモノマーを20〜100モル%含有することが必要であり、20モル%以上含有することで、結晶能が高く通常では溶剤に溶解困難なポリマーでも、前駆体ポリマーとして溶媒に可溶化でき、膜状に加工するのが容易となる。好ましくは40モル%以上、より好ましくは60モル%以上である。加水分解性基を有するジオールモノマー以外のモノマーはジハライドモノマー類と重合可能であれば特に限定されない。電解質膜として結晶能を付与する場合は、4,4’-ジヒドロキシベンゾフェノンなどが好ましい。
工程(1)のジハライドモノマーとしては特に限定されず、ジオールモノマーと重合できればよい。また、この工程(1)ではイオン性基を有するジオールモノマーおよびイオン性基を有するジハライドモノマーの合計含有量が0〜20モル%である必要がある。20モル%以下の含有量とすることで、結晶能を阻害せずに、最終的な電解質膜としたときの耐久性を向上することができる。好ましくは10モル%以下で使用しないことがより好ましい。
また、工程(1)はモノマー類を溶剤に溶解し、塩基性化合物と接触させて加熱脱水する必要がある。重縮合反応は、溶媒中で行うことが高分子量化の観点から必要である。使用できる溶媒としては、モノマー類を溶解できれば特に限定されないが、完全に溶解困難であっても一部溶解した状態であれば差し支えない。具体的な溶剤としてはN,N−ジメチルアセトアミド、N,N−ジメチルホルムアミド、N−メチル−2−ピロリドン、ジメチルスルホキシド、スルホラン、1,3−ジメチル−2−イミダゾリジノン、ヘキサメチルホスホントリアミド等の非プロトン性極性溶媒などを挙げることができるが、これらに限定されることはなく、安定な溶媒として使用できるものであればよい。これらの有機溶媒は、単独でも2種以上の混合物として使用してもよい。
塩基性化合物としては、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、炭酸カリウム、炭酸水素ナトリウム、炭酸水素カリウム等があげられるが、例えば芳香族ジオール類を活性なフェノキシド構造にし得るものであれば、これらに限定されず使用することができる。
モノマー類と塩基性化合物の接触は通常公知の方法が使用できるが、攪拌機を備えた反応容器内で攪拌翼により攪拌接触させることが挙げられる。塩基性化合物が溶剤に溶解しない場合は、攪拌速度を高くしたり、攪拌翼の形状を乱流が起こるように工夫したり、反応容器の一部に塩基性化合物が滞留しないように工夫したりするのが好ましい。また、超音波やスクリュー方式も利用でき、局部的に高速回転可能なミキサーなどを設置してもよい。
また、本発明の電解質膜の製造方法の工程(1)では、重合時の副生物として生成する水およびモノマーやその他原料に含まれる水を加熱脱水することが必要である。この方法としては、重合溶媒とは関係なく、トルエンなど水と共沸可能な共沸剤を反応系に共存させて共沸物として水を系外に除去することが好ましい。水を除去するのに用いられる共沸剤は、一般に、重合を実質上妨害せず、水と共蒸留し且つ約25℃〜約250℃の間で沸騰する任意の不活性化合物である。共沸剤としては、ベンゼン、トルエン、キシレン、クロルベンゼン、塩化メチレン、ジクロルベンゼン、トリクロルベンゼンなどが挙げられる。共沸剤の沸点は用いた極性溶媒の沸点よりも低い方がこのましい。共沸剤を使用しない場合は、高い反応温度、例えば200℃以上の温度が用いられるとき、特に反応混合物に不活性ガスを連続的に散布させるときが挙げられる。また、高温時の酸化劣化を防止するため、一般には、重合反応は不活性雰囲気下で行うことが好ましく、酸素が存在しない状態で実施するのが望ましい。
モノマー類の溶液と塩基性化合物を通常公知の方法で混合し、加熱することによって反応が進行するが、工程(1)での加熱温度は、0〜250℃が好ましく、100〜200℃がより好ましい。0℃より低い場合には、十分に反応が進まない傾向にあり、250℃より高い場合には、モノマーの分解が起こる。
工程(1)のモノマー類の濃度として5〜70重量%となるように仕込むことが好ましい。5重量%以下では、重合度が上がりにくい傾向があり、所望の分子量まで長時間を要する。一方、70重量%よりも多い場合には、反応物が析出する傾向がある、作業性に劣る。
次に工程(2)の説明であるが、この工程は工程(1)で耐久性に関連する機能を主に担うポリマー構造を形成した反応容器に、直接、プロトン伝導機能を主に担うポリマーユニットを形成するモノマー類を滴下し重合を継続する工程である。プロトン伝導機能を高めるためにはより親水性の高いポリマー構造とし、スルホン酸基などのイオン性基の密度を局部的に高めることが好ましいため、イオン性基を含有するモノマー類を使用することが特徴である。この工程で使用するジオールモノマーはジハライド類と重合すれば特に制限はなく、電解質膜としての機械的強度の観点から芳香族ジヒドロキシ化合物に代表されるジオールモノマー類が好ましい。詳細は前述のとおりであり、加水分解性基を含有してもイオン性基を含有していてもよいし、両方含有していなくてもよい。
イオン性基を有するジハライドは、芳香族活性ジハライド化合物にイオン酸基を導入した化合物をモノマーとして用いることが、イオン性基の量の精密制御が可能なことから好ましい。イオン性基としてコスト、取り扱いの容易さの観点からスルホン酸基が好ましく、イオン性基を有するジハライドモノマーの好適な具体例としては、3,3’−ジスルホネート−4,4’−ジクロロジフェニルスルホン、3,3’−ジスルホネート−4,4’−ジフルオロジフェニルスルホン、3,3’−ジスルホネート−4,4’−ジクロロジフェニルケトン、3,3’−ジスルホネート−4,4’−ジフルオロジフェニルケトン、3,3’−ジスルホネート−4,4’−ジクロロジフェニルフェニルホスフィンオキシド、3,3’−ジスルホネート−4,4’−ジフルオロジフェニルフェニルホスフィンオキシド、等を挙げることができるが、これらに限定されるものではない。
プロトン伝導度および耐加水分解性の点からイオン性基としてはスルホン酸基が最も好ましいが、本発明に使用されるイオン性基を有するモノマーは他のイオン性基を有していても構わない。なかでもプロトン伝導性と耐久性の観点から3,3’−ジスルホネート−4,4’−ジクロロジフェニルケトン、3,3’−ジスルホネート−4,4’−ジフルオロジフェニルケトンがより好ましく、重合活性の点から3,3’−ジスルホネート−4,4’−ジフルオロジフェニルケトンが最も好ましい。
また、この工程(2)ではジハライド類の内、イオン性基を有するジハライドとして20〜100モル%含む必要があるが、20モル%以上含むことで、電解質膜とした場合、十分なプロトン伝導性が得られる。好ましくは40モル%以上、より好ましくは60モル%以上であり、95モル%以上イオン性基を有するジハライドも非常に好ましい。
また、工程(1)と同様にモノマー類を溶剤に溶解することが安定したポリマーを得るために必要であり、溶剤は前述の工程(1)と同様のものが使用できる。また、イオン性基を有するジハライドの他にイオン性基を有するジオールを含んでもよいが、イオン性基を有するモノマー類が溶剤に溶解困難な場合は、1,4,7,10,13,17-ヘキサオキサシクロオクタデカンなどの添加が好ましく、イオン性基を有するモノマー類を溶剤に溶解して使用することが、電解質膜のイオン性基密度を制御する観点から非常に好ましい。特にイオン性基としてスルホン酸基末端がNaやKに置換されたジハライドモノマーおよびジオールモノマー等を使用し、N−メチル−2−ピロリドンを溶媒、トルエンを共沸剤に使用する場合、1,4,7,10,13,17-ヘキサオキサシクロオクタデカンのモノマー溶解効果が顕著であり好ましく使用できる。
本発明では工程(2)で溶剤に溶解したモノマー類の溶液は、工程(1)の脱水量が量論値の50%以上になった時点で混合する必要がある。本発明における脱水量の量論値とは各工程におけるジオールモノマー類の合計モル数と水の分子量18との積とする。
混合のタイミングとして、脱水量が量論値の50%以上であれば、先に耐久性に関連する機能を主に担うポリマーユニットが形成しており、機能分離型の電解質膜が効率よく製造可能となる。混合のタイミングとしては、脱水量の量論値の80%以上が好ましく、100%以上が耐久性に関連する機能を主に担うポリマーユニットの結晶能が高くなりさらに好ましい。また、脱水量が量論値の100%以上になるのは、溶剤等の材料に少なからず水分が含まれているためである。すなわち材料の含水分も除去したほうが好ましく、仕込み時の原料の含水量はできる限り少ないほうが重合時間短縮の観点から好ましい。
工程(1)に工程(2)のモノマー類を混合する段階の工程(1)のポリマーの分子量は最終的な電解質膜としての機能分離構造を形成させる観点から3000〜100000が好ましい。ここでの分子量はGPC測定によるスチレン換算の重量平均分子量である。
工程(1)に工程(2)のモノマー類を混合した後は、工程(2)のモノマー類の反応による生成水や工程(1)の残りの反応による生成水や溶媒等の含水により持ち込まれた水分の加熱脱水を継続する工程が必要である。この時、塩基性化合物は、工程(2)のモノマー類と混合しスラリー状で追加しても良いが、あらかじめ工程(1)の段階で、工程(2)で追加するジオール類の反応に必要な量を仕込んでおくことが、生産性の観点から好ましい。塩基性化合物は通常、有機溶剤への溶解性が低く、スラリー状になる傾向にあり、反応途中の追加は、作業性が劣るだけでなく、混合作業時に仕込み組成がずれ、分子量が伸びない原因となる場合がある。
塩基性化合物とモノマー類の接触の機会を増加させるために塩基性化合物の微細化は好ましい方法であり、平均粒子径は50μm以下がよく、好ましくは10μm以下である。反応性の低いモノマーを使用する場合は、平均粒子径1μm以下が好ましく、重合溶媒を使用したスラリー状で用いることが作業性の観点から好ましい。また該スラリーの分散安定性が不十分な場合は、重合するポリマー成分と同じ構造を有するポリマーで増粘させたり、分散安定剤を添加することができる。
また、工程(2)のモノマー溶液を工程(1)の反応液と混合する方法は通常公知の方法が適用でき、空気などが混入しないように滴下用容器に工程(2)のモノマー溶液類をあらかじめ仕込み滴下する方法や、ポンプなどで送液する方法、圧力容器等から圧送する方法が挙げられる。
すべてのモノマーを混合した後は通常公知の方法で重縮合を進行させ高分子量化することが好ましい。重合は、100〜350℃の温度範囲で行うことができるが、150〜250℃の温度であることが好ましい。100℃より低い場合には、十分に反応が進まない傾向にあり、250℃より高い場合には、ポリマーの分解も起こり始める傾向がある。
例えば溶剤としてN−メチル−2−ピロリドン、共沸剤としてトルエン、塩基性化合物として炭酸カリウムを使用する場合、すべてのモノマーに相当する量論値の脱水が完了するまでは共沸剤で脱水を継続することが好ましく、ポリマーの分解や重合活性の失活を防止するため180℃以下で脱水反応を行うことが好ましい。また、脱水量だけでは反応による生成水由来か材料の含水分由来かの判断が難しい場合は、脱水反応にともなう炭酸ガスをモニターすることが非常に好ましく、安定した重合反応の制御が可能となる。炭酸ガスの発生がおさまるまで共沸剤で脱水を継続するのが好ましい。脱水完了後、共沸剤を除去し、さらに加熱してもよく、高分子量化の観点から195℃〜210℃の範囲に加熱することが好ましい。
このようにして得られるポリマーの分子量は、ポリスチレン換算重量平均分子量で、5万〜500万、好ましくは10万〜100万である。5万未満では、機械強度、物理的耐久性、耐溶剤性等が不十分となり、燃料電池に使用した場合、特に乾湿サイクル試験が不十分となる。一方、100万を超えると、溶液粘度が高く、加工性が不良になるなどの問題がある。
また、本発明は工程(3)に示すとおり加熱脱水工程後のポリマー溶液を、直接遠心分離法で固液分離する工程が必須である。つまり本発明の重縮合反応で副生成するKFやNaF等の塩類および残存した塩基性化合物、または溶媒に不溶の残存モノマーやゲル化物等とポリマー溶液とを効率よく固液分離することが高品位で高性能な電解質膜の製造にとって重要である。ここでの「直接」の意味は、塩類が可溶でポリマーが不溶な多量の溶剤、例えば水と接触させ水中にポリマーを析出させる方法をとらずに、重合液をそのまま遠心分離により固液分離するという意味である。この際、固液分離の効率化のためポリマーが可溶の溶媒等で希釈しても差し支えなく、遠心分離の前や後にフィルター濾過工程を入れてもよい。特に工程(4)の前にフィルター濾過を実施することは、電解質膜中の異物を除去する観点から好ましい。さらに、溶媒希釈または濃縮装置等で溶媒を除去し、塗工装置に適合した粘度に調整する工程を含むことが、高品位な電解質膜を得る観点から好ましい。
特に、この工程(3)によって、加水分解性基を有し、結晶能の高いポリマーユニットと高いプロトン伝導ユニットを含む機能分離型の電解質膜前駆体溶液を効率的に安定して精製することが可能となり本発明に大きく貢献した。もし従来の水中沈殿精製を適用した場合、加水分解性基の分解により結晶能を有する部分の一部が溶剤不溶となり、塗工するために溶媒に再溶解できない部分が生じやすく、さらに高いプロトン伝導ユニットは含水しやすいことから非常に膨潤しやすく作業性に極めて劣る。直接遠心分離で固液分離する方法を発明したことにより、これらの問題が解消でき、さらには再溶解作業がないため、製造工程上のポリマーの分子量の上限が高くでき耐久性の高い電解質膜が得ることができる。
本発明中の遠心分離は通常公知の方法が適用できる。塩分の除去の効率化の観点から重合溶液の粘度を調整することが好ましい。遠心分離を行う場合、重合溶液濃度は100ポイズ以下が好ましく、より好ましくは50ポイズ、さらに好ましくは10ポイズ以下である。100ポイズを越えると遠心効果が低く、長時間、高遠心力が必要で工業的な装置では遠心分離が困難である。遠心力は発生する塩とポリマー溶液の比重差や重合液の粘度、固形分、使用する装置など適宜実験的に決定できる。遠心力としては5000G以上、好ましくは10000G以上、より好ましくは20000G以上であり、ケーキの除去時以外は連続的に運転できる装置が工業的に好適である。
また遠心分離工程の前や後ろにフィルター濾過を実施してもよい。フィルター濾過も通常公知の方法が適用でき、重合溶液中から除きたい塩の大きさ、重合溶液の粘度などで条件を適宜決定でき、自然濾過、遠心濾過、減圧濾過、加圧濾過等通常公知の方法が採用でき、濾過対象液を加熱してもよい。フィルターについても特に制限はなく、金属メッシュ、セルロース系フィルター、ガラス繊維フィルター、メンブレンフィルター、濾布、濾過板など重合溶液の処理量や濾過装置に合わせて適宜選択できる。
また、塗工工程前に塗工用に適した粘度、固形分に調整するため、重合溶液を減圧蒸留や限外濾過により濃縮することも有用である。特に、遠心分離やフィルター濾過の効率化のために重合溶液の粘度調整を実施した場合は、濃縮することが好ましい。また、重合溶液を濃縮することにより塗工性が向上することもある。この濃縮は通常公知の方法が適用でき、攪拌機などを具備し溶媒が揮発することによる被膜発生を防止できる濃縮装置がより好ましく使用できる。また、濃縮により回収した溶媒は再利用することが生産性や環境保護の観点から好ましい。
本発明は、工程(4)に示すとおり、固液分離工程後のポリマー溶液を基材上に流延塗工し、溶媒を加熱蒸発することにより膜状物とする工程が必須である。
ポリマー溶液を塗工する基材としては通常公知の材料が使用できるが、ステンレスなどの
金属からなるエンドレスベルトまたはドラム、ポリエチレンフタレート、ポリイミドおよびポリスルホンなどのポリマーからなるフィルム、硝子板、剥離紙などが挙げられる。金属などは表面に鏡面処理を施したり、ポリマーフィルムなどは塗工面にコロナ処理を施したり、剥離処理をしたり、ロール状に連続塗工する場合は塗工面の裏に剥離処理を施し、巻き取った後に電解質膜と塗工基材の裏側が接着したりするのを防止することもできる。フィルム基材の場合、厚みは特に限定がないが、25μm〜200μm程度がハンドリングの観点から好ましい。
本発明のポリマーを膜状に加工する方法としては、ポリマー溶液をナイフコート、ダイレクトロールコート、グラビアコート、スプレーコート、刷毛塗り、ディップコート、ダイコート、バキュームダイコート、カーテンコート、フローコート、スピンコート、リバースコート、スクリーン印刷などで基材上に流延塗工する手法が適用できる。生産性の観点から基材の両面に流延塗工してもよい。
また、耐久性向上の観点から、流延塗工したポリマー溶液が含浸するように、塗工面が乾燥する前に、多孔質材料を貼り合わせることも好ましい。多孔質材料はプロトン伝導性を損なわないものであれば特に制限がなく使用可能である。多孔質材料の多孔質性の指標である空隙率は合成した高分子電解質のイオン性基密度によって適宜実験的に求められるが、得られた電解質膜のプロトン伝導性や、ポリマー溶液の充填の容易さの観点から50%以上が必要で、60%以上がより好ましい。空隙率が50%以上であれば、ポリマー溶液が多孔質材料の内部まで充填が容易となりプロトン伝導パスが電解質膜の厚み方向に連続的に形成されやすい。また空隙率は95%以下が好ましく、90%以下が好ましい。95%以下であれば製膜工程での作業性が良好となり、電解質膜の耐久性を向上することができる。多孔質材料の空隙率は、製膜工程の塗工速度、張力、製膜機の搬送方式のスペックにより適宜実験的に決めることができるが、張力による伸びや縦じわの発生および破断を防止する観点からも95%以下が好ましい。
多孔質材料の空隙率は多孔質材料を正方形に切り取り、一辺の長さL(cm)、重量W(g)、厚みD(cm)、を測定して、以下の式より求めることができる。
空隙率=100−100(W/ρ)/(L2 ×D)
上記式中のρは、延伸前のフィルム密度を示す。ρはJIS K7112(1980)のD法の密度勾配菅法にて求めた値を用いる。この時の密度勾配菅用液は、エタノールと水を用いる。
また、多孔質材料のガーレ透気度は、プロトン伝導性の観点から300sec/100cc以下である。200sec/100cc以下がより好ましく、100sec/100cc以下がさらに好ましい。ガーレ透気度が300sec/100ccを越えると多孔質材料の貫通孔性が低いことを示し、プロトン伝導性パスの形成が不十分となり電解質膜用としての使用に適していない。また、ガーレ透気度の下限は特に製膜工程で問題がなければ特に限定されないが、製膜工程の塗工速度、張力、製膜機の搬送方式のスペックにより適宜実験的に決めることができる。このガーレ透気度はJIS−P8117(1998年)に規定された方法に従って測定できる
多孔質材料の厚みは、目的とする電解質膜の膜厚により適宜決定できるが、1〜100μmであることが実用上好ましい。フィルム厚みが1μm未満では、製膜工程及び二次加工工程における張力よってフィルムが伸び、縦じわの発生や、破断する場合がある。また、100μmを越えると、プロトン伝導性が低下する場合がある。
多孔質材料の材質としてはプロトン伝導を遮断や妨害しないもので前記特性を満足すれば特に限定されない。耐熱性の観点や、物理的強度の補強効果を鑑みれば、脂肪族系高分子、芳香族系高分子または含フッ素高分子が好ましく使用される。脂肪族系高分子としては、例えばポリエチレン、ポリプロピレン、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリビニルアルコール、エチレン−ビニルアルコール共重合体等が挙げられるが、これらに限定されるものではない。なおここで言うポリエチレンとはポリエチレンの結晶構造を有するエチレン系のポリマーの総称であり、例えば直鎖状高密度ポリエチレン(HDPE)や低密度ポリエチレン(LDPE)の他に、エチレンと他のモノマーとの共重合体をも含み、具体的には直鎖状低密度ポリエチレン(LLDPE)と称されるエチレン、α−オレフィンとの共重合体や超高分子量ポリエチレンなどを含む。またここでいうポリプロピレンはポリプロピレンの結晶構造を有するプロピレン系のポリマーの総称であり、一般に使用されているプロピレン系ブロック共重合体、ランダム共重合体など(これらはエチレンや1−ブテンなどとの共重合体である)を含むものである。
芳香族系高分子としては、例えばポリフェニレンスルフィド、ポリエーテルスルホン、ポリスルフィドスルホン、ポリエチレンテレフタレート、ポリカーボネート、ポリイミド、ポリエーテルイミド、ポリエーテルケトン、ポリエーテルエーテルケトン、ポリフェニレンオキシド、芳香族ポリアミド、ポリアミドイミド等が挙げられる。さらに、セルロースやポリ乳酸も使用できる。
また、含フッ素高分子としては、分子内に炭素−フッ素結合を少なくとも1個有する熱可塑性樹脂が使用されるが、脂肪族系高分子の水素原子のすべてまたは大部分がフッ素原子によって置換された構造のものが好適に使用される。その具体例としては、例えばポリトリフルオロエチレン、ポリテトラフルオロエチレン、ポリクロロトリフルオロエチレン、ポリ(テトラフルオロエチレン−ヘキサフルオロプロピレン)、ポリ(テトラフルオロエチレン−ペルフルオロアルキルエーテル)、ポリフッ化ビニリデン等が挙げられるが、これらに限定されるものではない。なかでもポリテトラフルオロエチレン、ポリ(テトラフルオロエチレン−ヘキサフルオロプロピレン)が好ましく、特にポリテトラフルオロエチレンが好ましい。これらの多孔質材料は、単独で用いても、他の素材と組み合わせて用いてもよい。
多孔質材料として多孔質フィルムを選択する場合、電気化学的な安定性、コストの観点からポリエチレンやポリプロピレンに代表される脂肪族ポリオレフィンフィルムが好ましく、さらに本発明のポリマー溶液との浸透性および製膜工程や発電時の加熱に対する耐熱性の観点から二軸配向多孔質ポリプロピレンフィルムが特に好ましい。
脂肪族ポリオレフィンフィルムの孔形成手法は、一般に湿式法と乾式法に大別され、二軸配向多孔質ポリプロピレンフィルムの製造方法は特開2005−171230号公報や国際公開第07/046226号パンフレットに記載されている方法が利用できる。ポリプロピレンの溶融押出による未延伸シート作製時に結晶密度の低いβ晶(結晶密度:0.922g/cm3)を形成させ、これを延伸することにより結晶密度の高いα晶(結晶密度:0.936g/cm3 )に結晶転移させ、両者の結晶密度差により孔を形成させるβ晶法により、二軸延伸後の配向フィルムに多量の孔を低コストで形成できる。
この方法で得られた二軸配向多孔質ポリプロピレンフィルムが多孔質材料に適している理由は、空隙の状態が三次元網目となっており、高分子電解質溶液の浸透性が良好である点が挙げられる。従って、ポリマー溶液中の高分子電解質の濃度を10重量%以上に高めることができ、乾燥後に強靱な電解質膜が得られやすい。高分子電解質の濃度は高い方が好ましいが、含浸性の観点から10重量%〜50重量%の範囲に調整し、粘度は0.5〜10Pa・sの範囲が好ましい。
また、特許第1299979号公報(請求項1)に記載されているような、ポリオレフィンに被抽出物を添加、微分散させ、シート化した後に被抽出物を溶媒などにより抽出して孔を形成し、必要に応じて抽出前および/または後に延伸加工を行う工程を有する抽出法で得られた湿式法で得られた多孔質材料も使用可能である。また自己組織化によるハニカム状に開口した多孔質材料や炭酸カルシウムなどの造孔剤を添加し延伸により多孔質化したフィルムも使用可能である。
多孔質材料として多孔質フィルムの他に不織布や抄紙の使用も好ましい。その場合、不織布や抄紙は目付量20g/m以下の繊維が好ましい。目付量20g/m以下であれば、電解質膜の薄膜化が可能でありプロトン伝導性の観点から好ましく、繊維が厚み方向にはみ出し、表面欠陥による耐久性の低下が低減できる。好ましくは目付量15g/m以下であり、さらに好ましくは10g/m以下である。
また、多孔質材料を構成する繊維の平均繊維径は、15μm以下が耐久性向上の観点から好ましい。15μm以下であれば、電解質膜の表面から繊維がはみ出すことを低減できる。また平均繊維径の下限は特に制限がないが、0.1μm以上であれば、繊維間で形成される孔径が小さくなり過ぎてポリマー溶液の含浸性の低下や、プロトン伝導性が低下することを低減することができる。また、1μm以上15μm以下の繊維からなる不織布や抄紙では、目付量を低く設計すると、逆に繊維間の距離が広がり、最大孔径が大きくなり、膜厚方向でみると局所的に複合化されていない部分が生じる場合がある。その部分は、複合化高分子電解質膜の厚みによっては、電解質膜の劣化のトリガーとなる可能性があるので、この現象を防止する目的として、平均繊維径1μm以上15μm以下の不織布または抄紙体と1μm以下の繊維(ナノファイバー)とを複合化した、不織布や抄紙の使用も好ましい態様である。ナノファイバーの繊維径が1μm以下であれば、膜厚の増大によるプロトン伝導性の低下を抑制でき、膜厚方向に複合化されていない部分を低減することができ、0.5μm以下がさらに好ましい。
このナノファイバーの材質も特に制限はないが、電解質膜の製造時の耐溶剤性、耐酸性、耐水性の観点や燃料電池の発電時に発生する水に対する耐性の観点から選択でき、前述のフッ素系高分子やポリエーテルケトン、ポリエーテルエーテルケトン、ポリフェニレンスルフィド、ポリイミド、ポリアラミドなどからなることが好ましい。これらの材質は単一でも良いし、異なる材質の繊維の複合化でもよい。また、架橋構造をとっていてもよい。さらに、このナノファイバーはシリカやチタニアなどの比較的脆い無機繊維でも、平均径1μm以上15μm以下の不織布または抄紙体で機械的強度を保てるので使用できる。
このような設計の多孔質材料は面方向の乾湿寸法変化の抑制と吸水時の機械的強度の向上の役割を主に平均繊維系が1μm以上15μm以下の繊維に持たせ、厚み方向の乾湿寸法変化の抑制の役割を1μm以下のナノファイバーで持たせることで、さらなる耐久性向上ができる。
平均繊維径1μm以上15μm以下の不織布または抄紙体と1μm以下の繊維(ナノファイバー)とを複合化は、平均繊維径1μm以上15μm以下の不織布または抄紙体上に電解紡糸でナノファイバーを形成する方法が、目付量や繊維径の制御、生産性の観点から好ましい。電解紡糸は溶液電解紡糸法でも加熱溶融電解紡糸法でも適用可能であり、紡糸するポリマーの材質によって選択可能である。
また、不織布または抄紙体の材質が、電解質中のイオン性基と反応したりプロトンを捕捉したりして、プロトン伝導性を阻害するおそれがある材質については、複合化する前にあらかじめ、酸などで処理することも有効な手段である。
不織布や抄紙体を形成する繊維の形状は特に限定されないが、中空糸や多孔質繊維は保水性が向上し、低加湿下でのプロトン伝導性の向上が可能となる。また、繊維と繊維の交わる部分は接着している方が、乾湿での寸法変化の抑制効果が大きく、電解質膜製造時の作業性の観点から好ましい。
また、多孔質材料に無機微粒子や高分子微粒子を含有させることも好ましい。これらの粒子に保水性や耐ラジカル性を持たせることで、複合化高分子電解質膜のプロトン伝導性を損なうことなく、耐久性が向上できる。無機微粒子の材質としては白金やアルミナ、シリカ、セリア、チタン、ジルコニアなどが選択でき、高分子微粒子の材質はポリビニルアルコールやポリフェニレンスルフィドやポリアミドなどが挙げられ、表面に親水処理を施してもよい。多孔質材料中の無機微粒子や高分子微粒子の含有量は特に制限がないが、多孔質材料として強度を維持するためには50wt%以下が好ましい。
また、本発明においては流延塗工の前に架橋性化合物を添加してもよい。架橋性化合物は、加熱や紫外線、電子線などで進行するものであれば特に制限はないが、ポリマー溶液の安定性、プロトン伝導性の保持性、生産性の観点から下記一般式(M1)で示される基を有する架橋性化合物で架橋せしめることが好ましい。架橋することにより、燃料電池の発電時に生成する水に対する膨潤を抑制する効果が期待でき、湿潤時の機械的強度が向上し、耐久性の観点からより好ましくなる。
Figure 2011026565
(ここで、Rは水素、または任意の有機基である。)
例えば、芳香族炭化水素系ポリマーを高分子電解質材に用いる場合は、一般的にポリマーがラジカル耐性に優れるため、電子線やγ線といった放射線架橋では十分に内部まで架橋性しめることは難しいが、前記式(M1)で示される基を有する架橋性化合物で架橋は加熱処理で架橋が進行し、耐水性の優れた電解質膜を得ることができる。
ここでの架橋反応は架橋性化合物と電解質ポリマーとが共有結合やイオン結合することが好ましいが、架橋性化合物と電解質ポリマーが相互侵入網目構造をとるなどして、架橋と同じ耐水性向上効果があれば好ましく利用できる。
なかでも、工業的入手の容易さおよび反応効率の点から、前記Rとしては炭素数1〜20までのアルキル基、またはRCO基(Rは炭素数1〜20までのアルキル基を表す)がより好ましい。
本発明で使用される前記式(M1)で表される基を含有する架橋性化合物としては、たとえば、前記有機基(M1)を1つ有するものとしてML−26X、ML−24X、ML−236TMP、4−メチロール3M6C、ML−MC、ML−TBC(商品名、本州化学工業(株)製)等、2つ有するものとしてDM−BI25X−F、46DMOC、46DMOIPP、46DMOEP(商品名、旭有機材工業(株)製)、DML−MBPC、DML−MBOC、DML−OCHP、DML−PC、DML−PCHP、DML−PTBP、DML−34X、DML−EP、DML−POP、DML−OC、ジメチロール−Bis−C、ジメチロール−BisOC−P、DML−BisOC−Z、DML−BisOCHP−Z、DML−PFP、DML−PSBP、DML−MB25、DML−MTrisPC、DML−Bis25X−34XL、DML−Bis25X−PCHP(商品名、本州化学工業(株)製)、”ニカラック”MX−290(商品名、(株)三和ケミカル製)、2,6−ジメトキシメチル−4−t−ブチルフェノール、2,6−ジメトキシメチル−p−クレゾール、2,6−ジアセトキシメチル−p−クレゾール等、3つ有するものとしてTriML−P、TriML−35XL、TriML−TrisCR−HAP(商品名、本州化学工業(株)製)等、4つ有するものとしてTM−BIP−A(商品名、旭有機材工業(株)製)、TML−BP、TML−HQ、TML−pp−BPF、TML−BPA、TMOM−BP(商品名、本州化学工業(株)製)、”ニカラック”MX−280、”ニカラック”MX−270(商品名、(株)三和ケミカル製)等、6つ有するものとしてHML−TPPHBA、HML−TPHAP(商品名、本州化学工業(株)製)が挙げられる。これらのうち、本発明では架橋の点から、前記式(M1)で表される基を少なくとも2つ含有するものが好ましい。
中でも、工業的入手の容易さ、耐水性向上効果、イオン性基を有するポリマーとの相溶性の点から、下記に本発明で使用するのに特に好ましい架橋性化合物の構造を下記に示す。
Figure 2011026565
Figure 2011026565
Figure 2011026565
このような架橋性化合物はポリマー溶液に混合溶解させて使用することが好ましく、後述する溶媒除去時や工程(5)のプロトン交換後に加熱し架橋反応を促進することが、生産性の観点から好ましい。架橋性化合物の添加量としては、ポリマー100重量部に対して、好ましくは1から50重量部であり、さらに好ましくは3から40重量部の範囲である。添加量が1重量部未満であれば、架橋の効果が不十分となる場合があり、50重量部を越えるとプロトン伝導性あるいは機械強度が不十分となる場合がある。高分子電解質中に含まれる架橋性化合物の種類および添加量は、各種核磁気共鳴スペクトル(NMR)、赤外吸収スペクトル(IR)、熱分解ガスクロマトグラフ等により分析することができる。
基板上に塗工されたポリマー溶液の溶媒の除去方法は、基材の加熱、熱風、赤外線ヒーター、電磁誘導加熱などの加熱蒸発工程が設備的な汎用性、生産性の観点から好ましい。また、溶媒の一部を加熱蒸発後、ポリマーが溶解しない溶媒に接触させる湿式凝固法等の公知の方法も選択できる。また、膜状に加工する際、電解質膜中に溶剤や可塑剤等が残存していてもハンドリングができる程度の自立膜になっておれば差し支えない。
工程(4)で得られる電解質膜前駆体の膜厚としては特に制限がないが、通常3〜200μmのものが好適に使用される。実用に耐える膜の強度を得るには3μmより厚い方が好ましく、膜抵抗の低減つまり発電性能の向上のためには200μmより薄い方が好ましい。膜厚のより好ましい範囲は5〜100μm、さらに好ましい範囲は8〜50μmである。この膜厚は、塗工方法により種々の方法で制御できる。例えば、コンマコーターやダイレクトコーターで塗工する場合は、溶液濃度あるいは基板上への塗布厚により制御することができ、スリットダイコートでは吐出圧や口金のクリアランス、口金と基材のギャップなどで制御することができる。
さらに工程(5)に示すとおり前記膜状物を前駆体とし、酸性水溶液と接触させて電解質膜とする工程が必須である。イオン性基が金属塩の場合にはプロトン交換する目的と同時に、加水分解性基の加水分解も同じに達成できるため、生産効率の向上が可能である。酸性水溶液は反応促進のために加熱してもよい。酸性水溶液は硫酸、塩酸、硝酸、酢酸など特に限定されず、温度、濃度等は適宜実験的に選択可能である。生産性の観点から80℃以下の30重量%以下の硫酸水溶液を使用することが好ましい。
また、前の工程で微細な塩や残存モノマーが残存した場合、塩の部分が基点となり電解質膜の耐久性が低下する傾向にあるので、この工程により、膜中の水溶性の不純物、残存モノマー、溶媒なども除去可能である。
また、酸性水溶液と接触させる前にあらかじめ水や電解質膜が冒されない溶剤等で洗浄することも有効であり、1,4,7,10,13,17-ヘキサオキサシクロオクタデカンなどを使用した場合は、事前に前駆体膜から抽出することでリサイクルが容易となる。
また、酸性水溶液と接触させて電解質膜とした後、水洗して表面に酸性水溶液が残らないようにすることが好ましく、さらに保存のために乾燥してもよいし、水に浸漬させた状態で保存してもよい。
また、酸性水溶液と接触させる方法としては特に制限がないが、塗工基材から膜状物を剥離した状態で接触させてもよいし、基材ごと膜状物を接触させてもよい。また、任意のサイズにカットして枚葉で酸性水溶液と接触させてもよいし、ロール状で連続的に酸性水溶液と接触させてもよい。
本発明の別の態様(第2の態様)としては、下記工程を有することが特徴である。
(1)ジオールモノマー類とイオン性基を有するジハライドを20〜100モル%含むジハライド類を、イオン性基を有するジオールモノマーおよびイオン性基を有するジハライドモノマーの合計含有量が10〜100モル%となるようにして、溶剤に溶解し、塩基性化合物と接触させて加熱脱水する工程
(2)前記加熱脱水工程(1)の脱水量が量論値の50%に到達後に加水分解性基を有するジオールモノマーを20〜100モル%含むジオールモノマー類とジハライドモノマー類を、イオン性基を有するジオールモノマーおよびイオン性基を有するジハライドモノマーの合計含有量が0〜20モル%となるようにしてさらに添加し、加熱脱水する工程
(3)前記加熱脱水工程(2)後のポリマー溶液を、直接遠心分離法で固液分離する工程
(4)前記固液分離工程(3)後のポリマー溶液を基材上に流延塗工し、溶媒を加熱蒸発することにより膜状物とする工程
(5)前記膜状物を前駆体とし、酸性水溶液と接触させて電解質膜とする工程
すなわち、先にプロトン伝導機能を主に担うポリマーユニットを形成した後、機械的強度など耐久性に関連する機能を主に担うポリマーユニット用のモノマー類を添加する工程である。特に、低加湿化での発電性能を重視する場合、好適な製造方法である。仕込み組成のおよび使用化合物の説明は前述と同じである。工程(3)〜(5)の説明も前述と同じである。さらに本発明の別の態様(第3の態様)としては、下記工程を有することが特徴である。
(1)加水分解性基を有するジオールモノマーを20〜100モル%含むジオールモノマー類とジハライドモノマー類を、イオン性基を有するジオールモノマーおよびイオン性基を有するジハライドモノマーの合計含有量が0〜20モル%となるようにして、溶剤に溶解し、塩基性化合物と接触させて加熱脱水する工程
(2)ジオールモノマー類とイオン性基を有するジハライド20〜100モル%を含むジハライド類を、イオン性基を有するジオールモノマーおよびイオン性基を有するジハライドモノマーの合計含有量が10〜100モル%となるようにして、溶剤に溶解し、塩基性化合物と接触できる状態で加熱脱水する工程
(3)前記加熱脱水工程(1)の溶液および前記加熱脱水工程(2)の溶液を、いずれかの脱水量が量論値の50%に到達後に、直接混合し、加熱脱水する工程
(4)前記加熱脱水工程(3)後のポリマー溶液を、直接遠心分離法で固液分離する工程
(5)前記固液分離工程(4)後のポリマー溶液を基材上に流延塗工し、溶媒を加熱蒸発することにより膜状物とする工程
(6)前記膜状物を前駆体とし、酸性水溶液と接触させて電解質膜とする工程
つまり、プロトン伝導機能を主に担うポリマーユニットと機械的強度など耐久性に関連する機能を主に担うポリマーユニット用を別々に形成したのち、反応液同士を直接混合する製造法であり、各ユニットの分子量が制御可能なため、ポリマーの特性をより緻密にコントロール可能である。仕込み組成および使用化合物の説明は前述と同じである。工程(4)〜(6)の説明は前述の工程(3)〜(5)の説明と同じである。
工程(3)は工程(1)、(2)のそれぞれの脱水量が量論値の50%に到達後に、直接混合し、加熱脱水する工程であり、混合時の脱水量の量論値の到達率が異なっていても差し支えない。混合は一方の反応容器から他方の反応容器に反応液を直接、圧送してもよいし、ポンプなどを利用してもよい。混合時の温度は特に制限無く室温でもよいし加熱脱水温度でもよく。それぞれ異なった温度でもよい。混合後は加熱脱水を継続することが必要であるが、工程(1)、(2)でそれぞれ量論値の100%以上脱水した場合は、共沸剤の除去工程に進み、反応容器の温度を上げて重合を進行させてもよい。
また、第の態様では加熱脱水工程(1)の溶液中と加熱脱水工程(2)の溶液を混合する際の、両溶液中のポリマーの重量平均分子量は、30000以下が好ましい。重量平均分子量が30000以下であれば分子量が大きくなりやすく、本発明の効果が発揮されやすい。分子量が30000以上であると両溶液中のポリマー同士の重合が進行しにくく、高分子量化が難しい傾向となる。プロトン伝導機能を主に担うポリマーユニットと機械的強度など耐久性に関連する機能を主に担うポリマーユニットの分離するコンセプトを達成しかつ高分子量化したブロックポリマーを得るという観点から、重量平均分子量は2000以上20000以下が好ましく、さらに好ましくは3000以上、10000以下である。
以下、実施例により本発明をさらに詳しく説明するが、本発明はこれらに限定されるものではない。なお、各物性の測定条件は次の通りである。
(1)スルホン酸基密度
検体となる膜の試料を25℃の純水に24時間浸漬し、40℃で24時間真空乾燥した後、元素分析により測定した。炭素、水素、窒素の分析は全自動元素分析装置varioEL、硫黄の分析はフラスコ燃焼法・酢酸バリウム滴定、フッ素の分析はフラスコ燃焼・イオンクロマトグラフ法で実施した。ポリマーの組成比から単位グラムあたりのスルホン酸基密度(mmol/g)を算出した。
(2)重量平均分子量
ポリマーの重量平均分子量をGPCにより測定した。紫外検出器と示差屈折計の一体型装置として東ソー製HLC−8022GPCを、またGPCカラムとして東ソー製TSK gel SuperHM−H(内径6.0mm、長さ15cm)2本を用い、N−メチル−2−ピロリドン溶媒(臭化リチウムを10mmol/L含有するN−メチル−2−ピロリドン溶媒)にて、サンプル濃度0.1wt%、流量0.2mL/min、温度40℃で測定し、標準ポリスチレン換算により重量平均分子量を求めた。
(3)膜厚
ミツトヨ製グラナイトコンパレータスタンドBSG−20にセットしたミツトヨ製ID−C112型を用いて測定した。
(4)示差走査熱量分析法(DSC)による結晶化熱量測定
検体となる電解質膜(3.5〜4.5mg)をスルホン酸基が分解しない温度(例えば40〜100℃)で予備乾燥して水分を除去後、重量を測定する。この際、ポリマーの化学構造や高次構造が変化する可能性があるので、結晶化温度や熱分解温度以上に温度を上げない。重量を測定後、該電解質膜について、以下の条件にて1回目の昇温段階の温度変調示差走査熱量分析を行った。
DSC装置:TA Instruments社製DSC Q100
測定温度範囲:25℃〜熱分解温度(例えば310℃)
昇温速度:5℃/分
振幅:±0.796℃
試料量:約4mg
試料パン:アルミニウム製クリンプパン
測定雰囲気:窒素 50ml/min
予備乾燥:真空乾燥 60℃、1時間
低温側からピークトップまでの熱量を2倍した値を結晶化熱量として計算した。また、検体が水分を含んでいたので、検出された水の蒸発熱量から水分量を計算し、高分子電解質材料の重量を補正した。なお、水の蒸発熱は2277J/gである。
試料中の水の重量(g)=試料の水の蒸発熱(J/g)×試料量(g)/2277(J/g)
結晶化熱量補正値(J/g)=結晶化熱量(J/g)×試料量(g)/(試料量−試料中の水の重量(g))
(5)透過電子顕微鏡(TEM)による相分離構造の観察
膜の試料を5×15mmの大きさに裁断し、可視硬化樹脂で包埋し、可視光を30 秒照射し固定した。
ウルトラミクロトームを用いて室温下で薄片を切削し、得られた薄片をCu グリッド上に回収しTEM 観察に供した。観察は加速電圧100kV で実施し、撮影は、写真倍率として×5,000、×20,000、×50,000 になるように撮影を実施した。機器としては、ウルトラミクロトーム ULTRACUT UCT(Leica社製)、TEM H7650(日立製作所社製)を使用した。
(6)乾湿サイクル試験
膜の乾燥湿潤サイクルを実際の発電状態で起こし機械的な耐久性および化学的な耐久性の総合的な指標とした。サイクル回数が大きいほど機械的および化学的耐久性が優れている。
具体的には、電解質膜を10cm角に切り取り、該膜を挟むように5cm角のBASF社製燃料電池用ガス拡散電極“ELAT(登録商標)LT120ENSI”(5g/mPt)2枚を配置し、150℃、5MPaで5分間プレスして膜電極複合体を作製した。該膜電極複合体を英和(株)製 JARI標準セル“Ex−1”(電極面積25cm)にセットし発電評価用モジュールとし、下記の条件で起動と停止繰り返し、起動時の電圧が0.2V未満または停止時の開回路電圧が0.8V未満になる回数を評価した。
・電子負荷装置;菊水電子工業社製 電子負荷装置“PLZ664WA”
・セル温度;常時80℃
・ガス加湿条件;アノード、カソードとも50%RH
・起動時供給ガス;アノードは水素、カソード空気
・起動時負荷電流;1A/cm
・起動時ガス利用率;アノードは量論の70%、カソードは量論の40%
・起動時間;3分間
・停止時供給ガス流量;アノード水素は0.25L/min、カソード空気は1L/min
・停止時間;3分間
・起動と停止の切り替え時;アノードに乾燥窒素、カソードに乾燥空気を1L/minで1分間供給し電解質膜を乾燥させた。
(7)高温低加湿発電評価
上記(6)と同様に発電評価用モジュールとし、下記条件で発電評価を行ない、電圧が0.1V以下になるまで0A/cmから1.2A/cmまで電流を掃引した。本発明では電流密度1A/cm時の電圧を比較した。
・電子負荷装置;菊水電子工業社製 電子負荷装置“PLZ664WA”
・セル温度;常時80℃
・ガス加湿条件;アノード、カソードとも30%RH
・ガス利用率;アノードは量論の70%、カソードは量論の40%
合成例1:2,2−ビス(4−ヒドロキシフェニル)−1,3−ジオキソラン(K−DHBP)の合成
攪拌器、温度計及び留出管を備えた 500mlフラスコに、4,4′−ジヒドロキシベンゾフェノン49.5g、エチレングリコール134g、オルトギ酸トリメチル96.9g及びp−トルエンスルホン酸1水和物0.50gを仕込み溶解する。その後78〜82℃で2時間保温攪拌した。更に、内温を120℃まで徐々に昇温、ギ酸メチル、メタノール、オルトギ酸トリメチルの留出が完全に止まるまで加熱した。この反応液を室温まで冷却後、反応液を酢酸エチルで希釈し、有機層を5%炭酸カリウム水溶液100mlで洗浄し分液後、溶媒を留去した。残留物にジクロロメタン80mlを加え結晶を析出させ、濾過し、乾燥して2,2−ビス(4−ヒドロキシフェニル)−1,3−ジオキソラン52.0gを得た。
合成例2: ジソジウム 3,3’−ジスルホネート−4,4’−ジフルオロベンゾフェノンの合成
4,4’−ジフルオロベンゾフェノン109.1g(アルドリッチ試薬)を発煙硫酸(50%SO)150mL(和光純薬試薬)中、100℃で10h反応させた。その後、多量の水中に少しずつ投入し、NaOHで中和した後、食塩200gを加え合成物を沈殿させた。得られた沈殿を濾別し、エタノール水溶液で再結晶し、ジソジウム 3,3’−ジスルホネート−4,4’−ジフルオロベンゾフェノンを得た。純度は99.3%であった。
合成例3: ジソジウム 3,3’−ジスルホネート−4,4’−ジヒドロキシベンゾフェノンの合成
攪拌器、温度計及び還流管を備えた 1Lフラスコに、合成例2で得られたジソジウム 3,3’−ジスルホネート−4,4’−ジフルオロベンゾフェノン125g、15%NaOH水溶液を700mL加え、100℃で7時間加熱還流した。1M塩酸で中和し、留出管を備えた後、トルエンを加え、水を共沸させ、系外へと除去し、組成生物を得た。その後、再結晶を行い、ジソジウム 3,3’−ジスルホネート−4,4’−ジヒドロキシベンゾフェノンを得た。
実施例1
工程(1)
撹拌機、窒素導入管、滴下漏斗をDean−Starkトラップを備えた4000mL反応容器に、前記合成例1で得た加水分解性基を含有するジオールモノマーであるK−DHBP99.18g(0.38mol)、および4,4’−ジヒドロキシベンゾフェノン20.57g(アルドリッチ試薬、0.096mol)を入れ、窒素置換後、N−メチル−2−ピロリドン(NMP)240g、トルエン140g中で均一に溶解したのち、炭酸カリウム138g(アルドリッチ試薬、1mol)を加えた。
次ぎに、4,4’−ジフルオロベンゾフェノン106.83g(アルドリッチ試薬、0.49mol)、NMP120g、トルエン100gを追加し、撹拌しながら加熱して反応液温度155℃でトルエンと水の共沸物を環流させながら、脱水を実施した。脱水量が8.6g(脱水率100%対量論値)に到達した時点で、反応液を0.5mlサンプリングして分子量を測定したところ重量平均分子量が6000であった。また、この工程でのこの工程でのジオールモノマー類中の加水分解性基を含有するジオールモノマーの含有量は79.8モル%であり、イオン性基を有するジオールモノマーおよびイオン性基を有するジハライドモノマーの合計含有量が0モル%であった。
工程(2)
次ぎに別の容器にイオン性基を有するジハライドモノマーとして前記合成例2で得たジソジウム 3,3’−ジスルホネート−4,4’−ジフルオロベンゾフェノン145.94g(0.35mol)、NMP(1070g)、1,4,7,10,13,17-ヘキサオキサシクロオクタデカン80gを入れ均一に溶解した後、さらに前記合成例1で得たK−DHBP66.12g(0.26mol)、および4,4’−ジヒドロキシベンゾフェノン13.71g(アルドリッチ試薬、0.063mol)を入れ、N−メチル−2−ピロリドン(NMP)240g、トルエン140g中を加え、均一に溶解したのち、前記反応容器に備え付けた滴下漏斗に仕込んで、窒素置換した。この工程でのイオン性基を有するジハライドはジハライド類中の100モル%であり、イオン性基を有するジオールモノマーおよびイオン性基を有するジハライドモノマーの合計含有量が52モル%であった。
工程(1)の脱水量が8.6gに到達した時点で、滴下漏斗より100g/minの速度で全量滴下し、反応液温度160℃で脱水を継続した。脱水量の合計が14.3g(脱水率100%対量論値)を越えた時点でトルエンの一部を留去し反応液温度を175℃に昇温し、炭酸ガスの発生減少するまで保持した。炭酸ガス発生の減少の目安はチノー社製COモニターMA1002−0Pを使用し、反応容器から排出される窒素ライン中の気体を5cc注射器で採取し、COモニターに注入して、炭酸ガス濃度を測定し、大気の値+200ppm以下となった時点で次の工程にすすんだ。次ぎに、トルエンを反応容器から留去しつつ、反応液温度を200℃まで昇温し重合を継続した。撹拌機の消費電力の変化を計測技術研究所社製ワットチェッカー モデル2000MS1で確認し消費電力が30分以上変化しないか、または10分間連続して減少傾向が見られた時点で重合をストップした。この反応液から0.5gサンプリングし分子量を測定したところ25万であった。
重合終了後NMPを1000g追加し、室温まで冷却し、重合原液Aとした。
工程(3)
重合原液Aを久保田製作所製インバーター・コンパクト高速冷却遠心機 型番6930 にアングルローターRA−800をセットし、25℃、30分間、遠心力20000Gで固液分離を行った。ケーキと上澄み液(塗液)がきれいに分離できたので、上澄み液を回収した。上澄み液のみを5μmのポリテトラフルオロエチレン(PTFE)製フィルターで加圧濾過して、セパラブルフラスコに移した。次に、撹拌しながら80℃で減圧蒸留し、上澄み液の粘度が10Pa・sになるまでNMPを除去し、塗液Aを得た。
工程(4)
基材として125μmのPETフィルム(東レ製“ルミラー(登録商標)”)を用い、塗液Aをスリットダイで流延塗工し、150℃で15分間乾燥した。
工程(5)
次に、乾燥膜をPETから剥離し、25℃の純水10分間浸漬し残存塩、残存モノマー、残存炭酸カリウム、残存NMP、残存1,4,7,10,13,17-ヘキサオキサシクロオクタデカン等を洗浄した後、60℃の10重量%の硫酸に30分間浸漬し、加水分解性基の加水分解とスルホン酸基の金属塩のプロトン交換を実施した。次にこの膜を洗浄液が中性になるまで純水で洗浄し、60℃で30分間乾燥し膜厚15μmの電解質膜Aを得た。
この電解質膜Aのスルホン酸基密度は1.75mmol/g、結晶化熱量は10.5J/gであり、高スルホン酸基密度であるのに関わらず、結晶能を有していた。電解質膜Aの構造をTEMで観察したところ、S元素密度の高いドメインとそれよりS元素密度の低いマトリックスが観察され、またマトリックスの一部にC元素密度が明らかに高い結晶構造体と考えられる約10nmピッチのラメラ構造が観察された。この電解質膜Aを使用し高温低加湿発電評価を実施したところ、500mW/cm2であり、乾湿サイクル試験を実施したところ10000回であった。
比較例1(一括重合)
撹拌機、窒素導入管、滴下漏斗をDean−Starkトラップを備えた4000mL反応容器に、前記合成例1で得たK−DHBP165.30g(0.64mol)、および4,4’−ジヒドロキシベンゾフェノン34.28g(アルドリッチ試薬、0.16mol)、前記合成例2で得たジソジウム 3,3’−ジスルホネート−4,4’−ジフルオロベンゾフェノン145.94g(0.35mol)、4,4’−ジフルオロベンゾフェノン106.83g(アルドリッチ試薬、0.49mol)を入れ、窒素置換後、N−メチル−2−ピロリドン(NMP)1670g、トルエン380g、1,4,7,10,13,17-ヘキサオキサシクロオクタデカン80gで均一に溶解したのち、炭酸カリウム138g(アルドリッチ試薬、1mol)を加えた。
次ぎに、撹拌しながら加熱して反応液温度160℃でトルエンと水の共沸物を環流させながら、脱水を実施した。脱水量が14.3g(脱水率100%対量論値)を越えた時点でトルエンの一部を留去し反応液温度を175℃に昇温し、炭酸ガスの発生減少するまで保持した。炭酸ガス発生の減少の目安はチノー社製COモニターMA1002−0Pを使用し、反応容器から排出される窒素ライン中の気体を5cc注射器で採取し、COモニターに注入して、炭酸ガス濃度を測定し、大気の値+200ppm以下となった時点で次の工程にすすんだ。次ぎに、トルエンを反応容器から留去しつつ、反応液温度を200℃まで昇温し重合を継続した。撹拌機の消費電力の変化を計測技術研究所社製ワットチェッカー モデル2000MS1で確認し消費電力が30分以上変化しないか、または10分間連続して減少傾向が見られた時点で重合をストップした。この反応液から0.5gサンプリングし分子量を測定したところ27万であった。重合終了後NMPを1000g追加し、室温まで冷却し、重合原液Bとした。
この重合原液Bを使用し以降は実施例1と同様に実施し膜厚15μmの電解質膜Bを得た。この電解質膜Bのスルホン酸基密度は1.75mmol/g、であったが結晶化熱量は検出困難で、結晶能は低かった。電解質膜Bの構造をTEMで観察したところ、全体に均一な膜であり、ドメインは観察されなかった。この電解質膜Bを使用し高温低加湿発電評価を実施したところ、300mW/cmであり、乾湿サイクル試験を実施したところ2000回と明らかに性能が低かった。
比較例2(水中沈殿精製法)
実施例1と同様に工程(2)まで実施し重合原液Cを得た。この重合原液Cを使用し、多量の水中に滴下し再沈殿することで精製を行なった。3回、純水で洗浄を切り返し、濾布で水分を絞りとった後、80℃で減圧乾燥を3日間実施しポリマー粉末を得た。この粉末を粘度10Pa・sとなるようにNMPで溶解し、5μmのポリテトラフルオロエチレン(PTFE)製フィルターで加圧濾過し塗液Cとした。濾過時間が実施例1の5倍要した。この塗液Cを使用し実施例1と同様に塗工したところ、微細なゲル状物を起点とした欠陥が膜全面に発生し、評価に値する電解質膜が得られなかった。
実施例2
実施例1の工程(1)および(2)を下記の様に変更した以外は実施例1と同様に実施した。
工程(1)
撹拌機、窒素導入管、滴下漏斗をDean−Starkトラップを備えた4L反応容器に、イオン性基を有するジハライドモノマーとして前記合成例2で得たジソジウム 3,3’−ジスルホネート−4,4’−ジフルオロベンゾフェノン180.91g(0.43mol)、4,4’−ジフルオロベンゾフェノン10.0g(アルドリッチ試薬、0.046mol)、NMP(1350g)、1,4,7,10,13,17-ヘキサオキサシクロオクタデカン100gを入れ均一に溶解した後、さらに前記合成例1で得たK−DHBP65.08g(0.25mol)、および4,4’−ビフェノール31.28g(和光純薬試薬、0.17mol)を入れ、NMP210g、トルエン290gを加え、均一に溶解したのち、炭酸カリウム120g(アルドリッチ試薬、0.87mol)を加えた。この工程でのイオン性基を有するジハライドモノマーはジハライド類中の90.3モル%であり、イオン性基を有するジオールモノマーおよびイオン性基を有するジハライドモノマーの合計含有量が48.0モル%であった。
この溶液を撹拌しながら加熱して反応液温度165℃でトルエンと水の共沸物を環流させながら、脱水を実施した。脱水量が7.6g(脱水率100%対量論値)に到達した時点で、反応液を0.5mlサンプリングして分子量を測定したところ重量平均分子量が9000であった。
工程(2)
次ぎに別の容器に前記合成例1で得た加水分解性基を含有するジオールモノマーであるK−DHBP43.39g(0.17mol)、4,4’−ジヒドロキシベンゾフェノン24.0g(アルドリッチ試薬、0.11mol)、4,4’−ジフルオロベンゾフェノン52.32g(アルドリッチ試薬、0.24mol)、NMP720g、トルエン130gを加え、均一に溶解したのち、前記反応容器に備え付けた滴下漏斗に仕込んで、窒素置換した。
この工程でのジオールモノマー類中の加水分解性基を含有するジオールモノマーの含有量は60.7モル%であり、イオン性基を有するジオールモノマーおよびイオン性基を有するジハライドモノマーの合計含有量が0モル%であった。
工程(1)の脱水量が7.6gに到達した時点で、滴下漏斗より100g/minの速度で全量滴下し、反応液温度160℃で脱水を継続した。脱水量の合計が12.6g(脱水率100%対量論値)を越えた時点でトルエンの一部を留去し反応液温度を175℃に昇温し、炭酸ガスの発生減少するまで保持した。
炭酸ガス発生の減少の目安はチノー社製COモニターMA1002−0Pを使用し、反応容器から排出される窒素ライン中の気体を5cc注射器で採取し、COモニターに注入して、炭酸ガス濃度を測定し、大気の値+200ppm以下となった時点で次の工程にすすんだ。次ぎに、トルエンを反応容器から留去しつつ、反応液温度を200℃まで昇温し重合を継続した。撹拌機の消費電力の変化を計測技術研究所社製ワットチェッカー モデル2000MS1で確認し消費電力が30分以上変化しないか、または10分間連続して減少傾向が見られた時点で重合をストップした。この反応液から0.5gサンプリングし分子量を測定したところ20万であった。重合終了後NMPを1000g追加し、室温まで冷却し、重合原液Dとした。
以降の工程は実施例1と同様に行い、膜厚15μmの電解質膜Dを得た。この電解質膜Dのスルホン酸基密度は2.25mmol/g、結晶化熱量は9.6J/gであり、高スルホン酸基密度であるのに関わらず、結晶能を有していた。電解質膜Dの構造をTEMで観察したところ、S元素密度の高いドメインとそれよりS元素密度の低いマトリックスが観察された。この電解質膜Dを使用し高温低加湿発電評価を実施したところ、610mW/cm2であり、乾湿サイクル試験を実施したところ7500回であった。
実施例3
工程(1)
撹拌機、窒素導入管、滴下漏斗をDean−Starkトラップを備えた4000mL反応容器に、前記合成例1で得た加水分解性基を含有するジオールモノマーであるK−DHBP11.62g(0.045mol)、および4,4’−ジヒドロキシベンゾフェノン28.92g(アルドリッチ試薬、0.135mol)を入れ、窒素置換後、N−メチル−2−ピロリドン(NMP)260g、トルエン40g中で均一に溶解したのち、炭酸カリウム31g(アルドリッチ試薬、1mol)を加えた。
次ぎに、4,4’−ジフルオロベンゾフェノン40.06g(アルドリッチ試薬、0.18mol)、NMP190g、トルエン40gを追加し、撹拌しながら加熱して反応液温度155℃でトルエンと水の共沸物を環流させながら、脱水を実施した。脱水量が3.2g(脱水率100%対量論値)に到達した時点で、反応液を0.5mlサンプリングして分子量を測定したところ重量平均分子量が10000であった。また、この工程でのこの工程でのジオールモノマー類中の加水分解性基を含有するジオールモノマーの含有量は25モル%であり、イオン性基を有するジオールモノマーおよびイオン性基を有するジハライドモノマーの合計含有量が0モル%であった。
工程(2)
撹拌機、窒素導入管、滴下漏斗をDean−Starkトラップを備えた4L反応容器に、イオン性基を有するジハライドモノマーとして前記合成例2で得たジソジウム 3,3’−ジスルホネート−4,4’−ジフルオロベンゾフェノン191.55g(0.45mol)、NMP(1400g)、1,4,7,10,13,17-ヘキサオキサシクロオクタデカン105gを入れ均一に溶解した後、さらに前記合成例1で得たK−DHBP86.78g(0.34mol)、および4,4’−ジヒドロキシベンゾフェノン17.99g(和光純薬試薬、0.084mol)を入れ、NMP210g、トルエン300gを加え、均一に溶解したのち、炭酸カリウム120g(アルドリッチ試薬、0.87mol)を加えた。この工程でのイオン性基を有するジハライドモノマーはジハライド類中の100モル%であり、イオン性基を有するジオールモノマーおよびイオン性基を有するジハライドモノマーの合計含有量が51.0モル%であった。
この溶液を撹拌しながら加熱して反応液温度165℃でトルエンと水の共沸物を環流させながら、脱水を実施した。脱水量が3.8g(脱水率50%対量論値)に到達した時点で、反応液を0.5mlサンプリングして分子量を測定したところ重量平均分子量が5000であった。
工程(3)
上記工程(1)の反応容器内に工程(2)の反応液をチューブポンプで移し、均一に混合した後、反応液温度160℃で脱水を継続した。脱水量の合計が10.8g(脱水率100%対量論値)を越えた時点でトルエンの一部を留去し反応液温度を175℃に昇温し、炭酸ガスの発生減少するまで保持した。
炭酸ガス発生の減少の目安はチノー社製COモニターMA1002−0Pを使用し、反応容器から排出される窒素ライン中の気体を5cc注射器で採取し、COモニターに注入して、炭酸ガス濃度を測定し、大気の値+200ppm以下となった時点で次の工程にすすんだ。次ぎに、トルエンを反応容器から留去しつつ、反応液温度を200℃まで昇温し重合を継続した。撹拌機の消費電力の変化を計測技術研究所社製ワットチェッカー モデル2000MS1で確認し消費電力が30分以上変化しないか、または10分間連続して減少傾向が見られた時点で重合をストップした。この反応液から0.5gサンプリングし分子量を測定したところ18万であった。重合終了後NMPを1000g追加し、室温まで冷却し、重合原液Eとした。
以降の工程は実施例1と同様に行い、膜厚15μmの電解質膜Eを得た。この電解質膜Eのスルホン酸基密度は2.39mmol/g、結晶化熱量は6.2J/gであり、高スルホン酸基密度であるのに関わらず、結晶能を有していた。この電解質膜Eを使用し高温低加湿発電評価を実施したところ、640mW/cmであり、乾湿サイクル試験を実施したところ7000回であった。
実施例4
工程(1)
撹拌機、窒素導入管、滴下漏斗をDean−Starkトラップを備えた4000mL反応容器に、前記合成例1で得た加水分解性基を含有するジオールモノマーであるK−DHBP99.18g(0.38mol)、および4,4’−ジヒドロキシベンゾフェノン20.57g(アルドリッチ試薬、0.096mol)を入れ、窒素置換後、N−メチル−2−ピロリドン(NMP)240g、トルエン140g中で均一に溶解したのち、30重量%炭酸カリウムのNMPスラリー460gを加えた。
炭酸カリウムのNMPスラリーは、アシザワファインテック社製のビーズミル LMZ2(セラミックス仕様)で、ジルコニアビーズ 0.3mmを使用して作製した。炭酸カリウムの平均粒子経は0.5μmであった。 次ぎに、4,4’−ジフルオロベンゾフェノン106.83g(アルドリッチ試薬、0.49mol)、トルエン100gを追加し、撹拌しながら加熱して反応液温度155℃でトルエンと水の共沸物を環流させながら、脱水を実施した。脱水量が8.6g(脱水率100%対量論値)に到達した時点で、反応液を0.5mlサンプリングして分子量を測定したところ重量平均分子量が10000であった。また、この工程でのこの工程でのジオールモノマー類中の加水分解性基を含有するジオールモノマーの含有量は79.8モル%であり、イオン性基を有するジオールモノマーおよびイオン性基を有するジハライドモノマーの合計含有量が0モル%であった。
工程(2)
次ぎに別の容器にイオン性基を有するジハライドモノマーとして前記合成例2で得たジソジウム 3,3’−ジスルホネート−4,4’−ジフルオロベンゾフェノン145.94g(0.35mol)、NMP(1070g)、1,4,7,10,13,17-ヘキサオキサシクロオクタデカン140gを入れ均一に溶解した後、さらに前記合成例3で得たジソジウム 3,3’−ジスルホネート−4,4’−ジヒドロキシベンゾフェノン138.6g(アルドリッチ試薬、0.33mol)を入れ、N−メチル−2−ピロリドン(NMP)240g、トルエン140g中を加え、均一に溶解したのち、前記反応容器に備え付けた滴下漏斗に仕込んで、窒素置換した。この工程でのイオン性基を有するジハライドはジハライド類中の100モル%であり、イオン性基を有するジオールモノマーおよびイオン性基を有するジハライドモノマーの合計含有量が100モル%であった。
工程(1)の脱水量が8.6gに到達した時点で、滴下漏斗より100g/minの速度で全量滴下し、反応液温度160℃で脱水を継続した。脱水量の合計が14.3g(脱水率100%対量論値)を越えた時点でトルエンの一部を留去し反応液温度を175℃に昇温し、炭酸ガスの発生減少するまで保持した。炭酸ガス発生の減少の目安はチノー社製COモニターMA1002−0Pを使用し、反応容器から排出される窒素ライン中の気体を5cc注射器で採取し、COモニターに注入して、炭酸ガス濃度を測定し、大気の値+200ppm以下となった時点で次の工程にすすんだ。次ぎに、トルエンを反応容器から留去しつつ、反応液温度を200℃まで昇温し重合を継続した。撹拌機の消費電力の変化を計測技術研究所社製ワットチェッカー モデル2000MS1で確認し消費電力が30分以上変化しないか、または10分間連続して減少傾向が見られた時点で重合をストップした。この反応液から0.5gサンプリングし分子量を測定したところ20万であった。重合終了後NMPを1000g追加し、室温まで冷却し、重合原液Fとした。
工程(3)
重合原液Fを久保田製作所製インバーター・コンパクト高速冷却遠心機 型番6930 にアングルローターRA−800をセットし、25℃、30分間、遠心力20000Gで固液分離を行った。ケーキと上澄み液(塗液)がきれいに分離できたので、上澄み液を回収した。上澄み液のみを5μmのポリテトラフルオロエチレン(PTFE)製フィルターで加圧濾過して、セパラブルフラスコに移した。次に、撹拌しながら80℃で減圧蒸留し、上澄み液の粘度が4Pa・sになるまでNMPを除去し、架橋性化合物として2,6−ジメトキシメチル−p−クレゾールを含有するポリマー1g対して0.03g添加し塗液Fを得た。
工程(4)
基材として125μmのPETフィルム(東レ製“ルミラー(登録商標)”)を用い、塗液Fをスリットダイで流延塗工し、塗工面が乾燥する前に、多孔質材料である空隙率70%、ガーレ透気度200秒/100ml、厚み20μmの二軸配向ポリプロピレン多孔質フィルムを貼り合わせて、塗液を含浸させた後に、100℃で5分間、130℃で10分間乾燥した。
工程(5)
次に、乾燥膜をPET基材のまま、25℃の純水10分間浸漬し残存塩、残存モノマー、残存炭酸カリウム、残存NMP、残存1,4,7,10,13,17-ヘキサオキサシクロオクタデカン等を洗浄した後、60℃の10重量%の硫酸に30分間浸漬し、加水分解性基の加水分解とスルホン酸基の金属塩のプロトン交換を実施した。次にこの膜を洗浄液が中性になるまで純水で洗浄し、60℃で30分間乾燥し、さらに130℃で5分間加熱し架橋反応を進行させ、膜厚15μmの電解質膜Fを得た。この電解質膜Fを使用し高温低加湿発電評価を実施したところ、600mW/cmであり、乾湿サイクル試験を実施したところ16000回であった。
実施例5
実施例4の工程4の多孔質材料を目付量9.4g/mのポリフェニレンスルフィド不織布(タピルス株製)に変更した以外は同様に実施し膜厚50μmの電解質膜Gを得た。この電解質膜Gを使用し高温低加湿発電評価を実施したところ、600mW/cmであり、乾湿サイクル試験を実施したところ18000回であった。
本発明の電解質膜の製造方法は低加湿下での発電特性と耐久性のバランスの優れた電解質膜を高品位に低コストで製造でき、得られた電解質膜は種々の電気化学装置(例えば、燃料電池、水電解装置、クロロアルカリ電解装置等)に適用可能である。これら装置の中でも、燃料電池用に好適であり、特に水素やメタノール水溶液を燃料とする燃料電池に好適であり、携帯電話、パソコン、PDA、ビデオカメラ(カムコーダー)、デジタルカメラ、ハンディターミナル、RFIDリーダー、デジタルオーディオプレーヤー、各種ディスプレー類などの携帯機器、電動シェーバー、掃除機等の家電、電動工具、家庭用電力供給機、乗用車、バスおよびトラックなどの自動車、二輪車、電動アシスト付自転車、電動カート、電動車椅子や船舶および鉄道などの移動体、各種ロボット、サイボーグなどの電力供給源として好ましく用いられる。特に携帯用機器では、電力供給源だけではなく、携帯機器に搭載した二次電池の充電用にも使用され、さらには二次電池やキャパシタ、太陽電池と併用するハイブリッド型電力供給源としても好適に利用できる。

Claims (6)

  1. ジオールモノマー類とジハライドモノマー類の脱塩重縮合によって得られる、加水分解性基およびイオン性基を含有するポリマーからなる膜状物を前駆体とする電解質膜の製造方法であって、下記工程を有することを特徴とする電解質膜の製造方法。
    (1)加水分解性基を有するジオールモノマーを20〜100モル%含むジオールモノマー類とジハライドモノマー類を、イオン性基を有するジオールモノマーおよびイオン性基を有するジハライドモノマーの合計含有量が0〜20モル%となるようにして、溶剤に溶解し、塩基性化合物と接触させて加熱脱水する工程
    (2)前記加熱脱水工程(1)の脱水量が量論値の50%に到達後にジオールモノマー類とイオン性基を有するジハライドを20〜100モル%含むジハライド類を、イオン性基を有するジオールモノマーおよびイオン性基を有するジハライドモノマーの合計含有量が10〜100モル%となるようにしてさらに添加し、加熱脱水する工程
    (3)前記加熱脱水工程(2)後のポリマー溶液を、直接遠心分離法で固液分離する工程
    (4)前記固液分離工程(3)後のポリマー溶液を基材上に流延塗工し、溶媒を加熱蒸発することにより膜状物とする工程
    (5)前記膜状物を前駆体とし、酸性水溶液と接触させて電解質膜とする工程
  2. ジオールモノマー類とジハライドモノマー類の脱塩重縮合によって得られる、加水分解性基およびイオン性基を含有するポリマーからなる膜状物を前駆体とする電解質膜の製造方法であって、下記工程を有することを特徴とする電解質膜の製造方法。
    (1)ジオールモノマー類とイオン性基を有するジハライドを20〜100モル%含むジハライド類を、イオン性基を有するジオールモノマーおよびイオン性基を有するジハライドモノマーの合計含有量が10〜100モル%となるようにして、溶剤に溶解し、塩基性化合物と接触させて加熱脱水する工程
    (2)前記加熱脱水工程(1)の脱水量が量論値の50%に到達後に加水分解性基を有するジオールモノマーを20〜100モル%含むジオールモノマー類とジハライドモノマー類を、イオン性基を有するジオールモノマーおよびイオン性基を有するジハライドモノマーの合計含有量が0〜20モル%となるようにしてさらに添加し、加熱脱水する工程
    (3)前記加熱脱水工程(2)後のポリマー溶液を、直接遠心分離法で固液分離する工程
    (4)前記固液分離工程(3)後のポリマー溶液を基材上に流延塗工し、溶媒を加熱蒸発することにより膜状物とする工程
    (5)前記膜状物を前駆体とし、酸性水溶液と接触させて電解質膜とする工程
  3. ジオールモノマー類とジハライドモノマー類の脱塩重縮合によって得られる、加水分解性基およびイオン性基を含有するポリマーからなる膜状物を前駆体とする電解質膜の製造方法であって、下記工程を有することを特徴とする電解質膜の製造方法。
    (1)加水分解性基を有するジオールモノマーを20〜100モル%含むジオールモノマー類とジハライドモノマー類を、イオン性基を有するジオールモノマーおよびイオン性基を有するジハライドモノマーの合計含有量が0〜20モル%となるようにして、溶剤に溶解し、塩基性化合物と接触させて加熱脱水する工程
    (2)ジオールモノマー類とイオン性基を有するジハライド20〜100モル%を含むジハライド類を、イオン性基を有するジオールモノマーおよびイオン性基を有するジハライドモノマーの合計含有量が10〜100モル%となるようにして、溶剤に溶解し、塩基性化合物と接触できる状態で加熱脱水する工程
    (3)前記加熱脱水工程(1)の溶液および前記加熱脱水工程(2)の溶液を、いずれかの脱水量が量論値の50%に到達後に、直接混合し、加熱脱水する工程
    (4)前記加熱脱水工程(3)後のポリマー溶液を、直接遠心分離法で固液分離する工程
    (5)前記固液分離工程(4)後のポリマー溶液を基材上に流延塗工し、溶媒を加熱蒸発することにより膜状物とする工程
    (6)前記膜状物を前駆体とし、酸性水溶液と接触させて電解質膜とする工程
  4. 工程(3)において、加熱脱水工程(1)の溶液中および加熱脱水工程(2)の溶液を直接混合する際の、加熱脱水工程(1)の溶液中のポリマーおよび加熱脱水工程(2)の溶液中のポリマーの重量平均分子量がいずれも30000以下である請求項3記載の電解質膜の製造方法。
  5. 固液分離工程後のポリマー溶液を基材上に流延塗工し、溶媒を加熱蒸発することにより膜状物とする工程において、流延塗工したポリマー溶液が含浸するように、塗工面が乾燥する前に多孔質材料を貼り合わせる工程を有する請求項1〜4のいずれかに記載の電解質膜の製造方法。
  6. 固液分離工程後のポリマー溶液を基材上に流延塗工し、溶媒を加熱蒸発することにより膜状物とする工程の前に、ポリマー溶液中に下記一般式(M1)で示される基を有する架橋性化合物を混合する工程を有し、かつ膜状物を前駆体とし、酸性水溶液と接触させて電解質膜とする工程の後に、電解質膜を50℃以上で加熱して架橋する工程を有する請求項1〜5のいずれかに記載の電解質膜の製造方法。
    Figure 2011026565
    (ここで、Rは水素、または任意の有機基である。)
JP2010142325A 2009-06-29 2010-06-23 電解質膜の製造方法 Pending JP2011026565A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010142325A JP2011026565A (ja) 2009-06-29 2010-06-23 電解質膜の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009153335 2009-06-29
JP2010142325A JP2011026565A (ja) 2009-06-29 2010-06-23 電解質膜の製造方法

Publications (1)

Publication Number Publication Date
JP2011026565A true JP2011026565A (ja) 2011-02-10

Family

ID=43635667

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010142325A Pending JP2011026565A (ja) 2009-06-29 2010-06-23 電解質膜の製造方法

Country Status (1)

Country Link
JP (1) JP2011026565A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011132388A (ja) * 2009-12-25 2011-07-07 Toray Ind Inc 高分子電解質膜の製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011132388A (ja) * 2009-12-25 2011-07-07 Toray Ind Inc 高分子電解質膜の製造方法

Similar Documents

Publication Publication Date Title
KR101678706B1 (ko) 고분자 전해질막의 제조 방법
KR101383938B1 (ko) 고분자 전해질 재료, 이를 이용한 고분자 전해질 성형체 및그의 제조 방법, 막 전극 복합체 및 고체 고분자형 연료 전지
JP5678754B2 (ja) 複合化高分子電解質膜の製造方法
EP3419093B1 (en) Composite polymer electrolytic membrane, and membrane electrode composite and solid polymer fuel cell using same
CN107408716B (zh) 复合高分子电解质膜
JP5892653B2 (ja) 高分子電解質およびその利用
JP2011181423A (ja) 高分子電解質材料およびそれを用いた高分子電解質型燃料電池
JP5338656B2 (ja) 高分子電解質膜の製造方法
JP6036053B2 (ja) イオン性基含有芳香族ポリエーテル共重合体、それを用いた高分子電解質材料、高分子電解質成型体、高分子電解質複合膜および固体高分子型燃料電池
JP5482507B2 (ja) 高分子電解質材料および高分子電解質膜の製造方法
JP2011026565A (ja) 電解質膜の製造方法
JP2013077554A (ja) 積層高分子電解質膜およびその製造方法
JP5309822B2 (ja) 芳香族スルホン酸誘導体、スルホン化ポリマーならびにそれを用いた高分子電解質材料および高分子電解質型燃料電池
JP2013131490A (ja) 高分子電解質膜の製造方法。
JP2021051995A (ja) 複合高分子電解質膜およびそれを用いた触媒層付電解質膜、膜電極複合体および固体高分子型燃料電池
JP5434386B2 (ja) 高分子電解質膜の製造方法。
JP2010108692A (ja) イオン伝導性高分子膜
JP2013045502A (ja) 複合化高分子電解質膜
JP5867863B2 (ja) 高分子電解質およびその利用
CN115298866A (zh) 电解质膜和使用该电解质膜的氧化还原液流电池
JP2012022910A (ja) 高分子電解質材料およびそれを用いた高分子電解質膜、膜電極複合体
JP2021051996A (ja) 積層高分子電解質膜およびそれを用いた触媒層付電解質膜、膜電極複合体および固体高分子型燃料電池