JP2013131490A - 高分子電解質膜の製造方法。 - Google Patents

高分子電解質膜の製造方法。 Download PDF

Info

Publication number
JP2013131490A
JP2013131490A JP2012253151A JP2012253151A JP2013131490A JP 2013131490 A JP2013131490 A JP 2013131490A JP 2012253151 A JP2012253151 A JP 2012253151A JP 2012253151 A JP2012253151 A JP 2012253151A JP 2013131490 A JP2013131490 A JP 2013131490A
Authority
JP
Japan
Prior art keywords
film
polycondensation
solution
molecular weight
polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012253151A
Other languages
English (en)
Inventor
Naoki Shimoyama
直樹 下山
Masaya Adachi
眞哉 足立
Masayuki Kidai
聖幸 希代
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2012253151A priority Critical patent/JP2013131490A/ja
Publication of JP2013131490A publication Critical patent/JP2013131490A/ja
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Fuel Cell (AREA)

Abstract

【課題】耐久性に優れ、高イオン伝導性、低燃料透過性の電解質膜を効率よく工業的に製造できる電解質膜の製造方法を提供する。
【解決手段】高分子電解質膜の製造方法は、脱塩重縮合で得られる、加水分解性可溶性付与基かつイオン性基密度が1.0mmol/g以上の高分子電解質の重合溶液から、重縮合時に生成した塩分および塩残渣の一部を直接、遠心分離および/またはフィルター濾過で除去して塗液を得る工程(A)、該塗液を基材上に流延塗工し、溶媒の一部を除去して、基材上に膜状物を得る工程(B)、該基材上の膜状物を酸性水溶液と接触させ、プロトン交換を行う工程(C)、該基材上の膜状物を溶媒と接触させ、重縮合時の分子量1000以上、30000以下の低分子量体の少なくとも一部を除去する工程(D)をこの順に有することを特徴とする。
【選択図】なし

Description

本発明は、高耐久性と高イオン伝導度、低燃料透過性を有する燃料電池用高分子電解質膜の製造方法に関するものである。
燃料電池は、水素、メタノールなどの燃料を電気化学的に酸化することによって、電気エネルギーを取り出す一種の発電装置であり、近年、クリーンなエネルギー供給源として注目されている。なかでも高分子電解質型燃料電池は、標準的な作動温度が100℃前後と低く、かつ、エネルギー密度が高いことから、比較的小規模の分散型発電施設、自動車や船舶など移動体の発電装置として幅広い応用が期待されている。また、小型移動機器、携帯機器の電源としても注目されており、ニッケル水素電池やリチウムイオン電池などの二次電池に替わり、携帯電話やパソコンなどへの搭載が期待されている。
高分子電解質型燃料電池においては、水素ガスを燃料とする従来の高分子電解質型燃料電池(以下、PEFCと記載する)に加えて、メタノールを直接供給するダイレクトメタノール型燃料電池(以下、DMFCと記載する)も注目されている。DMFCは燃料が液体で改質器を用いないために、エネルギー密度が高くなり一充填あたりの携帯機器の使用時間が長時間になるという利点がある。
燃料電池は通常、発電を担う反応の起こるアノードとカソードの電極と、アノードとカソード間のプロトン伝導体となる高分子電解質膜とが、膜電極複合体(以降、MEAと略称することがある。)を構成し、このMEAがセパレータによって挟まれたセルをユニットとして構成されている。高分子電解質膜は高分子電解質材料を主として構成される。高分子電解質材料は電極触媒層のバインダー等にも用いられる。
高分子電解質膜の要求特性としては、第一に高いプロトン伝導性が挙げられる。また、高分子電解質膜は、燃料と酸素の直接反応を防止するバリアとしての機能を担うため、燃料の低透過性が要求される。特に、メタノールなどの有機溶媒を燃料とするDMFC用高分子電解質膜においては、メタノール透過はメタノールクロスオーバー(以降、MCOと略称することがある。)と呼ばれ、電池出力およびエネルギー効率の低下という問題を引き起こす。その他の要求特性としては、燃料電池運転中の強い酸化雰囲気に耐えるための化学的安定性、薄膜化や膨潤乾燥の繰り返しに耐えうる機械強度などを挙げることができる。
これまで高分子電解質膜には、パーフルオロスルホン酸系ポリマーであるナフィオン(登録商標)(Nafion(登録商標):デュポン社製)が広く用いられてきた。ナフィオン(登録商標)は多段階合成を経て製造されるため非常に高価であり、かつ、クラスター構造を形成するために燃料クロスオーバーが大きいという課題があった。また、耐熱水性や耐熱メタノール性が不足するため、膨潤乾燥によって作製した膜の機械強度が低下するという問題や軟化点が低く高温で使用できないという問題、さらに、使用後の廃棄処理の問題や材料のリサイクルが困難といった課題もあった。パーフルオロスルホン酸系膜は高分子電解質膜として概ねバランスのとれた特性を有するが、当該電池の実用化が進むにつれて、さらなる特性の改善が要求されるようになってきた。
このような欠点を克服するために非パーフルオロ系ポリマーの炭化水素系ポリマーをベースとした高分子電解質材料についても既にいくつかの取り組みがなされている。ポリマー骨格としては、耐熱性、化学的安定性の点から芳香族ポリエーテルケトンや芳香族ポリエーテルスルホンについて特に活発に検討がなされてきた。
例えば、芳香族ポリエーテルケトンである、難溶性の芳香族ポリエーテルエーテルケトン(ビクトレックス(登録商標)PEEK(登録商標)(ビクトレックス社製)等があげられる。)のスルホン化物(例えば、非特許文献1参照。)、芳香族ポリエーテルスルホンである狭義のポリスルホン(以降、PSFと略称することがある。)(UDEL P−1700(アモコ社製)等があげられる)や狭義のポリエーテルスルホン(以降、PESと略称することがある。)(スミカエクセル(登録商標)PES(住友化学社製)等があげられる)のスルホン化物(例えば、非特許文献2)等が報告されたが、プロトン伝導性を高めるためにイオン性基の含有量を増加すると作製した膜が膨潤し、メタノールなどの燃料クロスオーバーが大きいという問題があり、またポリマー分子鎖の凝集力が低いために、高次構造の安定性に乏しく、作成した膜の機械強度や物理的耐久性が不十分という問題があった。
また、芳香族ポリエーテルケトン(以降、PEKと略称することがある。)(ビクトレックス PEEK−HT(ビクトレックス製)等が挙げられる)のスルホン化物(例えば、特許文献1および2)においては、その高い結晶性ゆえに低いスルホン酸基密度の組成を有するポリマーは、結晶が残存することにより溶剤に不溶で加工性不良となる問題、逆に加工性を高めるためにスルホン酸基密度を増加させるとポリマーは結晶性でなくなることにより水中で著しく膨潤し、ポリマーの精製が非常に困難となり、製造が容易ではなかった。
スルホン酸基量を制御する方法として、芳香族ポリエーテルスルホン系においては、スルホン酸基を導入したモノマーを用いて重合し、スルホン酸基量が制御されたスルホン化芳香族ポリエーテルスルホンの報告がなされている(例えば、特許文献3参照)。しかしながら、ここにおいても高温高湿下で作製した膜が膨潤する問題は改善されず、特にメタノールなど燃料水溶液中やスルホン酸基密度が高くなる組成においてはその傾向が顕著で、このような耐熱水性や耐熱メタノール性に劣る高分子電解質膜ではメタノールなどの燃料クロスオーバーを十分に抑制すること、膨潤乾燥サイクルに耐えうる機械強度を付与することは困難であった。
このように、従来技術による高分子電解質材料は経済性、加工性、プロトン伝導性、燃料クロスオーバー、機械強度、ひいては長期耐久性を向上する手段としては不十分であり、産業上有用な燃料電池用高分子電解質材料とはなり得ていなかった。
これらを解決する発明として特許文献4では、イオン性基を有する高分子電解質に保護基(加水分解性可溶性付与基)を導入した結晶化能を有するポリマーの溶液化に成功し、溶液製膜後、脱保護(加水分解)する方法が提案され、機械特性評価、化学構造と耐熱水性、耐熱メタノール性および加工性等との関係改善し、プロトン伝導性に優れ、かつ、燃料遮断性、機械強度、耐熱水性、耐熱メタノール性、加工性、化学的安定性に優れた電解質膜を提供できるとしている。
また、特許文献4では脱塩重縮合で合成され、副生成物である塩を除去するため、重合溶液を多量の水に投入し、沈殿精製を行い、乾燥後、再溶解して溶液製膜用塗液としている。その際、多量の水と接触しても、保護基(加水分解性可溶性付与基)の大部分は水のみとの接触だけでは加水分解されにくく、ポリマーの可溶性を維持するレベルの保護基(加水分解性可溶性付与基)は残存するが、どうしても部分的に、脱保護(加水分解)が進行し、溶解性に劣るポリマーユニットが生成し、その部分が製膜性に悪影響を与えたり、製膜後でも膜の濁りや機械的特性ひいては長期耐久性を低下させたりする課題があった。
これらを解決する発明として特許文献5では、高分子電解質の重合溶液から、直接、遠心分離および/またはフィルター濾過で、重縮合時に生成した塩分の一部を除去して塗液を得る工程、該塗液を基材上に流延塗工し、溶媒の一部を除去して、基材上に膜状物を得る工程、該基材上の膜状物を水および/または酸性水溶液と接触させ、重縮合時に生成した塩分を除去することに成功し、ポリマーの可溶性を維持するレベルの保護基(加水分解性可溶性付与基)の脱保護(加水分解)を防止でき、製膜性を改善し、プロトン伝導性に優れ、かつ、燃料遮断性、機械強度、耐熱水性、耐熱メタノール性、加工性、化学的安定性に優れた電解質膜を提供できるとしている。
また、高分子イオン交換膜を水溶液中で加熱処理して不純物を除去することで、高分子イオン交換膜を塑性変形させることなく膜のイオン交換機能の維持を図る方法が知られている(特許文献6)。
特開平6−93114号公報 特表2004−528683号公報 米国特許出願公開第2002/0091225号明細書 特開2007−261103号公報 特開2010−86953号公報 特開平7−68186号公報
「ポリマー」(Polymer), 1987, vol. 28, 1009. 「ジャーナルオブメンブレンサイエンス」(Journal of Membrane Science), 83 (1993) 211-220.
ここで、特許文献5に開示されている技術は確かに脱塩重縮合時の副生成物である塩を除去するには有効であるが、重縮合時の低分子量体が膜状物に残存しているため、熱水による膜状物の重量減少による機械的特性ひいては長期耐久性を低下させたりする課題があった。また、膜状物を膜電極複合体とし燃料電池セルに組み込み発電評価を行った場合に重縮合時の低分子量体が膜状物から電極に入り、長期発電性能を低下させたりする課題があった。
そして、特許文献6に開示されている技術は、高分子イオン交換膜を水溶液中で加熱処理して不純物を除去することで、高分子イオン交換膜を塑性変形させることなく膜のイオン交換機能の維持を図るものであるが、油脂等の有機成分の除去とケイ素(Si)、カルシウム(Ca)、鉄(Fe)、アルミニウム(Al)等の不純物(金属イオン)を除去する技術であり、オリゴマー除去については全く記載されていない。
そこで本発明者らは、膜状物の機械的特性に悪影響を及ぼさないように、溶媒を膜状物に接触させて膜状物を膨潤させ、重縮合時の低分子量体を除去しようと試み、不純物の除去という観点からは効率的ではないかも知れないが、膜状物の機械的特性まで含めた、高分子電解質膜としての特性向上においては非常に効果的であることを見出したものである。
本発明は、かかる課題を解決するために、次のような手段を採用するものである。すなわち、本発明の高分子電解質膜の製造方法は、脱塩重縮合で得られる、加水分解性可溶性付与基かつイオン性基密度が1.0mmol/g以上の高分子電解質の重合溶液から、重縮合時に生成した塩分および塩残渣の一部を直接、遠心分離および/またはフィルター濾過で除去して塗液を得る工程(A)、該塗液を基材上に流延塗工し溶媒の一部を除去して、基材上に膜状物を得る工程(B)、該基材上の膜状物を酸性水溶液と接触させ、プロトン交換を行う工程(C)、該基材上の膜状物を溶媒と接触させ、重縮合時の分子量1000以上、30000以下の低分子量体の少なくとも一部を除去する工程(D)をこの順に有することを特徴とするものである。
本発明によれば、膜状物中の重縮合時の低分子量体を除去することにより膜品質と生産性に優れ、かつプロトン伝導性、燃料遮断性、機械的強度、耐熱水性、耐熱メタノール性、加工性、化学的安定性に優れ、さらに燃料電池とした場合に高温・低加湿発電性能の向上が図れる高分子電解質膜の製造が可能となる。
以下、本発明の好ましい実施形態を説明する。
本発明の脱塩重縮合は高分子合成で一般的に用いられている方法であり、例えばジオールを有するモノマーのジオール末端をアルカリ金属で置換し、ジハライド末端を有するモノマーと反応させ、脱塩とともに重合する方法が挙げられる。
また、加水分解性可溶性付与基およびイオン性基を含有する高分子電解質やイオン性基密度が1.0mmol/g以上の高分子電解質の重合溶液から、直接、遠心分離および/またはフィルター濾過により脱塩重縮合時の生成した塩分の一部を除去して塗液を得る必要があるが、ここで「直接」の意味は、塩分が可溶でポリマーが不溶な多量の溶剤、例えば水と接触させ水中にポリマーを析出させる方法(再沈殿法)をとらずに、重合溶液をそのまま遠心分離および/またはフィルター濾過により生成した溶剤に不溶な塩分および残渣を固液分離することである。この際、重合溶液は高分子電解質が可溶する溶媒で希釈しても構わなく、重合溶液の粘度を遠心分離および/またはフィルター濾過の分離効率、作業効率を考慮して適宜調整することが好ましい。
本発明の遠心分離および/またはフィルター濾過による塩分および塩残渣は、特にイオン性基密度が1.0mmol/g以上の高分子電解質膜の製造に適しており、2.0mmol/g以上の高分子電解質膜の製造には必須技術となる。
イオン性基を有する高分子電解質は、特にイオン性基密度が大きい場合は水との親和性が高く、再沈殿法等で水と接触させると溶解しないまでも膨潤が大きくなり、高分子電解質の回収が極めて困難となる。また、加水分解性可溶性付与基は水のみでは容易に加水分解は起こり難いが、一部加水分解が生じ、ポリマー単離後、溶媒に再溶解し、塗液化する工程で加水分解性可溶性付与基が不足し、完全に溶解できずフィルター濾過速度を著しく低下させたり、すり抜けたゲル化物が原因となり製膜時に異物の発生、縦筋の発生等の不良品の発生率が高くなるだけでなく、良品に見えてもフィルターをくぐり抜けたゲル化物により、電解質膜が海島構造のような不均一な形態となり、引張伸度や引裂強度の低下が生じ、また電解質膜の濁りなどの品位を損なう場合がある。
本発明の加水分解性可溶性付与基とは、加水分解性可溶性付与基が導入されていない場合に溶媒に溶解困難なポリマーに導入し、後の工程で加水分解によって除去することを前提に、溶液製膜や濾過が容易に実施できるように一時的に導入される置換基である。加水分解性可溶性付与基は反応性や収率、加水分解性可溶性付与基含有状態の安定性、製造コスト等を考慮して適宜選択することが可能である。また、重合反応において加水分解性可溶性付与基を導入する段階としては、モノマー段階からでも、オリゴマー段階からでも、ポリマー段階でもよく、適宜選択することが可能である。
加水分解性可溶性付与基の具体例を挙げるとすれば、最終的にはケトンとなる部位をアセタールまたはケタール部位に変形し加水分解性可溶性付与基とし、溶液製膜後にこの部位を加水分解しケトン部位に変化させる。また、ケトン部位をアセタールまたはケタール部位のヘテロ原子類似体、例えばチオアセタールやチオケタールとする方法が挙げられる。また、スルホン酸を可溶性エステル誘導体とする方法、芳香環に可溶性基としてt−ブチル基を導入し、酸で脱t−ブチル化する方法等が挙げられる。
加水分解性可溶性付与基は、一般的な溶剤に対する溶解性を向上させ、結晶性を低減する観点から、立体障害が大きいという点で脂肪族基、特に環状部分を含む脂肪族基が好ましく用いられる。
加水分解性可溶性付与基を導入する官能基の位置としては、ポリマーの主鎖であることがより好ましい。主鎖に導入すること加水分解性可溶性付与基導入時と加水分解後に安定な基に変化させた後の状態の差が大きく、ポリマー鎖のパッキングが強くなり、溶媒可溶性から不溶性に変化し、機械的強度が強くなる傾向にある。ここで、ポリマーの主鎖に存在する官能基とは、その官能基を削除した場合にポリマー鎖が切れてしまう官能基と定義する。例えば、芳香族ポリエーテルケトンのケトン基を削除するとベンゼン環とベンゼン環が切れてしまうことを意味するものである。
また、本発明のイオン性基とは、負電荷を有する原子団であり、プロトン交換能を有するものであれば特に限定されるものではない。このような官能基としては、スルホン酸基、スルホンイミド基、硫酸基、ホスホン酸基、リン酸基、カルボン酸基が好ましく用いられる。かかるイオン性基は塩となっている場合を含むものとする。ここで溶媒の一部を除去して、基材上に膜状物を得る工程(B)においては、かかるイオン性基は塩となっている。
前記塩を形成するカチオンとしては、任意の金属カチオン、NR4+(Rは任意の有機基)等を例として挙げることができる。金属カチオンの場合、その価数等特に限定されるものではなく、使用することができる。好ましい金属イオンの具体例を挙げるとすれば、Li、Na、K、Rh、Mg、Ca、Sr、Ti、Al、Fe、Pt、Rh、Ru、Ir、Pd等が挙げられる。中でも、安価で、溶解性に悪影響を与えず、容易にプロトン置換可能なLi、Na、Kがより好ましく使用される。
これらのイオン性基は前記高分子電解質材料中に2種類以上含むことができ、組み合わせることにより好ましくなる場合がある。組み合わせはポリマーの構造などにより適宜決められる。中でも、高プロトン伝導度の点から少なくともスルホン酸基、スルホンイミド基、硫酸基を有することがより好ましく、耐加水分解性の点から少なくともスルホン酸基を有することが最も好ましい。
本発明が活用できるイオン性基の量は例えばスルホン酸基とした場合、スルホン酸基密度(mmol/g)の値として示すことができる。特に本発明では、加水分解性可溶性付与基およびイオン性基を含有する高分子電解質の重合溶液から、直接、遠心分離および/またはフィルター濾過で、重縮合時に生成した塩分の一部を除去することから、高スルホン酸基密度の電解質膜の製造に好適であり、スルホン酸基密度1.0mmol/g以上、さらには2.0mmol/g以上の電解質膜が工業的に製造可能となる。また、低スルホン酸基密度の電解質膜にも適用可能である。
ここで、イオン性基密度とは、乾燥した高分子電解質材料1グラムあたりに導入されたイオン性基のモル数であり、値が大きいほどイオン性基の量が多いことを示す。イオン性基密度は、元素分析、中和滴定により求めることが可能である。これらの中でも測定の容易さから、元素分析法を用い、S/C比から算出することが好ましいが、中和滴定法によりイオン交換容量を求めることもできる。本発明の高分子電解質材料は、後述するようにイオン性基を有するポリマーとそれ以外の成分からなる複合体である態様を含むが、その場合もイオン性基密度は複合体の全体量を基準として求めるものとする。
ここでイオン性基がスルホン酸の場合を例として中和滴定で測定する手順を示す。測定は3回以上行ってその平均をとるものとする。
(1) 試料をミルにより粉砕し、粒径を揃えるため、目50メッシュの網ふるいにかけ、ふるいを通過したものを測定試料とする。
(2) サンプル管(蓋付き)を精密天秤で秤量する。
(3) 前記(1)の試料 約0.1gをサンプル管に入れ、40℃で16時間、真空乾燥する。
(4) 試料入りのサンプル管を秤量し、試料の乾燥重量を求める。
(5) 塩化ナトリウムを30重量%メタノール水溶液に溶かし、飽和食塩溶液を調製する。
(6) 試料に前記(5)の飽和食塩溶液を25mL加え、24時間撹拌してイオン交換する。
(7) 生じた塩酸を0.02mol/L水酸化ナトリウム水溶液で滴定する。指示薬として市販の滴定用フェノールフタレイン溶液(0.1体積%)を2滴加え、薄い赤紫色になった点を終点とする。
(8) スルホン酸基密度は下記の式により求める。
スルホン酸基密度(mmol/g)=
〔水酸化ナトリウム水溶液の濃度(mmol/ml)×滴下量(ml)〕/試料の乾燥重量(g)
本発明のイオン性基を有する電解質には本発明の目的を阻害しない範囲において、他の成分、例えば導電性若しくはイオン伝導性を有さない不活性なポリマーや有機あるいは無機の化合物が含有されていても構わない。
イオン性基を有するモノマーを用いて重合する方法としては、繰り返し単位中にイオン性基を有したモノマーを用いれば良く、必要により適当な加水分解性可溶性付与基を導入して重合後脱加水分解により加水分解性可溶性付与基を除去すればよい。
また、イオン性基は例えばスルホン酸基を例に挙げると−SO3H型でも−SO3M型(Mは金属)でもよいが、溶媒の一部を除去して、基材上に膜状物を得る工程(B)においては、−SO3M型である。溶媒乾燥時に熱安定性の点と、製造設備のコスト低減が可能となる。そして、プロトン交換を行う工程(C)において−SO3H型となる。
前記の金属Mはスルホン酸と塩を形成しうるものであればよいが、価格および環境負荷の点からはLi、Na、K、Rb、Cs、Mg、Ca、Sr、Ba、Ti、V、Mn、Fe、Co、Ni、Cu、Zn、Zr、Mo、Wなどが好ましく、これらの中でもLi、Na、K、Ca、Sr、Baがより好ましく、Li、Na、Kがさらに好ましい。
次に重合溶液から、重縮合時に生成した塩分および塩残渣の一部を直接、遠心分路および/またはフィルター濾過で除去する工程(A)について説明する。
本発明の遠心分離とは、遠心機を使ってサンプルに遠心力をかけることにより、液体(高分子電解質溶液)と固体(塩、塩基性化合物、未反応モノマー等)を分離する方法であり、通常公知の方法が適用できる。塩分の除去の効率化の観点から重合溶液の粘度を調整することが好ましい。遠心分離を行う場合、重合溶液濃度は100ポイズ以下が好ましく、より好ましくは50ポイズ、さらに好ましくは10ポイズ以下である。100ポイズを越えると遠心効果が低く、長時間、高遠心力が必要で工業的な装置では遠心分離が困難である。
遠心力は発生する塩とポリマー溶液の比重差や重合液の粘度、固形分、使用する装置など適宜実験的に決定できる。遠心力としては5000G以上、好ましくは10000G以上、より好ましくは20000G以上であり、ケーキの除去時以外は連続的に運転できる装置が工業的に好適である。
本発明のフィルター濾過とは、液体(高分子電解質溶液)に固体(塩、塩基性化合物、残存モノマー等)が混ざっている混合物(重合溶液)を、細かい穴がたくさんあいた多孔質(ろ材)に通して、穴よりも大きな固体の粒子を液体から分離する操作のことである。
フィルター濾過も通常公知の方法が適用でき、重合溶液中から除きたい塩の大きさ、重合溶液の粘度などで条件を適宜決定でき、自然濾過、遠心濾過、減圧濾過、加圧濾過等通常公知の方法が採用でき、濾過対象液を加熱してもよい。フィルターについても特に制限はなく、金属メッシュ、セルロース系フィルター、ガラス繊維フィルター、メンブレンフィルター、濾布、濾過板など重合溶液の処理量や濾過装置に合わせて適宜選択できる。
また、フィルター濾過単独より、遠心分離とフィルター濾過を組み合わせるのが最も効率的である。
また、塗工工程前に塗工用に適した粘度、固形分に調整するため、重合溶液を減圧蒸留や限外濾過により濃縮することも有用である。特に、遠心分離やフィルター濾過の効率化のために重合溶液の粘度調整を実施した場合は、濃縮することが好ましい。また、重合溶液を濃縮することにより塗工性が向上することもある。この濃縮は通常公知の方法が適用でき、攪拌機などを具備し溶媒が揮発することによる被膜発生を防止できる濃縮装置がより好ましく使用できる。また、濃縮により回収した溶媒は再利用することが生産性や環境保護の観点から好ましい。
次に重合原液を直接、遠心分離および/またはフィルター濾過で固液分離して得られた塗液を基材上に流延塗工し、溶媒の一部を除去して、基材上に膜状物を得る工程(B)について説明する。
本発明で使用する溶媒は重合条件や合成する電解質等で適宜実験的に選択できるが、例えば、N,N−ジメチルアセトアミド、N,N−ジメチルホルムアミド、N−メチル−2−ピロリドン、ジメチルスルホキシド、スルホラン、1,3−ジメチル−2−イミダゾリジノン、ヘキサメチルホスホントリアミド等の非プロトン性極性溶媒、γ−ブチロラクトン、酢酸ブチルなどのエステル系溶媒、エチレンカーボネート、プロピレンカーボネートなどのカーボネート系溶媒、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル等のアルキレングリコールモノアルキルエーテルが好適に用いられ、単独でも二種以上の混合物でもよい。
また、電解質溶液の粘度調整にメタノール、イソプロパノールなどのアルコール系溶媒、アセトン、メチルエチルケトン等のケトン系溶媒、酢酸エチル、酢酸ブチル、乳酸エチル等のエステル系溶媒、ヘキサン、シクロヘキサンなどの炭化水素系溶媒、ベンゼン、トルエン、キシレン等の芳香族炭化水素系溶媒、クロロホルム、ジクロロメタン、1,2−ジクロロエタン、ジクロロメタン、パークロロエチレン、クロロベンゼン、ジクロロベンゼンなどのハロゲン化炭化水素系溶媒、ジエチルエーテル、テトラヒドロフラン、1,4−ジオキサンなどのエーテル系溶媒、アセトニトリルなどのニトリル系溶媒、ニトロメタン、ニトロエタン等のニトロ化炭化水素系溶媒、などの各種低沸点溶剤も混合して使用できる。
また、電解質溶液の粘度調整にフッ素系、シリコーン系などの各種界面活性剤の添加も有効な方法である。
本発明で使用する基材としては通常公知の材料が使用できるが、ステンレスなどの金属からなるエンドレスベルトやドラム、ポリエチレンフタレート、ポリイミド、ポリスルホンなどのポリマーからなるフィルム、硝子、剥離紙などが挙げられる。金属などは表面に鏡面処理を施したり、ポリマーフィルムなどは塗工面にコロナ処理を施したり、剥離処理をしたり、ロール状に連続塗工する場合は塗工面の裏に剥離処理を施し、巻き取った後に電解質膜と塗工基材の裏側が接着したりするのを防止することもできる。フィルム基材の場合、厚みは特に限定されないが、30〜200μmがハンドリングの観点から好ましい。
流延塗工方法としては、ナイフコート、ダイレクトロールコート、グラビアコート、スプレーコート、刷毛塗り、ディップコート、ダイコート、バキュームダイコート、カーテンコート、フローコート、スピンコート、リバースコート、スクリーン印刷などの手法が適用できる。
本発明の電解質膜の製造方法において、溶媒の一部を除去して、基材上に膜状物を生成する方法としては、基板上に流延塗工された塗工膜を加熱し溶媒を蒸発させる方法が好ましい。蒸発方法は基材の加熱、熱風、赤外線ヒーター等の公知の方法が選択できる。
塗工膜の乾燥時間や温度は適宜実験的に決めることができるが、少なくとも基材から剥離しても自立膜になる程度に乾燥することが好ましい。
次に、該基材上の膜状物を酸性水溶液と接触させ、プロトン交換を行う工程(C)について説明する。
本発明では、膜状物を、酸性水溶液に接触させることにより、プロトン交換を行うことが必須である。この工程により、遠心分離やフィルター濾過で除去できない微細な塩や膜中の水溶性の不純物、残存モノマー、溶媒なども除去可能であり、加水分解性可溶性基の加水分解も同じ工程で達成できる。酸性水溶液は反応促進のために加熱してもよい。酸性水溶液は硫酸、塩酸、硝酸、酢酸など特に限定されず、温度、濃度等は適宜実験的に選択可能である。生産性の観点から80℃以下の30重量%以下の硫酸水溶液を使用することが好ましい。
遠心分離やフィルター濾過で除去できない微細な塩が残存した場合、塩の部分が基点となり電解質膜の耐久性が低下する傾向にある。そこで、工程(B)と工程(C)の間に、該基材上の膜状物を水と接触させ、重縮合時に生成した塩分および塩残渣の残りを除去する工程(E)を有することが好ましい。また、工程(E)は前記工程(C)で酸性水溶液の交換頻度、膜状物への微量イオンコンタミ防止、膜状物に一部含有する溶媒除去の観点からも好ましい。
本発明で得られる電解質膜の膜厚としては特に制限がないが、通常3〜500μmのものが好適に使用される。実用に耐える膜の強度を得るには3μmより厚い方が好ましく、膜抵抗の低減つまり発電性能の向上のためには500μmより薄い方が好ましい。膜厚のより好ましい範囲は5〜200μm、さらに好ましい範囲は8〜200μmである。この膜厚は、塗工方法により種々の方法で制御できる。例えば、コンマコーターやダイレクトコーターで塗工する場合は、溶液濃度あるいは基板上への塗布厚により制御することができ、スリットダイコートでは吐出圧や口金のクリアランス、口金と基材のギャップなどで制御することができる。
また、本発明の塗液中には遠心分離および/またはフィルター濾過後の塗液に、電解質膜の機械的強度の向上およびイオン性基の熱安定性向上、耐ラジカル性向上、塗液の塗工性の向上、保存安定性向上などの目的のために、フィラーや無機微粒子を添加したり、保存安定剤、モノマー、ポリマーや金属酸化物からなるネットワーク形成剤を添加したりしても差し支えない。また、通常の高分子化合物に使用される結晶化核剤、可塑剤、安定剤あるいは離型剤、酸化防止剤等の添加剤を、本発明の目的に反しない範囲内で添加することができる。
また、本発明の高分子電解質膜は、流延塗工時に微多孔膜、不織布、メッシュ等に含浸して膜の補強を行うこともできる。
次に、該基材上の膜状物を溶媒と接触させ、重縮合時の分子量1000以上、30000以下の低分子量体の少なくとも一部を除去する工程(D)について説明する。
本発明の膜状物と接触させる溶媒は、ポリマーと低分子量体の溶解度の差、ポリマーの膨潤性、低分子量体の溶解性の点から適宜実験的に定められるが、例えば、水、低級アルコール類、低級ケトン類、ハロゲン類等、N,N−ジメチルアセトアミド、N,N−ジメチルホルムアミド、N−メチル−2−ピロリドン、ジメチルスルホキシド、スルホラン、1,3−ジメチル−2−イミダゾリジノン、ヘキサメチルホスホントリアミド等の非プロトン性極性溶媒、γ−ブチロラクトン、酢酸ブチルなどのエステル系溶媒、エチレンカーボネート、プロピレンカーボネートなどのカーボネート系溶媒、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル等のアルキレングリコールモノアルキルエーテルが好適に用いられ、単独でも二種以上の混合物でもよい。
特に生産性や環境保護の観点から、水が好ましく用いられる。また、処理時間の短縮化、処理温度の低温度化の観点から、水に有機溶媒を1〜50重量%混合することが好ましい。水に混合する有機溶媒としては非プロトン性の極性溶媒が好ましく用いられる。
本発明では膜状物を膨潤させることで、重縮合時の低分子量体の除去が容易になるものであり、酸やアルカリ等の溶質を含むとそのバッファ効果で膨潤が起こりにくくなり、低分子量体の除去に長時間要する場合がある。ただし、純水でなければならないほどではない。
膜状物を、溶媒と接触させる温度は、ポリマーと低分子量体の溶解度差、生産性の観点から、40℃以上、100℃以下が好ましく用いられるが低分子量体の除去量、除去目的によって適宜実験的に定められる。40℃以下は、低分子量体の除去効果がいくらか不十分となり電解質膜から触媒層に浸透、触媒毒等の長期発電性能低下が生じる場合があり、100℃以上は膜状物の機械的特性のいくらかの低下が生じる場合がある。
膜状物を、溶媒と接触させる時間は、ポリマーと低分子量体の溶解度差、生産性の観点から、1min以上、24h以内が好ましく用いられるが低分子量体の除去量、除去目的によって適宜実験的に定められる。1min以内は低分子量体の除去効果が不十分となり長期発電性能低下が生じ、24h以上は生産性に問題が生じる。また、膜状物と溶媒の接触は静置、揺動、攪拌、流水、シャワー、超音波、ナノバブル等が好ましく例示される。特に流水による膜状物表面の流速を速くすることが表面拡散性向上効果に有効であり、その結果として膜状物の内部拡散性向上に繋がり、短時間化および低温度化に効果がある。
本発明の電解質膜の製造方法によって得られた電解質膜は、種々の用途に適用可能である。例えば、体外循環カラム、人工皮膚などの医療用途、ろ過用用途、イオン交換樹脂用途、各種構造材用途、電気化学用途に適用可能である。また、人工筋肉としても好適である。中でも種々の電気化学用途により好ましく利用できる。電気化学用途としては、例えば、燃料電池、レドックスフロー電池、水電解装置、クロロアルカリ電解装置等が挙げられるが、中でも燃料電池が最も好ましい。さらに燃料電池のなかでも高分子電解質形燃料電池に好適である。
以下、実施例により本発明をさらに詳しく説明するが、本発明はこれらに限定されるものではない。なお、各物性の測定条件は次の通りである。
(1)スルホン酸基密度
検体となる膜の試料を25℃の純水に24時間浸漬し、40℃で24時間真空乾燥した後、元素分析により測定した。炭素、水素、窒素の分析は全自動元素分析装置varioEL、硫黄の分析はフラスコ燃焼法・酢酸バリウム滴定、フッ素の分析はフラスコ燃焼・イオンクロマトグラフ法で実施した。ポリマーの組成比から単位グラムあたりのスルホン酸基密度(mmol/g)を算出した。
(2)プロトン伝導度
前処理として膜の試料を25℃の純水に24時間浸漬し、定電位交流インピーダンス法でプロトン伝導度を測定した。
測定装置としては、Solartron製電気化学測定システム(Solartron 1287 Electrochemical InterfaceおよびSolartron 1255B Frequency ResponseAnalyzer)を使用した。サンプルは、φ2mmおよびφ10mmの2枚の円形電極(ステンレス製)間に加重1kgをかけて挟持した。有効電極面積は0.0314cmである。サンプルと電極の界面には、ポリ(2−アクリルアミド−2−メチルプロパンスルホン酸)の15%水溶液を塗布した。25℃において、交流振幅50mVの定電位インピーダンス測定を行い、膜厚方向のプロトン伝導度を求めた。
(3)ポリマー溶液の重量平均分子量
ポリマー溶液の重量平均分子量をGPCにより測定した。紫外検出器と示差屈折計の一体型装置として東ソー製HLC−8022GPCを、またGPCカラムとして東ソー製TSK gel SuperHM−H(内径6.0mm、長さ15cm)2本を用い、N−メチル−2−ピロリドン溶媒(臭化リチウムを10mmol/L含有するN−メチル−2−ピロリドン溶媒)にて、流量0.2mL/minで測定し、標準ポリスチレン換算により重量平均分子量を求めた。
(4)低分子量体除去溶液の重量平均分子量
低分子量体除去溶液の重量平均分子量をGPCにより測定した。GPCカラムとして東ソー製TSK gel G4000PWXL(内径7.8mm、長さ30cm)、0.1Mトリス緩衝液(pH=9.0、0.1M塩化カリウム)にて、流量0.7mL/minで測定し、標準単分散ポリエチレンオキサイド、ポリエチレングリコール換算により重量平均分子量を求めた。
(5)低分子量体除去溶液および95℃熱水浸漬1000h後溶液の全有機炭素量(TOC)
低分子量体除去溶媒および95℃熱水浸漬1000h後溶液のTOCを測定した。TOCは、島津製TOC−VCSHを用いキャリアガスとして岩谷ガス製ZERO−Uで測定を行った。
(6)膜厚
ミツトヨ製グラナイトコンパレータスタンドBSG−20にセットしたミツトヨ製ID−C112型を用いて測定した。
(7)粘度測定
回転型粘度計(レオテック社製レオメータRC20型)を用いて剪断速度100(s−1)の条件で温度25℃の粘度を測定した。
ジオメトリーは(試料を充填するアタッチメント)コーン&プレートを使用して、RHEO2000ソフトウェアで得られた値を採用した。
コーンはC25−1(2.5cmφ)を使用し、測定困難な場合は(10poise未満)C50−1(5.0cmφ)に変更した。
(8)電解質膜の耐熱水性重量保持率測定
5×5cmサイズの電解質膜を90℃の純水に所定時間浸漬し、浸漬前後の乾燥重量から耐熱水性重量保持率を測定した。測定条件を下記する。
耐熱水性浸漬前後の乾燥重量:電解質膜を窒素雰囲気下で100℃/16h乾燥した。
耐熱水性重量保持率:下式から求めた。
A:低分子量体除去後の電解質膜の乾燥重量
B:耐熱水性後の乾燥重量
耐熱水性重量保持率(%)=B/A×100
(9)電解質膜の疲労試験
島津製作所社製 電磁力式微少試験機“MMT−101N”を使用し、下記条件で電解質膜が破断するまでのサイクル数を調べた。
試験雰囲気;25℃ 50%RH
試験片幅;5mm
波形種別;正弦波
最大応力;20MPa
最小応力; 2MPa
周波数 ;100Hz
(10)発電耐久性評価
A.水素透過電流の測定
市販の電極、BASF社製燃料電池用ガス拡散電極“LT120ENSI(登録商標)”5g/mPtを5cm角にカットしたものを1対準備し、燃料極、酸化極として電解質膜を挟むように対向して重ね合わせ、150℃、5MPaで3分間加熱プレスを行い、評価用膜電極複合体を得た。
この膜電極複合体を英和(株)製 JARI標準セル“Ex−1”(電極面積25cm)にセットし、セル温度:80℃、一方の電極に燃料ガスとして水素、もう一方の電極に窒素ガスを供給し、加湿条件:水素ガス90%RH、窒素ガス:90%RHで試験を行った。OCVで0.2V以下になるまで保持し、0.2〜0.7Vまで1mV/secで電圧を掃引し電流値の変化を調べた。本実施例においては下記の起動停止試験の前後で測定し0.6V時の値を調べた。膜が破損した場合、水素透過量が多くなり透過電流が大きくなる。また、この評価はSolartron製電気化学測定システム(Solartron 1480 Electrochemical InterfaceおよびSolartron 1255B Frequency ResponseAnalyzer)を使用して実施した。
B.起動停止試験
上記セルを使用し、セル温度:80℃、燃料ガス:水素、酸化ガス:空気、ガス利用率:水素70%/酸素40%、加湿条件:水素ガス60%RH、空気:50%RHの条件で試験を行った。条件としては、OCVで1分間保持し、1A/cmの電流密度で2分間発電し、最後に水素ガスおよび空気の供給を停止して2分間発電を停止し、これを1サイクルとして起動停止を繰り返した。起動停止評価前と3000サイクル後に上記水素透過電流の測定を実施しその差を調べた。また、この試験の負荷変動は菊水電子工業社製の電子負荷装置“PLZ664WA”を使用して行った。
[合成例1]
4,4’−ジフルオロベンゾフェノン109.1gを発煙硫酸(50%SO)150mL中、100℃で10h反応させた。その後、多量の水中に少しずつ投入し、NaOHで中和した後、食塩200gを加え合成物を沈殿させた。得られた沈殿を濾別し、エタノール水溶液で再結晶し、ジソジウム3,3’−ジスルホネート−4,4’−ジフルオロベンゾフェノンを得た。
[合成例2]
撹拌機、窒素導入管、Dean−Starkトラップを備えた1000mL三口フラスコに、炭酸カリウム24.5g、2,2−ビス(4−ヒドロキシフェニル)−1,3−ジオキサン12.9g、4−4'−ビフェノール9.3g、前記合成例1で得たジソジウム3,3’−ジスルホネート−4,4’−ジフルオロベンゾフェノン25.8g、4,4'−ジフルオロベンゾフェノン8.9gを入れ、窒素置換後、N−メチル−2−ピロリドン(NMP)306g、トルエン64.4gを加え、還流しながら175℃で脱水後、昇温してトルエン全量とNMP153gを留去し、200℃で脱塩重縮合を行った。次に重合原液の粘度が2poiseになるようにNMPを添加し重合原液Aを得た。
[合成例3]
炭酸カリウム28.0g、2,2−ビス(4−ヒドロキシフェニル)−1,3−ジオキサン12.9g、4−4'−ビフェノール9.3g、前記合成例1で得たジソジウム3,3’−ジスルホネート−4,4’−ジフルオロベンゾフェノン35.5g、4,4'−ジフルオロベンゾフェノン4.5gを入れ、窒素置換後、N−メチル−2−ピロリドン(NMP)426g、トルエン89.8gを加え、還流しながら175℃で脱水後、昇温してトルエン全量とNMP249gを留去し、200℃で脱塩重縮合を行った。次に重合原液の粘度が2poiseになるようにNMPを添加し重合原液Bを得た。
[合成例4]
(イオン性基を含有しないオリゴマーA1の合成)
攪拌機、窒素導入管、Dean−Starkトラップを備えた1000mL三口フラスコに、炭酸カリウム16.6g、2,2−ビス(4−ヒドロキシフェニル)−1,3−ジオキサン25.8g、4,4'−ジフルオロベンゾフェノン20.3gを入れ、窒素置換後、N−メチル−2−ピロリドン(NMP)300g、トルエン75gを加え、還流しながら160℃で脱水後、昇温してトルエン全量を除去し、175℃で脱塩重縮合を行った。多量のメチルアルコールで再沈殿することで精製を行い、イオン性基を含有しないオリゴマーA1’(末端ヒドロキシル基)を得た。数平均分子量は、11000であった。
攪拌機、窒素導入管、Dean−Starkトラップを備えた500mL三口フラスコに、炭酸カリウム1.2g、イオン性基を含有しないオリゴマーA1’(末端ヒドロキシル基)20.0gを入れ、窒素置換後、N−メチル−2−ピロリドン(NMP)100g、シクロヘキサン30gを加え、還流しながら100℃で脱水後、昇温してシクロヘキサン全量を除去し、デカフルオロビフェニル4.0gを加え、105℃で脱塩重縮合を行った。
多量のイソプロピルアルコールで再沈殿することで精製を行い、イオン性基を含有しないオリゴマーA1(末端フルオロ基)を得た。数平均分子量は、12000であり、イオン性基を有しないオリゴマーA1の数平均分子量は、リンカー部位(分子量630)を差し引いた値11400と求められた。
(イオン性基を含有するオリゴマーA2の合成)
攪拌機、窒素導入管、Dean−Starkトラップを備えた1000mL三口フラスコに、炭酸カリウム27.6g、2,2−ビス(4−ヒドロキシフェニル)−1,3−ジオキサン12.9g、4−4'−ビフェノール9.3g、前記合成例1で得たジソジウム3,3’−ジスルホネート−4,4’−ジフルオロベンゾフェノン39.3g、18−クラウン−6、17.9gを入れ、窒素置換後、N−メチル−2−ピロリドン(NMP)300g、トルエン100gを加え、還流しながら175℃で脱水後、昇温してトルエン全量を除去し、200℃で脱塩重縮合を行った。多量のイソプロピルアルコールで再沈殿することで精製を行い、イオン性基を含有するオリゴマーA2(末端ヒドロキシル基)を得た。数平均分子量は、15000であった。
(イオン性基を含有するセグメントとしてオリゴマーA2、イオン性基を含有しないセグメントとしてオリゴマーA1、リンカー部位としてオクタフルオロビフェニレンを含有するブロック共重合体Cの合成)
攪拌機、窒素導入管、Dean−Starkトラップを備えた500mL三口フラスコに、炭酸カリウム0.6g、イオン性基を含有するオリゴマーA2(末端ヒドロキシル基)16.0gを入れ、窒素置換後、N−メチル−2−ピロリドン(NMP)300g、シクロヘキサン30gを加え、還流しながら100℃で脱水後、昇温してシクロヘキサン全量を除去し、さらにイオン性基を含有しないオリゴマーA1(末端フルオロ基)11.0gを加え、105℃で24時間脱塩重縮合を行った。次に重合原液の粘度が2poiseになるようにNMPを添加し重合原液Cを得た。
[実施例1]
工程(A):2poiseの重合原液Aを久保田製作所製インバーター・コンパクト高速冷却遠心機 型番6930 にアングルローターRA−800をセットし、25℃、30分間、遠心力20000Gで固液分離を行った。ケーキと上澄み液(塗液)がきれいに分離できたので、上澄み液を回収した。上澄み液のみを1μmのポリテトラフルオロエチレン(PTFE)製フィルターで加圧濾過して、セパラブルフラスコに移した。次に、撹拌しながら90℃で減圧蒸留し、上澄み液の粘度が30poiseになるまでNMPを留去し、塗液Aを得た。
工程(B):塗液Aを基材として125μmのPETフィルム(東レ製“ルミラー(登録商標)”)を用い、スリットダイで流延塗工し、150℃で30分間乾燥した。
工程(E)次に25℃の純水に30分間浸漬し残存塩、残存モノマー、残存炭酸カリウム、残存NMP等を洗浄した。
工程(C)その後、60℃の10重量%の硫酸に30分間浸漬し、加水分解性可溶性基の加水分解とイオン性基のプロトン交換を実施した。次にこの膜状物を洗浄液が中性になるまで純水で洗浄した。
工程(D):次にこの膜状物を95℃の純水に1時間浸漬し、低分子量体の除去を実施した。その後、60℃で30分間乾燥し膜厚30μmの電解質膜Aを得た。前記、低分子量体除去溶液のTOCは1.8mgであり、GPC重量平均分子量は1500〜3000であった。また、この電解質膜のイオン性基密度は2.5mmol/gであった。この電解質膜Aを95℃の純水に1時間浸漬後の耐熱水性重量保持率は100%であった。さらに95℃の純水に1000時間浸漬後の耐熱水性重量保持率は99%であり、浸漬溶液のTOCは0.1mg以下であった。
この電解質膜Aを使用し疲労試験を行ったところ3500000回であった。また、発電耐久性評価を実施し試験前後の水素透過電流を測定したところ、評価前が0.42mA/cmで評価後は0.43mA/cmであり耐久性が良好であった。
[実施例2]
工程(A)で重合原液をBに、工程(B)で基材として125μmのPETフィルム(東レ製“ルミラー(登録商標)”)を用い、塗液Bを手塗りで流延塗工し、その塗工面にポリプロピレンの2軸延伸微多孔フィルムを載せて塗液Bを含浸させ、80℃で20min乾燥後に、塗工液Bを塗工し、100℃で30min乾燥、工程(D)でこの膜状物を95℃の純水に16時間浸漬し、低分子量体の除去を実施した以外は実施例1と同様に行った。前記、低分子量体除去溶液のTOCは1.5mgであり、GPC重量平均分子量は1500〜4500であった。また、この電解質膜のイオン性基密度は2.3mmol/gであった(電解質膜B)。この電解質膜Bを95℃の純水に1時間浸漬後の耐熱水性重量保持率は100%であった。さらに95℃の純水に1000時間浸漬後の耐熱水性重量保持率は100%であり、浸漬溶液のTOCは0.1mg以下であった。
この電解質膜Cを使用し疲労試験を行ったところ15000000回であった。また、発電耐久性評価を実施し試験前後の水素透過電流を測定したところ、評価前が0.33mA/cmで評価後は0.33mA/cmであり耐久性が良好であった。
[実施例3]
工程(D)で膜状物を60℃の純水/N−メチル−2−ピロリドン(NMP)=90/10重量部に1時間浸漬以外は実施例1と同様に行った(電解質膜C)。前記、低分子量体除去溶液のTOCは1.9mg(NMP炭素量換算値)であり、GPC重量平均分子量は1500〜3500であった。また、この電解質膜Cのイオン性基密度は2.5mmol/gであった。この電解質膜Cを95℃の純水に1時間浸漬後の耐熱水性重量保持率は100%であった。さらに95℃の純水に1000時間浸漬後の耐熱水性重量保持率は100%であり、浸漬溶液のTOCは0.1mg以下であった(NMP炭素量換算値)。
この電解質膜Cを使用し疲労試験を行ったところ3000000回であった。また、発電耐久性評価を実施し試験前後の水素透過電流を測定したところ、評価前が0.42mA/cmで評価後は0.44mA/cmであり耐久性が良好であった。
[実施例4]
工程(D)で膜状物を50℃の純水/1,3−ジメチル−2−イミダゾリジノン=95/5重量部に1時間浸漬以外は実施例1と同様に行った(電解質膜D)。前記、低分子量体除去溶液のTOCは2.0mg(NMP炭素量換算値)であり、GPC重量平均分子量は1500〜3800であった。また、この電解質膜Dのイオン性基密度は2.5mmol/gであった。さらに95℃の純水に1時間浸漬後の耐熱水性重量保持率は100%であった。さらに95℃の純水に1000時間浸漬後の耐熱水性重量保持率は100%であり、浸漬溶液のTOCは0.1mg以下であった(NMP炭素量換算値)。この電解質膜Dを使用し疲労試験を行ったところ3500000回であった。また、発電耐久性評価を実施し試験前後の水素透過電流を測定したところ、評価前が0.43mA/cmで評価後は0.44mA/cmであり耐久性が良好であった。
[実施例5]
工程(A)の重合原液Aを重合原液Cに変更する以外は、実施例1と同様に行った(電解質膜F)。前記、低分子量体除去溶液のTOCは1.5mgであり、GPC重量平均分子量は1500〜2800であった。また、この電解質膜のイオン性基密度は1.8mmol/gであった。この電解質膜Aを95℃の純水に1時間浸漬後の耐熱水性重量保持率は100%であった。さらに95℃の純水に1000時間浸漬後の耐熱水性重量保持率は99%であり、浸漬溶液のTOCは0.1mg以下であった。
この電解質膜Fを使用し疲労試験を行ったところ7500000回であった。また、発電耐久性評価を実施し試験前後の水素透過電流を測定したところ、評価前が0.25mA/cmで評価後は0.26mA/cmであり耐久性が良好であった。
[比較例1]
工程(D)で膜状物を95℃の純水に1時間浸漬しない以外は、実施例2と同様に行った(電解質膜E)。この電解質膜Dを95℃の純水に1時間浸漬後の耐熱水性重量保持率は95%であった。さらに95℃の純水に1000時間浸漬後の耐熱水性重量保持率は89%であり、浸漬溶液のTOCは2.5mgであり、GPC重量平均分子量は1500〜10000であった。
この電解質膜Eを使用し疲労試験を行ったところ150000回であった。また、発電耐久性評価を実施し試験前後の水素透過電流を測定したところ、評価前が0.47mA/cmで評価後は1.51mA/cmであり耐久性の著しい劣化が認められた。

Claims (3)

  1. 脱塩重縮合で得られる、加水分解性可溶性付与基かつイオン性基密度が1.0mmol/g以上の高分子電解質の重合溶液から、重縮合時に生成した塩分および塩残渣の一部を直接、遠心分離および/またはフィルター濾過で除去して塗液を得る工程(A)、該塗液を基材上に流延塗工し溶媒の一部を除去して、基材上に膜状物を得る工程(B)、該基材上の膜状物を酸性水溶液と接触させ、プロトン交換を行う工程(C)、該基材上の膜状物を溶媒と接触させ、重縮合時の分子量1000以上、30000以下の低分子量体の少なくとも一部を除去する工程(D)をこの順に有することを特徴とする高分子電解質膜の製造方法。
  2. 工程(B)と工程(C)の間に、該基材上の膜状物を水と接触させ、重縮合時に生成した塩分および塩残渣の残りを除去する工程(E)を有する請求項1記載の高分子電解質膜の製造方法。
  3. 工程(D)の温度が40℃以上100℃以下である請求項1または2に記載の高分子電解質膜の製造方法。
JP2012253151A 2011-11-22 2012-11-19 高分子電解質膜の製造方法。 Pending JP2013131490A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012253151A JP2013131490A (ja) 2011-11-22 2012-11-19 高分子電解質膜の製造方法。

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011254719 2011-11-22
JP2011254719 2011-11-22
JP2012253151A JP2013131490A (ja) 2011-11-22 2012-11-19 高分子電解質膜の製造方法。

Publications (1)

Publication Number Publication Date
JP2013131490A true JP2013131490A (ja) 2013-07-04

Family

ID=48908864

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012253151A Pending JP2013131490A (ja) 2011-11-22 2012-11-19 高分子電解質膜の製造方法。

Country Status (1)

Country Link
JP (1) JP2013131490A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014148588A (ja) * 2013-01-31 2014-08-21 Kaneka Corp 高分子電解質の製造方法
KR101854934B1 (ko) * 2013-07-15 2018-06-20 주식회사 엘지화학 연료전지의 연료극 형성 장치 및 방법, 이에 의해 제조된 고체산화물 연료전지의 연료극 및 이를 포함하는 고체산화물 연료전지

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014148588A (ja) * 2013-01-31 2014-08-21 Kaneka Corp 高分子電解質の製造方法
KR101854934B1 (ko) * 2013-07-15 2018-06-20 주식회사 엘지화학 연료전지의 연료극 형성 장치 및 방법, 이에 의해 제조된 고체산화물 연료전지의 연료극 및 이를 포함하는 고체산화물 연료전지

Similar Documents

Publication Publication Date Title
KR101678706B1 (ko) 고분자 전해질막의 제조 방법
Zhuo et al. Highly ionic-conductive crosslinked cardo poly (arylene ether sulfone) s as anion exchange membranes for alkaline fuel cells
Unveren et al. Role of post-sulfonation of poly (ether ether sulfone) in proton conductivity and chemical stability of its proton exchange membranes for fuel cell
Zhang et al. Novel side-chain-type cardo poly (aryl ether sulfone) bearing pendant sulfoalkyl groups for proton exchange membranes
Liu et al. A superhydrophobic bromomethylated poly (phenylene oxide) as a multifunctional polymer filler in SPEEK membrane towards neat methanol operation of direct methanol fuel cells
JP5678754B2 (ja) 複合化高分子電解質膜の製造方法
CN107408716B (zh) 复合高分子电解质膜
CA3063327C (en) Polymer electrolyte membrane, membrane electrode assembly, and solid polymer electrolyte fuel cell
JP5892653B2 (ja) 高分子電解質およびその利用
Jo et al. Synthesis and investigation of random-structured ionomers with highly sulfonated multi-phenyl pendants for electrochemical applications
TW202104670A (zh) 積層電解質膜、膜電極複合體及水電解式氫產生裝置、以及積層電解質膜的製造方法
JP7059608B2 (ja) 高分子電解質組成物、それを用いた高分子電解質膜、触媒層付電解質膜、膜電極複合体、固体高分子形燃料電池、固体高分子形水電解式水素発生装置および電気化学式水素圧縮装置、ならびに高分子電解質組成物の製造方法
Zhang et al. Fabrication of a polymer electrolyte membrane with uneven side chains for enhancing proton conductivity
JP2011181423A (ja) 高分子電解質材料およびそれを用いた高分子電解質型燃料電池
Wang et al. Low water swelling polyaromatic proton exchange membranes
Jiang et al. Proton conducting membranes based on semi-interpenetrating polymer network of fluorine-containing polyimide and perfluorosulfonic acid polymer via click chemistry
Brum et al. Synthesis and characterisation of a new sulphonated hydrocarbon polymer for application as a solid proton-conducting electrolyte
JP2013131490A (ja) 高分子電解質膜の製造方法。
JP5434386B2 (ja) 高分子電解質膜の製造方法。
Kamble et al. Fabrication of high proton conducting composite membranes from amino group functionalized MOF and semi-fluorinated sulfonated poly (arylene ether sulfone) s
JP2013077554A (ja) 積層高分子電解質膜およびその製造方法
JP5338656B2 (ja) 高分子電解質膜の製造方法
Nikumbe et al. PVA-Silica Composite Membrane for Aqueous Hybrid Flow Battery
JP5867863B2 (ja) 高分子電解質およびその利用
JP2013045502A (ja) 複合化高分子電解質膜