JP2010512140A - バックコンバータ・容量性分圧器一体型の電圧変換器 - Google Patents

バックコンバータ・容量性分圧器一体型の電圧変換器 Download PDF

Info

Publication number
JP2010512140A
JP2010512140A JP2009540523A JP2009540523A JP2010512140A JP 2010512140 A JP2010512140 A JP 2010512140A JP 2009540523 A JP2009540523 A JP 2009540523A JP 2009540523 A JP2009540523 A JP 2009540523A JP 2010512140 A JP2010512140 A JP 2010512140A
Authority
JP
Japan
Prior art keywords
node
voltage
output
capacitor
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009540523A
Other languages
English (en)
Other versions
JP4944207B2 (ja
Inventor
シング,クン
ジェイ. ミラー,グレッグ
Original Assignee
インターシル アメリカズ インク
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by インターシル アメリカズ インク filed Critical インターシル アメリカズ インク
Publication of JP2010512140A publication Critical patent/JP2010512140A/ja
Application granted granted Critical
Publication of JP4944207B2 publication Critical patent/JP4944207B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of DC power input into DC power output
    • H02M3/02Conversion of DC power input into DC power output without intermediate conversion into AC
    • H02M3/04Conversion of DC power input into DC power output without intermediate conversion into AC by static converters
    • H02M3/10Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of DC power input into DC power output
    • H02M3/02Conversion of DC power input into DC power output without intermediate conversion into AC
    • H02M3/04Conversion of DC power input into DC power output without intermediate conversion into AC by static converters
    • H02M3/06Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using resistors or capacitors, e.g. potential divider
    • H02M3/07Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using resistors or capacitors, e.g. potential divider using capacitors charged and discharged alternately by semiconductor devices with control electrode, e.g. charge pumps
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00711Regulation of charging or discharging current or voltage with introduction of pulses during the charging process
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
    • H02J7/007182Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters in response to battery voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of DC power input into DC power output
    • H02M3/02Conversion of DC power input into DC power output without intermediate conversion into AC
    • H02M3/04Conversion of DC power input into DC power output without intermediate conversion into AC by static converters
    • H02M3/10Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • H02M3/1588Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load comprising at least one synchronous rectifier element
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of AC power input into DC power output; Conversion of DC power input into AC power output
    • H02M7/42Conversion of DC power input into AC power output without possibility of reversal
    • H02M7/44Conversion of DC power input into AC power output without possibility of reversal by static converters
    • H02M7/48Conversion of DC power input into AC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • H02M7/4837Flying capacitor converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2207/00Indexing scheme relating to details of circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J2207/20Charging or discharging characterised by the power electronics converter
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B40/00Technologies aiming at improving the efficiency of home appliances, e.g. induction cooking or efficient technologies for refrigerators, freezers or dish washers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

【課題】バックコンバータ117及び容量性分圧器を備えた電圧変換器100及び200を提供する。
【解決手段】変換器は、4つのキャパシタ、スイッチ回路Q1〜Q4、インダクタL及び制御装置IIIを備える。第1のキャパシタL1は、基準ノードと第1の出力電圧VOUT1を発生する第1の出力ノード105との間に結合される。第2のキャパシタC3或いはCAは、入力ノードと、基準ノード又は第1の出力ノードのいずれかとの間に結合される。スイッチ回路は、第3のキャパシタC2を、PWM信号の第1の状態においては基準ノードと第1の出力ノードとの間に、PWM信号の第2の状態においては第1の出力と入力ノードとの間に結合する。インダクタは、第3のキャパシタに結合され、第2の出力電圧VOUT2を供給する第4のキャパシタに結合された第2の出力ノード113を備える。制御装置は、第2の出力電圧を所定のレベルに調節するPWM信号のデューティサイクルを制御する。
【選択図】図1

Description

本願は、2007年8月1日提出の米国特許仮出願番号60/953,254に基づき、その利益を主張するものであり、その全てを参照することにより本明細書の一部とする。また、本願は、2008年6月3日提出の米国特許仮出願番号61/058,426に基づき、その利益を主張するものであり、その全てを参照することにより本明細書の一部とする。また、本願は、少なくとも一人の共通の発明者が同時に出願し、同一の出願人による「容量性分圧器・バックコンバータ・バッテリ充電器一体型の電圧変換器」という名称の出願に関連するものであり、その全てを参照することにより本明細書の一部とする。
電圧レベルを下げて電子デバイスの効率を向上させるためには、入力電圧の低減は、しばしば求められるものであり、有利である。例えば、最も一般に使用されるノート型コンピュータ用のAC−DCアダプタは、AC電圧をおよそ19ボルト(V)のDC電圧に変換する。既存の大部分のノート型コンピュータ用の電力系においては、AC−DCアダプタがプラグ接続されている場合には、バッテリの充電に加えて、中央処理装置(CPU)、グラフィックス・プロセッシング・ユニット(GPU)或いはメモリ等の、異なる電気機器に電力を供給するための、低い電圧供給レベルを生成する下流側変換器に直接使用される19Vのアダプタ出力電圧が供給される。しかし、19Vの入力電圧レベルを用いる電子デバイスに必要とされる様々な低減電圧レベルを生成するために使用される下流側変換器を最適化することは難しい。AC−DCアダプタから出力される電圧は低減されるかもしれないが、それに伴い、同じ電力レベルを供給するために電流が増加してしまうと考えられる。増加した電流容量は、AC−DCアダプタの物理的サイズを増加し、更に、増加した電流容量を扱う電線の内径を増大させる。増加したAC−DCアダプタの出力電流は、効率を低下させる。効率は、充電バッテリを用いたバッテリ駆動式電子デバイスには特に重要である。また、充電バッテリが設けられる場合、バッテリの充電に十分な電圧を確保するために、電圧がそのバッテリ電圧以下に低減しない場合がある。
一実施形態に係る電圧変換器は、容量性分圧器と組み合わせられたバックコンバータを備える。変換器は、4つのキャパシタ、スイッチ回路、インダクタ及び制御装置を備える。第1のキャパシタは、基準ノードと第1の出力電圧を発生する第1の出力ノードとの間に接続される。第2のキャパシタは、入力ノードと、基準ノード又は第1の出力ノードのいずれかとの間に接続される。スイッチ回路は、第3のキャパシタを、PWM信号の第1の状態においては基準ノードと第1の出力ノードとの間に、PWM信号の第2の状態においては第1の出力と入力ノードとの間に接続する。インダクタは、第3のキャパシタに接続され、第2の出力電圧を供給する第4のキャパシタに接続された第2の出力ノードを備える。制御装置は、第2の出力電圧を所定のレベルに調節するPWM信号のデューティサイクルを制御する。別の実施形態においては、バッテリおよびバッテリ充電器が含まれる。入力電圧を供給するために、外部電源が含まれても良い。
本発明の利点、特徴及び効果をより理解するため、以下の説明及び添付の図面を参照する。
図1は、具体的実施例に係る同期コンバータを併用した容量性分圧器を有する電圧変換器の概略ブロック図である。 図2は、図1の電圧変換器を含む電源回路の概略ブロック図である。 図3は、図1の電圧変換器を内蔵した電子デバイスの簡略ブロック図である。 図4は、図2の電源回路を内蔵した電子デバイスの簡略ブロック図である。 図5は、電圧変換器を含み、バッテリ充電器併用機能を備える別の電源回路の概略ブロック図である。 図6は、図5の電源回路を内蔵した電子デバイスの簡略ブロック図である。
以下の説明は、具体的用途及びその要件の範囲内で当業者が本発明を行い、用いることができるよう提示される。しかし、好適な一実施形態の様々な変形例が当業者に明らかとなれば、ここに定義される一般原理が別の実施形態に適用される場合がある。従って、本発明は、ここに示され説明される特定の実施形態に限定するものではないが、本願明細書中に開示される原理及び新規特徴と一致する広い範囲のものであると認められるものである。
図1は、具体的実施例に係る同期バックコンバータ117を併用したキャパシタ分圧器を有する電圧変換器100の概略ブロック図である。電圧変換器100は、入力ノード101とアース(GND)などの基準ノードとの間に直列に接続された4つの電子スイッチQ1、Q2、Q3及びQ4を備える。図示した実施形態において、Pチャネルデバイス、他の種類のFET、他の種類のトランジスタといった他種の電子スイッチも考えられるが、電子スイッチQ1〜Q4は、それぞれN型金属酸化膜半導体電界効果トランジスタ(MOSFET)として構成される。Q4は、入力ノード101に接続されるドレインと、第1の中間ノード103に接続されるソースを有する。Q3は、中間ノード103に接続されるドレインと、出力電圧VOUT1を発生する第1の出力ノード105に接続されるソースを有する。Q2は、出力ノード105に接続されるドレインと、第2の中間ノード107に接続されるソースを有する。Q1は、中間ノード107に接続されるドレインと、GNDに接続されるソースを有する。第1のキャパシタC1は、ノード105とGNDとの間に接続され、第2の“フライ”キャパシタC2は、中間ノード103と107との間に接続され、第3のキャパシタC3は、入力ノード101とノード105との間に接続され、第4のキャパシタCAは、入力電圧VINをフィルタリングするためにノード101とGNDとの間に接続されるものとして示される。パルス幅変調(PWM)制御装置111は、ゲート駆動信号P1、P2、P3及びP4を、スイッチQ1、Q2、Q3及びQ4のゲートにそれぞれ供給する。VIN及びVOUT1は、PWM制御装置111のそれぞれの入力に供給されるものとして示されている。
PWM制御装置111により制御されるスイッチQ1〜Q4及びキャパシタC1〜C3を一括して、VOUT1の電圧レベルを発達させるためにVINの電圧を分圧するスイッチドキャパシタ回路網を形成する。PWM制御装置111は、各PWMサイクルの第1部の間は、スイッチQ2及びQ4をオフにしながらスイッチQ1及びQ3をオンにし、各PWMサイクルの第2部の間は、スイッチQ2及びQ4をオンにしながらスイッチQ1及びQ3をオフにする信号P1〜P4をアサートする。スイッチドキャパシタ回路網のPWMデューティサイクルDは、50%又は50%近くであり、VOUT1の電圧は、VINの電圧レベルのおよそ半分に収束するため、スイッチドキャパシタ回路網はキャパシタ分圧器とも称される。一例としては、従来の構成においては、スイッチQ1及びQ3は、およそ50%の割合でオン/オフが切り替えられ、スイッチQ2及びQ4は、およそ50%の割合でオフ/オンが切り替えられる。しかし、VOUT1がまだVINの電圧のおよそ半分残ったままである一方で、デューティサイクルDは、50%から比較的相当量逸れる場合があることに留意されたい。これは、以下に説明するように、一体化された同期バックレギュレータ117の電圧出力の調節にも有利である。
更に、電圧変換器100は、1つの端子が中間ノード107に接続され、別の端子が第2の出力電圧VOUT2を発生する第2の出力ノード113に接続されたインダクタLを備える。出力フィルタキャパシタCOは、出力ノード113とGNDとの間に接続される。信号グラウンド、パワー・グラウンド、シャーシ・グラウンドなど、いずれにも同じ「GND」の表記を用いるが、このような異種の接地ノードを用いることが好ましい。キャパシタCOとインダクタLを一括して、中間ノード107に接続されるインダクタ−キャパシタ(LC)回路を形成する。PWM制御装置111に制御されるスイッチQ1、Q2、インダクタL及びキャパシタCOを一括して、同期バックレギュレータ117を形成する。電圧VOUT1は、VOUT2の電圧レベルを発達させるために用いられるバックレギュレータ117に入力電圧を供給する。PWM制御装置111は、星印「*」が乗法を示すところのVOUT2=D*VOUT1となるようにデューティサイクルDを発生させる所定の電圧にVOUT2を調節するために、スイッチQ1〜4の起動を切り換える。図示した実施形態において、VOUT2は、PWM信号をゲート駆動回路114に供給するPWM制御装置111内において、レギュレータ112にフィードバックされる。ゲート駆動回路114は、スイッチQ1〜4の作動をそれぞれ制御するため、PWM信号をゲート駆動信号P1〜P4に変換する。
外部電源116は、入力電圧VINをノード101に調達するために使われる電源電圧DCVを供給する。図示した実施形態において、外部電源116は、取り外し可能であり、かつ、電源電圧DCVを電圧変換器100に運ぶために、機械的かつ電気的に相互結合するよう構成された、相互嵌合コネクタ118及び119を用いて接続される。具体的に図示はしないが、コネクタ118及び119は、一般に、GND信号も伝達する。
動作時において、VOUT2の電圧レベルは、PWM制御装置111のレギュレータ112により、所定の電圧レベルに調節される。特に、レギュレータ112は、フィードバック回路(図示せず)或いはその他の手段を介して直接的に、または、(例えば、中間ノード107等を介すように)間接的にVOUT2の電圧レベルを感知又は検知し、かつPWM信号のデューティサイクルDを制御し、ゲートドライバ114は、VOUT2の電圧レベルを所定の電圧レベルに調節するため、PWMデューティサイクルDに基づきスイッチQ1及びQ2を制御する、P1及びP2信号を順に制御する。更に、図示した実施形態において、信号P1は「コピー」されるか信号P3と同一にされ、信号P2はP4信号と同一にされ、つまりP1=P3かつP2=P4とされる。一実施形態において、例えば、信号線P1及びP3は、直接共に結合あるいは接続され、信号線P2及びP4は、直接共に結合あるいは接続される。あるいは、P1信号は、P3信号を供給するために選択的に緩衝され、P2信号は、P4信号を供給するために選択的に緩衝される。このように、PWM制御装置111は、バックレギュレータの動作に伴ってVOUT2の電圧レベルを調節するP1及びP2信号を制御し、キャパシタ分圧器の操作のために、信号P1及びP2はそれぞれ信号P3及びP4にコピーされる。
以下に、キャパシタ分圧器の機能を構築する工程を説明する。Q2及びQ4がオンでQ1及びQ3がオフの場合、キャパシタC2はVINとVOUT1との間に接続され、VC1及びVC2がそれぞれキャパシタC1及びC2の電圧である場合に、VC1+VC2=VINとなるように充電される。Q2及びQ4がオフでQ1及びQ3がオンの場合、キャパシタC2はVOUT1とGNDとの間に接続され、VC1=VC2となるように放電される。この工程が適切な頻度で繰り返されることから、VC1+VC2=VIN及びVC1=VC2のどちらの方程式も、VC1=VC2=1/2VINを満たす。キャパシタ分圧器にとって最も効率的なデューティサイクルDは、およそ50%である。とはいえ、デューティサイクルDが少なくとも40%〜60%の範囲の間など50%から逸れた場合でも、電圧変換器100はまだ高効率で作動する。このように、デューティサイクルDが50%から比較的大きく逸れたにしても、正確にVOUT1の約2分の1でなくてもよい所望の電圧レベルにVOUT2が調節される一方で、VOUT1はVINの電圧の約2分の1のままである。従って、キャパシタC2は、その充電及び放電のために、PWM信号の一状態ではノード101及び105間、及びPWM信号の別の状態ではノード105及びGND間でそれぞれ切り換えられるフライキャパシタとして作動する。
電圧変換器100のキャパシタ分圧器は、従来型のバックコンバータの構成と比較して、VOUT1を介しての電力の調達により高効率である。VOUT1でのキャパシタ分圧器出力はインダクタを有さず、インダクタのコア損失やコイル銅損がない。キャパシタ分圧器のスイッチQ1〜Q4(例えばMOSFET)は、ゼロ電圧ターンオフで作動し、総スイッチング損失が比較的低くなるように、各スイッチはVINの半分のみを受ける。通常のバックコンバータにおいては、スイッチは総入力電圧VINに晒され、従ってスイッチング損失も大きい。更に、電子スイッチの導通損失は他の損失に比べ顕著であることから、スイッチのオン抵抗を低減することにより、スイッチング損失の増加という通常の懸念もなく、導通損失を低減できる。例えば、オン抵抗は、複数のスイッチを並列に接続して低減してもよい。これが従来のバックコンバータの構成に試される場合、RDSON(オンにしたときのドレイン-ソース間抵抗)がスイッチシリコンダイ面積の増加により低減されると、それに伴って制御端末電荷(ゲート電荷)が増加する。その結果、RDSONを低減することにより、従来のバックコンバータのスイッチング損失の増加は、導通損失の低減と相殺される。この構成の別の利点は、同量の電力を送るのに、高電流レベルで低電圧を供給する別のアダプタと比べ、より高電圧とより少ない電流を供給することで、外部電源116が物理的に小さく作製され得る点にある。
一実施形態において、VINはおよそ19ボルト(V)であり、VOUT1はおよそ9.5Vであり、VOUT2はおよそ5Vである。バックコンバータ117のために、9.5Vの「入力」電圧レベルを5Vに調節された電圧に変換するPWM信号のデューティサイクルD、ひいては、P1及びP2信号は、およそ53%である。デューティサイクルDは、負荷条件等により幾分か変化する。スイッチQ1及びQ2に使用されるデューティサイクルDは複写され、スイッチQ3及びQ4のデューティサイクルとして使用されるため、この同一のデューティサイクルDはキャパシタ分圧器に使用される。デューティサイクルDは53%から幾分か変化するが、50%に十分近いレベルのままである。いずれの場合にも、デューティサイクルDが50%から著しく逸れたとしても、VOUT2が5Vに調節される一方で、VOUT1はVINのおよそ半分のままである。
別の実施形態において、VINはおよそ20ボルト(V)であり、VOUT1はおよそ10Vであり、VOUT2はおよそ5Vである。この場合のデューティサイクルDは、およそ50%である。ただし、PWM制御装置111は、VOUT2を5Vに調節するようスイッチQ1及びQ2のデューティサイクルDを制御し、同一のデューティサイクルDが、前述のように、スイッチQ3及びQ4に複写される。キャパシタC1、C3及びCAは、キャパシタCA及びC3のいずれか1つが省略できる代替的な実施形態を可能にするキャパシタループを形成することを更に留意されたい。一実施形態において、VINは、PWM制御装置111に電力を与える初期電圧源を提供し、一旦調節がされると、VOUT2は電力の供給に使用される。この場合、VOUT2は、感知はされないが、PWM制御装置111に直接供給される。
図2は、電圧変換器100を含む電源回路200の概略ブロック図である。電圧変換器100は、PWM制御装置111がVOUT1及びVOUT2電圧を受け、制御信号P1〜P4をスイッチQ1〜Q4のゲートにそれぞれ供給する図1に示す構成と略同一に構成される。同様に、キャパシタC1〜C3及びCAが配設され、接続される。しかし、前述のように、キャパシタループを完成させるために、キャパシタC3或いはCAのいずれか1つ又は双方が含まれても良い。PWM制御装置111がVOUT2の電圧を調節するためスイッチQ1及びQ2のデューティサイクルDを制御し、フライキャパシタC2をノード101と105との間、或いは、ノード105とGNDとの間に切り替え可能に接続することによる容量性開閉動作を用いてVOUT1が発生される操作は、ほぼ同様である。図示した実施形態において、外部電源116の出力は、電源電圧DCVを、コネクタ118及び119を通し、且つ、一対の断路スイッチS1及びS2を通して、VIN信号を発生するノード101に供給する。断路スイッチS1及びS2は、更に以下に説明するように、外部電源116から電源回路200へ電力を選択的に接続するように設けられる。感知回路208は、スイッチS1の動作を制御する。ノード101はバッテリ充電器203の入力に更に接続され、バッテリ充電器203は、ノード205において充電バッテリパック207の端子に更に接続される出力を有する。スイッチS3は、動作モードに従ってVOUT1を駆動するバッテリパック207を選択的に接続するため、ノード205と105との間に接続される。バッテリ検出回路206は、バッテリパック207の存在を検知し、それを示すバッテリ検出信号BDをPWM制御装置111へアサートする。PWM制御装置111は、外部電源モード又はバッテリ電源モードのいずれかを含む動作モードを決定し、スイッチS3に信号Bをアサートする。
他の種類のFET、他の種類のトランジスタなどの他種の電子スイッチも考えられるが、断路スイッチS1及びS2はP型MOSFETとして示される。スイッチS1及びS2は、共通ドレインに背中合せの構成で接続されるものとして示される。外部電源116が最初にコネクタ118及び119を介して接続される場合、感知回路208は電圧DCVを検出し、著しい突入電流を避けるために徐々にスイッチS1をオンにする。一実施形態において、感知回路208は、外部電源を感知する抵抗-容量(RC)回路等を備える。スイッチS1がオンである一方で、スイッチS2の内部ダイオードは順バイアスであり、バッテリ充電器203はノード101を介して外部電源の存在を検知する。図示した実施形態において、バッテリ充電器203は、DCVが外部電源モードでVINの供給源となるように、スイッチS2をオンにする信号Aをアサートする。外部電源がもはや利用できない場合には、バッテリ充電器203はスイッチS2をオフにし、断路する。PWM制御装置111は、ノード101を介してDCVの存在と、BD信号を介してバッテリパック207の存在を検知し、動作モーとを決定する。バッテリ電源モードにおいて、PWM制御装置111は、B信号を介してスイッチS3をオンにし、外部電源モードにおいては、PWM制御装置111はスイッチS3をオフにする。バッテリ電源モードにおいて電源を入れる場合、PWM回路111は、最初にノード205を介してバッテリパック207から電力を得ることができる。前述のように、一旦VOUT2が調節され、図示するようにPWM制御装置111に直接供給される場合、VOUT2は、通常動作中にPWM制御装置111に電力を供給する。スイッチS3は簡略化して示されているが、FET又はMOSFET等のようなトランジスタとして実装されてもよい。
一実施形態において、バッテリパック207は、8.4V〜12.6Vの範囲のバッテリ電圧を有する3つ積み重ったリチウムイオン(Li-ion)バッテリを備える。他のバッテリの構成と電圧が(特定の構成の非充電式バッテリを含む)考えられる。図示はしないが、バッテリ充電器203は、電源電圧DCVをバッテリパック207に充電するための、チャージ電圧及びチャージ電流に変換する個別のバックコンバータ等を備える。バッテリパック207は、1つ以上のバッテリを備え、ノード205とGNDとの間に接続される。バッテリパック207は代替電源を設けているため、外部電源116は選択的に取り外しができる。
外部電源116が電源電圧DCVを供給できる場合、スイッチS1及びS2は、ノード101に電圧VINを発生する電力を供給するため、オンになる。スイッチS3は開放され、バッテリ充電器203によりバッテリパック207が充電される。上記に述べたように、電圧変換器100は、PWM制御装置111が、VOUT2の電圧を所定の電圧レベルに調節し、かつ、VINの電圧のおよそ半分であるVOUT1の電圧を発生するキャパシタ分圧器を操作するP1〜P4信号を制御するという、前述と同様の方法で作動する。外部電源116が利用できない場合、バッテリ充電器203との接続を絶つためスイッチS1及びS2を開放するかオフにし、一次電源としてバッテリパック207の電圧がVOUT1に供給されるようスイッチS3を閉鎖するかオンにする。この場合、PWM制御装置111は、前述のように、VOUT2の電圧を調節するためにスイッチS1及びS2のみを(それぞれ信号P1及びP2を介して)制御し、スイッチS3及びS4をオフに保つために、P3及びP4信号はアサートされない。VOUT2を所望の電圧レベルに調節するために、スイッチS1及びS2のデューティサイクルDが(外部電源が利用できる場合と比較して)著しく広いデューティサイクル範囲を有し得るように、バッテリパック207は比較的広い電圧範囲(例えば、8V〜17V)を有してもよいことに留意されたい。しかし、この場合、スイッチS3及びS4はオフのままであり、作動されない。
電源回路200のキャパシタ分圧器は、電圧変換器100の上記説明と同様の方法で、従来型のバックコンバータの構成よりも高い効率でVOUT1を介して電力を供給する。繰り返すが、VOUT1でのキャパシタ分圧器出力はインダクタを有さず、インダクタのコア損失やコイル銅損がない。キャパシタ分圧器のスイッチQ1〜Q4は、ゼロ電圧ターンオフで作動し、総スイッチング損失が比較的低くなるように、各スイッチはVINの半分のみを受ける。更に、電子スイッチの導通損失は他の損失に比べ顕著であることから、スイッチのオン抵抗(RDSON)を低減することにより(例えば、総オン抵抗を低減するために複数のスイッチを並列に接続する)、スイッチング損失の増加という通常の懸念もなく、導通損失を低減できる。この構成の別の利点は、既存のAC−DCアダプタ(例えば、ノート型コンピュータ用19Vアダプタ)が、高効率動作を達成するために高アダプタ出力電圧が低減される外部電源116として使用できる点にある。
図3は、電圧変換器100を内蔵した電子デバイス300の簡略ブロック図である。電子デバイス300は、外部電源116から電力を受け取る電圧変換器100と、電圧変換器100から電力を受け取る機能回路302を備える。機能回路302は、電子デバイス300の一次機能を実行する一次回路を表す。外部電源116は、コネクタ118及び119を介して電源電圧DCVを供給するものであり、コネクタ119は電子デバイス300に備え付けられるもとして示されている。当業者には明らかなように、接続時においては、電源電圧DCVは、コネクタ118及び119を介して入力電圧VINを電圧変換器100に供給する。外部電源116が電力を供給できる場合、電圧変換器100は、VOUT1及びVOUT2出力電圧を機能回路302に供給する。この場合、外部電源116は唯一の電源である。
電子デバイス300は、外部電源に依存するあらゆる種類の小型電子デバイスを表す。一実施形態において、電子デバイス300は、外部電源116がACソケット(図示せず)にプラグ接続するAC−DCアダプタである、AC駆動装置等である。別の実施形態において、電子デバイス300は自動車に使用され、外部電源116は、利用可能な12V直電源(例えば、シガレット・ライター)にプラグ接続する自動車用アダプタである。いずれの場合にも、外部電源116は、所望の出力電圧レベルVOUT1又はVOUT2のいずれかより高い電圧レベルでDCVを供給する。電圧変換器100は、高入力電圧を、比較的高効率である電子デバイス300の機能回路302に適した低出力電圧レベルVOUT1又はVOUT2に変換する。
図4は、電源回路200及び機能回路402を内蔵した電子デバイス400の簡略ブロック図である。電源回路200及び機能回路402は、電子デバイス400内のプリント回路基板(PCB)401に備え付けられるもとして示されている。機能回路402は、電子デバイス400の一次機能を実行する一次回路を表す。電子デバイス400がノート型コンピュータ等といったコンピュータ・システムである場合、PCB401は、マザーボード、或いは、コンピュータ内の他の適切なPCBを表す。バッテリ挿入口403は、当業者には明らかなように、バッテリパック207を受け入れ、保持するために設けられる。バッテリパック207は、バッテリ挿入口403に挿入された際に、対応するバッテリノード407を電気的に結合させる幾つかの端子405を有する。前述のように、チャージ電流を受け取るため、或いは、1つのバッテリ(或いは複数のバッテリ)から電力を供給するために、少なくともノード407の1つがバッテリノード205と接続される。図面は簡略化されており、図示した構成に限定するものではなく、あらゆるタイプのバッテリ接点が考えられる。一実施形態において、バッテリパック207は、前述のように充電式である。代替的な実施形態においては、バッテリパック207は非充電式であるが、当業者には明らかなように、単に交換式バッテリである。充電式でない場合は、バッテリ充電器203は設けられないか、でなければ、バッテリの種類を検知してバッテリ充電機能を実行させないように構成される。また、バッテリパック207は、代替的には、外部アクセスを介する着脱式とするよりは、電子デバイス400と一体化されてもよい(例えば、MP3又はメディアプレイヤー等のバッテリ一体化構造)。
電子デバイス400は、電子デバイス300の説明と同様の方法で電源電圧DCVを供給する、外部電源116のコネクタ118と結合する同様のコネクタ119を備える。一実施形態において、外部電源116はAC−DCアダプタである。当業者には明らかなように、接続時においては、電力の供給、及び/又は、バッテリパック207の充電のために、電源電圧DCVは、入力電圧VINをコネクタ118及び119を介して電源回路200に供給する。電源回路200は、前述のように、電子デバイス400の機能回路402に電力を供給するために、VOUT1及びVOUT2出力電圧を供給する。外部電源116が利用できない場合、バッテリパック207は、十分に充電されていれば電力を供給する。
電子デバイス400は、例えば、あらゆるタイプの携帯情報端末(PDA)、パソコン(PC)、携帯用コンピュータ、ラップトップ型コンピュータ、ノート型コンピュータ等、携帯電話、パーソナルメディアデバイス、MP3プレーヤー、携帯メディアプレーヤー等といった、モバイル機器、携帯機器、携帯端末を含むあらゆるタイプのバッテリ駆動式電子デバイスを表す。電源回路200は、ノート型コンピュータ等の電源電圧の供給に特に有利である。一実施形態において、ノート型コンピュータの共通電圧レベルは、ノート型パソコンのバッテリーを充電する電力を供給するために使用される19Vである。図のように、VIN(又はDCV)が19Vであると、17Vまでの電圧範囲を有するバッテリパック207の充電に好都合である。しかし、多くの下流側電圧変換器(図示せず)は、19Vといった高電圧レベルではあまり効率よく作動しない。スイッチQ1〜Q4及びキャパシタC1〜C3(及び/又は、キャパシタCA)を採用したキャパシタ分圧器の機能は、9.5VのVOUT1、又は、VINの電圧のおよそ半分に低減した電圧レベルを提供する。9.5Vの電圧レベルは、中央処理装置(CPU、図示せず)、グラフィックス・プロセッシング・ユニット(GPU、図示せず)或いは記憶装置(図示せず)等といったホストコンピュータ機器に電力を供給する変換器に電力を提供するためにより適している。更に、バックコンバータ117は、VOUT1の電圧(例えば、9.5V)を、ハードディスクドライブ(HDD)制御装置(図示せず)やユニバーサル・シリアル・バス(USB、図示せず)等に電力供給に好都合な5Vといった、その他のコンピュータ構成部品に適した電圧レベルに変換するために有用である。
電圧変換器100を含む電源回路200は、既存の電源回路と比べ改良された総合システム効率もまた提供する一方で、コンピュータなどを含む多くの電子デバイスに役立つ電圧レベルを提供する。スイッチドキャパシタ回路の下半分の一体型バックコンバータが、その他の装置の構成部品に好都合な調節された電圧レベル(例えば、5V)を供給するのに対し、電圧変換器100のキャパシタ分圧器部は、より高い電圧レベル(例えば、19V、9.5V)を供給する。更に、外部電源116は、前述のように、低減された電流でより高い電圧レベルを供給することから、物理的に小さく作ることができる。
図5は、電圧変換器501を含み、バッテリ充電器併用機能を備える別の電源回路500の概略ブロック図である。電圧変換器501は、電圧変換器100と類似しており、略同一の方法で接続された電子スイッチQ1〜Q4、キャパシタCO,C1,C2、CA及びインダクタLを含む。キャパシタC3は、図示した実施形態においては省略される。一方、キャパシタC1,C3及びCAは、前述のように、キャパシタループ構造を形成し、キャパシタC3及びCAのいずれか1つ、或いは、両方が含まれる場合、スイッチドキャパシタの動作及び機能は実質的に類似している。PWM制御装置111は、更に後述するように、PWM制御及びバッテリ充電制御機能を内蔵するPWM制御装置503と置き換えられる。例えば、図に示すように、PWM制御装置503は、レギュレータ112とゲート駆動回路114を備え、レギュレータ112はVOUT2を感知・調節し、前述と同様の方法で駆動信号P1〜P4を発生させるゲート駆動回路114にPWMを提供する。更に、PWM制御装置503は、電源回路500のバッテリ充電、動作モード及びその他の制御機能を制御するバッテリ充電・モード制御回路504を含む。PWM制御装置503に制御されるスイッチQ1及びQ2、インダクタL及びキャパシタCOを一括して、前述と同様の方法でスイッチドキャパシタ機能と組み合わせられる同期バックレギュレータ117を形成する。バッテリ検出回路206は、前述と同様の方法で、バッテリパック207の接続を感知し、バッテリ検出信号BDをPWM制御装置503へアサートするものとして示される。
外部電源116は、相互嵌合コネクタ507及び508を介して接続される別の外部電源505と置き換えられる。外部電源505は、外部電源116と同様の方法でDCVを供給するGDN端子及び電力端子を含む3つの端子を備えるが、外部電源505は
PWM制御装置503から電力制御(VC)信号を受信する制御入力を更に備える。更に後述するように、PWM制御装置503は、外部電源505に電源電圧DCVの電圧レベルを調節させるVC信号をアサートし、VINとVOUT1の電圧レベルを順に調節する。電源電圧DCVは、DCVとノード509との間に直列で接続される電流端子を有する断路スイッチS1及びS2を通して供給される。スイッチS1は、前述と同様の方法で、感知回路208により制御される。スイッチS2は、PWM制御装置503から与えられる信号Aにより制御される。スイッチS1及びS2は、P型MOSFET(その他のタイプの電子スイッチも使用できるが)として示され、電源回路200の説明と実質的に同様の方法で作動する。電流感知抵抗器R1は、ノード101と509との間に接続され、両ノード101及び509は、対応するPWM制御装置503の入力に接続される。
VOUT1を発生する出力ノード105もまた、前述と同様の方法で電子回路により高い電圧源を供給するシステム・バス・ノードを形成する。フィルタキャパシタCSBは、システム・バス・ノードをフィルタリングするため、システム・バス・ノードとGNDとの間に接続される。バッテリ充電電流感知抵抗器R2は、ノード105と、バッテリパック207が接続されている場合にバッテリ電圧VBATTを発生するノード505との間に接続される。バッテリパック207を通ったチャージ電流は、ICHARGEとして示される。スイッチS3(P型MOSFETとしてもまた示されるが、その他のスイッチのタイプも考えられる)は、ノード505と、バッテリパック207の端子に接続されるノード205との間に接続される電流端子を有する。スイッチは、PWM制御装置503から与えられる信号Bにより制御される。フィルタキャパシタCBは、ノード505とGNDとの間に接続され、VBATTをフィルタリングする。出力ノード105、113及びノード505は、PWM制御装置503の対応する入力に接続される。この場合、PWM制御装置503は、それぞれスイッチS2及びS3を制御する制御信号A及びBをアサートする。ノード105からR2を通過しノード505へ、そしてスイッチS3を通過し、ノード205、バッテリパック207を通過したGNDへの電気流路は、バッテリ充電経路と称される。抵抗器R2は、PWM制御装置503がR2を越えて電圧を感知しICHARGEを測定する、感知抵抗器である。代替的電流感知技術が知られており、また予測される。
この場合、PWM制御装置503は、PWM制御装置111のPWM制御機能と、バッテリ充電器203において説明されたバッテリ充電制御機能を内蔵する。しかし、PWM制御装置503は、個別のバッテリ充電器を備えていない。その代わりとして、キャパシタ分圧器の出力が採用され、ノード105でVOUT1を介してバッテリパック207を充電する。これは、個別のバッテリ充電器と対応する回路を取り除くことにより、著しい利点を提供する。PWM制御装置503は、ノード113を介してVOUT2の電圧を監視し、電圧変換器100と電源回路200の説明と同様の方法でデューティサイクルDを制御することにより(Q1/Q3及びQ2/Q4の切り替え)、VOUT2の電圧を所定の電圧レベルに調節する。PWM制御装置503は、電流感知抵抗器R1を超えて電圧を監視することにより、VINの電圧レベルと、外部電源505を介してノード101に供給される電流を監視する。更に、PWM制御装置503は、ノード105を介してVOUT1の電圧を、ノード505を介してバッテリ電圧VBATTを、バッテリ充電電流感知抵抗器R2を越した電圧を介して(或いは、VOUT1とVBATTの電圧差により)充電電流ICHARGEを監視する。更に、PWM制御装置503は、電圧制御信号VCを介してDCV信号の電圧レベルを制御する。
バッテリパック207の通常のバッテリ電圧は、最小バッテリ電圧と最大バッテリ電圧の間の範囲にある。しかし、充電バッテリは、著しく放電され、通常の最小バッテリ電圧以下の電圧を有する場合があることがわかる。それでも、著しく放電されたバッテリを充電することが望まれる。バッテリパック207の電圧が最小バッテリ電圧のレベルを下回る際に、スイッチS3が完全にオンであるならば、VOUT1(及び、システム・バス)の電圧は、(電源回路500により電力供給される電子デバイスの不具合に起こす可能性がある)望まない結果に起因して、最小レベルまで引き下げられるかもしれない。その代わりとして、トリクル充電モード中に実際のバッテリ電圧以上のVOUT1を許容する一方で、トリクル充電(或いは、比較的低い電流又は「トリクル」電流レベル)を提供するために、スイッチS3は、その線形範囲でPWM制御装置503により制御される。特に、PWM制御装置503は、外部電源505が通常の最小バッテリ電圧の2倍にあたる最小電圧レベルの2倍でDCVをアサートするように、VC信号をアサートする。VINもまた最小電圧レベルの2倍の電圧レベルを有するように、スイッチS1及びS2はオンになる。電子スイッチQ1〜Q4により切り替えられるキャパシタC1、C2及びCAのキャパシタ分圧機能により、VOUT1は、通常の最小バッテリ電圧レベルであるVINの電圧の2分の1となる。従って、トリクル充電モード中にVBATTが最小値を下回っても、VOUT1は最小バッテリ電圧レベルに維持される。トリクル充電電流は、一定である必要がないことに留意されたい。一実施形態において、バッテリ電圧が最小バッテリ電圧レベルに向かって上昇するにしたがい、トリクル充電電流レベルは上昇する。しかし、PWM制御装置503のデューティサイクルDは、いかなる値であれ、調節された電圧レベルにVOUT2を維持ため必要とされる。
充電バッテリパック207の電圧が最小電圧レベルまで上昇した場合(トリクル充電の結果として)、PWM制御装置503は、速い速度でバッテリパック207を充電するために、比較的高い定電流を送る定電流充電モードに切り替える。定電流充電モードにおいては、PWM制御装置503は、ICHARGE及びVBATTを監視し、ICHARGEを定電流充電レベルに維持するために電圧制御信号VCを介してVINの電圧レベルを調節する。バッテリパック107が定電流で充電されている間は、VOUT1は最小バッテリ電圧レベルと最大バッテリ電圧レベルの間にある。VBATTの電圧は定電流充電モード中に上昇するので、VOUT1が上昇する一方で、VOUT2がその調節されたレベルに維持されるようスイッチングデューティサイクルDは減少する。VBATTが最大バッテリ電圧レベルに達した際には、PWM制御装置503は、VBATTを一定レベル(最大バッテリ電圧レベル)に維持するためにPWM制御装置503がDCVの電圧を制御する定電圧充電モードに切り替える。VBATTが最大レベルに達した際には、チャージ電流が、VBATTを一定に維持するために必要ないかなる値にも変化する(例えば、減少する)ことが好ましい。
一具体的実施例において、VBATTで測定されたバッテリパック207の通常電圧範囲は、最小電圧レベル8.4Vと最大電圧レベル12.6Vとの間である。また、VOUT2の公称レベル又は目標水準は、およそ5Vである。この場合、トリクル充電モードでVBATTが8.4Vであるか、それを下回る場合、PWM制御装置503は、VOUT1が約8.4V或いはそれよりやや高くなるように、DCVを最小レベルの2倍又は約16.8Vに制御する。また、PWM制御装置503は、デューティサイクルDがおよそ60%となるように、VOUT2を5Vに調節する。定電流充電モードにおいてVBATTが8.4V〜12.6Vの間である場合、PWM制御装置503は、ICHARGEの定電流充電レベルを維持するために、DCVの電圧を制御する。通常VBATTは定電流充電モード中に上昇するため、PWM制御装置503は、VOUT2を5Vに維持する最適な量の分のDCVを増やし、デューティサイクルDを減らす。定電圧充電モードでVBATTが最大レベルの12.6Vに達した場合、PWM制御装置503はVBATTを12.6Vに維持するためDCVを制御する。一般に、DCVは、充電バッテリの約2倍、又は、約25.2Vに維持される。定電圧モード中にVOUT1が約12.6Vか、それを少々超える程度に維持されるため、デューティサイクルDは、VOUT2を5Vに維持するため約40%まで減少する。このように、トリクル・定電流・定電圧バッテリ充電モード中のデューティサイクルDの範囲は、40〜60%の間である。キャパシタ分圧器に最も効果的なデューティサイクルは50%(DCVが20Vで、VOUT1が10Vの場合)であるが、全体的効率は、40〜60%のデューティサイクルの範囲内においても、比較的高いままである。
PWM制御装置503はバッテリ充電器203の上記説明と同様の方法で、DCVを検出し、かつスイッチS2を制御し、PWM制御装置111の上記説明と同様の方法で、BD信号を介してバッテリパック207を検知する。PWM制御装置503は、外部電源モードとバッテリ電源モードの間の動作モードを制御し、外部電源505とバッテリパック207の両方が検知された場合には、バッテリ充電機能を制御する。外部電源505が電力を供給し、バッテリパック207が接続されていない場合、VOUT1が完全に充電されたバッテリの電圧より低くなるように、VINの電圧レベルをPWM信号のデューティサイクルの適正レベルの50%にするよう指令することができる。このようにすれば、理論的にはキャパシタ分圧器の効率を最大にできるはずである。しかし、VOUT1がバッテリ電圧以下である一方で、完全に充電されたバッテリパック207がノード205に接続される場合、PWM制御装置503により直ちに解消される一時的接続によりスイッチS3の内部ダイオードは順バイアスとなる。
一実施形態において、外部電源505がDCVを供給し、バッテリパック207が検知されない場合、PWM制御装置503は、50%のデューティサイクルを達成するいかなる値にするよりも、DCVを最大バッテリ電圧レベルにするよう命令する。その後バッテリパック207が検知された場合、PWM制御装置503は、VBATTの電圧を監視しながらスイッチS3をオンにし始め、それに従い、適切な電圧レベルとバッテリ充電モード(前述したトリクル充電モード、定電流充電モード、定電圧充電モードのうちの1つ)に移行するため、VC信号を介してVINを調整する。バッテリパック207なしで最大バッテリ電圧レベルで作動する事は、スイッチドキャパシタ回路にとって必ずしも最適なスイッチング効率ではないが(例えば、50%より40%においては)、幾つかの利点があることに留意されたい。第1に、完全に充電されたバッテリのバッテリ接続問題が避けられる。第2に、外部電源505がより高い電圧レベルで作動し、同じ電力レベルで外部電力を供給するため電流レベルを低減し、より高い動作効率を達成する。第3に、同じ電力レベルを送るために高電圧及び低減した電流でVOUT1を作動することで、より高いアダプタ動作効率も達成する。
PWM制御装置503は、定電流充電モード中に、所定のデフォルト電流レベル(例えば、4アンペア(A))でバッテリパック207を充電する。代替的な実施形態において、バッテリ検出回路206は、「ダンプ」バッテリパックと「スマート」バッテリパックを結合するスマートバッテリ検出回路(図示せず)に置き換えられる。スマートバッテリ検出回路が、通常のバッテリ又はダンプバッテリパックを感知した場合、操作は非充電のままである。スマートバッテリパックが検知された場合、当業者には明らかなように、スマートバッテリ検出回路は、特定のチャージ電流及び/又は電圧レベルを決定するために、スマートバッテリパックからPWM制御装置503へ特定の充電情報を運ぶ。例えば、スマートバッテリパックは、定電流充電3.8Aと、最大電圧25Vの指令が出せる。
電源回路500のキャパシタ分圧器は、電源回路200の説明と同様の方法で、従来のバックコンバータの構成と比較して、VOUT1を介して電力を調達するのにより高効率である。繰り返すが、VOUT1でのキャパシタ分圧器出力はインダクタを有さず、インダクタのコア損失やコイル銅損がない。キャパシタ分圧器のスイッチQ1〜Q4は、ゼロ電圧ターンオフで作動し、総スイッチング損失が比較的低くなるように、各スイッチはVINの半分のみに晒される。更に、電子スイッチの導通損失は他の損失に比べ顕著であることから、スイッチのオン抵抗を低減することにより(例えば、オン抵抗を低減するために複数のスイッチを並列に接続する)スイッチング損失の増加という通常の懸念もなく、導通損失を低減できる。この構成の別の利点は、同量の電力を送るのに、高電流レベルで低電圧を供給する別のアダプタと比べ、より高電圧とより少ない電流を供給することで、外部電源505が物理的に小さく作製され得る点にある。
電源回路500には、付加的な効果と利点がある。バッテリ充電制御とVOUT2PWM制御は、単一の制御装置内に統合される。PWM制御装置503は、VOUT1及びVOUT2の電圧に基づき、デューティサイクルDを発生させる。PWM制御装置503は、VC信号を発生させ、バッテリ充電状態に基づき外部電源505に送り返す。システム費用全体を削減し、電力密度を増加させるために、電力段部品は減らされる。追加バッテリ充電器(バッテリ充電器203)が取り除かれ、よって追加インダクタが回路から取り除かれる。それに代わって、システム・バスを供給する効果的なVOUT1出力がバッテリパック207の充電に使用される。
図6は、電源回路500と機能回路602を内蔵した電子デバイス600の簡略ブロック図である。電源回路500及び機能回路602は、電子デバイス400の説明と同様の方法で、電子デバイス600内のPCB601に備え付けられるもとして示されている。機能回路602は、電子デバイス600の一次機能を実行する一次回路を表す。電子デバイス600がノート型コンピュータ等のコンピュータ・システムである場合、PCB601は、マザーボード、或いは、コンピュータ内の他の類似したPCBであってもよい。電子デバイス600は、バッテリパック207を受け入れ、保持する同様のバッテリ挿入口603を備えており、電子デバイス400の説明と同様に、バッテリパック207は、バッテリ挿入口603に挿入された際に、対応するバッテリノード407を電気的に結合させる同様の端子405を有する。前述のように、チャージ電流を受け、電力を供給するために、少なくともノード407の1つがバッテリノード205と接続される。図面は簡略化されており、図示した構成に限定するものではなく、あらゆるタイプのバッテリ接点が考えられる。一実施形態において、バッテリパック207は、前述のように充電式である。代替的な実施形態においては、バッテリパック207は非充電式であるが、当業者には明らかなように、単に交換式バッテリである。また、バッテリパック207は、代替的には、外部アクセスを介する着脱式とするよりは、電子デバイス600と一体化されてもよい(例えば、MP3又はメディアプレイヤー等のバッテリ一体化構造)。
外部電源505及び電子デバイス600は、電源電圧DCVを電源回路500に供給し、電力制御信号VCを外部電源505に運ぶための相互嵌合コネクタ507及び508を備える。一実施形態において、外部電源505は、はAC−DCアダプタである。接続時においては、電源電圧DCVは、電源回路500に入力電圧VINを供給し、PWM制御装置503は、前述のように、VC信号を介して電源電圧DCVの電圧レベルを制御する。電源回路500は、前述のように、電子デバイス600の機能回路602に電力を供給するため、VOUT1及びVOUT2出力電圧を供給する。外部電源505が利用できない場合、バッテリパック207は、十分に充電されていれば電力を供給する。電子デバイス600は、例えば、あらゆるタイプの携帯情報端末(PDA)、パソコン(PC)、携帯用コンピュータ、ラップトップ型コンピュータ、ノート型コンピュータ等、携帯電話、パーソナルメディアデバイス、MP3プレーヤー、携帯メディアプレーヤー等といった、モバイル機器、携帯機器、携帯端末を含むあらゆるタイプのバッテリ駆動式電子デバイスを表す。
電源回路500は、ノート型コンピュータ等の電源電圧の供給に特に有利である。キャパシタ分圧器出力VOUTは、バッテリの充電と、固定電圧に調節された電源電圧をバックコンバータに供給するために使用される。キャパシタ分圧器の出力電圧は、VCフィードバック信号に基づき外部電源505により調節される。フィードバックVC信号は、バッテリパック207の存在と充電状況により決定される。キャパシタ分圧器及びバックコンバータのデューティサイクルDは、バックコンバータの出力電圧を、5V或いはその他適切な電圧レベル等の所望の電圧レベルに調節するといった方法で制御される。電力システムバスの電圧は、バッテリ電圧範囲内でのみ変化する。PWM調節機能は、従来のバックコンバータと比べ低コストであるバッテリ充電機能と組み合わせられる。電源回路500は、高電力変換効率を提供し、電子デバイス600の温度管理に利点をもたらす。外部電源505のサイズは縮小され、配線要求が緩和される。特に、サイズを縮小し、更に小さい内径或いは定価格の電線を可能とする低減出力電流としながら、外部電源505の出力電圧は増やされる。VOUT1の低電圧レベルは、CPU(図示せず)、GPU(図示せず)或いは記憶装置(図示せず)等といったホストコンピュータ機器に電力を供給する変換器に電力を供給するためにより適している。更に、バックコンバータ117は、VOUT1の電圧を、HDD制御装置(図示せず)やUSB(図示せず)等に適した5Vのような、その他のコンピュータ構成部品により適した電圧レベルに変換するために有用である。
以上本発明を特定の好適なバージョンを参照して詳細に説明してきたが、その他のバージョン及び変形例も可能であり、予測される。例えば、PWM制御装置111及び503は、個別の回路、集積回路上に一体化されたもの、一体化された回路、或いは、双方の組み合わせを用いて提供されてもよい。また、PWM制御装置111及び503は、アナログ又はデジタルPWM制御装置として提供されてもよい。以下の請求項に定義された本発明の概念及び範囲を逸脱することなく、本発明と同様の目的を提供するため、その他の構成を設計し、改良する根拠として開示された構想と具体的実施例が容易に使用できることは、当業者にとって好ましい。
100、501 電圧変換器
101 入力ノード
103 第1の中間ノード
105 第1の出力ノード
107 第2の中間ノード
111、503 パルス幅変調(PWM)制御装置
112 レギュレータ
113 第2の出力ノード
114 ゲート駆動回路
116、505 外部電源
117 同期バックコンバータ
118、119、507、508、507A、507B 相互嵌合コネクタ
200、500 電源回路
203 バッテリ充電器
205 バッテリノード
206 バッテリ検出回路
207 充電バッテリパック
208 感知回路
300、400、600 電子デバイス
302、402、602 機能回路602
401、601 プリント回路基板(PCB)
403、603 バッテリ挿入口
405 端子
407 バッテリノード
504 バッテリ充電・モード制御回路
509 ノード
A、B 制御信号
BD バッテリ検出信号
C1 第1のキャパシタ
C2 第2の“フライ”キャパシタ
C3 第3のキャパシタC3
CA 第4のキャパシタ
CO 出力フィルタキャパシタ
CB フィルタキャパシタ
CSB フィルタキャパシタ
DCV 電源電圧
GND アース
ICHARG チャージ電流
L インダクタ
P1、P2、P3、P4 ゲート駆動信号
Q1、Q2、Q3、Q4 電子スイッチ
R1 電流感知抵抗器
R2 バッテリ充電電流感知抵抗器
S1、S2、 断路スイッチ
S3、S4 スイッチ
VC 電力制御信号
VIN 入力電圧
VBATT バッテリ電圧
VOUT1 第1の出力電圧
VOUT2 第2の出力電圧
SYSTEM BUS システム・バス

Claims (21)

  1. 基準ノードと第1の出力ノードとの間に結合され、前記第1の出力ノードが第1の出力電圧を発生する第1のキャパシタと、
    入力ノードと前記基準ノードあるいは前記第1の出力ノードのいずれかの間に結合される第2のキャパシタと、
    第1及び第2の端部を有する第3のキャパシタと、
    パルス幅変調信号の第1の状態において、前記第3のキャパシタの前記第1及び第2の端部を前記基準ノードと前記第1の出力ノードをそれぞれ結合し、かつ、前記パルス幅変調信号の第2の状態において、前記第3のキャパシタの前記第1及び第2の端部を前記第1の出力ノードと前記入力ノードをそれぞれ結合する第1のスイッチ回路と、
    前記第3のキャパシタの前記第1の端部に結合する第1の端部と、第2の出力電圧を供給する第2の出力ノードを形成する第2の端部とを有するインダクタと、
    前記第2の出力電圧と前記基準ノードとの間の第4のキャパシタと、
    前記第2の出力電圧を所定の電流レベルに調節するため、前記第1及び第2の状態の間の前記パルス幅変調信号のデューティサイクルを制御する制御装置とからなる電圧変換器。
  2. 前記制御装置は、前記出力電圧を感知する入力と、前記パルス幅変調信号を供給する出力とを有するレギュレータと、前記パルス幅変調信号と、前記第1のスイッチ回路を制御する出力とを受信するスイッチ駆動回路からなることを特徴とする請求項1記載の電圧変換器。
  3. 前記入力ノードに入力電圧を供給する外部電源を更に備える請求項1記載の電圧変換器。
  4. 前記外部電源は、AC−DCアダプタからなることを特徴とする請求項3記載の電圧変換器。
  5. 前記入力ノードに入力電圧を供給する外部電源と、
    充電バッテリと、
    前記外部電源の前記出力を前記入力ノードに選択的に結合し、前記充電バッテリを前記第1の出力ノードに選択的に結合する第2のスイッチ回路と、
    前記入力ノードに結合する電源入力と、前記充電バッテリに結合される第1の出力と、前記第2のスイッチ回路を制御する第2の出力を有するバッテリ充電器及び制御回路を更に備える請求項1記載の電圧変換器。
  6. 前記外部電源が入力電圧を供給する場合、前記バッテリ充電器及び制御回路は、前記外部電源の前記出力を前記入力ノードに結合する前記第2スイッチ回路を制御し、前記外部電源が入力電圧を供給しない場合、前記バッテリ充電器及び制御回路は、前記充電バッテリを前記第1の出力ノードに結合する前記第2スイッチ回路を制御することを特徴とする請求項5記載の電圧変換器。
  7. 前記入力ノードと前記第1の出力ノードとの間に結合される前記第2のキャパシタと、前記入力ノードと前記基準ノードとの間に結合される第5のキャパシタを更に備える請求項1記載の電圧変換器。
  8. 基準ノードと第1のパワーノードとの間に結合され、前記第1のパワーノードが第1の電源電圧を発生させる第1のキャパシタと、
    入力ノードと前記基準ノードあるいは前記第1のパワーノードのいずれかとの間に結合される第2のキャパシタと、
    第1及び第2の端部を有する第3のキャパシタと、
    パルス幅変調信号の第1の状態において、前記第3のキャパシタの前記第1及び第2の端部を前記基準ノードと前記第1のパワーノードとそれぞれ結合し、かつ、前記パルス幅変調信号の第2の状態において、前記第3のキャパシタの前記第1及び第2の端部を前記第1のパワーノードと前記入力ノードとそれぞれ結合する第1のスイッチ回路と、
    前記第3のキャパシタの前記第1の端部に結合され第1の端部と、第2の出力電圧を供給する第2の出力ノードを形成する第2の端部とを有するインダクタと、
    前記基準ノードと前記第2のパワーノードとの間に結合される第4のキャパシタと、
    前記第2の電源電圧を所定の電圧レベルに調節するため、前記第1及び第2の状態の間で前記パルス幅変調信号のデューティサイクルを制御する制御装置とからなる一体型バックコンバータ・キャパシタ分圧器、
    入力電圧を受け取る電源ノード、及び
    前記第1及び第2電源電圧を受け取り、電子デバイスの機能を奏する機能回路からなる電子デバイス。
  9. 前記入力電圧を供給するために前記電源ノードに結合される出力を有する外部電源を更に備える請求項8記載の電子デバイス。
  10. 前記外部電源は、AC−DCアダプタからなることを特徴とする請求項9記載の電子デバイス。
  11. バッテリノードと、
    前記入力電圧が供給される場合に前記電源ノードと前記入力ノードを選択的に結合し、前記入力電圧が供給されない場合に前記バッテリノードと前記第1のパワーノード選択的に結合する制御回路とを更に備える請求項8記載の電子デバイス。
  12. 前記入力ノードに結合された電源入力と、前記バッテリノードに結合された出力を有するバッテリ充電器を更に備える請求項11記載の電子デバイス。
  13. 前記一体型バックコンバータ・キャパシタ分圧器、前記電源ノード、前記バッテリノード、前記バッテリ充電器、前記制御回路、及び、前記機能回路は、プリント回路基板上に内蔵されることを特徴とする請求項12記載の電子デバイス。
  14. 前記プリント回路基板は、ノート型コンピュータ内に設けられることを特徴とする請求項13記載の電子デバイス。
  15. 前記バッテリノードに結合される端子を有する充電バッテリを更に備える請求項12記載の電子デバイス。
  16. 基準ノードに対する入力ノードに入力電圧を供給する工程、
    前記入力ノード、前記基準ノード、及び、第1の出力電圧を発生する第1の出力ノードの間にキャパシタループを結合する工程、
    前記入力ノードと前記第1の出力ノードの間で充電され、前記第1の出力ノードと基準ノードの間で放電されるフライキャパシタの結合を、パルス幅変調信号のデューティサイクルに基づき切り換える工程、
    前記パルス幅変調信号の前記デューティサイクルに基づいて、前記第1の出力ノードと前記基準ノードの間でインダクタの第1の端部を選択的に切り換える工程、
    第2の出力電圧を発生する第2の出力ノードに、前記インダクタの前記第2の端部を結合する工程、及び
    前記第2の出力電圧を所定のレベルに調節するため、前記パルス幅変調信号の前記デューティサイクルを制御する工程を含む、入力電圧から第1及び第2の出力電圧への変換方法。
  17. 前記第2の出力電圧を前記所定のレベルに保つために、前記第2の出力電圧を監視し、前記パルス幅変調信号の前記デューティサイクルを調節する工程、及び
    前記パルス幅変調信号を、前記フライキャパシタの結合を切り換える電子スイッチを制御する駆動信号に変換する工程を更に含む請求項16記載の方法。
  18. 外部電源から電圧を受けて、前記受け取った電圧を前記入力ノードに供給する工程を更に含む請求項16記載の方法。
  19. バッテリノードを設ける工程、及び
    前記入力電圧を、バッテリノードに供給されるチャージ電流に変換するバッテリ充電器を設ける工程を更に含む請求項16記載の方法。
  20. 前記入力電圧が供給されない場合に、前記第1の出力ノードと前記基準ノードの間にバッテリを結合する工程を更に含む請求項16記載の方法。
  21. 前記キャパシタループを結合する工程は、前記第1の出力ノードと前記基準ノードの間に第2のキャパシタを結合する工程と、
    第3のキャパシタの第1の端部を前記入力ノードに結合し、前記第3のキャパシタの前記第2の端部を前記第1の出力ノードまたは基準ノードのうちの1つに結合する工程を含み、
    前記フライキャパシタの結合を切り換える工程は、前記フライキャパシタを、前記パルス幅変調信号の第1の状態においては前記入力ノードと前記第1の出力ノードとの間に、前記パルス幅変調信号の第2の状態においては前記第1の出力ノードと前記基準ノードとの間に切り替え可能に結合する工程を含み、
    インダクタの第1の端部を選択的に切り換える前記工程は、前記インダクタの前記第1の端部を前記フライキャパシタの前記第2の端部に結合する工程を含むことを特徴とする請求項16記載の方法。
JP2009540523A 2007-08-01 2008-07-31 バックコンバータ・容量性分圧器一体型の電圧変換器 Expired - Fee Related JP4944207B2 (ja)

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
US95325407P 2007-08-01 2007-08-01
US60/953,254 2007-08-01
US5842608P 2008-06-03 2008-06-03
US61/058,426 2008-06-03
US12/178,050 US8427113B2 (en) 2007-08-01 2008-07-23 Voltage converter with combined buck converter and capacitive voltage divider
US12/178,050 2008-07-23
PCT/US2008/009237 WO2009017778A1 (en) 2007-08-01 2008-07-31 Voltage converter with combined buck converter and capacitive voltage divider

Publications (2)

Publication Number Publication Date
JP2010512140A true JP2010512140A (ja) 2010-04-15
JP4944207B2 JP4944207B2 (ja) 2012-05-30

Family

ID=39942948

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009540523A Expired - Fee Related JP4944207B2 (ja) 2007-08-01 2008-07-31 バックコンバータ・容量性分圧器一体型の電圧変換器

Country Status (7)

Country Link
US (1) US8427113B2 (ja)
EP (1) EP2186185A1 (ja)
JP (1) JP4944207B2 (ja)
KR (1) KR101060052B1 (ja)
CN (1) CN101874341B (ja)
TW (1) TWI365590B (ja)
WO (1) WO2009017778A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014212654A (ja) * 2013-04-19 2014-11-13 独立行政法人宇宙航空研究開発機構 Pwm制御が可能なスイッチトキャパシタコンバータ
JP2017531995A (ja) * 2014-10-23 2017-10-26 クゥアルコム・インコーポレイテッドQualcomm Incorporated 3レベル降圧コンバータを制御するための回路及び方法

Families Citing this family (98)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8018212B1 (en) 2007-08-24 2011-09-13 Intersil Americas Inc. Buck-boost regulator
US7982443B1 (en) * 2008-05-16 2011-07-19 National Semiconductor Corporation DC to DC voltage converter with stacked synchronous buck converters
US8148967B2 (en) * 2008-08-05 2012-04-03 Intersil Americas Inc. PWM clock generation system and method to improve transient response of a voltage regulator
US9716403B2 (en) * 2008-11-25 2017-07-25 Semiconductor Components Industries, Llc Battery charger circuit for changing between modes during operation based on temperature and battery voltage and method therefor
KR101116483B1 (ko) * 2009-12-04 2012-02-27 삼성에스디아이 주식회사 에너지 저장 시스템
US8604757B2 (en) 2010-02-01 2013-12-10 Mitsubishi Electric Corporation DC/DC power conversion apparatus
US8543859B2 (en) * 2010-03-12 2013-09-24 Dell Products, Lp Host detection circuit powered from primary side of the alternating current adaptor for detecting changes to a power level pulse of an information handling system
US8786270B2 (en) 2010-11-08 2014-07-22 Intersil Americas Inc. Synthetic ripple regulator with frequency control
CN102005795B (zh) * 2010-11-29 2012-12-19 鸿富锦精密工业(深圳)有限公司 可充电电池电量检测装置
US8884563B2 (en) * 2010-12-02 2014-11-11 Jerry Fan System and method for supplementing a generated DC power supply
CN102158112B (zh) * 2011-03-03 2013-01-02 山东大学 一种模块化多电平变换器的综合控制系统及其方法
JP5528622B2 (ja) * 2011-04-15 2014-06-25 三菱電機株式会社 Dc/dc電力変換装置および太陽光発電システム
TWI465011B (zh) * 2011-06-02 2014-12-11 Richtek Technology Corp Pwm電壓調節器的控制電路及方法
US9712046B2 (en) 2011-09-12 2017-07-18 Infineon Technologies Ag Dead-time optimization of DC-DC converters
CN102332818B (zh) * 2011-09-13 2013-08-28 天津大学 一种三电平大降压直流变换器及其脉冲宽度调制方法
US9248747B2 (en) * 2011-11-29 2016-02-02 Valeo Systemes De Controle Moteur Converter for an electrical circuit designed to supply electrical propulsion power on board a motor vehicle
US20140239719A1 (en) * 2011-12-09 2014-08-28 Intel Corporation Switched capacitor based multiple output fixed ratio converter
TW201349696A (zh) * 2012-05-18 2013-12-01 Hon Hai Prec Ind Co Ltd 直流交換式電源供應器
CN102769377B (zh) * 2012-07-10 2014-07-16 浙江大学 一种基于移相控制的非隔离型变流拓扑结构及其应用
US9225253B2 (en) * 2012-10-23 2015-12-29 Microchip Technology Inc. High voltage switching linear amplifier and method therefor
US9300326B2 (en) * 2012-11-01 2016-03-29 Qualcomm Incorporated Prevention of output supply boosting upon removal of input adapter
US8619445B1 (en) 2013-03-15 2013-12-31 Arctic Sand Technologies, Inc. Protection of switched capacitor power converter
US9347998B2 (en) * 2013-04-17 2016-05-24 Allegro Microsystems, Llc System and method for measuring battery voltage
TWI508419B (zh) * 2013-05-01 2015-11-11 Ili Technology Corp Switch Capacitive Voltage Conversion Device and Method
US9203309B2 (en) 2013-09-11 2015-12-01 Qualcomm, Incorporated Multi-output boost regulator with single control loop
US9972995B2 (en) * 2013-10-05 2018-05-15 Taiwan Semiconductor Manufacturing Company Limited Circuit with a droop compensating mechanism
US9484799B2 (en) 2014-01-17 2016-11-01 Linear Technology Corporation Switched capacitor DC-DC converter with reduced in-rush current and fault protection
KR102258143B1 (ko) * 2014-02-03 2021-05-28 삼성전자 주식회사 전자 장치의 충전 회로
US9548648B2 (en) * 2014-04-25 2017-01-17 Texas Instruments Incorporated Switched reference MOSFET drive assist circuit
US10128749B2 (en) * 2014-05-12 2018-11-13 Texas Instruments Incorporated Method and circuitry for sensing and controlling a current
US10164439B2 (en) * 2014-09-05 2018-12-25 Qualcomm Incorporated Metal back cover with combined wireless power transfer and communications
US9300210B1 (en) 2015-03-02 2016-03-29 Empower Semiconductor Resonant rectified discontinuous switching regulator
US9780663B2 (en) * 2015-03-02 2017-10-03 Empower Semiconductor, Inc. Resonant rectified discontinuous switching regulator with inductor preflux
KR20160131673A (ko) * 2015-05-08 2016-11-16 삼성전자주식회사 다중 디스플레이 시스템을 구성하는 디스플레이 장치 및 그 제어 방법
WO2017007991A1 (en) 2015-07-08 2017-01-12 Arctic Sand Technologies, Inc. Switched-capacitor power converters
US20170093173A1 (en) * 2015-09-24 2017-03-30 Han Kung Chua Front end charger bypass switch with linear regulation function and path for reverse boost
US10126792B2 (en) * 2015-11-03 2018-11-13 Texas Instruments Incorporated Power converter load current control
US10833584B2 (en) 2015-11-12 2020-11-10 Empower Semiconductor, Inc. Boot-strapping systems and techniques for circuits
US9680381B1 (en) 2016-01-29 2017-06-13 Semiconductor Components Industries, Llc Circuit including rectifying elements and a charge storage element and a method of using an electronic device including a circuit having switching elements
CN107231012B (zh) * 2016-04-08 2019-05-24 华为技术有限公司 一种快速充电的方法、终端、充电器和系统
US9935549B2 (en) 2016-07-08 2018-04-03 Toshiba International Corporation Multi-switch power converter
EP3485562B1 (en) 2016-07-15 2022-05-04 Analog Devices International Unlimited Company Balancing charge pump circuits
US10177588B2 (en) * 2016-09-20 2019-01-08 Richtek Technology Corporation Charging circuit and capacitive power conversion circuit and charging control method thereof
CN110050400B (zh) * 2016-12-01 2023-05-02 集成装置技术公司 电池充电系统
CN107482905A (zh) * 2017-07-19 2017-12-15 深圳市华星光电半导体显示技术有限公司 直流电压转换电路及直流电压转换方法与液晶显示装置
IT201700092532A1 (it) * 2017-08-09 2019-02-09 St Microelectronics Srl Convertitore elettronico, e relativo procedimento di controllo, circuito di controllo e prodotto informatico
US9973081B1 (en) 2017-08-17 2018-05-15 Qualcomm Incorporated Low-power low-duty-cycle switched-capacitor voltage divider
WO2019042003A1 (zh) * 2017-08-31 2019-03-07 上海汇瑞半导体科技有限公司 一种并行电池充电电路及其充电方法
US10073478B1 (en) * 2017-10-09 2018-09-11 Texas Instruments Incorporated Voltage regulator for a low dropout operational mode
CN107947590B (zh) * 2017-12-12 2024-07-16 西安交通大学 开关电容双向直流变换器单电源集成驱动电路及控制方法
CN108092513B (zh) * 2017-12-26 2020-03-06 矽力杰半导体技术(杭州)有限公司 直流-直流转换器
US10491125B2 (en) 2018-02-12 2019-11-26 Silanna Asia Pte Ltd Switched-mode power controller with multi-mode startup
CN108539981A (zh) 2018-06-04 2018-09-14 南京矽力杰半导体技术有限公司 直流-直流转换器
CN108712073B (zh) 2018-06-08 2020-01-03 南京矽力杰半导体技术有限公司 三电平直流-直流转换器
CN108736709B (zh) 2018-06-14 2020-02-04 南京矽力杰半导体技术有限公司 功率变换器
US10547241B1 (en) * 2018-08-29 2020-01-28 Linear Technology Holding Llc Hybrid inverting PWM power converters
CN113169314A (zh) * 2018-08-30 2021-07-23 海德勒-魁北克 具有离子液电解质和电极压力的可充电电池
US10775424B2 (en) * 2018-08-31 2020-09-15 Micron Technology, Inc. Capacitive voltage divider for monitoring multiple memory components
WO2020119817A1 (en) * 2018-12-14 2020-06-18 Huawei Technologies Co., Ltd. Shared bootstrap capacitor system and method
CN109782839B (zh) 2019-01-04 2020-07-07 南京矽力微电子技术有限公司 电压调节器
US11442484B2 (en) 2019-01-04 2022-09-13 Silergy Semiconductor Technology (Hangzhou) Ltd Voltage regulator
US10778108B2 (en) * 2019-02-15 2020-09-15 Apple Inc. Frequency doubling resonant converter
US10591966B1 (en) * 2019-02-20 2020-03-17 Blockchain Asics Llc Actively controlled series string power supply
US11462918B2 (en) * 2019-02-22 2022-10-04 Aurora Flight Sciences Corporation Battery switch with current control
US10720837B1 (en) 2019-03-01 2020-07-21 Apple Inc. Fly capacitor voltage balancing for buck converter circuit
JP6690750B1 (ja) * 2019-03-19 2020-04-28 株式会社明電舎 Fc型3レベル電力変換装置
CN109901654B (zh) * 2019-04-15 2021-02-02 苏州浪潮智能科技有限公司 一种线性降压调节电路及电子设备
US10756623B1 (en) 2019-04-17 2020-08-25 Dialog Semiconductor (Uk) Limited Low loss power converter
US10790742B1 (en) 2019-04-17 2020-09-29 Dialog Semiconductor (Uk) Limited Multi-level power converter with improved transient load response
US10811974B1 (en) 2019-04-17 2020-10-20 Dialog Semiconductor (Uk) Limited Power converter
KR20200136594A (ko) * 2019-05-28 2020-12-08 삼성전자주식회사 전압 분배 비율을 적응적으로 변경하는 전압 분배 회로를 포함하는 전자 장치
CN110277909B (zh) 2019-07-09 2022-09-20 南京矽力微电子技术有限公司 开关电容变换器、电流控制电路及电流控制方法
KR102680352B1 (ko) 2019-09-09 2024-07-03 삼성전자주식회사 전압 변환기
JP7280165B2 (ja) * 2019-10-18 2023-05-23 ローム株式会社 スイッチング電源装置
TWI697187B (zh) * 2019-11-26 2020-06-21 國立臺灣科技大學 多階層降壓轉換器
CN111224540B (zh) 2019-12-20 2021-04-06 南京矽力微电子技术有限公司 开关电容变换器及其驱动电路
DE102020200927A1 (de) 2020-01-27 2021-07-29 Dialog Semiconductor (Uk) Limited Hybrid-Mehrpegel-Leistungsumsetzer mit lnduktor zwischen Stufen
CN113555854A (zh) * 2020-04-24 2021-10-26 台达电子企业管理(上海)有限公司 用于飞跨电容变换器的短路电流抑制电路与具有其的储能系统
US11532987B2 (en) * 2020-05-15 2022-12-20 Halo Microelectronics Co., Ltd. Power conversion circuit, power conversion system and power chip
CN111371443B (zh) * 2020-05-28 2020-08-28 上海南麟电子股份有限公司 一种有源整流桥电路及片内集成系统
US20210376622A1 (en) * 2020-06-02 2021-12-02 Qualcomm Incorporated Trickle charging and precharging a dead multi-cell-in-series battery
US11228243B2 (en) 2020-06-12 2022-01-18 Dialog Semiconductor (Uk) Limited Power converter with reduced RMS input current
US11456663B2 (en) * 2020-06-12 2022-09-27 Dialog Semiconductor (Uk) Limited Power converter with reduced root mean square input current
DE102020213004A1 (de) 2020-06-12 2021-12-16 Dialog Semiconductor (Uk) Limited Leistungswandler
TWI766314B (zh) * 2020-07-21 2022-06-01 茂達電子股份有限公司 具飛馳電容自動平衡機制的電源轉換器
US11095229B1 (en) * 2020-09-24 2021-08-17 Monolithic Power Systems, Inc. High switching frequency direct AC to AC converter
DE102020213005A1 (de) 2020-10-15 2022-04-21 Dialog Semiconductor (Uk) Limited Leistungswandler
KR102382987B1 (ko) * 2020-11-12 2022-04-05 주식회사 실리콘마이터스 전원 공급 회로
US20220166339A1 (en) * 2020-11-23 2022-05-26 Richtek Technology Corporation High efficiency charging system and power conversion circuit thereof
US11637491B2 (en) 2020-12-03 2023-04-25 Dialog Semiconductor (Uk) Limited Multi-stage power converter
US11496051B2 (en) 2020-12-16 2022-11-08 Dialog Semiconductor (Uk) Limited Power converter
CN113054838B (zh) * 2021-03-31 2022-03-08 电子科技大学 一种混合双路径降压变换器
US11990831B2 (en) 2021-08-06 2024-05-21 Renesas Design (UK) Limited Hybrid buck boost converter with reduced inductor current
US11929672B2 (en) 2021-08-06 2024-03-12 Renesas Design (UK) Limited Inverting buck-boost converter
TWI784788B (zh) * 2021-11-10 2022-11-21 技嘉科技股份有限公司 供電調控電路、充電裝置與其供電模式調整方法
TWI813084B (zh) 2021-12-01 2023-08-21 財團法人工業技術研究院 多階降壓轉換器
US11967901B2 (en) 2021-12-09 2024-04-23 Renesas Design (UK) Limited Hybrid multi-phase power converter with phase shedding
CN114244105B (zh) * 2022-02-24 2022-04-26 伏达半导体(合肥)有限公司 功率转换结构、方法包括其的电子设备及芯片单元

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5760495A (en) * 1995-02-22 1998-06-02 Alpha Technologies, Inc. Inverter/charger circuit for uninterruptible power supplies
JP2004064937A (ja) * 2002-07-31 2004-02-26 Nec Corp チャージポンプ型昇圧回路
JP2006513690A (ja) * 2002-11-12 2006-04-20 オーツー マイクロ, インコーポレーテッド Dc/dcコンバータのための制御装置

Family Cites Families (66)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US649595A (en) * 1899-08-07 1900-05-15 Willard James Pulverizing-leveler.
IL57186A (en) 1979-04-30 1982-03-31 Mg Electronics Ltd Dc/dc converter power supply
US4521726A (en) 1981-11-17 1985-06-04 Motorola, Inc. Control circuitry for a pulse-width-modulated switching power supply
JPH0655030B2 (ja) 1982-12-08 1994-07-20 富士電機株式会社 負荷電流の瞬時値制御方法
US4658204A (en) 1986-02-07 1987-04-14 Prime Computer, Inc. Anticipatory power failure detection apparatus and method
US4801859A (en) 1986-12-23 1989-01-31 Sundstrand Corporation Boost/buck DC/DC converter
FR2610149B1 (fr) 1987-01-22 1989-04-07 Telecommunications Sa Convertisseur continu-continu a rendement eleve a faible charge
US5382893A (en) 1991-05-16 1995-01-17 Compaq Computer Corporation Maximum power regulated battery charger
DE4206478A1 (de) 1992-03-02 1993-09-09 Thomson Brandt Gmbh Schaltung zum erzeugen einer stabilisierten betriebsspannung mit einer integrierten schaltung
US5481178A (en) 1993-03-23 1996-01-02 Linear Technology Corporation Control circuit and method for maintaining high efficiency over broad current ranges in a switching regulator circuit
JP2596314B2 (ja) 1993-05-31 1997-04-02 日本電気株式会社 スイッチング電源回路
IT1268474B1 (it) 1993-10-22 1997-03-04 St Microelectronics Srl Convertitore statico dc-dc funzionante in modo discontinuo
US5514947A (en) 1995-01-31 1996-05-07 National Semiconductor Corporation Phase lead compensation circuit for an integrated switching regulator
US5747977A (en) 1995-03-30 1998-05-05 Micro Linear Corporation Switching regulator having low power mode responsive to load power consumption
US5770940A (en) 1995-08-09 1998-06-23 Switch Power, Inc. Switching regulator
JP3324930B2 (ja) 1996-05-31 2002-09-17 富士通株式会社 電源装置
JP3466029B2 (ja) 1996-09-27 2003-11-10 ローム株式会社 充電器
US5705919A (en) 1996-09-30 1998-01-06 Linear Technology Corporation Low drop-out switching regulator architecture
FR2764450B1 (fr) 1997-06-04 1999-08-27 Sgs Thomson Microelectronics Systeme de fourniture d'une tension regulee
US6147526A (en) 1997-12-23 2000-11-14 Texas Instruments Incorporated Ripple regulator with improved initial accuracy and noise immunity
US5959853A (en) 1998-08-24 1999-09-28 Kos; Marek John Closed-loop switched capacitor network power supply
US6064187A (en) 1999-02-12 2000-05-16 Analog Devices, Inc. Voltage regulator compensation circuit and method
JP3389524B2 (ja) 1999-02-23 2003-03-24 松下電器産業株式会社 スイッチングレギュレータ、dc/dc変換器、およびスイッチングレギュレータを備えたlsiシステム
JP3425900B2 (ja) 1999-07-26 2003-07-14 エヌイーシーマイクロシステム株式会社 スイッチングレギュレータ
US6147478A (en) 1999-09-17 2000-11-14 Texas Instruments Incorporated Hysteretic regulator and control method having switching frequency independent from output filter
EP1134878A1 (fr) * 2000-03-13 2001-09-19 Alstom Belgium S.A. Procédé et dispositif de réduction d'harmonique dans les convertisseurs de puissance
US6166527A (en) 2000-03-27 2000-12-26 Linear Technology Corporation Control circuit and method for maintaining high efficiency in a buck-boost switching regulator
US6271650B1 (en) 2000-04-13 2001-08-07 Intel Corporation Method and apparatus to provide a DC-DC converter with ripple regulation and multiphase current sharing
US6433525B2 (en) 2000-05-03 2002-08-13 Intersil Americas Inc. Dc to DC converter method and circuitry
US6246222B1 (en) 2000-08-30 2001-06-12 National Semiconductor Corporation Switching DC-to-DC converter and conversion method with rotation of control signal channels relative to paralleled power channels
US6741066B1 (en) 2000-09-21 2004-05-25 O2Micro International Limited Power management for battery powered appliances
US6362607B1 (en) 2000-12-19 2002-03-26 Intel Corporation Gated multi-phase fixed duty cycle voltage regulator
US6631806B2 (en) * 2001-02-28 2003-10-14 Ellen R. Jackson Cosmetic packaging device
US6495995B2 (en) 2001-03-09 2002-12-17 Semtech Corporation Self-clocking multiphase power supply controller
US6583610B2 (en) 2001-03-12 2003-06-24 Semtech Corporation Virtual ripple generation in switch-mode power supplies
JP3718767B2 (ja) 2001-09-19 2005-11-24 インターナショナル・ビジネス・マシーンズ・コーポレーション 電気機器、コンピュータ装置、予備充電状態表示方法、およびユーティリティプログラム
US6456050B1 (en) 2001-11-05 2002-09-24 Dan Agiman Virtual frequency-controlled switching voltage regulator
US6791306B2 (en) 2002-01-29 2004-09-14 Intersil Americas Inc. Synthetic ripple regulator
US7019502B2 (en) 2002-09-06 2006-03-28 Intersil America's Inc. Synchronization of multiphase synthetic ripple voltage regulator
US7132820B2 (en) 2002-09-06 2006-11-07 Intersil Americas Inc. Synthetic ripple regulator
US6922044B2 (en) 2002-09-06 2005-07-26 Intersil Americas Inc. Synchronization of multiphase synthetic ripple voltage regulator
US7019506B2 (en) 2002-11-14 2006-03-28 Fyre Storm, Inc. Charge-based switching power converter controller
JP3741100B2 (ja) * 2002-11-26 2006-02-01 セイコーエプソン株式会社 電源回路及び半導体集積回路
US6819577B1 (en) 2003-05-19 2004-11-16 Texas Instruments Incorporated Distributing clock and programming phase shift in multiphase parallelable converters
US7042199B1 (en) 2003-07-28 2006-05-09 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Series connected buck-boost regulator
US7193396B2 (en) 2003-12-24 2007-03-20 Potentia Semiconductor Corporation DC converters having buck or boost configurations
US7589499B2 (en) 2004-03-25 2009-09-15 O2Micro International Limited Over voltage transient controller
US7106036B1 (en) 2004-06-30 2006-09-12 National Semiconductor Corporation Apparatus and method for high-frequency PWM with soft-start
TWI306725B (en) * 2004-08-20 2009-02-21 Monolithic Power Systems Inc Minimizing bond wire power losses in integrated circuit full bridge ccfl drivers
US7394231B2 (en) 2005-02-08 2008-07-01 Linear Technology Corporation Current-mode control for switched step up-step down regulators
US7570033B1 (en) 2006-04-03 2009-08-04 National Semiconductor Corporation Apparatus and method for PWM buck-or-boost converter with smooth transition between modes
US7391190B1 (en) 2006-04-03 2008-06-24 National Semiconductor Corporation Apparatus and method for three-phase buck-boost regulation
US7495419B1 (en) 2006-04-03 2009-02-24 National Semiconductor Corporation Apparatus and method for PFM buck-or-boost converter with smooth transition between modes
US7432689B2 (en) 2006-05-05 2008-10-07 Micrel, Inc. Buck-boost control logic for PWM regulator
US7746041B2 (en) 2006-06-27 2010-06-29 Virginia Tech Intellectual Properties, Inc. Non-isolated bus converters with voltage divider topology
US7768246B2 (en) 2006-07-27 2010-08-03 Richtek Technology Corp. Output ripple control circuit and method for a PWM system
US7812579B2 (en) * 2006-12-30 2010-10-12 Advanced Analogic Technologies, Inc. High-efficiency DC/DC voltage converter including capacitive switching pre-converter and up inductive switching post-regulator
US7764050B2 (en) 2007-01-02 2010-07-27 Intersil Americas Inc. System and method of charging a battery and power delivery using an adapter and capacitor voltage divider
US7696735B2 (en) 2007-03-30 2010-04-13 Intel Corporation Switched capacitor converters
US7598715B1 (en) 2007-04-04 2009-10-06 National Semiconductor Corporation Apparatus and method for reverse current correction for a switching regulator
US7737668B2 (en) 2007-09-07 2010-06-15 Panasonic Corporation Buck-boost switching regulator
US20090102440A1 (en) 2007-10-23 2009-04-23 Advanced Analogic Technologies, Inc. Buck-Boost Switching Voltage Regulator
US7932709B1 (en) 2008-06-26 2011-04-26 National Semiconductor Corporation Stable high efficiency step-up voltage regulator with fast transient response and ultra low output voltage ripple
US8102162B2 (en) 2008-07-30 2012-01-24 Intersil Americas Inc. Buck controller having integrated boost control and driver
US7834608B2 (en) 2008-11-18 2010-11-16 Texas Instruments Incorporated Feed-forward compensation for a hysteretic switching regulator
US8786270B2 (en) 2010-11-08 2014-07-22 Intersil Americas Inc. Synthetic ripple regulator with frequency control

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5760495A (en) * 1995-02-22 1998-06-02 Alpha Technologies, Inc. Inverter/charger circuit for uninterruptible power supplies
JP2004064937A (ja) * 2002-07-31 2004-02-26 Nec Corp チャージポンプ型昇圧回路
JP2006513690A (ja) * 2002-11-12 2006-04-20 オーツー マイクロ, インコーポレーテッド Dc/dcコンバータのための制御装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014212654A (ja) * 2013-04-19 2014-11-13 独立行政法人宇宙航空研究開発機構 Pwm制御が可能なスイッチトキャパシタコンバータ
JP2017531995A (ja) * 2014-10-23 2017-10-26 クゥアルコム・インコーポレイテッドQualcomm Incorporated 3レベル降圧コンバータを制御するための回路及び方法

Also Published As

Publication number Publication date
CN101874341A (zh) 2010-10-27
US20090033289A1 (en) 2009-02-05
TWI365590B (en) 2012-06-01
JP4944207B2 (ja) 2012-05-30
KR20090074792A (ko) 2009-07-07
KR101060052B1 (ko) 2011-08-29
TW200924365A (en) 2009-06-01
CN101874341B (zh) 2013-04-03
WO2009017778A1 (en) 2009-02-05
US8427113B2 (en) 2013-04-23
EP2186185A1 (en) 2010-05-19

Similar Documents

Publication Publication Date Title
JP4944207B2 (ja) バックコンバータ・容量性分圧器一体型の電圧変換器
JP4944208B2 (ja) 容量性分圧器・バックコンバータ・バッテリ充電器一体型の電圧変換器
US7391188B2 (en) Current prediction in a switching power supply
CN103457348B (zh) 半导体集成电路及其操作方法
JP5468093B2 (ja) 自動モードスイッチングを備えた電力変換器
TWI587603B (zh) 具有降壓-升壓操作之電池充電器及用於為一電池充電之方法
US7863865B2 (en) Systems and methods for pulse charging a battery
CN100495876C (zh) 电子装置
KR20170005127A (ko) 휴대용 전자 디바이스를 위한 단일 인덕터 다중-출력 배터리 충전기
CA2632898A1 (en) Charging and power supply for mobile devices
US20060132111A1 (en) Power supply with multiple modes of operation
WO2005076099A1 (en) Enabling circuit for avoiding negative voltage transients
CN104797998A (zh) 电压调节器
WO2012119476A1 (zh) 电子设备、供电控制芯片和供电控制方法
JP2007189771A (ja) 電源装置
US7432687B2 (en) High efficiency switching power supply
US20050073866A1 (en) Boost converters, power supply apparatuses, electrical energy boost methods and electrical energy supply methods
CA2575761A1 (en) Power supply with multiple modes of operation
CN116388363A (zh) 一种充电供电系统及方法

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111115

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120207

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120228

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120301

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150309

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150309

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees