CN108736709B - 功率变换器 - Google Patents

功率变换器 Download PDF

Info

Publication number
CN108736709B
CN108736709B CN201810612057.5A CN201810612057A CN108736709B CN 108736709 B CN108736709 B CN 108736709B CN 201810612057 A CN201810612057 A CN 201810612057A CN 108736709 B CN108736709 B CN 108736709B
Authority
CN
China
Prior art keywords
transistor
type
energy storage
switching
stage circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810612057.5A
Other languages
English (en)
Other versions
CN108736709A (zh
Inventor
张望
赵晨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing Sili Microelectronics Technology Co., Ltd
Original Assignee
Nanjing Xilijie Semiconductor Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing Xilijie Semiconductor Technology Co Ltd filed Critical Nanjing Xilijie Semiconductor Technology Co Ltd
Priority to CN201810612057.5A priority Critical patent/CN108736709B/zh
Publication of CN108736709A publication Critical patent/CN108736709A/zh
Priority to TW108110706A priority patent/TWI715952B/zh
Priority to US16/429,193 priority patent/US10879801B2/en
Priority to EP19179355.3A priority patent/EP3582383B1/en
Application granted granted Critical
Publication of CN108736709B publication Critical patent/CN108736709B/zh
Priority to US17/102,674 priority patent/US11444534B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/06Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using resistors or capacitors, e.g. potential divider
    • H02M3/07Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using resistors or capacitors, e.g. potential divider using capacitors charged and discharged alternately by semiconductor devices with control electrode, e.g. charge pumps
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0095Hybrid converter topologies, e.g. NPC mixed with flying capacitor, thyristor converter mixed with MMC or charge pump mixed with buck
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • H02M1/088Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters for the simultaneous control of series or parallel connected semiconductor devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/14Arrangements for reducing ripples from dc input or output
    • H02M1/15Arrangements for reducing ripples from dc input or output using active elements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • H02M3/1584Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load with a plurality of power processing stages connected in parallel
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • H02M3/1584Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load with a plurality of power processing stages connected in parallel
    • H02M3/1586Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load with a plurality of power processing stages connected in parallel switched with a phase shift, i.e. interleaved

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)
  • Inverter Devices (AREA)
  • Amplifiers (AREA)

Abstract

公开了一种功率变换器,本发明实施例的技术方案通过在功率变换器的输入端和输出端之间设置至少一个第一类开关型功率级电路和第二类开关型功率级并使得所述至少一个第一类开关型功率级电路和第二类开关型功率级交错并联,降低了输出电压的纹波,减小了所需的输出电容。同时,本发明实施例的功率变换器具有较高增益并具有可调的平滑输出。

Description

功率变换器
技术领域
本发明涉及电力电子技术领域,更具体地,涉及一种功率变换器。
背景技术
随着社会的不断发展,能源短缺成为人类面临的首要问题。电力电子技术近年来获得了突飞猛进的发展。目前,高增益功率变换器是能源利用中不可或缺的组成部分。
现有技术中通常采用级联的连接方式以实现功率变换器的高增益,但是可能使得输出电压具有较大的纹波,并且需要较大的输出电容。
发明内容
有鉴于此,本发明提供了一种功率变换器,以降低输出电压的纹波,减小所需的输出电容,同时,具有较高的增益并具有可调的平滑输出。
本发明实施例提供的功率变换器包括:
第一端和第二端;
N个第一类开关型功率级电路,每个所述第一类开关型功率级电路包括第一储能元件,N大于或等于1;
一个第二类开关型功率级电路;以及
N个第二储能元件,每个所述第二储能元件与对应的所述第一类开关型功率级电路耦接;
其中,第1个所述第一类开关型功率级电路的第一端耦接至所述第一端,每个所述第一类开关型功率级电路的第二端均连接至所述第二端;
所述第二类开关型功率级电路耦接在对应的所述第二储能元件的一端和所述第二端之间。
进一步地,所述第二储能元件和所述第一储能元件的储能参数被设置为使得所述第一类开关型功率级电路达到电感伏秒平衡。
进一步地,当N大于1时,第n个所述第一类开关型功率级电路耦接至第n-1个所述第二储能元件的一端和所述第二端之间,第j个所述第二储能元件与第j个所述第一类开关型功率级电路耦接,n=2,3…,N,j=1,2,…,N。
进一步地,所述功率变换器还包括:
N个第一晶体管;
所述第二储能元件通过与所述第二储能元件串联连接的所述第一晶体管耦接至对应的所述第一类开关型功率级电路。
进一步地,每个所述第一类开关型功率级电路还包括第二晶体管,其中,所述第二晶体管连接在对应的所述第一类开关型功率级电路的第一端和所述第一储能元件之间。
进一步地,每个所述第一类开关型功率级电路还包括连接在所述第一储能元件与接地端之间的第三晶体管,以及连接在所述第一储能元件和所述第二端之间的第一磁性元件。
进一步地,所述第二类开关型功率级电路包括连接在对应的所述第二储能元件和接地端之间的第四晶体管和第五晶体管,以及连接在所述第四晶体管与所述第五晶体管的公共连接端和所述第二端之间的第二磁性元件。
进一步地,所述第一端被配置为输入端以接收输入电压,所述第二端被配置为输出端以产生输出电压。
进一步地,所述第二端被配置为输入端以接收输入电压,所述第一端被配置为输出端以产生输出电压。
进一步地,错相控制所述第一类型开关型功率级电路和所述第二类型开关型功率级电路的工作状态。
进一步地,第1个至第N个所述第二晶体管以及所述第四晶体管的占空比相同,每个所述第二晶体管和所述第三晶体管的开关状态互补,所述第四晶体管和所述第五晶体管的状态互补,第j个所述第一晶体管与第j个所述第一类开关型功率级电路的所述第三晶体管的开关状态相同,j=1,2,3,…,N;
所述功率变换器被配置为通过调节每个所述第二晶体管的占空比以维持所述功率变换器的输出电压稳定。
进一步地,当N大于1时,第1个至第N个所述第二晶体管以及所述第四晶体管的导通时序之间依次具有相同的相位差。
进一步地,所述相位差依次为360°/(N+1)。
进一步地,同相控制所述第一类开关型功率级电路和所述第二类开关型功率级电路的工作状态。
进一步地,第1个至第N个所述第二晶体管以及所述第四晶体管的开关状态相同,第1个至第N个所述第三晶体管、第1个至第N个所述第一晶体管以及所述第五晶体管的开关状态相同且与所述第二晶体管的开关状态互补;
所述功率变换器被配置为通过调节所述第二晶体管的占空比以维持所述功率变换器的输出电压稳定。
进一步地,所述第三晶体管与所述第五晶体管为整流开关;或者
所述第三晶体管和所述第五晶体管替换为二极管。
进一步地,至少一个所述第一磁性元件和所述第二磁性元件相互耦合,和/或
至少两个第一磁性元件相互耦合。
本发明实施例的技术方案通过在功率变换器的输入端和输出端之间设置至少一个第一类开关型功率级电路和第二类开关型功率级并使得所述至少一个第一类开关型功率级电路和第二类开关型功率级交错并联,降低了输出电压的纹波,减小了所需的输出电容。同时,本发明实施例的功率变换器具有较高增益并具有可调的平滑输出。
附图说明
通过以下参照附图对本发明实施例的描述,本发明的上述以及其它目的、特征和优点将更为清楚,在附图中:
图1是本发明第一实施例的功率变换器的电路示意图;
图2是本发明第一实施例的功率变换器的工作波形图;
图3是本发明第一实施例的功率变换器的工作波形图;
图4是本发明第二实施例的功率变换器的电路示意图;
图5是本发明第二实施例的功率变换器的工作波形图;
图6是本发明第三实施例的功率变换器的电路示意图;
图7是本发明第四实施例的功率变换器的电路示意图;
图8是本发明第五实施例的功率变换器的电路示意图;
图9是本发明第六实施例的功率变换器的电路示意图。
具体实施方式
以下基于实施例对本发明进行描述,但是本发明并不仅仅限于这些实施例。在下文对本发明的细节描述中,详尽描述了一些特定的细节部分。对本领域技术人员来说没有这些细节部分的描述也可以完全理解本发明。为了避免混淆本发明的实质,公知的方法、过程、流程、元件和电路并没有详细叙述。
此外,本领域普通技术人员应当理解,在此提供的附图都是为了说明的目的,并且附图不一定是按比例绘制的。
同时,应当理解,在以下的描述中,“电路”是指由至少一个元件或子电路通过电气连接或电磁连接构成的导电回路。当称元件或电路“连接到”另一元件或称元件/电路“连接在”两个节点之间时,它可以是直接耦接或连接到另一元件或者可以存在中间元件,元件之间的连接可以是物理上的、逻辑上的、或者其结合。相反,当称元件“直接耦接到”或“直接连接到”另一元件时,意味着两者不存在中间元件。
除非上下文明确要求,否则整个说明书和权利要求书中的“包括”、“包含”等类似词语应当解释为包含的含义而不是排他或穷举的含义;也就是说,是“包括但不限于”的含义。
在本发明的描述中,需要理解的是,术语“第一”、“第二”等仅用于描述目的,而不能理解为指示或暗示相对重要性。此外,在本发明的描述中,除非另有说明,“多个”的含义是两个或两个以上。
图1是本发明第一实施例的功率变换器电路示意图。如图1所示,本实施例的功率变换器包括第一类开关型功率级电路11、第二类开关型功率级电路12、第一端a、第二端c、第二储能元件Ci1、晶体管Q1和输出电容Co。在本实施例中,第一端a被配置为功率变换器的输入端以接收输入电压Vin。第二端c被配置为功率变换器的输出端以产生输出电压Vout。
第一类开关型功率级电路11的第一端耦接至第一端a,第二端耦接至第二端c。第一类开关型功率级电路11包括晶体管Q2、晶体管Q3、第一储能元件Cf1和第一磁性元件Lo1。晶体管Q2连接在第一端a和端e之间,第一储能元件Cf1连接在端e和端f之间,第一磁性元件Lo1连接在端f和第二端c之间,晶体管Q3连接在端f与接地端之间。其中,端e为晶体管Q2和第一储能元件Cf1的公共连接端,端f为第一储能元件Cf1和第一磁性元件Lo1的公共连接端。
第二储能元件Ci1与第一类开关型功率级电路11耦接。如图1所示,第二储能元件Ci1的一端g通过与第二储能元件Ci1串联连接的晶体管Q1耦接至端e,第二储能元件Ci1的另一端连接至接地端。
第二类开关型功率级电路12耦接在第二储能元件Ci1的一端g和第二端c之间。第二类开关型功率级电路12包括晶体管Q4、晶体管Q5和第二磁性元件Lo2。其中晶体管Q4和晶体管Q5连接在端g和接地端之间。第二磁性元件连接在端h和第二端c之间,端h为晶体管Q4和Q5的公共连接端。
优选地,晶体管Q3和Q5为整流开关,如金属氧化物半导体晶体管(MOSFET)、双极性晶体管(BJT)以及绝缘栅型晶体管(IGBT)等。在另一种实施方式中,晶体管Q3和Q5也可以替换为二极管。
进一步地,第一储能元件Cf1与第二储能元件Ci1的储能参数被设置为使得第一类开关型功率级电路11达到电感伏秒平衡,也即使得第一磁性元件Lo1处于稳定状态。也就是说,第一磁性元件Lo1在一个开关周期内的电流变化量近似为0。
图2是本发明第一实施例的功率变换器的工作波形图。如图2所示,在本实施例中,功率变换器被配置为同相控制第一类开关型功率级电路11和第二类开关型功率级电路12的工作状态。其中,同相控制是指控制晶体管Q2与Q4的开关状态相同,晶体管Q3与Q5的开关状态相同,晶体管Q2与Q3的开关状态互补。如图2所示,晶体管Q2和Q4的开关控制信号GH1和GH2相同(也即晶体管Q2和Q4的开关状态相同,占空比相等),晶体管Q3和Q5的开关控制信号GL1和GL2相同,晶体管Q2和Q3的开关控制控制信号GH1和GL1互补,晶体管Q4和Q5的开关控制控制信号GH2和GL2互补,晶体管Q1和Q3的开关控制信号GL1'和GL1相同。其中,开关控制信号GH1用于控制晶体管Q2。开关控制信号GL1用于控制晶体管Q3。开关控制信号GH2用于控制晶体管Q4。开关控制信号GL2用于控制晶体管Q5。开关控制信号GL1'用于控制晶体管Q1。由此,本实施例的功率变换器被配置为通过调节晶体管Q2的占空比以调节输出电压Vout的大小并维持输出电压Vout的稳定。
在一个开关周期内,本实施例的功率变换器存在两个状态。在t0-t1时刻,晶体管Q2和Q4的开关控制信号GH1和GH2为高电平,晶体管Q2和Q4导通,晶体管Q1、Q3和Q5关断,第一储能开关Cf1储能,第一磁性元件Lo1的电流逐渐上升。第二储能元件Ci1作为电源通过第二类开关型功率级开关12为负载供电,第二磁性元件Lo2的电流也逐渐上升。在t1-t2时刻,晶体管Q2和Q4的开关控制信号GH1和GH2为低电平,晶体管Q2和Q4关断,晶体管Q1、Q3和Q5导通。第一磁性元件Lo1和第二磁性元件Lo2的电流均逐渐下降。第一储能元件Cf1作为电源为第二储能元件Ci1充电,第二储能元件Ci1储能。
根据第一类开关型功率级电路和第二类开关型功率级电路的电感伏秒平衡特性可以得到以下关系:
(Vin-Vcf1)*D=Vout
Vci1*D=Vout
其中,Vin为输入电压,Vcf1为第一储能元件Cf1的电压值,D为晶体管Q2的占空比(也即晶体管Q2的导通时间与一个开关周期的比值),Vci1为第二储能元件Ci1的电压值,Vout为输出电压。
根据图1中的连接关系可知,当开关控制信号GL1和GL1’均导通时,第一储能元件Cf1和第二储能元件Ci1为并联关系,故存在Vcf1=Vci1。由此可得出本实施例的功率变换器的输入输出关系为:
本实施例的功率变换器采用交错并联的连接方式和同相控制的控制方法实现了高增益并具有可调的平滑输出,并且控制方式简单易实现。
图3是本发明第一实施例的功率变换器的工作波形图。如图3所示,在本实施例中,功率变换器被配置为错相控制第一类开关型功率级电路11和第二类开关型功率级电路12的工作状态。其中,错相控制是指控制晶体管Q2和Q4的导通时序具有相位差α。优选地,相位差α为180°。
晶体管Q2和Q3的开关状态互补,晶体管Q4和Q5的开关状态互补,晶体管Q1与晶体管Q3的开关状态相同,晶体管Q2和Q4的占空比D相同。由此,本实施例的功率变换器被配置为通过调节晶体管Q2的占空比D以调节输出电压Vout的大小并维持输出电压Vout的稳定。本实施例以Q2的占空比D<0.5为例。
如图3所示,在t3-t4时刻,GH1和GL2为高电平,晶体管Q2和Q5导通,晶体管Q1、Q3和Q4关断,此时,第一磁性元件Lo1的电流I1上升,第二磁性元件Lo2的电流I2下降。在t4-t5时刻,GL1、GL1'和GL2为高电平,晶体管Q1、Q3和Q5导通,晶体管Q2和Q4关断,此时,第一磁性元件Lo1的电流I1下降,第二磁性元件Lo2的电流I2下降。在t5-t6时刻,GL1、GL1'和GH2为高电平,晶体管Q1、Q3和Q4导通,晶体管Q2和Q5关断,此时,第一磁性元件Lo1的电流I1下降,第二磁性元件Lo2的电流I2上升。在t6-t7时刻,GL1、GL1'和GL2为高电平,晶体管Q1、Q3和Q5导通,晶体管Q2和Q4关断,此时,第一磁性元件Lo1的电流I1下降,第二磁性元件Lo2的电流I2下降。因此,本实施例的功率变换器采用交错并联的连接方式和错相控制的控制方法降低了输出电压的纹波,减小了所需的输出电容。
根据第一类开关型功率级电路和第二类开关型功率级电路的电感伏秒平衡特性可以得到以下关系:
(Vin-Vcf1)*D=Vout
Vci1*D=Vout
其中,Vin为输入电压,Vcf1为第一储能元件Cf1的电压值,D为晶体管Q2的占空比(也即晶体管Q2的导通时间与一个开关周期的比值),Vci1为第二储能元件Ci1的电压值,Vout为输出电压。
根据图1中的连接关系可知,当开关控制信号GL1和GL1’均导通时,第一储能元件Cf1和第二储能元件Ci1为并联关系,故存在Vcf1=Vci1。由此可得出本实施例的功率变换器的输入输出关系为:
Figure BDA0001695849920000081
本实施例的功率变换器采用交错并联的连接方式和错相控制的控制方法降低了输出电压的纹波,减小了所需的输出电容Co,同时实现了高增益并具有可调的平滑输出。
图4是本发明第二实施例的功率变换器的电路示意图。图5是本发明第二实施例的功率变换器的工作波形图。如图4所示,本实施例的功率变换器包括第一类开关型功率级电路41、第一类开关型功率级电路42、第二类开关型功率级电路43、第一端z、第二端m、第二储能元件Ci2和Ci3、晶体管Q11和Q12以及输出电容Co。其中,第一端z被配置为输入端以接收输入电压Vin,第二端m被配置为输出端以产生输出电压。第一类开关型功率级电路41及其包括的元件(晶体管Q21、第一储能元件Cf2、晶体管Q31和第一磁性元件L1)的连接方式与第一实施例中的第一类开关型功率级电路11及其包括的元件的连接方式基本一致,第二类开关型功率级电路43及其包括的元件(晶体管Q41、晶体管Q51和第二磁性元件L3)的连接方式与第二类开关型功率级电路及其包括的元件的连接方式类似,在此不再赘述。
第二储能元件Ci2与第一类开关型功率级电路41耦接。具体地,第二储能元件Ci2的一端i1通过与第二储能元件Ci2串联的晶体管Q11耦接至晶体管Q21和第一储能元件Cf2的公共连接端i,第二储能元件Ci2的另一端连接至接地端。
在本实施例中,第一类开关型功率级电路42耦接至第二储能元件Ci2的一端和第二端m的一端之间,也即端i1和端m之间。第一类开关型功率级电路42包括晶体管Q22和Q32、第一储能元件Cf3以及第一磁性元件L2。晶体管Q22连接在端i1和端k之间,第一储能元件Cf3连接在端k和端n之间,第一磁性元件L2连接在端n和第二端m之间,晶体管Q32连接在端n与接地端之间。其中,端k为晶体管Q22和第一储能元件Cf3的公共连接端,端n为第一储能元件Cf3和第一磁性元件L2的公共连接端。其中,第一类开关型功率级电路41和第一类开关型功率级电路42的第二端均连接至端m。
第二储能元件Ci3与第一类开关型功率级电路42耦接。具体地,第二储能元件Ci3的一端i2通过与第二储能元件Ci3串联的晶体管Q12耦接至晶体管Q22和第一储能元件Cf3的公共连接端k,第二储能元件Ci3的另一端连接至接地端。第二类开关型功率级电路43耦接至第二储能元件Ci3的一端i2和第二端m之间。
优选地,晶体管Q31、晶体管Q32和Q51为整流开关,如金属氧化物半导体晶体管(MOSFET)、双极性晶体管(BJT)以及绝缘栅型晶体管(IGBT)等。在另一种实施方式中,晶体管Q31、晶体管Q32和Q51也可以替换为二极管。
进一步地,第一储能元件Cf2和Cf3以及第二储能元件Ci2和Ci3的储能参数被设置为使得第一类开关型功率级电路41和42达到电感伏秒平衡,也即使得第一磁性元件L1和L2处于稳定状态。也就是说,第一磁性元件L1和L2在一个开关周期内的电流变化量为0。
在一种实施方式中,功率变换器被配置为同相控制第一类开关型功率级电路41和42以及第二类开关型功率级电路43的工作状态。其中,晶体管Q21、Q22和Q41的占空比D相等,开关状态相同。晶体管Q31与晶体管Q21的开关状态互补。晶体管Q31、Q32、Q11、Q12和Q51的开关状态相同。由此,本实施例的功率变换器被配置为通过调节晶体管Q21的占空比以调节输出电压Vout的大小并维持输出电压Vout的稳定。
根据第一类开关型功率级电路41和42以及第二类开关型功率级电路43的电感伏秒平衡特性可以得到以下关系:
(Vin-Vcf2)*D=Vout
(Vci2-Vcf3)*D=Vout
Vci3*D=Vout
其中,Vin为输入电压,Vcf2为第一储能元件Cf2的电压值,D为晶体管Q21的占空比(也即晶体管Q21的导通时间与一个开关周期的比值),Vci2为第二储能元件Ci2的电压值,Vcf3为第一储能元件Cf3的电压值,Vci3为第二储能元件Ci3的电压值,Vout为输出电压。
根据图1中的连接关系可知,当开关控制信号GL3和GL3’均导通时,第一储能元件Cf2和第二储能元件Ci2为并联关系,当开关控制信号GL4和GL4’均导通时,第一储能元件Cf3和第二储能元件Ci3为并联关系,故存在Vcf2=Vci2,Vcf3=Vci3。由此可得出本实施例的功率变换器的输入输出关系为:
Figure BDA0001695849920000101
本实施方式使得本实施例的功率变换器具有高增益并具有可调的平滑输出,并且控制方式简单易实现。
在另一种实施方式中,如图5所示,功率变换器被配置为错相控制第一类开关型功率级电路41和42以及第二类开关型功率级电路43的工作状态。其中,错相控制是指晶体管Q21、Q22和Q41的导通时序依次具有相同的相位差α1。优选地,相位差α1为120°。
晶体管Q21和Q31的开关状态互补,晶体管Q22和Q32的开关状态互补,晶体管Q41和Q51的开关状态互补,晶体管Q11和Q12与晶体管Q31的开关状态相同,晶体管Q21、Q22和Q41的占空比D相同。由此,本实施例的功率变换器被配置为通过调节晶体管Q21的占空比以调节输出电压Vout的大小并维持输出电压Vout的稳定。本实施例以Q21的占空比D<0.5为例。
如图5所示,开关控制信号GH3、GH4、GH5、GL3、GL4、GL5、GL3'和GL4'分别用于控制晶体管Q21、Q22、Q41、Q31、Q32、Q51、Q11和Q12。
在t0'-t1'时刻,GH3、GL4、GL4'和GL5为高电平,晶体管Q21、Q32、Q12和Q51导通,晶体管Q31、Q11、Q22和Q41关断,此时,第一磁性元件L1的电流IL1上升,第一磁性元件L2和第二磁性元件L3的电流IL2和IL3下降。
在t1'-t2'时刻,GL3、GL3'、GH4和GL5为高电平,晶体管Q31、Q11、Q22和Q51导通,晶体管Q21、Q32、Q12和Q41关断,此时,第一磁性元件L2的电流IL2上升,第一磁性元件L1和第二磁性元件L3的电流IL1和IL3下降。
在t2'-t3'时刻,GL3、GL3'、GL4、GL4'和GH5为高电平,晶体管Q31、Q11、Q32、Q12和Q41导通,晶体管Q21、Q22和Q51关断,此时,第一磁性元件L1和L2的电流IL1和IL2下降,第二磁性元件L3的电流IL32上升。
由第一磁性元件L1、L2和第二磁性元件L3的电流IL1、IL2和IL3的波形图易知,本实施例的功率变换器采用交错并联的连接方式和错相控制的控制方法进一步降低了输出电压的纹波,减小了所需的输出电容。
根据第一类开关型功率级电路41和42以及第二类开关型功率级电路43的电感伏秒平衡特性可以得到以下关系:
(Vin-Vcf2)*D=Vout
(Vci2-Vcf3)*D=Vout
Vci3*D=Vout
其中,Vin为输入电压,Vcf2为第一储能元件Cf2的电压值,D为晶体管Q21的占空比(也即晶体管Q21的导通时间与一个开关周期的比值),Vci2为第二储能元件Ci2的电压值,Vcf3为第一储能元件Cf3的电压值,Vci3为第二储能元件Ci3的电压值,Vout为输出电压。
根据图1中的连接关系可知,Vcf2=Vci2,Vcf3=Vci3。由此可得出本实施例的功率变换器的输入输出关系为:
Figure BDA0001695849920000111
本实施例的功率变换器采用交错并联的连接方式和错相控制的控制方法降低了输出电压的纹波,减小了所需的输出电容Co,同时实现了高增益并具有可调的平滑输出。
图6是本发明第三实施例的功率变换器的电路示意图。如图6所示,本实施例的功率变换器包括N个第一类开关型功率级电路61-6N、一个第二类开关型功率级电路6a、第一端m1、第二端o1、N个第二储能元件Ci1-CiN、N个晶体管Q11-Q1N和输出电容Co。在本实施例中,第一端m1被配置为功率变换器的输入端以接收输出电压Vin。第二端o1被配置为功率变换器的输出端以产生输出电压Vout。
如图6所示,第j个第二储能元件Cij与第j个第一类开关型功率级电路耦接,j=1,2,…,N。具体地,第j个第二储能元件Cij的一端通过与第j个第二储能元件Cij串联连接的晶体管Q1j耦接至第j个第一类开关型功率级电路,第j个第二储能元件Cij的另一端连接至接地端。例如,储能元件Ci1的一端x2通过与第一储能元件Ci1串联连接的晶体管Q11耦接至端x1。
第一类开关型功率级电路61的第一端耦接至端m1,第二端耦接至端o1。在N>1时,第n个第一类开关型功率级电路耦接至第n-1个第二储能元件Cin和第二输出端o1之间,n=2,3,…,N。其中,每个第一类开关型功率级电路的第二端均连接至端o1。
第j个第一类开关型功率级电路6j包括晶体管Q2j、第一储能元件Cfj、晶体管Q3j和第一磁性元件Lj。当j=1时,晶体管的一端耦接至端m1,另一端连接至第一储能元件Cf1,第一磁性元件L1连接至第一储能元件Cf1和端o1之间,晶体管Q31连接在第一储能元件Cf1和第一磁性元件L1的公共连接端x4和接地端之间。当j>1时,晶体管Q2j的一端连接至晶体管Q1(j-1)和第二储能元件Ci(j-1)的公共连接端,另一端连接至第一储能元件Cfj,第一磁性元件Lj连接在第一储能元件Cfj和端o1之间,晶体管Q3j连接在第一储能元件Cfj和第一磁性元件Lj的公共连接端和接地端之间。
第二类开关型功率级电路6a耦接在第二储能元件CiN的一端x3和端o1之间。第二类开关型功率级电路6a包括晶体管41、晶体管51和第二磁性元件La。第二类开关型功率级电路及其包括的元件的连接方式与第一实施例中类似,在此不再赘述。
优选地,晶体管Q3j和晶体管Q51为整流开关,如金属氧化物半导体晶体管(MOSFET)、双极性晶体管(BJT)以及绝缘栅型晶体管(IGBT)等。在另一种实施方式中,晶体管Q3j和晶体管Q51也可以替换为二极管。
第一储能元件Cfj与第二储能元件Cij的储能参数被设置为使得第一类开关型功率级电路6j达到电感伏秒平衡,也即使得第一磁性元件Lj处于稳定状态。也就是说,第一磁性元件Lj在一个开关周期内的电流变化量近似为0。
在本实施例中,第二储能元件Ci1-CiN作为电源为对应的第一类开关型功率级电路62-6N以及第二类开关型功率级电路6a提供输入电压。其中,第一储能元件Cfj在达到预定条件(例如晶体管Q1j导通)时为第二储能元件Cij充电。本实施的第一类开关型功率级电路6j和第二类开关型功率级电路6a均采用BUCK拓扑以实现高降压比。
应理解,根据不同的应用需求,第一类开关型功率级电路6j和第二类开关型功率级电路6a可采用升压型拓扑、降压型拓扑、升降压型拓扑、Zeta拓扑、Sepic拓扑、Cuk拓扑、反激式变换器、正激式变换器、推挽式变换器、半桥式变换器、全桥式变换器和LLC变换器中的任一种。
在一种实施方式中,功率变换器被配置为同相控制第一类开关型功率级电路6j和第二类开关型功率级电路6a的工作状态。同相控制是指控制晶体管Q21-Q2N和晶体管Q41的开关状态相同,晶体管Q31-Q3N、晶体管Q11-Q1N和晶体管Q51的开关状态相同。其中,晶体管Q21与晶体管Q31的开关状态互补。晶体管Q21-Q2N和晶体管Q41的占空比均相同。由此,本实施例的功率变换器被配置为通过调节晶体管Q21的占空比以调节输出电压Vout的大小并维持输出电压Vout的稳定。
根据第一类开关型功率级电路61-6N以及第二类开关型功率级电路6a的电感伏秒平衡特性可以得到以下关系:
(Vin-Vcf1)*D=Vout
(Vci1-Vcf2)*D=Vout
······
(Vci(N-1)-VcfN)*D=Vout
VciN*D=Vout
其中,Vin为输入电压,Vcf1为第一储能元件Cf1的电压值,D为晶体管Q21的占空比(也即晶体管Q21的导通时间与一个开关周期的比值),Vci1为第二储能元件Ci1的电压值,Vcf2为第一储能元件Cf2的电压值,Vci(N-1)为第二储能元件Ci(N-1)的电压值,VciN为第二储能元件CiN的电压值,Vout为输出电压。
根据图6中的连接关系可知,Vcfj=Vcij。由此可得出本实施例的功率变换器的输入输出关系为:
本实施方式使得本实施例的功率变换器具有高增益并具有可调的平滑输出,并且控制方式简单易实现。
在另一种实施方式中,功率变换器被配置为错相控制第一类开关型功率级电路6j和第二类开关型功率级电路6a的工作状态。错相控制是指控制晶体管Q21-Q2N以及晶体管Q41的导通时序依次具有相同的相位差。优选地,该相位差为360°/(N+1)。
其中,晶体管Q2j和晶体管Q3j的开关状态互补,晶体管Q1j和晶体管Q3j的开关状态相同,晶体管Q41和晶体管51的开关状态互补。晶体管Q21-Q2N以及晶体管Q41的占空比相同。由此,本实施例的功率变换器被配置为通过调节晶体管Q21的占空比以调节输出电压Vout的大小并维持输出电压Vout的稳定。
由第一实施例和第二实施例中的第一磁性元件和第二磁性元件的电流波形图容易得出,在第一类开关型变换器的个数增加时,电流的纹波越低。也即本实施例的功率变换器采用交错并联的连接方式和错相控制的控制方法降低了输出电压的纹波,减小了所需的输出电容。其中,第一类开关变换器的数量越多,输出电压的纹波越低,所需的输出电容越小。
根据第一类开关型功率级电路61-6N以及第二类开关型功率级电路6a的电感伏秒平衡特性可以得到以下关系:
(Vin-Vcf1)*D=Vout
(Vci1-Vcf2)*D=Vout
······
(Vci(N-1)-VcfN)*D=Vout
VciN*D=Vout
其中,Vin为输入电压,Vcf1为第一储能元件Cf1的电压值,D为晶体管Q21的占空比(也即晶体管Q21的导通时间与一个开关周期的比值),Vci1为第二储能元件Ci1的电压值,Vcf2为第一储能元件Cf2的电压值,Vci(N-1)为第二储能元件Ci(N-1)的电压值,VciN为第二储能元件CiN的电压值,Vout为输出电压。
根据图6中的连接关系可知,Vcfj=Vcij。由此可得出本实施例的功率变换器的输入输出关系为:
本实施例的功率变换器采用交错并联的连接方式和错相控制的控制方法降低了输出电压的纹波,减小了所需的输出电容Co,同时实现了高增益并具有可调的平滑输出。其中,第一类开关变换器的数量越多,输出电压的纹波越低,所需的输出电容越小,获得的增益越高。
图7是本发明第四实施例的功率变换器的电路示意图。如图7所示,本实施例的功率变换器为升压型功率级变换器,其包括第一类开关型功率级电路71、第二类开关型功率级电路72、第一端o2和第二端m2、晶体管Q71、第二储能元件Ci7和输出电容Co。其中,第一端o2被配置为功率变换器的输出端以产生输出电压Vout,第二端m2被配置为功率变换器的输入端以接收输出电压Vin。第一类开关型功率级电路71包括晶体管Q72、第一储能元件Cf7、晶体管Q73和第一磁性元件L71。第二类开关型功率级电路72包括晶体管Q74、晶体管Q75和第二磁性元件L72。优选地,晶体管Q73和Q75为整流开关,如金属氧化物半导体晶体管(MOSFET)、双极性晶体管(BJT)以及绝缘栅型晶体管(IGBT)等。在另一种实施方式中,晶体管Q73和Q75也可以替换为二极管。本实施例的功率变换器的具体连接方式与第一实施例类似,在此不再赘述。
第一储能元件Cf7与第二储能元件Ci7的储能参数被设置为使得第一类开关型功率级电路71达到电感伏秒平衡,也即使得第一磁性元件L71处于稳定状态。也就是说,第一磁性元件L71在一个开关周期内的电流变化量近似为0。
在一种实施方式中,本实施例的功率变换器被配置为同相控制第一类开关型功率级电路71和第二类开关型功率级电路72的工作状态。其中,同相控制是指控制晶体管Q72和晶体管Q74的开关状态相同,晶体管Q72与晶体管Q73的开关状态互补,晶体管Q71与晶体管Q73的开关状态相同。晶体管Q72和晶体管Q74的占空比D相同。由此,本实施例的功率变换器被配置为通过调节晶体管Q72的占空比以调节输出电压Vout的大小并维持输出电压Vout的稳定。
根据第一类开关型功率级电路和第二类开关型功率级电路的电感伏秒平衡特性可以得到以下关系:
Vin=(1-D)*(Vout-Vcf7)
Vin=(1-D)*Vci7
其中,Vin为输入电压,Vcf7为第一储能元件Cf7的电压值,D为晶体管Q72的占空比(也即晶体管Q72的导通时间与一个开关周期的比值),Vci7为第二储能元件Ci7的电压值,Vout为输出电压。
根据图7中的连接关系可知,Vcf7=Vci7。由此可得出本实施例的功率变换器的输入输出关系为:
Figure BDA0001695849920000161
本实施例的功率变换器采用交错并联的连接方式和同相控制的控制方法实现了高增益并具有可调的平滑输出,并且控制方式简单易实现。
在另一种实施方式中,本实施例的功率变换器被配置为错相控制第一类开关型功率级电路71和第二类开关型功率级电路72的工作状态。其中,错相控制是指控制晶体管Q72和Q74的导通时序具有相位差α。优选地,相位差α为180°。晶体管Q72与晶体管Q73的开关状态互补,晶体管Q71与晶体管Q73的开关状态相同。晶体管Q74和晶体管Q75的开关状态互补。晶体管Q72和晶体管Q74的占空比D相同。由此,本实施例的功率变换器被配置为通过调节晶体管Q72的占空比以调节输出电压Vout的大小并维持输出电压Vout的稳定。
本实施例的功率变换器采用交错并联的连接方式和错相控制的控制方法降低了输出电压的纹波,减小了所需的输出电容Co,同时实现了高增益并具有可调的平滑输出。
应理解,本实施例的功率变换器可以包括N个第一类开关型功率级电路,一个第二类开关型功率级电路和N个第二储能元件。根据第一类开关型功率级电路和第二类开关型功率级电路的电感伏秒平衡特性和上述分析可得功率变换器的输入输出关系为:
本实施例的功率变换器采用交错并联的连接方式和错相控制的控制方法降低了输出电压的纹波,减小了所需的输出电容Co,同时实现了高增益并具有可调的平滑输出。其中,第一类开关变换器的数量越多,输出电压的纹波越低,所需的输出电容越小,获得的增益越高。
图8是本发明第五实施例的功率变换器的电路示意图。如图8所示,本实施例的功率变换器包括一个第一类开关型功率级电路和一个第二类开关型功率级电路。其与第一实施例的连接关系类似,在此不再赘述。在本实施例中,第一磁性元件L81与第二磁性元件L82为相互耦合的磁性元件,相比于第一实施例,本实施例的功率变换器进一步减小输出电压的纹波,减小了所需的输出电容Co。
图9是本发明第六实施例的功率变换器的电路示意图。如图9所示,本实施例的功率变换器包括两个第一类开关型功率级电路和一个第二类开关型功率级电路。其与第二实施例的连接关系类似,在此不再赘述。在本实施例中,第一磁性元件L91和L92为相互耦合的磁性元件,相比于第二实施例,本实施例的功率变换器进一步减小输出电压的纹波,减小了所需的输出电容Co。应理解,也可以使得第一磁性元件L92(或L91)与第二磁性元件相互耦合来达到降低输出电压纹波的目的。
容易理解,当功率变换器包括N个第一类开关型功率级电路和一个第二类开关型功率级电路时,可以使得至少一个第一磁性元件与第二磁性元件相互耦合或者至少两个第一磁性元件相互耦合,以进一步减小输出电压纹波,减小了所需的输出电容。
以上所述仅为本发明的优选实施例,并不用于限制本发明,对于本领域技术人员而言,本发明可以有各种改动和变化。凡在本发明的精神和原理之内所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (15)

1.一种功率变换器,包括:
第一端和第二端,所述第一端被配置为输入端或输出端,所述第二端被配置为输出端或输入端;
N个第一类开关型功率级电路,每个所述第一类开关型功率级电路包括第一储能元件,N大于或等于1;
一个第二类开关型功率级电路;以及
N个第二储能元件,每个所述第二储能元件与对应的所述第一类开关型功率级电路耦接;
其中,第1个所述第一类开关型功率级电路的一端耦接至所述第一端,每个所述第一类开关型功率级电路的另一端均连接至所述第二端;
所述第二类开关型功率级电路耦接在对应的所述第二储能元件的一端和所述第二端之间。
2.根据权利要求1所述的功率变换器,其特征在于,所述第二储能元件和所述第一储能元件的储能参数被设置为使得所述第一类开关型功率级电路达到电感伏秒平衡。
3.根据权利要求1所述的功率变换器,其特征在于,当N大于1时,第n个所述第一类开关型功率级电路耦接在第n-1个所述第二储能元件的一端和所述第二端之间,第j个所述第二储能元件与第j个所述第一类开关型功率级电路耦接,n=2,3…,N,j=1,2,…,N。
4.根据权利要求1所述的功率变换器,其特征在于,所述功率变换器还包括:
N个第一晶体管;
所述第二储能元件通过与所述第二储能元件串联连接的所述第一晶体管耦接至对应的所述第一类开关型功率级电路。
5.根据权利要求4所述的功率变换器,其特征在于,每个所述第一类开关型功率级电路还包括第二晶体管,其中,所述第二晶体管连接在对应的所述第一类开关型功率级电路的一端和所述第一储能元件之间。
6.根据权利要求5所述的功率变换器,其特征在于,每个所述第一类开关型功率级电路还包括连接在所述第一储能元件与接地端之间的第三晶体管,以及连接在所述第一储能元件和所述第二端之间的第一磁性元件。
7.根据权利要求6所述的功率变换器,其特征在于,所述第二类开关型功率级电路包括连接在对应的所述第二储能元件和接地端之间的第四晶体管和第五晶体管,以及连接在所述第四晶体管与所述第五晶体管的公共连接端和所述第二端之间的第二磁性元件。
8.根据权利要求7所述的功率变换器,其特征在于,错相控制所述第一类开关型功率级电路和所述第二类开关型功率级电路的工作状态。
9.根据权利要求8所述的功率变换器,其特征在于,第1个至第N个所述第二晶体管以及所述第四晶体管的占空比相同,每个所述第二晶体管和所述第三晶体管的开关状态互补,所述第四晶体管和所述第五晶体管的状态互补,第j个所述第一晶体管与第j个所述第一类开关型功率级电路的所述第三晶体管的开关状态相同,j=1,2,3,…,N;
所述功率变换器被配置为通过调节每个所述第二晶体管的占空比以维持所述功率变换器的输出电压稳定。
10.根据权利要求9所述的功率变换器,其特征在于,当N大于1时,第1个至第N个所述第二晶体管以及所述第四晶体管的导通时序之间依次具有相同的相位差。
11.根据权利要求10所述的功率变换器,其特征在于,所述相位差依次为360°/(N+1)。
12.根据权利要求7所述的功率变换器,其特征在于,同相控制所述第一类开关型功率级电路和所述第二类开关型功率级电路的工作状态。
13.根据权利要求12所述的功率变换器,其特征在于,第1个至第N个所述第二晶体管以及所述第四晶体管的开关状态相同,第1个至第N个所述第三晶体管、第1个至第N个所述第一晶体管以及所述第五晶体管的开关状态相同且与所述第二晶体管的开关状态互补;
所述功率变换器被配置为通过调节所述第二晶体管的占空比以维持所述功率变换器的输出电压稳定。
14.根据权利要求7所述的功率变换器,其特征在于,所述第三晶体管与所述第五晶体管为可控整流开关;或者
所述第三晶体管和所述第五晶体管替换为二极管。
15.根据权利要求7所述的功率变换器,其特征在于,至少一个所述第一磁性元件和所述第二磁性元件相互耦合,和/或
至少两个第一磁性元件相互耦合。
CN201810612057.5A 2018-06-14 2018-06-14 功率变换器 Active CN108736709B (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201810612057.5A CN108736709B (zh) 2018-06-14 2018-06-14 功率变换器
TW108110706A TWI715952B (zh) 2018-06-14 2019-03-27 功率轉換器
US16/429,193 US10879801B2 (en) 2018-06-14 2019-06-03 Power converter with a plurality of switching power stage circuits
EP19179355.3A EP3582383B1 (en) 2018-06-14 2019-06-11 Power converter
US17/102,674 US11444534B2 (en) 2018-06-14 2020-11-24 Power converter with a plurality of switching power stage circuits

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810612057.5A CN108736709B (zh) 2018-06-14 2018-06-14 功率变换器

Publications (2)

Publication Number Publication Date
CN108736709A CN108736709A (zh) 2018-11-02
CN108736709B true CN108736709B (zh) 2020-02-04

Family

ID=63929691

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810612057.5A Active CN108736709B (zh) 2018-06-14 2018-06-14 功率变换器

Country Status (4)

Country Link
US (2) US10879801B2 (zh)
EP (1) EP3582383B1 (zh)
CN (1) CN108736709B (zh)
TW (1) TWI715952B (zh)

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108736709B (zh) * 2018-06-14 2020-02-04 南京矽力杰半导体技术有限公司 功率变换器
US11496045B2 (en) * 2018-08-10 2022-11-08 The Regents Of The University Of Colorado, A Body Corporate Multi-output hybrid converters
US11201544B2 (en) 2018-12-04 2021-12-14 Stmicroelectronics S.R.L. Stacked buck converters and associated method of operation
CN111293882B (zh) * 2019-01-28 2021-07-23 展讯通信(上海)有限公司 升降压电路及控制方法
CN110165892A (zh) * 2019-06-14 2019-08-23 上海南芯半导体科技有限公司 一种混合电容电感降压变换电路及实现方法
US11264896B2 (en) * 2019-06-18 2022-03-01 Kinetic Technologies Two-phase boost converter with reduced voltage stress, and inherent current balancing
DE102020200927A1 (de) 2020-01-27 2021-07-29 Dialog Semiconductor (Uk) Limited Hybrid-Mehrpegel-Leistungsumsetzer mit lnduktor zwischen Stufen
US11233452B2 (en) * 2020-02-24 2022-01-25 Prince Sultan University Microgrid power supply system DC-DC converter and controlling method
CN111682754B (zh) * 2020-06-09 2022-02-15 杭州艾诺半导体有限公司 混合功率变换器
CN111682756B (zh) * 2020-06-09 2021-10-26 杭州艾诺半导体有限公司 混合功率变换器及其控制方法
US11228243B2 (en) * 2020-06-12 2022-01-18 Dialog Semiconductor (Uk) Limited Power converter with reduced RMS input current
US11456663B2 (en) * 2020-06-12 2022-09-27 Dialog Semiconductor (Uk) Limited Power converter with reduced root mean square input current
CN111726001B (zh) * 2020-06-22 2022-07-29 矽力杰半导体技术(杭州)有限公司 功率变换器
CN111799994A (zh) * 2020-07-23 2020-10-20 南京矽力微电子技术有限公司 功率变换器
US11637491B2 (en) 2020-12-03 2023-04-25 Dialog Semiconductor (Uk) Limited Multi-stage power converter
US11496051B2 (en) 2020-12-16 2022-11-08 Dialog Semiconductor (Uk) Limited Power converter
CN112713766B (zh) * 2020-12-25 2022-02-08 三峡大学 一种高增益Cuk DC-DC变换器
CN112737330B (zh) * 2020-12-25 2022-02-01 三峡大学 一种高增益Buck-Boost DC-DC变换器
CN112769332B (zh) * 2020-12-25 2022-05-24 南京矽力微电子技术有限公司 功率变换器
CN112701923B (zh) * 2020-12-25 2022-02-01 三峡大学 一种高增益Zeta DC-DC变换器
CN112821757B (zh) * 2020-12-30 2022-06-14 南京矽力微电子技术有限公司 功率变换器
CN112953201A (zh) * 2021-02-08 2021-06-11 矽力杰半导体技术(杭州)有限公司 电压转换器
US11967901B2 (en) 2021-12-09 2024-04-23 Renesas Design (UK) Limited Hybrid multi-phase power converter with phase shedding
WO2023164566A1 (en) * 2022-02-23 2023-08-31 The Trustees Of Princeton University Methods, devices, and systems for power converters
US20240030821A1 (en) * 2022-07-25 2024-01-25 P-Duke Technology Co., Ltd. Novel power supply apparatus

Family Cites Families (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5581454A (en) 1994-11-22 1996-12-03 Collins; Hansel High power switched capacitor voltage conversion and regulation apparatus
US6166527A (en) * 2000-03-27 2000-12-26 Linear Technology Corporation Control circuit and method for maintaining high efficiency in a buck-boost switching regulator
CN1123961C (zh) * 2001-05-30 2003-10-08 艾默生网络能源有限公司 双单元变换器
US7230405B2 (en) * 2004-10-26 2007-06-12 Delta Electronics, Inc. Non-isolated power conversion system having multiple switching power converters
US7696735B2 (en) 2007-03-30 2010-04-13 Intel Corporation Switched capacitor converters
US8427113B2 (en) 2007-08-01 2013-04-23 Intersil Americas LLC Voltage converter with combined buck converter and capacitive voltage divider
US7907429B2 (en) 2007-09-13 2011-03-15 Texas Instruments Incorporated Circuit and method for a fully integrated switched-capacitor step-down power converter
US8305061B1 (en) * 2008-06-04 2012-11-06 National Semiconductor Corporation Apparatus and method for digitally controlled buck-boost switching regulator
DE102008028952A1 (de) 2008-06-18 2009-12-24 Abb Ag AC-DC-Zwischenkreis-Wandler mit sehr weitem AC-Eingangsspannungs-Bereich
JP5433880B2 (ja) * 2008-12-19 2014-03-05 国立大学法人 大分大学 Dc−dcコンバータ
CN101895200B (zh) 2010-07-01 2012-10-17 浙江昱能光伏科技集成有限公司 轮替主从分路的交错并联反激变换器
CN102545390B (zh) * 2010-12-28 2014-12-17 通用电气公司 充电或者放电系统及方法
GB201105145D0 (en) * 2011-03-28 2011-05-11 Tdk Lambda Uk Ltd Controller
US20120300519A1 (en) 2011-05-26 2012-11-29 Hamilton Sundstrand Corporation Multi-phase active rectifier
CN102437744B (zh) 2012-01-12 2013-12-18 矽力杰半导体技术(杭州)有限公司 一种具有多路输出的自均流电源电路
CN102570862A (zh) 2012-02-15 2012-07-11 杭州矽力杰半导体技术有限公司 一种具有多路输出的电流平衡电路
CN102570837B (zh) 2012-02-28 2014-09-03 矽力杰半导体技术(杭州)有限公司 一种恒压恒流控制电路及其控制方法
TWI439033B (zh) 2012-04-06 2014-05-21 Anpec Electronics Corp 應用於靴帶電路之直流轉換器
CN102710152B (zh) 2012-06-06 2015-12-02 矽力杰半导体技术(杭州)有限公司 一种高效率、快速响应的交流-直流电压转换电路
CN103023320B (zh) 2012-11-23 2014-09-03 矽力杰半导体技术(杭州)有限公司 一种高效率的双向直流变换器及其控制方法
US20150002115A1 (en) * 2013-07-01 2015-01-01 Texas Instruments Incorporated Series-capacitor buck converter multiphase controller
JP6048583B2 (ja) 2013-07-08 2016-12-21 株式会社村田製作所 電力変換回路、電力伝送システムおよび電力変換システム
US9564806B2 (en) * 2013-09-25 2017-02-07 Cree, Inc. Boost converter with reduced switching loss and methods of operating the same
US9236347B2 (en) * 2013-10-09 2016-01-12 Lenovo Enterprise Solutions (Singapore) Pte. Ltd. Operating and manufacturing a DC-DC converter
CN103715897B (zh) 2014-01-20 2016-04-20 矽力杰半导体技术(杭州)有限公司 隔离式变换器及应用其的开关电源
US9548668B2 (en) * 2014-03-14 2017-01-17 Futurewei Technologies, Inc. Hybrid power converter and method
US9825521B2 (en) * 2014-08-22 2017-11-21 Texas Instruments Incorporated Method and apparatus for inductive-kick protection clamp during discontinuous conduction mode operation
US10033276B2 (en) * 2015-03-06 2018-07-24 Texas Instruments Incorporated Current sensing using capacitor voltage ripple in hybrid capacitor/inductor power converters
WO2016149322A1 (en) * 2015-03-16 2016-09-22 Finsix Corporation Midpoint control and gain scheduling for power converters
CN104836446B (zh) 2015-05-08 2017-06-16 矽力杰半导体技术(杭州)有限公司 隔离式变换器的控制方法、控制电路及开关电源
DE102015209330A1 (de) * 2015-05-21 2016-11-24 Dialog Semiconductor (Uk) Limited Hocheffiziente schaltende Ladevorrichtung mit verringerter Eingangsspannungswelligkeit
CN204696914U (zh) * 2015-06-12 2015-10-07 焦作大学 一种新型Boost变换器
CN106655762B (zh) 2017-01-11 2019-06-18 南京矽力杰半导体技术有限公司 隔离型开关电容变换器
US10224803B1 (en) * 2017-12-20 2019-03-05 Infineon Technologies Austria Ag Switched capacitor converter with compensation inductor
CN108092513B (zh) * 2017-12-26 2020-03-06 矽力杰半导体技术(杭州)有限公司 直流-直流转换器
US10554128B2 (en) * 2018-01-05 2020-02-04 Futurewei Technologies, Inc. Multi-level boost converter
US10644583B2 (en) * 2018-06-07 2020-05-05 Texas Instruments Incorporated Methods, apparatus, and system to provide a high-efficiency drive for a floating power device
CN108736709B (zh) * 2018-06-14 2020-02-04 南京矽力杰半导体技术有限公司 功率变换器

Also Published As

Publication number Publication date
TW202002485A (zh) 2020-01-01
US10879801B2 (en) 2020-12-29
EP3582383A3 (en) 2020-01-01
US11444534B2 (en) 2022-09-13
TWI715952B (zh) 2021-01-11
EP3582383B1 (en) 2022-05-11
CN108736709A (zh) 2018-11-02
US20190386566A1 (en) 2019-12-19
US20210083580A1 (en) 2021-03-18
EP3582383A2 (en) 2019-12-18

Similar Documents

Publication Publication Date Title
CN108736709B (zh) 功率变换器
US11088616B2 (en) Isolated converter with switched capacitors
EP3506479A1 (en) Direct current-direct current converter
CN106849658B (zh) 在非连续导通模式下使用耦合电感器的多相dc-dc转换器的方法以及装置
US20160254751A1 (en) High Efficiency Power Regulator and Method
KR101935452B1 (ko) Dc-dc 컨버터 및 이를 포함하는 2단 전력단 컨버터
US20110309817A1 (en) Dc-dc boost converter circuit and method for driving the same
US9787201B2 (en) Bidirectional isolated multi-level DC-DC converter and method thereof
US9998005B2 (en) Single inductor dual output voltage converter and the method thereof
KR20200033026A (ko) 스위치드 커패시터 변환기
KR102344735B1 (ko) 스위칭 전력 손실을 개선한 dc-dc컨버터 및 그 제어 방법
CN116317464A (zh) 一种具备飞跨电容电压均衡电路的三电平降压升压转换器
US20110063876A1 (en) Overvoltage limitation in a switch-mode converter
US11784569B2 (en) Efficient hybrid buck-boost converter
US11824450B2 (en) Power converter with switching power stage circuits connected in parallel
KR101710911B1 (ko) 비절연형 3-레벨 고승압 부스트 컨버터 및 그 구동방법
Hwu et al. A novel voltage-boosting converter with passive voltage clamping
CN112994447B (zh) 低延迟时间的电源转换电路及其中的驱动电路
CN114285280B (zh) 一种混合型无缝模式过渡的降压-升压开关电源转换器
US10418909B1 (en) Output switched switching converter
CN117013842A (zh) 多输出电压产生器
CN113890340A (zh) 一种单输入高可靠性电容电流一致型buck-boost DC-DC变换器
KR20230102635A (ko) 게인의 범위 개선 및 증가를 위한 새로운 부스트 컨버터
CN117277795A (zh) 电压转换电路、开关电源、电源管理芯片及电子设备
Yau et al. A novel high voltage-boosting converter with active clamp

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CP01 Change in the name or title of a patent holder

Address after: 210023, room 7, building 699-27, Xuanwu Avenue, Xuanwu District, Jiangsu, Nanjing, 302

Patentee after: Nanjing Sili Microelectronics Technology Co., Ltd

Address before: 210023, room 7, building 699-27, Xuanwu Avenue, Xuanwu District, Jiangsu, Nanjing, 302

Patentee before: Silergy Semiconductor Technology (Hangzhou) Ltd.

CP01 Change in the name or title of a patent holder