US6433525B2 - Dc to DC converter method and circuitry - Google Patents
Dc to DC converter method and circuitry Download PDFInfo
- Publication number
- US6433525B2 US6433525B2 US09/846,721 US84672101A US6433525B2 US 6433525 B2 US6433525 B2 US 6433525B2 US 84672101 A US84672101 A US 84672101A US 6433525 B2 US6433525 B2 US 6433525B2
- Authority
- US
- United States
- Prior art keywords
- voltage
- polarity
- cycles
- mode
- cycle
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 244000171263 Ribes grossularia Species 0.000 claims abstract description 57
- 230000000051 modifying Effects 0.000 claims abstract description 23
- 230000003111 delayed Effects 0.000 abstract 1
- 230000001360 synchronised Effects 0.000 description 5
- 239000003990 capacitor Substances 0.000 description 3
- 241000501298 Therevidae Species 0.000 description 2
- 238000000034 methods Methods 0.000 description 2
- 230000002457 bidirectional Effects 0.000 description 1
- 230000001413 cellular Effects 0.000 description 1
- 238000006243 chemical reactions Methods 0.000 description 1
- 230000000875 corresponding Effects 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000006011 modification reactions Methods 0.000 description 1
- 230000002028 premature Effects 0.000 description 1
- 230000002441 reversible Effects 0.000 description 1
- 230000001052 transient Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M3/00—Conversion of dc power input into dc power output
- H02M3/02—Conversion of dc power input into dc power output without intermediate conversion into ac
- H02M3/04—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
- H02M3/10—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M3/145—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
- H02M3/155—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
- H02M3/156—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
- H02M3/1563—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators without using an external clock
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M2001/0003—Details of control, feedback and regulation circuits
- H02M2001/0032—Control circuits allowing low power mode operation, e.g. "standby"
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M3/00—Conversion of dc power input into dc power output
- H02M3/02—Conversion of dc power input into dc power output without intermediate conversion into ac
- H02M3/04—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
- H02M3/10—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M3/145—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
- H02M3/155—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
- H02M3/156—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
- H02M3/158—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B70/00—Technologies for an efficient end-user side electric power management and consumption
- Y02B70/10—Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes
Abstract
Description
This application claims the benefit of U.S. Provisional Patent Application Serial No. 60/201,829, filed May 3, 2000.
Power supplies for computers, personal digital assistants, cellular phones and other hand held mobile electronic devices and systems have exacting demands. Two types of converters are used to meet these demands. One type is a pulse width modulated (PWM) converter and the other is a hysteretic (ripple) converter. A typical single mode DC-to-DC converter 8 with either a PWM or hysteretic controller is shown in FIG. 1a. The converter 8 has a PWM controller 12 or a hysteretic controller 14. The output of the controller drives the gates of output switches, typically upper and lower mosfet power transistors 16, 18. The mosfets are connected together at a switching node 20. At high output current levels, the PWM controller with a synchronous rectifier provides efficient and controllable output regulation. For low output currents, the efficiency of the DC-to-DC converter operating in a fixed frequency PWM mode gets lower because PWM switching losses become dominant. One the other hand, the hysteretic converter is efficient for low output currents but is not efficient for high output currents.
Demands on a system can change from tens of amps to milliamps in as short a time as a few microseconds. In order to address the variable and frequently inconsistent current requirements, many DC-to-DC converters, especially those used in mobile systems, include both a pulse width modulation (PWM) converter and a hysteretic converter. Such dual mode controllers provide a high efficiency over a wide range of load current levels.
A typical dual mode converter 10 is shown in FIG. 1b. The converter 10 has a PWM controller 12 and a hysteretic controller 14. The output of the controller drives the gates of upper and lower mosfet power transistors 16, 18. The mosfets are connected together at a switching node 20. The switching node 20 is connected to an inductor 22 that is connected to a parallel network comprising an output capacitor 23 and a load as represented by resistor 24. A sense resistor 26 is connected in series with the inductor 22. The voltage across the sense resistor is coupled to the controller 10 to provide data on the load current. A comparator 13 in the controller receives the voltage signal from the sense resistor 26, compares it to a reference value indicative of a critical current, and operates a switch to switch the controller between the PWM modulator 12 and the hysteretic controller 14 when the sensed current falls below the threshold value of the reference input to the comparator.
At high output current levels, the PWM controller with a synchronous rectifier provides efficient and controllable output regulation. As the load current gets lower, the efficiency of the DC-to-DC converter operating in a fixed frequency PWM mode gets lower because PWM switching losses become dominant. A simple hysteretic (ripple) controller improves the converter efficiency for light loads. The integrated circuit senses the load current and, when load current falls below a minimum threshold, it invokes the hysteretic (ripple) controller and disables the PWM controller. When the load current increases above the minimum threshold, the PWM controller resumes control. In this way high efficiency is maintained over a wide range of load currents.
The optimal transition point for the threshold current usually lies at the current level where the inductor current becomes “critical.” Critical current is a value of load current for which the total energy stored in the inductor 22 is delivered to the load each cycle. At load currents below the critical value, the inductor current must go through zero and reverse direction at some point in the cycle. When the inductor current changes direction, energy is taken from the output filter capacitor 23 due to the bidirectional conductivity of the synchronous rectifier, lower fet 18. To maintain the output in regulation more energy will be delivered to the filter capacitor 23 at the next operating cycle. Unless the controller is switched to the hysteretic controller 14, the converter efficiency dramatically degrades. Power and energy are wasted. In mobile systems that rely on battery power, the overall life of the system is likewise reduced.
To prevent the energy losses when operating at sub-critical currents, diode-like conduction is required of the lower mosfet 18. This assures discontinuous inductor current operation. Operating the converter 10 in the discontinuous conduction mode under fixed PWM mode control creates its own challenges because the small-signal loop becomes broken, closed-loop gain increases and the converter easily becomes unstable. This leads to the conclusion that hysteretic mode is preferred for safe, stable and efficient operation at sub-critical current.
In order to select the PWM or the hysteretic mode of operation, the controller 10 senses the load current or any current in the circuit proportional to the load current and compares the sensed load current to a reference. If the load current is higher than the reference, the PWM mode of operation is activated. Otherwise, the converter 10 operates in the hysteretic mode. This widely used approach depends on the tolerance of the currently sensing circuitry. As the output voltages of DC-to-DC converters for modem computer applications are getting lower and the output currents are getting higher and vary widely over short periods of time, it is becoming very difficult to measure the current precisely and efficiently. This leads to increased uncertainty of the switch over point and, therefore, to unpredictable operation of the whole converter.
The invention is a new DC-to-DC converter circuit and a method for DC to DC conversion. The circuit includes a pulse width modulator controller and a hysteretic controller. Both controllers convert an input first voltage into an output second voltage during a series of repeated switching cycles. The circuit has a mode selection circuit for selecting one of the two controllers in accordance with the current demand of a load coupled through an inductor to the second voltage. The mode selection switch has a comparator for comparing the second voltage to a reference voltage (ground) for sensing the polarity of the second voltage at the end of each switching cycle. The polarity of the output voltage at the end of the switching cycle is a measure of the state of the inductor. If the inductor is in continuous operation and the load current is above the critical current, then the polarity of the switch node will be positive. If the inductor is in discontinuous operation, then the polarity of the switch node will be negative.
One or more counters are coupled to the comparator and to the mode selection switch. The counters record the polarity of the second voltage at the end of each switching cycle and keep that data for a given number of cycles. If the polarity of the switch node does not change, then the controller remains in whichever mode (PWM or hysteretic) that it has been operating in. By using counters, the invention avoids premature switching for a single change in polarity. Such changes may occur for spurious reasons that are not related to enduring load conditions. As such, the counters maintain the mode selection switch in its current mode so long as the polarity of the second voltage at the end of each cycle does not change. However, when the polarity changes and the changes endure for more than n switching cycles, then the counters operate the mode selection switch to change the mode of operation to the other mode. If the converter was operating in the PWM mode, then it is switched to the hysteretic mode and vice versa.
The DC-to-DC converter circuit operates to switch the mode selection switch to the hysteretic mode controller when the polarity of the second voltage for n number of cycles is positive and to switch the mode selection switch to the pulse width modulator controller when the polarity of the second voltage for n number of cycles is negative. There are separate counters for counting the positive and negative cycles. The number n may be the same or different for both counters.
FIG. 1a is a schematic of a single mode DC-to-DC converter.
FIG. 1b is a schematic of a dual mod DC-to-DC converter.
FIGS. 2a-2 c are graphs of the converter performance during continuous conduction.
FIGS. 2d-2 f are graphs of the converter performance during discontinuous conduction.
FIGS. 3 are graphs of the invention operation during PWM and hysteretic operations.
FIG. 4 is a schematic of a mode-controlled DC-to-DC controller.
FIG. 5 is a detailed schematic of a mode-controlled DC-to-DC controller that includes the invention.
The new method and circuit to control the operation mode of a DC to DC converter are based on detection of the difference in the voltage waveform on the switching node of the converter. The polarity of the switch node voltage at the end of a switch cycle depends upon whether the filter inductor current is continuous (and therefore above the critical current) or discontinuous (and below the critical current). FIGS. 2a-2 c show conditions where there is continuous inductor current. The switching cycle ends with a negative voltage on the switching node. FIGS. 2d-2 f show conditions where the inductor current is discontinuous and the voltage at the end of the switching cycle is a positive voltage. In a simple buck converter, with only a diode for low-side current conduction, the switching node voltage at the end of the cycle will ring to a relatively large voltage greater than the output voltage of the regulator, In a synchronous rectifier buck converter, the current reversal forces the switching node to a small positive voltage determined by the resistance of the synchronous switch.
Turning to FIG. 4, the dual mode converter 100 of the invention has a mode control switch 50 that monitors the polarity of the voltage at the switching node 20 between the upper and lower mosfets 16, 18. The polarity of the output voltage could be monitored at a number of other locations. For example, one skilled in the art could insert a small (a few milliohms) resistor in series between the lower mosfet 18 and ground. FIG. 3, top, shows the DC output voltage, during a PWM mode and a subsequent hysteretic mode. When the converter operates in PWM mode and load current decreases, the inductor current IIND gradually falls and the polarity signal (phase comparator) has wider pulses. A counter in the mode switch 50 counts the number of pulses of the new polarity and after n pulses (in this case n=8) in a row, the mode switches from PWM to hysteretic. A corresponding switch from hysteretic to PWM is made when the inductor current IIND increases and the polarity shifts again. An embodiment of the counters and logic circuitry are shown in FIG. 5 and discussed below.
The invention uses a finite storage interval of n switching cycles. If the sign of the switching node voltage at the end of each of n cycles remains unchanged, its sign is used to determine the subsequent mode of operation. A positive voltage on the switching node corresponds with the hysteretic operating mode; a negative voltage corresponds to the pulse width modulation mode. If at least once during these n switching cycles, the sign of the switching node changes, the counter is reset and the operating mode of the converter remains unchanged. The monitoring process constantly repeats itself while the converter is operating.
FIG. 5 shows a detailed schematic of a possible embodiment of the mode control switch with counters for and polarity sensors for distinguishing continuous from discontinuous currents in the inductor. The mode switch 50 includes a comparator 52 that compares the switching node to ground. The output of comparator 52 is clocked to the input of D-flip-flop 54 by the PWM signal. Two counters 56, 57 count to eight cycles, one counting positive switch node voltage, the other, negative. The counters 56, 57 are reset when the clocked switch node polarity (Q output of 54) changes. In the preferred embodiment each counter uses a count of eight to invoke the appropriate operating mode. However, the number of counts is arbitrary. The mode switch circuit 50 also provides a means to override the HYSTERETIC-to-PWM delay or counter in order to permit fast response to load current transients. The embodiment of this means in the mode switch control 50 uses a comparator 58 for monitoring the output feedback voltage and causing an immediate resetting of the MODE latch out of the HYSTERETIC mode when the feedback voltage is below the reference by an amount set to be greater than the normal ripple voltage expected. In other words, the delay of eight cycles in going from HYSTERETIC to PWM mode can be entirely eliminated via this means. A PWM reset comparator 58 compares the output voltage on the load VFB to a reference voltage. If VFB is greater than the reference, the circuit 50 immediately switches to the PWM mode. The reference is set to detect large output voltages. If the triggering voltage is spurious, the circuit 50 will reset to the HYSTERETIC mode after n cycles.
In operation, the invention provides a method to control the operation of a DC-to-DC converter 10 based on monitoring the waveform on the junction node 20 of the mosfets 16, 18 and the filter inductor. The mode switch controls the operation mode of a DC-to-DC converter based on monitoring the polarity of the voltage waveform on the junction node 20 of the mosfet switches 16,18 and the filter inductor 22. The voltage on this switching node 20 at the end of a switching cycle is detected and a signal indicating the sign of this voltage is stored for a finite interval of time, which is longer than one switching cycle and determined by practical considerations. If during this interval of time, there are several switching cycles all of the same sign of voltage at the switching node at the end of the switching cycle, a decision is made that the operating mode will be in correspondence with the stored sign of the voltage on the switching node. Positive voltage corresponds with a hysteretic operating mode. The negative sign corresponds with the PWM operating mode.
If at least once during the measuring time interval, the sign of the switching node changes, the operating mode of the converter remains unchanged. The monitoring process constantly repeats itself while the converter is operating.
Having thus described the preferred embodiment of the invention, those skilled in the art will understand that further changes, additions, deletions and modifications may be made to this embodiment without departing from the spirit and scope of the invention as set forth in the appended claims.
Claims (11)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US20182900P true | 2000-05-03 | 2000-05-03 | |
US09/846,721 US6433525B2 (en) | 2000-05-03 | 2001-05-01 | Dc to DC converter method and circuitry |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/846,721 US6433525B2 (en) | 2000-05-03 | 2001-05-01 | Dc to DC converter method and circuitry |
US10/093,197 US6621256B2 (en) | 2000-05-03 | 2002-03-07 | DC to DC converter method and circuitry |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/093,197 Continuation US6621256B2 (en) | 2000-05-03 | 2002-03-07 | DC to DC converter method and circuitry |
Publications (2)
Publication Number | Publication Date |
---|---|
US20010035745A1 US20010035745A1 (en) | 2001-11-01 |
US6433525B2 true US6433525B2 (en) | 2002-08-13 |
Family
ID=22747477
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/846,721 Expired - Fee Related US6433525B2 (en) | 2000-05-03 | 2001-05-01 | Dc to DC converter method and circuitry |
US10/093,197 Expired - Fee Related US6621256B2 (en) | 2000-05-03 | 2002-03-07 | DC to DC converter method and circuitry |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/093,197 Expired - Fee Related US6621256B2 (en) | 2000-05-03 | 2002-03-07 | DC to DC converter method and circuitry |
Country Status (6)
Country | Link |
---|---|
US (2) | US6433525B2 (en) |
CN (3) | CN101277062B (en) |
AU (1) | AU6112601A (en) |
DE (1) | DE10196149T1 (en) |
TW (1) | TW533660B (en) |
WO (1) | WO2001084697A2 (en) |
Cited By (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030142519A1 (en) * | 2002-01-29 | 2003-07-31 | Intersil Americas Inc. | Synthetic ripple regulator |
US6621256B2 (en) * | 2000-05-03 | 2003-09-16 | Intersil Corporation | DC to DC converter method and circuitry |
US20040135563A1 (en) * | 2002-10-25 | 2004-07-15 | International Rectifier Corporation | Fixed frequency hysteretic regulator |
US20040257055A1 (en) * | 2003-03-06 | 2004-12-23 | Aioanei Ovidiu C. | No load to high load recovery time in ultraportable DC-DC converters |
US20050017703A1 (en) * | 2002-09-06 | 2005-01-27 | Intersil Americas Inc. | Synthetic ripple regulator |
US20050188230A1 (en) * | 2004-02-20 | 2005-08-25 | International Business Machines Corporation | System and method of controlling power consumption in an electronic system |
US7019502B2 (en) | 2002-09-06 | 2006-03-28 | Intersil America's Inc. | Synchronization of multiphase synthetic ripple voltage regulator |
US20070063682A1 (en) * | 2005-09-19 | 2007-03-22 | Dagher Elias H | Switched mode power converter |
US20070096700A1 (en) * | 2005-11-01 | 2007-05-03 | Asustek Computer Inc. | Boost converter |
US20080022139A1 (en) * | 2006-07-24 | 2008-01-24 | Industrial Technology Research Institute | Power supply apparatus and operation-mode determining unit and method thereof |
US20090033289A1 (en) * | 2007-08-01 | 2009-02-05 | Intersil Americas Inc. | Voltage converter with combined buck converter and capacitive voltage divider |
US20090033293A1 (en) * | 2007-08-01 | 2009-02-05 | Intersil Americas Inc. | Voltage converter with combined capacitive voltage divider, buck converter and battery charger |
US20100033153A1 (en) * | 2008-08-05 | 2010-02-11 | Intersil Americas Inc. | Pwm clock generation system and method to improve transient response of a voltage regulator |
US20110057637A1 (en) * | 2009-09-04 | 2011-03-10 | Richtek Technology Corporation | Boundary conduction mode switching regulator and driver circuit and control method thereof |
US8018212B1 (en) | 2007-08-24 | 2011-09-13 | Intersil Americas Inc. | Buck-boost regulator |
US20120013322A1 (en) * | 2010-07-19 | 2012-01-19 | Microchip Technology Incorporated | Buck switch-mode power converter large signal transient response optimizer |
US8154264B2 (en) * | 2008-05-13 | 2012-04-10 | L&L Engineering, Llc | Method and systems for conduction mode control |
USRE43414E1 (en) | 2002-09-06 | 2012-05-29 | Intersil Americas Inc. | Synthetic ripple regulator |
US20120286754A1 (en) * | 2011-05-11 | 2012-11-15 | Shih-Chieh Chen | Current providing method and current providing system |
TWI405397B (en) * | 2010-11-24 | 2013-08-11 | Upi Semiconductor Corp | Switching power converter |
US20130241506A1 (en) * | 2012-03-19 | 2013-09-19 | Hon Hai Precision Industry Co., Ltd. | Power control circuit and loop analyzing apparatus comprising same |
US8725218B2 (en) | 2011-03-25 | 2014-05-13 | R2 Semiconductor, Inc. | Multimode operation DC-DC converter |
US8786270B2 (en) | 2010-11-08 | 2014-07-22 | Intersil Americas Inc. | Synthetic ripple regulator with frequency control |
US9069365B2 (en) | 2012-02-18 | 2015-06-30 | R2 Semiconductor, Inc. | DC-DC converter enabling rapid output voltage changes |
US9276470B2 (en) | 2012-08-31 | 2016-03-01 | Maxim Integrated Products, Inc. | Multiphase switching converters operating over wide load ranges |
US9912234B2 (en) | 2014-03-24 | 2018-03-06 | Intersil Americas LLC | Systems and methods for mitigation of resistor nonlinearity errors in single or multiphase switching voltage regulators employing inductor DCR current sensing |
US10511225B1 (en) * | 2018-09-07 | 2019-12-17 | Dialog Semiconductor (Uk) Limited | Low IQ hysteretic-PWM automated hybrid control architecture for a switching converter |
Families Citing this family (110)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6724596B2 (en) * | 2001-01-26 | 2004-04-20 | Powerware Corporation | Hysteretic current control method and an uninterruptible power supply using same |
US6829188B2 (en) * | 2002-08-19 | 2004-12-07 | Micron Technology, Inc. | Dual loop sensing scheme for resistive memory elements |
US7755223B2 (en) * | 2002-08-23 | 2010-07-13 | The Chamberlain Group, Inc. | Movable barrier operator with energy management control and corresponding method |
US7102340B1 (en) | 2003-01-21 | 2006-09-05 | Microsemi Corporation | Dual-mode PFM boost converter |
US7102339B1 (en) * | 2003-01-21 | 2006-09-05 | Microsemi, Inc. | Method and apparatus to switch operating modes in a PFM converter |
US7170260B2 (en) * | 2003-06-30 | 2007-01-30 | Maxwell Technologies, Inc. | Rapid charger for ultracapacitors |
US7034513B2 (en) * | 2003-09-03 | 2006-04-25 | Delta Electronics, Inc. | Power supply having efficient low power standby mode |
US7498786B2 (en) * | 2003-12-01 | 2009-03-03 | Fairchild Semiconductor Corporation | Digital control of switching voltage regulators |
US7420333B1 (en) * | 2004-01-29 | 2008-09-02 | Marvell International Ltd. | Mixed mode control for dimmable fluorescent lamp |
US7015716B2 (en) * | 2004-04-13 | 2006-03-21 | Feature Integration Technology Inc. | Method for detecting a power load of a power supply module according to duty cycle detection, and related device |
US7148668B1 (en) * | 2004-04-28 | 2006-12-12 | National Semiconductor Corporation | Completely isolated synchronous boost DC-to-DC switching regulator |
TW200536227A (en) * | 2004-04-30 | 2005-11-01 | Novatek Microelectronics Corp | Switchable power supply system and method thereof |
EP1792398B1 (en) * | 2004-09-14 | 2016-08-03 | Nxp B.V. | Dc/dc converter with dynamic offset compensation |
EP1803213A2 (en) | 2004-10-15 | 2007-07-04 | Philips Electronics N.V. | Converter circuit with improved efficiency |
US7248027B2 (en) * | 2005-01-05 | 2007-07-24 | Fyresstorm, Inc. | Power converters in which the input power coupling times are adjusted in conjunction with cycle skip counts |
CN100405719C (en) * | 2005-01-27 | 2008-07-23 | 精拓科技股份有限公司 | Electric current load detecting device and electric power supply system assembling the same device |
TWI281305B (en) * | 2005-02-03 | 2007-05-11 | Richtek Techohnology Corp | Dual input voltage converter and its control method |
US7064531B1 (en) * | 2005-03-31 | 2006-06-20 | Micrel, Inc. | PWM buck regulator with LDO standby mode |
WO2006102931A1 (en) * | 2005-04-01 | 2006-10-05 | Freescale Semiconductor, Inc. | Voltage converter apparatus and method therefor |
CN100458662C (en) * | 2005-04-22 | 2009-02-04 | 精拓科技股份有限公司 | Efficiency execution device and method for dynamic load-adjusting device |
CN100426196C (en) * | 2005-04-22 | 2008-10-15 | 精拓科技股份有限公司 | Efficiency execution method for load adjusting device |
US7782039B1 (en) * | 2005-04-27 | 2010-08-24 | Marvell International Ltd. | Mixed mode digital control for switching regulator |
US20060261794A1 (en) * | 2005-05-17 | 2006-11-23 | May Marcus W | Method & apparatus for DC-DC regulation with improved transient function |
US7514966B2 (en) | 2005-06-02 | 2009-04-07 | Via Technologies, Inc. | Fast, low offset ground sensing comparator |
TWI299607B (en) * | 2005-09-05 | 2008-08-01 | Niko Semiconductor Co Ltd | |
DE602005019590D1 (en) * | 2005-12-02 | 2010-04-08 | St Microelectronics Srl | A method and device for controlling converters |
US7602163B2 (en) * | 2005-12-20 | 2009-10-13 | Dell Products L.P. | Coupled inductor output regulation |
CN101001495B (en) * | 2006-01-12 | 2010-05-12 | 尼克森微电子股份有限公司 | Semi-bridge type cold cathode tube drive device |
US7446517B2 (en) * | 2006-01-26 | 2008-11-04 | Semiconductor Components Industries L.L.C. | Power supply controller and method therefor |
US7304464B2 (en) * | 2006-03-15 | 2007-12-04 | Micrel, Inc. | Switching voltage regulator with low current trickle mode |
US20070274015A1 (en) * | 2006-05-24 | 2007-11-29 | Intersil Americas Inc. | DC-DC converters having improved current sensing and related methods |
US7667408B2 (en) | 2007-03-12 | 2010-02-23 | Cirrus Logic, Inc. | Lighting system with lighting dimmer output mapping |
US7288902B1 (en) | 2007-03-12 | 2007-10-30 | Cirrus Logic, Inc. | Color variations in a dimmable lighting device with stable color temperature light sources |
WO2008147903A1 (en) * | 2007-05-22 | 2008-12-04 | Marvell World Trade Ltd. | Control of delivery of current through one or more discharge lamps |
CN101453161B (en) * | 2007-11-30 | 2011-01-12 | 瑞昱半导体股份有限公司 | Switch type converter having over-current protection |
JP2009148111A (en) * | 2007-12-17 | 2009-07-02 | Panasonic Corp | Dc-dc converter |
US7906943B2 (en) * | 2007-12-20 | 2011-03-15 | Microsemi Corporation | Boost converter with adaptive coil peak current |
US7679342B2 (en) * | 2008-04-16 | 2010-03-16 | Enpirion, Inc. | Power converter with power switch operable in controlled current mode |
US8686698B2 (en) * | 2008-04-16 | 2014-04-01 | Enpirion, Inc. | Power converter with controller operable in selected modes of operation |
US9246390B2 (en) * | 2008-04-16 | 2016-01-26 | Enpirion, Inc. | Power converter with controller operable in selected modes of operation |
US8692532B2 (en) | 2008-04-16 | 2014-04-08 | Enpirion, Inc. | Power converter with controller operable in selected modes of operation |
US8410769B2 (en) * | 2008-04-16 | 2013-04-02 | Enpirion, Inc. | Power converter with controller operable in selected modes of operation |
US8541991B2 (en) * | 2008-04-16 | 2013-09-24 | Enpirion, Inc. | Power converter with controller operable in selected modes of operation |
TWI352488B (en) * | 2008-06-17 | 2011-11-11 | Univ Nat Taiwan | Dual-mode temp-status recovery control method and |
TWI368125B (en) * | 2008-06-25 | 2012-07-11 | Univ Nat Taiwan | Load current charging/discharging control device for d/c conventer |
US8008902B2 (en) * | 2008-06-25 | 2011-08-30 | Cirrus Logic, Inc. | Hysteretic buck converter having dynamic thresholds |
US20100073037A1 (en) * | 2008-09-24 | 2010-03-25 | Intersil Americas Inc. | Output impedance control circuit |
US8698463B2 (en) | 2008-12-29 | 2014-04-15 | Enpirion, Inc. | Power converter with a dynamically configurable controller based on a power conversion mode |
US9548714B2 (en) | 2008-12-29 | 2017-01-17 | Altera Corporation | Power converter with a dynamically configurable controller and output filter |
CN101662207B (en) * | 2009-06-26 | 2013-01-09 | 成都芯源系统有限公司 | Rectifier tube control circuit and light load control method thereof |
US9155174B2 (en) | 2009-09-30 | 2015-10-06 | Cirrus Logic, Inc. | Phase control dimming compatible lighting systems |
US9178415B1 (en) | 2009-10-15 | 2015-11-03 | Cirrus Logic, Inc. | Inductor over-current protection using a volt-second value representing an input voltage to a switching power converter |
US8487591B1 (en) | 2009-12-31 | 2013-07-16 | Cirrus Logic, Inc. | Power control system with power drop out immunity and uncompromised startup time |
EP2741586A1 (en) | 2010-11-04 | 2014-06-11 | Cirrus Logic, Inc. | Duty factor probing of a triac-based dimmer |
US9307601B2 (en) | 2010-08-17 | 2016-04-05 | Koninklijke Philips N.V. | Input voltage sensing for a switching power converter and a triac-based dimmer |
US8536799B1 (en) | 2010-07-30 | 2013-09-17 | Cirrus Logic, Inc. | Dimmer detection |
US8729811B2 (en) | 2010-07-30 | 2014-05-20 | Cirrus Logic, Inc. | Dimming multiple lighting devices by alternating energy transfer from a magnetic storage element |
CN103155387B (en) | 2010-07-30 | 2016-10-19 | 皇家飞利浦有限公司 | Power to high effect, illumination from based on triode-thyristor dimmer |
CN103636105B (en) | 2011-06-30 | 2017-05-10 | 飞利浦照明控股有限公司 | Transformer-isolated LED lighting circuit with secondary-side dimming control |
CN101924469B (en) * | 2010-08-06 | 2012-10-24 | 东南大学 | Switching power supply with fast transient response |
US9510401B1 (en) | 2010-08-24 | 2016-11-29 | Cirrus Logic, Inc. | Reduced standby power in an electronic power control system |
US8847515B2 (en) | 2010-08-24 | 2014-09-30 | Cirrus Logic, Inc. | Multi-mode dimmer interfacing including attach state control |
US8723493B2 (en) | 2010-10-06 | 2014-05-13 | Alliant Techsystems Inc. | Methods and apparatuses for inductive energy capture for fuzes |
US8766648B2 (en) | 2010-11-01 | 2014-07-01 | Ford Global Technologies, Llc | Method and system for determining an operating characteristic associated with an inductor in a power converter system |
WO2012061781A2 (en) | 2010-11-04 | 2012-05-10 | Cirrus Logic, Inc. | Controlled power dissipation in a link path in a lighting system |
DK2681969T3 (en) | 2010-11-16 | 2019-03-25 | Signify Holding Bv | Rear edge compatibility with prevention of high dumping resistance |
US8427130B2 (en) | 2010-12-16 | 2013-04-23 | Integrated Device Technology, Inc. | Methods and apparatuses for combined frequency compensation and soft start processes |
EP2653014B1 (en) * | 2010-12-16 | 2016-10-19 | Philips Lighting Holding B.V. | Switching parameter based discontinuous mode-critical conduction mode transition |
US8513935B2 (en) | 2010-12-16 | 2013-08-20 | Integrated Device Technology, Inc. | Combinations of current feedback for frequency compensation, overload detection, and super overload detection in switching power converters |
US8867295B2 (en) | 2010-12-17 | 2014-10-21 | Enpirion, Inc. | Power converter for a memory module |
US8773102B2 (en) * | 2011-01-03 | 2014-07-08 | Eta Semiconductor Inc. | Hysteretic CL power converter |
US8446132B2 (en) | 2011-02-04 | 2013-05-21 | Alliant Techsystems Inc. | Methods and apparatuses for electrical pulse energy capture |
US8665065B2 (en) | 2011-04-06 | 2014-03-04 | The Chamberlain Group, Inc. | Barrier operator with power management features |
CN103583082B (en) | 2011-06-03 | 2016-11-02 | 皇家飞利浦有限公司 | For controlling method and apparatus and the power conversion equipment of switching power converter |
EP2715924A1 (en) | 2011-06-03 | 2014-04-09 | Cirrus Logic, Inc. | Control data determination from primary-side sensing of a secondary-side voltage in a switching power converter |
US20130043849A1 (en) * | 2011-08-18 | 2013-02-21 | Broadcom Corporation | Voltage Converter Including Variable Mode Switching Regulator And Related Method |
US9178444B2 (en) | 2011-12-14 | 2015-11-03 | Cirrus Logic, Inc. | Multi-mode flyback control for a switching power converter |
US9167662B2 (en) | 2012-02-29 | 2015-10-20 | Cirrus Logic, Inc. | Mixed load current compensation for LED lighting |
US20130229832A1 (en) * | 2012-03-02 | 2013-09-05 | Apple Inc. | Controlling a flyback converter for use with a computer system |
US9520794B2 (en) | 2012-07-25 | 2016-12-13 | Philips Lighting Holding B.V | Acceleration of output energy provision for a load during start-up of a switching power converter |
US9184661B2 (en) | 2012-08-27 | 2015-11-10 | Cirrus Logic, Inc. | Power conversion with controlled capacitance charging including attach state control |
US9496844B1 (en) | 2013-01-25 | 2016-11-15 | Koninklijke Philips N.V. | Variable bandwidth filter for dimmer phase angle measurements |
US9459636B2 (en) * | 2013-02-22 | 2016-10-04 | Freescale Semiconductor, Inc. | Transition control for a hybrid switched-mode power supply (SMPS) |
US9024541B2 (en) | 2013-03-07 | 2015-05-05 | Cirrus Logic, Inc. | Utilizing secondary-side conduction time parameters of a switching power converter to provide energy to a load |
CN105265017B (en) | 2013-03-11 | 2017-09-08 | 飞利浦照明控股有限公司 | The reduction changed using the supply current of compensating current control |
WO2014164755A2 (en) | 2013-03-11 | 2014-10-09 | Cirrus Logic, Inc. | Quantization error reduction in constant output current control drivers |
US10187934B2 (en) | 2013-03-14 | 2019-01-22 | Philips Lighting Holding B.V. | Controlled electronic system power dissipation via an auxiliary-power dissipation circuit |
US9282598B2 (en) | 2013-03-15 | 2016-03-08 | Koninklijke Philips N.V. | System and method for learning dimmer characteristics |
WO2014186765A1 (en) | 2013-05-17 | 2014-11-20 | Cirrus Logic, Inc. | Single pin control of bipolar junction transistor (bjt)-based power stage |
WO2014186776A1 (en) | 2013-05-17 | 2014-11-20 | Cirrus Logic, Inc. | Charge pump-based circuitry for bjt power supply |
WO2015017315A1 (en) | 2013-07-29 | 2015-02-05 | Cirrus Logic, Inc. | Compensating for a reverse recovery time period of a bipolar junction transistor (bjt) in switch-mode operation of a light-emitting diode (led)-based bulb |
WO2015017317A2 (en) | 2013-07-29 | 2015-02-05 | Cirrus Logic, Inc. | Two terminal drive of bipolar junction transistor (bjt) for switch-mode operation of a light emitting diode (led)-based bulb |
US9219414B2 (en) * | 2013-10-28 | 2015-12-22 | Analog Devices Global | Load current readback and average estimation |
JP5920327B2 (en) * | 2013-12-12 | 2016-05-18 | トヨタ自動車株式会社 | Vehicle power supply |
CN103683908B (en) * | 2013-12-19 | 2015-11-25 | 矽力杰半导体技术(杭州)有限公司 | Switching power source control circuit, Switching Power Supply and control method thereof |
US9554211B2 (en) | 2014-01-03 | 2017-01-24 | Summit Semiconductor Llc | Wireless speaker unit |
US9621062B2 (en) | 2014-03-07 | 2017-04-11 | Philips Lighting Holding B.V. | Dimmer output emulation with non-zero glue voltage |
US9215772B2 (en) | 2014-04-17 | 2015-12-15 | Philips International B.V. | Systems and methods for minimizing power dissipation in a low-power lamp coupled to a trailing-edge dimmer |
US9214862B2 (en) | 2014-04-17 | 2015-12-15 | Philips International, B.V. | Systems and methods for valley switching in a switching power converter |
US10051701B2 (en) | 2014-07-16 | 2018-08-14 | Philips Lighting Holding B.V. | Systems and methods for maintaining dimmer behavior in a low-power lamp assembly |
US9325236B1 (en) | 2014-11-12 | 2016-04-26 | Koninklijke Philips N.V. | Controlling power factor in a switching power converter operating in discontinuous conduction mode |
US9504118B2 (en) | 2015-02-17 | 2016-11-22 | Cirrus Logic, Inc. | Resistance measurement of a resistor in a bipolar junction transistor (BJT)-based power stage |
US9603206B2 (en) | 2015-02-27 | 2017-03-21 | Cirrus Logic, Inc. | Detection and control mechanism for tail current in a bipolar junction transistor (BJT)-based power stage |
US9609701B2 (en) | 2015-02-27 | 2017-03-28 | Cirrus Logic, Inc. | Switch-mode drive sensing of reverse recovery in bipolar junction transistor (BJT)-based power converters |
US9509217B2 (en) | 2015-04-20 | 2016-11-29 | Altera Corporation | Asymmetric power flow controller for a power converter and method of operating the same |
TWI650629B (en) * | 2017-11-23 | 2019-02-11 | 晶豪科技股份有限公司 | A voltage regulator of a frequency modulation method and an overcurrent protection circuit |
FR3075511A1 (en) * | 2017-12-18 | 2019-06-21 | Stmicroelectronics (Grenoble 2) Sas | Cutting power supply and its control method |
CN108768146B (en) * | 2018-06-22 | 2020-03-06 | 矽力杰半导体技术(杭州)有限公司 | Power converter and control circuit and control method thereof |
RU2693846C1 (en) * | 2018-09-04 | 2019-07-05 | Акционерное общество "Научно-Производственный Комплекс "Альфа-М" | Method to control light output level of light-emitting diodes and device for its implementation |
US10615694B2 (en) | 2018-09-07 | 2020-04-07 | Dialog Semiconductor (Uk) Limited | Circuit and method for suppressing audio noise in DC-DC converters |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5627460A (en) * | 1994-12-28 | 1997-05-06 | Unitrode Corporation | DC/DC converter having a bootstrapped high side driver |
US5731731A (en) * | 1995-05-30 | 1998-03-24 | Linear Technology Corporation | High efficiency switching regulator with adaptive drive output circuit |
US5870296A (en) * | 1997-10-14 | 1999-02-09 | Maxim Integrated Products, Inc. | Dual interleaved DC to DC switching circuits realized in an integrated circuit |
US5912552A (en) * | 1997-02-12 | 1999-06-15 | Kabushiki Kaisha Toyoda Jidoshokki Seisakusho | DC to DC converter with high efficiency for light loads |
US5994885A (en) * | 1993-03-23 | 1999-11-30 | Linear Technology Corporation | Control circuit and method for maintaining high efficiency over broad current ranges in a switching regulator circuit |
US6127815A (en) * | 1999-03-01 | 2000-10-03 | Linear Technology Corp. | Circuit and method for reducing quiescent current in a switching regulator |
US6239509B1 (en) | 1999-07-16 | 2001-05-29 | Semtech Corporation | Method and apparatus for voltage regulation in multi-output switched mode power supplies |
US6246220B1 (en) * | 1999-09-01 | 2001-06-12 | Intersil Corporation | Synchronous-rectified DC to DC converter with improved current sensing |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58144575A (en) | 1982-02-19 | 1983-08-27 | Hitachi Eng Co Ltd | Control circuit for pwm converter power source |
US5548206A (en) * | 1993-09-30 | 1996-08-20 | National Semiconductor Corporation | System and method for dual mode DC-DC power conversion |
IT1268472B1 (en) * | 1993-10-22 | 1997-03-04 | St Microelectronics Srl | buck converter mode 'automatically determined by the operating load level |
IT1268474B1 (en) | 1993-10-22 | 1997-03-04 | St Microelectronics Srl | Static converter dc-dc operating discontinuously |
US5949226A (en) * | 1995-04-10 | 1999-09-07 | Kabushiki Kaisha Toyoda Jidoshokki Seisakush | DC/DC converter with reduced power consumpton and improved efficiency |
JPH09121536A (en) * | 1995-08-17 | 1997-05-06 | Harris Corp | Apparatus and method for direct-current-to-direct-current conversion in dual mode |
US6239585B1 (en) | 1997-12-08 | 2001-05-29 | Robert N. Buono | Self-oscillating switch-mode DC to DC conversion with current switching threshold hysteresis |
DE69817547T2 (en) * | 1998-06-24 | 2004-06-17 | Sharp K.K. | Power control unit |
CN1074600C (en) * | 1998-08-31 | 2001-11-07 | 深圳市安圣电气有限公司 | Topologic circuit of DC-DC soft switch power change |
US5982160A (en) * | 1998-12-24 | 1999-11-09 | Harris Corporation | DC-to-DC converter with inductor current sensing and related methods |
US6300810B1 (en) | 1999-02-05 | 2001-10-09 | United Microelectronics, Corp. | Voltage down converter with switched hysteresis |
US6433525B2 (en) * | 2000-05-03 | 2002-08-13 | Intersil Americas Inc. | Dc to DC converter method and circuitry |
-
2001
- 2001-05-01 US US09/846,721 patent/US6433525B2/en not_active Expired - Fee Related
- 2001-05-02 DE DE2001196149 patent/DE10196149T1/en not_active Withdrawn
- 2001-05-02 AU AU6112601A patent/AU6112601A/en active Pending
- 2001-05-02 CN CN200810098553XA patent/CN101277062B/en not_active IP Right Cessation
- 2001-05-02 CN CNB018100473A patent/CN100403638C/en not_active IP Right Cessation
- 2001-05-02 CN CN2010101497719A patent/CN102064690B/en not_active IP Right Cessation
- 2001-05-02 WO PCT/US2001/014168 patent/WO2001084697A2/en active Application Filing
- 2001-05-03 TW TW90110609A patent/TW533660B/en active
-
2002
- 2002-03-07 US US10/093,197 patent/US6621256B2/en not_active Expired - Fee Related
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6304066B1 (en) * | 1993-03-23 | 2001-10-16 | Linear Technology Corporation | Control circuit and method for maintaining high efficiency over broad current ranges in a switching regular circuit |
US5994885A (en) * | 1993-03-23 | 1999-11-30 | Linear Technology Corporation | Control circuit and method for maintaining high efficiency over broad current ranges in a switching regulator circuit |
US5627460A (en) * | 1994-12-28 | 1997-05-06 | Unitrode Corporation | DC/DC converter having a bootstrapped high side driver |
US5731731A (en) * | 1995-05-30 | 1998-03-24 | Linear Technology Corporation | High efficiency switching regulator with adaptive drive output circuit |
US5912552A (en) * | 1997-02-12 | 1999-06-15 | Kabushiki Kaisha Toyoda Jidoshokki Seisakusho | DC to DC converter with high efficiency for light loads |
US5870296A (en) * | 1997-10-14 | 1999-02-09 | Maxim Integrated Products, Inc. | Dual interleaved DC to DC switching circuits realized in an integrated circuit |
US6127815A (en) * | 1999-03-01 | 2000-10-03 | Linear Technology Corp. | Circuit and method for reducing quiescent current in a switching regulator |
US6239509B1 (en) | 1999-07-16 | 2001-05-29 | Semtech Corporation | Method and apparatus for voltage regulation in multi-output switched mode power supplies |
US6246220B1 (en) * | 1999-09-01 | 2001-06-12 | Intersil Corporation | Synchronous-rectified DC to DC converter with improved current sensing |
Cited By (48)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6621256B2 (en) * | 2000-05-03 | 2003-09-16 | Intersil Corporation | DC to DC converter method and circuitry |
US20030142519A1 (en) * | 2002-01-29 | 2003-07-31 | Intersil Americas Inc. | Synthetic ripple regulator |
US6791306B2 (en) * | 2002-01-29 | 2004-09-14 | Intersil Americas Inc. | Synthetic ripple regulator |
USRE43414E1 (en) | 2002-09-06 | 2012-05-29 | Intersil Americas Inc. | Synthetic ripple regulator |
US20050017703A1 (en) * | 2002-09-06 | 2005-01-27 | Intersil Americas Inc. | Synthetic ripple regulator |
US7019502B2 (en) | 2002-09-06 | 2006-03-28 | Intersil America's Inc. | Synchronization of multiphase synthetic ripple voltage regulator |
US7132820B2 (en) | 2002-09-06 | 2006-11-07 | Intersil Americas Inc. | Synthetic ripple regulator |
US20040135563A1 (en) * | 2002-10-25 | 2004-07-15 | International Rectifier Corporation | Fixed frequency hysteretic regulator |
US6885175B2 (en) * | 2002-10-25 | 2005-04-26 | International Rectifier Corporation | Fixed frequency hysteretic regulator |
US20040257055A1 (en) * | 2003-03-06 | 2004-12-23 | Aioanei Ovidiu C. | No load to high load recovery time in ultraportable DC-DC converters |
US7385379B2 (en) * | 2003-03-06 | 2008-06-10 | Fairchild Semiconductor Corporation | No load to high load recovery time in ultraportable DC-DC converters |
CN1536749B (en) * | 2003-03-06 | 2011-10-05 | 飞兆半导体公司 | Recovery time from zero to high load in extra-light DC-DC converter |
US20050188230A1 (en) * | 2004-02-20 | 2005-08-25 | International Business Machines Corporation | System and method of controlling power consumption in an electronic system |
US7577859B2 (en) | 2004-02-20 | 2009-08-18 | International Business Machines Corporation | System and method of controlling power consumption in an electronic system by applying a uniquely determined minimum operating voltage to an integrated circuit rather than a predetermined nominal voltage selected for a family of integrated circuits |
US7692417B2 (en) * | 2005-09-19 | 2010-04-06 | Skyworks Solutions, Inc. | Switched mode power converter |
US20070063682A1 (en) * | 2005-09-19 | 2007-03-22 | Dagher Elias H | Switched mode power converter |
US20070096700A1 (en) * | 2005-11-01 | 2007-05-03 | Asustek Computer Inc. | Boost converter |
US7602156B2 (en) | 2005-11-01 | 2009-10-13 | Asustek Computer Inc. | Boost converter |
US20080022139A1 (en) * | 2006-07-24 | 2008-01-24 | Industrial Technology Research Institute | Power supply apparatus and operation-mode determining unit and method thereof |
US7679346B2 (en) | 2006-07-24 | 2010-03-16 | Industrial Technology Research Institute | Power supply apparatus and operation-mode determining unit and method thereof |
US20090033293A1 (en) * | 2007-08-01 | 2009-02-05 | Intersil Americas Inc. | Voltage converter with combined capacitive voltage divider, buck converter and battery charger |
US8427113B2 (en) | 2007-08-01 | 2013-04-23 | Intersil Americas LLC | Voltage converter with combined buck converter and capacitive voltage divider |
US20090033289A1 (en) * | 2007-08-01 | 2009-02-05 | Intersil Americas Inc. | Voltage converter with combined buck converter and capacitive voltage divider |
US8018212B1 (en) | 2007-08-24 | 2011-09-13 | Intersil Americas Inc. | Buck-boost regulator |
US8085011B1 (en) | 2007-08-24 | 2011-12-27 | Intersil Americas Inc. | Boost regulator using synthetic ripple regulation |
US8154264B2 (en) * | 2008-05-13 | 2012-04-10 | L&L Engineering, Llc | Method and systems for conduction mode control |
US8148967B2 (en) | 2008-08-05 | 2012-04-03 | Intersil Americas Inc. | PWM clock generation system and method to improve transient response of a voltage regulator |
US20100033153A1 (en) * | 2008-08-05 | 2010-02-11 | Intersil Americas Inc. | Pwm clock generation system and method to improve transient response of a voltage regulator |
US8604767B2 (en) * | 2009-09-04 | 2013-12-10 | Richtek Technology Corporation, R.O.C. | Boundary conduction mode switching regulator and driver circuit and control method thereof |
US9106132B2 (en) * | 2009-09-04 | 2015-08-11 | Richtek Technology Corporation | Boundary conduction mode switching regulator and driver circuit and control method thereof |
US20140062444A1 (en) * | 2009-09-04 | 2014-03-06 | Richtek Technology Corporation, R.O.C. | Boundary conduction mode switching regulator and driver circuit and control method thereof |
US20110057637A1 (en) * | 2009-09-04 | 2011-03-10 | Richtek Technology Corporation | Boundary conduction mode switching regulator and driver circuit and control method thereof |
TWI473394B (en) * | 2009-09-04 | 2015-02-11 | Richtek Technology Corp | Switching regulator and driver circuit and control method thereof |
US20120013322A1 (en) * | 2010-07-19 | 2012-01-19 | Microchip Technology Incorporated | Buck switch-mode power converter large signal transient response optimizer |
US8339113B2 (en) * | 2010-07-19 | 2012-12-25 | Microchip Technology Incorporated | Buck switch-mode power converter large signal transient response optimizer |
US8786270B2 (en) | 2010-11-08 | 2014-07-22 | Intersil Americas Inc. | Synthetic ripple regulator with frequency control |
US8674673B2 (en) | 2010-11-24 | 2014-03-18 | Upi Semiconductor Corp. | Switching power converter |
TWI405397B (en) * | 2010-11-24 | 2013-08-11 | Upi Semiconductor Corp | Switching power converter |
US8843180B2 (en) | 2011-03-25 | 2014-09-23 | R2 Semiconductor, Inc. | Multimode operation DC-DC converter |
US8725218B2 (en) | 2011-03-25 | 2014-05-13 | R2 Semiconductor, Inc. | Multimode operation DC-DC converter |
US8659277B2 (en) * | 2011-05-11 | 2014-02-25 | Realtek Semiconductor Corp. | Current providing method and current providing system |
US20120286754A1 (en) * | 2011-05-11 | 2012-11-15 | Shih-Chieh Chen | Current providing method and current providing system |
US9069365B2 (en) | 2012-02-18 | 2015-06-30 | R2 Semiconductor, Inc. | DC-DC converter enabling rapid output voltage changes |
US8957653B2 (en) * | 2012-03-19 | 2015-02-17 | ScienBiziP Consulting (Shen Zhen) Co., Ltd. | Power control circuit and loop analyzing apparatus comprising same |
US20130241506A1 (en) * | 2012-03-19 | 2013-09-19 | Hon Hai Precision Industry Co., Ltd. | Power control circuit and loop analyzing apparatus comprising same |
US9276470B2 (en) | 2012-08-31 | 2016-03-01 | Maxim Integrated Products, Inc. | Multiphase switching converters operating over wide load ranges |
US9912234B2 (en) | 2014-03-24 | 2018-03-06 | Intersil Americas LLC | Systems and methods for mitigation of resistor nonlinearity errors in single or multiphase switching voltage regulators employing inductor DCR current sensing |
US10511225B1 (en) * | 2018-09-07 | 2019-12-17 | Dialog Semiconductor (Uk) Limited | Low IQ hysteretic-PWM automated hybrid control architecture for a switching converter |
Also Published As
Publication number | Publication date |
---|---|
CN101277062A (en) | 2008-10-01 |
US20010035745A1 (en) | 2001-11-01 |
CN1430806A (en) | 2003-07-16 |
WO2001084697A3 (en) | 2002-03-07 |
TW533660B (en) | 2003-05-21 |
US20020158613A1 (en) | 2002-10-31 |
WO2001084697A2 (en) | 2001-11-08 |
CN100403638C (en) | 2008-07-16 |
DE10196149T1 (en) | 2003-05-22 |
CN102064690A (en) | 2011-05-18 |
DE10196149T0 (en) | |
CN101277062B (en) | 2010-10-27 |
AU6112601A (en) | 2001-11-12 |
US6621256B2 (en) | 2003-09-16 |
CN102064690B (en) | 2012-10-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9350244B2 (en) | Switching regulator with increased light load efficiency in pulse frequency modulation mode | |
TWI492511B (en) | Buck-boost converter and its controller, and control method thereof | |
CN103312176B (en) | There is the isolated flyback converter of the park mode for light load operation | |
US9287782B2 (en) | High efficiency bi-directional DC converter and control method thereof | |
US8923021B2 (en) | Control circuit and system for switch mode power supply | |
US9819268B2 (en) | DC-DC switching converter with enhanced switching between CCM and DCM operating modes | |
US9729006B2 (en) | Power management system | |
Arbetter et al. | DC-DC converter design for battery-operated systems | |
US8405370B2 (en) | Power regulation for large transient loads | |
JP4430041B2 (en) | System and method for two-mode DC-DC power conversion | |
JP4527480B2 (en) | Method and circuit for optimizing power efficiency in a DC-DC converter | |
US8274266B2 (en) | Switch mode power supply with dynamic topology | |
US7622904B2 (en) | Power array system and method | |
TWI594558B (en) | Switching converter and its controller and mode control circuit | |
US7880455B2 (en) | Short circuit current ratcheting in switch mode DC/DC voltage regulators | |
US10218265B2 (en) | State space-based multi-level voltage regulator system | |
CN1812235B (en) | Electronic component for power supply and a power supply device | |
US8283902B1 (en) | Error amplification for current mode control switching regulation | |
US8704503B2 (en) | Single ended primary inductor converter with over-current and/or over-voltage protection and method for controlling the same | |
USRE43291E1 (en) | PFM-PWM DC-DC converter providing DC offset correction to PWM error amplifier and equalizing regulated voltage conditions when transitioning between PFM and PWM modes | |
US6046896A (en) | DC-to-DC converter capable of preventing overvoltage | |
US8058859B2 (en) | Pulse frequency modulation methods and circuits | |
US8013586B2 (en) | Synchronous rectifier having precise on/off switching times | |
USRE46333E1 (en) | High-side sensing of zero inductor current for step-down DC-DC converter | |
US7250745B2 (en) | Control circuit of DC-DC converter and its control method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: INTERSIL CORPORATION, FLORIDA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:MURATOV, VOLODYMYR A.;HODGINS, ROBERT G.;JOCHUM, THOMAS A.;REEL/FRAME:011791/0594 Effective date: 20010427 |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
FPAY | Fee payment |
Year of fee payment: 8 |
|
AS | Assignment |
Owner name: MORGAN STANLEY & CO. INCORPORATED,NEW YORK Free format text: SECURITY AGREEMENT;ASSIGNORS:INTERSIL CORPORATION;TECHWELL, INC.;INTERSIL COMMUNICATIONS, INC.;AND OTHERS;REEL/FRAME:024390/0608 Effective date: 20100427 |
|
REMI | Maintenance fee reminder mailed | ||
AS | Assignment |
Owner name: INTERSIL AMERICAS INC., CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:INTERSIL COMMUNICATIONS, INC.;REEL/FRAME:033262/0582 Effective date: 20011221 Owner name: INTERSIL AMERICAS LLC, CALIFORNIA Free format text: CHANGE OF NAME;ASSIGNOR:INTERSIL AMERICAS INC.;REEL/FRAME:033262/0819 Effective date: 20111223 Owner name: INTERSIL COMMUNICATIONS, INC., CALIFORNIA Free format text: CHANGE OF NAME;ASSIGNOR:INTERSIL CORPORATION;REEL/FRAME:033261/0088 Effective date: 20010523 |
|
LAPS | Lapse for failure to pay maintenance fees | ||
STCH | Information on status: patent discontinuation |
Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362 |
|
FP | Expired due to failure to pay maintenance fee |
Effective date: 20140813 |