WO2012119476A1 - 电子设备、供电控制芯片和供电控制方法 - Google Patents

电子设备、供电控制芯片和供电控制方法 Download PDF

Info

Publication number
WO2012119476A1
WO2012119476A1 PCT/CN2011/084837 CN2011084837W WO2012119476A1 WO 2012119476 A1 WO2012119476 A1 WO 2012119476A1 CN 2011084837 W CN2011084837 W CN 2011084837W WO 2012119476 A1 WO2012119476 A1 WO 2012119476A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrical signal
adapter
voltage
rechargeable battery
processing circuit
Prior art date
Application number
PCT/CN2011/084837
Other languages
English (en)
French (fr)
Inventor
赵双成
程孝仁
Original Assignee
联想(北京)有限公司
北京联想软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 联想(北京)有限公司, 北京联想软件有限公司 filed Critical 联想(北京)有限公司
Priority to US14/002,652 priority Critical patent/US9350167B2/en
Publication of WO2012119476A1 publication Critical patent/WO2012119476A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering

Definitions

  • the present invention relates to a power supply technology for an electronic device, and more particularly to an electronic device, a power supply control chip, and a power supply control method.
  • the existing PAD device uses a 5V adapter, and for a rechargeable battery of one string, the voltage output is not fixed. For example, it can be discharged from 4.2V to 3.3V. Therefore, for rechargeable batteries, when charging, it is necessary to use a buck circuit to step down the voltage supplied by the adapter to supply the rechargeable battery. When the rechargeable battery is discharged to supply power to other electronic components of the device, it is necessary to use a buck circuit and/or a boost circuit to step down and/or boost the voltage provided by the rechargeable battery.
  • the electronic components are powered (such as the 3V battery output boosted to 3.3V or 5V, and the 3V battery output is stepped down to 1.8V).
  • the charging/powering of the rechargeable battery requires at least two converters to realize the large space, which is not conducive to the miniaturization of portable devices such as PAD.
  • Embodiments of the present invention provide an electronic device, a power supply control chip, and a power supply control method to improve performance of a rechargeable battery.
  • An embodiment of the present invention provides an electronic device, including:
  • At least one component connected to the motherboard
  • An adapter socket electrically connected to the at least one component
  • a first processing circuit having a first end electrically connected to the rechargeable battery, a second end thereof and the adapter socket
  • the at least one component is electrically connected to have a first working state and a second working state
  • the power supply determining parameter obtaining module is configured to obtain a power supply determining parameter
  • control module configured to control, according to the power supply determining parameter, the first processing circuit to operate in a first working state or a second working state
  • the first processing circuit converts the first electrical signal output by the adapter connected to the adapter socket to obtain a second electrical signal, and charges the rechargeable battery with the second electrical signal.
  • the adapter uses the first electrical signal to power the at least one component;
  • the first processing circuit converts the third electrical signal output by the rechargeable battery to obtain a fourth electrical signal, and supplies power to the at least one component by using the fourth electrical signal.
  • control module controls the first processing circuit to operate in a first working state when the power supply determining parameter indicates that the power is supplied by the adapter, and the charging battery needs to be charged, and when the power supply determining parameter indicates that the power is supplied by the rechargeable battery Controlling the first processing circuit to operate in a second operational state.
  • the adapter also provides a fifth electrical signal having a voltage higher than a voltage of the first electrical signal
  • the first processing circuit further has a third operating state
  • the first processing circuit When the adapter provides the fifth electrical signal, the first processing circuit operates in a third operating state; in the third operating state, the first processing circuit performs a fifth electrical signal output by the adapter Converting, obtaining the second electrical signal, and charging the rechargeable battery with the second electrical signal, and the adapter is configured to supply power to the at least one component by using the fifth electrical signal pair.
  • control module controls the first processing circuit to operate in the first working state according to the voltage of the electrical signal provided by the adapter when the power supply determining parameter indicates that the power is supplied by the adapter, and the rechargeable battery needs to be charged.
  • third working state controlling the first processing circuit to operate in the second working state when the power supply determining parameter indicates that the battery is powered by the rechargeable battery.
  • the voltage of the first electrical signal is the same as the voltage of the fourth electrical signal. In the above electronic device, the voltage of the fourth electrical signal is higher than the discharge voltage of the rechargeable battery. In the above electronic device, the voltage of the first electrical signal is lower than the upper limit voltage of the rechargeable battery.
  • the voltage of the fourth electrical signal is a first voltage
  • the component includes a first component that operates at a second voltage
  • the first voltage and the second voltage are different
  • the electronic device The method further includes: converting an electrical signal or a fourth electrical signal output by the adapter into a sixth electrical signal having a second voltage
  • the first voltage conversion module has a first end connected to the second end of the first processing circuit and the adapter socket, and a second end connected to the first component.
  • the voltage of the fourth electrical signal is a first voltage
  • the component includes a first component that operates at a second voltage
  • the first voltage and the second voltage are different
  • the electronic device The method further includes: a second voltage conversion module for converting an electrical signal outputted by the adapter or a third electrical signal into a sixth electrical signal having a second voltage, the first end of the second voltage conversion module being connected to the rechargeable battery And the adapter socket, the second end of which is connected to the first component.
  • the first processing circuit comprises:
  • first resistor an inductor, a diode, a capacitor, and a second resistor connected in series
  • the first resistor being electrically connected to a line connected to the anode of the adapter
  • the second resistor being electrically connected to the adapter a circuit in which the negative electrode is connected, a series circuit composed of the capacitor and the second resistor is connected in parallel with the rechargeable battery
  • a field effect transistor a drain of the FET is connected between the inductor and the diode, and the source is The second resistor is connected while being electrically connected to a line connected to a negative pole of the adapter
  • the control module is connected to the gate and the source of the FET for controlling the operating parameters of the FET, so that the first processing circuit converts the first electrical signal output by the adapter. Or converting the third electrical signal output by the rechargeable battery.
  • the first processing circuit further has a fourth operating state
  • the control module is further configured to control the first processing circuit to operate in a fourth working state when the power supply determining parameter indicates that the power is supplied by the adapter, and the electronic device load exceeds a preset threshold;
  • the first processing circuit converts the third electrical signal output by the rechargeable battery to obtain the fourth electrical signal, and uses the fourth electrical signal to cooperate with the power provided by the adapter.
  • the signals collectively power the at least one component.
  • the embodiment of the invention provides a power supply control chip, which is used for an electronic device provided with a first processing circuit and a rechargeable battery, and the power supply control chip includes:
  • a parameter collection module for collecting the power state of the adapter and the voltage of the rechargeable battery
  • control module configured to control, according to a power supply state of the adapter and a voltage of the rechargeable battery, the first processing circuit to operate in a first working state or a second working state;
  • the first processing circuit turns the first electrical signal output by the adapter Converting, obtaining a second electrical signal, and charging the rechargeable battery with the second electrical signal, and the adapter uses the first electrical signal to supply power to the at least one component;
  • the first processing circuit converts the third electrical signal output by the rechargeable battery to obtain a fourth electrical signal, and supplies power to the at least one component by using the fourth electrical signal.
  • An embodiment of the present invention provides a power supply control method for an electronic device configured with a first processing circuit and a rechargeable battery, where the power supply control method includes:
  • the first processing circuit converts the first electrical signal output by the adapter to obtain a second electrical signal, and charges the rechargeable battery with the second electrical signal, and the adapter Powering the at least one component with the first electrical signal;
  • the first processing circuit converts the third electrical signal output by the rechargeable battery to obtain a fourth electrical signal, and supplies power to the at least one component by using the fourth electrical signal.
  • the first processing circuit is utilized, and the charging and power supply management of the rechargeable battery is realized by controlling the working state of the first processing circuit, thereby saving a limited PCB layout. space.
  • the first processing circuit boosts the output signal of the charging battery to supply power to the components, thereby improving the utilization efficiency of the rechargeable battery.
  • the power supply control chip, and the power supply control method according to the embodiment of the present invention when the voltage of the electrical signal provided by the adapter is the same as the voltage obtained by the first processing circuit converting the electrical signal of the rechargeable battery, the same circuit is used to implement the charging. Battery charging and power management saves limited PCB layout space.
  • the power supply control chip, and the power supply control method of the embodiment of the present invention the third working state of the first processing circuit is further set, so that the voltage of the electrical signal provided by the adapter is different, and the electronic device is further improved. Adaptability.
  • the power supply control chip, and the power supply control method according to the embodiment of the present invention when the system load is large, when the power supply of the single adapter cannot meet the system requirement, the first processing circuit converts the electrical signal output by the rechargeable battery, and the adapter. Together to power the system, to meet the system requirements, to ensure the normal operation of electronic equipment.
  • FIG. 1 is a schematic structural diagram of an electronic device according to an embodiment of the present invention.
  • FIG. 2 is a schematic structural view of a first processing circuit
  • FIG. 3 is a schematic structural diagram of a first processing circuit when an adapter provides an electrical signal of a plurality of voltages
  • FIG. 4 is another schematic structural diagram of a first processing circuit when an adapter provides an electrical signal of a plurality of voltages
  • the schematic diagram of the electronic device structure including the two implementation modes of the voltage conversion module respectively
  • FIG. 7 is a schematic diagram of the electrical signal direction when the adapter and the rechargeable battery are jointly powered.
  • Fig. 8 is a flow chart showing the control of the operating state of the first processing circuit according to the power supply state of the adapter and the voltage of the rechargeable battery. detailed description
  • a processing circuit is provided to connect the adapter and the electronic component to be powered to improve the utilization rate of the rechargeable battery.
  • an electronic device includes: a main board (not shown); at least one component 10 connected to the main board; a rechargeable battery 12; an adapter socket 14, and the at least one element
  • the device 10 is electrically connected;
  • the first processing circuit 16 has a first end electrically connected to the rechargeable battery 12, and a second end electrically connected to the adapter socket 14 and the at least one component 10, having a first working state and a second working state;
  • a control module 20 configured to control the first processing circuit 16 to operate in a first working state or a second working state according to the power supply determining parameter .
  • the first processing circuit 16 converts the first electrical signal output by the adapter connected to the adapter socket 14, and charges the rechargeable battery 12 with the converted second electrical signal, and the adapter utilizes the first The electrical signal supplies power to the component 10.
  • the first processing circuit 16 converts the third electrical signal outputted by the rechargeable battery 12, and supplies the component 10 with the converted fourth electrical signal.
  • the first processing circuit 16 includes two operating states. When the output of the adapter is connected to the adapter socket, the electronic device is powered by the adapter, and the first processing circuit 16 operates in the first operational state.
  • the electrical signal provided by the adapter is divided into two paths via the adapter socket 14, one electrical signal is output to the component 10, and the component 10 is supplied with electric energy, and the other electrical signal is output to the first processing circuit 16. If the rechargeable battery 12 needs to be charged, First place The circuit 16 performs voltage conversion on the electrical signal output by the adapter, and charges the rechargeable battery 12 using the converted electrical signal.
  • the first processing circuit 16 When the output of the adapter is not connected to the adapter socket 14, it is powered by the rechargeable battery 12, and the first processing circuit 16 operates in the second operating state. At this time, since the output voltage of the rechargeable battery 12 is generally not the same as the operating voltage of the component 10, the first processing circuit 16 performs voltage conversion on the output electrical signal of the rechargeable battery 12, and uses the converted electrical signal to the component. 10 for power supply.
  • the first processing circuit 16 operates either in the first operational state or in the second operational state, and control of its operational state is determined by the control module 20. Specifically, the power supply determining parameter obtaining module 18 obtains the power supply determining parameter (how the power supply control parameter is acquired, which parameters are to be described in detail later), and the power supply determining parameter is transmitted to the control module 20, which is determined by the control module 20. The operating state of the first processing circuit 16.
  • the power control parameters may include: a voltage across the adapter socket 14 and a voltage of the rechargeable battery 12.
  • the second preset value may be that the remaining power of the charging voltage exceeds a predetermined percentage (eg, 95%) , of course, the value can be selected according to the voltage value), indicating that the power is supplied by the adapter, and the rechargeable battery 12 needs to be charged, then the first processing circuit 16 is controlled to operate in the first working state, and the first electrical signal provided by the adapter is performed. Converting, and charging the rechargeable battery 12 with the converted second electrical signal.
  • the third preset value may be less than the first preset value
  • the first processing circuit 16 is controlled to operate in the second work.
  • the state converts the third electrical signal output from the rechargeable battery 12, and supplies power to the component 10 by using the converted fourth electrical signal.
  • the voltage of the rechargeable battery 12 can be obtained by reading the data in the built-in chip of the rechargeable battery 12.
  • the existing mobile phone, notebook computer, PDA, etc. can display the remaining power, which is obtained by reading the data in the built-in chip of the rechargeable battery. Therefore, the voltage for how to get the rechargeable battery will not be described in detail here.
  • the voltage across the adapter socket can be obtained by the usual electronic circuit design and will not be described in detail here.
  • the first processing circuit 16 can operate in two working states, so that the charging and powering functions can be implemented correspondingly in the electronic device.
  • the first processing circuit 16 can be implemented by using one chip, which requires less than two converter chips in the prior art, and reduces the footprint of the chip.
  • the discharge voltage of the rechargeable battery 12 (the voltage of the third electrical signal) may be lower than the voltage of the fourth electrical signal.
  • the rechargeable battery is powered by means of a step-down discharge, and the loss is lower than that of the boost discharge, thereby increasing the utilization of the rechargeable battery.
  • the adapter uses a 5V adapter, that is, the voltage of the first electrical signal and the fourth electrical signal is 5V, in order to ensure the buck power supply
  • the rechargeable battery 12 can include two or more strings of cells.
  • the voltage of the electric signal (first electric signal) supplied from the adapter of the embodiment of the present invention may be set to the upper limit voltage of the charging battery 12.
  • the first processing circuit 16 converts the electrical signal provided by the adapter into a charging power when the adapter is connected and the rechargeable battery needs to be charged.
  • the signal charges the rechargeable battery, and when there is no adapter, the electrical signal output by the rechargeable battery is converted to supply power to the component. Since the voltages of the first electrical signal and the fourth electrical signal are the same, the same circuit can be used. Save chip space.
  • the specific manner in which the first processing circuit 16 is implemented will be described in detail below.
  • the first processing circuit 16 includes:
  • first resistor R L an inductor L, a diode CR1, a capacitor C and a second resistor Rc connected in series
  • first resistor R L is electrically connected to a line connected to the anode (+ ) of the adapter
  • second resistor Rc is electrically connected In a line connected to the negative (-) of the adapter, a series circuit composed of a capacitor C and a second resistor Rc is connected in parallel with the rechargeable battery 12;
  • the field effect transistor Q1 has a drain d connected between the inductor L and the diode CR1, and a source s connected to the second resistor Rc and electrically connected to the line connected to the negative (-) of the adapter.
  • the field effect transistor Q1 may be a depletion type field effect transistor. Other types of transistors may also be used, and the invention is not limited thereto.
  • the control module 20 is connected to the gate g and the source s of the FET Q1, and respectively provides corresponding control signals Ctrlg and Ctrls to control the operating parameters of the FET Q1, so that the first processing circuit 16 outputs the first power to the adapter. The signal is converted, or the third electrical signal output from the rechargeable battery 12 is converted.
  • control module 20 when the control module 20 detects that the connection of the rechargeable battery 12 is disconnected, such as when the rechargeable battery 12 is removed, or when the control module 20 detects that the adapter is plugged into the adapter socket 14 and the rechargeable battery 12 is full, the control module 20
  • the signals Ctrlg and Ctrls can be controlled, for example, to keep them low, turning transistor Q1 off, at which point the power is supplied by the adapter.
  • control signals Ctrlg and Ctrls may be pre-set pulse width modulated (PWM) signals such that the adapter provides power to the components and the rechargeable battery 12 is, for example, BOOST charged.
  • PWM pulse width modulated
  • the control signals Ctrlg and Ctrls may also be another preset pulse width modulation (PWM) signal, so that the circuit operates in the BUCK discharge state and is output by the rechargeable battery. The signal is converted to supply power to the components.
  • the first processing circuit of the embodiment of the present invention further has a third working state.
  • the first processing circuit operates in a third operational state when the adapter provides the fifth electrical signal.
  • the first processing circuit is configured to convert the fifth electrical signal output by the adapter to obtain the second electrical signal, and use the second electrical signal to charge the rechargeable battery. And powering the plurality of components by the adapter using the fifth electrical signal pair.
  • the third operating state of the first processing circuit can be implemented by adding a step-down charging circuit 32 on the basis of FIG. 2, as shown in FIG.
  • the control module 20 controls the first processing circuit 16 to operate in the first working state or the third working state according to the voltage of the electrical signal provided by the adapter when the power supply determining parameter indicates that the power is supplied by the adapter, and the rechargeable battery 12 needs to be charged. And controlling the first processing circuit 16 to operate in a second working state when the power supply determining parameter indicates that the charging battery 12 is powered.
  • step-down charging circuit 32 When the step-down charging circuit 32 is added, for example, a single-pole double-throw switch may be provided.
  • the switch When the adapter power supply signal is the first electrical signal, the switch connects the adapter socket 14 with the first processing circuit 16, and when the adapter power supply signal is In the fifth electrical signal, the switch connects the adapter socket 14 with the newly added step-down charging circuit 32.
  • the step-down charging circuit 32 can be designed according to the existing charging circuit design method, and will not be described in detail herein.
  • the first processing circuit 16 is directly controlled to operate in the second operational state.
  • the third operational state of the first processing circuit 16 can be implemented by a circuit, i.e., the buck charging circuit 32 and the first processing circuit 16 can be integrated.
  • the voltage conversion circuit can convert the voltages of different electrical signals into the same voltage.
  • the first processing circuit 16 can To include at least two sub-circuits that are independent of one another.
  • FIG. 4 shows the case where the first processing circuit 16 includes two sub-circuits.
  • the first sub-circuit 42 converts the first electrical signal or the fifth electrical signal into a second electrical signal.
  • the second sub-circuit 44 converts the third electrical signal output by the first processing circuit 16 to the rechargeable battery 12, and supplies power to the component 10 by using the converted fourth electrical signal.
  • the first sub-circuit 42 is controlled to operate, and the second sub-circuit 44 is turned off, and when the first processing circuit 16 is in the second operating state. At this time, the second sub-circuit 44 is controlled to operate while the first sub-circuit 42 is turned off.
  • the various components in the electronic device may have different operating voltages.
  • the operating voltage of the backlight is 5V
  • the embedded controller (EC) the operating voltage of the display is 3.3 V
  • the DDR3 memory The operating voltage is 1.8V.
  • the voltage of the electrical signal output by the first processing circuit may not satisfy the operation of all components.
  • the voltage conversion can be implemented in two ways.
  • the voltage of the fourth electrical signal is a first voltage
  • the component 10 includes a component a operating at a first voltage and a component b operating at a second voltage, the first voltage and the second voltage being different.
  • the electronic device further includes: a first voltage conversion module 52 for converting an electrical signal or a fourth electrical signal output by the adapter into a sixth electrical signal having a second voltage, the first end of the first voltage conversion module 52 being coupled to the The second end of the first processing circuit 16 and the adapter socket 14 are connected to the component b at the second end.
  • the electrical signal output from the rechargeable battery 12 is supplied to the component b after two conversions.
  • the voltage of the fourth electrical signal is the first voltage
  • the device 10 includes a component a that operates at a first voltage and a component b that operates at a second voltage.
  • the first voltage and the second voltage are different, and the electronic device further includes:
  • a second voltage conversion module 62 for converting an electrical signal or a third electrical signal output by the adapter into a sixth electrical signal having a second voltage, the first end of the second voltage conversion module 62 being coupled to the rechargeable battery 12 And the adapter socket 14, the second end is connected to the component b.
  • the electrical signal output from the rechargeable battery 12 can be supplied to the component b only after one conversion.
  • the second voltage conversion module needs to have the ability to convert the electrical signals of at least two voltages into electrical signals of the same voltage, which can utilize the existing voltage conversion.
  • the device is implemented and will not be further described here.
  • the A processing circuit further has a fourth working state; the control module 20 controls the first processing circuit 16 to operate in the fourth working state when the power supply determining parameter indicates that the power is supplied by the adapter, and the electronic device load exceeds the preset threshold.
  • the first processing circuit 16 converts the third electrical signal output by the rechargeable battery 12, and uses the converted fourth electrical signal to cooperate with the electrical signal provided by the adapter to the component. 10 for power supply. As shown in the figure, the first electrical signal SGN1 and the fourth electrical signal SGN4 are simultaneously output to the component 10 to collectively supply power to the component 10.
  • the above solution can ensure the normal operation of the system under high load.
  • the embodiment of the invention further provides a power supply control chip, which is used for an electronic device provided with a first processing circuit and a rechargeable battery, wherein the power supply control chip comprises:
  • a parameter collection module for collecting the power state of the adapter and the voltage of the rechargeable battery
  • control module configured to control, according to a power supply state of the adapter and a voltage of the rechargeable battery, the first processing circuit to operate in a first working state or a second working state;
  • the first processing circuit converts the first electrical signal output by the adapter to obtain a second electrical signal, and charges the rechargeable battery with the second electrical signal, and the adapter Powering the at least one component with the first electrical signal;
  • the first processing circuit converts the third electrical signal output by the rechargeable battery to obtain a fourth electrical signal, and supplies power to the at least one component by using the fourth electrical signal.
  • the embodiment of the present invention further provides a power supply control method, in an electronic device configured with a first processing circuit and a rechargeable battery, where the power supply control method includes:
  • the first processing circuit Controlling, by the power supply state of the adapter and the voltage of the rechargeable battery, that the first processing circuit operates in a first working state or a second working state; In the first working state, the first processing circuit converts the first electrical signal output by the adapter to obtain a second electrical signal, and charges the rechargeable battery with the second electrical signal, and the adapter Powering the at least one component with the first electrical signal;
  • the first processing circuit converts the third electrical signal output by the rechargeable battery to obtain a fourth electrical signal, and supplies power to the at least one component by using the fourth electrical signal.
  • Step 81 Determine whether the voltage output by the adapter socket is greater than a first voltage threshold (the voltage threshold may be a voltage value detected at both ends of the adapter socket when actually inserting the adapter), if it is to proceed to step 82, otherwise enter Step 86;
  • Step 82 judging whether the rechargeable battery exists, if it is to proceed to step 83, otherwise proceed to step 85;
  • Step 83 Determine whether the current voltage of the rechargeable battery is lower than a second voltage threshold (the voltage threshold may be set to a voltage when the remaining capacity of the rechargeable battery exceeds a predetermined percentage (eg, 95%, of course, the value may be selected as needed) Value), if it is to proceed to step 84, otherwise to step 85;
  • a predetermined percentage eg, 95%, of course, the value may be selected as needed
  • Step 84 Control the first processing circuit to operate in the first working state, where the adapter supplies power to the component, and the first processing circuit converts the electrical signal provided by the adapter to supply power to the rechargeable battery;
  • Step 85 controlling the first processing circuit to be turned off
  • Step 86 Determine that the adapter socket output voltage is less than or equal to the third voltage threshold (this value may be a voltage value actually detected at both ends of the adapter socket after the adapter is pulled out, and the voltage may be stored in a control module of the electronic device. Value), if it is to proceed to step 87, otherwise return to step 81;
  • Step 87 Control the first processing circuit to operate in the second working state.
  • the battery is powered by the rechargeable battery, and the first processing circuit converts the electrical signal provided by the rechargeable battery to supply power to the component.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Description

电子设备、 供电控制芯片和供电控制方法 技术领域
本发明涉及电子设备的供电技术, 特别涉及电子设备、 供电控制芯片和供电控制 方法。
背景技术
以 PAD这种电子设备为例, 为了与 5 V USB供电以及 DC转换效率相兼容, 现 有的 PAD设备都釆用 5V适配器, 而对于 1串电芯的充电电池而言, 其电压输出不是 固定的, 而是例如可以从 4.2V放电到 3.3V, 因此, 对于充电电池而言, 在充电时, 需要利用降压(Buck ) 电路将适配器提供的电压进行降压处理后为充电电池供电, 而 在充电电池放电以向设备的其他电子元器件供电时, 需要利用降压 (Buck ) 电路和 / 或升压 (Boost ) 电路, 将充电电池提供的电压进行降压和 /或升压处理后为电子元器 件供电 (如由 3V电池输出升压到 3.3V或 5V供电, 由 3V电池输出降压到 1.8V供电)。
对于使用充电电池的电子设备而言,其续航能力是用户最关心的一个功能,但在 电压转换过程中, 升压转换相比于降压转换损耗的能量更多, 因此导致电池利用率降 低, 无法满足用户需求。
同时, 充电电池的充电 /供电需要至少两个转换器来实现, 占用空间较大, 不利 于 PAD等便携式设备的小型化。
发明内容
本发明实施例提供一种电子设备、 供电控制芯片和供电控制方法, 提高充电电池 性能。
本发明实施例提供了一种电子设备, 包括:
主板;
与所述主板连接的至少一个元器件;
充电电池;
适配器插座, 与所述至少一个元器件电连接;
第一处理电路,其第一端与所述充电电池电连接,其第二端与所述适配器插座和 所述至少一个元器件电连接, 具有第一工作状态和第二工作状态; 供电判断参数获取模块, 用于获取供电判断参数;
控制模块,用于根据所述供电判断参数控制所述第一处理电路工作于第一工作状 态或第二工作状态;
在第一工作状态下,所述第一处理电路对连接至所述适配器插座的适配器输出的 第一电信号进行转换,得到第二电信号,并利用第二电信号对所述充电电池进行充电, 并且所述适配器利用所述第一电信号对所述至少一个元器件进行供电;
在第二工作状态下,所述第一处理电路对所述充电电池输出的第三电信号进行转 换, 得到第四电信号, 并利用第四电信号对所述至少一个元器件进行供电。
上述电子设备, 其中, 所述控制模块在供电判断参数指示由适配器供电, 且充电 电池需要充电时, 控制所述第一处理电路工作于第一工作状态, 在供电判断参数指示 由充电电池供电时控制所述第一处理电路工作于第二工作状态。
上述电子设备, 其中,
所述适配器还提供电压高于所述第一电信号的电压的第五电信号;
所述第一处理电路还具有第三工作状态;
在所述适配器提供所述第五电信号时, 所述第一处理电路工作于第三工作状态; 在第三工作状态下, 所述第一处理电路对所述适配器输出的第五电信号进行转 换, 得到所述第二电信号, 并利用所述第二电信号对所述充电电池进行充电, 并且所 述适配器利用所述第五电信号对对所述至少一个元器件进行供电。
上述电子设备, 其中, 所述控制模块在供电判断参数指示由适配器供电, 且充电 电池需要充电时, 依据所述适配器提供的电信号的电压, 控制所述第一处理电路工作 于第一工作状态或第三工作状态, 在供电判断参数指示由充电电池供电时控制所述第 一处理电路工作于第二工作状态。
上述电子设备, 其中, 所述第一电信号的电压与所述第四电信号的电压相同。 上述电子设备, 其中, 所述第四电信号的电压高于所述充电电池的放电电压。 上述电子设备,其中,所述第一电信号的电压低于所述充电电池的充电上限电压。 上述电子设备, 其中, 所述第四电信号的电压为第一电压, 所述元器件包括工作 于第二电压的第一元器件, 所述第一电压和第二电压不同, 所述电子设备还包括: 用于将适配器输出的电信号或第四电信号转变为具有第二电压的第六电信号的 第一电压转换模块, 所述第一电压转换模块的第一端连接所述第一处理电路的所述第 二端和所述适配器插座, 其第二端连接所述第一元器件。
上述电子设备, 其中, 所述第四电信号的电压为第一电压, 所述元器件包括工作 于第二电压的第一元器件, 所述第一电压和第二电压不同, 所述电子设备还包括: 用于将适配器输出的电信号或第三电信号转变为具有第二电压的第六电信号的 第二电压转换模块, 所述第二电压转换模块的第一端连接所述充电电池和所述适配器 插座, 其第二端连接所述第一元器件。
上述电子设备, 其中, 所述第一处理电路包括:
依次串联连接的第一电阻、 电感、 二极管、 电容和第二电阻, 所述第一电阻电连 接到与所述适配器的正极连接的线路中, 所述第二电阻电连接到与所述适配器的负极 连接的线路中, 所述电容和第二电阻组成的串联电路与所述充电电池并联连接; 场效应管, 所述场效应管的漏极连接于所述电感和二极管之间, 源极与所述第二 电阻连接, 同时电连接到与所述适配器的负极连接的线路中;
所述控制模块与所述场效应管的栅极和源极连接,用于控制所述场效应管的工作 参数, 使所述第一处理电路对所述适配器输出的第一电信号进行转换, 或对所述充电 电池输出的第三电信号进行转换。
上述电子设备, 其中,
所述第一处理电路还具有第四工作状态;
所述控制模块还用于在供电判断参数指示由适配器供电,且电子设备负载超过预 设门限时, 控制所述第一处理电路工作于第四工作状态;
在第四工作状态下,所述第一处理电路对所述充电电池输出的第三电信号进行转 换, 得到所述第四电信号, 并利用所述第四电信号协同所述适配器提供的电信号共同 对所述至少一个元器件进行供电。
本发明实施例提供了一种供电控制芯片, 用于设置有第一处理电路和充电电池的 电子设备, 所述供电控制芯片包括:
参数釆集模块, 用于釆集适配器的供电状态和充电电池的电压; 和
控制模块, 用于根据所述适配器的供电状态和充电电池的电压控制所述第一处理 电路工作于第一工作状态或第二工作状态;
在第一工作状态下, 所述第一处理电路对所述适配器输出的第一电信号进行转 换, 得到第二电信号, 并利用第二电信号对所述充电电池进行充电, 并且所述适配器 利用所述第一电信号对所述至少一个元器件进行供电;
在第二工作状态下,所述第一处理电路对所述充电电池输出的第三电信号进行转 换, 得到第四电信号, 并利用第四电信号对所述至少一个元器件进行供电。
本发明实施例提供了 一种供电控制方法, 用于设置有第一处理电路和充电电池 的电子设备中, 所述供电控制方法包括:
釆集适配器的供电状态和充电电池的电压; 和
根据所述适配器的供电状态和充电电池的电压控制所述第一处理电路工作于第 一工作状态或第二工作状态;
在第一工作状态下, 所述第一处理电路对所述适配器输出的第一电信号进行转 换, 得到第二电信号, 并利用第二电信号对所述充电电池进行充电, 并且所述适配器 利用所述第一电信号对所述至少一个元器件进行供电;
在第二工作状态下, 所述第一处理电路对所述充电电池输出的第三电信号进行转 换, 得到第四电信号, 并利用第四电信号对所述至少一个元器件进行供电。
本发明实施例的电子设备、供电控制芯片和供电控制方法中,利用第一处理电路, 并通过控制第一处理电路的工作状态来实现充电电池的充电和供电管理, 节约了有限 的 PCB板布局空间。
本发明实施例的电子设备、 供电控制芯片和供电控制方法中, 第一处理电路对充 电电池的输出信号进行升压后对元器件供电, 提高了充电电池的利用效率。
本发明实施例的电子设备、 供电控制芯片和供电控制方法中, 在适配器提供的电 信号的电压和第一处理电路转换充电电池的电信号得到的电压相同的情况下, 利用同 一电路来实现充电电池的充电和供电管理, 节约了有限的 PCB板布局空间。 本发明实施例的电子设备、 供电控制芯片和供电控制方法中, 还设置了第一处理 电路的第三工作状态, 使得其能够适应适配器提供的电信号的电压不同的情况, 进一 步提升了电子设备的适应性。
本发明实施例的电子设备、供电控制芯片和供电控制方法中,在系统负载较大时, 单独适配器供电无法满足系统需求时, 由第一处理电路对充电电池输出的电信号进行 转换, 与适配器共同为系统供电, 满足系统需求, 保证了电子设备的正常工作。 附图说明
图 1为本发明实施例的电子设备的结构示意图;
图 2为第一处理电路的结构示意图;
图 3为适配器提供多种电压的电信号时第一处理电路的一种结构示意图; 图 4为适配器提供多种电压的电信号时第一处理电路的另一种结构示意图; 图 5-6为分别包括电压转换模块的两种实现方式的电子设备结构示意图; 图 7为适配器和充电电池共同供电时的电信号走向示意图。
图 8为根据所述适配器的供电状态和充电电池的电压控制所述第一处理电路工作 状态的流程示意图。 具体实施方式
本发明实施例的电子设备、 供电控制芯片和供电控制方法, 设置了处理电路来连 接适配器以及待供电电子元件, 以提高充电电池的利用率。
如图 1 所示, 本发明实施例的电子设备包括: 主板(图中未示出); 与所述主板 连接的至少一个元器件 10; 充电电池 12; 适配器插座 14, 与所述至少一个元器件 10 电连接; 第一处理电路 16, 其第一端与所述充电电池 12电连接, 第二端与所述适配 器插座 14和所述至少一个元器件 10电连接, 具有第一工作状态和第二工作状态; 供 电判断参数获取模块 18 , 用于获取供电判断参数; 控制模块 20, 用于根据所述供电 判断参数控制所述第一处理电路 16工作于第一工作状态或第二工作状态。
在第一工作状态下,第一处理电路 16对连接至适配器插座 14的适配器输出的第 一电信号进行转换, 并利用转换得到的第二电信号对充电电池 12进行充电, 并且适 配器利用第一电信号对元器件 10进行供电。
在第二工作状态下,第一处理电路 16对充电电池 12放电输出的第三电信号进行 转换, 并利用转换得到的第四电信号对元器件 10进行供电。
下面结合图 1所示的电子设备结构对其工作过程描述如下。
第一处理电路 16包括两种工作状态。 当适配器的输出端与适配器插座连接时, 电子设备由适配器供电, 第一处理电路 16 工作于第一工作状态下。 适配器提供的电 信号经由适配器插座 14分为两路, 一路电信号输出到元器件 10, 为元器件 10提供电 能, 同时另一路电信号输出到第一处理电路 16, 如果充电电池 12需要充电, 第一处 理电路 16将适配器输出的电信号进行电压转换, 并利用转换后的电信号对充电电池 12进行充电。
当适配器的输出端没有与适配器插座 14连接时, 由充电电池 12供电, 第一处理 电路 16工作于第二工作状态下。 此时, 由于充电电池 12的输出电压一般都不会与元 器件 10的工作电压相同, 第一处理电路 16对充电电池 12的输出电信号进行电压转 换, 并利用转换后的电信号对元器件 10进行供电。
第一处理电路 16或者工作于第一工作状态, 或者工作于第二状态, 其工作状态 的控制由控制模块 20决定。 具体而言, 供电判断参数获取模块 18获取供电判断参数 (该供电控制参数如何获取、 获取哪些参数将在后面进行详细描述), 并将该供电判 断参数传递给控制模块 20, 由控制模块 20决定第一处理电路 16的工作状态。
在本发明的具体实施例中, 供电控制参数可以包括: 适配器插座 14两端的电压 以及充电电池 12电压。
如果适配器插座 14两端的电压高于第一预设值,且充电电池 12的当前电压低于 第二预设值(例如, 第二预设值可以是充电电压剩余电量超过预定百分比 (如 95%, 当然该值可以根据需要选择 ) 时的电压值), 表明由适配器供电, 且充电电池 12需要 充电, 则控制第一处理电路 16 工作于第一工作状态, 对适配器提供的第一电信号进 行转换, 并利用转换得到的第二电信号对所述充电电池 12进行充电。
如果适配器插座 14两端的电压低于第三预设值(该第三预设值可以小于第一预 设值), 则表明适配器无法供电, 此时, 控制第一处理电路 16工作于第二工作状态, 对充电电池 12输出的第三电信号进行转换, 并利用转换得到的第四电信号对元器件 10进行供电。
充电电池 12的电压可以通过读取充电电池 12的内置芯片中的数据得到,如现有 的手机、 笔记本电脑、 PDA等都能显示剩余电量, 其就是通过读取充电电池内置芯片 中的数据得到的, 因此, 对于如何得到充电电池的电压在此不作详细描述。
适配器插座两端的电压可以通过通常的电子电路设计方案得到,在此也不作详细 描述。
本发明实施例的电子设备中, 第一处理电路 16可以工作于两种工作状态, 使得 能够在电子设备中相应地实现充电和供电功能。 可以利用一个芯片来实现第一处理电 路 16, 相比于现有技术中需要两个转换器芯片才能, 降低了芯片的占用空间。 在本发明的具体实施例中, 为了提高充电电池的续航时间, 充电电池 12的放电 电压 (第三电信号的电压)可以低于第四电信号的电压。
也就是说,该充电电池是釆用降压放电的方式进行供电,其损耗低于升压放电的 方式进行供电的损耗, 因此提高了充电电池的利用率。
一般而言, 现在很多的电子设备为了兼容 USB的 5V供电机制, 所以适配器都 釆用 5V适配器, 也就是说, 第一电信号和第四电信号的电压为 5V, 为了保证降压供 电, 在本发明的具体实施例中该充电电池 12可以包括两串或两串以上的电芯。
在这种情况下, 本发明实施例的适配器提供的电信号(第一电信号)的电压可以 氐于充电电池 12的充电上限电压。
在本发明的具体实施例中,在第一电信号和第四电信号的电压相同时,该第一处 理电路 16在适配器连接且充电电池需要充电时, 将适配器提供的电信号转换为充电 电信号对充电电池进行充电, 而在没有适配器时, 将充电电池输出的电信号转换后为 元器件供电, 由于第一电信号和第四电信号的电压相同时, 因此可以利用同一电路来 实现, 节约芯片占用空间。 下面就第一处理电路 16实现的具体方式进行详细说明。
如图 2所示, 第一处理电路 16包括:
依次串联连接的第一电阻 RL、 电感 L、 二极管 CR1、 电容 C和第二电阻 Rc, 第 一电阻 RL电连接到与适配器的正极(+ )连接的线路中, 第二电阻 Rc电连接到与适 配器的负极(- )连接的线路中, 电容 C和第二电阻 Rc组成的串联电路与充电电池 12 与并联连接;
场效应管 Q1 , 漏极 d连接于电感 L和二极管 CR1之间, 源极 s与第二电阻 Rc 连接, 同时电连接到与适配器的负极(- )连接的线路中。
场效应管 Q1可以是耗尽型场效应晶体管。 也可以是其他类型的晶体管, 本发明 不限于此。 控制模块 20与场效应管 Q1的栅极 g和源极 s连接, 分别提供相应的控制 信号 Ctrlg和 Ctrls, 控制场效应管 Q1的工作参数, 使第一处理电路 16对适配器输出 的第一电信号进行转换, 或对充电电池 12输出的第三电信号进行转换。 例如, 当控 制模块 20检测到充电电池 12的连接断开时, 例如充电电池 12被移除时, 或者当控 制模块 20检测到适配器接入适配器插座 14并充电电池 12已充满时, 控制模块 20可 以控制信号 Ctrlg和 Ctrls, 例如使它们都保持低电平, 使晶体管 Q1截止, 此时由适 配器提供电能。 当控制模块 20检测到适配器接入适配器插座 14并充电电池 12未充 满时, 控制信号 Ctrlg和 Ctrls可以为预先设定的脉冲宽度调制(PWM )信号, 使得由 适配器为元器件提供电能, 并且对充电电池 12进行例如 BOOST充电。 当控制模块 20检测到充电电池接入而适配器未接入,控制信号 Ctrlg和 Ctrls也可以为另一预先设 定的脉冲宽度调制 (PWM )信号, 使得电路工作在 BUCK放电状态, 由充电电池输 出的信号经转换后对元器件供电。
当然,上述的结构仅仅是举例说明, 并不代表仅仅能够利用图 2所示的结构来实 现上述的功能。
当然, 随着便携式电子设备的不断发展, 已经有电子设备利用坞 (Dock ) 方式 进行供电, 此时, 适配器提供的电信号(第五电信号)的电压高于第一电信号的电压, 这种情况下, 本发明实施例的第一处理电路还具有的第三工作状态。
在所述适配器提供所述第五电信号时, 所述第一处理电路工作于第三工作状态。 在第三工作状态下,所述第一处理电路用于对所述适配器输出的第五电信号转换 得到所述第二电信号, 并利用所述第二电信号对所述充电电池进行充电, 并由所述适 配器利用所述第五电信号对对所述多个元器件进行供电。
在本发明的具体实施例中,该第一处理电路的第三工作状态可以在图 2的基础上 另外增加一个降压充电电路 32来实现, 如图 3所示。 控制模块 20在供电判断参数指 示由适配器供电, 且充电电池 12需要充电时, 依据所述适配器提供的电信号的电压, 控制所述第一处理电路 16 工作于第一工作状态或第三工作状态, 在供电判断参数指 示由充电电池 12供电时控制所述第一处理电路 16工作于第二工作状态。
在增加降压充电电路 32时, 可以设置例如单刀双掷开关, 当适配器供电电信号 为第一电信号时, 该开关将适配器插座 14与第一处理电路 16连接, 而当适配器供电 电信号为第五电信号时, 该开关将适配器插座 14与新增降压充电电路 32连接, 降压 充电电路 32可以按照现有的充电电路设计方法来设计, 在此不作详细描述。
在供电判断参数指示由充电电池 12供电时, 如上所述, 直接控制所述第一处理 电路 16工作于第二工作状态即可。
备选地, 在本发明的具体实施例中, 该第一处理电路 16的第三工作状态可以由 一个电路来实现, 即, 降压充电电路 32与第一处理电路 16可以集成在一起。
众所周知的是, 电压转换电路能够将不同的电信号的电压转换为同一电压,在本 发明的具体实施例中, 如果适配器输出的电压在一个范围内, 该第一处理电路 16可 以包括相互独立的至少两个子电路。 图 4示出了第一处理电路 16包括两个子电路的 情况。
第一子电路 42将第一电信号或第五电信号转换为第二电信号。
第二子电路 44将所述第一处理电路 16对充电电池 12输出的第三电信号进行转 换, 并利用转换得到的第四电信号对元器件 10进行供电。
当所述第一处理电路 16在第一工作状态或第三工作状态时, 控制第一子电路 42 工作, 而第二子电路 44关闭, 而当所述第一处理电路 16在第二工作状态时, 控制第 二子电路 44工作, 而第一子电路 42关闭。
电子设备中的各种元器件可能各自的工作电压都不尽相同, 如一些电子设备中, 背光的工作电压为 5V, 嵌入式控制器(EC )、 显示器的工作电压为 3.3 V , 而 DDR3 内存的工作电压为 1.8V, 这种情况下, 由第一处理电路输出的电信号的电压可能无法 满足所有的元器件的工作, 此时, 就需要设置电压转换模块, 在本发明的具体实施例 中, 该电压转换可以以两种方式实现。
实现方式一
如图 5所示, 第四电信号的电压为第一电压, 元器件 10包括工作于第一电压的 元器件 a和工作于第二电压的元器件 b, 第一电压和第二电压不同, 电子设备还包括: 用于将适配器输出的电信号或第四电信号转变为具有第二电压的第六电信号的 第一电压转换模块 52,第一电压转换模块 52的第一端连接所述第一处理电路 16的第 二端和所述适配器插座 14, 第二端连接元器件 b。
在利用充电电池 12为元器件 b供电时,充电电池 12输出的电信号经过两次转换 后为元器件 b供电。
实现方式二
但由于每转换一次都有电能的损耗, 不管是升压转换还是降压转换, 因此, 在本 发明的具体实施例中, 如图 6所示, 第四电信号的电压为第一电压, 元器件 10包括 工作于第一电压的元器件 a和工作于第二电压的元器件 b,第一电压和第二电压不同, 电子设备还包括:
用于将适配器输出的电信号或第三电信号转变为具有第二电压的第六电信号的 第二电压转换模块 62,所述第二电压转换模块 62的第一端连接所述充电电池 12和所 述适配器插座 14, 第二端连接元器件 b。 ,在利用充电电池 12为元器件 b供电时, 充电电池 12输出的电信号只需要经过 一次转换后就可以为元器件 b供电。
由于适配器提供的电信号的电压和充电电池的电压不同,所以第二电压转换模块 需要具备将至少两种电压的电信号转变为同一电压的电信号的能力, 这可以釆用现有 的电压转换器来实现, 在此不作进一步描述。
当电子设备的负载较重时 (如运行大运算量的测试工作时), 单独由适配器供电 可能无法满足系统功耗需求, 为了解决这一问题, 在本发明的具体实施例中, 所述第 一处理电路还具有的第四工作状态; 所述控制模块 20在供电判断参数指示由适配器 供电, 且电子设备负载超过预设门限时, 控制第一处理电路 16工作于第四工作状态。
如图 7所示, 在第四工作状态下, 第一处理电路 16对充电电池 12输出的第三电 信号进行转换, 并利用转换得到的第四电信号协同适配器提供的电信号共同对元器件 10进行供电。 如图所述, 第一电信号 SGN1和第四电信号 SGN4同时输出给元器件 10, 共同对元器件 10进行供电。
上述方案能够保证系统处于较高的负载的情况下的正常运行。
本发明实施例还提供了一种供电控制芯片, 用于设置有第一处理电路和充电电池 的电子设备, 所述供电控制芯片包括:
参数釆集模块, 用于釆集适配器的供电状态和充电电池的电压; 和
控制模块, 用于根据所述适配器的供电状态和充电电池的电压控制所述第一处理 电路工作于第一工作状态或第二工作状态;
在第一工作状态下, 所述第一处理电路对所述适配器输出的第一电信号进行转 换, 得到第二电信号, 并利用第二电信号对所述充电电池进行充电, 并且所述适配器 利用所述第一电信号对所述至少一个元器件进行供电;
在第二工作状态下,所述第一处理电路对所述充电电池输出的第三电信号进行转 换, 得到第四电信号, 并利用第四电信号对所述至少一个元器件进行供电。
本发明实施例还提供了一种供电控制方法, 用于设置有第一处理电路和充电电池 的电子设备中, 所述供电控制方法包括:
釆集适配器的供电状态和充电电池的电压; 和
根据所述适配器的供电状态和充电电池的电压控制所述第一处理电路工作于第 一工作状态或第二工作状态; 在第一工作状态下, 所述第一处理电路对所述适配器输出的第一电信号进行转 换, 得到第二电信号, 并利用第二电信号对所述充电电池进行充电, 并且所述适配器 利用所述第一电信号对所述至少一个元器件进行供电;
在第二工作状态下, 所述第一处理电路对所述充电电池输出的第三电信号进行转 换, 得到第四电信号, 并利用第四电信号对所述至少一个元器件进行供电。
在本发明的具体实施例中, 根据所述适配器的供电状态和充电电池的电压控制所 述第一处理电路工作于第一工作状态或第二工作状态的具体流程如图 8所示, 包括: 步骤 81 , 判断适配器插座输出的电压是否大于第一电压门限值(该电压门限值可 以是在实际插入适配器时在适配器插座两端检测到的电压值), 如果是进入步骤 82 , 否则进入步骤 86;
步骤 82 , 判断充电电池是否存在, 如果是进入步骤 83 , 否则进入步骤 85 ;
步骤 83 , 判断充电电池的当前电压是否低于第二电压门限值(该电压门限值可设 置为充电电池剩余电量超过预定百分比(如 95% , 当然该值可以根据需要选择 )时的 电压值), 如果是进入步骤 84 , 否则进入步骤 85 ;
步骤 84 , 控制第一处理电路工作于第一工作状态, 此时由适配器为元器件供电, 第一处理电路利用适配器提供的电信号转换后为充电电池供电;
步骤 85 , 控制第一处理电路关闭;
步骤 86 , 判断适配器插座输出电压小于或等于第三电压门限值 (该值可以是通过 拔出适配器后在适配器插座两端实际检测的电压值, 并且可以在电子设备的控制模块 中存储该电压值), 如果是进入步骤 87 , 否则返回步骤 81 ;
步骤 87 , 控制第一处理电路工作于第二工作状态, 此时由充电电池供电, 第一处 理电路利用充电电池提供的电信号转换后为元器件供电。
以上所述仅是本发明的优选实施方式, 应当指出, 对于本技术领域的普通技术人 员来说, 在不脱离本发明原理的前提下, 还可以做出若千改进和润饰, 这些改进和润 饰也应视为本发明的保护范围。

Claims

权 利 要 求
1.一种电子设备, 包括:
主板;
与所述主板连接的至少一个元器件;
充电电池;
适配器插座, 与所述至少一个元器件电连接;
第一处理电路,其第一端与所述充电电池电连接,其第二端与所述适配器插座和 所述至少一个元器件电连接, 具有第一工作状态和第二工作状态;
供电判断参数获取模块, 用于获取供电判断参数;
控制模块,用于根据所述供电判断参数控制所述第一处理电路工作于第一工作状 态或第二工作状态;
在第一工作状态下,所述第一处理电路对连接至所述适配器插座的适配器输出的 第一电信号进行转换,得到第二电信号,并利用第二电信号对所述充电电池进行充电, 并且所述适配器利用所述第一电信号对所述至少一个元器件进行供电;
在第二工作状态下,所述第一处理电路对所述充电电池输出的第三电信号进行转 换, 得到第四电信号, 并利用第四电信号对所述至少一个元器件进行供电。
2. 根据权利要求 1 所述的电子设备, 其中, 所述控制模块在供电判断参数指示 由适配器供电,且充电电池需要充电时,控制所述第一处理电路工作于第一工作状态, 在供电判断参数指示由充电电池供电时控制所述第一处理电路工作于第二工作状态。
3. 根据权利要求 1所述的电子设备, 其中,
所述适配器还提供电压高于所述第一电信号的电压的第五电信号;
所述第一处理电路还具有第三工作状态;
在所述适配器提供所述第五电信号时, 所述第一处理电路工作于第三工作状态; 在第三工作状态下, 所述第一处理电路对所述适配器输出的第五电信号进行转 换, 得到所述第二电信号, 并利用所述第二电信号对所述充电电池进行充电, 并且所 述适配器利用所述第五电信号对对所述至少一个元器件进行供电。
4. 根据权利要求 3 所述的电子设备, 其中, 所述控制模块在供电判断参数指示 由适配器供电, 且充电电池需要充电时, 依据所述适配器提供的电信号的电压, 控制 所述第一处理电路工作于第一工作状态或第三工作状态, 在供电判断参数指示由充电 电池供电时控制所述第一处理电路工作于第二工作状态。
5. 根据权利要求 1 所述的电子设备, 其中, 所述第一电信号的电压与所述第四 电信号的电压相同。
6. 根据权利要求 1 所述的电子设备, 其中, 所述第四电信号的电压高于所述充 电电池的放电电压。
7. 根据权利要求 1 所述的电子设备, 其中, 所述第一电信号的电压低于所述充 电电池的充电上限电压。
8. 根据权利要求 1所述的电子设备, 其中, 所述第四电信号的电压为第一电压, 所述元器件包括工作于第二电压的第一元器件, 所述第一电压和第二电压不同, 所述 电子设备还包括:
用于将适配器输出的电信号或第四电信号转变为具有第二电压的第六电信号的 第一电压转换模块, 所述第一电压转换模块的第一端连接所述第一处理电路的所述第 二端和所述适配器插座, 其第二端连接所述第一元器件。
9. 根据权利要求 1所述的电子设备, 其中, 所述第四电信号的电压为第一电压, 所述元器件包括工作于第二电压的第一元器件, 所述第一电压和第二电压不同, 所述 电子设备还包括:
用于将适配器输出的电信号或第三电信号转变为具有第二电压的第六电信号的 第二电压转换模块, 所述第二电压转换模块的第一端连接所述充电电池和所述适配器 插座, 其第二端连接所述第一元器件。
10. 根据权利要求 1所述的电子设备, 其中, 所述第一处理电路包括: 依次串联连接的第一电阻、 电感、 二极管、 电容和第二电阻, 所述第一电阻电连 接到与所述适配器的正极连接的线路中, 所述第二电阻电连接到与所述适配器的负极 连接的线路中, 所述电容和第二电阻组成的串联电路与所述充电电池并联连接;
场效应管, 所述场效应管的漏极连接于所述电感和二极管之间, 源极与所述第二 电阻连接, 同时电连接到与所述适配器的负极连接的线路中;
所述控制模块与所述场效应管的栅极和源极连接,用于控制所述场效应管的工作 参数, 使所述第一处理电路对所述适配器输出的第一电信号进行转换, 或对所述充电 电池输出的第三电信号进行转换。
11. 根据权利要求 1所述的电子设备, 其中,
所述第一处理电路还具有第四工作状态;
所述控制模块还用于在供电判断参数指示由适配器供电,且电子设备负载超过预 设门限时, 控制所述第一处理电路工作于第四工作状态;
在第四工作状态下,所述第一处理电路对所述充电电池输出的第三电信号进行转 换, 得到所述第四电信号, 并利用所述第四电信号协同所述适配器提供的电信号共同 对所述至少一个元器件进行供电。
12. 一种供电控制芯片, 用于设置有第一处理电路和充电电池的电子设备, 所述 供电控制芯片包括:
参数釆集模块, 用于釆集适配器的供电状态和充电电池的电压; 和
控制模块, 用于根据所述适配器的供电状态和充电电池的电压控制所述第一处理 电路工作于第一工作状态或第二工作状态;
在第一工作状态下, 所述第一处理电路对所述适配器输出的第一电信号进行转 换, 得到第二电信号, 并利用第二电信号对所述充电电池进行充电, 并且所述适配器 利用所述第一电信号对所述至少一个元器件进行供电;
在第二工作状态下,所述第一处理电路对所述充电电池输出的第三电信号进行转 换, 得到第四电信号, 并利用第四电信号对所述至少一个元器件进行供电。
13. 一种供电控制方法, 用于设置有第一处理电路和充电电池的电子设备中, 所 述供电控制方法包括:
釆集适配器的供电状态和充电电池的电压; 和
根据所述适配器的供电状态和充电电池的电压控制所述第一处理电路工作于第 一工作状态或第二工作状态;
在第一工作状态下, 所述第一处理电路对所述适配器输出的第一电信号进行转 换, 得到第二电信号, 并利用第二电信号对所述充电电池进行充电, 并且所述适配器 利用所述第一电信号对所述至少一个元器件进行供电;
在第二工作状态下,所述第一处理电路对所述充电电池输出的第三电信号进行转 换, 得到第四电信号, 并利用第四电信号对所述至少一个元器件进行供电。
PCT/CN2011/084837 2011-03-07 2011-12-28 电子设备、供电控制芯片和供电控制方法 WO2012119476A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/002,652 US9350167B2 (en) 2011-03-07 2011-12-28 Electronic device, power supply control chip and power supply control method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110053771.3 2011-03-07
CN201110053771.3A CN102684271B (zh) 2011-03-07 2011-03-07 一种电子设备、供电控制芯片和供电控制方法

Publications (1)

Publication Number Publication Date
WO2012119476A1 true WO2012119476A1 (zh) 2012-09-13

Family

ID=46797469

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/084837 WO2012119476A1 (zh) 2011-03-07 2011-12-28 电子设备、供电控制芯片和供电控制方法

Country Status (3)

Country Link
US (1) US9350167B2 (zh)
CN (1) CN102684271B (zh)
WO (1) WO2012119476A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103475068B (zh) 2013-09-30 2016-03-23 小米科技有限责任公司 一种充电器、充电终端、充电系统及充电控制方法
KR101894777B1 (ko) * 2015-09-22 2018-09-04 광동 오포 모바일 텔레커뮤니케이션즈 코포레이션 리미티드 충전 제어 방법과 장치 및 전자 기기
CN105677405B (zh) * 2015-12-31 2019-12-24 联想(北京)有限公司 一种正反插接口处理方法及电子设备
CN109444753B (zh) * 2018-10-30 2021-06-15 出门问问信息科技有限公司 电量检测电路、方法及音频设备
CN114361236A (zh) * 2019-07-31 2022-04-15 京东方科技集团股份有限公司 电致发光显示面板及显示装置
CN111857310A (zh) * 2020-07-24 2020-10-30 杭州迪普信息技术有限公司 元器件的供电系统及其方法
EP4187748A4 (en) * 2020-08-21 2023-09-13 Huawei Technologies Co., Ltd. CELL CONTROL CIRCUIT, AND ELECTRONIC DEVICE

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040075418A1 (en) * 2000-09-21 2004-04-22 Densham William L. Power management for battery powered appliances
CN1248385C (zh) * 2003-02-11 2006-03-29 美国凹凸微系有限公司 电源管理拓扑结构
CN200941561Y (zh) * 2005-02-18 2007-08-29 美国凹凸微系有限公司 并行供电的便携式电气装置
CN101051752A (zh) * 2006-04-03 2007-10-10 美国凹凸微系有限公司 混合切换式电源转换器的供电系统、供电装置及供电方法
CN101944758A (zh) * 2010-09-24 2011-01-12 鸿富锦精密工业(深圳)有限公司 具有动态分配充电电流功能的电池管理系统和方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7023110B2 (en) * 2001-08-09 2006-04-04 Hewlett-Packard Development Company, L.P. Apparatus and method utilizing an AC adaptor port for event triggering
US20070210750A1 (en) * 2006-03-08 2007-09-13 Samsung Electronics Co., Ltd. Power supply device and power supplying method for power supply device
CN101202464A (zh) * 2006-11-01 2008-06-18 美国凹凸微系有限公司 带有充电器/升压控制器的电源管理系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040075418A1 (en) * 2000-09-21 2004-04-22 Densham William L. Power management for battery powered appliances
CN1248385C (zh) * 2003-02-11 2006-03-29 美国凹凸微系有限公司 电源管理拓扑结构
CN200941561Y (zh) * 2005-02-18 2007-08-29 美国凹凸微系有限公司 并行供电的便携式电气装置
CN101051752A (zh) * 2006-04-03 2007-10-10 美国凹凸微系有限公司 混合切换式电源转换器的供电系统、供电装置及供电方法
CN101944758A (zh) * 2010-09-24 2011-01-12 鸿富锦精密工业(深圳)有限公司 具有动态分配充电电流功能的电池管理系统和方法

Also Published As

Publication number Publication date
CN102684271A (zh) 2012-09-19
US9350167B2 (en) 2016-05-24
US20130334882A1 (en) 2013-12-19
CN102684271B (zh) 2015-06-17

Similar Documents

Publication Publication Date Title
CN109787318B (zh) 一种放电电路和电子设备
TWI600245B (zh) 電源供應電路、電源供應系統以及電源供應方法
US7768150B2 (en) Power management unit for battery-operated devices
US8427113B2 (en) Voltage converter with combined buck converter and capacitive voltage divider
US8830073B2 (en) Power converter with reduced power consumption when toggling between sleep and normal modes during device charging
JP5468093B2 (ja) 自動モードスイッチングを備えた電力変換器
US11677260B2 (en) Managing power in a portable device comprising multiple batteries
CN100495876C (zh) 电子装置
WO2012119476A1 (zh) 电子设备、供电控制芯片和供电控制方法
US20090033293A1 (en) Voltage converter with combined capacitive voltage divider, buck converter and battery charger
US20080100143A1 (en) Power management system with charger/boost controller
US20070135066A1 (en) Wireless computer peripheral device
KR20150038091A (ko) 전압 레귤레이터
TWI505593B (zh) 可配置電源供應系統及電源供應配置方法
US8723485B2 (en) Power supply system
CN113013956B (zh) 充放电电路和电子设备
CN219916307U (zh) 断电续能电脑电源
CN201750171U (zh) 一种新型旅游应急充电器
CN200976384Y (zh) 一种充电电池
CN210839024U (zh) 一种多功能移动电源
CN220066900U (zh) 一种电池升压电路
CN218124369U (zh) 一种供电切换电路及用电装置
CN219627383U (zh) 一种升压型电源装置
KR100859966B1 (ko) 솔라셀을 이용한 교류출력 전원충전장치
CN111030237A (zh) 移动电源及其工作方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11860314

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14002652

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11860314

Country of ref document: EP

Kind code of ref document: A1