JP2010267719A - 薄膜電子素子の製造方法 - Google Patents

薄膜電子素子の製造方法 Download PDF

Info

Publication number
JP2010267719A
JP2010267719A JP2009116652A JP2009116652A JP2010267719A JP 2010267719 A JP2010267719 A JP 2010267719A JP 2009116652 A JP2009116652 A JP 2009116652A JP 2009116652 A JP2009116652 A JP 2009116652A JP 2010267719 A JP2010267719 A JP 2010267719A
Authority
JP
Japan
Prior art keywords
thin film
film electronic
electronic device
manufacturing
transfer mold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009116652A
Other languages
English (en)
Inventor
Susumu Adachi
晋 足立
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP2009116652A priority Critical patent/JP2010267719A/ja
Publication of JP2010267719A publication Critical patent/JP2010267719A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Solid State Image Pick-Up Elements (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Thin Film Transistor (AREA)

Abstract

【課題】
転写型に形成された薄膜電子材料層を、転写型から良好に離型して転写することのできる薄膜電子素子の製造方法を提供する。
【解決手段】
凹凸パターンが形成された転写型4に親液処理をする親液処理工程と、親液処理がされた転写型4に剥離層を形成する剥離層形成工程と、剥離層が形成された転写型4に薄膜電子材料層を形成する薄膜電子材料層形成工程と、前記転写型4に形成された薄膜電子材料層を基板上に転写する転写工程と、を備えている。剥離層を形成する前に親液処理を行うことで、剥離層をムラなく均一に広がるように形成することができる。それにより、転写型4に形成された薄膜電子材料層を転写型4から良好に離型して転写することができる。
【選択図】図4

Description

本発明は、テレビやパーソナルコンピュータのモニターとして用いられる薄型画像表示装置、あるいは医療分野や、非破壊検査、RI(Radio Isotope)検査を含む産業分野などに用いられる放射線撮像装置の放射線検出器に用いられる、薄膜電子素子の製造方法に関するものである。
テレビやパーソナルコンピュータのモニターとして用いられる薄型画像表示装置および放射線撮像装置には、画像を表示あるいは検出するために、2次元マトリックス状に表示素子や受光素子が配列して形成されている。各表示素子および各受光素子は、スイッチとして作用する薄膜トランジスタや電荷を一時的に蓄積するコンデンサ等の薄膜電子素子を備えている。
近年、これら薄膜電子素子は、各種研究が行われ、フォトリソグラフィ法以外にも出版業界で広く使用されている印刷技術を応用した、インクジェット法、凸版印刷法、グラビア印刷法、ナノインプリント法等の方法により製造されている。このような方法をさらに応用した技術として、サイズ(面積)の小さい薄膜電子材料層を、一旦、転写型に形成した後、形成された薄膜電子材料層をメイン基板に転写する方法、すなわち、nTP(ナノ・トランスファー・プリンティング)法が考案されている(例えば、非特許文献1参照)。
D.Henes, S.Mezhenny, M.Breban, E.Williams, V.Ballarotto, G.Esen, A.Southard, and M.Fuhrer, "Nanotransfer printing of organic and carbon nanotube thin-film transistors on plastic substrates", Appl.Phys.Lett.vol 86, 163101 2005.
しかしながら、この方法では、転写する薄膜電子材料層のサイズが大きくなると(例えば、マイクロスケール)、元の転写型から離型するのが難しくなるという問題点がある。
なお、薄膜電子材料層とは、配線、半導体膜、絶縁膜等、あるいは、それらの任意の組み合わせのことを示す。
本発明は、このような事情に鑑みてなされたものであって、転写型に形成された薄膜電子材料層を転写型から良好に離型して転写することのできる薄膜電子素子の製造方法を提供することを目的とする。
本願発明者は鋭意研究した結果、次の知見を得ることができた。転写型の離型を良くするために、剥離層を形成することを考案した。しかしながら、そのままの状態で転写型に剥離層を形成しようとしても、転写型の表面に残留する有機物等の汚れや、転写型の表面の疎液性の官能基等により、転写型に塗布された剥離層の材料が、転写型の表面でなじまずに球状になってしまう等、均一に塗布することができないということが新たに判明した。
本発明は、上記の知見に基づきなされたものであって、その目的を達成するために、次のような構成をとる。
すなわち、請求項1に記載の発明は、凹凸パターンが形成された転写型に親液処理をする親液処理工程と、前記親液処理がされた前記転写型に剥離層を形成する剥離層形成工程と、前記剥離層が形成された前記転写型に薄膜電子材料層を形成する薄膜電子材料層形成工程と、前記転写型に形成された薄膜電子材料層を基板上に転写する転写工程と、を備えたことを特徴とする。
[作用・効果]請求項1に記載の発明によれば、凹凸パターンが形成された転写型に剥離層を形成する前に、前処理として親液処理を行う。それにより、剥離層をムラなく均一に転写型の表面をおおうことができるので、転写型から薄膜電子材料層を良好に離型して転写させることができる。
また、本発明において、前記親液処理は、酸素プラズマ処理であることが好ましい(請求項2)。親液処理として、酸素をプラズマ状態にしたものを、転写型の表面に照射する。それにより、転写型の表面に付着している有機物等の汚れを除去して洗浄することができるとともに、転写型の表面を親液性のある官能基を有する表面に改質させることができる。
また、本発明において、前記親液処理は、紫外線処理であることが好ましい(請求項3)。親液処理として、紫外線を照射して大気中からオゾンなどの酸素ラジカルを生成させる。それにより、酸素ラジカルが転写型の表面の付着している有機物等の汚れと反応して除去することで、転写型の表面を洗浄することができる。また、転写型の表面を親水性のある官能基を有する表面に改質させることができる。
また、本発明において、前記剥離層は、フッ素系化合物の塗布処理により形成されることが好ましい(請求項4)。親液処理された転写型に、フッ素系化合物を塗布して剥離層を形成する。それにより、転写型の表面が疎液性のあるフッ素系化合物でおおわれるので、転写する薄膜電子材料層を良好に離型させることができる。
また、本発明において、前記剥離層は、加熱または紫外線照射すると粘着性が低下する樹脂の塗布処理により形成されることが好ましい(請求項5)。親液処理された転写型に、加熱または紫外線照射すると粘着力が低下させる樹脂を塗布して剥離層を形成する。それにより、転写型の表面に形成された薄膜電子材料を転写する際に、剥離層の粘着力を減少させることで、薄膜電子材料を良好に離型させることができる。
また、本発明において、前記転写型に形成される薄膜電子材料層は、配線、半導体膜、絶縁膜あるいはそれらの任意の組み合わせであることが好ましい(請求項6)。配線材料、半導体材料、絶縁体材料あるいはそれらの任意の組み合わせによる薄膜電子材料を転写型に形成する。それにより、転写型に任意に形成された薄膜電子材料層を、基板上に転写することができる。
また、本発明において、前記転写工程を複数回繰り返すことにより、前記薄膜電子素子を2次元状にアレイ化することが好ましい(請求項7)。転写型に形成された薄膜電子素子材料層を基板上に複数回繰り返して転写して、薄膜電子素子を2次元状にアレイ化する。これにより、小面積の転写型でも複数回繰り返して転写させることで、大面積の基板に薄膜電子素子を形成させることができる。
また、本発明において、前記薄膜電子素子は、薄膜トランジスタであることが好ましい(請求項8)。良好に離型することができる転写型を使用して、転写型に形成された薄膜電子材料を転写して形成することで、薄膜トランジスタを製造することができる。
また、本発明において、前記薄膜電子素子は、コンデンサであることが好ましい(請求項9)。良好に離型することができる転写型を使用して、転写型に形成された薄膜電子材料を転写して形成することで、コンデンサを製造することができる。
また、本発明において、前記薄膜電子材料層形成工程は、前記転写型に真空中にて前記半導体膜を形成する半導体膜形成工程と、前記半導体膜が形成された前記転写型に真空中にて連続して前記絶縁膜を形成する絶縁膜形成工程と、を備えていることが好ましい(請求項10)。真空中にて転写型に連続して、半導体膜と絶縁膜を積層して形成する。それにより、大気圧中で形成されたものに比べ、半導体膜と絶縁膜との界面に生じる有機物等の汚れによる欠陥を減少させることができる。
また、本発明において、前記転写工程の前に、前記基板上にゲート電極を形成するゲート電極形成工程と、前記ゲート電極をおおうように前記基板上に、転写の際に前記基板側に前記半導体膜と前記絶縁膜を接着させるための接着用樹脂を形成する接着用樹脂形成工程と、を備え、さらに、前記転写工程の後に、前記半導体膜上にソース電極およびドレイン電極を形成するソース・ドレイン電極形成工程とを備えていることが好ましい(請求項11)。転写の前に、ゲート電極とゲート電極をおおうように接着用樹脂を形成された基板上に、半導体膜と絶縁膜を転写する。それにより、接着用樹脂の粘着力で転写型に形成した半導体膜と絶縁膜を基板側に転写させることができる。また、転写された半導体膜上にソース電極とドレイン電極を形成することにより、薄膜トランジスタを形成することができる。
この発明に係る薄膜電子素子の製造方法によれば、剥離層を形成する前に転写型に親液処理を行うことにより、剥離層をムラなく均一に広がるように形成することができるので、薄膜電子材料層を転写型から良好に離型することができる。
実施例1に係る薄膜トランジスタの製造工程を示すフローチャートである。 実施例1に係るステップS01,S02の説明に供する縦断面図である。 実施例1に係る転写型の概略斜視図である。 実施例1に係るステップS12の説明に供する縦断面図である。 実施例1に係るステップS13の説明に供する縦断面図である。 実施例1に係るステップS14,S15の説明に供する縦断面図である。 実施例1に係るステップS21の説明に供する縦断面図である。 実施例1に係るステップS21の説明に供する縦断面図である。 実施例1に係るステップS23,S24の説明に供する縦断面図である。 実施例1に係るステップS25の説明に供する縦断面図である。 実施例1に係るステップS26の説明に供する縦断面図である。 実施例1に係るステップS27の説明に供する縦断面図である。 フラットパネル型X線検出器の構成を示す回路図である。 実施例2に係るステップS12′の説明に供する縦断面図である。 変形例に係るステップS13″の説明に供する縦断面図である。 変形例に係るステップS21″の説明に供する縦断面図である。 変形例に係るステップS21″の説明に供する縦断面図である。 変形例に係るコンデンサの製造方法の説明に供する縦断面図である。 変形例に係るコンデンサの製造方法の説明に供する縦断面図である。
<薄膜トランジスタの製造方法>
以下、図面を参照して本発明の実施例1を説明する。実施例1の説明は、薄膜電子素子の一例として薄膜トランジスタ(以下、TFTと称す)の製造方法について行う。なお、図1は、実施例1に係る薄膜トランジスタの製造工程を示すフローチャートであり、図2〜図12は、実施例1に係る各ステップの説明に供する図である。
図1を参照する。実施例におけるTFTの製造方法として、大別して2つの工程がある。1つは、基板上にTFTを構成する各要素パターンを形成する工程(ステップS01,S02、ステップS21〜S27)であり、もう一つは、凹凸パターンが形成された転写型に半導体膜およびゲート絶縁膜を形成する工程(ステップS11〜S15)である。なお、説明は、図1のフローチャートに沿って行い、必要に応じて図2〜図12を参照する。
まず、転写前までの基板側における製造工程(ステップS01,S02)について説明する。
(ステップS01)ゲート電極の形成
図2に示すように、基板1の表面上にゲート電極2を形成する。基板1の材料としては、ガラスや合成樹脂など、紫外線等の光を透過する透明なものが好ましい。例えば、合成樹脂であれば、PI(ポリイミド)、PEN(ポリエチレンナフタレート)、PES(ポリエーテルスルホン)、PET(ポリエチレンテレフタレート)等が挙げられるが、耐熱性が優れたPIが好ましい。ゲート電極2は、インクジェット法により、所定のパターンが形成される。なお、ゲート電極2は、凸版印刷法、凹版印刷法、またはロール・ツー・ロール法で形成してもよい。ゲート電極2の材料としては、Ag(銀)、Au(金)、Ta(タンタル)、Ti(チタン)、Cu(銅)、Al(アルミニウム)等が挙げられる。なお、ゲート電極2の材料は、材質がフォトリソグラフィの露光波長(紫外光)に対して透明でないものが好ましい。
(ステップS02)接着用樹脂の形成
図2に示すように、基板1上に形成されたゲート電極2をおおうように接着用樹脂3を形成する。接着用樹脂3の形成は、インクジェット法、ディスペンサ法、またはスピンコート法により行われる。接着用樹脂3の厚みは、0.1μm〜1.0μmの範囲内であることが好ましい。接着用樹脂3の材料としては、アクリル系の樹脂やPIなどの合成樹脂が挙げられる。接着用樹脂3の硬化は、使用する合成樹脂に応じて、加熱して、または紫外線(UV)を照射して行う。しかし、接着用樹脂3の硬化は、形成後に直ぐには行わず、粘度を保った状態にしておく。それは、後述する、転写の工程の際に、接着用樹脂3の粘着力を利用して、転写型に形成された半導体膜とゲート絶縁膜を、転写型から基板1側に転写させるためである。接着用樹脂3の粘度は、10mPa・s〜5000mPa・sの範囲内であることが好ましい。また、硬化後の接着用樹脂3は絶縁膜として機能する。
なお、接着用樹脂3の形成は、図2では、基板1のTFTが形成される近傍にのみに形成されているが、製造方法によっては、基板1全面に形成してもよい。また後述する、転写型に積層して形成する半導体膜およびゲート絶縁膜の、ゲート絶縁膜上に接着用樹脂3を形成してもよい。この場合、基板1上に接着用樹脂3、半導体膜およびゲート絶縁膜が転写される。
次に、上記ステップS01,S02とは別工程である、転写型に半導体膜およびゲート絶縁膜を形成する工程について説明する。
(ステップS11)転写型の作製
図3に示すように、転写型4には、転写する所定の凹凸パターンが形成されている。転写型4の材料としては、例えば、金属であれば、Ni(ニッケル)、無機物であれば、Si(シリコン)、SiO(酸化シリコン)やSiC(炭化ケイ素)、そして、合成樹脂であれば、PDMS(Polydimethylsiloxane)やPMMA(Poly methylmethacrylate)が挙げられる。転写型4の凹凸パターンの形成は、ナノインプリント法、またはフォトリソグラフィ法により行われる。
(ステップS12)親液処理
図4に示すように、転写型4の薄膜電子材料層を形成させる表面に液体をなじませ易くする親液処理を行う。親液処理は、O(酸素)をプラズマ状態にした酸素プラズマを照射して行う酸素プラズマ処理である。酸素プラズマは、供給されたOに電磁波を印加して励起させて、酸素ラジカルや酸素イオンを生成させる。酸素プラズマを転写型4の表面に照射すると、転写型4の表面に残留などして付着する有機物等の汚れを除去して洗浄することができる。また、転写型4の表面を、酸素に富んだ親液性の官能基(例えば、OH基等)に改質することができる。そのため、液体を塗布した際に、転写型の表面にムラなく均一に塗布することができる。すなわち、転写型4の表面を洗浄するとともに、転写型4の表面を親液性にすることができる。
(ステップS13)剥離層の形成
図5に示すように、親液処理された転写型4に剥離層5を形成する。剥離層5は、転写型4を疎液性の表面にするために、転写型4にフッ素系化合物を塗布処理して形成される。フッ素系化合物の塗布処理は、例えば、転写型の表面の全面を処理する場合は、スピンコート法やディップ法を用い、局所的に処理する場合は、ディスペンサ法を用いる。なお、実施例1では、転写型の表面の全面に塗布処理を行う。塗布処理により、転写型4の表面に疎液性の離型層5が形成される。なお、フッ素系化合物として、例えば、ダイキン工業株式会社製のオプツール(登録商標)が挙げられる。
(ステップS14)半導体膜の形成
図6に示すように、剥離層5が形成された転写型4の剥離層5上に、真空中にて半導体膜6を形成する。半導体膜6の形成は、チャンバー内に転写型4を収容し、チャンバー内を減圧して行う。チャンバー内の真空度は、約1Pa以下であることが好ましい。また、約0.1Pa以下に減圧した後、Ar(アルゴン)、O(酸素)、N(窒素)等のガスを別途供給することで、約1Pa以下にしてもよい。半導体膜6の形成は、スパッタリング法、真空蒸着法、イオンプレーティング法、PECVD法等で行われる。半導体膜6の材料としては、In(インジウム)、Ga(ガリウム)、Zn(亜鉛)の少なくとも一つを有する酸化物半導体、例えば、ZnO(酸化亜鉛)、InGaZnO(ガリウム・インジウム酸化亜鉛)等が挙げられる。
(ステップS15)ゲート絶縁膜の形成
図6に示すように、半導体膜6が形成された転写型4の半導体膜6上に、真空中にて連続してゲート絶縁膜7を形成する。ゲート絶縁膜7の形成は、引き続きチャンバー内に転写型4を収容した状態で行う。チャンバー内の真空度は、約1Pa以下であることが好ましい。また、約0.1Pa以下に減圧した後、Ar、O、N等のガスを別途供給することで、約1Pa以下にしてもよい。ゲート絶縁膜7の形成は、スパッタリング法、真空蒸着法、イオンプレーティング法、PECVD法等で行われる。ゲート絶縁膜7の材料としては、無機物であれば、Al(アルミナ)、TiO(酸化チタン)、SiOやSiN(窒化シリコン)、有機物であれば、PIやアクリル系樹脂が挙げられる。また、Y(イットリウム)やHf(ハフニウム)を有する強誘電体材料を用いるものであってもよい。これにより、ゲート電極2に与える電圧を低くすることができる。
上述のように、転写型4をチャンバー内に収容し、チャンバー内を真空にした状態で、転写型4に連続して半導体膜6とゲート絶縁膜7を形成する。そのため、半導体膜6とゲート絶縁膜7との界面に、有機物等の汚れが付着することで生じる界面の欠陥の欠陥密度を低減させることができる。それにより、ゲートOFF時の漏れ電流値、ON/OFF電流比、モビリティ等の特性が良好な薄膜トランジスタを形成することができる。
次に、ステップS11〜S15において、転写型4に積層して形成した半導体膜6とゲート絶縁膜7を、ステップS01,S02後の基板1上に転写する工程、以降のTFTの製造方法について説明する。
(ステップS21)転写
図7および図8に示すように、基板1上に予め形成されたゲート電極2上に、接着用樹脂3を介して、半導体膜6およびゲート絶縁膜7を転写する。半導体膜6とゲート絶縁膜7の転写は、半導体膜6とゲート絶縁膜7が積層して形成された転写型4を、ゲート電極2上に所定の位置に位置合せしてから押圧して行う。接着用樹脂3に押圧された半導体膜6とゲート絶縁膜7は、ゲート絶縁膜7が接着用樹脂3に粘着する。そして、基板1から転写型4を離して行う離型の際に、剥離層5と半導体膜6との界面で剥離することで転写される。それにより、基板1のゲート電極2上に、接着用樹脂3を介して、ゲート絶縁膜7と半導体膜6が形成される。
なお、半導体膜6とゲート絶縁膜7の転写は、基板1全面に一括して転写してもよいし、小面積に分けて、複数回繰り返すことにより転写してもよい。この場合、例えば、複数枚の小面積の転写型4に半導体膜6とゲート絶縁膜7を形成したものを準備し、順次、大面積の基板1上に複数回転写してもよい。また、小面積の転写型4に半導体膜6とゲート絶縁膜7を形成して大面積の基板1上に転写し、再度、転写型4に半導体膜6とゲート絶縁膜7を形成して基板1上に転写し、これを複数回繰り返してもよい。それにより、小面積の転写型4でも大面積の基板1上に2次元マトリックス状にアレイ化して形成することができる。そのため、基板1全面に一括して転写する方法のように、大面積の転写型4や、大面積の転写型4が収容できる真空蒸着装置を必要としない利点がある。
(ステップS22)接着用樹脂の硬化
基板1上に半導体膜6とゲート絶縁膜7を転写した後、接着用樹脂3を硬化させる。接着用樹脂3の硬化は、加熱して、または紫外線(UV)を照射して行う。なお、接着用樹脂3の硬化は、半導体膜6とゲート絶縁膜7の転写中、すなわち、半導体膜6とゲート絶縁膜7を未硬化の接着用樹脂3に、押圧中に行ってもよい。また、半導体膜6とゲート絶縁膜7を未硬化の接着用樹脂3に押圧して所定の高さに保持した状態で行ってもよい。
(ステップS23)レジスト膜の形成
図9に示すように、基板1上に転写された半導体膜6上にレジスト膜8を形成する。レジスト膜8の形成は、スピンコート法、インクジェット法、ディスペンサ法等で行われる。なお、局所的にレジスト膜8を形成する場合は、インクジェット法、ディスペンサ法により行われる。
(ステップS24)露光
図9に示すように、レジスト膜8を形成した後、基板1を挟んでレジスト膜8の反対側から紫外線を照射して露光を行う。すると、ゲート電極2がマスクとなり、ゲート電極2がないところではレジスト膜8に紫外線が照射され、ゲート電極2があるところではゲート電極により紫外線が遮られ、レジスト膜8には紫外線が照射されない。なお、半導体膜6、ゲート絶縁膜7、および接着用樹脂3は、紫外線が透過する材料を使用し、または紫外線が透過するように厚みが調整されている。それにより、基板1を挟んでレジスト膜8の反対側から露光することができる。
(ステップS25)現像
図10に示すように、露光されたレジスト膜8を現像する。これにより、ゲート電極2でマスクされた部分を除いてレジスト膜8が除去される。現像方法としては、パドル式、ディップ式、またはシャワー式が挙げられる。パドル式では、スピン機構上で現像、洗浄、および乾燥が一か所で行うことができる。
(ステップS26)水素イオンのドープ処理
図11に示すように、基板上の半導体膜6に水素イオン(H)をドープする処理を行う。この処理で、TFTのゲートがON状態のときのソース・ドレイン間の接続抵抗を低下させることができる。
水素イオンをドープする処理は、Arガス等の不活性ガスとHガスを供給してプラズマ処理して行われる。ArガスとHガスを供給して電磁波を印加することにより、ArとHが励起してプラズマ状態となり、Arイオンと水素イオンが生成される。Arイオンは、半導体膜6に衝突することで半導体膜6の表面の有機物等の汚れを除去することができる。一方、水素イオンは、ドナーとして半導体膜6内にドープされる。そのため、酸化物半導体である半導体膜6の抵抗率を低下させることができる。すなわち、半導体膜6の表面を洗浄できるとともに、半導体膜6の抵抗率を低下させることができる。なお、ArガスとHガスは同時に供給してプラズマ化して処理してもよいし、Arガスを供給してプラズマ化して処理した後に、Hガスを供給してプラズマ化して処理してもよい。
また、水素イオンをドープする処理は、水蒸気を供給して紫外線を照射して行ってもよい。水蒸気を供給して、低水銀ランプ等で紫外線を照射して行われる。紫外線を照射すると、水蒸気中の水分子、または大気中のO(酸素)、CO(二酸化炭素)等が、紫外線のエネルギーを吸収して励起して、O(オゾン)や原子状酸素等のラジカル、および水素イオンが生成される。酸素ラジカルは、半導体膜6の表面に付着した有機物等の汚れと反応して除去することができる。一方、水素イオンは、ドナーとして半導体膜6内にドープされる。そのため、酸化物半導体である半導体膜6の抵抗率を低下させることができる。すなわち、半導体膜6の表面を洗浄できるとともに、半導体膜6の抵抗率を低下させることができる。なお、水蒸気の他に、Hガスを供給して行ってもよい。この場合、紫外線の照射により、H、または大気中の大気中のO、CO等から、酸素ラジカルと水素イオンが生成される。
なお、図11において、半導体膜6は、レジスト膜8でマスクされることにより、ソース・ドレイン部分を選択して、上述の水素イオンをドープする処理が行われる。この処理がされていない部分(ゲートチャネルに相当する)を未処理部分6aとして示し、この処理がされて低抵抗化した部分を処理部分6bとして示す。また、未処理部分6aと処理部分6bを特に区別しないで説明するときは、半導体膜6として説明する。
なお、水素イオンをドープする処理は、大気圧で行うことが好ましい。これにより、大きな真空チャンバーを備える必要がなくなり、装置の設置スペースを抑える等の利点がある。
(ステップS27)ソース・ドレイン電極の形成
図12に示すように、水素イオンをドープする処理がされた半導体膜6上に、ゲート電極2を挟んで、ソース電極9およびドレイン電極10を形成する。ソース電極9およびドレイン電極10の形成は、インクジェット法により所定のパターンが形成される。材料としては、Ag、Au、Ta、Ti、ITO(酸化インジウムスズ)、ZnO、Cu、Al等が挙げられる。
以上により、TFTの一連の製造工程を終了する。なお、このTFTの製造工程は、大面積のフォトリソグラフィ法を必要としない利点があり、例えば、工程ごとにフォトマスクが必要としない等、工程が簡単であるため低コストである。
<薄膜トランジスタ>
図12を参照する。以上のようにして製造されたTFT11は、ゲート電極2と、絶縁膜として機能する接着用樹脂3と、半導体膜6と、ゲート絶縁膜7と、ソース電極9と、ドレイン電極10とを備えている。
次に、TFT11の利用例として、TFT11が2次元マトリックス状に配置して構成されるフラットパネル型X線検出器(以下、FPDと称す)について説明する。なお、図13は、FPDの概略構成図である。
図13を参照する。FPD13は、X線が入射されるX線検出部SCには、2次元マトリックス状にX線検出素子DUが配列されている。X線検出素子DUは、入射されたX線に感応して電荷信号を画素ごとに出力するものである。なお、説明の都合上、図13では、X線検出素子DUが3×3画素分でX線検出部SCが構成されているが、実際のX線検出部SCには、X線検出素子DUが、例えば、4096×4096画素分で構成されている。
また、X線検出素子DUには、バイアス電圧が印加される印加電極(図示せず)の下層に、X線の入射によりキャリア(電子・正孔対)を生成するX線変換層13と、X線変換層13で生成されたキャリアがバイアス電圧で生じた電界により電荷として収集され、その電荷を蓄積するコンデンサ14と、スイッチ作用として機能するTFT11と、が電気的に接続して構成されている。また、各X線検出素子DUには、各X線検出素子DUのTFT11へスイッチ作用の信号を送るゲート線15と、TFT11を通してコンデンサ14に蓄積された電荷をX線検出信号として読み出すデータ線16と、が電気的に接続して構成されている。
以上の構成のFPD13は、次のように動作する。
X線管(図示しない)からX線が照射され、被検体を介して、FPD13に放射線が入射される。入射されたX線は、X線検出素子のDUX線変換層13により電荷に変換され、コンデンサ14に蓄積される。そして、ゲート駆動回路17から、ゲート線15を介して、各X線検出素子DUのTFT11へ、ゲート電圧(信号)が各列に順次に送られる。それにより、TFT11はON状態になり、コンデンサ14に蓄積された電荷が、データ線16を介して、電荷‐電圧変換器群18、マルチプレクサ19と順に経て、X線検出信号として外部に読み出される。
以上のような各工程を備えた薄膜電子素子の製造方法によれば、凹凸パターンが形成された転写型4に疎液性の剥離層5を形成する前に、前処理として親液処理を行う。それにより、剥離層5の材料を塗布する際に、転写型4の表面になじませることができるので、剥離層5を転写型4にムラなく均一におおうことができる。そのため、転写型4に形成された半導体膜6とゲート絶縁膜7などの薄膜電子材料層を良好に離型させて転写することができる。
また、親液処理の際に、転写型4の表面を洗浄することができるので、有機物等の汚れにより、剥離層5の形成が十分に行われなかったことによる転写ミスを抑制することができる。すなわち、転写における歩留まりを向上させることができる。
次に、図面を参照して、この発明の変形例2について説明する。なお、図14は、実施例2に係るステップS12′の説明に供する縦断面図である。
実施例1では、親液処理は、転写型4に酸素プラズマ処理を行うものであったが、紫外線を照射して行う処理であってもよい。以下に説明する。なお、上述した実施例1と重複する部分については説明を省略する。
なお、TFTの製造方法において、実施例2は、実施例1のステップS01,S02、ステップS11,S12〜S15、そして、ステップS21〜S27のステップが同じであり、ステップS12が異なる。ステップ12の代わりに、以下のステップS12′が実施される。
(ステップS12′)親液処理
図14に示すように、転写型4の薄膜電子材料層を形成させる表面に液体をなじませ易くする親液処理を行う。親液処理は、低圧水銀ランプ等で紫外線を照射させて行う紫外線処理である。紫外線を照射すると、大気中に含まれるO、CO(二酸化炭素)等が紫外線のエネルギーを吸収して励起し、O(オゾン)や原子状酸素などの酸素ラジカルが生成される。酸素ラジカルが転写型4の表面に照射されると、転写型4の表面に残留して付着した有機物汚れ等が紫外線に照射されることにより分子結合が切断され、この部分に酸素ラジカルが直ちに反応することで有機物等の汚れを除去して洗浄することができる。また、転写型4の表面を、酸素に富んだ親液性の官能基(例えば、OH基等)に表面改質することができる。そのため、転写型4の表面に液体をなじませて均一に広がるようにすることができる。すなわち、転写型4の表面を洗浄するとともに、転写型4の表面を親液性にすることができる。
この発明は、上記実施形態に限られることはなく、下記のように変形実施することができる。なお、上述した各実施例と重複する部分については説明を省略する。
(1)上述した各実施例では、親液処理された転写型4に、疎液処理としてフッ素系化合物の剥離層5を形成して離型性を良好なものにした。しかし、これに限らず、転写型に加熱および紫外線(UV)照射すると粘着力が低下する樹脂の剥離層を形成してもよい。
なお、TFTの製造方法において、変形例(1)は、実施例1および実施例2のステップS01,S02、ステップS11,S12(S12′),S14,S15、そして、ステップS22〜S27のステップが同じであり、ステップS13とステップS21が異なる。ステップ13とステップ21の代わりに、それぞれ、以下のステップS13″とステップS21″が実施される。
(ステップS13″)剥離層の形成
図15に示すように、親液処理された転写型4に剥離層5Aを形成する。剥離層5Aは、転写型4に塗布処理して形成される。剥離層5Aの塗布処理は、スピンコート法、真空蒸着法等で行われる。剥離層5Aとしては、例えば、80℃程度に加熱すると粘着性が低下する樹脂や、紫外線が照射されると粘着性が低下する樹脂などが好ましい。80℃程度に加熱する樹脂として積水化学工業株式会社製の自己剥離ペースト(仮固定用接着剤)や、株式会社テスコ製のUV硬化型ホットメルト仮接着剤が挙げられる。なお、加熱および紫外線照射すると粘着力が低下する樹脂が、本発明の仮接着剤に相当する。
(ステップS21″)転写
図16および図17に示すように、基板1上に予め形成されたゲート電極2上に接着用樹脂3を介して、半導体膜6およびゲート絶縁膜7を転写する。半導体膜6とゲート絶縁膜7の転写は、半導体膜6とゲート絶縁膜7が積層して形成された転写型4を、ゲート電極2上の所定の位置に位置合わせしてから押圧する。接着用樹脂3に押圧された半導体膜6とゲート絶縁膜7は、ゲート絶縁膜7が接着用樹脂3に粘着する。そして、使用する材料に応じて加熱または紫外線照射されると、剥離層5Aの粘着力が低下し、離型の際に、剥離層5Aと半導体膜6との界面で剥離する。
なお、紫外線が照射されると粘着性が低下する樹脂の場合、紫外線の照射は、転写型4を挟んで、剥離層5Aが形成されている反対側から(転写型4の裏面側から)行う。この際、転写型4は、紫外線を透過する材料で形成されていることが好ましい。また、加熱すると粘着性が低下する樹脂の場合、加熱はパルスヒーターを使用することが好ましい。常温の転写型を瞬時に所定の温度に加熱することができる。
なお、接着用樹脂3と剥離層5Aに、紫外線が照射されると硬化や粘着力が低下する樹脂を使用する場合は、転写中に、接着用樹脂3の硬化を行うとともに、剥離層5Aの粘着力が低下させてもよい。加熱する場合も同様である。
(2)上述した各実施例および変形例(1)では、剥離層5,5Aを形成して転写型からの離型性を良好なものにしたが、親液処理された転写型4に、フッ素系あるいはシリコン系の離型剤を塗布して、転写型4の表面に被膜(剥離層)を形成してもよい。
(3)上述した各実施例および変形例(1),(2)では、薄膜電子素子の製造方法として、薄膜トランジスタについて説明したが、コンデンサ、抵抗、コイル、フォトダイオード、有機EL素子にも適用できる。例えば、コンデンサの製造方法を説明する。なお、図18および図19は、変形例に係るコンデンサの製造方法の説明に供する縦断面図である。
図18に示すように、先ず、基板1上にグランド側電極31を形成する。そして、基板1上に形成されたグランド側電極31をおおうように、接着用樹脂3Bを形成する。一方、コンデンサ14を形成するための所定の凹凸パターンが形成された転写型4Bの表面に、O2プラズマ処理、または、紫外線処理を行い、転写型4Bの表面を親液性にする。そして、親液処理された転写型4B上に剥離層5(または、剥離層5A。この説明では剥離層5を使用する。)を形成し、転写型4Bに形成された剥離層5上に、接続側電極32を形成する。そして、接続側電極32が形成された転写型4Bを基板1上の所定の位置に位置合わせして押圧する。なお、グランド側電極31と接続側電極32の形成は、インクジェット法、凸版印刷法等で形成する。グランド側電極31と接続側電極32の材料としては、Ag、Au、Ti、ITO、ZnO、Cu、Al等が挙げられる。
図19に示すように、基板1から転写型4Bを離すと、接着用樹脂3Bの粘着力により剥離層5と接続側電極32との界面で離型し、基板1側に接続用電極32が転写される。このような製造方法により、グランド側電極31と、接続側電極32と、グランド側電極31と接続側電極32との間の接着用樹脂3B(絶縁膜)と、を備えるコンデンサ14が製造される。
1 …基板
2 …ゲート電極
3,3B …接着用樹脂
4,4B …転写型
5,5A …剥離層
6 …半導体膜
6a …未処理部分
6b …処理部分
7 …ゲート絶縁膜
8 …レジスト膜
9 …ソース電極
10 …ドレイン電極
11 …薄膜トランジスタ(TFT)
13 …X線変換層
14 …コンデンサ
15 …ゲート線
16 …データ線
31 …グランド側電極
32 …接続側電極

Claims (11)

  1. 凹凸パターンが形成された転写型に親液処理をする親液処理工程と、
    前記親液処理がされた前記転写型に剥離層を形成する剥離層形成工程と、
    前記剥離層が形成された前記転写型に薄膜電子材料層を形成する薄膜電子材料層形成工程と、
    前記転写型に形成された薄膜電子材料層を基板上に転写する転写工程と、
    を備えたことを特徴とする薄膜電子素子の製造方法。
  2. 請求項1に記載の薄膜電子素子の製造方法において、
    前記親液処理は、酸素プラズマ処理であることを特徴とする薄膜電子素子の製造方法。
  3. 請求項1に記載の薄膜電子素子の製造方法において、
    前記親液処理は、紫外線処理であることを特徴とする薄膜電子素子の製造方法。
  4. 請求項1から3のいずれかに記載の薄膜電子素子の製造方法において、
    前記剥離層は、フッ素系化合物の塗布処理により形成されることを特徴とする薄膜電子素子の製造方法。
  5. 請求項1から3のいずれかに記載の薄膜電子素子の製造方法において、
    前記剥離層は、加熱または紫外線照射すると粘着性が低下する樹脂の塗布処理により形成されることを特徴とする薄膜電子素子の製造方法。
  6. 請求項1から5のいずれかに記載の薄膜電子素子の製造方法において、
    前記転写型に形成される薄膜電子材料層は、配線、半導体膜、絶縁膜あるいはそれらの任意の組み合わせであることを特徴とする薄膜電子素子の製造方法。
  7. 請求項1から6のいずれかに記載の薄膜電子素子の製造方法において、
    前記転写工程を複数回繰り返すことにより、前記薄膜電子素子を2次元状にアレイ化することを特徴とする薄膜電子素子の製造方法。
  8. 請求項1から7のいずれかに記載の薄膜電子素子の製造方法において、
    前記薄膜電子素子は、薄膜トランジスタであることを特徴とする薄膜電子素子の製造方法。
  9. 請求項1から7のいずれかに記載の薄膜電子素子の製造方法において、
    前記薄膜電子素子は、コンデンサであることを特徴とする薄膜電子素子の製造方法。
  10. 請求項8に記載の薄膜電子素子の製造方法において、
    前記薄膜電子材料層形成工程は、前記転写型に真空中にて前記半導体膜を形成する半導体膜形成工程と、前記半導体膜が形成された前記転写型に真空中にて連続して前記絶縁膜を形成する絶縁膜形成工程と、を備えていることを特徴とする薄膜電子素子の製造方法。
  11. 請求項10に記載の薄膜電子素子の製造方法において、
    前記転写工程の前に、前記基板上にゲート電極を形成するゲート電極形成工程と、前記ゲート電極をおおうように前記基板上に、転写の際に前記基板側に前記半導体膜と前記絶縁膜を接着させるための接着用樹脂を形成する接着用樹脂形成工程と、を備え、
    さらに、前記転写工程の後に、前記半導体膜上にソース電極およびドレイン電極を形成するソース・ドレイン電極形成工程とを備えていることを特徴とする薄膜電子素子の製造方法。
JP2009116652A 2009-05-13 2009-05-13 薄膜電子素子の製造方法 Pending JP2010267719A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009116652A JP2010267719A (ja) 2009-05-13 2009-05-13 薄膜電子素子の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009116652A JP2010267719A (ja) 2009-05-13 2009-05-13 薄膜電子素子の製造方法

Publications (1)

Publication Number Publication Date
JP2010267719A true JP2010267719A (ja) 2010-11-25

Family

ID=43364464

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009116652A Pending JP2010267719A (ja) 2009-05-13 2009-05-13 薄膜電子素子の製造方法

Country Status (1)

Country Link
JP (1) JP2010267719A (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10173316A (ja) * 1996-12-12 1998-06-26 Kyocera Corp 配線基板形成用転写シート及びそれを用いた配線基板の製造方法
JP2006269599A (ja) * 2005-03-23 2006-10-05 Sony Corp パターン形成方法、有機電界効果型トランジスタの製造方法、及び、フレキシブルプリント回路板の製造方法
JP2008235861A (ja) * 2007-02-21 2008-10-02 Toppan Printing Co Ltd 薄膜トランジスタアレイ、薄膜トランジスタアレイの製造方法、および薄膜トランジスタアレイを用いたアクティブマトリクス型ディスプレイ
JP2009051178A (ja) * 2007-08-29 2009-03-12 Ricoh Co Ltd シリコーン・エラストマー・スタンプ及びスタンプを用いた薄膜トランジスタの製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10173316A (ja) * 1996-12-12 1998-06-26 Kyocera Corp 配線基板形成用転写シート及びそれを用いた配線基板の製造方法
JP2006269599A (ja) * 2005-03-23 2006-10-05 Sony Corp パターン形成方法、有機電界効果型トランジスタの製造方法、及び、フレキシブルプリント回路板の製造方法
JP2008235861A (ja) * 2007-02-21 2008-10-02 Toppan Printing Co Ltd 薄膜トランジスタアレイ、薄膜トランジスタアレイの製造方法、および薄膜トランジスタアレイを用いたアクティブマトリクス型ディスプレイ
JP2009051178A (ja) * 2007-08-29 2009-03-12 Ricoh Co Ltd シリコーン・エラストマー・スタンプ及びスタンプを用いた薄膜トランジスタの製造方法

Similar Documents

Publication Publication Date Title
JP5796449B2 (ja) 電子デバイスの製造方法、樹脂層付きキャリア基板の製造方法
TWI399810B (zh) 無機半導體膜及其製造方法
JP6518007B2 (ja) 電界効果トランジスタ形成方法
CN103620733A (zh) 转印薄膜的方法
JP2005277238A (ja) 薄膜トランジスタおよびそれを用いた半導体装置
JP5565038B2 (ja) 電界効果型トランジスタ及びその製造方法並びに画像表示装置
US8652863B2 (en) Method of manufacturing an optical matrix device
Li et al. Precise Patterning of Large‐Scale TFT Arrays Based on Solution‐Processed Oxide Semiconductors: A Comparative Study of Additive and Subtractive Approaches
CN103733319A (zh) 晶体管的制造方法及晶体管
JP4985946B2 (ja) 電子装置の製造方法
JP2010258037A (ja) 電子デバイスの製造方法
JP5445590B2 (ja) 薄膜トランジスタの製造方法
JP2007027525A (ja) 半導体装置の製造方法、および半導体装置、ならびに絶縁膜の形成方法
JP2004072049A (ja) 有機tft素子及びその製造方法
JP5333046B2 (ja) アクティブマトリックスアレイの製造方法
KR20140099940A (ko) 유기 트랜지스터 및 그 제조 방법
JP5299190B2 (ja) 光マトリックスデバイスの製造方法
JP5516196B2 (ja) 薄膜トランジスタの製造方法
JP2007173861A (ja) 二次元画像検出器
JP2010267719A (ja) 薄膜電子素子の製造方法
JP2009130327A (ja) 半導体装置の製造方法、電子機器の製造方法、半導体装置および電子機器
JP2010258348A (ja) 光マトリックスデバイスの製造方法
JP2007311590A (ja) 被転写物の転写方法、半導体装置の製造方法および転写装置
JP2012119572A (ja) 転写印刷用スタンプ製造方法および電子デバイス
KR102481176B1 (ko) 금속 패턴이 형성된 유연 필름의 제조방법

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110808

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130605

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130625

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20131022