JP2010248437A - α−オレフィン重合用固体触媒成分およびその製造方法、α−オレフィン重合用触媒成分、α−オレフィン重合用触媒並びにα−オレフィン重合体又は共重合体の製造方法 - Google Patents

α−オレフィン重合用固体触媒成分およびその製造方法、α−オレフィン重合用触媒成分、α−オレフィン重合用触媒並びにα−オレフィン重合体又は共重合体の製造方法 Download PDF

Info

Publication number
JP2010248437A
JP2010248437A JP2009101864A JP2009101864A JP2010248437A JP 2010248437 A JP2010248437 A JP 2010248437A JP 2009101864 A JP2009101864 A JP 2009101864A JP 2009101864 A JP2009101864 A JP 2009101864A JP 2010248437 A JP2010248437 A JP 2010248437A
Authority
JP
Japan
Prior art keywords
compound
component
catalyst component
olefin polymerization
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009101864A
Other languages
English (en)
Inventor
Koji Nakayama
浩二 中山
Hagumu Kozai
育 香西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Polypropylene Corp
Original Assignee
Japan Polypropylene Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Polypropylene Corp filed Critical Japan Polypropylene Corp
Priority to JP2009101864A priority Critical patent/JP2010248437A/ja
Publication of JP2010248437A publication Critical patent/JP2010248437A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)

Abstract

【課題】立体規則性や触媒活性或いは重合体粒子性状などの触媒性能の全てにおいて充分な性能を示す触媒及びその触媒を用いるα−オレフィン重合体の製造方法を提供する。
【解決手段】マグネシウム、チタン、ハロゲン、カルシウムおよび電子供与性化合物を必須成分とすることを特徴とするα−オレフィン重合用固体触媒成分(A1)、或いは、固体触媒成分(A1)に、下記成分(A2)、(A3)、及び(A4)を接触処理してなることを特徴とするα−オレフィン重合用触媒成分など。
成分(A2):アルケニル基を有するケイ素化合物
成分(A3):有機ケイ素化合物
成分(A4):有機アルミニウム化合物
【選択図】なし

Description

本発明は、α−オレフィン重合用固体触媒成分およびその製造方法、それを用いたα−オレフィン重合用触媒成分、α−オレフィン重合用触媒並びにα−オレフィン重合体又はα−オレフィン共重合体の製造方法に関し、詳しくは、立体規則性などの基本性能を高レベルにて維持したまま、極めて高い触媒活性を有するα−オレフィン重合用固体触媒成分、α−オレフィン重合用触媒成分、それらによるα−オレフィン重合用触媒、及びそれを用いるα−オレフィン(共)重合体の製造方法、更にその製造方法により得られたα−オレフィン(共)重合体に係わるものである。
ポリエチレンやポリプロピレンなどのポリオレフィンは、産業資材として最も重要なプラスチック材料であり、フィルムやシートとして包装材料及び電気材料などに、各種の容器などの日用品製品に、成形品として自動車部材や家電製品などの工業材料に、更に繊維材料や建築材料などの各種の用途に広範に汎用されている。
このように利用用途が非常に広く多岐にわたるために、ポリオレフィン材料においては、それらの用途面から、多種の性能においての改良向上が求め続けられ、それらの要望に応じるために、主として重合触媒の改良や樹脂材料の改質による技術開発が展開されてきた。
重合触媒の改良においては、例えば、遷移金属化合物と有機金属化合物を利用したチーグラー系の触媒により、オレフィンの重合活性が非常に高められて工業生産が実現化されたが、その後に分子量分布による重合体の物性の改善やα−オレフィンの立体規則性の向上をはじめ、多種の性能の改良がなされている。
そして、ポリオレフィンの工業生産において非常に有用なチーグラー系触媒の改良がなされ続けられている一方では、メタロセン系触媒が開発され発展されて、ポストメタロセン系触媒も提案されている。
チーグラー系触媒においては、具体的には、マグネシウム化合物を触媒担体として、チタン及びハロゲンを必須成分として含有する固体触媒成分を使用した高活性の触媒が開発され、更に電子供与性化合物を使用して触媒活性と立体規則性を高めた触媒(特許文献1〜3を参照)が提案され、その後には、特定の有機ケイ素化合物を新たに触媒成分に付加して、更に触媒活性や立体規則性の向上をはかる提案もなされている(特許文献4,5参照。)。
また、特定の有機ケイ素化合物の他に、ビニル基やアリル基のようなアルケニル基を有する特殊な構造のケイ素化合物を併用することで、触媒活性や立体規則性が一層向上し、分子量調節剤として用いられる水素の応答性が良化するなどの性能向上も提案されている(特許文献6〜8参照。)。
更には、触媒成分中に臭素又は沃素を含有する特定の金属化合物を共存させ、立体規則性や水素応答性を改良したり(特許文献9,10参照。)、特定の触媒系に対してエーテル化合物を電子供与性化合物として用いることで触媒活性を向上させる(特許文献11,12参照。)など、多くの改良技術が展開されている。
しかしながら、本発明者などが知る限りでは、これらのいずれの触媒系においても生成するα−オレフィン重合体の立体規則性や触媒活性などの触媒性能の全てにおいて充分な性能を示すものはなく、全ての性能を向上させる更なる改良技術の開発が望まれている。
特開昭58−138706号公報 特開昭57−59909号公報 特開平3−149204公報 特開昭62−187707号公報 特開昭61−171715号公報 特開平3−234707号公報 特開平7−2923号公報 特開2006−169283号公報 特開平10−287708号公報 特開平11−240913号公報 特開2003−105019号公報 特開2003−261612号公報
本発明の目的は、かかる従来技術の状況において、立体規則性や触媒活性或いは重合体粒子性状などの触媒性能の全てにおいて充分な性能を示す触媒及びその触媒を用いるα−オレフィン重合体の製造方法を提供することにある。
本発明者等は、上記課題に鑑み、チーグラー系触媒における基本的かつ普遍的な上記の問題を解決するために、チーグラー触媒の製造方法における各種の触媒成分の性質や化学的構造などについて、全般的な思考及び探索を行い、多種の製造条件について検討を重ね、更には、特に触媒の活性点に関して、立体規則性やモノマーの関与にかかわる触媒成分の製造条件を探索した。
その結果、新規な構成要件としてカルシウム成分を、マグネシウム、チタン、ハロゲンおよび電子供与性化合物を必須成分とする固体触媒成分中に含有させて、チーグラー系触媒を構成することにより、立体規則性などの他の性能を高く維持しつつ、触媒活性が著しく向上し得ることを見出した。
すなわち、本発明者等は、新規な本手法において、カルシウム成分が固体触媒成分中に含まれることにより、活性点となるチタンの電荷状態を変化させて、立体規則性を高く維持したまま、触媒活性(重合活性)が著しく高く、また、諸性能において非常にバランスの取れたチーグラー系触媒が得られることを見出し、これらの知見に基づき、本発明を完成するに至った。
すなわち、本発明の第1の発明によれば、マグネシウム、チタン、ハロゲン、カルシウムおよび電子供与性化合物を必須成分とすることを特徴とするα−オレフィン重合用固体触媒成分が提供される。
本発明の第2の発明によれば、第1の発明において、カルシウムは、カルシウム塩化合物またはカルシウム錯化物由来であることを特徴とするα−オレフィン重合用固体触媒成分が提供される。
また、本発明の第3の発明によれば、第1又は2の発明において、マグネシウムは、ハロゲン化マグネシウム化合物及びアルコキシマグネシウム化合物からなる群から選ばれる少なくとも一つの化合物を由来とすることを特徴とするα−オレフィン重合用固体触媒成分が提供される。
さらに、本発明の第4の発明によれば、第1〜3のいずれかの発明において、チタンは、アルコキシチタン化合物及びハロゲン化チタン化合物からなる群から選ばれる少なくとも一つの化合物を由来とすることを特徴とするα−オレフィン重合用固体触媒成分が提供される。
また、本発明の第5の発明によれば、マグネシウム、チタン、ハロゲンおよび電子供与性化合物を必須成分とする固体成分を、カルシウム化合物で接触処理することを特徴とする第1〜4のいずれかの発明に係るα−オレフィン重合用固体触媒成分の製造方法が提供される。
さらに、本発明の第6の発明によれば、マグネシウム化合物をカルシウム化合物で処理して得られる固体成分を、チタン化合物、ハロゲン化合物および電子供与性化合物で処理することを特徴とする第1〜4のいずれかの発明に係るα−オレフィン重合用固体触媒成分の製造方法が提供される。
本発明の第7の発明によれば、第1〜4のいずれかの発明に係るα−オレフィン重合用固体触媒成分(A1)に、下記成分(A2)、(A3)及び(A4)を接触処理してなることを特徴とするα−オレフィン重合用触媒成分が提供される。
成分(A2):アルケニル基を有するケイ素化合物
成分(A3):有機ケイ素化合物
成分(A4):有機アルミニウム化合物
また、本発明の第8の発明によれば、第7の発明において、成分(A2)のアルケニル基を有するケイ素化合物がビニルシラン化合物であることを特徴とするα−オレフィン重合用触媒成分が提供される。
さらに、本発明の第9の発明によれば、第7又は8の発明において、成分(A3)の有機ケイ素化合物が下記の式で表されるケイ素化合物であることを特徴とするα−オレフィン重合用触媒成分が提供される。
3−mSi(OR
(式中、Rは、脂肪族炭化水素基、脂環式炭化水素基又はヘテロ原子含有炭化水素基であり、Rは、脂肪族炭化水素基、脂環式炭化水素基、ヘテロ原子含有炭化水素基、ハロゲン又は水素であり、Rは、炭化水素基であり、mは、1≦m≦3を示す。)
本発明の第10の発明によれば、第1〜4のいずれかの発明に係るα−オレフィン重合用固体触媒成分(A1)又は第7〜9のいずれかの発明に係るα−オレフィン重合用触媒成分(A)、及び下記成分(B)からなることを特徴とするα−オレフィン重合用触媒が提供される。
また、本発明の第11の発明によれば、第10の発明において、さらに、下記成分(C)からなることを特徴とするα−オレフィン重合用触媒が提供される。
成分(B):有機アルミニウム化合物
成分(C):有機ケイ素化合物
さらに、本発明の第12の発明によれば、第10又は11の発明に係るα−オレフィン重合用触媒を用いて、α−オレフィンを単独重合又は共重合することを特徴とするα−オレフィン重合体又は共重合体の製造方法が提供される。
本発明は、上記した如く、α−オレフィン重合用固体触媒成分、α−オレフィン重合用触媒成分、α−オレフィン重合用触媒などに係るものであるが、その好ましい態様としては、次のものが包含される。
(1)第1の発明において、電子供与性化合物は、有機酸、無機酸、有機酸と無機酸の誘導体(エステル、酸無水物、酸ハライド、アミド)化合物類、エーテル化合物類、ケトン化合物類、アルデヒド化合物類、アルコール化合物類またはアミン化合物類から選ばれる少なくとも一つの化合物であることを特徴とするα−オレフィン重合用固体触媒成分。
(2)第3の発明において、マグネシウムは、ジアルコキシマグネシウムを由来とすることを特徴とするα−オレフィン重合用固体触媒成分。
(3)第7の発明において、第1〜4のいずれかの発明に係るα−オレフィン重合用固体触媒成分(A1)に、成分(A2)、(A3)及び(A4)に加えて、さらに、下記成分(A5)を接触処理してなることを特徴とするα−オレフィン重合用触媒成分。
成分(A5):少なくとも二つのエーテル結合を有する化合物
(4)第11の発明において、さらに、下記成分(D)からなることを特徴とするα−オレフィン重合用触媒。
成分(D):少なくとも二つのエーテル結合を有する化合物
本発明のα−オレフィン重合用触媒は、従来のチーグラー系触媒では開発し得なかった、α−オレフィン重合体の立体規則性や触媒活性、更には重合体の粒子性状などの触媒性能の全てにおいて充分な性能を示すことが可能となり、その結果、立体規則性を高く維持したまま、従来の触媒よりポリマーの収率を非常に高くすることができる。従って、触媒活性が非常に高いので、製造コストも低減することが可能であり、加えて、得られるポリマーの立体規則性が高く維持できるため、剛性と耐衝撃強度のバランスに優れた高品質な製品を得ることができる。
これらの充分な性能は、後記する各実施例のデータ及びそれらと各比較例のデータとの対比により少なくとも実証されている。
チーグラー系触媒に関する、本発明の技術内容を理解するためのフローチャート図である。 本発明の第5の発明に係る技術内容を理解するためのフローチャート図である。 本発明の第6の発明に係る技術内容を理解するためのフローチャート図である。
以下、本発明を詳細に説明する。
I.α−オレフィン重合用触媒
本発明において、α−オレフィン用重合触媒として、α−オレフィン重合用固体触媒成分(A1)またはα−オレフィン重合用触媒成分(A)、及び有機アルミニウム化合物(B)を用いる。この際、本発明の効果を損なわない範囲で、有機ケイ素化合物(C)、及び、少なくとも二つのエーテル結合を有する化合物(D)などの任意成分を用いることができる。
1.α−オレフィン重合用固体触媒成分(A1)
本発明で用いる固体触媒成分(A1)は、マグネシウム(A1a)、チタン(A1b)、ハロゲン(A1c)、カルシウム(A1d)および電子供与性化合物(A1e)を必須成分とするものである。また、本発明の効果を損なわない範囲で、任意の成分を任意の形態で含んでも良い。
以下に各構成成分などを詳述する。
(1)マグネシウム(A1a)
本発明において、マグネシウム源となるマグネシウム化合物としては、任意のものを用いることができる。代表的な例としては、特開平3−234707号公報に開示されている化合物を挙げることができる。一般的には、塩化マグネシウムに代表されるハロゲン化マグネシウム化合物類、ジエトキシマグネシウムに代表されるアルコキシマグネシウム化合物類、金属マグネシウム、酸化マグネシウムに代表されるオキシマグネシウム化合物類、水酸化マグネシウムに代表されるヒドロキシマグネシウム化合物類、ブチルマグネシウムクロライドに代表されるグリニャール化合物類、ブチルエチルマグネシウムに代表される有機金属マグネシウム化合物類、炭酸マグネシウムやステアリン酸マグネシウムに代表される無機酸及び有機酸のマグネシウム塩化合物類、及びそれらの混合物や平均組成式がそれらの混合された式となる化合物(例えば、Mg(OEt)Cl2−m;0<m<2などの化合物)、などを用いることができる。
この中で好ましいのは、ハロゲン化マグネシウム化合物類、アルコキシマグネシウム化合物類、グリニャール化合物類等があげられる。特に、大きな粒子を作る場合には、触媒粒径を制御し易いジアルコキシマグネシウムを用いることが好ましい。ジアルコキシマグネシウムは、事前に製造されたものを用いるだけでなく、触媒製造工程の中で金属マグネシウムとハロゲンあるいはハロゲン含有金属化合物の存在下にアルコールを反応させて得たものを用いることもできる。
更に、本発明において、成分(A1a)として好適なジアルコキシマグネシウムは、顆粒状又は粉末状であり、その形状は不定形あるいは球状のものを使用し得る。例えば、球状のジアルコキシマグネシウムを使用した場合、より良好な粒子形状と狭い粒度分布を有する重合体粉末が得られ、重合操作時の生成重合体粉末の取扱い操作性が向上し、生成重合体粉末に含まれる微粉に起因する閉塞等の問題が解消される。
上記の球状ジアルコキシマグネシウムは、必ずしも真球状である必要はなく、楕円形状あるいは馬鈴薯形状のものを用いることもできる。具体的にその粒子の形状は、長軸径lと短軸径wとの比(l/w)が3以下であり、好ましくは1〜2であり、より好ましくは1〜1.5である。
また、上記ジアルコキシマグネシウムの平均粒径は、1〜200μmのものが使用し得る。好ましくは5〜150μmである。球状のジアルコキシマグネシウムの場合、その平均粒径は、1〜100μm、好ましくは5〜50μmであり、更に好ましくは10〜40μmである。また、その粒度については、微粉及び粗粉の少ない、粒度分布の狭いものを使用することが望ましい。具体的には、5μm以下の粒子が20%以下であり、好ましくは10%以下である。一方、100μm以上の粒子が10%以下であり、好ましくは5%以下である。更に、その粒度分布をln(D90/D10)(ここで、D90は積算粒度で90%における粒径、D10は積算粒度で10%における粒径である。)で表すと、3以下であり、好ましくは2以下である。
上記の如き球状のジアルコキシマグネシウムの製造方法は、例えば、特開昭58−41832号公報、特開昭62−51633号公報、特開平3−74341号公報、特開平4−368391号公報、特開平8−73388号公報などに例示されている。
(2)チタン(A1b)
本発明において、チタン源となるチタン化合物としては、任意のものを用いることができる。代表的な例としては、特開平3−234707号公報に開示されている化合物を挙げることができる。
チタンの価数に関しては、4価、3価、2価、0価の任意の価数を持つチタン化合物を用いることができるが、好ましくは4価および3価のチタン化合物、更に好ましくは4価のチタン化合物を用いることが望ましい。
4価のチタン化合物の具体例としては、四塩化チタンに代表されるハロゲン化チタン化合物類、テトラブトキシチタンに代表されるアルコキシチタン化合物類、テトラブトキシチタンダイマー(BuO)Ti−O−Ti(OBu)に代表されるTi−O−Ti結合を有するアルコキシチタンの縮合化合物類、ジシクロペンタジエニルチタニウムジクロライドに代表される有機金属チタン化合物類、などを挙げることができる。この中で、四塩化チタンとテトラブトキシチタンが特に好ましい。
3価のチタン化合物の具体例としては、三塩化チタンに代表されるハロゲン化チタン化合物類を挙げることができる。三塩化チタンは、水素還元型、金属アルミニウム還元型、金属チタン還元型、有機アルミニウム還元型、など、公知の任意の方法で製造された化合物を用いることができる。
上記のチタン化合物類は、単独で用いるだけではなく、複数の化合物を併用することも可能である。また、上記チタン化合物類の混合物や平均組成式がそれらの混合された式となる化合物(例えば、Ti(OBu)Cl4−m;0<m<4などの化合物)、また、フタル酸エステル等のその他の化合物との錯化物(例えば、Ph(COBu)・TiClなどの化合物)、などを用いることができる。
(3)ハロゲン(A1c)
本発明において、ハロゲンとしては、フッ素、塩素、臭素、沃素、及びそれらの混合物を用いることができる。この中で塩素が特に好ましい。
ハロゲンは、上記のチタン化合物類及び/又はマグネシウム化合物から供給されるのが一般的であるが、その他の化合物より供給することもできる。代表的な例としては、四塩化ケイ素に代表されるハロゲン化ケイ素化合物類、塩化アルミニウムに代表されるハロゲン化アルミニウム化合物類、1,2−ジクロロエタンやベンジルクロライドに代表されるハロゲン化有機化合物類、トリクロロボランに代表されるハロゲン化ボラン化合物類、五塩化リンに代表されるハロゲン化リン化合物類、六塩化タングステンに代表されるハロゲン化タングステン化合物類、五塩化モリブデンに代表されるハロゲン化モリブデン化合物類、などを挙げることができる。これらの化合物は、単独で用いるだけでなく、併用することも可能である。この中で、四塩化ケイ素が特に好ましい。
(4)カルシウム(A1d)
本発明において、カルシウム(A1d)源となるカルシウム化合物としては、任意のものを用いることができる。カルシウムの価数に関しては、2価、0価の任意の価数を持つカルシウム化合物を用いることができる。
カルシウム化合物としては、特に限定されないが、金属カルシウム、カルシウム塩、リン酸カルシウム、有機酸カルシウム、カルシウム錯化物が挙げられる。
カルシウム化合物として用いることのできるカルシウム塩としては、ハロゲン化カルシウム(塩化カルシウム、臭化カルシウム、フッ化カルシウム、ヨウ化カルシウムなど)、酸化カルシウム、水酸化カルシウム、炭酸カルシウム、ホウ酸カルシウム、硫酸カルシウム、水素化カルシウム、ケイ酸カルシウム、炭化カルシウム、ケイ化カルシウムなどを挙げることができる。
また、カルシウム化合物として用いることのできるリン酸カルシウムとしては、ハイドロキシアパタイト、炭酸基含有アパタイト、リン酸三カルシウム、リン酸四カルシウム、リン酸水素カルシウム、オクタリン酸カルシウムなどを挙げることができる。
また、カルシウム化合物として用いることのできる有機酸カルシウムとしては、乳酸カルシウム、クエン酸カルシウム、酒石酸カルシウム、安息香酸カルシウム、ギ酸カルシウム、グルコン酸カルシウムなどを挙げることができる。
さらに、カルシウム化合物として用いることのできるカルシウム錯化物としては、ビス(シクロペンタジエニル)カルシウム、カルシウムアセチルアセトナト、エチレンジアミン四酢酸二カルシウムなどを挙げることができる。
これらのカルシウム化合物は、単独で用いるだけでなく、複数の化合物を併用することもできる。これらの中で好ましいのは、フッ化カルシウム、塩化カルシウム、臭化カルシウム、水酸化カルシウムなどに代表されるカルシウム塩化合物類、カルシウムアセチルアセトナト、ビス(シクロペンタジエニル)カルシウムなどに代表されるカルシウム錯化物が挙げられる。
(5)電子供与性化合物(A1e)
本発明において、用いられる電子供与性化合物(A1e)としては、任意のものを用いることができる。電子供与性化合物(A1e)の代表的な例としては、特開2004−124090号公報に開示されている化合物を挙げることができる。一般的には、有機酸及び無機酸並びにそれらの誘導体(エステル、酸無水物、酸ハライド、アミド)化合物類、エーテル化合物類、ケトン化合物類、アルデヒド化合物類、アルコール化合物類、アミン化合物類、などを用いることが望ましい。
電子供与性化合物(A1e)として用いることのできる有機酸化合物としては、フタル酸に代表される芳香族多価カルボン酸化合物類、安息香酸に代表される芳香族カルボン酸化合物類、2−n−ブチル−マロン酸の様な2位に一つ又は二つの置換基を有するマロン酸や2−n−ブチル−コハク酸の様な2位に一つ又は二つの置換基若しくは2位と3位にそれぞれ一つ以上の置換基を有するコハク酸に代表される脂肪族多価カルボン酸化合物類、プロピオン酸に代表される脂肪族カルボン酸化合物類、ベンゼンスルホン酸やメタンスルホン酸に代表される芳香族及び脂肪族のスルホン酸化合物類、などを例示することができる。
これらのカルボン酸化合物類及びスルホン酸化合物類は、芳香族・脂肪族に関わらず、マレイン酸の様に分子中の任意の場所に任意の数だけ不飽和結合を有しても良い。
電子供与性化合物(A1e)として用いることのできる有機酸の誘導体化合物としては、上記有機酸のエステル、酸無水物、酸ハライド、アミド、などを例示することができる。
エステルの構成要素であるアルコールとしては、脂肪族及び芳香族アルコールを用いることができる。これらのアルコールの中でも、エチル基、ブチル基、イソブチル基、ヘプチル基、オクチル基、ドデシル基、等の炭素数1〜20の脂肪族の遊離基からなるアルコールが好ましい。更に好ましくは炭素数2〜12の脂肪族の遊離基からなるアルコールが望ましい。また、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、等の脂環式の遊離基からなるアルコールを用いることもできる。
酸ハライドの構成要素であるハロゲンとしては、フッ素、塩素、臭素、沃素、等を用いることができる。中でも、塩素が最も好ましい。多価有機酸のポリハライドの場合は、複数のハロゲンが同一であっても異なっていても良い。
また、アミドの構成要素であるアミンとしては、脂肪族及び芳香族アミンを用いることができる。これらのアミンの中でも、アンモニア、エチルアミンやジブチルアミンに代表される脂肪族アミン、アニリンやベンジルアミンに代表される芳香族の遊離基を分子内に有するアミン、などを好ましい化合物として例示することができる。
電子供与性化合物(A1e)として用いることのできる無機酸化合物としては、炭酸、リン酸、ケイ酸、硫酸、硝酸、などを例示することができる。
これらの無機酸の誘導体化合物としては、エステルを用いることが望ましい。テトラエトキシシラン(ケイ酸エチル)、テトラブトキシシラン(ケイ酸ブチル)、リン酸トリブチルなどを具体例として挙げることができる。
電子供与性化合物(A1e)として用いることのできるエーテル化合物としては、ジブチルエーテルに代表される脂肪族エーテル化合物類、ジフェニルエーテルに代表される芳香族エーテル化合物類、2−イソプロピル−2−イソブチル−1,3−ジメトキシプロパンや2−イソプロピル−2−イソペンチル−1,3−ジメトキシプロパンの様な2位に一つ又は二つの置換基を有する1,3−ジメトキシプロパンに代表される脂肪族多価エーテル化合物類、9,9−ビス(メトキシメチル)フルオレン、に代表される芳香族の遊離基を分子内に有する多価エーテル化合物類などを例示することができる。
多価エーテル化合物類の好ましい例は、本明細書中の少なくとも二つのエーテル結合を有する化合物(A5)の例示からから選ぶことができる。
電子供与性化合物(A1e)として用いることのできるケトン化合物としては、メチルエチルケトンに代表される脂肪族ケトン化合物類、アセトフェノンに代表される芳香族ケトン化合物類、2,2,4,6,6−ペンタメチル−3,5−ヘプタンジオンに代表される多価ケトン化合物類、などを例示することができる。
また、電子供与性化合物(A1e)として用いることのできるアルデヒド化合物としては、プロピオンアルデヒドに代表される脂肪族アルデヒド化合物類、ベンズアルデヒドに代表される芳香族アルデヒド化合物類、などを例示することができる。
さらに、電子供与性化合物(A1e)として用いることのできるアルコール化合物としては、ブタノールや2−エチルヘキサノールに代表される脂肪族アルコール化合物類、フェノール、クレゾールに代表されるフェノール誘導体化合物類、グリセリンや1,1’−ビ−2−ナフトールに代表される脂肪族若しくは芳香族の多価アルコール化合物類、などを例示することができる。
また、電子供与性化合物(A1e)として用いることのできるアミン化合物としては、ジエチルアミンに代表される脂肪族アミン化合物類、2,2,6,6−テトラメチル−ピペリジンに代表される窒素含有脂環式化合物類、アニリンに代表される芳香族アミン化合物類、ピリジンに代表される窒素原子含有芳香族化合物類、1,3−ビス(ジメチルアミノ)−2,2−ジメチルプロパンに代表される多価アミン化合物類、などを例示することができる。
さらに、電子供与性化合物(A1e)として用いることのできる化合物として、上記の複数の官能基を同一分子内に含有する化合物を用いることもできる。その様な化合物の例として、酢酸−(2−エトキシエチル)や3−エトキシ−2−t−ブチルプロピオン酸エチルに代表されるアルコキシ基を分子内に有するエステル化合物類、2−ベンゾイル−安息香酸エチルに代表されるケトエステル化合物類、(1−t−ブチル−2−メトキシエチル)メチルケトンに代表されるケトエーテル化合物類、N,N−ジメチル−2,2−ジメチル−3−メトキシプロピルアミンに代表アミノエーテル化合物類、エポキシクロロプロパンに代表されるハロゲノエーテル化合物類などを挙げることができる。
これらの電子供与性化合物は、単独で用いるだけでなく、複数の化合物を併用することもできる。これらの中で好ましいのは、フタル酸ジエチル、フタル酸ジブチル、フタル酸ジイソブチル、フタル酸ジヘプチルに代表されるフタル酸エステル化合物類、フタロイルジクロライドに代表されるフタル酸ハライド化合物類、2−n−ブチル−マロン酸ジエチルの様な2位に一つ又は二つの置換基を有するマロン酸エステル化合物類、2−n−ブチル−コハク酸ジエチルの様な2位に一つ又は二つの置換基若しくは2位と3位にそれぞれ一つ以上の置換基を有するコハク酸エステル化合物類、2−イソプロピル−2−イソブチル−1,3−ジメトキシプロパンや2−イソプロピル−2−イソペンチル−1,3−ジメトキシプロパンの様な2位に一つ又は二つの置換基を有する1,3−ジメトキシプロパンに代表される脂肪族多価エーテル化合物類、9,9−ビス(メトキシメチル)フルオレンに代表される芳香族の遊離基を分子内に有する多価エーテル化合物類などである。
(6)構成成分の量比
本発明における固体触媒成分(A1)を構成する各成分の使用量の量比は、本発明の効果を損なわない範囲で任意のものであり得るが、一般的には、次の範囲内が好ましい。
チタン化合物類(A1b)の使用量は、使用する固体成分中のマグネシウム化合物類(A1a)の使用量に対して、モル比(チタン化合物のモル数/マグネシウム化合物のモル数)で、好ましくは0.0001〜1,000の範囲内であり、より好ましくは0.001〜100の範囲であり、特に好ましくは0.01〜50の範囲内が望ましい。
また、マグネシウム化合物類(A1a)及びチタン化合物類(A1b)以外にハロゲン源となる化合物(すなわち(A1c))を使用する場合は、その使用量は、マグネシウム化合物類及びチタン化合物類の各々がハロゲンを含むか含まないかに関わらず、使用するマグネシウム化合物類の使用量に対して、モル比(ハロゲン源となる化合物のモル数/マグネシウム化合物のモル数)で、好ましくは0.01〜1,000の範囲内であり、特に好ましくは0.1〜100の範囲内が望ましい。
また、カルシウム化合物類(A1d)の使用量は、使用するチタン化合物類の使用量に対して、モル比(カルシウム化合物のモル数/チタン化合物のモル数)で、好ましくは0.0001〜1,000の範囲内であり、より好ましくは0.001〜100の範囲であり、特に好ましくは0.01〜50の範囲内が望ましい。ただし、最終的に触媒成分中に含まれるカルシウム原子の含量は、チタン原子とのモル比(カルシウム原子のモル数/チタン原子のモル数)で0.001〜2.0の範囲内であり、より好ましくは0.01〜1.8の範囲内である。
さらに、電子供与性化合物(A1e)の使用量は、使用するマグネシウム化合物(A1a)の量に対して、モル比(電子供与性化合物のモル数/マグネシウム化合物のモル数)で、好ましくは0.001〜10の範囲内であり、特に好ましくは0.01〜5の範囲内が望ましい。
(7)固体触媒成分(A1)の調製
本発明では、固体触媒成分(A1)は、上記の構成する各成分を、上記の量比で接触して得られる。各成分の接触条件は、酸素を存在させないことが必要であるものの、本発明の効果を損なわない範囲で、任意の条件を用いることができる。一般的には、次の条件が好ましい。
接触温度は、−50〜200℃程度、好ましくは0〜100℃である。接触方法としては、回転ボールミルや振動ミルなどによる機械的な方法、並びに、不活性希釈剤の存在下に撹拌により接触させる方法、などを例示することができる。
また、固体触媒成分(A1)の製造の際には、中間及び/又は最後に不活性溶媒で洗浄を行っても良い。好ましい溶媒種としては、ヘプタンなどの脂肪族炭化水素化合物、トルエンなどの芳香族炭化水素化合物、及び、1,2−ジクロロエチレンやクロロベンゼンなどのハロゲン含有炭化水素化合物、などを例示することができる。
本発明における固体触媒成分(A1)の調製方法としては、任意の方法を用いることができる。具体的には、下記の方法を例示することができる。なお、本発明は、下記例示により何ら制限されるものではない。
(i)ジエトキシマグネシウムに代表されるアルコキシ基含有マグネシウム化合物類に、四塩化チタンに代表されるハロゲン化チタン化合物類および塩化カルシウムに代表されるハロゲン化カルシウム化合物類を接触させる方法。
必要に応じて電子供与性化合物やハロゲン化ケイ素化合物等の任意成分を接触させても良い。この際、任意成分は、ハロゲン化チタン化合物類などと同時に接触させても良いし、別々に接触させても良い。
(ii)金属マグネシウムにアルコール及び必要に応じて沃素に代表される沃素含有化合物類を接触させた後、四塩化チタンに代表されるハロゲン化チタン化合物類および塩化カルシウムに代表されるハロゲン化カルシウム化合物類を接触させる方法。
必要に応じて電子供与性化合物やハロゲン化ケイ素化合物等の任意成分を接触させても良い。この際、任意成分は、ハロゲン化チタン化合物類などと同時に接触させても良いし、別々に接触させても良い。
(iii)ジエトキシマグネシウムに代表されるアルコキシ基含有マグネシウム化合物類をテトラブトキシチタンに代表されるアルコキシ基含有チタン化合物類と接触させた後、ハロゲン化剤又は四塩化チタンに代表されるハロゲン化チタン化合物類と接触させ、更に塩化カルシウムに代表されるハロゲン化カルシウム化合物類で接触させる方法。
必要に応じて電子供与性化合物等の任意成分を接触させても良い。この際、任意成分は、ハロゲン化剤などと同時に接触させても良いし、別々に接触させても良い。
(iv)塩化マグネシウムに代表されるハロゲン化マグネシウム化合物類と塩化カルシウムに代表されるハロゲン化カルシウム化合物類を共粉砕し、チタン含有化合物類を接触させる方法。
必要に応じて電子供与性化合物やハロゲン化ケイ素化合物等の任意成分を接触させても良い。この際、任意成分は、チタン含有化合物類などと同時に接触させても良いし、別々に接触させても良い。
(v)塩化マグネシウムに代表されるハロゲン化マグネシウム化合物類をアルコール化合物類、エポキシ化合物類、及び、リン酸エステル化合物類等を用いて溶解し、四塩化チタンに代表されるハロゲン化チタン化合物類と接触させた後、塩化カルシウムに代表されるハロゲン化カルシウム化合物類を接触させる方法。
ハロゲン化チタン化合物類と接触させる前に、スプレードライや冷却した炭化水素溶媒等の貧溶媒へ滴下する方法などを用いて粒子形成を行っても良い。また、必要に応じて電子供与性化合物やハロゲン化ケイ素化合物等の任意成分を接触させても良い。この際、任意成分は、ハロゲン化チタン化合物類などと同時に接触させても良いし、別々に接触させても良い。
(vi)塩化マグネシウムに代表されるハロゲン化マグネシウム化合物類と塩化カルシウムに代表されるハロゲン化カルシウム化合物類を共粉砕し、テトラブトキシチタンに代表されるアルコキシ基含有チタン化合物類及び特定のポリマーケイ素化合物成分を接触させて得られる固体触媒成分に、四塩化チタンに代表されるハロゲン化チタン化合物類及び/又は四塩化ケイ素に代表されるハロゲン化ケイ素化合物類を接触させる方法。
このポリマーケイ素化合物としては、下記一般式(1)で示されるものが適当である。
[−Si(H)(R)−O−]…(1)
(式中、Rは炭素数1〜10程度の炭化水素基であり、qはこのポリマーケイ素化合物の粘度が1〜100センチストークス程度となるような重合度を示す。)
具体的な化合物の例としては、メチルハイドロジェンポリシロキサン、フェニルハイドロジェンポリシロキサン、1,3,5,7−テトラメチルシクロテトラシロキサン、等を挙げることができる。また、必要に応じて電子供与性化合物等の任意成分を接触させても良い。この際、任意成分は、ハロゲン化チタン化合物類などと同時に接触させても良いし、別々に接触させても良い。
(vii)ブチルマグネシウムクロライドに代表されるグリニャー試薬等の有機マグネシウム化合物類とチタン含有化合物類およびカルシウム化合物類を接触させる方法。
チタン含有化合物類としては、テトラブトキシチタンに代表されるアルコキシ基含有チタン化合物類や四塩化チタンに代表されるハロゲン化チタン化合物類などを用いることができる。カルシウム化合物類としては、塩化カルシウムに代表されるハロゲン化カルシウム化合物類やカルシウムアセチルアセトナトなどに代表される有機カルシウム化合物類などを用いることができる。必要に応じて、電子供与性化合物、テトラエトキシシランに代表されるアルコキシ基含有ケイ素化合物、及び、ハロゲン化ケイ素化合物等の任意成分を接触させても良い。この際、任意成分は、チタン含有化合物と同時に接触させても良いし、別々に接触させても良い。
2.α−オレフィン重合用触媒成分(A)
本発明で用いる重合用触媒成分(A)は、前述の固体触媒成分(A1)に対して、アルケニル基を有するケイ素化合物(A2)、有機ケイ素化合物(A3)、及び、有機アルミニウム化合物(A4)を接触処理させてなるものである。また、本発明の効果を損なわない範囲で、任意の成分を任意の形態で含んでも良い。
以下に、各構成成分などを詳述する。
(1)アルケニル基を有するケイ素化合物(A2)
本発明に用いられるアルケニル基を有するケイ素化合物(A2)としては、特開平2−34707号公報、特開2003−292522号公報、及び特開2006−169283号公報に開示された化合物等を用いることができる。
これらのアルケニル基を有する化合物は、モノシラン(SiH)の水素原子の少なくとも一つがアルケニル基に、そして残りの水素原子のうちのいくつかが、ハロゲン(好ましくはCl)、アルキル基(好ましくは炭素数1〜12の炭化水素基)、アリール基(好ましくはフェニル基)、アルコキシ基(好ましくは炭素数1〜12のアルコキシ基)、その他で置き換えられた構造を示すものである。
具体的には、ビニルシラン、メチルビニルシラン、ジメチルビニルシラン、トリメチルビニルシラン、トリクロロビニルシラン、ジクロロメチルビニルシラン、クロロジメチルビニルシラン、クロロメチルビニルシラン、トリエチルビニルシラン、クロロジエチルビニルシラン、ジクロロエチルビニルシラン、ジメチルエチルビニルシラン、ジエチルメチルビニルシラン、トリペンチルビニルシラン、トリフェニルビニルシラン、ジフェニルメチルビニルシラン、ジメチルフェニルビニルシラン、CH=CH−Si(CH(CCH)、(CH=CH)(CHSi−O−Si(CH(CH=CH)、ジビニルシラン、ジクロロジビニルシラン、ジメチルジビニルシラン、ジフェニルジビニルシラン、アリルトリメチルシラン、アリルトリエチルシラン、アリルトリビニルシラン、アリルメチルジビニルシラン、アリルジメチルビニルシラン、アリルメチルジクロロシラン、アリルトリクロロシラン、アリルトリブロモシラン、ジアリルジメチルシラン、ジアリルジエチルシラン、ジアリルジビニルシラン、ジアリルメチルビニルシラン、ジアリルメチルクロロシラン、ジアリルジクロロシラン、ジアリルジブロモシラン、トリアリルメチルシラン、トリアリルエチルシラン、トリアリルビニルシラン、トリアリルクロロシラン、トリアリルブロモシラン、テトラアリルシラン、ジ−3−ブテニルシランジメチルシラン、ジ−3−ブテニルシランジエチルシラン、ジ−3−ブテニルシランジビニルシラン、ジ−3−ブテニルシランメチルヴィニルシラン、ジ−3−ブテニルシランメチルクロロシラン、ジ−3−ブテニルシランジクロロシラン、トリ−3−ブテニルシランエチルシラン、トリ−3−ブテニルシランビニルシラン、トリ−3−ブテニルシランクロロシラン、トリ−3−ブテニルシランブロモシラン、テトラ−3−ブテニルシランなどを例示することができる。
これらの中でも、ビニルシラン化合物類が好ましく、とりわけトリメチルビニルシラン、トリクロロビニルシラン、ジメチルジビニルシランが好ましい。
アルケニル基を有するケイ素化合物(A2)の使用量の量比は、本発明の効果を損なわない範囲で任意のものであり得るが、一般的には、次に示す範囲内が好ましい。
アルケニル基を有するケイ素化合物(A2)の使用量は、固体触媒成分(A1)を構成するチタン成分に対するモル比(アルケニル基を有するケイ素化合物(A2)のモル数/チタン原子のモル数)で、好ましくは0.001〜1,000の範囲内であり、特に好ましくは0.01〜100の範囲内が望ましい。
また、本発明で用いられるアルケニル基を有するケイ素化合物(A2)は、活性点となりうるチタン原子にアルケニル基で配位しており、有機アルミ化合物によるチタン原子の過還元や不純物などによる活性点の失活を防ぐ目的で用いられる。
(2)有機ケイ素化合物(A3)
本発明で用いられる有機ケイ素化合物(A3)としては、特開2004−124090号公報に開示された化合物等を用いることができる。
一般的には、下記一般式にて表される化合物を用いることが望ましい。
Si(OR
式中、Rは、炭化水素基またはヘテロ原子含有炭化水素基を表す。
として用いることのできる炭化水素基は、一般に炭素数1〜20、好ましくは炭素数3〜10のものである。Rとして用いることのできる炭化水素基の具体的な例としては、n−プロピル基に代表される直鎖状脂肪族炭化水素基、i−プロピル基やt−ブチル基に代表される分岐状脂肪族炭化水素基、シクロペンチル基やシクロヘキシル基に代表される脂環式炭化水素基、フェニル基に代表される芳香族炭化水素基、などを挙げることができる。
より好ましくは、Rとして分岐状脂肪族炭化水素基または脂環式炭化水素基を用いることが望ましく、とりわけ、i−プロピル基、i−ブチル基、t−ブチル基、テキシル基、シクロペンチル基、シクロヘキシル基、などを用いることが望ましい。
がヘテロ原子含有炭化水素基である場合は、ヘテロ原子が、窒素、酸素、硫黄、リン、ケイ素から選ばれることが望ましく、とりわけ、窒素又は酸素であることが望ましい。Rのヘテロ原子含有炭化水素基の骨格構造としては、Rが炭化水素基である場合の例示から選ぶことが望ましい。とりわけ、N,N−ジエチルアミノ基、キノリノ基、イソキノリノ基、などが好ましい。
また、式中、Rは、水素、ハロゲン、炭化水素基若しくはヘテロ原子含有炭化水素基を表す。
として用いることのできるハロゲンとしては、フッ素、塩素、臭素、沃素、などを例示することができる。
また、Rが炭化水素基である場合は、一般に炭素数1〜20、好ましくは炭素数1〜10のものである。Rとして用いることのできる炭化水素基の具体的な例としては、メチル基やエチル基に代表される直鎖状脂肪族炭化水素基、i−プロピル基やt−ブチル基に代表される分岐状脂肪族炭化水素基、シクロペンチル基やシクロヘキシル基に代表される脂環式炭化水素基、フェニル基に代表される芳香族炭化水素基、などを挙げることができる。中でも、メチル基、エチル基、プロピル基、i−プロピル基、i−ブチル基、s−ブチル基、t−ブチル基、テキシル基、シクロペンチル基、シクロヘキシル基、などを用いることが望ましい。
がヘテロ原子含有炭化水素基である場合は、Rがヘテロ原子含有炭化水素基である場合の例示から選ぶことが望ましい。とりわけ、N,N−ジエチルアミノ基、キノリノ基、イソキノリノ基、などが好ましい。
mの値が2の場合、二つあるRは、同一であっても異なっても良い。また、mの値に関わらず、Rは、Rと同一であっても異なっても良い。
また、式中、Rは、炭化水素基を表す。Rとして用いることのできる炭化水素基は、一般に炭素数1〜20、好ましくは炭素数1〜10、更に好ましくは炭素数1〜5のものである。
として用いることのできる炭化水素基の具体的な例としては、メチル基やエチル基に代表される直鎖状脂肪族炭化水素基、i−プロピル基やt−ブチル基に代表される分岐状脂肪族炭化水素基、などを挙げることができる。中でも、メチル基とエチル基が最も好ましい。mの値が2以上である場合、複数存在するRは同一であっても異なっても良い。
本発明で用いることのできる有機ケイ素化合物(A3)の好ましい例としては、t−Bu(Me)Si(OMe)、t−Bu(Me)Si(OEt)、t−Bu(Et)Si(OMe)、t−Bu(n−Pr)Si(OMe)、c−Hex(Me)Si(OMe)、c−Hex(Et)Si(OMe)、c−PenSi(OMe)、i−PrSi(OMe)、i−BuSi(OMe)、i−Pr(i−Bu)Si(OMe)、n−Pr(Me)Si(OMe)、t−BuSi(OEt)、(EtN)Si(OMe)、EtN−Si(OEt)
Figure 2010248437
などを挙げることができる。
これらの有機ケイ素化合物類は、単独で用いるだけでなく、複数の化合物を併用することもできる。
有機ケイ素化合物(A3)の使用量の量比は、本発明の効果を損なわない範囲で任意のものでありうるが、一般的には、次に示す範囲内が好ましい。
有機ケイ素化合物(A3)の使用量は、固体触媒成分(A1)を構成するチタン成分に対するモル比で(有機ケイ素化合物(A3)のモル数/チタン原子のモル数)で、好ましくは0.01〜1,000の範囲内であり、特に好ましくは0.1〜100の範囲内が望ましい。
本発明で用いられる有機ケイ素化合物(A3)は、活性点となり得るチタン原子の近傍に配位し、活性点の触媒活性やポリマーの規則性といった触媒性能を制御していると、考えられている。
(3)有機アルミニウム化合物(A4)
本発明に用いられる有機アルミニウム化合物(A4)としては、特開2004−124090号公報に開示された化合物等を用いることができる。
一般的には、下記一般式にて表される化合物を用いることが望ましい。
AlX(OR
(式中、Rは、炭化水素基を表す。Xは、ハロゲンまたは水素を表す。Rは、炭化水素基またはAlによる架橋基を表す。a≧1、0≦b≦2、0≦c≦2、a+b+c=3である。)
式中、Rは、炭化水素基であり、好ましくは炭素数1〜10、更に好ましくは炭素数1〜8、特に好ましくは炭素数1〜6、のものを用いることが望ましい。Rの具体的な例としては、メチル基、エチル基、プロピル基、ブチル基、イソブチル基、ヘキシル基、オクチル基、などを挙げることができる。この中で、メチル基、エチル基、イソブチル基が最も好ましい。
また、式中、Xは、ハロゲンまたは水素である。Xとして用いることのできるハロゲンとしては、フッ素、塩素、臭素、沃素などを例示することができる。この中で、塩素が特に好ましい。
さらに、式中、Rは、炭化水素基またはAlによる架橋基である。Rが炭化水素基である場合には、Rの炭化水素基の例示と同じ群からRを選択することができる。また、有機アルミニウム化合物(A4)としてメチルアルモキサンに代表されるアルモキサン化合物類を用いることも可能であり、その場合Rは、Alによる架橋基を表す。
有機アルミニウム化合物(A4)として用いることのできる化合物の例としては、トリメチルアルミニウム、トリエチルアルミニウム、トリイソブチルアルミニウム、トリオクチルアルミニウム、ジエチルアルミニウムクロライド、エチルアルミニウムクロライド、ジエチルアルミニウムエトキサイド、メチルアルモキサン、などを挙げることができる。中でも、トリエチルアルミニウムとトリイソブチルアルミニウムが好ましい。
有機アルミニウム化合物(A4)は、単独の化合物を用いるだけでなく、複数の化合物を併用することもできる。
有機アルミニウム化合物(A4)の使用量の量比は、本発明の効果を損なわない範囲で任意のものでありうるが、一般的には、次に示す範囲内が好ましい。
有機アルミニウム化合物(A4)の使用量は、固体触媒成分(A1)を構成するチタン成分に対するアルミニウムの原子比(アルミニウム原子のモル数/チタン原子のモル数)で、好ましくは0.1〜100の範囲内であり、特に好ましくは1〜50の範囲内が望ましい。
本発明で用いられる有機アルミニウム化合物(A4)は、固体触媒成分中に有機ケイ素化合物(A3)を効率よく担持させることを目的として用いられる。従って、本重合時に助触媒として用いられる有機アルミニウム化合物(B)とは、使用目的が異なり、区別される。
(4)少なくとも二つのエーテル結合を有する化合物(A5)
本発明に係る重合用触媒成分(A)は、前述の成分(A1)に対して、アルケニル基を有するケイ素化合物(A2)、有機ケイ素化合物(A3)、及び、有機アルミニウム化合物(A4)を接触処理させてなるものであるが、この際、本発明の効果を損なわない範囲で、少なくとも二つのエーテル結合を有する化合物(A5)を、任意成分として接触処理させても良い。
本発明で用いることのできる少なくとも二つのエーテル結合を有する化合物(A5)としては、特開平3−294302号及び特開平8−333413号公報に開示された化合物等を用いることができる。一般的には、下記式にて表される化合物を用いることが望ましい。
O−C(R−C(R−C(R)−OR
(ここで、R及びRは、水素、炭化水素基またはヘテロ原子含有炭化水素基から選ばれる任意の遊離基を表す。Rは、炭化水素基またはヘテロ原子含有炭化水素基を表す。)
式中、Rは、水素、炭化水素基またはヘテロ原子含有炭化水素基から選ばれる任意の遊離基を表す。
として用いることのできる炭化水素基は、一般に炭素数1〜20、好ましくは炭素数1〜10のものである。Rとして用いることのできる炭化水素基の具体的な例としては、n−プロピル基に代表される直鎖状脂肪族炭化水素基、i−プロピル基やt−ブチル基に代表される分岐状脂肪族炭化水素基、シクロペンチル基やシクロヘキシル基に代表される脂環式炭化水素基、フェニル基に代表される芳香族炭化水素基、などを挙げることができる。より好ましくは、Rとして分岐状脂肪族炭化水素基または脂環式炭化水素基を用いることが望ましく、とりわけ、i−プロピル基、i−ブチル基、i−ペンチル基、シクロペンチル基、シクロヘキシル基、などを用いることが望ましい。
二つのRは、結合して一つ以上の環を形成しても良い。この際、環構造中に2個又は3個の不飽和結合を含むシクロポリエン系構造を取ることもできる。また、他の環式構造と縮合していても良い。単環式、複環式、縮合の有無に関わらず、環上に炭化水素基を置換基として1つ以上有していても良い。環上の置換基は、一般に炭素数1〜20、好ましくは炭素数1〜10のものである。具体的な例としては、n−プロピル基に代表される直鎖状脂肪族炭化水素基、i−プロピル基やt−ブチル基に代表される分岐状脂肪族炭化水素基、シクロペンチル基やシクロヘキシル基に代表される脂環式炭化水素基、フェニル基に代表される芳香族炭化水素基、などを挙げることができる。
式中、Rは、水素、炭化水素基またはヘテロ原子含有炭化水素基から選ばれる任意の遊離基を表す。具体的には、Rは、Rの例示から選ぶことができる。好ましくは水素である。
また、式中、Rは、炭化水素基またはヘテロ原子含有炭化水素基を表す。具体的には、Rは、Rが炭化水素基である場合の例示から選ぶことができる。好ましくは、炭素数1〜6の炭化水素基であることが望ましく、更に、好ましくはアルキル基であることが望ましい。最も好ましくはメチル基である。
〜Rがヘテロ原子含有炭化水素基である場合は、ヘテロ原子が、窒素、酸素、硫黄、リン、ケイ素から選ばれることが望ましい。また、R〜Rが炭化水素基であるかヘテロ原子含有炭化水素基であるかに関わらず、任意にハロゲンを含んでいても良い。R〜Rがヘテロ原子及び/又はハロゲンを含む場合、その骨格構造は、炭化水素基である場合の例示から選ばれることが望ましい。また、R〜Rの八個の置換基は、お互いに同一であっても異なっても良い。
本発明で用いることのできる少なくとも二つのエーテル結合を有する化合物(A5)の好ましい例としては、2,2−ジイソプロピル−1,3−ジメトキシプロパン、2,2−ジイソブチル−1,3−ジメトキシプロパン、2,2−ジイソブチル−1,3−ジエトキシプロパン、2−イソブチル−2−イソプロピル−1,3−ジメトキシプロパン、2−イソプロピル−2−イソペンチル−1,3−ジメトキシプロパン、2,2−ジシクロペンチル−1,3−ジメトキシプロパン、2,2−ジシクロヘキシル−1,3−ジメトキシプロパン、2−イソプロピル−1,3−ジメトキシプロパン、2−tert−ブチル−1,3−ジメトキシプロパン、2,2−ジプロピル−1,3−ジメトキシプロパン、2−メチル−2−フェニル−1,3−ジメトキシプロパン、9,9−ビス(メトキシメチル)フルオレン、9,9−ビス(メトキシメチル)−1,8−ジクロロフルオレン、9,9−ビス(メトキシメチル)−2,7−ジシクロペンチルフルオレン、9,9−ビス(メトキシメチル)−1,2,3,4−テトラヒドロフルオレン、1,1−ビス(1’−ブトキシエチル)シクロペンタジエン、1,1−ビス(α−メトキシベンジル)インデン、1,1−ビス(フェノキシメチル)−3,6−ジシクロヘキシルインデン、1,1−ビス(メトキシメチル)ベンゾナフテン、7,7−ビス(メトキシメチル)−2,5−ノボルナジネン、などを挙げることができる。中でも、2,2−ジイソプロピル−1,3−ジメトキシプロパン、2,2−ジイソブチル−1,3−ジメトキシプロパン、2−イソブチル−2−イソプロピル−1,3−ジメトキシプロパン、2−イソプロピル−2−イソペンチル−1,3−ジメトキシプロパン、2,2−ジシクロペンチル−1,3−ジメトキシプロパン、9,9−ビス(メトキシメチル)フルオレンが特に好ましい。
これらの少なくとも二つのエーテル結合を有する化合物(A5)は、単独で用いるだけでなく、複数の化合物を併用することもできる。また、固体触媒成分(A1)中の電子供与性化合物(A1e)として用いられる多価エーテル化合物と、同一であっても異なっても良い。また、少なくとも二つのエーテル結合を有する化合物(A5)は、単独の化合物を用いるだけでなく、複数の化合物を併用することもできる。
少なくとも二つのエーテル結合を有する化合物(A5)の使用量の量比は、本発明の効果を損なわない範囲で任意のものでありうるが、一般的には、次に示す範囲内が好ましい。
少なくとも二つのエーテル結合を有する化合物(A5)の使用量は、固体触媒成分(A1)を構成するチタン成分に対するモル比(少なくとも二つのエーテル結合を有する化合物(A5)のモル数/チタン原子のモル数)で、好ましくは0.01〜10,000の範囲内であり、特に好ましくは0.5〜500の範囲内が望ましい。
(5)α−オレフィン重合用触媒成分(A)の調製
触媒成分(A)の各構成成分の接触条件は、酸素を存在させないことが必要であるが、本発明の効果を損なわない範囲で、任意の条件を用いることができる。一般的には、次の条件が好ましい。
接触温度は、−50〜200℃程度、好ましくは−10〜100℃、更に好ましくは0〜70℃、とりわけ好ましくは10℃〜60℃である。
また、接触方法としては、回転ボールミルや振動ミルなどによる機械的な方法、並びに、不活性希釈剤の存在下に撹拌により接触させる方法、などを例示することができる。好ましくは、不活性希釈剤の存在下に撹拌により接触させる方法を用いることが望ましい。
固体触媒成分(A1)、アルケニル基を有するケイ素化合物(A2)、有機ケイ素化合物(A3)、及び、有機アルミニウム化合物(A4)の接触手順に関しては、任意の手順を用いることができる。
具体的な例としては、下記の手順(i)〜手順(iv)が挙げられる。
手順(i):固体触媒成分(A1)にアルケニル基を有するケイ素化合物(A2)を接触させ、次いで、有機ケイ素化合物(A3)を接触させた後、有機アルミニウム化合物(A4)を接触させる方法
手順(ii):固体触媒成分(A1)にアルケニル基を有するケイ素化合物(A2)及び有機ケイ素化合物(A3)を接触させた後、有機アルミニウム化合物(A4)を接触させる方法
手順(iii):固体触媒成分(A1)に有機ケイ素化合物(A3)を接触させ、次いで、アルケニル基を有するケイ素化合物(A2)を接触させた後、有機アルミニウム化合物(A4)を接触させる方法
手順(iv):全ての化合物を同時に接触させる方法
などを例示することができる。
この中でも、手順(i)及び手順(ii)が好ましい。
また、任意成分として、少なくとも二つのエーテル結合を有する化合物(A5)を用いる場合も、上記と同様に任意の順序で接触させることができる。
さらに、固体触媒成分(A1)に対して、アルケニル基を有するケイ素化合物(A2)、有機ケイ素化合物(A3)、及び、有機アルミニウム化合物(A4)のいずれも、任意の回数接触させることもできる。複数回の接触をする場合は、各成分がお互いに同一であっても異なっても良い。また、先に各成分の使用量の範囲を示したが、これは、1回当たりに接触させる使用量であり、複数回使用するときは、1回の使用量が前述した使用量の範囲内であれば、何回接触させても良い。
触媒成分(A)の調製の際には、中間及び/又は最後に不活性溶媒で洗浄を行っても良い。好ましい溶媒種としては、ヘプタンなどの脂肪族炭化水素化合物、トルエンなどの芳香族炭化水素化合物、及び、1,2−ジクロロエチレンやクロロベンゼンなどのハロゲン含有炭化水素化合物、などを例示することができる。
3.有機アルミニウム化合物(B)
本発明においては、触媒としてα−オレフィン重合用固体触媒成分(A1)またはα−オレフィン重合用触媒成分(A)、及び、有機アルミニウム化合物(B)を用いることが必須要件である。
本発明において用いることのできる有機アルミニウム化合物(B)としては、特開2004−124090号公報に開示された化合物等を用いることができる。
好ましくは、触媒成分(A)を製造する際の成分である有機アルミニウム化合物(A4)における例示と同じ群から選択することができる。触媒成分(A)を製造する際に用いることのできる有機アルミニウム化合物(A4)と触媒成分として用いることのできる有機アルミニウム化合物(B)が同一であっても異なっても良い。
有機アルミニウム化合物(B)は、単独の化合物を用いるだけでなく、複数の化合物を併用することもできる。
また、有機アルミニウム化合物(B)の使用量は、α−オレフィン重合用触媒成分(A)を構成するチタン成分に対するモル比(有機アルミニウム化合物(B)のモル数/チタン原子のモル数)で、好ましくは1〜5,000の範囲内であり、特に好ましくは10〜500の範囲内が望ましい。
本発明で用いられる有機アルミニウム化合物(B)は、本重合中に助触媒として用いられる。従って、触媒成分(A)を調製する際の成分である有機アルミニウム化合物(A4)とは、使用目的が異なり、区別される。
4.有機ケイ素化合物(C)
本発明においては、α−オレフィン用重合触媒として、α−オレフィン重合用固体触媒成分(A1)またはα−オレフィン重合用触媒成分(A)及び有機アルミニウム化合物(B)を用いる。
この際、本発明の効果を損なわない範囲で、有機ケイ素化合物(C)、及び、少なくとも二つのエーテル結合を有する化合物(D)などの任意成分を用いることができる。
本発明の触媒において、任意成分として用いられる有機ケイ素化合物(C)としては、特開2004−124090号公報に開示された化合物等を用いることができる。
好ましくは、α−オレフィン重合用触媒成分(A)を調製する際の成分である有機ケイ素化合物(A3)における例示と同じ群から選択することができる。
また、ここで使用される有機ケイ素化合物(C)は、α−オレフィン重合用触媒成分(A)に含まれる有機ケイ素化合物(A3)と同一であっても異なってもよい。
有機ケイ素化合物(C)を用いる場合の使用量は、α−オレフィン重合用触媒成分(A)を構成するチタン成分に対するモル比(有機ケイ素化合物(C)のモル数/チタン原子のモル数)で、好ましくは0.01〜10,000の範囲内であり、特に好ましくは0.5〜500の範囲内が望ましい。
本発明で用いられる有機ケイ素化合物(C)は、α−オレフィン重合用触媒成分(A)を製造する際の成分である有機ケイ素化合物(A3)と同様に活性点に作用し触媒性能を制御する働きがあると考えられている。本発明のように、α−オレフィン重合用触媒成分(A)中だけでなく、本重合時にも有機ケイ素化合物(C)を作用させることで、触媒性能が更に向上させることができる。
5.少なくとも二つのエーテル結合を有する化合物(D)
本発明の触媒において、任意成分として用いられる少なくとも二つのエーテル結合を有する化合物(D)としては、特開平3−294302号公報および特開平8−333413号公報に開示された化合物等を用いることができる。
好ましくは、α−オレフィン重合用触媒成分(A)において用いられる少なくとも二つのエーテル結合を有する化合物(A5)における例示と同じ群から選択することができる。この際、α−オレフィン重合用触媒成分(A)を調製する際に任意成分として用いられる少なくとも二つのエーテル結合を有する化合物(A5)と、触媒の任意成分として用いられる少なくとも二つのエーテル結合を有する化合物(D)が同一であっても、異なっても良い。
少なくとも二つのエーテル結合を有する化合物(D)は、単独の化合物を用いるだけでなく、複数の化合物を併用することもできる。
少なくとも二つのエーテル結合を有する化合物(D)を用いる場合の使用量は、α−オレフィン重合用触媒成分(A)を構成するチタン成分に対するモル比(少なくとも二つのエーテル結合を有する化合物(D)のモル数/チタン原子のモル数)で、好ましくは0.01〜10,000の範囲内であり、特に好ましくは0.5〜500の範囲内が望ましい。
6.その他の化合物
本発明の触媒において、本発明の効果を損なわない限り、上記の有機ケイ素化合物(C)、及び、少なくとも二つのエーテル結合を有する化合物(D)以外の成分を、触媒の任意成分として用いることができる。例えば、特開2004−124090号公報に開示されている分子内にC(=O)N結合を有する化合物(E)や、特開2006−225449号公報に開示されている亜硫酸エステル化合物(F)を用いることにより、冷キシレン可溶分(CXS)の様な非晶性成分の生成を抑制することができる。この場合、テトラメチルウレア、1,3−ジメチル−2−イミダゾリジノン、1−エチル−2−ピロリジノン、亜硫酸ジメチル、亜硫酸ジエチルなどを好まし例として挙げることができる。また、ジエチル亜鉛の様なAl以外の金属原子を持つ有機金属化合物を用いることもできる。
分子内にC(=O)N結合を有する化合物(E)及び亜硫酸エステル化合物(F)を用いる場合の使用量は、α−オレフィン重合用触媒成分(A)を構成するチタン成分に対するモル比(任意成分(E)、(F)のモル数/チタン原子のモル数)で、好ましくは0.001〜1,000の範囲内であり、特に好ましくは0.05〜500の範囲内が望ましい。
7.予備重合
本発明におけるα−オレフィン重合用固体触媒成分(A1)またはα−オレフィン重合用触媒成分(A)は、本重合で使用する前に予備重合されていても良い。重合プロセスに先立って、予め少量のポリマーを触媒周囲に生成させることによって、触媒がより均一となり、微粉の発生量を抑えることができる。
予備重合におけるモノマーとしては、特開2004−124090号公報に開示された化合物等を用いることができる。具体的な化合物の例としては、エチレン、プロピレン、1−ブテン、3−メチルブテン−1、4−メチルペンテン−1、などに代表されるオレフィン類、スチレン、α−メチルスチレン、アリルベンゼン、クロロスチレン、などに代表されるスチレン類似化合物、及び、1,3−ブタジエン、イソプレン、1,3−ペンタジエン、1,5−ヘキサジエン、2,6−オクタジエン、ジシクロペンタジエン、1,3−シクロヘキサジエン、1,9−デカジエン、ジビニルベンゼン類、などに代表されるジエン化合物類、などを挙げることができる。中でも、エチレン、プロピレン、3−メチルブテン−1、4−メチルペンテン−1、スチレン、ジビニルベンゼン類、などが特に好ましい。
α−オレフィン重合用触媒成分(A)として予備重合されたものを用いる場合には、α−オレフィン重合用触媒成分(A)の製造手順において、任意の手順で予備重合を行うことができる。例えば、固体触媒成分(A1)を予備重合した後に、アルケニル基を有するケイ素化合物(A2)、及び、有機ケイ素化合物(A3)を接触させることができる。また、固体触媒成分(A1)、アルケニル基を有するケイ素化合物(A2)、及び、有機ケイ素化合物(A3)を接触させた後に、予備重合を行うこともできる。更に、固体触媒成分(A1)、アルケニル基を有するケイ素化合物(A2)、及び、有機ケイ素化合物(A3)を接触させる際に同時に予備重合を行っても良い。
α−オレフィン重合用固体触媒成分(A1)またはα−オレフィン重合用触媒成分(A)と上記のモノマーとの反応条件は、本発明の効果を損なわない範囲で、任意の条件を用いることができる。一般的には、以下の範囲内が好ましい。
α−オレフィン重合用固体触媒成分(A1)またはα−オレフィン重合用触媒成分(A)1グラムあたりの基準で、予備重合量は、0.001〜100gの範囲内であり、好ましくは0.1〜50g、更に好ましくは0.5〜10gの範囲内が望ましい。予備重合時の反応温度は、−150〜150℃、好ましくは0〜100℃である。そして、予備重合時の反応温度は、本重合のときの重合温度よりも、低くすることが望ましい。反応は、一般的に撹拌下に行うことが好ましく、そのときヘキサン、ヘプタン等の不活性溶媒を存在させることもできる。
予備重合は、複数回行っても良く、この際用いるモノマーは、同一であっても異なっても良い。また、予備重合後にヘキサン、ヘプタン等の不活性溶媒で洗浄を行うこともできる。
II.α−オレフィンの重合
本発明の触媒を使用する、α−オレフィンの重合は、炭化水素溶媒を用いるスラリー重合、実質的に溶媒を用いない液相無溶媒重合又は気相重合に適用される。スラリー重合の場合の重合溶媒としては、ペンタン、ヘキサン、ヘプタン、シクロヘキサン等の炭化水素溶媒が用いられる。採用される重合方法は、連続式重合、回分式重合又は多段式重合等いかなる方法でもよい。重合温度は、通常30〜200℃程度、好ましくは50〜150℃であり、そのとき分子量調節剤として水素を用いることができる。
本発明の触媒系で重合するα−オレフィンは、一般式:
−CH=CH
(式中、Rは、炭素数1〜20の炭化水素基であり、分枝基を有してもよい。)
で表されるものである。
具体的には、プロピレン、ブテン−1、ペンテン−1、ヘキセン−1,4−メチルペンテン−1等のα−オレフィン類である。これらのα−オレフィンの単独重合のほかに、α−オレフィンと共重合可能なモノマー(例えば、エチレン、α−オレフィン、ジエン類、スチレン類等)との共重合も、行うことができる。これらの共重合性モノマーは、ランダム共重合においては15重量%まで、ブロック共重合においては50重量%まで使用することができる。
III.α−オレフィン重合体
本発明の触媒で重合されるα−オレフィン重合体のインデックスについては、特に制限はなく、各種用途に合わせて、適宜調節することができる。
一般的には、α−オレフィン重合体のMFRは、0.01〜10,000g/10分の範囲内であることが好ましく、特に好ましくは0.1〜1,000g/10分の範囲内である。
また、非晶性成分である冷キシレン可溶分(CXS)の量は、用途によって好ましい範囲が異なるのが一般的である。射出成形用途などの高い剛性が好まれる用途に対しては、CXSの量は0.01〜3.0重量%の範囲内であることが好ましく、特に好ましくは0.05〜1.5重量%の範囲内、とりわけ好ましくは0.1〜1.0重量%の範囲内が望ましい。ここで、CXSの値は、下記実施例の中で定められた手法により測定した値である。
また、本発明の触媒系で得られるポリマー粒子は、優れた粒子性状を示す。
一般的に、ポリマー粒子の粒子性状は、ポリマー嵩密度、粒径分布、粒子外観、などにより評価される。本発明により得られるポリマー粒子は、ポリマー嵩密度が、0.35〜0.55g/mlの範囲内、好ましくは、0.40〜0.50g/mlの範囲内である。
以下、実施例を用いて本発明をさらに詳しく説明するが、本発明はこれらの実施例に限定されるものではない。本発明における各物性値の測定方法を以下に示す。
(1)MFR:
タカラ社製メルトインデクサーを用い、JIS K6921に基づき、230℃、21.18N(2.16kg)の条件で評価した。
(2)ポリマー嵩密度:
パウダー試料の嵩密度をASTM D1895−69に準ずる装置を使用し測定した。
(3)ポリマー平均粒径:
パウダー試料の粒径分布をJIS Z8801に準拠して篩い分け法により測定した。得られた粒径分布において、重量基準で積算50wt%となる粒径を平均粒径とした。
(4)CXS:
試料(約5g)を140℃のp−キシレン(300ml)中に一度完全に溶解させた。その後23℃まで冷却し、23℃で12時間ポリマーを析出させた。析出したポリマーを濾別した後、濾液からp−キシレンを蒸発させた。p−キシレンを蒸発させた後に残ったポリマーを100℃で2時間減圧乾燥した。乾燥後のポリマーを秤量し、試料に対する重量%としてCXSの値を得た。
(5)密度:
MFR測定時に得られた押出ストランドを用い、JIS K7112 D法に準拠して密度勾配管法で行った。
(6)Ti含量:
試料を精確に秤量し、加水分解した上で比色法を用いて測定した。予備重合後の試料については、予備重合ポリマーを除いた重量を用いて含量を計算した。
(7)ケイ素化合物含量:
試料を精確に秤量し、メタノールで分解した。ガスクロマトグラフィーを用いて標準サンプルと比較することにより、得られたメタノール溶液中のケイ素化合物濃度を求めた。メタノール中のケイ素化合物濃度と試料の重量から、試料に含まれるケイ素化合物の含量を計算した。予備重合後の試料については、予備重合ポリマーを除いた重量を用いて含量を計算した。
(8)Ca含量:
試料を白金るつぼに精確に秤量し、硫酸を加えた後、電気炉にて700℃で灰化した。次いで、硫酸とフッ化水素で加熱溶解し、得られた溶液を用いてICP発光分析(誘導結合プラズマ発光分析)でCa含量を定量した。予備重合後の試料については、予備重合ポリマーを除いた重量を用いて含量を計算した。測定装置には、堀場製作所製のICP−AES(JY−138U型)を用いた。
[実施例1]
(1)固体触媒成分(A1)の調製:
撹拌装置を備えた容量10Lのオートクレーブを充分に窒素で置換し、精製したトルエン2Lを導入した。ここに、室温で、Mg(OEt)を200g、TiClを1L添加した。温度を90℃に上げて、フタル酸ジ−n−ブチルを50ml導入した。その後、温度を110℃に上げて3hr反応を行った。反応生成物を精製したトルエンで充分に洗浄した。次いで、精製したトルエンを導入して全体の液量を2Lに調整した。室温でTiClを1L添加し、温度を110℃に上げて2hr反応を行った。反応生成物を精製したトルエンで充分に洗浄した。
次いで、精製したトルエンを導入して全体の液量を2Lに調整した。室温でTiClを1L添加し、温度を110℃に上げて2hr反応を行った。反応生成物を精製したトルエンで充分に洗浄した。更に、精製したn−ヘプタンを用いて、トルエンをn−ヘプタンで置換し、固体成分のスラリーを得た。
このスラリーの一部をサンプリングして乾燥した。分析したところ、固体成分のTi含量は2.7wt%であった。
次に、撹拌装置を備えた容量20Lのオートクレーブを充分に窒素で置換し、上記固体成分のスラリーを固体成分として100g導入した。精製したn−ヘプタンを導入して液レベルを4Lに調整した。ここに、塩化カルシウムを6.3g添加し、90℃で4hr反応を行った。
反応終了後、精製したn−ヘプタンで充分に洗浄し固体触媒成分(A1)を得た。
(2)触媒成分(A)の調製:
次に、液レベルを精製したn−ヘプタンを導入して、固体触媒成分(A1)の濃度が60mg/mlとなる様に調整し、成分(A2)としてジメチルジビニルシランを50ml、成分(A3)としてt−Bu(Me)Si(OMe)を40ml、成分(A4)としてEtAlのn−ヘプタン希釈液をEtAlとして80g添加し、40℃で2hr反応を行った。
反応生成物を精製したn−ヘプタンで充分に洗浄した。
(3)予備重合:
上記で得られた触媒成分を用いて、以下の手順により予備重合を行った。
上記のスラリーに精製したn−ヘプタンを導入して、触媒成分の濃度が20g/Lとなる様に調整した。スラリーを10℃に冷却した後、EtAlのn−ヘプタン希釈液をEtAlとして10g添加し、210gのプロピレンを4hrかけて供給した。プロピレンの供給が終わった後、更に30分反応を継続した。
次いで、気相部を窒素で充分に置換し、反応生成物を精製したn−ヘプタンで充分に洗浄した。得られたスラリーをオートクレーブから抜き出し、真空乾燥を行って触媒成分(A)を得た。
この触媒成分(A)は、固体成分1g当たり1.9gのポリプロピレンを含んでいた。分析したところ、この触媒成分(A)のポリプロピレンを除いた部分には、Tiが1.3wt%、Caが0.5wt%、t−Bu(Me)Si(OMe)が4.6wt%含まれていた。
(4)プロピレンの重合:
撹拌及び温度制御装置を有する内容積3.0Lのステンレス鋼製オートクレーブを真空下で加熱乾燥し、室温まで冷却してプロピレン置換した後、成分(B)としてEtAlを550mg、及び水素を2,000ml導入し、次いで液体プロピレンを1,000g導入して、内部温度を70℃に合わせた後に、上記のα‐オレフィン重合用触媒成分(A)を7mg圧入して、プロピレンを重合させた。1時間後にエタノールを10ml圧入して重合を停止した。ポリマーを乾燥して秤量した。その評価結果を表1に示す。
[実施例2]
実施例1の固体触媒成分(A1)の調製において、塩化カルシウムの代わりに水酸化カルシウムを使用した以外は、実施例1と全く同様に行った。このα−オレフィン重合用触媒成分(A)は、固体成分1g当たり2.0gのポリプロピレンを含んでおり、このα−オレフィン用重合成分(A)のポリプロピレンを除いた部分には、Tiが1.4wt%、Caが0.7wt%、t−Bu(Me)Si(OMe)が4.7wt%含まれていた。
また、重合は、実施例1と同様の方法で行った。その評価結果を表1に示す。
[実施例3]
実施例1の固体触媒成分(A1)の調製において、塩化カルシウムの代わりにカルシウムアセチルアセテートを使用した以外は、実施例1と全く同様に行った。このα−オレフィン重合用触媒成分(A)は、固体成分1g当たり2.0gのポリプロピレンを含んでおり、このα−オレフィン用重合成分(A)のポリプロピレンを除いた部分には、Tiが3.2wt%、Cuが0.5t%、t−Bu(Me)Si(OMe)が5.0wt%含まれていた。
また、重合は、実施例1と同様の方法で行った。その評価結果を表1に示す。
[比較例1]
実施例1の固体触媒成分(A1)の調製において、塩化カルシウムを使用しなかった以外は、実施例1と全く同様に行った。このα−オレフィン重合用触媒成分(A)は、固体成分1g当たり2.2gのポリプロピレンを含んでおり、このα−オレフィン用重合成分(A)のポリプロピレンを除いた部分には、Tiが1.9wt%、t−Bu(Me)Si(OMe)が3.2wt%含まれていた。
また、重合は、実施例1と同様の方法で行った。その評価結果を表1に示す。
[実施例4]
(1)固体触媒成分(A1)の調製:
無水塩化マグネシウム18gと塩化カルシウム2.0gを窒素雰囲気中、直径15mmのステンレス鋼(SUS−32)製ボール2.8kgを収容した内容積800ml・内径100mmのステンレス鋼(SUS−32)製ボールミル容器に挿入し、40rpmの回転数で24時間共粉砕を行った。
次に、充分に窒素で置換した攪拌装置を備えた容量500ml丸底フラスコに、精製したn−ヘプタン120mlを導入した。更に、得られた共粉砕物15g、Ti(O−n−Bu)を106ml添加して、90℃で1.5hr反応させ均一な溶解液とした。
次いで、均一な溶解液を40℃に冷却した。40℃に保持したままメチルハイドロジェンポリシロキサン(20センチストークスのもの)を24ml添加し、5hr析出反応を行った。析出した固体生成物を精製したn−ヘプタンで充分に洗浄した。
次いで、窒素で充分に置換した攪拌装置を備えた容量500ml丸底フラスコに、析出した固体生成物を40g導入し、更に精製したn−ヘプタンを導入して、固体生成物の濃度が200mg/mlとなる様にした。ここに、SiClを12ml添加して、90℃で3hr反応を行った。
反応生成物を精製したn−ヘプタンで充分に洗浄し、反応生成物の濃度が100mg/mlとなる様に精製したn−ヘプタンを導入した。フタル酸ジクロライド1.0ml添加し、90℃で1hr反応を行った。
反応生成物を精製したn−ヘプタンで充分に洗浄し、反応生成物の濃度が200mg/mlとなる様に精製したn−ヘプタンを導入した。ここへ、TiClを15ml添加し、95℃で3hr反応を行った。
反応生成物を精製したn−ヘプタンで充分に洗浄し、反応生成物の濃度が200mg/mlとなる様に精製したn−ヘプタンを導入した。ここへ、SiClを4.0ml添加し、90℃で1hr反応を行った。
反応生成物を精製したn−ヘプタンで充分に洗浄し、固体触媒成分(A1)のスラリーを得た。
このスラリーの一部をサンプリングして乾燥した。分析したところ、固体触媒成分(A1)のTi含量は1.5wt%、Ca含量は4.7wt%であった。
(2)触媒成分(A)の調製:
充分に窒素で置換し撹拌装置を備えた500ml丸底フラスコに、上記固体触媒成分(A1)のスラリーを固体触媒成分(A1)として4g導入した。精製したn−ヘプタンを導入して、固体触媒成分(A1)の濃度が60mg/mlとなる様に調整した。ここに、成分(A2)としてトリメチルビニルシランを1.0ml、成分(A3)として(i−Pr)Si(OMe)を0.8ml、成分(A4)としてEtAlのn−ヘプタン希釈液をEtAlとして2.5g添加し、40℃で2hr反応を行った。反応生成物を精製したn−ヘプタンで充分に洗浄した。
(3)予備重合:
上記で得られた触媒成分を用いて、以下の手順により予備重合を行った。
上記のスラリーに精製したn−ヘプタンを導入して、触媒成分の濃度が20mg/mlとなる様に調整した。スラリーを10℃以下に冷却した後、EtAlのn−ヘプタン希釈液をEtAlとして1.0g添加し、8gのプロピレンを20分かけて供給した。プロピレンの供給が終わった後、更に10分反応を継続した。
次いで、気相部を窒素で充分に置換し、反応生成物を精製したn−ヘプタンで充分に洗浄した。得られたスラリーを真空乾燥を行い、触媒成分(A)を得た。
この触媒成分(A)は、固体成分1g当たり2.0gのポリプロピレンを含んでいた。分析したところ、この触媒成分(A)のポリプロピレンを除いた部分には、Tiが0.7wt%、Caが2.2wt%、(i−Pr)Si(OMe)が4.6wt%含まれていた。
また、重合は、実施例1と同様の方法で行った。その評価結果を表1に示す。
[実施例4]
(1)固体触媒成分(A1)の調製:
充分に窒素で置換した攪拌装置を備えた容量500ml丸底フラスコに、精製したn−ヘプタン120mlを導入した。更に、無水塩化マグネシウム15g、Ti(O−n−Bu)を106ml添加して、90℃で1.5hr反応させ均一な溶解液とした。
次いで、均一な溶解液を40℃に冷却した。40℃に保持したままメチルハイドロジェンポリシロキサン(20センチストークスのもの)を24ml添加し、5hr析出反応を行った。析出した固体生成物を精製したn−ヘプタンで充分に洗浄した。
次いで、窒素で充分に置換した攪拌装置を備えた容量500ml丸底フラスコに、析出した固体生成物を40g導入し、更に精製したn−ヘプタンを導入して、固体生成物の濃度が200mg/mlとなる様にした。ここに、SiClを12ml添加して、90℃で3hr反応を行った。
反応生成物を精製したn−ヘプタンで充分に洗浄し、反応生成物の濃度が100mg/mlとなる様に精製したn−ヘプタンを導入した。フタル酸ジクロライド1.0ml添加し、90℃で1hr反応を行った。
反応生成物を精製したn−ヘプタンで充分に洗浄し、反応生成物の濃度が200mg/mlとなる様に精製したn−ヘプタンを導入した。ここに塩化カルシウムを0.5g添加し、90℃で2hr反応を行った。
反応生成物を精製したn−ヘプタンで充分に洗浄し、反応生成物の濃度が200mg/mlとなる様に精製したn−ヘプタンを導入した。次に、TiClを15ml添加し、95℃で3hr反応を行った。
反応生成物を精製したn−ヘプタンで充分に洗浄し、反応生成物の濃度が200mg/mlとなる様に精製したn−ヘプタンを導入した。更に、SiClを4.0ml添加し、90℃で1hr反応を行った。反応生成物を精製したn−ヘプタンで充分に洗浄した。
(2)触媒成分(A)の調製:
充分に窒素で置換し撹拌装置を備えた500ml丸底フラスコに、上記固体触媒成分(A1)のスラリーを固体触媒成分(A1)として4g導入した。精製したn−ヘプタンを導入して、固体触媒成分(A1)の濃度が60mg/mlとなる様に調整した。ここに、成分(A2)としてトリメチルビニルシランを1.0ml、成分(A3)として(i−Pr)Si(OMe)を0.8ml、成分(A4)としてEtAlのn−ヘプタン希釈液をEtAlとして2.5g添加し、40℃で2hr反応を行った。反応生成物を精製したn−ヘプタンで充分に洗浄した。
(3)予備重合:
上記で得られた触媒成分を用いて、以下の手順により予備重合を行った。
上記のスラリーに精製したn−ヘプタンを導入して、触媒成分の濃度が20mg/mlとなる様に調整した。スラリーを10℃以下に冷却した後、EtAlのn−ヘプタン希釈液をEtAlとして1.0g添加し、8gのプロピレンを20分かけて供給した。プロピレンの供給が終わった後、更に10分反応を継続した。
次いで、気相部を窒素で充分に置換し、反応生成物を精製したn−ヘプタンで充分に洗浄した。得られたスラリーを真空乾燥を行い、触媒成分(A)を得た。
この触媒成分(A)は、固体成分1g当たり2.0gのポリプロピレンを含んでいた。分析したところ、この触媒成分(A)のポリプロピレンを除いた部分には、Tiが1.4wt%、Caが1.8wt%、(i−Pr)Si(OMe)が2.7wt%含まれていた。
また、重合は、実施例1と同様の方法で行った。その評価結果を表1に示す。
[比較例2]
実施例5の固体触媒成分(A1)の調製において、塩化カルシウムを使用しなかった以外は、実施例5と全く同様に行った。
このα−オレフィン重合用触媒成分(A)は、固体成分1g当たり2.1gのポリプロピレンを含んでおり、このα−オレフィン用重合成分(A)のポリプロピレンを除いた部分には、Tiが1.0wt%、(i−Pr)Si(OMe)が4.2wt%含まれていた。
また、重合は、実施例1と同様の方法で行った。その評価結果を表1に示す。
Figure 2010248437
[実施例6]
(1)プロピレンの重合:
撹拌及び温度制御装置を有する内容積3.0Lのステンレス鋼製オートクレーブを真空下で加熱乾燥し、室温まで冷却してプロピレン置換した後、成分(B)としてEtAlを550mg、成分(C)として(i−Pr)Si(OMe)を62.0mg及び水素を2,000ml導入し、次いで、液体プロピレンを1,000g導入して、内部温度を70℃に合わせた後に、実施例4のα−オレフィン重合用固体触媒成分(A1)を7mg圧入して、プロピレンを重合させた。
1時間後にエタノールを10ml圧入して重合を停止した。ポリマーを乾燥して秤量した。その評価結果を表2に示す。
[比較例3]
(1)プロピレンの重合:
撹拌及び温度制御装置を有する内容積3.0Lのステンレス鋼製オートクレーブを真空下で加熱乾燥し、室温まで冷却してプロピレン置換した後、成分(B)としてEtAlを550mg、成分(C)として(i−Pr)Si(OMe)を62.0mg及び水素を2,000ml導入し、次いで、液体プロピレンを1,000g導入して、内部温度を70℃に合わせた後に、比較例2のα−オレフィン重合用固体触媒成分(A1)を7mg圧入して、プロピレンを重合させた。
1時間後にエタノールを10ml圧入して重合を停止した。ポリマーを乾燥して秤量した。その評価結果を表2に示す。
[実施例7]
撹拌及び温度制御装置を有する内容積3.0Lのステンレス鋼製オートクレーブを真空下で加熱乾燥し、室温まで冷却してプロピレン置換した後、成分(B)としてEtAlを550mg、成分(C)としてt−Bu(Me)Si(OMe)を57.0mg及び水素を2,000ml導入し、次いで、液体プロピレンを1,000g導入して、内部温度を70℃に合わせた後に、実施例1のα−オレフィン重合用触媒成分(A)を7mg圧入して、プロピレンを重合させた。
1時間後にエタノールを10ml圧入して重合を停止した。ポリマーを乾燥して秤量した。その評価結果を表2に示す。
[比較例4]
(1)プロピレンの重合:
撹拌及び温度制御装置を有する内容積3.0Lのステンレス鋼製オートクレーブを真空下で加熱乾燥し、室温まで冷却してプロピレン置換した後、成分(B)としてEtAlを550mg、成分(C)としてt−Bu(Me)Si(OMe)を57.0mg及び水素を2,000ml導入し、次いで、液体プロピレンを1,000g導入して、内部温度を70℃に合わせた後に、比較例1のα−オレフィン重合用触媒成分(A)を7mg圧入して、プロピレンを重合させた。
1時間後にエタノールを10ml圧入して重合を停止した。ポリマーを乾燥して秤量した。その評価結果を表2に示す。
[実施例8]
(1)固体触媒成分(A1)の調製:
無水塩化マグネシウム18gと塩化カルシウム2.0gを窒素雰囲気中、直径15mmのステンレス鋼(SUS−32)製ボール2.8kgを収容した内容積800ml・内径100mmのステンレス鋼(SUS−32)製ボールミル容器に挿入し、40rpmの回転数で24時間共粉砕を行った。
次に、充分に窒素で置換した攪拌装置を備えた容量500ml丸底フラスコに、得られた共粉砕物10g、デカン50ml及び2−エチルヘキシルアルコール40gを導入した。130℃で2hr加熱して均一溶液とした後、この溶液中に無水フタル酸2.2gを添加し、更に、130℃にて1hr攪拌混合を行ない、無水フタル酸を溶解させた。
このようにして得られた均一溶液を室温に冷却した後、−20℃に保持した四塩化チタン21ml中に、この均一溶液の10mlを1hrにわたって滴下した。滴下終了後、この混合液の温度を4hrかけて110℃に昇温し、110℃に達したところでフタル酸ジイソブチル0.6gを添加し、これより2hr同温度にて攪拌保持した。
反応終了後、析出した固体生成物を熱濾過にて採取し、更に30mlの四塩化チタンで再懸濁させた後、得られた懸濁液を再び110℃で2hr、加熱した。
反応終了後、再び熱濾過にて固体生成物を採取し、110℃のデカン及びヘキサンにて溶液中に遊離のチタン化合物が検出されなくなるまで充分洗浄した。
(2)触媒成分(A)の調製:
次に、充分に窒素で置換した攪拌装置を備えた容量500ml丸底フラスコに、上記で得られた固体触媒成分4g(A1)と濃度が60mg/mlとなる様にヘプタンを導入した。ここに成分(A2)としてジアリルジメチルシランを1.0ml、成分(A3)として(cyc−Pen)Si(OMe)を0.8ml、成分(A4)としてEtAlのn−ヘプタン希釈液をEtAlとして1.9g添加し、40℃で2hr反応を行った。
反応生成物を精製したn−ヘプタンで充分に洗浄し、得られたスラリーの一部をサンプリングして乾燥した。分析したところ、固体成分には、Tiが2.0wt%、Caが1.2wt%、(cyc−Pen)Si(OMe)が6.0wt%含まれていた。
また、重合は、実施例1と同様の方法で行った。その評価結果を表2に示す。
[比較例5]
実施例8において、固体触媒成分(A1)の調製時に塩化カルシウムと塩化マグネシウムの共粉砕品の代わりに塩化マグネシウムを使用した以外は、全く同様に行った。
このα−オレフィン重合用触媒成分(A)には、Tiが2.4wt%、(cyc−Pen)Si(OMe)が4.0wt%含まれていた。
また、重合は、実施例1と同様の方法で行った。その評価結果を表2に示す。
Figure 2010248437
[各実施例と各比較例の評価結果の考察]
表1、2から明らかなように、実施例1〜8及び比較例1〜5を対比検討することで、本発明の触媒は、その重合活性が全般にわたり、比較例の触媒に対して優れ、更に、CXS値と嵩密度などから、立体規則性や粒子性状も高レベルに維持された結果を示しており、本発明の触媒は、非常にバランスの優れた触媒であるといえる。
具体的には、実施例1〜3と比較例1を対比することで、固体触媒成分中にカルシウムを存在させることにより、立体規則性や粒子性状を維持されたまま、重合活性が向上していることが分かる。
また、実施例4、5と比較例2を対比することで、製造方法が異なっても、カルシウム成分の含有により、触媒の重合活性の向上効果に影響があることがわかる。
更に、実施例6、7と比較例3、4を対比することにより、アルケニル基を有するケイ素化合物(A2)、有機ケイ素化合物(A3)及び重合時に有機ケイ素化合物(C)を異なる構造の化合物に変えたものであっても、実施例1の結果と同様に、重合活性の向上がみられた。
なお、実施例8では、更に異なる製造法の触媒を示している。比較例5との対比により、どのような製造法の触媒であっても、触媒成分中にカルシウムを含有することにより、重合活性の向上に繋がっていると理解される。
したがって、本発明の各実施例は、立体規則性などの基本性能を高レベルにて維持したまま、極めて高い触媒活性を有する触媒であり、各比較例に比較して、優れた結果が得られているといえる。よって、本発明の構成の合理性と有意性及び従来技術に対する卓越性が実証されている。
本発明の触媒成分は、立体規則性、触媒活性などの触媒性能の全てにおいて充分な性能を示す触媒であり、産業上、利用可能性が高いものである。

Claims (12)

  1. マグネシウム、チタン、ハロゲン、カルシウムおよび電子供与性化合物を必須成分とすることを特徴とするα−オレフィン重合用固体触媒成分。
  2. カルシウムは、カルシウム塩化合物またはカルシウム錯化物由来であることを特徴とする請求項1に記載のα−オレフィン重合用固体触媒成分。
  3. マグネシウムは、ハロゲン化マグネシウム化合物及びアルコキシマグネシウム化合物からなる群から選ばれる少なくとも一つの化合物を由来とすることを特徴とする請求項1又は2に記載のα−オレフィン重合用固体触媒成分。
  4. チタンは、アルコキシチタン化合物及びハロゲン化チタン化合物からなる群から選ばれる少なくとも一つの化合物を由来とすることを特徴とする請求項1〜3のいずれかに記載のα−オレフィン重合用固体触媒成分。
  5. マグネシウム、チタン、ハロゲンおよび電子供与性化合物を必須成分とする固体成分を、カルシウム化合物で接触処理することを特徴とする請求項1〜4のいずれかに記載のα−オレフィン重合用固体触媒成分の製造方法。
  6. マグネシウム化合物をカルシウム化合物で処理して得られる固体成分を、チタン化合物、ハロゲン化合物および電子供与性化合物で処理することを特徴とする請求項1〜4のいずれかに記載のα−オレフィン重合用固体触媒成分の製造方法。
  7. 請求項1〜4のいずれかに記載のα−オレフィン重合用固体触媒成分(A1)に、下記成分(A2)、(A3)及び(A4)を接触処理してなることを特徴とするα−オレフィン重合用触媒成分。
    成分(A2):アルケニル基を有するケイ素化合物
    成分(A3):有機ケイ素化合物
    成分(A4):有機アルミニウム化合物
  8. 成分(A2)のアルケニル基を有するケイ素化合物がビニルシラン化合物であることを特徴とする請求項7に記載のα−オレフィン重合用触媒成分。
  9. 成分(A3)の有機ケイ素化合物が下記の式で表されるケイ素化合物であることを特徴とする請求項7又は8に記載のα−オレフィン重合用触媒成分。
    3−mSi(OR
    (式中、Rは、脂肪族炭化水素基、脂環式炭化水素基又はヘテロ原子含有炭化水素基であり、Rは、脂肪族炭化水素基、脂環式炭化水素基、ヘテロ原子含有炭化水素基、ハロゲン又は水素であり、Rは、炭化水素基であり、mは、1≦m≦3を示す。)
  10. 請求項1〜4のいずれかに記載のα−オレフィン重合用固体触媒成分(A1)又は請求項7〜9のいずれかに記載のα−オレフィン重合用触媒成分(A)、及び下記成分(B)からなることを特徴とするα−オレフィン重合用触媒。
    成分(B):有機アルミニウム化合物
  11. さらに、下記成分(C)からなることを特徴とする請求項10に記載のα−オレフィン重合用触媒。
    成分(C):有機ケイ素化合物
  12. 請求項10又は11に記載のα−オレフィン重合用触媒を用いて、α−オレフィンを単独重合又は共重合することを特徴とするα−オレフィン重合体又は共重合体の製造方法。
JP2009101864A 2009-04-20 2009-04-20 α−オレフィン重合用固体触媒成分およびその製造方法、α−オレフィン重合用触媒成分、α−オレフィン重合用触媒並びにα−オレフィン重合体又は共重合体の製造方法 Pending JP2010248437A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009101864A JP2010248437A (ja) 2009-04-20 2009-04-20 α−オレフィン重合用固体触媒成分およびその製造方法、α−オレフィン重合用触媒成分、α−オレフィン重合用触媒並びにα−オレフィン重合体又は共重合体の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009101864A JP2010248437A (ja) 2009-04-20 2009-04-20 α−オレフィン重合用固体触媒成分およびその製造方法、α−オレフィン重合用触媒成分、α−オレフィン重合用触媒並びにα−オレフィン重合体又は共重合体の製造方法

Publications (1)

Publication Number Publication Date
JP2010248437A true JP2010248437A (ja) 2010-11-04

Family

ID=43311129

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009101864A Pending JP2010248437A (ja) 2009-04-20 2009-04-20 α−オレフィン重合用固体触媒成分およびその製造方法、α−オレフィン重合用触媒成分、α−オレフィン重合用触媒並びにα−オレフィン重合体又は共重合体の製造方法

Country Status (1)

Country Link
JP (1) JP2010248437A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014095003A (ja) * 2012-11-08 2014-05-22 Toho Titanium Co Ltd オレフィン類重合用固体触媒成分の製造方法、オレフィン類重合用触媒の製造方法およびオレフィン類重合体の製造方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5622302A (en) * 1979-07-31 1981-03-02 Denki Kagaku Kogyo Kk Polymerization of alpha-olefin
JPS63170403A (ja) * 1987-01-07 1988-07-14 Toho Titanium Co Ltd オレフイン類重合用固体触媒成分
JPH059214A (ja) * 1991-06-28 1993-01-19 Idemitsu Petrochem Co Ltd オレフイン重合体の製造法
JPH11106421A (ja) * 1997-09-30 1999-04-20 Mitsui Chem Inc 固体状チタン触媒成分およびこれを含むオレフィン重合用触媒、オレフィンの重合方法
JP2006169283A (ja) * 2004-12-13 2006-06-29 Toho Catalyst Co Ltd オレフィン類重合用固体触媒成分および触媒並びにこれを用いたオレフィン類重合体又は共重合体の製造方法
JP2008088347A (ja) * 2006-10-04 2008-04-17 Japan Polypropylene Corp プロピレン系重合用触媒成分、触媒およびプロピレン系重合体の製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5622302A (en) * 1979-07-31 1981-03-02 Denki Kagaku Kogyo Kk Polymerization of alpha-olefin
JPS63170403A (ja) * 1987-01-07 1988-07-14 Toho Titanium Co Ltd オレフイン類重合用固体触媒成分
JPH059214A (ja) * 1991-06-28 1993-01-19 Idemitsu Petrochem Co Ltd オレフイン重合体の製造法
JPH11106421A (ja) * 1997-09-30 1999-04-20 Mitsui Chem Inc 固体状チタン触媒成分およびこれを含むオレフィン重合用触媒、オレフィンの重合方法
JP2006169283A (ja) * 2004-12-13 2006-06-29 Toho Catalyst Co Ltd オレフィン類重合用固体触媒成分および触媒並びにこれを用いたオレフィン類重合体又は共重合体の製造方法
JP2008088347A (ja) * 2006-10-04 2008-04-17 Japan Polypropylene Corp プロピレン系重合用触媒成分、触媒およびプロピレン系重合体の製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014095003A (ja) * 2012-11-08 2014-05-22 Toho Titanium Co Ltd オレフィン類重合用固体触媒成分の製造方法、オレフィン類重合用触媒の製造方法およびオレフィン類重合体の製造方法

Similar Documents

Publication Publication Date Title
JP6996345B2 (ja) α-オレフィン重合用固体触媒成分、α-オレフィン重合用固体触媒成分の製造方法、α-オレフィン重合用触媒、及びそれを用いたα-オレフィン重合体の製造方法
JP2007254671A (ja) ポリプロピレンの製造方法
JP5039351B2 (ja) プロピレン系重合用触媒成分、触媒およびプロピレン系重合体の製造方法
JP4975295B2 (ja) α−オレフィン重合用触媒及びα−オレフィン重合体の製造方法
JP2010155948A (ja) α−オレフィン重合用固体触媒成分、α−オレフィン重合用触媒成分、α−オレフィン重合用触媒、及びそれを用いるα−オレフィン重合体の製造方法
JP5118847B2 (ja) α−オレフィン重合用固体触媒成分、α−オレフィン重合用触媒、及びα−オレフィン重合体の製造方法
JP6714869B2 (ja) α−オレフィン重合用固体触媒成分の製造方法、及びそれを用いたα−オレフィン重合体の製造方法
JP7218581B2 (ja) α-オレフィン重合用固体触媒成分の製造方法、α-オレフィン重合用触媒、及びそれを用いたα-オレフィン重合体の製造方法
JP2012214556A (ja) プロピレンエチレンブロック共重合用触媒およびプロピレンエチレンブロック共重合体の製造方法
JP2010242039A (ja) α−オレフィン重合用固体触媒成分およびその製造方法、α−オレフィン重合用触媒成分、α−オレフィン重合用触媒並びにα−オレフィン重合体又は共重合体の製造方法
JP2010155949A (ja) α−オレフィン重合用固体触媒成分の製造方法、α−オレフィン重合用触媒成分の製造方法及びα−オレフィン重合用触媒
JP2008308558A (ja) α−オレフィン重合用固体触媒成分及びその製造方法、α−オレフィン重合用触媒、α−オレフィン重合体の製造方法
JP5892032B2 (ja) α−オレフィン重合用触媒成分の製造方法、α−オレフィン重合用触媒の製造方法及びα−オレフィン重合体の製造方法
JP2010248437A (ja) α−オレフィン重合用固体触媒成分およびその製造方法、α−オレフィン重合用触媒成分、α−オレフィン重合用触媒並びにα−オレフィン重合体又は共重合体の製造方法
JP6314851B2 (ja) α−オレフィン重合用固体触媒成分の製造方法、α−オレフィン重合用触媒の製造方法およびα−オレフィン重合体の製造方法
JP2007119514A (ja) α−オレフィン重合用触媒成分、α−オレフィン重合用触媒、及びα−オレフィン重合体の製造方法
JP2010155950A (ja) α−オレフィン重合用固体触媒成分の製造方法、α−オレフィン重合用触媒成分の製造方法及びそれらによるα−オレフィン重合用触媒
JP5799866B2 (ja) α−オレフィン重合用固体触媒成分、α−オレフィン重合用固体触媒成分の製造方法、α−オレフィン重合用触媒およびα−オレフィン重合体の製造方法
JP5337421B2 (ja) α−オレフィン重合用触媒及びそれを用いたα−オレフィン重合体又は共重合体の製造方法
JP6809374B2 (ja) α−オレフィン重合用固体触媒成分の製造方法、及びそれを用いたα−オレフィン重合体の製造方法
JP5651408B2 (ja) α−オレフィン重合用固体触媒成分、α−オレフィン重合用触媒およびα−オレフィン重合体又は共重合体の製造方法
JP4903496B2 (ja) α−オレフィン重合用触媒成分及びそれを用いるα−オレフィン重合体の製造方法
JP7476608B2 (ja) プロピレン系重合体の製造方法
JP2010150529A (ja) α−オレフィン重合用触媒成分、α−オレフィン重合用触媒およびα−オレフィン重合体の製造方法
JP5895809B2 (ja) プロピレン重合用固体触媒成分の製造方法、プロピレン重合用触媒成分の製造方法、プロピレン重合用触媒の製造方法及びプロピレン重合体の製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110630

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121127

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130402