JP2010237214A - ジッタ測定装置、ジッタ算出器、ジッタ測定方法、プログラム、記録媒体、通信システム、および試験装置 - Google Patents

ジッタ測定装置、ジッタ算出器、ジッタ測定方法、プログラム、記録媒体、通信システム、および試験装置 Download PDF

Info

Publication number
JP2010237214A
JP2010237214A JP2010077674A JP2010077674A JP2010237214A JP 2010237214 A JP2010237214 A JP 2010237214A JP 2010077674 A JP2010077674 A JP 2010077674A JP 2010077674 A JP2010077674 A JP 2010077674A JP 2010237214 A JP2010237214 A JP 2010237214A
Authority
JP
Japan
Prior art keywords
jitter
unit
waveform
signal
under measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010077674A
Other languages
English (en)
Inventor
Masahiro Ishida
雅裕 石田
Kiyotaka Ichiyama
清隆 一山
Takahiro Yamaguchi
隆弘 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Advantest Corp
Original Assignee
Advantest Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US12/414,618 external-priority patent/US7903776B2/en
Application filed by Advantest Corp filed Critical Advantest Corp
Publication of JP2010237214A publication Critical patent/JP2010237214A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Dc Digital Transmission (AREA)

Abstract

【課題】短い測定期間で精度よくジッタを測定する。
【解決手段】予め定められたパターンが繰り返される被測定信号のタイミングジッタを測定するジッタ測定装置であって、予め定められた測定期間内で被測定信号をコヒーレントサンプリングするサンプリング部と、サンプリング部がサンプリングしたデータ値の順序を入れ換えて、被測定信号の波形を再現する再構成波形を生成する波形再構成部と、再構成波形を複素数の解析信号に変換する解析信号生成部と、解析信号に基づいて、被測定信号のジッタを測定するジッタ測定部とを備えるジッタ測定装置を提供する。
【選択図】図1

Description

本発明は、ジッタ測定装置、ジッタ算出器、ジッタ測定方法、プログラム、記録媒体、通信システム、および試験装置に関する。
従来、デジタルコンパレータを用いたタイミングジッタ測定法として、アンダサンプル・コンパレータ法とフェイルカウンタ法とが知られている。これらの方法では、被測定信号のジッタヒストグラムを求めて、ジッタの二乗平均平方根(以下、RMSと称する場合がある。)を測定する。
アンダサンプル・コンパレータ法は、タイミング発生器から供給されるナイキスト周波数以下の周波数のストローブタイミングにおいて、被試験信号の電圧と参照電圧とを比較して、被試験信号の論理値を検出する。例えば、試験装置では、被試験信号と同期した試験サイクルの開始時刻から生成されるトリガ信号が、ストローブとして繰り返し用いられる。ここで、ストローブの時間シフト量を、試験サイクル毎に増加させることで、被試験信号に対して位相が徐々に変動するストローブを生成して、被試験信号をサンプリングすることができる。
そして、上記サンプリングにより得られたデータに基づき、各ストローブ位置におけるhigh論理の確率を計算して、遷移エッジタイミングの累積密度関数(cumulative density function、以下、CDFと称する場合がある)、および、遷移エッジタイミングの確率密度関数(probabiity density function、以下、PDFと称する場合がある)を算出する。これにより、ジッタを測定することができる(例えば、非特許文献1参照)。
フェイルカウンタ法は、ストローブにより指定されるタイミングにおいて、被試験信号の論理値を期待値と比較することで、ジッタを測定する。エッジタイミングのCDFは、誤り計数器(fail counter)を用いて取得することができる(例えば、非特許文献2参照)。
非特許文献1 W.Dalal,and D.Rosenthal,"Measuring Jitter of High Speed Data Channels Using Undersampling Techniques," in Proc.IEEE International Test Conference,pp.814−818,Washington,D.C., Oct.18−23,1998.
非特許文献2 Y.Cai, L.Fang, R.Ratemo, J.Liu, K.Gross, and M.Kozma,"A Test Case for 3 Gbps Serial Attached SCSI(SAS)," in Proc.IEEE International Test Conference,Austin,TX,Nov.8−10,2005.
しかしながら、上記タイミングジッタ測定法は、ストローブの時間シフト量を少しずつ増加させながら、各ストローブタイミングにおけるhigh論理の確率を計算して、CDFを算出する。このようなストローブの時間シフト量を少しずつ増加させる方法では、ジッタ解析に用いられるデータ数をサンプリングするのに時間がかかる。そこで、短い測定期間で精度よくジッタを測定することができる、ジッタ測定装置、ジッタ測定方法等が望まれている。
そこで、本発明の1つの側面においては、上記の課題を解決することのできるジッタ測定装置、ジッタ算出器、ジッタ測定方法、プログラム、記録媒体、通信システム、および試験装置を提供することを目的とする。この目的は特許請求の範囲における独立項に記載の特徴の組み合わせにより達成される。また従属項は本発明の更なる有利な具体例を規定する。
上記課題を解決するために、本発明の第1の態様においては、予め定められたパターンが繰り返される被測定信号のタイミングジッタを測定するジッタ測定装置であって、予め定められた測定期間内で被測定信号をコヒーレントサンプリングするサンプリング部と、サンプリング部がサンプリングしたデータ値の順序を入れ換えて、被測定信号の波形を再現する再構成波形を生成する波形再構成部と、再構成波形を複素数の解析信号に変換する解析信号生成部と、解析信号に基づいて、被測定信号のジッタを測定するジッタ測定部とを備えるジッタ測定装置を提供する。
ジッタ測定部は、解析信号に基づいて、再構成波形の瞬時位相を算出する瞬時位相算出部と、再構成波形の瞬時位相からリニア瞬時位相成分を除去して、再構成波形の瞬時位相雑音を算出する位相雑音算出部と、再構成波形の瞬時位相雑音をリサンプリングして、再構成波形のタイミングジッタ系列を算出するリサンプリング部とを有してよい。
ジッタ測定装置は、再構成波形において論理値が変化しないビット境界に、予め定められたタイミングのエッジが生成され、且つ、論理値が変化するビット境界では、論理値の変化のタイミングの情報を保持したエッジが生成されるように、再構成波形のパターンをクロックパターンに変換して、解析信号生成部に供給するパターン変換部を更に備えてよい。
被測定信号は、予め定められたビット数毎に前記パターンを繰り返し、ジッタ測定装置は、再構成波形を予め定められたビット数の整数倍毎に分割し、分割したそれぞれの分割波形を加算した加算波形を生成する加算波形生成部を更に備え、解析信号生成部は、加算波形を解析信号に変換し、ジッタ測定部は、解析信号に基づいて、被測定信号の確定ジッタを測定してよい。
ジッタ測定部は、タイミングジッタ系列に基づいて、被測定信号のジッタ値を算出してよい。ジッタ測定部は、被測定信号のジッタのヒストグラムを生成してよい。
波形再構成部は、サンプリング部がサンプリングしたk番目のデータ値を、再構成波形の下式で表わされるi番目のデータとして再配列してよい。
i=k・M mod N
ただし、Mは測定期間内で被測定信号のパターンが繰り返される回数、Nは測定期間内においてサンプリング部がサンプリングしたサンプル数を示す。
なお、上記の発明の概要は、本発明の必要な特徴の全てを列挙したものではない。また、これらの特徴群のサブコンビネーションもまた、発明となりうる。
ジッタ測定装置100の構成の一例を概略的に表す。 被測定信号および再構成波形の各波形を用いて、波形再構成部20における再構成波形の形成方法を概略的に表す図である。 入力波形X[k]のサンプル値の一例を表す図である。 図3に示された入力波形X[k]を再構成した再構成波形X[i]の一例を概略的に表す図である。 解析信号生成部30およびジッタ測定部40の構成例を示す図である。 瞬時位相算出部42及び位相雑音算出部44の動作の一例を示す図である。 リサンプリング部46の動作の一例を示す図である。 ジッタ算出器10の他の構成例を示す図である。 パターン変換部60の構成例を示す図である。 パターン変換部60に入力される再構成波形の一例を示す。 パターン変換部60の動作例を示す図である。 仮想エッジ生成部68により仮想エッジが挿入された、再構成波形の一例を示す。 ジッタ算出器10の他の構成例を示す図である。 加算波形生成部70の動作例を説明する図である。 加算波形生成部70の他の動作例を説明する図である。 図13に関連して説明したジッタ測定装置100の動作例を示すフローチャートである。 解析信号生成部30の他の構成例を示す図である。 解析信号生成部30の他の構成例を示す図である。 半導体試験装置1900の構成の一例を概略的に表すブロック図である。 通信システム2000の構成の一例を概略的に表すブロック図である。 ジッタ算出器10として機能するコンピュータ2100のハードウェア構成の一例を示す図である。
以下、発明の実施の形態を通じて本発明を説明するが、以下の実施形態は特許請求の範囲にかかる発明を限定するものではない。また、実施形態の中で説明されている特徴の組み合わせの全てが発明の解決手段に必須であるとは限らない。
図1は、ジッタ測定装置100の構成の一例を概略的に表す。ジッタ測定装置100は、入力される被測定信号のタイミングジッタを測定する。被測定信号は、予め定められたパターンが繰り返される信号である。被測定信号は、予め定められたビット数毎にパターンが繰り返されるデジタル信号であってよく、H論理およびL論理が交互に繰り返されるクロック信号であってもよい。ジッタ測定装置100は、サンプリング部110、メモリ120、および、ジッタ算出器10を備える。
サンプリング部110は、周期Tの被測定信号を、予め定められた測定期間内でコヒーレントサンプリングする。ここで被測定信号の周期Tとは、測定すべきパターンを繰り返す周期(例えば、繰り返しビット数と、1ビット周期Tbの積)を指す。
例えば、被測定信号が1ビット毎に論理値が反転するクロック信号の場合、被測定信号の繰り返し周期Tは、2ビットの期間に相当する。なお、繰り返し周期Tは、被測定信号で繰り返されるパターンの周期の整数倍であってもよい。上述したクロック信号の場合、繰り返し周期Tは、2ビットに相当する期間の整数倍であってよい。また、被測定信号が"101"のような3ビットのパターンを繰り返す場合、繰り返し周期Tは、3ビットに相当する期間の整数倍であってよい。
サンプリング部110は、被測定信号をコヒーレントサンプリングするべく、上述した被測定信号の繰り返し周期TのM倍の期間(単位測定期間)内におけるサンプル数Nが、上述した繰り返し数Mと互いに素となるように、被測定信号をサンプリングする。なお、単位測定期間P、繰り返し数M、繰り返し周期T、サンプル数N、および、サンプリング周期Tsの関係は、下式であらわされる。つまり、単位測定期間Pは、被測定信号の繰り返し周期Tの整数倍であり、且つ、サンプリング周期Tsの整数倍である。
P=MT=NTs・・・(1)
なお、被測定信号をサンプリングする測定期間は、単位測定期間Pの整数倍であってよい。以下では、1つの単位測定期間Pにおけるジッタ測定装置100のサンプリング動作を説明するが、ジッタ測定装置100は、単位測定期間Pにおける動作を連続して整数回繰り返すことで、単位測定期間Pの整数倍の測定期間に渡って、被測定信号をサンプリングしてよい。
サンプリング部110は、与えられるサンプリングクロックに応じて、被測定信号をサンプリングしてよい。ジッタ測定装置100は、式(1)を満たすように、繰り返し数M、繰り返し周期T、サンプル数N、および、サンプリング周期Tsの少なくとも1つを制御してよい。なお、Nは単位測定期間Pにおけるサンプル数を示す。
サンプリング部110は、被測定信号をサンプリングして、メモリ120に入力波形X[k]を入力する。ここで、kは、サンプリング部110がサンプリングしたサンプル値の順序を示す。本例では、k=0、1、2、・・・、N−2、N−1で与えられる。
サンプリング部110としては、例えば、AD変換器(以下、ADCと称する)または電圧コンパレータが用いられる。また、サンプリング部110は、デジタルコンパレータもしくは波形デジタイザであってもよい。ADCの分解能は、例えば、1ビットまたは1.6ビットが用いられる。分解能が1ビットのADCを用いた場合には、入力波形X[k]のサンプル値は2値の論理値で表されてよく、例えば、0または1のいずれかの論理値で表される。また、分解能が1.6ビットのADCを用いた場合には、入力波形のサンプル値X[k]は3値で表されてよい。
メモリ120は、サンプリング部110のサンプリング結果を格納する。メモリ120は、サンプリング部110が被測定信号をサンプリングして得られた入力波形X[k]の各サンプル値を、0からN−1までの整数で表されるサンプル順序kに対応づけて格納してよい。
ジッタ算出器10は、予め定められたパターンが繰り返される被測定信号をコヒーレントサンプリングしたサンプリングデータに基づいて、被測定信号のジッタを算出する。本例のジッタ算出器10は、ジッタ測定装置100に設けられたサンプリング部110が測定した入力波形X[k]に基づいて、被測定信号のジッタを算出する。他の例では、ジッタ算出器10は、ジッタ測定装置100の外部に設けられた装置により予め測定されたデータを受け取り、当該データに基づいて被測定信号のジッタを算出してもよい。
本例のジッタ算出器10は、波形再構成部20、解析信号生成部30、および、ジッタ測定部40を備える。波形再構成部20は、メモリ120が格納した入力波形X[k]を読み出して、入力波形X[k]のデータ値の順序を入れ換えた再構成波形を生成する。具体的には、波形再構成部20は、下記の式(2)に基づいて再構成波形X[i]を生成する。
i=(k・M) mod N・・・(2)
ただし、iは、再構成波形X[i]におけるデータ値の順序を示し、0からN−1までの各整数に対応する。なお、繰り返し数Mが、任意の自然数nを用いてM=nN+1と表される場合には、i=kとなるので、上述した再配列処理を省略して、サンプリング部110がサンプリングした入力波形X[k]を、再構成波形X[i]として出力してよい。
なお、ジッタ測定装置100が、単位測定期間PのA倍の測定期間で被測定信号をサンプリングする場合、入力波形のデータ値の順序kは、k=0、1、2、・・・A(N−1)−1、A(N−1)で与えられる。これに対し、波形再構成部20は、単位測定期間Pごとに式(2)を適用して、単位測定期間Pごとに波形を再構成してよい。ここで、波形再構成部20は、それぞれの単位測定期間Pでサンプリングした波形について、その単位測定期間Pの最初にサンプリングしたデータ値の順序を0として、式(2)を適用してよい。波形再構成部20は、単位測定期間Pごとに再構成した波形を結合することで、測定期間全体における再構成波形を生成してよい。
このように、式(1)の条件を満たして被測定信号をサンプリングし、且つ、式(2)に基づいてサンプル値の順序を入れ換えることで、サンプリング周期Tsよりも短い等価サンプリング周期Teで被測定信号をサンプリングして得られる波形を再現した再構成波形X[i]を得ることができる。なお、等価サンプリング周期Teは、下式で与えられる。
Te=P/(MN)=T/N=Ts/M・・・(3)
解析信号生成部30は、波形再構成部20が生成した再構成波形X[i]を、複素数の解析信号に変換する。解析信号は、再構成波形X[i]を実数部として、再構成波形X[i]の位相を90度シフトさせた波形を虚数部とする信号であってよい。解析信号生成部30の処理の一例は、図5等を用いて後述する。
ジッタ測定部40は、解析信号の瞬時位相に基づいて、被測定信号のジッタを測定する。ジッタ測定部40の処理の一例は、図5等を用いて後述する。このような構成により、比較的に周期の大きいサンプリングクロックを用いて、被測定信号のジッタを精度よく解析することができる。
図2は、被測定信号および再構成波形の各波形を用いて、波形再構成部20における再構成波形の形成方法を概略的に表す図である。図2では、被測定信号として、ビット周期がTb、データパターンの繰り返し周期Lが3ビットのデータ信号を示す。本例の被測定信号は、データパターン"101"を繰り返す。同図において、白丸は論理値0のサンプル値を示し、黒丸は論理値1のサンプル値を示す。
本例のサンプリング部110は、被測定信号の繰り返し周期に同期して、サンプリング周波数Tsで被測定信号をサンプリングする。等価サンプリング時間間隔TeはTb/3として、サンプリング周期Tsは4Teとした。このとき、式(3)からN=9、M=4となり、MとNとは互いに素な関係にある。
図2において、サンプリングkは、k番目のサンプリングタイミングを示す。例えばサンプリング0は、サンプリング開始時点、すなわちk=0のタイミングを表す。
本例では、同図に示す通り、サンプリング0のタイミングにおける入力波形X[0]のサンプル値は論理値1となる。サンプリング1は、サンプリング0からTsだけ時間が経過した時点、すなわちk=1のタイミングを表す。サンプリング1のタイミングにおける入力波形X[1]のサンプル値は論理値0となる。以下、同様にしてk=0〜8のサンプリングタイミングにおいて被測定信号をサンプリングした結果、入力波形X[k]を得た。
サンプリング部110における上記サンプリングで得られた入力波形X[k]のサンプル値は、サンプリング部110がサンプリングした当初の順序kに応じて並んでいる。波形再構成部20において、上記サンプル値の順序を再配列順序iに応じて、等価サンプリング周期Teで再配列することで、周期Tの再構成波形X[i]が得られる。再配列順序iは、式(1)により求められる。
例えば、k=3に対応するiは、i=(3・4) mod 9=3となる。kが0から8の場合の各サンプル値についても同様にして再配列することで、再構成波形X[i]が得られる。
図3は、入力波形X[k]のサンプル値の一例を表す図である。同図は、被測定信号を分解能が1ビットのADCを用いてサンプリングした場合におけるサンプリング結果の別の例を示す。同図において、被測定信号としてクロックパターンを用いた。サンプリング周波数Tsは、MとNとが互いに素な関係になるように設定した。
サンプリング周波数Tsは、ナイキスト周波数未満であってよく、ナイキスト周波数以上であってもよい。同図に示す通り、k=0からk=79までのタイミングにおいて、80回サンプリングした。
図4は、図3に示された入力波形X[k]を再構成した再構成波形X[i]の一例を概略的に表す図である。再構成波形X[i]は、i=0からi=79までの80個のサンプル値を有しており、サンプル値とサンプル値との間の時間間隔は、等価サンプリング時間間隔Teで表される。
図4に示すように、式(2)に応じて入力波形X[k]を再構成することで、被測定信号のパターンを再現した再構成波形X[i]を得ることができる。なお、本例の波形再構成部20は、"01"のビットパターンの単位周期波形X[m]が4回繰り返された再構成波形X[i]を得る。
図4に示すように、単位周期波形X[m]が複数回繰り返された再構成波形X[i]を得る場合、サンプリング部110は、単位周期波形X[m]の周期と、再構成波形に含まれる単位周期波形の繰り返し数とを乗算した値を繰り返し周期Tとして、式(1)に示す条件を満たすコヒーレントサンプリングを実行してよい。この場合、波形再構成部20は、入力波形X[k]の全てのサンプル値を一括して並べ替える。例えば図4の例では、波形再構成部20は、k=0、1、・・・、79を、順次式(2)に代入することで、再構成波形X[i]の各サンプル値を算出する。
また、サンプリング部110は、単位周期波形X[m]の周期を繰り返し周期Tとして、単位測定期間Pについて式(1)に示す条件を満たすコヒーレントサンプリングを行ってもよい。上述したように、測定期間を単位測定期間Pの整数倍にすることで、コヒーレントサンプリングが、単位測定期間Pの繰り返し数に応じて繰り返される。このため、波形再構成部20は、得られた入力波形X[k]を、単位測定期間Pの繰り返し数に応じて分割して、分割系列ごとに波形を再構成してよい。
例えば図4の例では、波形再構成部20は、入力波形X[k]のサンプル値を、k=0〜19、20〜39、・・・、60〜79の4系列に分割する。波形再構成部20は、それぞれの系列内でサンプル値の順序を入れ換えることで、各系列についての再構成波形を得る。これらの再構成波形を結合することで、図4に示した再構成波形X[i]が得られる。
図5は、解析信号生成部30およびジッタ測定部40の構成例を示す図である。本例の解析信号生成部30は、帯域制限器32およびヒルベルト変換部34を有する。帯域制限器32は、波形再構成部20が生成した再構成波形の基本周波数近傍の成分を通過させ、他の成分を除去する。帯域制限器32における通過帯域は、被測定信号の基本周波数を中心とした所定範囲の帯域に設定されてよい。帯域制限器32は、アナログフィルタおよびデジタルフィルタ等のハードウェアを有してよく、また、再構成波形のデータに対してFFT演算等を行うソフトウェアを有してもよい。
ヒルベルト変換部34は、帯域制限器32が通過させた信号をヒルベルト変換して出力する。ヒルベルト変換部34は、ヒルベルトフィルタを有してよい。解析信号生成部30は、帯域制限器32が通過させた信号を実数部とし、ヒルベルト変換部34が出力する信号を虚数部とした複素信号を、再構成波形の解析信号として出力する。
ジッタ測定部40は、瞬時位相算出部42、位相雑音算出部44、および、リサンプリング部46を有する。瞬時位相算出部42は、解析信号生成部30が出力する解析信号に基づいて、再構成波形の瞬時位相を算出する。瞬時位相算出部42は、解析信号における実数部および虚数部の比の逆正接から、再構成波形の瞬時位相波形を算出してよい。
位相雑音算出部44は、瞬時位相算出部42が算出した瞬時位相波形から、リニア瞬時位相成分を除去して、再構成波形の瞬時位相雑音波形を算出する。瞬時位相波形のリニア瞬時位相成分は、最小二乗法等により瞬時位相波形を直線近似することで算出してよい。
リサンプリング部46は、位相雑音算出部44が算出した瞬時位相雑音波形をリサンプリングして、再構成波形のタイミングジッタ系列を算出する。リサンプリング部46は、被測定信号(または再構成波形)のゼロクロスタイミングに応じて、瞬時位相雑音波形をリサンプリングしてよい。
図6は、瞬時位相算出部42及び位相雑音算出部44の動作の一例を示す図である。瞬時位相算出部42は、解析信号の実数部と虚数部との逆正接を算出して、被測定信号の瞬時位相を算出する。当該瞬時位相は、例えば図6の点線で示されるように、πから−πまでの主値で与えられる。瞬時位相算出部42は、当該瞬時位相の不連続をアンラップして、図6の実線で示される連続な瞬時位相を算出する。即ち、瞬時位相算出部42は、不連続な瞬時位相に対して、データ信号の周期に応じて2πを順次加算することにより、連続な瞬時位相を算出する。
位相雑音算出部44は、瞬時位相算出部42が算出した連続な瞬時位相から、リニア成分を除去する。位相雑音算出部44は、連続な瞬時位相を、最小二乗法等により近似したリニア成分を算出して、当該リニア成分を除去してよい。当該リニア成分は、ジッタが無い場合の瞬時位相に対応するので、当該リニア成分と、算出した瞬時位相との差分が、クロック信号の位相雑音成分に対応する。
図7は、リサンプリング部46の動作の一例を示す図である。リサンプリング部46は、位相雑音算出部44が算出した瞬時位相雑音成分を、被測定信号のデータ遷移エッジのタイミング(T1、T2、T3)でサンプリングする。当該サンプリング結果が、被測定信号の各エッジにおけるタイミングジッタを示すタイミングジッタ系列を示す。
ジッタ測定部40は、当該タイミングジッタ系列のRMS値を算出してよい。また、ジッタ測定部40は、当該タイミングジッタ系列のピークツゥピーク値、ピーク値等を算出してもよい。ジッタ測定部40は、算出したこれらの値を、被測定信号のジッタ値としてよい。また、ジッタ測定部40は、タイミングジッタ系列の各値についてのヒストグラムを生成してもよい。ジッタ測定部40は、これらのジッタ値またはヒストグラムを算出するジッタ算出部を更に備えてよい。
図8は、ジッタ算出器10の他の構成例を示す図である。本例のジッタ算出器10は、図1に関連して説明したジッタ算出器10の構成に加え、パターン変換部60を更に備える。他の構成は、図1に関連して説明したジッタ算出器10と同一であってよい。
パターン変換部60は、波形再構成部20が生成した再構成波形のパターンを、クロックパターンに変換して、解析信号生成部30に入力する。本例のパターン変換部60は、再構成波形において論理値が変化しないビット境界に、予め定められたタイミングのエッジが生成され、且つ、再構成波形において論理値が変化するビット境界では、論理値の変化のタイミングの情報を保持したエッジが生成されるクロックパターンに変換する。
上述したエッジが生成される予め定められたタイミングは、再構成波形におけるビット境界の理想的なタイミングであってよく、また、再構成波形の前後のエッジタイミングを補間することで得られるタイミングであってもよい。パターン変換部60を設けることで、クロックパターン以外の被測定信号についても、図1から図7に関連して説明した方法でジッタを測定することができる。
図9は、パターン変換部60の構成例を示す図である。パターン変換部60は、レベル算出部62、データ遷移エッジ算出部64、仮想エッジ算出部66、および、仮想エッジ生成部68を有する。
図10から図12は、パターン変換部60の動作例を説明する図である。図10は、パターン変換部60に入力される再構成波形の一例を示す。なお、本例の再構成波形のビット周期はTで与えられ、データパターンは"100111"を示す。パターン変換部60には、図10において丸印で示される離散信号が与えられる。
図11は、パターン変換部60の動作例を示す図である。上述したように、パターン変換部60は、図10に示される再構成波形のデータ遷移エッジのタイミング(T1、T2、T3)を維持して、再構成波形のデータレートと略等しいタイミング(T1、Ta、T2、Tb、Tc、T3)でエッジを有するクロックパターンを生成する。
例えばパターン変換部60は、データ遷移エッジのタイミング(T1、T2、T3)の間隔(例えば、図10におけるT、2T、3T)を求め、データ遷移エッジのそれぞれの間隔と、再構成波形のデータレートとを比較する。例えば、データ遷移エッジの間隔が、データレートより所定の値以上大きい場合、当該データ遷移エッジの間に、仮想エッジを挿入する。
より具体的には、まず、レベル算出部62が、再構成波形の基準レベルを算出する。ここで、再構成波形の基準レベルとは、再構成波形のHレベル(再構成波形の100%レベルを与える)とLレベル(再構成波形の0%レベルを与える)との平均レベルであってよい。即ち、再構成波形の基準レベルとは、再構成波形のHレベルの略50%のレベルである。
レベル算出部62は、再構成波形の離散値の平均値を、当該基準レベルとして算出してよい。この場合、レベル算出部62は、十分多数の離散値に基づいて、当該平均値を算出することが好ましい。また、レベル算出部62は、Hレベルを示すデータとLレベルを示すデータとを略同数用いて算出した平均値を、当該基準レベルとして算出してよい。また、当該基準レベルは、使用者等により予め指定されてもよい。また、レベル算出部62は、ゼロレベルを、当該基準レベルとしてもよい。本例では、ゼロレベルを基準レベルとして説明する。
データ遷移エッジ算出部64は、図11において丸印で示される離散信号に基づいて、再構成波形のデータ値が遷移するタイミング(例えばデータの番号)を算出する。つまり、データ遷移エッジ算出部64は、離散信号のそれぞれのデータ値が、再構成波形の基準レベルを境界として変化するタイミングを検出する。本例におけるデータ遷移エッジ算出部64は、離散信号のデータ値の符号が、直前のデータ値の符号から変化するデータの番号を検出する。
また、データ遷移エッジ算出部64は、整数のデータ番号を検出してよく、実数のデータ番号を算出してもよい。実数のデータ番号を算出する場合、再構成波形の各サンプル値は、3種類以上の離散値で与えられてよい。また、データ遷移エッジ算出部64は、離散信号においてデータ値が遷移する2つのデータを直線補間して、当該直線が基準レベルと交差するタイミングを算出してもよい。
仮想エッジ算出部66および仮想エッジ生成部68は、エッジの間隔が所定の値より大きい、再構成波形のデータ遷移エッジの間に、データレートに応じた略一定の間隔で仮想エッジを設けたクロック信号を生成する。本例では、エッジの間隔が、データレートの1.5倍以上であるデータ遷移エッジの間に、仮想エッジを挿入する。また、エッジの間隔が、再構成波形の何ビット分に相当するかを算出して、挿入すべき仮想エッジの個数を算出する。本例では、仮想エッジ算出部66は、仮想エッジを設けるべきタイミング(Ta、Tb、Tc)を算出して、仮想エッジ生成部68は、当該タイミングで仮想エッジを生成する。
仮想エッジ算出部66は、データ遷移エッジ算出部64が算出した、データ値が遷移するタイミング(データ番号)に基づいて、それぞれのデータ遷移エッジの間隔(T0〜T1、T1〜T2、T2〜T3)を算出する。そして、それぞれのデータ遷移エッジの間隔に挿入すべき仮想エッジの個数を算出する。
例えば、仮想エッジ算出部66は、算出したそれぞれのエッジ間隔を、データレートで除算して、小数点以下を四捨五入する。そして、当該算出結果から1を減算した値を、当該エッジ間隔に挿入すべき仮想エッジ数として算出する。本例において、データ信号のデータレートをTとすると、第1のデータ遷移エッジ間隔(T0〜T1)に挿入すべき仮想エッジ数は0であり、第2のデータ遷移エッジ間隔(T1〜T2)に挿入すべき仮想エッジ数は1であり、第3のデータ遷移エッジ間隔(T2〜T3)に挿入すべき仮想エッジ数は2である。
また、仮想エッジ算出部66は、それぞれのデータ遷移エッジの間に、仮想エッジが略等間隔に配置されるように、それぞれの仮想エッジのタイミングを算出する。例えば、第2のデータ遷移エッジ間隔(T1〜T2)には一つの仮想エッジを挿入するので、仮想エッジ算出部66は、2つのデータ遷移エッジ(T1及びT2)の略中央のタイミング(Ta)を、仮想エッジのタイミングとして算出する。また、第3のデータ遷移エッジ間隔(T2〜T3)には二つの仮想エッジを挿入するので、仮想エッジ算出部66は、2つのデータ遷移エッジ(T2及びT3)の間隔を三等分する2つの仮想エッジのタイミング(Tb、Tc)を算出する。
仮想エッジ生成部68は、仮想エッジ算出部66が算出した仮想エッジのタイミングに応じて、離散信号のデータ値を、データ信号の基準レベルを中心として反転させることにより、仮想エッジを生成する。具体的には、図4において、奇数番目の仮想エッジのタイミングから、偶数番目の仮想エッジのタイミングまでの丸印で示される離散データを、三角印で示される反転データに置き換えることにより、点線で示されるそれぞれの仮想エッジを生成してよい。また、離散信号の基準レベルが略ゼロとなるようにレベルシフトした後、奇数番目の仮想エッジのタイミングから、偶数番目の仮想エッジのタイミングまでの離散データに−1を乗算してもよい。
また、上述したこれらの処理においては、奇数番目の仮想エッジのタイミングから、偶数番目の仮想エッジのタイミングまでのデータを反転したが、偶数番目の仮想エッジのタイミングから、奇数番目の仮想エッジのタイミングまでのデータを反転してもよい。
図12は、仮想エッジ生成部68により仮想エッジが挿入された、再構成波形の一例を示す。上述した処理により、再構成波形は、クロックパターンに変換される。なお、再構成波形に挿入した仮想エッジは、再構成波形の実際のデータ遷移エッジの間を線形補間したエッジなので、仮想エッジのジッタが、データ遷移エッジのジッタに与える影響は極めて小さい。
図13は、ジッタ算出器10の他の構成例を示す図である。ジッタ算出器10は、図1から図12に関連して説明したいずれかのジッタ算出器10の構成に加え、加算波形生成部70を更に備える。本例では、図9に関連して説明したジッタ算出器10の構成に、加算波形生成部70を更に設ける例を説明する。
本例では、被測定信号が、Lビットのパターンを繰り返す場合を考える。加算波形生成部70は、波形再構成部20が出力する再構成波形を、被測定信号の繰り返し周期(Lビット)の整数倍毎に分割する。そして、加算波形生成部70は、再構成波形を分割したそれぞれの分割波形を加算する。加算波形生成部70は、加算波形のエッジタイミングが、それぞれの分割波形の対応するエッジタイミングの平均となるように、分割波形を加算して加算波形を生成する。
波形再構成部20は、加算波形の各位相における論理値として、各分割波形において対応する位相の論理値の総和を算出してよい。また、加算波形生成部70は、分割波形の対応するエッジタイミングの平均を算出して、当該平均タイミングにエッジを設けた加算波形を生成してもよい。
一般に、信号のエッジに印加されるジッタには、ランダムジッタと確定ジッタとが含まれる。このうち、ランダムジッタによるエッジタイミングの分布のばらつきは、理想的なエッジタイミングを中心としたガウス分布で与えられる。このため、ランダムジッタの平均値は略零となる。
上述したように、加算波形の各エッジタイミングは、各分割波形において対応するエッジタイミングの平均になる。このため、加算波形の各エッジにおけるジッタのうち、ランダム成分を除去することができる。従って、加算波形に基づいてジッタを測定することで、確定ジッタの成分を精度よく測定することができる。
図14は、加算波形生成部70の動作例を説明する図である。本例の被測定信号は、予め定められたビット数(図14では3ビット)毎に、予め定められたパターン(図14では"101")を繰り返す。
加算波形生成部70は、当該被測定信号の波形を再構成した再構成波形を、当該予め定められたビット数(本例では3ビット)毎に分割する。加算波形生成部70は、再構成波形のエッジが、再構成波形の分割境界に対して所定の距離以上はなれるように、再構成波形を分割してよい。また、波形再構成部20は、当該パターンが少なくとも2回含まれるデータ長の再構成波形を生成してよい。この場合、サンプリング部110は、当該再構成波形を生成できる数のサンプルを取得する。
加算波形生成部70は、再構成波形を分割したそれぞれの分割波形を加算した加算波形を生成する。上述したように、加算波形におけるランダムジッタ成分は除去されるので、当該加算波形に基づいて確定ジッタを精度よく測定することができる。
図15は、加算波形生成部70の他の動作例を説明する図である。上述したように、加算波形生成部70は、分割波形の周期が、被測定信号の繰り返し周期(本例では3ビット相当)の整数倍(本例では2倍)となるように、再構成波形を分割してよい。この場合、得られる加算波形には、繰り返しパターンが複数回含まれる。当該加算波形に基づいてジッタを測定することで、確定ジッタのRMS値、ピーク値等を精度よく測定することができる。
図16は、図13に関連して説明したジッタ測定装置100の動作例を示すフローチャートである。まず、S1600において、サンプリング部110が、周期Tを有する被測定信号をサンプリングして、入力波形X[k]のサンプル値の系列を得る。サンプリング部110は、被測定信号の予め定められたパターンがM周期繰り返される期間中に、当該Mと互いに素な関係の数Nの回数だけ被測定信号をサンプリングする。サンプリングしたサンプル値の系列は、メモリ120に格納される。
次に、S1602において、波形再構成部20が、入力波形X[k]を再構成して、再構成波形X[i]を生成する。入力波形X[k]の再構成は、メモリ120に格納したサンプル値を呼び出して、当初の順序kに対して、i=(k・M) mod Nの関係にある再配列順序iに再配列してもよい。さらに、S1604において、加算波形生成部70が、再構成波形X[i]を単位周期ごとに分割した分割波形を加算して、加算波形を生成する。
次に、S1606において、パターン変換部60が、加算波形をクロックパターンの波形に変換する。そして、S1608において、解析信号生成部30が、クロックパターンに変換された加算波形の解析信号を生成する。そして、S1610において、ジッタ測定部40が、解析信号の瞬時位相から、被測定信号のジッタを測定する。このような処理により、被測定信号の確定ジッタを高速かつ精度よく測定することができる。
図17は、解析信号生成部30の他の構成例を示す図である。本例の解析信号生成部30は、周波数領域変換部36、帯域制限部37、および、時間領域変換部38を有する。
周波数領域変換部36は、解析信号生成部30に入力される信号を、周波数領域のスペクトルに変換する。周波数領域変換部36は、当該信号をフーリエ変換することで、周波数領域のスペクトルに変換してよい。
帯域制限部37は、周波数領域変換部36が出力するスペクトルの成分のうち、所定の帯域以外の成分を除去して出力する。帯域制限部37は、被測定信号の基本波周波数を中心とした所定の正の周波数範囲に含まれない周波数成分を除去してよい。当該所定の正の周波数範囲は、基本波の2次高調波が含まれない範囲であってよい。
時間領域変換部38は、帯域制限部37が通過させたスペクトルを、時間領域の信号に変換する。時間領域変換部38は、当該スペクトルをフーリエ逆変換することで、時間領域の信号に変換してよい。時間領域変換部38は、当該時間領域の信号を、解析信号として、ジッタ測定部40に出力する。
図18は、解析信号生成部30の他の構成例を示す図である。本例における解析信号生成部30は、バッファメモリ81、波形データ選択器82、窓関数乗算器83、周波数領域変換部36、帯域制限部37、時間領域変換部38、および、振幅補正器84を含む。
バッファメモリ81は、波形再構成部20が出力する再構成波形のデータ系列を蓄積する。波形データ選択器82は、バッファメモリ81に蓄積されたデータ系列を分割した分割データを、前回取り出された分割データの一部と重なるように抽出する。窓関数乗算器83は、波形データ選択器82により抽出された分割データのそれぞれと窓関数とを乗算する。
周波数領域変換部36は、窓関数が乗算された分割データを、周波数領域の両側スペクトル信号に変換する。帯域制限部37は、周波数領域に変換された両側スペクトル信号から、被測定信号の基本波周波数付近の成分のみを取り出す。時間領域変換部38は、帯域制限部37の出力を時間領域の信号に変換する。
振幅補正器84は、時間領域に変換された信号に窓関数の逆関数を乗算して、帯域制限された解析信号を算出する。以上において、周波数領域変換部36及び時間領域変換部38は、それぞれFFT及び逆FFTを用いて周波数領域及び時間領域の間の変換を行ってもよい。また、振幅補正器84は、それぞれの分割データを結合して出力してよい。このとき、振幅補正器84は、分割データが重ならないように、分割データの一部を削除して結合してよい。
図19は、半導体試験装置1900の構成の一例を概略的に表すブロック図である。半導体試験装置1900は、試験装置の一例であってよい。半導体試験装置1900は、被試験デバイス500に試験信号を与えて、被試験デバイス500を試験する。半導体試験装置1900は、信号生成部1910と、信号計測部1920とを備える。信号生成部1910は、試験信号を生成する。信号計測部1920は、被試験デバイス500が出力する出力信号を計測する。出力信号は、周期Tを有する。信号生成部1910は、信号発生部1912と、周波数特性補正部1914とを有する。信号計測部1920は、ジッタ測定装置100と、ジッタ値通知部1922とを有する。
信号発生部1912は、試験信号を発生させる。周波数特性補正部1914は、信号計測部1920が測定した出力信号のジッタ値に応じて、出力信号のジッタ値が小さくなるよう試験信号の周波数特性を補正する。周波数特性補正部1914は、ジッタ値通知部1922から通知されたジッタ値に応じて試験信号の周波数特性を補正してもよい。一例として、ジッタ値通知部1922から通知されたジッタ値が所定の値より大きな場合には、試験信号の高周波成分を強調するように、図示していないイコライザを調整してもよい。
ジッタ測定装置100のサンプリング部110は、出力信号の予め定められたパターンがM周期繰り返される期間中に、Mと互いに素な関係の数Nの回数だけ出力信号をサンプリングする。ジッタ値通知部1922は、ジッタ測定装置100が測定した出力信号のジッタ値(RMS値、ピークツゥピーク値、ピーク値等)を信号生成部1910に通知する。
図20は、通信システム2000の構成の一例を概略的に表すブロック図である。通信システム2000は、送信部2010と、受信部2020と、回線2070を備える。送信部2010および受信部2020は、回線2070を介して互いに通信する。
送信部2010は、伝送信号を生成する。受信部2020は、回線2070を介して伝送信号を受信する。また、回線2070を介して、送信部2010に通知信号を通知する。伝送信号は、周期Tを有する。送信部2010は、信号発生部2012と、周波数特性補正部2014とを有する。受信部2020は、ジッタ測定装置100と、ジッタ値通知部2022とを有する。
信号発生部2012は、伝送信号を発生させる。周波数特性補正部2014は、受信部2020の測定した伝送信号のジッタ値に応じて、伝送信号のジッタ値が小さくなるよう伝送信号の周波数特性を補正する。周波数特性補正部2014は、ジッタ値通知部2022から通知されたジッタ値に応じて伝送信号の周波数特性を補正してもよい。一例として、ジッタ値通知部2022から通知されたジッタ値が所定の値より大きな場合には、伝送信号の高周波成分を強調するように、図示していないイコライザを調整してもよい。
ジッタ測定装置100のサンプリング部110は、伝送信号がM周期繰り返される期間中に、Mと互いに素な関係の数Nの回数だけ伝送信号をサンプリングする。ジッタ値通知部2022は、通知信号を送信部2010に通知する。ジッタ値通知部2022は、ジッタ測定装置100が測定したジッタ値を送信部2010に通知してよい。
図21は、ジッタ算出器10として機能するコンピュータ2100のハードウェア構成の一例を示す図である。コンピュータ2100は、CPU周辺部と、入出力部と、レガシー入出力部とを備える。CPU周辺部は、ホスト・コントローラ1882により相互に接続されるCPU1805、RAM1820、グラフィック・コントローラ1875、及び表示装置1880を有する。
入出力部は、入出力コントローラ1884によりホスト・コントローラ1882に接続される通信インターフェイス1830、ハードディスクドライブ1840、及びCD−ROMドライブ1860を有する。レガシー入出力部は、入出力コントローラ1884に接続されるROM1810、フレキシブルディスク・ドライブ1850、及び入出力チップ1870を有する。
ホスト・コントローラ1882は、RAM1820と、高い転送レートでRAM1820をアクセスするCPU1805、及びグラフィック・コントローラ1875とを接続する。CPU1805は、ROM1810、及びRAM1820に格納されたプログラムに基づいて動作して、各部の制御をする。グラフィック・コントローラ1875は、CPU1805等がRAM1820内に設けたフレーム・バッファ上に生成する画像データを取得して、表示装置1880上に表示させる。これに代えて、グラフィック・コントローラ1875は、CPU1805等が生成する画像データを格納するフレーム・バッファを、内部に含んでもよい。
入出力コントローラ1884は、ホスト・コントローラ1882と、比較的高速な入出力装置であるハードディスクドライブ1840、通信インターフェイス1830、CD−ROMドライブ1860を接続する。ハードディスクドライブ1840は、CPU1805が使用するプログラム、及びデータを格納する。通信インターフェイス1830は、通信ネットワークに接続してプログラムまたはデータを送受信する。CD−ROMドライブ1860は、CD−ROM1895からプログラムまたはデータを読み取り、RAM1820を介してハードディスクドライブ1840、及び通信インターフェイス1830に提供する。
入出力コントローラ1884には、ROM1810と、フレキシブルディスク・ドライブ1850、及び入出力チップ1870の比較的低速な入出力装置とが接続される。ROM1810は、ジッタ算出器10が起動時に実行するブート・プログラム、あるいはジッタ算出器10のハードウェアに依存するプログラム等を格納する。
フレキシブルディスク・ドライブ1850は、フレキシブルディスク1890からプログラムまたはデータを読み取り、RAM1820を介してハードディスクドライブ1840、及び通信インターフェイス1830に提供する。入出力チップ1870は、フレキシブルディスク・ドライブ1850、あるいはパラレル・ポート、シリアル・ポート、キーボード・ポート、マウス・ポート等を介して各種の入出力装置を接続する。
CPU1805が実行するプログラムは、フレキシブルディスク1890、CD−ROM1895、またはICカード等の記録媒体に格納されて利用者によって提供される。記録媒体に格納されたプログラムは圧縮されていても非圧縮であってもよい。プログラムは、記録媒体からハードディスクドライブ1840にインストールされ、RAM1820に読み出されてCPU1805により実行される。CPU1805により実行されるプログラムは、コンピュータ2100を、図1から図18に関連して説明したいずれかのジッタ算出器10の各構成要素として機能させる。
以上に示したプログラムは、外部の記憶媒体に格納されてもよい。記憶媒体としては、フレキシブルディスク1890、CD−ROM1895の他に、DVDまたはPD等の光学記録媒体、MD等の光磁気記録媒体、テープ媒体、ICカード等の半導体メモリ等を用いることができる。また、専用通信ネットワークあるいはインターネットに接続されたサーバシステムに設けたハードディスクまたはRAM等の記憶装置を記録媒体として使用して、ネットワークを介してプログラムをジッタ測定装置100に提供してもよい。
以上、本発明の一側面を実施の形態を用いて説明したが、本発明の技術的範囲は上記実施の形態に記載の範囲には限定されない。上記実施の形態に、多様な変更又は改良を加えることができる。その様な変更又は改良を加えた形態も本発明の技術的範囲に含まれ得ることが、特許請求の範囲の記載から明らかである。
上記説明から明らかなように、本発明の一実施形態によれば、短い測定期間で精度よくジッタを測定することができるジッタ測定装置等を提供できる。
以上、本発明を実施の形態を用いて説明したが、本発明の技術的範囲は上記実施の形態に記載の範囲には限定されない。上記実施の形態に、多様な変更または改良を加えることが可能であることが当業者に明らかである。その様な変更または改良を加えた形態も本発明の技術的範囲に含まれ得ることが、特許請求の範囲の記載から明らかである。
特許請求の範囲、明細書、および図面中において示した装置、システム、プログラム、および方法における動作、手順、ステップ、および段階等の各処理の実行順序は、特段「より前に」、「先立って」等と明示しておらず、また、前の処理の出力を後の処理で用いるのでない限り、任意の順序で実現しうることに留意すべきである。特許請求の範囲、明細書、および図面中の動作フローに関して、便宜上「まず、」、「次に、」等を用いて説明したとしても、この順で実施することが必須であることを意味するものではない。
10・・・ジッタ算出器、20・・・波形再構成部、30・・・解析信号生成部、32・・・帯域制限器、34・・・ヒルベルト変換部、36・・・周波数領域変換部、37・・・帯域制限部、38・・・時間領域変換部、40・・・ジッタ測定部、42・・・瞬時位相算出部、44・・・位相雑音算出部、46・・・リサンプリング部、60・・・パターン変換部、62・・・レベル算出部、64・・・データ遷移エッジ算出部、66・・・仮想エッジ算出部、68・・・仮想エッジ生成部、70・・・加算波形生成部、81・・・バッファメモリ、82・・・波形データ選択器、83・・・窓関数乗算器、84・・・振幅補正器、100・・・ジッタ測定装置、110・・・サンプリング部、120・・・メモリ、500・・・被試験デバイス、1805・・・CPU、1810・・・ROM、1820・・・RAM、1830・・・通信インターフェイス、1840・・・ハードディスクドライブ、1850・・・フレキシブルディスク・ドライブ、1860・・・CD−ROMドライブ、1870・・・入出力チップ、1875・・・グラフィック・コントローラ、1880・・・表示装置、1882・・・ホスト・コントローラ、1884・・・入出力コントローラ、1890・・・フレキシブルディスク、1895・・・CD−ROM、1900・・・半導体試験装置、1910・・・信号生成部、1912・・・信号発生部、1914・・・周波数特性補正部、1920・・・信号計測部、1922・・・ジッタ値通知部、2000・・・通信システム、2010・・・送信部、2012・・・信号発生部、2014・・・周波数特性補正部、2020・・・受信部、2022・・・ジッタ値通知部、2070・・・回線、2100・・・コンピュータ

Claims (15)

  1. 予め定められたパターンが繰り返される被測定信号のタイミングジッタを測定するジッタ測定装置であって、
    予め定められた測定期間内で前記被測定信号をコヒーレントサンプリングするサンプリング部と、
    前記サンプリング部がサンプリングしたデータ値の順序を入れ換えて、前記被測定信号の波形を再現する再構成波形を生成する波形再構成部と、
    前記再構成波形を複素数の解析信号に変換する解析信号生成部と、
    前記解析信号に基づいて、前記被測定信号のジッタを測定するジッタ測定部と
    を備えるジッタ測定装置。
  2. 前記ジッタ測定部は、
    前記解析信号に基づいて、前記再構成波形の瞬時位相を算出する瞬時位相算出部と、
    前記再構成波形の瞬時位相からリニア瞬時位相成分を除去して、前記再構成波形の瞬時位相雑音を算出する位相雑音算出部と、
    前記再構成波形の瞬時位相雑音をリサンプリングして、前記再構成波形のタイミングジッタ系列を算出するリサンプリング部と
    を有する請求項1に記載のジッタ測定装置。
  3. 前記再構成波形において論理値が変化しないビット境界に、予め定められたタイミングのエッジが生成され、且つ、論理値が変化するビット境界では、論理値の変化のタイミングの情報を保持したエッジが生成されるように、前記再構成波形のパターンをクロックパターンに変換して、前記解析信号生成部に供給するパターン変換部を更に備える
    請求項2に記載のジッタ測定装置。
  4. 前記被測定信号は、予め定められたビット数毎に前記パターンを繰り返し、
    前記ジッタ測定装置は、前記再構成波形を前記予め定められたビット数の整数倍毎に分割し、分割したそれぞれの分割波形を加算した加算波形を生成する加算波形生成部を更に備え、
    前記解析信号生成部は、前記加算波形を前記解析信号に変換し、
    前記ジッタ測定部は、前記解析信号に基づいて、前記被測定信号の確定ジッタを測定する
    請求項2または3に記載のジッタ測定装置。
  5. 前記ジッタ測定部は、前記タイミングジッタ系列に基づいて、前記被測定信号のジッタ値を算出する
    請求項2から4のいずれか一項に記載のジッタ測定装置。
  6. 前記ジッタ測定部は、前記被測定信号のジッタのヒストグラムを生成する
    請求項2から4のいずれか一項に記載のジッタ測定装置。
  7. 前記波形再構成部は、前記サンプリング部がサンプリングしたk番目のデータ値を、前記再構成波形の下式で表わされるi番目のデータとして再配列する
    i=k・M mod N
    ただし、Mは前記測定期間内で前記被測定信号の前記パターンが繰り返される回数、Nは前記測定期間内において前記サンプリング部がサンプリングしたサンプル数を示す
    請求項2から6のいずれか一項に記載のジッタ測定装置。
  8. 予め定められたパターンが繰り返される被測定信号をコヒーレントサンプリングしたサンプリングデータに基づいて、前記被測定信号のジッタを算出するジッタ算出器であって、
    前記サンプリングデータの各データ値の順序を入れ換えて、前記被測定信号の波形を再現する再構成波形を生成する波形再構成部と、
    前記再構成波形を複素数の解析信号に変換する解析信号生成部と、
    前記解析信号に基づいて、前記被測定信号のジッタを測定するジッタ測定部と
    を備えるジッタ算出器。
  9. 予め定められたパターンが繰り返される被測定信号のタイミングジッタを測定するジッタ測定方法であって、
    予め定められた測定期間内で前記被測定信号をコヒーレントサンプリングするサンプリング段階と、
    前記サンプリング段階でサンプリングしたデータ値の順序を入れ換えて、前記被測定信号の波形を再現する再構成波形を生成する波形再構成段階と、
    前記再構成波形を複素数の解析信号に変換する解析信号生成段階と、
    前記解析信号に基づいて、前記被測定信号のジッタを測定するジッタ測定段階と
    を備えるジッタ測定方法。
  10. 予め定められたパターンが繰り返される被測定信号をコヒーレントサンプリングしたサンプリングデータに基づいて、前記被測定信号のジッタを算出するジッタ算出器として、コンピュータを機能させるプログラムであって、
    前記コンピュータを、
    前記サンプリングデータの各データ値の順序を入れ換えて、前記被測定信号の波形を再現する再構成波形を生成する波形再構成部と、
    前記再構成波形を複素数の解析信号に変換する解析信号生成部と、
    前記解析信号に基づいて、前記被測定信号のジッタを測定するジッタ測定部と
    して機能させるプログラム。
  11. 請求項10に記載のプログラムを記録した記録媒体。
  12. 送信部および受信部を備える通信システムであって、
    前記受信部は、請求項1から7のいずれか一項に記載の前記ジッタ測定装置を有する通信システム。
  13. 前記受信部は、前記ジッタ測定部が測定した前記被測定信号のジッタ値を前記送信部に通知するジッタ値通知部をさらに有し、
    前記送信部は、前記ジッタ値通知部から通知された前記ジッタ値に応じて、前記受信部が受信する信号におけるジッタ値が小さくなるように、前記送信部が送信する信号の周波数特性を補正する周波数特性補正部を有する
    請求項12に記載の通信システム。
  14. 被試験デバイスに試験信号を与えて、前記被試験デバイスを試験する試験装置であって、
    前記試験信号を生成する信号生成部と、
    前記被試験デバイスが出力する出力信号のジッタを測定する、請求項1から7のいずれか一項に記載のジッタ測定装置と
    を備える試験装置。
  15. 前記ジッタ測定部が測定した前記被測定信号のジッタ値を前記信号生成部に通知するジッタ値通知部をさら備え、
    前記信号生成部は、前記ジッタ値通知部から通知された前記ジッタ値に応じて、前記出力信号のジッタ値が小さくなるよう前記試験信号の周波数特性を補正する周波数特性補正部を有する
    請求項14に記載の試験装置。
JP2010077674A 2009-03-30 2010-03-30 ジッタ測定装置、ジッタ算出器、ジッタ測定方法、プログラム、記録媒体、通信システム、および試験装置 Pending JP2010237214A (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US12/414,618 US7903776B2 (en) 2006-09-26 2009-03-30 Jitter measurement apparatus, jitter calculator, jitter measurement method, program, recording medium, communication system and test apparatus

Publications (1)

Publication Number Publication Date
JP2010237214A true JP2010237214A (ja) 2010-10-21

Family

ID=43091627

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010077674A Pending JP2010237214A (ja) 2009-03-30 2010-03-30 ジッタ測定装置、ジッタ算出器、ジッタ測定方法、プログラム、記録媒体、通信システム、および試験装置

Country Status (1)

Country Link
JP (1) JP2010237214A (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6171499A (ja) * 1984-09-14 1986-04-12 Hitachi Ltd デ−タサンプリング方法
JPS62133360A (ja) * 1985-12-02 1987-06-16 ソニー・テクトロニクス株式会社 デ−タ分布測定装置
JPH04270975A (ja) * 1991-02-27 1992-09-28 Advantest Corp Ic試験装置
JP2005233946A (ja) * 2004-02-18 2005-09-02 Advantest Corp ジッタ測定装置、ジッタ測定方法およびプログラム
WO2007099918A1 (ja) * 2006-02-27 2007-09-07 Advantest Corporation 測定装置、試験装置、及び電子デバイス
WO2008038521A1 (fr) * 2006-09-26 2008-04-03 Advantest Corporation Dispositif et procédé de mesure de la gigue, support d'enregistrement et programme
JP2008312207A (ja) * 2007-06-15 2008-12-25 Advantest Corp 通信システム、受信器、及び適応等化器

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6171499A (ja) * 1984-09-14 1986-04-12 Hitachi Ltd デ−タサンプリング方法
JPS62133360A (ja) * 1985-12-02 1987-06-16 ソニー・テクトロニクス株式会社 デ−タ分布測定装置
JPH04270975A (ja) * 1991-02-27 1992-09-28 Advantest Corp Ic試験装置
JP2005233946A (ja) * 2004-02-18 2005-09-02 Advantest Corp ジッタ測定装置、ジッタ測定方法およびプログラム
WO2007099918A1 (ja) * 2006-02-27 2007-09-07 Advantest Corporation 測定装置、試験装置、及び電子デバイス
WO2008038521A1 (fr) * 2006-09-26 2008-04-03 Advantest Corporation Dispositif et procédé de mesure de la gigue, support d'enregistrement et programme
JP2008312207A (ja) * 2007-06-15 2008-12-25 Advantest Corp 通信システム、受信器、及び適応等化器

Similar Documents

Publication Publication Date Title
US7903776B2 (en) Jitter measurement apparatus, jitter calculator, jitter measurement method, program, recording medium, communication system and test apparatus
JP4948524B2 (ja) 測定装置、試験装置、電子デバイス、プログラム、及び記録媒体
JP5008654B2 (ja) 測定装置、測定方法、試験装置、試験方法、及び電子デバイス
US7945405B2 (en) Jitter measurement apparatus, jitter measurement method, recording media, communication system and test apparatus
JP5066073B2 (ja) 測定装置、測定方法、試験装置、試験方法、及び電子デバイス
US11237204B2 (en) Real-time jitter impairment insertion for signal sources
JP5274365B2 (ja) 信号測定装置、信号測定方法、記録媒体、および試験装置
US7933728B2 (en) Skew measurement apparatus, skew measurement method, recording media and test apparatus
US7715512B2 (en) Jitter measurement apparatus, jitter measurement method, and recording medium
JP2009030984A (ja) 波形発生装置、波形生成装置、試験装置およびプログラム
CN116701296B (zh) 一种量子比特控制信号参数化生成方法
JP4110196B1 (ja) 波形発生装置、波形生成装置、試験装置およびプログラム
JP2010237214A (ja) ジッタ測定装置、ジッタ算出器、ジッタ測定方法、プログラム、記録媒体、通信システム、および試験装置
JP2012083342A (ja) 測定装置、測定方法、試験装置およびプログラム
JP7185652B2 (ja) クロック再生装置、誤り率測定装置、クロック再生方法、及び誤り率測定方法
US20120102353A1 (en) Data processing apparatus, data processing system, measurement system, data processing method, measurement method, electronic device and recording medium
CN112129983A (zh) 一种基于等时间间隔等效取样的波形恢复数据处理方法
CN111970003A (zh) Adc频谱测试中非相干采样信号恢复方法
JPH0630445B2 (ja) D/a変換器の試験方法
JP2810253B2 (ja) D/a変換器の試験装置
JP5235078B2 (ja) 波形発生装置、波形生成装置、試験装置およびプログラム
CN113253008A (zh) 用于测试被测器件的方法以及使用其的装置
Okawara SSC applied serial ATA signal generation and analysis by analog tester resources
JPH09232955A (ja) D/a変換器の試験方法及びその装置

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120329

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120410

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120529

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130212