JP2010206785A - 熱音響装置 - Google Patents

熱音響装置 Download PDF

Info

Publication number
JP2010206785A
JP2010206785A JP2010020346A JP2010020346A JP2010206785A JP 2010206785 A JP2010206785 A JP 2010206785A JP 2010020346 A JP2010020346 A JP 2010020346A JP 2010020346 A JP2010020346 A JP 2010020346A JP 2010206785 A JP2010206785 A JP 2010206785A
Authority
JP
Japan
Prior art keywords
carbon nanotube
signal
sound wave
wave generator
thermoacoustic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010020346A
Other languages
English (en)
Inventor
Kaili Jiang
開利 姜
Lin Xiao
林 肖
Zhuo Chen
卓 陳
守善 ▲ハン▼
Feng-Yan Fan
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qinghua University
Hon Hai Precision Industry Co Ltd
Original Assignee
Qinghua University
Hon Hai Precision Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qinghua University, Hon Hai Precision Industry Co Ltd filed Critical Qinghua University
Publication of JP2010206785A publication Critical patent/JP2010206785A/ja
Pending legal-status Critical Current

Links

Landscapes

  • Electrostatic, Electromagnetic, Magneto- Strictive, And Variable-Resistance Transducers (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

【課題】本発明は、熱音響装置に関し、特にカーボンナノチューブを利用した熱音響装置に関するものである。
【解決手段】本発明の熱音響装置は、信号装置と、電力増幅器と、カーボンナノチューブ構造体を含む音波発生器と、を含む。前記電力増幅器は前記信号装置と電気的に接続されている。前記電力増幅器により、前記信号装置からの信号の出力を増幅させて、前記音波発生器へ転送する。前記カーボンナノチューブ構造体が少なくとも一枚のカーボンナノチューブフィルムを含む。前記カーボンナノチューブフィルムは、複数のカーボンナノチューブを含む。
【選択図】図1

Description

本発明は、熱音響装置に関し、特にカーボンナノチューブを利用した熱音響装置に関するものである。
一般的に、音響装置は信号装置及び音波発生器を含む。前記信号装置は、信号を前記音波発生器(例えばスピーカー)に伝送する。スピーカーは電気音響変換器として、電気信号を音に変換することができる。
動作原理により、スピーカーは、ダイナミックスピーカー、マグネティックスピーカー、静電気スピーカー、圧電スピーカーなどの多種に分類される。前記多種のスピーカーは、全て機械的振動によって音波を生じ、即ち、電気―機械力―音の変換を実現する。ここで、ダイナミックスピーカーが広く利用されている。
図21を参照すると、従来のダイナミックスピーカー100は、ボイスコイル102と、マグネット104と、コーン106と、を含む。前記ボイスコイル102は導電部品として、前記マグネット104の間に設置されている。前記ボイスコイル102へ電流を流す場合、前記ボイスコイル102による電磁場及びマグネット104による磁場の相互作用により、前記コーン106が振動して空気の圧力変動が連続して生じるので、音波を発生させることができる。しかし、前記ダイナミックスピーカー100は、磁場の作用に依存している。
熱音響現象とは、音と熱が関わり合う現象であり、エネルギー変換とエネルギー輸送という2つの側面がある。熱音響装置に信号を転送すると、熱音響装置に熱が生じ、周辺の媒体へ伝播される。伝播された熱によって生じた熱膨張及び圧力波が原因で、音波を発生させることができる。
H.D.Arnold、I.B.Crandall, "The thermophone as a precision source of sound", Phys. 1917年、第10巻, 第22−38頁 Kaili Jiang、Qunqing Li、Shoushan Fan、"Spinning continuous carbon nanotube yarns"、Nature、2002年、第419巻、p.801
非特許文献1に、熱音響現象によって製造されたサーモホン(thermophone)が掲載されている。ここで、厚さが7×10−5cmの白金片が熱音響部品として利用されている。しかし、厚さが7×10−5cmの白金片に対して、単位体積当たりの熱容量は2×10−4J/cm・Kである。従って、白金片の単位体積当たりの熱容量が非常に高いので、白金片を利用したサーモホンは室外で利用される場合、音が非常に弱いという課題がある。
本発明は、前記課題を解決するために、軽量な熱音響装置を提供する。本発明の熱音響装置は、磁場に依存せず、機械的振動によらずに音を発生することができる。
本発明の熱音響装置は、信号装置と、電力増幅器と、カーボンナノチューブ構造体を含む音波発生器と、を含む。前記電力増幅器は前記信号装置と電気的に接続されている。前記電力増幅器により、前記信号装置からの信号の出力を増幅させて、前記音波発生器へ転送する。前記カーボンナノチューブ構造体が少なくとも一枚のカーボンナノチューブフィルムを含む。前記カーボンナノチューブフィルムは、複数のカーボンナノチューブを含む。
前記電力増幅器は二つの出力部及び入力部を含む。前記入力部は前記信号装置に電気的に接続されている。前記出力部は前記音波発生器に電気的に接続されている。
前記電力増幅器は、増幅信号及びバイアス電圧を前記音波発生器に提供する。
一枚の前記カーボンナノチューブフィルムの単位体積当たりの熱容量が0(0は含まず)〜2×10−4J/cm・Kである。
単一の前記カーボンナノチューブフィルムにおいて、複数のカーボンナノチューブが同じ方向に沿って、端と端が接続されている。
前記熱音響装置は、少なくとも二つの電極をさらに含む。前記少なくとも二つの電極が所定の距離で分離して、それぞれ前記音波発生器に電気的に接続されている。
本発明の熱音響システムは、信号装置と、電力増幅器と、媒体に接するカーボンナノチューブ構造体と、を含む。前記電力増幅器は前記カーボンナノチューブ構造体と電気的に接続されている。前記電力増幅器により、前記信号装置からの信号の出力を増幅させて、前記カーボンナノチューブ構造体へ転送する。前記カーボンナノチューブ構造体が少なくとも一枚のカーボンナノチューブフィルムを含む。前記カーボンナノチューブフィルムが、複数のカーボンナノチューブを含む。
従来の技術と比べて、本発明の熱音響装置は次の優れた点がある。第一は、本発明の熱音響装置はカーボンナノチューブ構造体を含むので、従来のスピーカーと比べて、構成が簡単であり、軽量化及び小型化が可能である。第二は、本発明の熱音響装置はカーボンナノチューブ構造体を加熱することにより音波を発生するので、マグネットを利用する必要がない。第三は、カーボンナノチューブ構造体は、単位体積当たりの熱容量が小さく、比表面積が大きく、熱交換の速度が速いので、音を良好に発生することができる。第四は、カーボンナノチューブ構造体は薄いので、透明な音響装置を製造することができる。
本発明の実施例1における熱音響装置の模式図である。 本発明の実施例1におけるドローン構造のカーボンナノチューブフィルムのSEM写真である。 本発明の実施例1におけるカーボンナノチューブセグメントの模式図である。 本発明の実施例1における綿毛構造のカーボンナノチューブフィルムのSEM写真である。 本発明の実施例1におけるカーボンナノチューブフィルムのセグメントのSEM写真である。 本発明の実施例1における非ねじれ状のカーボンナノチューブワイヤのSEM写真である。 本発明の実施例1におけるねじれ状のカーボンナノチューブワイヤのSEM写真である。 本発明の実施例1における複数のカーボンナノチューブフィルム又は/及びカーボンナノチューブワイヤからなる織物の模式図である。 本発明の実施例1における熱音響装置の周波数応答曲線である。 本発明の実施例1における熱音響装置の模式図である。 本発明の実施例2における熱音響装置の模式図である。 本発明の実施例3における熱音響装置の模式図である。 本発明の実施例4における熱音響装置の模式図である。 本発明の実施例5における熱音響装置の模式図である。 本発明の実施例6における熱音響装置の模式図である。 本発明の実施例6における回路図である。 本発明の実施例6における電力増幅器を使用したバイアス電圧を示すグラフである。 本発明の実施例7における熱音響装置の模式図である。 本発明の実施例7における熱音響装置の模式図である。 本発明の音波発生方法のチャートである。 従来のスピーカーの模式図である。 本発明のカーボンナノチューブが等方的に配列されたカーボンナノチューブフィルムのSEM写真である。 本発明のカーボンナノチューブが同じ方向に沿って配列されたカーボンナノチューブフィルムのSEM写真である。 本発明のカーボンナノチューブフィルムセグメントのSEM写真である。
以下、図面を参照して、本発明の実施形態について説明する。
(実施例1)
図1を参照すると、本発明の熱音響装置10は、信号装置12と、音波発生器14と、第一電極142と、第二電極144と、を含む。前記第一電極142及び第二電極144は所定の距離で離れるように、それぞれ前記音波発生器14に電気的に接続されている。且つ、前記第一電極142及び第二電極144はそれぞれ前記信号装置12に電気的に接続されている。前記第一電極142及び第二電極144により、前記信号装置12からの信号を前記音波発生器14へ転送する。
前記音波発生器14はカーボンナノチューブ構造体を含む。該カーボンナノチューブ構造体は大きな比表面積(例えば、100m/g以上)を有する。該カーボンナノチューブ構造体の単位体積当たりの熱容量は、0(0は含まず)〜2×10−4J/cm・Kであるが、好ましくは、0(0は含まず)〜1.7×10−6J/cm・Kであり、本実施例では、1.7×10−6J/cm・Kである。さらに、前記カーボンナノチューブ構造体の表面に、金属層を形成することができる。前記カーボンナノチューブ構造体には、複数のカーボンナノチューブが均一に分散されている。該複数のカーボンナノチューブは分子間力で接続されている。前記カーボンナノチューブ構造体は、金属型のカーボンナノチューブを含む必要がある。前記カーボンナノチューブ構造体に、前記複数のカーボンナノチューブが配向し又は配向せずに配置されている。前記複数のカーボンナノチューブの配列方式により、前記カーボンナノチューブ構造体は非配向型のカーボンナノチューブ構造体及び配向型のカーボンナノチューブ構造体の二種に分類される。本実施例における非配向型のカーボンナノチューブ構造体では、カーボンナノチューブが異なる方向に沿って配置され、又は絡み合っている。配向型のカーボンナノチューブ構造体では、前記複数のカーボンナノチューブが同じ方向に沿って配列している。又は、配向型のカーボンナノチューブ構造体において、配向型のカーボンナノチューブ構造体が二つ以上の領域に分割される場合、各々の領域における複数のカーボンナノチューブが同じ方向に沿って配列されている。この場合、異なる領域におけるカーボンナノチューブの配列方向は異なる。前記カーボンナノチューブは、単層カーボンナノチューブ、二層カーボンナノチューブ又は多層カーボンナノチューブである。前記カーボンナノチューブが単層カーボンナノチューブである場合、直径は0.5nm〜50nmに設定され、前記カーボンナノチューブが二層カーボンナノチューブである場合、直径は1nm〜50nmに設定され、前記カーボンナノチューブが多層カーボンナノチューブである場合、直径は1.5nm〜50nmに設定される。
前記カーボンナノチューブ構造体は、自立構造の薄膜の形状に形成されている。ここで、自立構造とは、支持体材を利用せず、前記カーボンナノチューブフィルムを独立して利用することができるという形態のことである。すなわち、前記カーボンナノチューブフィルムを対向する両側から支持して、前記カーボンナノチューブフィルムの構造を変化させずに、前記カーボンナノチューブフィルムを懸架させることができることを意味する。前記カーボンナノチューブ構造体は平板型であり、その厚さは0.5nm〜1mmに設けられている。前記カーボンナノチューブ構造体の比表面積が小さくなるほど、前記カーボンナノチューブ構造体の単位体積当たりの熱容量が高くなる。前記カーボンナノチューブ構造体の単位体積当たりの熱容量が高くなるほど、前記熱音響装置の音圧が低くなる。
本発明のカーボンナノチューブ構造体としては、以下の(一)〜(六)のものが挙げられる。
(一)ドローン構造カーボンナノチューブフィルム
前記カーボンナノチューブ構造体は、図2に示す、少なくとも一枚のカーボンナノチューブフィルム143aを含む。このカーボンナノチューブフィルムはドローン構造カーボンナノチューブフィルム(drawn carbon nanotube film)である。前記カーボンナノチューブフィルム143aは、超配列カーボンナノチューブアレイ(非特許文献2を参照)から引き出して得られたものである。単一の前記カーボンナノチューブフィルムにおいて、複数のカーボンナノチューブが同じ方向に沿って、端と端が接続されている。即ち、単一の前記カーボンナノチューブフィルム143aは、分子間力で長さ方向端部同士が接続された複数のカーボンナノチューブを含む。図2及び図3を参照すると、単一の前記カーボンナノチューブフィルム143aは、複数のカーボンナノチューブセグメント143bを含む。前記複数のカーボンナノチューブセグメント143bは、長さ方向に沿って分子間力で端と端が接続されている。それぞれのカーボンナノチューブセグメント143bは、相互に平行に、分子間力で結合された複数のカーボンナノチューブ145を含む。単一の前記カーボンナノチューブセグメント143bにおいて、前記複数のカーボンナノチューブ145の長さが同じである。前記カーボンナノチューブフィルム143aを有機溶剤に浸漬させることにより、前記カーボンナノチューブフィルム143aの強靭性及び機械強度を高めることができる。有機溶剤に浸漬された前記カーボンナノチューブフィルムの単位体積当たりの熱容量が低くなるので、その熱音響効果を高めることができる。前記カーボンナノチューブフィルム143aの幅は100μm〜10cmに設けられ、厚さは0.5nm〜100μmに設けられる。
前記カーボンナノチューブ構造体は、積層された複数の前記カーボンナノチューブフィルムを含むことができる。この場合、隣接する前記カーボンナノチューブフィルムは、分子間力で結合されている。隣接する前記カーボンナノチューブフィルムにおけるカーボンナノチューブは、それぞれ0°〜90°の角度で交差している。隣接する前記カーボンナノチューブフィルムにおけるカーボンナノチューブが0°以上の角度で交差する場合、前記カーボンナノチューブ構造体に複数の微孔が形成される。又は、前記複数のカーボンナノチューブフィルムは、隙間なく並列されることもできる。
前記カーボンナノチューブフィルムの製造方法は次のステップを含む。
第一ステップでは、カーボンナノチューブアレイを提供する。該カーボンナノチューブアレイは、超配列カーボンナノチューブアレイ(Superaligned array of carbon nanotubes,非特許文献2を参照)であり、該超配列カーボンナノチューブアレイの製造方法は、化学気相堆積法を採用する。該製造方法は、次のステップを含む。ステップ(a)では、平らな基材を提供し、該基材はP型のシリコン基材、N型のシリコン基材及び酸化層が形成されたシリコン基材のいずれか一種である。本実施例において、4インチのシリコン基材を選択することが好ましい。ステップ(b)では、前記基材の表面に、均一的に触媒層を形成する。該触媒層の材料は鉄、コバルト、ニッケル及びその2種以上の合金のいずれか一種である。ステップ(c)では、前記触媒層が形成された基材を700℃〜900℃の空気で30分〜90分間アニーリングする。ステップ(d)では、アニーリングされた基材を反応炉に置き、保護ガスで500℃〜740℃の温度で加熱した後で、カーボンを含むガスを導入して、5分〜30分間反応を行って、超配列カーボンナノチューブアレイ(Superaligned array of carbon nanotubes,非特許文献2)を成長させることができる。該カーボンナノチューブアレイの高さは100マイクロメートル以上である。該カーボンナノチューブアレイは、互いに平行し、基材に垂直するように生長する複数のカーボンナノチューブからなる。該カーボンナノチューブは、長さが長いため、部分的にカーボンナノチューブが互いに絡み合っている。生長の条件を制御することによって、前記カーボンナノチューブアレイは、例えば、アモルファスカーボン及び残存する触媒である金属粒子などの不純物を含まなくなる。
本実施例において、前記カーボンを含むガスとしては例えば、アセチレン、エチレン、メタンなどの活性な炭化水素が選択され、エチレンを選択することが好ましい。保護ガスは窒素ガスまたは不活性ガスであり、アルゴンガスが好ましい。
本実施例から提供されたカーボンナノチューブアレイは、前記の製造方法により製造されることに制限されず、アーク放電法またはレーザー蒸発法で製造してもいい。
第二ステップでは、前記カーボンナノチューブアレイから、少なくとも、一枚のカーボンナノチューブフィルムを引き伸ばす。まず、ピンセットなどの工具を利用して複数のカーボンナノチューブの端部を持つ。例えば、一定の幅を有するテープを利用して複数のカーボンナノチューブの端部を持つ。次に、所定の速度で前記複数のカーボンナノチューブを引き出し、複数のカーボンナノチューブセグメントからなる連続のカーボンナノチューブフィルムを形成する。
前記複数のカーボンナノチューブを引き出す工程において、前記複数のカーボンナノチューブがそれぞれ前記基材から脱離すると、分子間力で前記カーボンナノチューブセグメントが端と端で接合され、連続のカーボンナノチューブフィルムが形成される。
(二)綿毛構造カーボンナノチューブフィルム
前記カーボンナノチューブ構造体は、少なくとも一枚のカーボンナノチューブフィルムを含む。このカーボンナノチューブフィルムは綿毛構造カーボンナノチューブフィルム(flocculated carbon nanotube film)である。図4を参照すると、単一の前記カーボンナノチューブフィルムにおいて、複数のカーボンナノチューブは、絡み合い、等方的に配列されている。前記カーボンナノチューブ構造体においては、前記複数のカーボンナノチューブが均一に分布されている。複数のカーボンナノチューブは配向せずに配置されている。単一の前記カーボンナノチューブの長さは、100nm以上であり、100nm〜10cmであることが好ましい。前記複数のカーボンナノチューブは、分子間力で接近して、相互に絡み合って、カーボンナノチューブネット状に形成されている。前記複数のカーボンナノチューブは配向せずに配置されて、多くの微小な穴が形成されている。ここで、単一の前記微小な穴の直径が10μm以下になる。前記カーボンナノチューブ構造体におけるカーボンナノチューブは、相互に絡み合って配置されるので、該カーボンナノチューブ構造体は柔軟性に優れ、任意の形状に湾曲して形成させることができる。用途に応じて、前記カーボンナノチューブ構造体の長さ及び幅を調整することができる。前記カーボンナノチューブ構造体の厚さは、0.5nm〜1mmである。
前記カーボンナノチューブフィルムの製造方法は、下記のステップを含む。
第一ステップでは、カーボンナノチューブ原料(綿毛構造カーボンナノチューブフィルムの素になるカーボンナノチューブ)を提供する。
ナイフのような工具で前記カーボンナノチューブを前記基材から剥離し、カーボンナノチューブ原料が形成される。前記カーボンナノチューブは、ある程度互いに絡み合っている。前記カーボンナノチューブの原料においては、該カーボンナノチューブの長さは、100マイクロメートル以上であり、10マイクロメートル以上であることが好ましい。
第二ステップでは、前記カーボンナノチューブ原料を溶剤に浸漬し、該カーボンナノチューブ原料を処理して、綿毛構造のカーボンナノチューブ構造体を形成する。
前記カーボンナノチューブ原料を前記溶剤に浸漬した後、超音波式分散、又は高強度攪拌又は振動などの方法により、前記カーボンナノチューブを綿毛構造に形成させる。前記溶剤は水または揮発性有機溶剤である。超音波式分散方法により、カーボンナノチューブを含む溶剤に対して10〜30分間処理する。カーボンナノチューブは大きな比表面積を有し、カーボンナノチューブの間に大きな分子間力が生じるので、前記カーボンナノチューブはそれぞれもつれて、綿毛構造に形成されている。
第三ステップでは、前記綿毛構造のカーボンナノチューブ構造体を含む溶液をろ過して、最終的な綿毛構造のカーボンナノチューブ構造体を取り出す。
まず、濾紙が置かれたファネルを提供する。前記綿毛構造のカーボンナノチューブ構造体を含む溶剤を濾紙が置かれたファネルにつぎ、しばらく放置して、乾燥させると、綿毛構造のカーボンナノチューブ構造体が分離される。図4を参照すると、前記綿毛構造のカーボンナノチューブ構造体におけるカーボンナノチューブが互いに絡み合って、不規則的な綿毛構造となる。
分離された前記綿毛構造のカーボンナノチューブ構造体を容器に置き、前記綿毛構造のカーボンナノチューブ構造体を所定の形状に展開し、展開された前記綿毛構造のカーボンナノチューブ構造体に所定の圧力を加え、前記綿毛構造のカーボンナノチューブ構造体に残留した溶剤を加熱するか、或いは、該溶剤が自然に蒸発すると、綿毛構造のカーボンナノチューブフィルムが形成される。
前記綿毛構造のカーボンナノチューブ構造体が展開される面積によって、綿毛構造のカーボンナノチューブフィルムの厚さと面密度を制御できる。即ち、一定の体積を有する前記綿毛構造のカーボンナノチューブ構造体は、展開される面積が大きくなるほど、綿毛構造のカーボンナノチューブフィルムの厚さと面密度が小さくなる。
また、微多孔膜とエアーポンプファネル(Air−pumping Funnel)を利用して綿毛構造のカーボンナノチューブフィルムが形成される。具体的には、微多孔膜とエアーポンプファネルを提供し、前記綿毛構造のカーボンナノチューブ構造体を含む溶剤を、前記微多孔膜を通して前記エアーポンプファネルにつぎ、該エアーポンプファネルに抽気し、乾燥させると、綿毛構造のカーボンナノチューブフィルムが形成される。前記微多孔膜は、平滑な表面を有する。該微多孔膜において、単一の微小孔の直径は、0.22マイクロメートルにされている。前記微多孔膜は平滑な表面を有するので、前記カーボンナノチューブフィルムは容易に前記微多孔膜から剥落することができる。さらに、前記エアーポンプを利用することにより、前記綿毛構造のカーボンナノチューブフィルムに空気圧をかけるので、均一な綿毛構造のカーボンナノチューブフィルムを形成させることができる。
前記カーボンナノチューブ構造体が、一枚の前記カーボンナノチューブフィルムだけを含む場合、該カーボンナノチューブフィルムにおけるカーボンナノチューブの両端は、それぞれ、前記第一電極及び前記第二電極に電気的に接続される。前記カーボンナノチューブ構造体が、少なくとも二枚の積層された複数のカーボンナノチューブフィルムを含む場合、隣接するカーボンナノチューブフィルム間におけるカーボンナノチューブ同士の成す角度αは、0°〜90°である。少なくとも一枚の前記カーボンナノチューブフィルムにおけるカーボンナノチューブの両端は、それぞれ、前記第一電極及び前記第二電極に電気的に接続される。
(三)超長構造カーボンナノチューブフィルム
前記カーボンナノチューブ構造体は、少なくとも一枚のカーボンナノチューブフィルムを含む。このカーボンナノチューブフィルムは超長構造カーボンナノチューブフィルム(ultra−long carbon nanotube film)である。図5を参照すると、単一の前記カーボンナノチューブフィルムは、ほぼ同じ長さを有する複数のカーボンナノチューブを含む。単一の前記カーボンナノチューブフィルムにおいて、前記複数のカーボンナノチューブは、同じ方向に沿って、均一に並列されている。単一の前記カーボンナノチューブフィルムの厚さは、10nm〜100μmである。前記複数のカーボンナノチューブは、それぞれ前記複数のカーボンナノチューブフィルムの表面に平行に配列され、相互に平行に配列されている。隣接する前記カーボンナノチューブは所定の距離で分離して設置される。前記距離は0〜5μmである。前記距離が0μmである場合、隣接する前記カーボンナノチューブは分子間力で接続されている。前記カーボンナノチューブフィルムにおける各々の前記カーボンナノチューブの長さは、前記カーボンナノチューブフィルムの長さと同じである。単一の前記カーボンナノチューブの長さは、1cm以上であり、1cm〜30cmであることが好ましい。即ち、カーボンナノチューブの長さが超長である。さらに、各々の前記カーボンナノチューブ145に結節がない。本実施形態において、前記カーボンナノチューブフィルムの厚さは10μmである。単一の前記カーボンナノチューブ145の長さは10cmである。
前記カーボンナノチューブフィルムの製造方法は、反応容器を備える成長装置を提供する第一ステップと、一つの表面に触媒層を有する第二基板、及び第一基板を前記成長装置の反応容器の中に設置する第二ステップと、カーボンを含むガスを前記成長装置の中に導入して、前記第二基板にカーボンナノチューブを成長させる第三ステップと、前記カーボンを含むガスの導入を止めて、前記カーボンナノチューブの大部分を前記第一基板に付着させる第四ステップと、触媒を有する新たな第二基板を、前記カーボンナノチューブが成長された第二基板に替えて、前記成長装置の中に設置する第五ステップと、を含む。詳しい説明は、特願2009−7005号に掲載されている。
(四)プレシッド構造カーボンナノチューブフィルム
前記カーボンナノチューブ構造体は、少なくとも一枚のカーボンナノチューブフィルムを含む。このカーボンナノチューブフィルムは、プレシッド構造カーボンナノチューブフィルム(pressed carbon nanotube film)である。単一の前記カーボンナノチューブフィルムにおける複数のカーボンナノチューブは、等方的に配列されているか、所定の方向に沿って配列されているか、または、異なる複数の方向に沿って配列されている。前記カーボンナノチューブフィルムは、押し器具を利用することにより、所定の圧力をかけて前記カーボンナノチューブアレイを押し、該カーボンナノチューブアレイを圧力で倒すことにより形成された、シート状の自立構造を有するものである。前記カーボンナノチューブフィルムにおけるカーボンナノチューブの配列方向は、前記押し器具の形状及び前記カーボンナノチューブアレイを押す方向により決められている。
図22を参照すると、単一の前記カーボンナノチューブフィルムにおけるカーボンナノチューブが配向せずに配置される。該カーボンナノチューブフィルムは、等方的に配列されている複数のカーボンナノチューブを含む。隣接するカーボンナノチューブが分子間力で相互に引き合い、接続する。該カーボンナノチューブ構造体が平面等方性を有する。該カーボンナノチューブフィルムは、平面を有する押し器具を利用して、カーボンナノチューブアレイが成長された基板に垂直な方向に沿って前記カーボンナノチューブアレイを押すことにより形成される。
図23を参照すると、単一の前記カーボンナノチューブフィルムにおけるカーボンナノチューブが配向して配列される。該カーボンナノチューブフィルムは、同じ方向に沿って配列された複数のカーボンナノチューブを含む。ローラー形状を有する押し器具を利用して、同じ方向に沿って前記カーボンナノチューブアレイを同時に押す場合、基本的に同じ方向に配列されるカーボンナノチューブを含むカーボンナノチューブフィルムが形成される。また、ローラー形状を有する押し器具を利用して、異なる方向に沿って、前記カーボンナノチューブアレイを同時に押す場合、前記異なる方向に沿って、選択的な方向に配列されるカーボンナノチューブを含むカーボンナノチューブフィルムが形成される。
前記カーボンナノチューブフィルムにおけるカーボンナノチューブの傾斜の程度は、前記カーボンナノチューブアレイにかけた圧力に関係する。前記カーボンナノチューブフィルムにおけるカーボンナノチューブと該カーボンナノチューブフィルムの表面とは、角度αを成し、該角度αは0°以上15°以下である。好ましくは、前記カーボンナノチューブフィルムにおけるカーボンナノチューブが該カーボンナノチューブフィルムの表面に平行する。前記圧力が大きくなるほど、前記傾斜の程度が大きくなる。前記カーボンナノチューブフィルムの厚さは、前記カーボンナノチューブアレイの高さ及び該カーボンナノチューブアレイにかけた圧力に関係する。即ち、前記カーボンナノチューブアレイの高さが大きくなるほど、また、該カーボンナノチューブアレイにかけた圧力が小さくなるほど、前記カーボンナノチューブフィルムの厚さが大きくなる。これとは逆に、カーボンナノチューブアレイの高さが小さくなるほど、また、該カーボンナノチューブアレイにかけた圧力が大きくなるほど、前記カーボンナノチューブフィルムの厚さが小さくなる。
(五)カーボンナノチューブフィルムセグメント
前記カーボンナノチューブ構造体は、一つのカーボンナノチューブフィルムセグメントを含む。図24を参照すると、前記カーボンナノチューブフィルムセグメントにおけるカーボンナノチューブは、相互に平行し、所定の方向に沿って配列されている。前記カーボンナノチューブフィルムセグメントにおいて、少なくとも一本のカーボンナノチューブの長さは、前記カーボンナノチューブフィルムセグメントの全長と同じである。従って、前記カーボンナノチューブフィルムセグメントの一つの寸法は、前記カーボンナノチューブの長さによって制限されている。前記カーボンナノチューブ構造体は、積層された複数の前記カーボンナノチューブフィルムセグメントを含むことができる。この場合、隣接する前記カーボンナノチューブフィルムセグメントは、分子間力で結合されている。前記カーボンナノチューブフィルムセグメントの厚さは、0.5nm〜100μmである。
前記カーボンナノチューブフィルムの製造方法は、基板を提供する第一ステップと、該基板に、少なくとも一つのストリップ状の触媒層を堆積させる第二ステップと、CVD法により、前記基板に少なくとも一つのカーボンナノチューブアレイを成長させる第三ステップと、前記基板の表面に平行な方向に沿って前記カーボンナノチューブアレイを倒して、少なくとも一枚のカーボンナノチューブフィルムセグメントを形成する第四ステップと、を含む。詳しい説明は、特願2009−128147に掲載されている。
(六)カーボンナノチューブワイヤ
前記カーボンナノチューブ構造体は少なくとも一本のカーボンナノチューブワイヤを含む。一本の前記カーボンナノチューブワイヤの熱容量は、0(0は含まず)〜2×10−4J/cm・Kであり、5×10−5J/cm・Kであることが好ましい。一本の前記カーボンナノチューブワイヤの直径は4.5nm〜1cmである。図6を参照すると、前記カーボンナノチューブワイヤは、分子間力で接続された複数のカーボンナノチューブからなる。この場合、一本のカーボンナノチューブワイヤ(非ねじれ状カーボンナノチューブワイヤ)は、端と端とが接続された複数のカーボンナノチューブセグメント(図示せず)を含む。前記カーボンナノチューブセグメントは、同じ長さ及び幅を有する。さらに、各々の前記カーボンナノチューブセグメントに、同じ長さの複数のカーボンナノチューブが平行に配列されている。前記複数のカーボンナノチューブはカーボンナノチューブワイヤの中心軸に平行に配列されている。この場合、一本の前記カーボンナノチューブワイヤの直径は、1μm〜1cmである。図7を参照すると、前記カーボンナノチューブワイヤをねじり、ねじれ状カーボンナノチューブワイヤを形成することができる。ここで、前記複数のカーボンナノチューブは前記カーボンナノチューブワイヤの中心軸を軸に、螺旋状に配列されている。この場合、一本の前記カーボンナノチューブワイヤの直径は、1μm〜1cmである。前記カーボンナノチューブ構造体は、前記非ねじれ状カーボンナノチューブワイヤ、ねじれ状カーボンナノチューブワイヤ又はそれらの組み合わせのいずれか一種からなる。
前記カーボンナノチューブワイヤを形成する方法は、カーボンナノチューブアレイから引き出してなるカーボンナノチューブフィルムを利用する。前記カーボンナノチューブワイヤを形成する方法は、次の三種がある。第一種は、前記カーボンナノチューブフィルムにおけるカーボンナノチューブの長手方向に沿って、前記カーボンナノチューブフィルムを所定の幅で切断し、カーボンナノチューブワイヤを形成する。第二種は、前記カーボンナノチューブフィルムを有機溶剤に浸漬させて、前記カーボンナノチューブフィルムを収縮させてカーボンナノチューブワイヤを形成することができる。第三種は、前記カーボンナノチューブフィルムを機械加工(例えば、紡糸工程)してねじれたカーボンナノチューブワイヤを形成する。詳しく説明すれば、まず、前記カーボンナノチューブフィルムを紡糸装置に固定させる。次に、前記紡糸装置を動作させて前記カーボンナノチューブフィルムを回転させ、ねじれたカーボンナノチューブワイヤを形成する。
前記カーボンナノチューブ構造体が複数のカーボンナノチューブワイヤを含む場合、前記複数のカーボンナノチューブワイヤは平行に並列され、又は交叉して織られ、又はねじれ状とされることができる。図8に複数のカーボンナノチューブワイヤ146からなる織物が示されている。該織物の対向する両端に、それぞれ第一電極142及び第二電極144を設置する。前記第一電極142及び第二電極144は前記カーボンナノチューブワイヤ146と電気的に接続されている。
前記カーボンナノチューブ構造体は柔軟であるので、前記カーボンナノチューブ構造体を多種の形状に形成でき、さらに、前記カーボンナノチューブ構造体を硬い絶縁体又は柔軟な絶縁体(例えば旗又は布)の表面に設置することができる。前記カーボンナノチューブ構造体が設置された旗が風にはためく場合、前記音波発生器14として利用されることができる。前記カーボンナノチューブ構造体が設置された布は、MP3のようなプレーヤーとして音楽を再生することができる。さらに、前記カーボンナノチューブ構造体が設置された布を利用することにより、身体障害者(例えば聴覚障害者)を助けることができる。
前記音波発生器14に利用したカーボンナノチューブ構造体の一部が破損した場合でも、前記カーボンナノチューブ構造体により音波を発生することもできる。これに対して、従来のスピーカーの振動板又はコーンが損傷した場合、音波を発生することができない。
図1に示されるように、本実施例の音波発生器14はカーボンナノチューブ構造体を含む。前記カーボンナノチューブ構造体はカーボンナノチューブフィルムを含む。該カーボンナノチューブフィルムにおいて、カーボンナノチューブが同じ方向に沿って配列されている。前記音波発生器14の長さは3cmであり、その幅は3cmであり、その厚さは50nmである。前記音波発生器14が薄く(厚さが10μm以下)設けられる場合、該音波発生器14は優れた透明性を有する。従って、前記透明な音波発生器14を利用することにより、透明な熱音響装置を製造することができる。前記透明な熱音響装置は、例えば携帯電話又はLCDの表面に設置されることができる。又は、前記透明な熱音響装置は絵の表面に貼ることができる。前記透明な音波発生器14を利用することにより、熱音響装置は小型化及び軽量化することが可能であるという優れた点がある。
前記第一電極142及び第二電極144は金属、導電接着剤、カーボンナノチューブ、ITOのいずれかの導電材料からなる。本実施例において、前記第一電極142及び第二電極144は棒状の金属電極である。前記音波発生器14はそれぞれ前記第一電極142及び第二電極144に電気的に接続されている。前記音波発生器14に利用したカーボンナノチューブ構造体は接着性を有するので、前記音波発生器14を直接前記第一電極142及び第二電極144に接着させることができる。さらに、前記第一電極142及び第二電極144は、導電線149によってそれぞれ前記信号装置12の両端に接続されている。
前記第一電極142又は第二電極144と前記音波発生器14とを良好に電気的に接続させるために、前記第一電極142又は第二電極144と前記音波発生器14との間に導電性接着層(図示せず)を設置することもできる。前記導電性接着層は、前記音波発生器14の表面に設置されることができる。前記導電性接着層は銀ペーストからなる。
前記信号装置12は、電気信号装置、直流電流パルス信号装置、交流電流装置、電磁波信号装置(例えば、光学信号装置、レーザー)のいずれかの一種である。前記信号装置12から前記音波発生器14へ転送された信号は、例えば、電磁波(例えば、光学信号)、電気信号(例えば、交流電流、直流電流脈動信号、オーディオ電気信号)又はそれらの混合信号である。前記信号はカーボンナノチューブ構造体に受信されて熱として放射される。熱の放射によって周辺媒体(環境)の圧力強度が変化するので、検出可能な信号を発生することができる。前記熱音響装置10をスピーカーに利用した場合、前記入力信号はAC電気信号又はオーディオ電気信号である。前記熱音響装置10を光音響スペクトルデバイスに利用した場合、前記入力信号は光学信号である。本実施例において、前記信号装置12は光音響スペクトルデバイスであり、入力信号は光学信号である。
異なるタイプの前記信号装置12に対して、前記第一電極142及び第二電極144の設置は選択的である。例えば、前記信号装置12からの信号が電磁波又は光である場合、前記信号装置12は前記第一電極142及び第二電極144を利用せず、信号を前記音波発生器14に直接的に転送することができる。
前記信号装置12において、前記音波発生器14の前記カーボンナノチューブ構造体は複数のカーボンナノチューブを含み、単位体積当たりの熱容量が小さいので、前記音波発生器14で生じた温度波により周辺の媒体に圧力振動を発生させることができる。前記音波発生器14のカーボンナノチューブ構造体に信号(例えば、電気信号)を転送すると、信号強度及び/又は信号によって前記カーボンナノチューブ構造体に熱が生じる。温度波の拡散により、周辺の空気が熱膨張されて音が生じる。この原理は、従来のスピーカーにおける振動板の機械振動によって生じた圧力波により音を発生させる原理とは大きく異なる。前記入力信号が電気信号である場合、前記熱音響装置10は、電気―熱―音の変換方式によって作動するが、前記入力信号が光学信号である場合、前記熱音響装置10は、光―熱―音の変換方式によって作動する。前記光学信号のエネルギーは前記音波発生器14で吸収されて、熱として放射される。熱の放射によって周辺媒体(環境)の圧力強度が変化するので、検出可能な信号を発生させることができる。
図9は本発明の実施例1における熱音響装置の周波数応答曲線である。この場合、50Vの交流電気信号を前記カーボンナノチューブ構造体に与える。前記熱音響装置10の性能を検出するために、前記音波発生器14と5cmの距離で分離して、前記音波発生器14の一側に対向してマイクロホンを設置する。図9から、前記熱音響装置10の周波数応答範囲が広く、音圧レベルが高いことが理解できる。前記熱音響装置10の音圧レベルは50dB〜105dBである。前記熱音響装置10に4.5Wの電圧を印加する場合、前記熱音響装置10の周波数応答範囲は、1Hz〜100KHzである。前記熱音響装置10の高調波歪みは非常に小さく、例えば、500Hz〜40KHzの範囲においてわずか3%未満である。
前記熱音響装置10の前記カーボンナノチューブ構造体が、五本の前記カーボンナノチューブワイヤを含む場合、隣接する前記カーボンナノチューブワイヤの間の距離は1cmであり、一本の前記カーボンナノチューブワイヤの直径は50μmである。前記カーボンナノチューブ構造体に50Vの交流電気信号を転送する場合、前記熱音響装置10で生じた音圧レベルは50dB〜100dBである。前記熱音響装置10に4.5Wの電圧を印加する場合、前記熱音響装置10の周波数応答範囲は、100Hz〜100KHzである。
さらに、前記カーボンナノチューブ構造体が優れた機械強度及び強靭性を有するので、前記カーボンナノチューブ構造体を、所望の形状及び寸法に設けることが可能であり、これにより、多数の所望の形状及び寸法の熱音響装置10を得ることが可能である。前記熱音響装置10は、例えば音響システム、携帯電話、MP3、MP4、TV、コンピューターなどに利用できる。
(実施例2)
図10を参照すると、本実施例の熱音響装置20は、信号装置22と、音波発生器24と、第一電極242と、第二電極244と、第三電極246と、第四電極248と、を含む。本実施例の熱音響装置20の構成、特性、機能は、実施例1の熱音響装置10と同じである。本実施例と実施例1との異なる点は、本実施例の熱音響装置20は四つの電極(第一電極242、第二電極244、第三電極246、第四電極248)を含むことである。前記四つの電極は棒状であり、それぞれ所定の距離で分離して設置されている。前記音波発生器24は前記四つの電極を囲むように、前記四つの電極に電気的に接続されている。さらに、前記第一電極242及び第三電極246は第一導電線249で前記信号装置22の一つの端部に電気的に並列接続されている。前記第二電極244及び第四電極248は第二導電線249’で前記信号装置22のもう一つの端部に電気的に並列接続されている。前記電極を前記信号装置22に並列接続させるので、前記熱音響装置20に印加される電圧が低い。
図11を参照すると、前記四つの電極は同じ平面に設置されることができる。この場合、前記四つの電極に制限されず、前記熱音響装置20に複数の電極を設置することができる。
(実施例3)
図12を参照すると、本実施例の熱音響装置30は、信号装置32と、音波発生器34と、第一電極342と、第二電極344と、を含む。本実施例の熱音響装置30の構成、特性、機能は、実施例1の熱音響装置10と同じである。本実施例と実施例1との異なる点は、本実施例の熱音響装置20は支持体36を含むことである。前記音波発生器34は前記支持体36の表面に設置される。前記音波発生器34の形状に応じ、前記支持体36の形状が決定される。前記支持体36は平面状又は/及び湾曲面を有する。前記支持体36は、スクリーン、壁、机、ディスプレイのいずれか一種である。前記音波発生器34を前記支持体36に接触させることができる。
前記支持体36は、ダイヤモンド、ガラス、石英のような固い材料、又はプラスチック、樹脂、織物のような柔軟な材料からなる。前記支持体36は熱絶縁性を有し、前記音波発生器34で生じた熱を吸収することができない。さらに、前記支持体36と前記音波発生器34とが接触する表面が粗く設けられることが好ましい。これにより、前記音波発生器34と周辺の触媒とが接触する面積を増加させることができる。前記カーボンナノチューブ構造体は比表面積が大きいので、前記音波発生器34を直接前記支持体36に接着させることができる。
前記音波発生器34及び前記支持体36を良好に接続させるために、前記音波発生器34及び前記支持体36の間に接着層(図示せず)を設置することができる。前記接着層は、前記音波発生器34の表面に設置されることができる。本実施例において、前記導電性の接着層は銀ペーストからなる。
前記第一電極342及び第二電極344は、前記音波発生器34の同じ表面に設置され、又はそれぞれ前記音波発生器34の対向する表面に設置されている。前記二つの電極に制限されず、前記熱音響装置30に複数の電極を設置することができる。前記信号装置32は導電線349によって前記音波発生器34に接続されている。
(実施例4)
図13を参照すると、本実施例の熱音響装置40は、信号装置42と、音波発生器44と、支持体46と、第一電極442と、第二電極444と、第三電極446と、第四電極448と、を含む。本実施例の熱音響装置40の構成、特性、機能は、実施例3の熱音響装置30と同じである。本実施例と実施例3との異なる点は、前記音波発生器44は前記支持体46を囲むように設置されることである。前記支持体46は、例えば、立方体、錐体、円筒状のような三次元又は二次元の構造である。本実施例において、前記支持体46は円筒状であり、第一電極442と、第二電極444と、第三電極446と、第四電極448とは、それぞれ所定の距離で分離して、前記音波発生器44に電気的に接続される。第一電極442、第二電極444、第三電極446、及び第四電極448が前記信号装置42と接続する方式は、実施例1と同じである。勿論、前記四つの電極に制限されず、前記熱音響装置40に複数の電極を設置することができる。
(実施例5)
図14を参照すると、本実施例の熱音響装置50は、信号装置52と、音波発生器54と、支持体56と、第一電極542と、第二電極544と、を含む。本実施例の熱音響装置50の構成、特性、機能は、実施例3の熱音響装置30と同じである。本実施例と実施例3との異なる点は、前記音波発生器54の一部を前記支持体56に設置することにより、前記音波発生器54及び前記支持体56から音収集のスペースを形成することである。前記音波発生器54の周辺が前記支持体56に固定され、その他の部分が懸架されているので、前記音波発生器54の懸架された部分が周辺の媒体と接触する面積が大きい。前記スペースは、閉鎖的な空間又は開放的な空間である。前記支持体56はU形又はL形である。前記熱音響装置50は二つ以上の前記支持体56を含むことができる。前記支持体56は、木、プラスチック、金属、ガラスのいずれか一種である。図14を参照すると、本実施例において、前記支持体56はL形であり、前記音波発生器54は前記支持体の第一端562から前記第二端564に延伸するので、前記音波発生器54及び前記支持体56から音収集のスペースを形成することができる。前記第一電極542及び第二電極544は前記音波発生器54の表面に設置され、且つ前記信号装置52に電気的に接続されている。これにより、前記音波発生器54によって生じた音は、前記支持体56の内壁で反射されるので、前記熱音響装置50の音響機能を高めることができる。
(実施例6)
図15及び図16を参照すると、本実施例の熱音響装置60は、信号装置62と、音波発生器64と、二つの電極642と、電力増幅器66と、を含む。本実施例の熱音響装置60の構成、特性、機能は、実施例1の熱音響装置10と同じである。本実施例と実施例1との異なる点は、本実施例の熱音響装置60は電力増幅器66を含むことである。前記電力増幅器66は前記信号装置62と電気的に接続されている。さらに、前記信号装置62は、信号出力装置(図示せず)を含み、該信号出力装置は前記信号装置62と電気的に接続されている。前記電力増幅器66により、前記信号装置62からの信号の出力を増幅させて、前記音波発生器64へ転送することができる。前記電力増幅器66は二つの出力部664及び入力部662を含む。前記入力部662は前記信号装置62に電気的に接続され、前記出力部664は前記音波発生器64に電気的に接続されている。
図17を参照すると、前記熱音響装置60に交流電流を提供する場合、前記音波発生器64の出力信号の周波数は入力信号の周波数より二倍程度高くなることができる。この原因は、前記音波発生器64に交流電流が流れ、前記音波発生器64を正電流及び負電流で交互に加熱させるので、二倍の周波数温度振動及び二倍の周波数音圧が生じる。従って、従来の電力増幅器(例えば、バイポーラ増幅器)を利用する場合、出力信号(人声又は音楽)が入力信号の二倍程度になるので、変に聞こえる。
前記電力増幅器66は、増幅信号(例えば、電圧信号)及びバイアス電圧を前記音波発生器64に提供して、入力信号を減少させることができる。図16を参照すると、前記電力増幅器66はA級の電力増幅器であり、第一抵抗R1と、第二抵抗R2と、第三抵抗R3と、コンデンサと、三極管と、を含む。前記三極管は、ベースBと、エミッタEと、コレクターCと、を含む。前記コンデンサは前記信号装置62の信号出力端及び前記三極管のベースBに接続されている。DC電圧Vcc及び前記第一抵抗R1は、前記三極管のベースBに接続されている。前記三極管のベースBは、前記第二抵抗R2に接続されている。前記エミッタEは前記電力増幅器66の一つの出力部664に電気的に接続されている。DC電圧Vccは前記電力増幅器66のもう一つの出力部664に電気的に接続されている。前記コレクターCは前記第三抵抗R3に接続されている。前記電力増幅器66の二つの出力部664はそれぞれ前記二つの電極642に接続されている。前記第二抵抗R2及び第三抵抗R3はそれぞれ接地されている。
前記音波発生器64に複数の電極が電気的に接続されることができる。隣接する前記電極は、前記電力増幅器66の異なる端部664に接続されている。前記電極を設置しない場合、前記電力増幅器66の二つの出力部664は、導電線により前記音波発生器64に電気的に接続されている。
図15を参照すると、前記信号装置62からの信号の周波数を減少させるために、周波数低減回路69を設置する。前記周波数低減回路69は、例えば信号周波数を半分に低減させた後、前記信号を前記電力増幅器66へ転送することができる。前記電力増幅器66は例えば従来の電力増幅器であり、増幅した電圧信号及びバイアス電圧を前記音波発生器64に提供しない。前記周波数低減回路69は電力増幅器66に集積して設置されることができる。
(実施例7)
図18及び図19を参照すると、本実施例の熱音響装置60は実施例6と比べて、複数の音波発生器64と検量器68とを含む。前記検量器68は前記電力増幅器66の入力部662又は出力部664に接続されている。図18を参照すると、前記検量器68が前記電力増幅器66の出力部664に接続される場合、前記検量器68は前記電力増幅器66からの増幅した信号を、複数の周波数帯域のサブ信号に分け、前記サブ信号をそれぞれ前記複数の音波発生器64に転送する。図19を参照すると、前記検量器68が前記電力増幅器66の入力部662に接続される場合、前記熱音響装置60は複数の電力増幅器66を含む。前記検量器68は前記信号装置62からの信号を、複数の周波数帯域のサブ信号に分け、前記サブ信号をそれぞれ前記複数の電力増幅器66に転送する。各々の前記電力増幅器66は、一つの音波発生器64に対応している。
図20を参照すると、本発明による音波を発生させる方法は、カーボンナノチューブ構造体を提供する第一ステップと、前記カーボンナノチューブ構造体に信号を転送して、前記カーボンナノチューブ構造体に熱を生じさせる第二ステップと、熱を前記カーボンナノチューブ構造体に接触する媒体へ放射させる第三ステップと、熱音響効果を発生させる第四ステップと、を含む。
前記第一ステップにおいて、前記カーボンナノチューブ構造体は、前記熱音響装置10に利用したカーボンナノチューブ構造体と同じである。前記第二ステップにおいて、前記信号は、少なくとも二つの電極により前記信号装置に転送される。前記第三及び第四ステップにおいて、前記カーボンナノチューブ構造体に生じた熱は、周辺の媒体を加熱させる。周辺の媒体を繰り返し加熱させることにより、音波を発生させることができる。上述は熱音響効果というものである。
10 熱音響装置
100 スピーカー
102 ボイスコイル
104 マグネット
106 コーン
12 信号装置
14 音波発生器
142 第一電極
143a カーボンナノチューブフィルム
143b カーボンナノチューブセグメント
144 第二電極
145 カーボンナノチューブ
146 カーボンナノチューブワイヤ
149 導電線
20 熱音響装置
22 信号装置
24 音波発生器
242 第一電極
244 第二電極
246 第三電極
248 第四電極
249 第一導電線
249’ 第二導電線
30 熱音響装置
32 信号装置
34 音波発生器
342 第一電極
344 第二電極
349 導電線
36 支持体
40 熱音響装置
42 信号装置
44 音波発生器
442 第一電極
444 第二電極
446 第三電極
448 第四電極
449 導電線
50 熱音響装置
52 信号装置
54 音波発生器
542 第一電極
544 第二電極
549 導電線
56 支持体
562 第一端
564 第二端
60 熱音響装置
62 信号装置
64 音波発生器
66 電力増幅器
662 入力部
664 出力部
69 周波数低減回路

Claims (7)

  1. 信号装置と、電力増幅器と、カーボンナノチューブ構造体を含む音波発生器と、を含み、
    前記電力増幅器は前記信号装置と電気的に接続され、
    前記電力増幅器により、前記信号装置からの信号の出力を増幅させて、前記音波発生器へ転送し、
    前記カーボンナノチューブ構造体が少なくとも一枚のカーボンナノチューブフィルムを含み、
    前記カーボンナノチューブフィルムが、複数のカーボンナノチューブを含むことを特徴とする熱音響装置。
  2. 前記電力増幅器は二つの出力部及び入力部を含み、
    前記入力部は前記信号装置に電気的に接続され、
    前記出力部は前記音波発生器に電気的に接続されていることを特徴とする、請求項1に記載の熱音響装置。
  3. 前記電力増幅器は、増幅信号及びバイアス電圧を前記音波発生器に提供することを特徴とする、請求項1又は2に記載の熱音響装置。
  4. 一枚の前記カーボンナノチューブフィルムの単位体積当たりの熱容量が0(0は含まず)〜2×10−4J/cm・Kであることを特徴とする、請求項1〜3のいずれか一項に記載の熱音響装置。
  5. 単一の前記カーボンナノチューブフィルムにおいて、複数のカーボンナノチューブが同じ方向に沿って、端と端が接続されていることを特徴とする、請求項1〜4のいずれか一項に記載の熱音響装置。
  6. 前記熱音響装置が少なくとも二つの電極をさらに含み、
    前記少なくとも二つの電極が所定の距離で分離して、それぞれ前記音波発生器に電気的に接続されていることを特徴とする、請求項1〜5のいずれか一項に記載の熱音響装置。
  7. 信号装置と、電力増幅器と、媒体に接するカーボンナノチューブ構造体と、を含み、
    前記電力増幅器は前記カーボンナノチューブ構造体と電気的に接続され、
    前記電力増幅器により、前記信号装置からの信号の出力を増幅させて、前記カーボンナノチューブ構造体へ転送し、
    前記カーボンナノチューブ構造体が少なくとも一枚のカーボンナノチューブフィルムを含み、
    前記カーボンナノチューブフィルムが、複数のカーボンナノチューブを含むことを特徴とする熱音響システム。
JP2010020346A 2009-02-27 2010-02-01 熱音響装置 Pending JP2010206785A (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2009101058085A CN101820571B (zh) 2009-02-27 2009-02-27 扬声器系统

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2013033226A Division JP5685612B2 (ja) 2009-02-27 2013-02-22 熱音響装置

Publications (1)

Publication Number Publication Date
JP2010206785A true JP2010206785A (ja) 2010-09-16

Family

ID=42655472

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2010020346A Pending JP2010206785A (ja) 2009-02-27 2010-02-01 熱音響装置
JP2013033226A Active JP5685612B2 (ja) 2009-02-27 2013-02-22 熱音響装置

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2013033226A Active JP5685612B2 (ja) 2009-02-27 2013-02-22 熱音響装置

Country Status (2)

Country Link
JP (2) JP2010206785A (ja)
CN (1) CN101820571B (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014131258A (ja) * 2012-12-29 2014-07-10 Qinghua Univ 熱音響装置

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103841507B (zh) 2012-11-20 2017-05-17 清华大学 热致发声装置的制备方法
CN103841506B (zh) * 2012-11-20 2017-09-01 清华大学 热致发声器阵列的制备方法
CN103841482B (zh) * 2012-11-20 2017-01-25 清华大学 耳机
CN103841479B (zh) * 2012-11-20 2017-08-08 清华大学 耳机
JP6579323B2 (ja) * 2014-01-24 2019-09-25 国立大学法人 東京大学 超音波発生素子
TWI640470B (zh) 2016-06-10 2018-11-11 美國琳得科股份有限公司 奈米纖維片
WO2018156878A1 (en) 2017-02-24 2018-08-30 Lintec Of America, Inc. Nanofiber thermal interface material
CN112055295B (zh) * 2020-08-24 2021-11-09 清华大学 利用数字化实时音频信号驱动热致发声装置的方法及系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61262305A (ja) * 1985-05-16 1986-11-20 Pioneer Electronic Corp ノイズ除去回路を有する増幅装置
JP2000513159A (ja) * 1996-06-21 2000-10-03 ユニヴァーシティ・オブ・ブリストル 低電力オーディオ装置
JP2004107196A (ja) * 2002-09-16 2004-04-08 Kofukin Seimitsu Kogyo (Shenzhen) Yugenkoshi 炭素ナノチューブロープ及びその製造方法
JP2004153797A (ja) * 2002-09-30 2004-05-27 Matsushita Electric Works Ltd 超音波発生装置および照明器具
JP2007174420A (ja) * 2005-12-22 2007-07-05 Matsushita Electric Works Ltd データ伝送装置
JP2009184906A (ja) * 2008-02-01 2009-08-20 Qinghua Univ カーボンナノチューブ構造体及びその製造方法
JP2009286688A (ja) * 2008-05-28 2009-12-10 Qinghua Univ カーボンナノチューブフィルムの製造方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03140100A (ja) * 1989-10-26 1991-06-14 Fuji Xerox Co Ltd 電気音響変換方法及びその為の装置
JPH03175799A (ja) * 1989-12-04 1991-07-30 Murata Mfg Co Ltd 圧電スピーカ用支持具
JPH07138838A (ja) * 1993-11-17 1995-05-30 Nec Corp カーボンナノチューブを用いた織布とシート
AUPP976499A0 (en) * 1999-04-16 1999-05-06 Commonwealth Scientific And Industrial Research Organisation Multilayer carbon nanotube films
JP2002186097A (ja) * 2000-12-15 2002-06-28 Pioneer Electronic Corp スピーカ
JP2003319490A (ja) * 2002-04-19 2003-11-07 Sony Corp 振動板及びその製造方法、並びにスピーカ
JP2006147801A (ja) * 2004-11-18 2006-06-08 Seiko Precision Inc 放熱シート、インターフェース、電子部品及び放熱シートの製造方法
CN1821048B (zh) * 2005-02-18 2014-01-15 中国科学院理化技术研究所 一种基于热声转换的微/纳米热声激振器
JP4931389B2 (ja) * 2005-09-12 2012-05-16 株式会社山武 圧力波発生装置及び圧力波発生装置の駆動方法
JP5221864B2 (ja) * 2005-10-26 2013-06-26 パナソニック株式会社 圧力波発生装置およびその製造方法
JP4817296B2 (ja) * 2006-01-06 2011-11-16 独立行政法人産業技術総合研究所 配向カーボンナノチューブ・バルク集合体ならびにその製造方法および用途
KR100749886B1 (ko) * 2006-02-03 2007-08-21 (주) 나노텍 탄소나노튜브를 이용한 발열체
JP2007290908A (ja) * 2006-04-25 2007-11-08 National Institute For Materials Science ナノチューブ単体から形成された長尺ファイバとその作製方法および作製装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61262305A (ja) * 1985-05-16 1986-11-20 Pioneer Electronic Corp ノイズ除去回路を有する増幅装置
JP2000513159A (ja) * 1996-06-21 2000-10-03 ユニヴァーシティ・オブ・ブリストル 低電力オーディオ装置
JP2004107196A (ja) * 2002-09-16 2004-04-08 Kofukin Seimitsu Kogyo (Shenzhen) Yugenkoshi 炭素ナノチューブロープ及びその製造方法
JP2004153797A (ja) * 2002-09-30 2004-05-27 Matsushita Electric Works Ltd 超音波発生装置および照明器具
JP2007174420A (ja) * 2005-12-22 2007-07-05 Matsushita Electric Works Ltd データ伝送装置
JP2009184906A (ja) * 2008-02-01 2009-08-20 Qinghua Univ カーボンナノチューブ構造体及びその製造方法
JP2009286688A (ja) * 2008-05-28 2009-12-10 Qinghua Univ カーボンナノチューブフィルムの製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6009057120; Lin Xiao(他10名): 'NANO LETTERS' Flexible, Stretchable, Transparent Carbon Nanotube Thin Film Loudspeakers Vol.8, No.12, 20081029, p.4539-4545, American Chemical Society *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014131258A (ja) * 2012-12-29 2014-07-10 Qinghua Univ 熱音響装置

Also Published As

Publication number Publication date
JP5685612B2 (ja) 2015-03-18
CN101820571A (zh) 2010-09-01
JP2013128323A (ja) 2013-06-27
CN101820571B (zh) 2013-12-11

Similar Documents

Publication Publication Date Title
JP5270495B2 (ja) スピーカー
JP5113132B2 (ja) フレキシブル熱音響装置及び該フレキシブル熱音響装置を含む熱音響素子を利用した旗
JP5685612B2 (ja) 熱音響装置
JP5254921B2 (ja) イヤフォン
JP5086414B2 (ja) 熱音響装置
US8073163B2 (en) Thermoacoustic device
JP5069345B2 (ja) 熱音響装置
JP5107964B2 (ja) 熱音響装置
JP5113131B2 (ja) 照明装置
JP5313944B2 (ja) 熱音響装置
JP5270646B2 (ja) 熱音響装置
JP5254940B2 (ja) 超音波音響装置
JP5107965B2 (ja) 熱音響装置
JP5270461B2 (ja) 熱音響装置
JP5107969B2 (ja) 熱音響装置
JP5356992B2 (ja) 熱音響装置
JP5270466B2 (ja) 熱音響装置
JP5107968B2 (ja) 熱音響装置
JP5107970B2 (ja) 熱音響装置
JP2010136368A (ja) 熱音響装置

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120403

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120703

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120731

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120928

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20121023

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130222

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20130304

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20130322