JP2010205860A - Light irradiation device - Google Patents

Light irradiation device Download PDF

Info

Publication number
JP2010205860A
JP2010205860A JP2009048675A JP2009048675A JP2010205860A JP 2010205860 A JP2010205860 A JP 2010205860A JP 2009048675 A JP2009048675 A JP 2009048675A JP 2009048675 A JP2009048675 A JP 2009048675A JP 2010205860 A JP2010205860 A JP 2010205860A
Authority
JP
Japan
Prior art keywords
light
light source
segment
leds
illuminance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009048675A
Other languages
Japanese (ja)
Other versions
JP5035272B2 (en
Inventor
Kazuaki Yano
一晃 矢野
Hiroshige Haneda
博成 羽田
Kiyoyuki Kaburagi
清幸 蕪木
Ken Kataoka
研 片岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ushio Denki KK
Ushio Inc
Original Assignee
Ushio Denki KK
Ushio Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ushio Denki KK, Ushio Inc filed Critical Ushio Denki KK
Priority to JP2009048675A priority Critical patent/JP5035272B2/en
Priority to TW099101377A priority patent/TWI464497B/en
Priority to KR1020100010681A priority patent/KR101333361B1/en
Priority to CN201010128372A priority patent/CN101825237A/en
Publication of JP2010205860A publication Critical patent/JP2010205860A/en
Application granted granted Critical
Publication of JP5035272B2 publication Critical patent/JP5035272B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0066Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form characterised by the light source being coupled to the light guide
    • G02B6/0068Arrangements of plural sources, e.g. multi-colour light sources
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/0035Means for improving the coupling-out of light from the light guide provided on the surface of the light guide or in the bulk of it
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0066Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form characterised by the light source being coupled to the light guide
    • G02B6/0073Light emitting diode [LED]
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133524Light-guides, e.g. fibre-optic bundles, louvered or jalousie light-guides
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133615Edge-illuminating devices, i.e. illuminating from the side
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/3406Control of illumination source

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Mathematical Physics (AREA)
  • Computer Hardware Design (AREA)
  • Theoretical Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Led Device Packages (AREA)
  • Planar Illumination Modules (AREA)
  • Arrangement Of Elements, Cooling, Sealing, Or The Like Of Lighting Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a light irradiation device that equalizes illuminance on the surface to be irradiated even if there are variations in illuminance characteristics of LEDs, and also, complements deterioration in illuminance even if the deterioration in illuminance or non-lighting occurs in a certain LED so as to maintain the desired illuminance in the whole irradiation region. <P>SOLUTION: The light irradiation device includes a light source 3 formed by arranging a plurality of LEDs 23, emitting light in the ultraviolet region, on the same plane so as to irradiate the light emitted from the light source 3 to an irradiation region 6 located at a position facing the same plane. The light source 3 is configured such that each segment light source includes the plurality of LEDs 23, arranged on the same substrate 21, and a light-guide part 24. A plurality of the segment light sources 2 are arranged side by side in a direction that the substrate 21 extends. The light-guide part 24 has a fixed length reaching a light-emitting face from the same plane, mixes the light emitted from the LEDs 23 inside the segment light source 2, and does not irradiate the light to the light-emitting face of another segment light source 2. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、光照射装置に係わり、特に、LEDを多数備えた線状ないし面状の光源を形成する光照射装置に関する。   The present invention relates to a light irradiation apparatus, and more particularly to a light irradiation apparatus that forms a linear or planar light source having a large number of LEDs.

LEDを備えた光照射装置としては、例えば、特許文献1に、多数のLEDを基板上に並べて配置した紫外線照射装置が記載されている。この装置は、液晶パネル基板の最大サイズに相当するような、大面積の基板の全面にLED素子を敷き詰めて配置し、予定されたシール剤の硬化に必要なLEDのみを点灯させて照射する装置である。また、特許文献2には、上記と同様に、同一基板上に発光ダイオードを配置し、その直下にある基板等のワークに対して光を照射する露光装置が記載されている。   As a light irradiation apparatus provided with LEDs, for example, Patent Document 1 describes an ultraviolet irradiation apparatus in which a large number of LEDs are arranged on a substrate. This device is a device that illuminates and illuminates only the LEDs necessary for the curing of the planned sealant, by arranging LED elements over the entire surface of a large-area substrate, which corresponds to the maximum size of the liquid crystal panel substrate It is. Patent Document 2 describes an exposure apparatus in which light emitting diodes are arranged on the same substrate and light is irradiated to a workpiece such as a substrate directly below the same, as described above.

図15は、LEDが基板上に並べて配列されてなる光照射装置の概念図であり、図15(a)は光源部分を正面から見た説明図、図15(b)は横方向から見た説明図である。
この光照射装置においては、光源100は多数の発光ダイオード(以下、LEDという)101によって構成されており、光源ステージ102上にLED101が敷き詰められるように配置されている。同装置には、LED101の各々に対してON/OFFを切り替える電源装置(不図示)を備えており、ワーク103の形状に合わせて点灯領域が選択、指定されて、電源装置よりLED101に電力が供給される。例えば、特許文献1に記載の技術では、ワーク103は液晶パネル基板である。この場合、2枚の基板の間にはシール剤が所定の画枠に沿って矩形形状に形成されており、その画枠内に液晶が充填されている。基板に挟まれたシール剤の硬化を行うために、矩形形状の点灯領域に対応したLED101にのみ電力を供給して点灯する。
FIG. 15 is a conceptual diagram of a light irradiation device in which LEDs are arranged side by side on a substrate, FIG. 15 (a) is an explanatory view of the light source portion viewed from the front, and FIG. 15 (b) is viewed from the side. It is explanatory drawing.
In this light irradiation apparatus, the light source 100 includes a large number of light emitting diodes (hereinafter referred to as LEDs) 101, and the LEDs 101 are arranged on the light source stage 102. The apparatus includes a power supply device (not shown) that switches ON / OFF for each of the LEDs 101. A lighting area is selected and designated according to the shape of the work 103, and power is supplied to the LED 101 from the power supply device. Supplied. For example, in the technique described in Patent Document 1, the work 103 is a liquid crystal panel substrate. In this case, a sealing agent is formed in a rectangular shape between two substrates along a predetermined image frame, and the image frame is filled with liquid crystal. In order to cure the sealing agent sandwiched between the substrates, power is supplied to only the LED 101 corresponding to the rectangular lighting region to light it.

特開2006−235617号公報JP 2006-235617 A 特開2002−303988号公報JP 2002-303988 A

しかしながら、上記のような、基板上にLED101を並べて配置した光照射装置では、個々のLED101間の照度のばらつきや、LED101間の劣化特性のばらつきに起因して、照射領域において、均一な光照射を実現できないことがある。それは、LED101の製造工程における素子の膜質(膜厚、組成)や成膜条件(温度分布、昇温速度)といった作製上のパラメータに由来して、1枚のウエハーから複数のLEDを作製する場合でもこのようなパラメータをウエハーの全体において均一化することは現実的には困難なためである。そのため、同一ウエハーから製作されたLEDであっても、微小な作製上のパラメータの相違に由来して特性上ばらつきが発生する。このような条件のもとで、図15に示した装置のように、多数のLED101を面上に並べて配置した装置では、例えば、LED101ごとに光量や、わずかであるが放射光のスペクトル(波長)にばらつきが生じる。そのため、照射領域において均一な照度を得ることが難しく、所望の光照射を行うことができないことがある。   However, in the light irradiation apparatus in which the LEDs 101 are arranged on the substrate as described above, uniform light irradiation is performed in the irradiation region due to variations in illuminance between the individual LEDs 101 and variations in deterioration characteristics between the LEDs 101. May not be realized. In the case of manufacturing a plurality of LEDs from a single wafer derived from manufacturing parameters such as film quality (film thickness, composition) of the element and film formation conditions (temperature distribution, temperature increase rate) in the manufacturing process of the LED 101 However, it is practically difficult to make such parameters uniform over the entire wafer. Therefore, even if the LEDs are manufactured from the same wafer, variations in characteristics occur due to minute differences in manufacturing parameters. Under such conditions, in a device in which a large number of LEDs 101 are arranged on the surface as in the device shown in FIG. 15, for example, the amount of light for each LED 101 or the spectrum of the emitted light (wavelength) is small. ) Varies. Therefore, it is difficult to obtain uniform illuminance in the irradiation region, and desired light irradiation may not be performed.

また、このような装置では、あるLED101が不点灯になった場合、残りのLED101のみで予定された照度を補完することは難しいという問題もある。具体的には、1つのLED101が不点灯になった場合、その周囲のLED101の入力を上げたとしても、その入力の影響は異常のないLED領域にまで及び、不点灯になったLED部分で所定の照度が得られたとしても、それに隣接する部分において、高い照度分布となり、結果として全体の照度均一度が損なわれることになる。   Moreover, in such an apparatus, when a certain LED 101 is not lit, there is a problem that it is difficult to supplement the planned illuminance with only the remaining LED 101. Specifically, when one LED 101 is not lit, even if the input of the surrounding LED 101 is increased, the influence of the input extends to the LED area where there is no abnormality, and the LED part that is not lit Even if a predetermined illuminance is obtained, a high illuminance distribution is obtained in a portion adjacent to the predetermined illuminance, and as a result, the overall illuminance uniformity is impaired.

上記の問題に対して、発光面積が小さい、照射角度範囲が狭いというLEDのデメリットを回避するため、LEDの前面に凹レンズを設ける等の対策を講じることが考えられる。しかしながら、このような技術によっても他のLEDによって補完可能な光量は限られている。よって、元々LEDの照度にばらつきがあったり、早期に照度が低下したり、不点灯のLEDが生じた場合、照射領域において照度を均一化したり、またこれを維持したりすることは困難である。とりわけ、予定された照射領域において、設定された照度分布を維持しなければならない用途においては、このような照度低下はワークやプロセスにおいて大きな影響を与えるため問題となる。   In order to avoid the disadvantages of the LED having a small light emitting area and a narrow irradiation angle range, it is conceivable to take measures such as providing a concave lens in front of the LED. However, even with such a technique, the amount of light that can be complemented by other LEDs is limited. Therefore, when the illuminance of the LED originally varies, the illuminance decreases early, or a non-lighted LED occurs, it is difficult to equalize or maintain the illuminance in the irradiation region. . In particular, in applications where it is necessary to maintain a set illuminance distribution in a planned irradiation area, such a decrease in illuminance is a problem because it greatly affects the work and process.

本発明の目的は、LEDの照度特性にばらつきがあっても、被照射面における照度を均一化することのできる光照射装置を提供することにある。
更に、本発明の他の目的は、あるLEDに照度低下や不点灯が生じても、その照度低下を補完でき、照射領域の全体において所期の照度を維持することのできる光照射装置を提供することにある。
The objective of this invention is providing the light irradiation apparatus which can equalize the illumination intensity in a to-be-irradiated surface even if the illumination intensity characteristic of LED has dispersion | variation.
Furthermore, another object of the present invention is to provide a light irradiation device that can compensate for the decrease in illuminance even if the illuminance decreases or does not light up in a certain LED, and can maintain the desired illuminance in the entire irradiation region. There is to do.

本発明は、上記の課題を解決するために、請求項1は、同一面上に紫外域の光を放射するLEDが複数配置されてなる光源部を備え、該光源部からの出射光を前記同一面と対向位置にある照射領域に対して照射する光照射装置であって、前記光源部は、同一基板上に配置された複数のLEDと導光部によってセグメント光源を構成し、該セグメント光源を前記基板が伸びる方向に複数並べて配置して構成され、前記導光部は、前記同一面から光出射面に至るまでの一定の長さを有し、当該セグメント光源内にあるLEDからの出射光を混合し、他のセグメント光源の光出射面に光を照射することないことを特徴とする光照射装置である。
請求項2は、前記セグメント光源は、各セグメント光源ごとにON/OFFの切り替えが可能であることを特徴とする請求項1に記載の光照射装置である。
請求項3は、前記セグメント光源は、各セグメント光源ごとに電力制御可能であることを特徴とする請求項1又は請求項2に記載の光照射装置である。
請求項4は、前記セグメント光源は、光量検出手段を備えていることを特徴とする請求項1〜請求項3のいずれか1つの請求項に記載の光照射装置である。
請求項5は、前記光量検出手段により検出された光量によって、当該セグメント光源が予め設定された光量となるように制御するフイードバック制御手段を備えていることを特徴とする請求項4に記載の光照射装置である。
In order to solve the above problems, the present invention includes a light source unit in which a plurality of LEDs that emit light in the ultraviolet region are arranged on the same surface, and the emitted light from the light source unit is A light irradiating device for irradiating an irradiation area located opposite to the same surface, wherein the light source unit includes a plurality of LEDs arranged on the same substrate and a light guide unit to form a segment light source. Are arranged side by side in the direction in which the substrate extends, and the light guide portion has a certain length from the same surface to the light exit surface, and is emitted from the LEDs in the segment light source. It is a light irradiation apparatus characterized by mixing incident light and not irradiating the light exit surface of another segment light source.
A second aspect of the present invention is the light irradiation apparatus according to the first aspect, wherein the segment light source can be switched ON / OFF for each segment light source.
A third aspect of the present invention is the light irradiation apparatus according to the first or second aspect, wherein the segment light source is capable of controlling power for each segment light source.
A fourth aspect of the present invention is the light irradiation apparatus according to any one of the first to third aspects, wherein the segment light source includes a light amount detection unit.
5. The light according to claim 4, further comprising feedback control means for controlling the segment light source to have a preset light quantity based on the light quantity detected by the light quantity detection means. Irradiation device.

請求項1に記載の発明によれば、LEDに特性上の差異があっても、複数のLEDからの光を混ぜて放射するため、照射領域における照度のばらつきを抑えることができる。
請求項2に記載の発明によれば、セグメント光源ごとにON/OFFの切り替えが可能なスイッチ機構を備えているので、ワーク面(照射領域)の必要部分のみを照射して使用することができる。
請求項3に記載の発明によれば、セグメント光源に投入する電流を変え、セグメント光源単位で光量を変えることができるので、照射領域での照度を所期の通りに設定すること
ができ、照射領域において均一な照度を得ることができる。
請求項4に記載の発明によれば、一部のLEDの劣化、不点灯が生じた場合でも、これを速やかに検知することができる。
請求項5に記載の発明によれば、フイードバック制御手段によって、照射領域の照度を初期の状態に維持することができる。
According to the first aspect of the present invention, even if there is a difference in characteristics between the LEDs, the light from the plurality of LEDs is mixed and radiated, so that variation in illuminance in the irradiation region can be suppressed.
According to the second aspect of the present invention, since the switch mechanism that can be switched ON / OFF for each segment light source is provided, only a necessary portion of the work surface (irradiation region) can be irradiated and used. .
According to the invention described in claim 3, since the current input to the segment light source can be changed and the light amount can be changed in units of the segment light source, the illuminance in the irradiation region can be set as expected, Uniform illuminance can be obtained in the region.
According to the fourth aspect of the present invention, even when some LEDs are deteriorated or not lit, this can be detected promptly.
According to the invention described in claim 5, the illuminance of the irradiation region can be maintained in the initial state by the feedback control means.

本発明に係る光照射装置1の概略構成を示す図である。It is a figure which shows schematic structure of the light irradiation apparatus 1 which concerns on this invention. 図1に示したセグメント光源2の斜視図である。It is a perspective view of the segment light source 2 shown in FIG. 図1に示したセグメント光源2の裏面側から見た図及び断面図である。It is the figure and sectional drawing seen from the back surface side of the segment light source 2 shown in FIG. 図2〜図3に示したセグメント光源2と異なる構成を有するセグメント光源2の構成を示す図である。It is a figure which shows the structure of the segment light source 2 which has a structure different from the segment light source 2 shown in FIGS. 図2〜図4に示したセグメント光源2と異なる構成を有するセグメント光源2の構成を示す図である。It is a figure which shows the structure of the segment light source 2 which has a structure different from the segment light source 2 shown in FIGS. 図2〜図5に示したセグメント光源2と異なる構成を有するセグメント光源2の構成を示す図である。It is a figure which shows the structure of the segment light source 2 which has a structure different from the segment light source 2 shown in FIGS. 図2〜図6に示したセグメント光源2と異なる構成を有するセグメント光源2の構成を示す図である。It is a figure which shows the structure of the segment light source 2 which has a structure different from the segment light source 2 shown in FIGS. 図2〜図7に示したセグメント光源2と異なる構成を有するセグメント光源2の構成を示す図である。It is a figure which shows the structure of the segment light source 2 which has a structure different from the segment light source 2 shown in FIGS. LED23を7個備えたセグメント光源2を示す図である。It is a figure which shows the segment light source 2 provided with seven LED23. 図9と配置の異なるLED23を7個備えたセグメント光源2を示す図である。It is a figure which shows the segment light source 2 provided with seven LED23 from which arrangement | positioning differs from FIG. セグメント光源2を多数並べて配置した光源ユニット群3の構成を示す斜視図である。It is a perspective view which shows the structure of the light source unit group 3 which arranged many segment light sources 2 side by side. 図13に示した光源ユニット群3を複数備えた光照射装置の構成を示す斜視図である。It is a perspective view which shows the structure of the light irradiation apparatus provided with two or more light source unit groups 3 shown in FIG. シール剤の塗布パターンの異なるワーク(液晶パネル基板)の平面図及び断面図である。It is the top view and sectional drawing of the workpiece | work (liquid crystal panel board | substrate) from which the application pattern of a sealing agent differs. 基板サイズやマスクサイズの異なるワークの構成を示す平面図である。It is a top view which shows the structure of the workpiece | work from which board | substrate size and mask size differ. LEDが基板上に並べて配列されてなる光照射装置の概念図である。It is a conceptual diagram of the light irradiation apparatus with which LED is arranged side by side on a board | substrate.

本発明の一実施形態を図を参照して説明する。
図1は、本実施形態の発明に係る光照射装置1の概略構成を示す図である。
同図に示すように、この光照射装置1は、セグメント光源2が複数並べて配置された光源ユニット群3(光源部)を備えており、光源ユニット群3の対向する面に、ステージ4に載置されたワーク5が配置された照射領域6が形成されている。
An embodiment of the present invention will be described with reference to the drawings.
FIG. 1 is a diagram showing a schematic configuration of a light irradiation apparatus 1 according to the invention of this embodiment.
As shown in the figure, the light irradiation device 1 includes a light source unit group 3 (light source unit) in which a plurality of segment light sources 2 are arranged side by side, and is mounted on a stage 4 on a surface facing the light source unit group 3. An irradiation area 6 in which the placed work 5 is arranged is formed.

図2は、図1に示したセグメント光源2の斜視図、図3(a)は、図1に示したセグメント光源2を裏面側から見た図、図3(b)は、図3(a)のA−A切断面から見たセグメント光源2の断面図である。
これらの図に示すように、セグメント光源2は、同一基板21上に透光性樹脂22にモールドされたLED素子23(以下LED23という)を、例えば、5つ備えて構成されており、基板21と垂直かつ光放射方向に向かって導光部24が、一定長さに亘って伸びるように形成されている。LED23は、いずれも紫外域の光を放射するものであり、ほぼ同一波長域の光を放射するものである。なお、ここでいう「紫外域の光」とは、遠紫外光(波長約200〜300nmの光)、近紫外光(波長約300〜400nmの光)を含んでいる。また、実用上は、水銀ランプの主波長(365nm、405nm、436nm)も含まれるため、適宜、必要な波長域の光を放射するLEDが選択される(R,G,Bの光を予め混合して白色光とするものとは相違する。)。
2 is a perspective view of the segment light source 2 shown in FIG. 1, FIG. 3 (a) is a view of the segment light source 2 shown in FIG. 1 viewed from the back side, and FIG. 3 (b) is FIG. It is sectional drawing of the segment light source 2 seen from the AA cut surface of FIG.
As shown in these drawings, the segment light source 2 includes, for example, five LED elements 23 (hereinafter referred to as LEDs 23) molded in a translucent resin 22 on the same substrate 21. The light guide 24 is formed to extend over a certain length in the direction perpendicular to the light emission direction. Each of the LEDs 23 emits light in the ultraviolet region, and emits light in substantially the same wavelength region. Here, “light in the ultraviolet region” includes far ultraviolet light (light having a wavelength of about 200 to 300 nm) and near ultraviolet light (light having a wavelength of about 300 to 400 nm). In practice, the main wavelengths of mercury lamps (365 nm, 405 nm, 436 nm) are also included, so LEDs that emit light in the necessary wavelength range are selected as appropriate (R, G, and B light are mixed in advance). Is different from the white light.)

このように、同一波長域のLED23を複数備えるのは、1つが仮に不点灯となった場合でも、他のLED23からの光出力でこれを補うためである。なお、同一波長域とはスペクトル分布が完全に一致することを意味するものではなく、1つのセグメント内においてLED23が互いに光を補うことができる程度であればばらつきがあっても構わない。導光部24は、LED23から放射された光を反射する反射面241をその内側面に有しており、導光部24の外方向には光が漏れないように構成されている。なお基板21の背面には、放熱用フィン25が設けられ、LED23から放射された熱を放熱可能に構成されている。導光部24は、金属板の表面を鏡面加工し、角状の筒体に成形した中空の筒体のもの、ガラス、樹脂等の基板表面に蒸着膜を形成して鏡面を形成したもの、又は柱状の透明ロッド等からなり、境界反射により光を全反射するもの等、適宜のものを用いることができる。   As described above, the reason why the plurality of LEDs 23 in the same wavelength region are provided is to supplement this with the light output from the other LEDs 23 even if one of the LEDs 23 is not lit. Note that the same wavelength region does not mean that the spectrum distributions completely match, and there may be variations as long as the LEDs 23 can supplement each other in one segment. The light guide unit 24 has a reflection surface 241 that reflects light emitted from the LED 23 on its inner side surface, and is configured so that light does not leak to the outside of the light guide unit 24. Note that heat radiation fins 25 are provided on the back surface of the substrate 21 so that heat radiated from the LEDs 23 can be dissipated. The light guide 24 is a hollow cylinder formed by mirror-finishing the surface of a metal plate and formed into a square cylinder, a mirror formed by forming a deposited film on a substrate surface such as glass or resin, Alternatively, a suitable material such as a columnar transparent rod that totally reflects light by boundary reflection can be used.

セグメント光源2に内蔵される各LED23からの放射光は、導光部24において反射が繰り返されることにより混合され、導光部24の光出射面242から出射されると、セグメント光源2が照射する予定の、照射領域6におけるセグメントを照射する。このとき、隣接するセグメント光源2における照射領域6を部分的に照射する構成とすることによって、セグメントの切れ目部分においても照度を落とさず、照射領域6を照射することができる。導光部24の長さは、LED23(基板21)から光出射面242に至るまで一定の長さを備えて構成されており、この全長および、導光部24から照射領域6までの長さを変化させることによって、照度の均一性を所望の通りに変化させることができる。セグメント光源2により、複数のLED23から出射した光を混合してから、対応した照射領域6(セグメント領域)を照射するので、LED23の特性による照度のばらつきが抑えられ、ワーク5に対して所望の照度で光を照射することができる。   The radiated light from each LED 23 incorporated in the segment light source 2 is mixed by being repeatedly reflected in the light guide 24, and is emitted from the light exit surface 242 of the light guide 24 when the segment light source 2 irradiates. The planned segment in the irradiation area 6 is irradiated. At this time, the irradiation region 6 in the adjacent segment light source 2 is partially irradiated, so that the irradiation region 6 can be irradiated without reducing the illuminance even at the cut portion of the segment. The length of the light guide unit 24 is configured to have a certain length from the LED 23 (substrate 21) to the light emitting surface 242, and this total length and the length from the light guide unit 24 to the irradiation region 6 are configured. By changing, the uniformity of illuminance can be changed as desired. Since the segment light source 2 mixes the light emitted from the plurality of LEDs 23 and irradiates the corresponding irradiation region 6 (segment region), the variation in illuminance due to the characteristics of the LED 23 can be suppressed, and the workpiece 5 can be desired. Light can be irradiated with illuminance.

また、図1に示すように、この光照射装置1は、ON/OFF制御部71及び電力制御部72を備える制御部7を有しており、セグメント光源2は、ON/OFF制御部71により個別に点灯、消灯の切り替えが可能であり、ワーク5の大きさや必要な照射領域6に応じた部分のみを点灯することができる。また、電力制御部72により、LED23の特性に由来して任意のセグメント光源2からの光量が不足する場合は、そのセグメント光源2の電流値を大きくすることにより、当該セグメント光源2の照度を上げることができ、所望の照度を得ることができる。具体的には、セグメント光源2内において5つのLED23を直列に接続し、セグメント光源2に投入する電力量を変える。ここで、セグメント光源2の電流値を任意に変えたとしても、主にそのセグメント領域が照射する照射領域6は予め決められたセグメント領域であって、他の照射領域6に対する影響が少ない。よって、照射領域6全体における照度を所期の状態に維持することができる。   As shown in FIG. 1, the light irradiation apparatus 1 includes a control unit 7 including an ON / OFF control unit 71 and a power control unit 72, and the segment light source 2 is controlled by the ON / OFF control unit 71. It is possible to switch on and off individually, and it is possible to light only the part corresponding to the size of the work 5 and the necessary irradiation area 6. In addition, when the light amount from any segment light source 2 is insufficient due to the characteristics of the LED 23, the power control unit 72 increases the illuminance of the segment light source 2 by increasing the current value of the segment light source 2. The desired illuminance can be obtained. Specifically, five LEDs 23 are connected in series in the segment light source 2, and the amount of power input to the segment light source 2 is changed. Here, even if the current value of the segment light source 2 is arbitrarily changed, the irradiation area 6 irradiated mainly by the segment area is a predetermined segment area and has little influence on the other irradiation areas 6. Therefore, the illuminance in the entire irradiation region 6 can be maintained in an intended state.

図4は、図2〜図3に示したセグメント光源2と異なる構成を有するセグメント光源2の構成を示す図であり、図4(a)は、セグメント光源2の断面図、図4(b)は、セグセグメント光源2を裏面側から見た図である。
これらの図に示すように、このセグメント光源2は、セグメント光源2内に光量検出手段としてのフォトダイオード(PD)26を備えている。ここでは、フォトダイオード26が、各LED23に隣接して基板21に実装されている。フォトダイオード26は各々のLED23からの出射光を検出すると、光量を電気信号に変換して図1に示した制御部(フィードバック制御部)7に送信し、初期の値と比較して差異に応じて、電流量を変化させるよう電力制御部72に指示を出力する。仮に1つのLED23が不点灯になった場合でも、セグメント光源2の電流を大きくすると、不点灯になったもの以外のLED23はそれぞれ光量が増大し、導光部24内において混合した状態で、光出射面242から光が放射されるため、照射領域6の照度を初期の状態に維持することができる。一方で、タクト時間の制約が無く、LEDの交換が容易な装置、又は低コストの制約が強い装置においては、大掛かりなフィードバック制御や電力制御を必要としないことがある。この場合、フォトダイオードのみを実装しておけば、LEDが不点灯になったり、光量低下が起こった場合でもその検知は可能であるため、装置を停止してLEDの交換が可能となる。したがって、LEDの不点灯や光量低下に起因する不良を極力低減することが可能となる。
4 is a diagram showing a configuration of the segment light source 2 having a configuration different from that of the segment light source 2 shown in FIGS. 2 to 3, and FIG. 4 (a) is a cross-sectional view of the segment light source 2, and FIG. 4 (b). These are the figures which looked at the segment segment light source 2 from the back surface side.
As shown in these drawings, the segment light source 2 includes a photodiode (PD) 26 as a light amount detection means in the segment light source 2. Here, the photodiode 26 is mounted on the substrate 21 adjacent to each LED 23. When the photodiode 26 detects the light emitted from each LED 23, the light amount is converted into an electric signal and transmitted to the control unit (feedback control unit) 7 shown in FIG. Then, an instruction is output to the power control unit 72 to change the amount of current. Even if one LED 23 is not lit, when the current of the segment light source 2 is increased, the light quantity of the LEDs 23 other than the non-lighted LED 23 is increased and mixed in the light guide 24. Since light is emitted from the emission surface 242, the illuminance of the irradiation region 6 can be maintained in the initial state. On the other hand, in devices that do not have a tact time restriction and that allow easy replacement of LEDs, or that have strong low-cost restrictions, large-scale feedback control and power control may not be required. In this case, if only the photodiode is mounted, the LED can be detected even when the LED is not lit or the amount of light is reduced. Therefore, the device can be stopped and the LED can be replaced. Therefore, it is possible to reduce defects due to the non-lighting of the LED and the decrease in the amount of light as much as possible.

図5は、図2〜図4に示したセグメント光源2と異なる構成を有するセグメント光源2の構成を示す図であり、図5(a)は、セグメント光源2の断面図、図5(b)は、セグメント光源2を裏面側から見た図である。
これらの図に示すように、このセグメント光源2は、導光部24の光出射面242側に、光量検出手段としての1つのフォトダイオード26を備えている。このフォトダイオード26は各LED23から放射された光の混合光を検出する。混合光を検出するためには、フォトダイオード26は光出射面242近傍に配置されるのが好ましい。
5 is a diagram showing a configuration of the segment light source 2 having a configuration different from that of the segment light source 2 shown in FIGS. 2 to 4. FIG. 5A is a sectional view of the segment light source 2 and FIG. These are the figures which looked at the segment light source 2 from the back surface side.
As shown in these drawings, the segment light source 2 includes one photodiode 26 as a light amount detecting unit on the light emitting surface 242 side of the light guide 24. This photodiode 26 detects the mixed light of the light emitted from each LED 23. In order to detect mixed light, the photodiode 26 is preferably disposed in the vicinity of the light exit surface 242.

図6は、図2〜図5に示したセグメント光源2と異なる構成を有するセグメント光源2の構成を示す図であり、図6(a)は、セグメント光源2を裏面側から見た図、図6(b)は、図6(a)のA−A切断面から見たセグメント光源2の断面図である。
これらの図に示すように、このセグメント光源2は、導光部24の中間位置に、光量検出手段としてのフォトダイオード26を備えている。これらのフォトダイオード26は各LED23から放射された光の混合光を検出する。
6 is a diagram showing a configuration of the segment light source 2 having a configuration different from that of the segment light source 2 shown in FIGS. 2 to 5, and FIG. 6A is a diagram of the segment light source 2 viewed from the back side. 6 (b) is a cross-sectional view of the segment light source 2 as seen from the AA cut surface in FIG. 6 (a).
As shown in these drawings, the segment light source 2 includes a photodiode 26 as a light amount detection means at an intermediate position of the light guide 24. These photodiodes 26 detect the mixed light of the light emitted from each LED 23.

図7は、図2〜図6に示したセグメント光源2と異なる構成を有するセグメント光源2の構成を示す図であり、図7(a)は、セグメント光源2を裏面側から見た図、図7(b)は、図7(a)のA−A切断面から見たセグメント光源2の断面図である。
これらの図に示すように、このセグメント光源2も、導光部24の中間位置に、光量検出手段としてのフォトダイオード26を備えている。これらのフォトダイオード26は各LED23から放射された光の混合光を検出する。
7 is a diagram showing a configuration of the segment light source 2 having a configuration different from that of the segment light source 2 shown in FIGS. 2 to 6, and FIG. 7A is a diagram of the segment light source 2 as seen from the back side. 7 (b) is a cross-sectional view of the segment light source 2 as viewed from the AA cut surface in FIG. 7 (a).
As shown in these drawings, the segment light source 2 also includes a photodiode 26 as a light amount detection means at an intermediate position of the light guide 24. These photodiodes 26 detect the mixed light of the light emitted from each LED 23.

図8は、図2〜図7に示したセグメント光源2と異なる構成を有するセグメント光源2の構成を示す図であり、図8(a)は、セグメント光源2の断面図、図8(b)は、図8(a)のA−A切断面から見たセグメント光源2の断面図である。
これらの図に示すように、このセグメント光源2は、各LED23が、透光性レンズ体27にモールドされており、透光性レンズ体27は、LED23から放射された光を、例えば、平行光として放射する機能を有し、透光性レンズ体27から放射された光は、例えば、インテグレータレンズ28(281,282)により混合されて導光部24の光出射面2821より出射される。すなわち、このセグメント光源2においては、透光性レンズ体27と、インテグレータレンズ28が、LED23からの光を混合して光出射面2821に導光するための機能を備えている。この例においては、フォトダイオード23は、例えば、基板21上に配置されており、透光性レンズ体27の出射面271において境界反射した反射光を検出するように配置されている。なお、透光性レンズ体27を設けた場合でも、フォトダイオード26の配置パターンは、図4〜図7で示したものを採用することができる。
FIG. 8 is a diagram showing a configuration of the segment light source 2 having a configuration different from that of the segment light source 2 shown in FIGS. 2 to 7. FIG. 8A is a sectional view of the segment light source 2, and FIG. These are sectional drawings of the segment light source 2 seen from the AA cut surface of Fig.8 (a).
As shown in these drawings, in the segment light source 2, each LED 23 is molded on a translucent lens body 27. The translucent lens body 27 converts light emitted from the LED 23 into, for example, parallel light. The light emitted from the translucent lens body 27 is mixed by, for example, the integrator lens 28 (281, 282) and emitted from the light emitting surface 2821 of the light guide 24. That is, in the segment light source 2, the translucent lens body 27 and the integrator lens 28 have a function for mixing the light from the LED 23 and guiding it to the light exit surface 2821. In this example, the photodiode 23 is disposed on the substrate 21, for example, and is disposed so as to detect the reflected light that is boundary-reflected on the emission surface 271 of the translucent lens body 27. Even when the translucent lens body 27 is provided, the arrangement pattern of the photodiodes 26 may be the one shown in FIGS.

上記のごとく、セグメント光源2は、図1〜図8に示したように、複数のLED23からの光を混合して照射領域6に導く導光部24の構成は適宜のものとすることができる。また、1つのセグメント光源2におけるLED23の個数も5つである場合に限定されず、それ以上でもよく、例えば、図9又は図10に示すように、LED23を7個備えたセグメント光源2としてもよく、又それ以外でも可能である。   As described above, in the segment light source 2, as shown in FIGS. 1 to 8, the configuration of the light guide unit 24 that mixes the light from the plurality of LEDs 23 and guides the light to the irradiation region 6 can be set appropriately. . Further, the number of LEDs 23 in one segment light source 2 is not limited to five, and may be more than that, for example, as a segment light source 2 having seven LEDs 23 as shown in FIG. 9 or FIG. Well, other than that is possible.

図11はセグメント光源2を多数並べて配置した光源ユニット群3の構成を示す斜視図である。
同図に示すように、セグメント光源2は、個別に給電が可能となるリード線(不図示)が形成された支持板8上に並べて配置して固定され、多数並べて配置されたセグメント光源2は一体にユニット化され光源ユニット群3を構成している。支持板8には背面に水冷孔91が形成された水冷板9が設けられ、更にその背面部分には、前記リード線に接続される電源ユニット10が配置されている。この光源ユニット群3の大きさ(d×e)は、例えば、約1130mm×510mmである。
FIG. 11 is a perspective view showing a configuration of a light source unit group 3 in which a large number of segment light sources 2 are arranged.
As shown in the figure, segment light sources 2 are arranged and fixed side by side on a support plate 8 on which lead wires (not shown) that can be individually fed are formed, and a large number of segment light sources 2 are arranged side by side. The light source unit group 3 is configured as a unit. The support plate 8 is provided with a water-cooling plate 9 having water-cooling holes 91 formed on the back surface, and a power supply unit 10 connected to the lead wire is disposed on the back surface portion. The size (d × e) of the light source unit group 3 is, for example, about 1130 mm × 510 mm.

図12は、図11に示した光源ユニット群3を複数備えた光照射装置1の構成を示す斜視図である。
同図に示すように、この光照射装置1の被照射領域の大きさ(f×g)は、例えば、液晶パネル基板のG8基板では、約2200mm×2500mmという、大面積を形成することができる。この光照射装置1においては、光源ユニット群3ごとに着脱取替えが可能であり、LED23の劣化状況によって光源ユニット群3を交換することにより、光照射装置1において常に均一照度を有する面状光源を構成することができる。この実施例では、光源ユニット群3を5×2ユニット、つまり全10ユニット配置して構成されている。
FIG. 12 is a perspective view illustrating a configuration of the light irradiation apparatus 1 including a plurality of light source unit groups 3 illustrated in FIG. 11.
As shown in the figure, the size (f × g) of the irradiated region of the light irradiation device 1 can be formed as a large area of about 2200 mm × 2500 mm, for example, in the G8 substrate of the liquid crystal panel substrate. . In this light irradiation device 1, the light source unit group 3 can be attached and detached, and by replacing the light source unit group 3 depending on the deterioration state of the LED 23, a planar light source that always has uniform illuminance in the light irradiation device 1. Can be configured. In this embodiment, the light source unit group 3 is configured by arranging 5 × 2 units, that is, all 10 units.

次に、本発明に係る光照射装置を液晶パネル基板の貼り合せに適用した場合について説明する。
図13(a)、(b)は、各々シール剤の塗布パターンの異なるワーク(液晶パネル基板)の平面図、図13(c)は、図13(a)のA−A切断面から見たワーク(液晶パネル基板)の断面図である。
これらの図に示すように、液晶パネル基板の貼り合せの用途においては、ワーク(液晶パネル基板)5は、液晶パネルの大きさ(画枠)に合わせて未硬化のシール剤11が塗付された2枚のガラス基板12である。ワーク5の中で光照射が必要な箇所はシール剤11部分のみである。上記用途では効率よく液晶画面を生産するため、同じ規格のガラス基板12でも中に形成される液晶画面のインチ数やそれらの配置パターンは様々であり、同じライン(搬送系)でも、ワーク毎にシール剤11の塗布領域、すなわち光照射領域が変わることは一般的である。セグメント光源毎にON/OFF制御部を切り替えるスイッチがない場合は、シール剤11部分のみ光を照射するため、全面積の光源を点灯してマスクで遮光する必要があり、シール剤11以外の領域にもセグメント光源に電力が投入されるため電力損が大きい。それに対して、本発明のように、セグメント毎に、図1に示すようなON/OFF制御部7を備え、切り替えスイッチで点灯、消灯を選択可能とすることにより、ワーク5毎に照射領域を選択して点灯し、光照射が不要な領域においては消灯にして使用することにより電力損失を軽減することができる。また、全領域が点灯される場合はマスクが必須であったが、本発明によれば、シール剤11部分のみの点灯により光照射が可能となるため、マスク自体も不要とすることができ、生産コストを低減化することができる。このような硬化(キュア)にかかる用途では、完全にシール剤11を硬化させるために一定以上の光照射が必要であり、照度不足が発生してはならない。そのため、フォトダイオード26による光検出により、光量をモニタし、必要に応じてLEDやセグメント光源を交換したり、フィードバック制御したりすることにより、硬化不良を低減することが可能となり、信頼性を高めることができる。
Next, the case where the light irradiation apparatus according to the present invention is applied to bonding of a liquid crystal panel substrate will be described.
13 (a) and 13 (b) are plan views of a workpiece (liquid crystal panel substrate) having a different coating pattern of the sealant, and FIG. 13 (c) is viewed from the AA cut surface in FIG. 13 (a). It is sectional drawing of a workpiece | work (liquid crystal panel board | substrate).
As shown in these drawings, in the application of bonding the liquid crystal panel substrate, the uncured sealant 11 is applied to the work (liquid crystal panel substrate) 5 according to the size (image frame) of the liquid crystal panel. Two glass substrates 12. The only part of the work 5 that requires light irradiation is the sealant 11 portion. In order to efficiently produce a liquid crystal screen in the above application, the number of inches of the liquid crystal screen formed in the glass substrate 12 of the same standard and the arrangement pattern thereof vary, and even in the same line (conveyance system) It is common for the application area of the sealing agent 11, that is, the light irradiation area to change. When there is no switch for switching the ON / OFF control unit for each segment light source, only the sealant 11 part is irradiated with light, so it is necessary to turn on the light source of the entire area and shield it with a mask. In addition, since power is input to the segment light source, power loss is large. On the other hand, as in the present invention, each segment is provided with an ON / OFF control unit 7 as shown in FIG. 1 and can be turned on / off with a changeover switch, so that an irradiation area can be set for each work 5. Power loss can be reduced by selecting and turning on and turning off the light in areas where light irradiation is unnecessary. In addition, a mask is essential when the entire area is lit, but according to the present invention, light irradiation is possible by lighting only the sealant 11 portion, so the mask itself can be made unnecessary, Production costs can be reduced. In such an application related to curing (curing), light irradiation of a certain level or more is necessary to completely cure the sealant 11, and insufficient illuminance should not occur. Therefore, by detecting the light amount by the photodiode 26, it is possible to reduce the curing failure by exchanging the LED and the segment light source or performing feedback control as necessary, thereby improving the reliability. be able to.

次に、本発明に係る光照射装置を露光装置に適用した場合について説明する。
図14(a)〜(c)は、基板サイズやマスクサイズの異なるワーク5の構成を示す平面図である。
同図に示すように、例えば、スクリーン印刷用の製版露光の分野では、用途によって使用するワーク5の基板サイズ(版サイズ)が異なる。基板サイズは、汎用されている320mm×320mmのものから、大物では3300mm×3700mmのものまで幅広い。また基板の中には実際の製品に使用される配線等のパターンが描写されたスクリーンマスク13が配置されるが、スクリーンマスク13も1個取りから、複数のスクリーンマスク13を1枚の基板上に並べた多面取りと呼ばれるものまで広く実用化されている。昨今の少量多品種の流れの中に、このような多面取りによる製造方法は広く普及している。多面取りの方式では、同図に示すように、実際に使用する基板上に複数のスクリーンマスク13が隣り合うスクリーンマスク13同士一定の間隔をおいて並べられる。このような場合、露光が必要な領域はスクリーンマスク13部分のみであり、スクリーンマスク13が配置されていない間隙部分においては光を照射する必要はない。本発明の光照射装置において、セグメント毎に、図1に示すように、ON/OFF制御部71において切り替えスイッチを制御することにより、照射領域よりも小さいサイズの基板を露光する場合、又は多面取り用の最大サイズの基板を露光する場合のいずれの場合でも、処理する基板の露光部分(マスク部分)に対応したセグメント光源2のみを点灯し、その他については消灯して使用することにより、無駄に光を放射することなく様々なワーク5に対応して発光処理することができる。このように、基板の露光用途においても、基板サイズや使用するスクリーンマスク13のサイズによって点灯するセグメントを指定することにより、大幅に電力量消費を軽減することができる。なお、露光用途においても複数の製品間でのバラツキを低減させる観点から光量の均一性は非常に重要である。そのため、更に光量をモニタし、必要に応じてLEDやセグメント光源を交換したり、フィードバック制御したりすることにより不良を低減することが可能となり、信頼性を高めることができる。
Next, the case where the light irradiation apparatus according to the present invention is applied to an exposure apparatus will be described.
14A to 14C are plan views showing the configuration of the workpiece 5 having different substrate sizes and mask sizes.
As shown in the figure, for example, in the field of plate-making exposure for screen printing, the substrate size (plate size) of the workpiece 5 used varies depending on the application. The substrate size ranges from 320 mm × 320 mm, which is widely used, to 3300 mm × 3700 mm, which is a large one. In addition, a screen mask 13 on which patterns such as wirings used in actual products are drawn is arranged in the substrate. However, since one screen mask 13 is taken, a plurality of screen masks 13 are placed on one substrate. Even so-called multi-chamfer arrangements are widely put into practical use. In the current trend of small quantities and many varieties, such multi-chamfer manufacturing methods are widely used. In the multi-chamfering method, as shown in the figure, a plurality of screen masks 13 are arranged on a substrate to be actually used with a certain interval between adjacent screen masks 13. In such a case, the area that needs to be exposed is only the screen mask 13 portion, and it is not necessary to irradiate the gap portion where the screen mask 13 is not disposed. In the light irradiation apparatus of the present invention, for each segment, as shown in FIG. 1, the ON / OFF control unit 71 controls the changeover switch to expose a substrate having a size smaller than the irradiation area, or to take multiple surfaces. In any case of exposing a substrate of the maximum size for use, only the segment light source 2 corresponding to the exposed portion (mask portion) of the substrate to be processed is turned on, and the others are turned off and used. It is possible to perform light emission processing corresponding to various workpieces 5 without emitting light. As described above, even in the substrate exposure application, the power consumption can be greatly reduced by designating the segment to be lit depending on the substrate size and the size of the screen mask 13 to be used. Even in exposure applications, the uniformity of the light quantity is very important from the viewpoint of reducing variation among a plurality of products. For this reason, it is possible to further reduce the defects by monitoring the light quantity, replacing the LED and the segment light source as necessary, or performing feedback control, and improve the reliability.

1 光照射装置
2 セグメント光源
21 基板
22 透光性樹脂
23 LED
24 導光部
241 反射面
242 光出射面
25 放熱用フィン
26 フォトダイオード
27 透光性レンズ体
271 出射面
28,281,282 インテグレータレンズ
2821 光出射面
3 光源ユニット群(光源部)
4 ステージ
5 ワーク
6 照射領域
7 制御部
71 ON/OFF制御部
72 電力制御部
8 支持板
9 水冷板
91 水冷孔
10 電源ユニット
11 シール剤
12 ガラス基板
13 スクリーンマスク
DESCRIPTION OF SYMBOLS 1 Light irradiation apparatus 2 Segment light source 21 Substrate 22 Translucent resin 23 LED
24 Light guide unit 241 Reflecting surface 242 Light emitting surface 25 Heat radiation fin 26 Photo diode 27 Translucent lens body 271 Emitting surface 28, 281, 282 Integrator lens 2821 Light emitting surface 3 Light source unit group (light source unit)
4 Stage 5 Work 6 Irradiation Area 7 Control Unit 71 ON / OFF Control Unit 72 Power Control Unit 8 Support Plate 9 Water Cooling Plate 91 Water Cooling Hole 10 Power Cooling Unit 11 Sealing Agent 12 Glass Substrate 13 Screen Mask

Claims (5)

同一面上に紫外域の光を放射するLEDが複数配置されてなる光源部を備え、該光源部からの出射光を前記同一面と対向位置にある照射領域に対して照射する光照射装置であって、
前記光源部は、同一基板上に配置された複数のLEDと導光部によってセグメント光源を構成し、該セグメント光源を前記基板が伸びる方向に複数並べて配置して構成され、前記導光部は、前記同一面から光出射面に至るまでの一定の長さを有し、当該セグメント光源内にあるLEDからの出射光を混合し、他のセグメント光源の光出射面に光を照射することないことを特徴とする光照射装置。
A light irradiating apparatus that includes a light source unit in which a plurality of LEDs that emit light in the ultraviolet region are arranged on the same surface, and that irradiates light emitted from the light source unit to an irradiation region that is opposite to the same surface. There,
The light source unit is configured by configuring a segment light source by a plurality of LEDs and a light guide unit arranged on the same substrate, and arranging a plurality of the segment light sources in a direction in which the substrate extends. It has a certain length from the same surface to the light exit surface, mixes the exit light from the LEDs in the segment light source, and does not irradiate the light exit surfaces of other segment light sources The light irradiation apparatus characterized by this.
前記セグメント光源は、各セグメント光源ごとにON/OFFの切り替えが可能であることを特徴とする請求項1に記載の光照射装置。   The light irradiation apparatus according to claim 1, wherein the segment light source can be switched ON / OFF for each segment light source. 前記セグメント光源は、各セグメント光源ごとに電力制御可能であることを特徴とする請求項1又は請求項2に記載の光照射装置。   The light irradiation apparatus according to claim 1, wherein the segment light source is capable of controlling power for each segment light source. 前記セグメント光源は、光量検出手段を備えていることを特徴とする請求項1〜請求項3のいずれか1つの請求項に記載の光照射装置。   The said segment light source is provided with the light quantity detection means, The light irradiation apparatus as described in any one of Claims 1-3 characterized by the above-mentioned. 前記光量検出手段により検出された光量によって、当該セグメント光源が予め設定された光量となるように制御するフイードバック制御手段を備えていることを特徴とする請求項4に記載の光照射装置。   5. The light irradiation apparatus according to claim 4, further comprising feedback control means for controlling the segment light source to have a preset light quantity based on the light quantity detected by the light quantity detection means.
JP2009048675A 2009-03-03 2009-03-03 Light irradiation device Active JP5035272B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2009048675A JP5035272B2 (en) 2009-03-03 2009-03-03 Light irradiation device
TW099101377A TWI464497B (en) 2009-03-03 2010-01-19 Light irradiation device
KR1020100010681A KR101333361B1 (en) 2009-03-03 2010-02-05 Light irradiation device
CN201010128372A CN101825237A (en) 2009-03-03 2010-03-03 Light irradiation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009048675A JP5035272B2 (en) 2009-03-03 2009-03-03 Light irradiation device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2011100247A Division JP5382373B2 (en) 2011-04-27 2011-04-27 Light irradiation device

Publications (2)

Publication Number Publication Date
JP2010205860A true JP2010205860A (en) 2010-09-16
JP5035272B2 JP5035272B2 (en) 2012-09-26

Family

ID=42689314

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009048675A Active JP5035272B2 (en) 2009-03-03 2009-03-03 Light irradiation device

Country Status (4)

Country Link
JP (1) JP5035272B2 (en)
KR (1) KR101333361B1 (en)
CN (1) CN101825237A (en)
TW (1) TWI464497B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019009343A1 (en) * 2017-07-04 2019-01-10 旭化成株式会社 Ultraviolet-light-emitting device

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140001914A (en) * 2011-03-24 2014-01-07 가부시키가이샤 지에스 유아사 Light irradiation device
CN102496063A (en) * 2011-11-17 2012-06-13 江南大学 Illumination uniformization method for high-power LED (light-emitting diode) array
JP2013125693A (en) 2011-12-15 2013-06-24 Koito Mfg Co Ltd Vehicular lamp
TWM488825U (en) * 2014-06-20 2014-10-21 Shu-Chen Guo Active type illumination light source module and lamp with intelligent function for automatically controlling intensity of illumination
CN110177668B (en) * 2017-01-13 2022-07-12 Lg伊诺特有限公司 Curing device
KR102266918B1 (en) * 2019-01-18 2021-06-18 정재현 Ultraviolet light emitting device and uv curing apparatus employing the same
US20220400541A1 (en) * 2021-06-09 2022-12-15 Jae-Hyun Jung Light emitting device capable of adjusting sensitivity and curing apparatus employing the same

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001168396A (en) * 1999-12-03 2001-06-22 Matsushita Electronics Industry Corp Light emitting display device and light emitting display unit
JP2002303988A (en) * 2001-04-03 2002-10-18 Nippon Telegr & Teleph Corp <Ntt> Exposure device
JP2002344031A (en) * 2001-03-14 2002-11-29 Matsushita Electric Ind Co Ltd Illuminating unit
JP2006040944A (en) * 2004-07-22 2006-02-09 Lintec Corp Ultraviolet irradiation device
JP2006235617A (en) * 2005-01-28 2006-09-07 Shibaura Mechatronics Corp Ultraviolet-light irradiating device and irradiating method, and substrate manufacturing device and manufacturing method
JP2007027295A (en) * 2005-07-14 2007-02-01 Ushio Inc Uv-ray irradiator
JP2007180005A (en) * 2005-12-28 2007-07-12 Lg Phillips Lcd Co Ltd Backlight assembly, and liquid crystal display module utilizing same
JP2008141038A (en) * 2006-12-04 2008-06-19 Lintec Corp Method and device for ultraviolet irradiation

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI262609B (en) * 2004-02-27 2006-09-21 Dowa Mining Co Phosphor and manufacturing method thereof, and light source, LED using said phosphor
JP2006301363A (en) * 2005-04-21 2006-11-02 Harison Toshiba Lighting Corp Illuminating apparatus
JP2007047352A (en) * 2005-08-09 2007-02-22 Sanyo Epson Imaging Devices Corp Lighting device, display device, and data transfer method
JP4175426B2 (en) * 2006-05-30 2008-11-05 ソニー株式会社 Backlight device and color image display device
KR100881667B1 (en) * 2006-10-19 2009-02-06 삼성전자주식회사 Retro-reflect type light pipe, illumination device and projection display adopting the same
CN101169548A (en) * 2006-10-27 2008-04-30 鸿富锦精密工业(深圳)有限公司 Backlight module group
CN101236331B (en) * 2008-02-20 2010-06-16 友达光电股份有限公司 Backlight module unit and backlight module

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001168396A (en) * 1999-12-03 2001-06-22 Matsushita Electronics Industry Corp Light emitting display device and light emitting display unit
JP2002344031A (en) * 2001-03-14 2002-11-29 Matsushita Electric Ind Co Ltd Illuminating unit
JP2002303988A (en) * 2001-04-03 2002-10-18 Nippon Telegr & Teleph Corp <Ntt> Exposure device
JP2006040944A (en) * 2004-07-22 2006-02-09 Lintec Corp Ultraviolet irradiation device
JP2006235617A (en) * 2005-01-28 2006-09-07 Shibaura Mechatronics Corp Ultraviolet-light irradiating device and irradiating method, and substrate manufacturing device and manufacturing method
JP2007027295A (en) * 2005-07-14 2007-02-01 Ushio Inc Uv-ray irradiator
JP2007180005A (en) * 2005-12-28 2007-07-12 Lg Phillips Lcd Co Ltd Backlight assembly, and liquid crystal display module utilizing same
JP2008141038A (en) * 2006-12-04 2008-06-19 Lintec Corp Method and device for ultraviolet irradiation

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019009343A1 (en) * 2017-07-04 2019-01-10 旭化成株式会社 Ultraviolet-light-emitting device
JPWO2019009343A1 (en) * 2017-07-04 2020-07-09 旭化成株式会社 UV light emitting device
US11458217B2 (en) 2017-07-04 2022-10-04 Asahi Kasei Kabushiki Kaisha Ultraviolet-emitting device

Also Published As

Publication number Publication date
KR20100099651A (en) 2010-09-13
KR101333361B1 (en) 2013-11-28
TW201033696A (en) 2010-09-16
CN101825237A (en) 2010-09-08
TWI464497B (en) 2014-12-11
JP5035272B2 (en) 2012-09-26

Similar Documents

Publication Publication Date Title
JP5035272B2 (en) Light irradiation device
KR101217290B1 (en) Peripheral Exposure Apparatus
JP5257308B2 (en) Light irradiation device
JP2018017952A (en) Light projection apparatus and light projection method
TW201104134A (en) Light irradiation device
TWI543228B (en) Light irradiation device
KR20120082805A (en) Exposure method and exposure apparatus
KR200484992Y1 (en) Edge weighted spacing of leds for improved uniformity range
WO2014002312A1 (en) Pattern drawing device, pattern drawing method
JP2018063831A (en) LED irradiation device
JP5382373B2 (en) Light irradiation device
JP3197315U (en) Wrap-around window for lighting module
TW202017660A (en) Ultraviolet curing apparatus
KR101586062B1 (en) LED exposure apparatus capable of controlling light output and method for controlling the same
KR102331470B1 (en) Methods and systems for release and curing via narrow-width radiation
KR20100136784A (en) Exposure device
KR101595564B1 (en) Ultra violet cure apparatus using leds
US11606844B2 (en) Optical heating device
KR20120041483A (en) Exposure apparatus for sensing off status of ultra violet light emitting diode module for driving ultra violet light emitting diode module and method for sensing off status of ultra violet light emitting diode module thereof
JP5578329B2 (en) Line light source
KR101631821B1 (en) Improved Line Light Source Module, and Light Irradiation Apparatus and Method Having the Same
KR20160044705A (en) Edge exposure apparatus using LED light sources
JP2018153738A (en) Light irradiation device
JP2010282733A (en) Light irradiation device
KR20120041481A (en) Photolithography apparatus

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110302

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110427

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111012

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120112

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20120117

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120605

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120618

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150713

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5035272

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250