JP2018153738A - Light irradiation device - Google Patents

Light irradiation device Download PDF

Info

Publication number
JP2018153738A
JP2018153738A JP2017051490A JP2017051490A JP2018153738A JP 2018153738 A JP2018153738 A JP 2018153738A JP 2017051490 A JP2017051490 A JP 2017051490A JP 2017051490 A JP2017051490 A JP 2017051490A JP 2018153738 A JP2018153738 A JP 2018153738A
Authority
JP
Japan
Prior art keywords
light emitting
light
irradiation device
emitting elements
led chips
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017051490A
Other languages
Japanese (ja)
Inventor
裕和 石飛
Hirokazu Ishitobi
裕和 石飛
保文 川鍋
Yasubumi Kawanabe
保文 川鍋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Iwasaki Denki KK
Original Assignee
Iwasaki Denki KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Iwasaki Denki KK filed Critical Iwasaki Denki KK
Priority to JP2017051490A priority Critical patent/JP2018153738A/en
Publication of JP2018153738A publication Critical patent/JP2018153738A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To reduce costs for detecting an unlighted state.SOLUTION: An ultraviolet light irradiation device 4 includes Na (Na≥2) LED chips 18 and an unlighting detection circuit 26 to detect an unlighted state of the LED chips 18. The ultraviolet light irradiation device irradiates light of the LED chips 18 to a planar irradiation target surface of a workpiece W. The unlighting detection circuit 26 is configured to detect the unlighted state occurred in Nc LED chips 18 on the basis of a current drop of a power supply line L that supplies driving electric power to the Nc LED chips 18.SELECTED DRAWING: Figure 4

Description

本発明は、光照射装置に関する。   The present invention relates to a light irradiation apparatus.

多数のLEDが平面上に格子状に配置された光源部を備え、この光源部の光を対象物に照射する光照射装置が知られている。また、受光センサを用いて発光素子の不点灯状態を検出する技術も知られている(例えば、特許文献1参照)。   2. Description of the Related Art A light irradiation device that includes a light source unit in which a large number of LEDs are arranged in a grid pattern on a plane and irradiates an object with light from the light source unit is known. A technique for detecting a non-lighting state of a light emitting element using a light receiving sensor is also known (see, for example, Patent Document 1).

特開2016−224321号公報JP, 2006-224321, A

上記光照射装置において、受光センサを用いて発光素子の個々の不点灯状態を検出する場合、発光素子の数相当の受光センサを用いる必要があり、コストが高くなる。
本発明は、不点灯状態を検出するためのコストを抑えることができる光照射装置を提供することを目的とする。
In the above-described light irradiation device, when detecting each non-lighting state of the light emitting element using the light receiving sensor, it is necessary to use light receiving sensors corresponding to the number of the light emitting elements, which increases the cost.
An object of this invention is to provide the light irradiation apparatus which can hold down the cost for detecting a non-lighting state.

本発明は、Na(ただしNa≧2)個の発光素子と、前記発光素子の不点灯状態を検出する不点灯検出回路と、を有し、照射対象物の平面状の被照射面に前記発光素子の光を照射する光照射装置において、前記不点灯検出回路は、複数の発光素子に駆動用電力を供給する電力供給ラインの電流、或いは電圧の低下に基づいて前記複数の発光素子の中に生じた不点灯状態を検出することを特徴とする。   The present invention includes Na (however, Na ≧ 2) light emitting elements and a non-lighting detection circuit that detects a non-lighting state of the light emitting elements, and the light emission is performed on a planar irradiated surface of an irradiation target. In the light irradiation device that irradiates the light of the element, the non-lighting detection circuit includes the plurality of light emitting elements based on a decrease in current or voltage of a power supply line that supplies driving power to the plurality of light emitting elements. It is characterized by detecting a non-lighting state that has occurred.

本発明は、上記光照射装置において、前記発光素子が広角配光を有し、或いは、前記発光素子の各々の光を拡散する拡散部材を備え、前記被照射面のいずれかの箇所に、Nb(ただし、Na≧Nb≧2)個の発光素子の光を重ねて照射する、ことを特徴とする。   According to the present invention, in the light irradiation device, the light emitting element has a wide-angle light distribution, or includes a diffusing member that diffuses each light of the light emitting element. (However, Na ≧ Nb ≧ 2) The light of the light emitting elements is irradiated in an overlapping manner.

本発明は、上記光照射装置において、前記不点灯検出回路は、前記Na個の発光素子が配置された発光面を区画した区画エリアに含まれるNc(Na≧Nc≧Nb)個の発光素子ごとに前記不点灯状態を検出することを特徴とする。   According to the present invention, in the light irradiation device, the non-lighting detection circuit includes Nc (Na ≧ Nc ≧ Nb) light emitting elements included in a partition area that partitions a light emitting surface on which the Na light emitting elements are disposed. The non-lighting state is detected.

本発明は、上記光照射装置において、前記Nc個は、前記被照射面の同一箇所を照射する前記Nb個の発光素子の中に生じた不点灯状態によって前記被照射面の均斉度が所定値以上になる前記発光素子の個数である、ことを特徴とする。
なお、均斉度(%)は次式で定義される値であり、この数値が小さいほど均斉度は高い。
均斉度(%)=(照度最大値−照度最小値)/(照度最大値+照度最小値)×100
In the light irradiation apparatus according to the aspect of the invention, the Nc pieces may have a predetermined degree of uniformity of the irradiated surface due to a non-lighting state generated in the Nb light emitting elements that irradiate the same portion of the irradiated surface. The number of the light emitting elements is as described above.
The degree of uniformity (%) is a value defined by the following formula. The smaller the value, the higher the degree of uniformity.
Uniformity (%) = (maximum illuminance value−minimum illuminance value) / (maximum illuminance value + minimum illuminance value) × 100

本発明は、上記光照射装置において、前記発光素子の配光は、半値角が30°以上であることを特徴とする。   In the light irradiation device according to the present invention, the light distribution of the light emitting element has a half-value angle of 30 ° or more.

本発明によれば、不点灯状態を検出するためのコストが抑えられる。   According to the present invention, the cost for detecting a non-lighting state can be reduced.

本発明の実施形態に係る光硬化処理装置の構成を示す図である。It is a figure which shows the structure of the photocuring processing apparatus which concerns on embodiment of this invention. 光硬化処理時の光硬化処理装置を示す図であり、(A)は全体図、(B)は一部拡大図である。It is a figure which shows the photocuring processing apparatus at the time of a photocuring process, (A) is a general view, (B) is a partially expanded view. 紫外線照射装置の構成を示す図であり、(A)は紫外線照射装置の全体斜視図、(B)は(A)のX部拡大図である。It is a figure which shows the structure of an ultraviolet irradiation device, (A) is the whole perspective view of an ultraviolet irradiation device, (B) is the X section enlarged view of (A). 光硬化処理装置の電気的構成を示す図である。It is a figure which shows the electrical constitution of a photocuring processing apparatus. 紫外線照射装置の均斉度のシミュレーション結果を示す図であり、LEDチップ18の半値角が29度の場合を示す。It is a figure which shows the simulation result of the uniformity of an ultraviolet irradiation device, and shows the case where the half value angle of LED chip 18 is 29 degrees. 紫外線照射装置の均斉度のシミュレーション結果を示す図であり、LEDチップの半値角が60度(いわゆる、ランバート配光)の場合を示す。It is a figure which shows the simulation result of the uniformity degree of an ultraviolet irradiation device, and shows the case where the half value angle of an LED chip is 60 degrees (so-called Lambert light distribution).

以下、図面を参照して本発明の実施形態について説明する。
図1は本実施形態に係る光硬化処理装置1の構成を示す図である。
本実施形態の光硬化処理装置1は、液晶滴下(ODF:One Drop Fill)用の装置であり、液晶滴下(ODF)工法を用いた液晶パネルの張り合わせ工程において、平面状の被照射面を有したワークWである液晶パネルに紫外線を均一に照射し、シール材を光硬化処理(より正確には仮硬化処理)する。係る光硬化処理装置1は、図1に示すように、支持材2と、紫外線を照射する複数の紫外線照射装置4と、を備えている。
支持材2は、紫外線照射装置4ごとに一対の脚6を備え、当該脚6によって紫外線照射装置4を支持する部材であり、それぞれの紫外線照射装置4の発光面20(図3)を同一面内に揃えて支持する。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a diagram showing a configuration of a photocuring treatment apparatus 1 according to the present embodiment.
The photocuring treatment apparatus 1 of this embodiment is an apparatus for liquid crystal dropping (ODF), and has a planar irradiated surface in a bonding process of liquid crystal panels using a liquid crystal dropping (ODF) method. The liquid crystal panel, which is the workpiece W, is uniformly irradiated with ultraviolet rays, and the sealing material is photocured (more precisely, temporarily cured). As shown in FIG. 1, the photocuring treatment apparatus 1 includes a support material 2 and a plurality of ultraviolet irradiation apparatuses 4 that irradiate ultraviolet rays.
The support member 2 includes a pair of legs 6 for each ultraviolet irradiation device 4 and is a member that supports the ultraviolet irradiation device 4 by the legs 6. The light emitting surface 20 (FIG. 3) of each ultraviolet irradiation device 4 is the same surface. Align and support inside.

図2は、光硬化処理時の光硬化処理装置1を示す図であり、図2(A)は全体図、図2(B)は一部拡大図である。
光硬化処理装置1の直下には、平面状の載置ステージ3が設けられており、この載置ステージ3の載置面に、紫外線照射装置4ごとに、1枚のワークWが対面配置されている。
光硬化処理装置1は、支持材2が昇降機構によってワークWに対して昇降可能に構成されており、光硬化処理時には、図2(A)に示すように、昇降機構によって支持材2が降下し、各紫外線照射装置4の発光面20が、対面するワークWに距離d(図2(B))まで近付けられ、この状態で、それぞれの紫外線照射装置4が一斉にワークWに紫外線を照射し、これらのワークWを一度に光硬化処理する。
2A and 2B are diagrams showing the photocuring apparatus 1 during the photocuring process. FIG. 2A is an overall view, and FIG. 2B is a partially enlarged view.
A planar mounting stage 3 is provided immediately below the photocuring processing apparatus 1, and one work W is disposed facing the mounting surface of the mounting stage 3 for each ultraviolet irradiation device 4. ing.
The photocuring apparatus 1 is configured such that the support material 2 can be moved up and down with respect to the workpiece W by an elevating mechanism. During the photocuring process, the support material 2 is lowered by the elevating mechanism as shown in FIG. Then, the light emitting surface 20 of each ultraviolet irradiation device 4 is brought close to the facing workpiece W to a distance d (FIG. 2B), and in this state, each ultraviolet irradiation device 4 irradiates the workpiece W with ultraviolet rays all at once. These workpieces W are photocured at once.

図3は紫外線照射装置4の構成を示す図であり、図3(A)は紫外線照射装置4の全体斜視図、図3(B)は図3(A)のX部拡大図である。
紫外線照射装置4は、平面視矩形の箱形の筐体12を備え、筐体12の矩形(図示例では正方形)の底面12Aに発光部7が設けられ、また、筐体12の天面には、内部の熱を外部に排気するための排気口14(図1)が設けられている。
FIG. 3 is a diagram showing a configuration of the ultraviolet irradiation device 4, FIG. 3 (A) is an overall perspective view of the ultraviolet irradiation device 4, and FIG. 3 (B) is an enlarged view of a portion X in FIG. 3 (A).
The ultraviolet irradiation device 4 includes a box-shaped housing 12 having a rectangular shape in plan view, the light emitting unit 7 is provided on a rectangular bottom surface 12A of the housing 12 (square in the illustrated example), and the top surface of the housing 12 is provided. Is provided with an exhaust port 14 (FIG. 1) for exhausting internal heat to the outside.

発光部7は、実装基板16と、Na個(図示例では31×31個)のLEDチップ18とを備えている。
実装基板16は、LEDチップ18を実装する矩形状の基板であり、筐体12の底面12Aの開口に嵌め込まれる。この実装基板16の実装面に多数のLEDチップ18が配置されることで、紫外線照射装置4の発光面20が形成され、この発光面20から面状に紫外線が放射される。
LEDチップ18は、紫外線を放射する発光素子の一態様であるLEDと、配光を制御する光学素子と、を備えている。
The light emitting unit 7 includes a mounting substrate 16 and Na (31 × 31 in the illustrated example) LED chips 18.
The mounting substrate 16 is a rectangular substrate on which the LED chip 18 is mounted, and is fitted into the opening of the bottom surface 12 </ b> A of the housing 12. By arranging a large number of LED chips 18 on the mounting surface of the mounting substrate 16, the light emitting surface 20 of the ultraviolet irradiation device 4 is formed, and ultraviolet rays are emitted from the light emitting surface 20 in a planar shape.
The LED chip 18 includes an LED, which is an embodiment of a light emitting element that emits ultraviolet rays, and an optical element that controls light distribution.

本実施形態の発光部7は、光硬化処理時に、ワークWの被照射面のいずれの箇所にも、Nb個以上(ただし、Na≧Nb≧2)のLEDチップ18の光を重ねて照射するように構成されている。
具体的には、LEDチップ18のそれぞれは、その半値角が30度以上となっており、いわゆる広角配光を有する。そして、係るLEDチップ18が、光硬化処理時(すなわち、発光面20と被照射面の離間距離が上記距離dのとき)に、ワークWの面内のどの箇所においてもNb個のLEDチップ18の紫外線が重畳する配置間隔αで格子状に実装基板16に配置されている。
The light emitting unit 7 of the present embodiment irradiates the light of the Nb or more (however, Na ≧ Nb ≧ 2) LED chips 18 in an overlapping manner on any portion of the irradiated surface of the workpiece W during the light curing process. It is configured as follows.
Specifically, each LED chip 18 has a half-value angle of 30 degrees or more, and has a so-called wide-angle light distribution. The LED chip 18 has Nb LED chips 18 at any location on the surface of the workpiece W during the light curing process (that is, when the distance between the light emitting surface 20 and the irradiated surface is the distance d). Are arranged on the mounting substrate 16 in a lattice pattern with an arrangement interval α at which the ultraviolet rays overlap.

このように、一定の配置間隔αで実装基板16に格子状にLEDチップ18が配置されることで、発光面20から均一に紫外線が照射される。
これに加えて、ワークWの被照射面のどの箇所においても、Nb個のLEDチップ18の紫外線が重畳することで、Nb個の中のいずれかのLEDチップ18が不点状態になった場合でも、そのLEDチップ18に対面する被照射面上の箇所での照度の低下が抑えられ、均斉度が維持される。
As described above, the LED chips 18 are arranged in a grid pattern on the mounting substrate 16 at a constant arrangement interval α, so that the ultraviolet light is uniformly irradiated from the light emitting surface 20.
In addition to this, when any one of the Nb LED chips 18 is in an astigmatic state due to the ultraviolet rays of the Nb LED chips 18 being superimposed on any part of the irradiated surface of the workpiece W, However, a decrease in illuminance at a location on the irradiated surface facing the LED chip 18 is suppressed, and uniformity is maintained.

なお、本実施形態では、LEDチップ18が格子状に配置されているが、そのうちの1つが不点灯状態になった場合でも、ワークWの均斉度が光硬化処理の所定要求値を維持可能な配置であれば、格子状に限らず千鳥配置などの任意の配置を採用できる。   In the present embodiment, the LED chips 18 are arranged in a grid pattern, but even when one of them is in a non-lighting state, the uniformity of the workpiece W can maintain the predetermined required value for the photocuring process. As long as it is an arrangement, an arbitrary arrangement such as a staggered arrangement is not limited to the lattice shape.

図4は、光硬化処理装置1の電気的構成を示す図である。
同図に示すように、光硬化処理装置1は、商用電源などの電力を紫外線照射装置4のそれぞれに供給する電源線21を備えている。
また紫外線照射装置4のそれぞれは、電源装置23と、不点灯検出回路26とを備えている。
FIG. 4 is a diagram illustrating an electrical configuration of the photocuring apparatus 1.
As shown in the figure, the photocuring treatment apparatus 1 includes a power line 21 that supplies electric power such as a commercial power source to each of the ultraviolet irradiation apparatuses 4.
Each of the ultraviolet irradiation devices 4 includes a power supply device 23 and a non-lighting detection circuit 26.

電源装置23は、電源線21を通じて供給される電力に基づいて、LEDチップ18の駆動電力を生成する電力変換装置であり、この電源装置23には、電力供給ラインLを介して、各LEDチップ18が電気的に接続されている。
より具体的には、紫外線照射装置4のそれぞれは、複数のLEDグループGを有し、各LEDグループGが電力供給ラインLに電気的に並列に接続されている。LEDグループGは、Na個のLEDチップ18をNc(Nc≧Nb≧2)個毎に分けたグループである。
各LEDグループGでは、それぞれのLEDチップ18が電力供給ラインLに電気的に直列ではなく、並列に接続されており、あるLEDチップ18の不点灯状態になったときに、他のLEDチップ18まで不点灯状態になるのを防止している。
The power supply device 23 is a power conversion device that generates driving power for the LED chip 18 based on the power supplied through the power supply line 21, and each LED chip is connected to the power supply device 23 via the power supply line L. 18 is electrically connected.
More specifically, each of the ultraviolet irradiation devices 4 has a plurality of LED groups G, and each LED group G is electrically connected to the power supply line L in parallel. The LED group G is a group in which Na LED chips 18 are divided every Nc (Nc ≧ Nb ≧ 2).
In each LED group G, each LED chip 18 is connected to the power supply line L in parallel rather than in series, and when one LED chip 18 is not lit, another LED chip 18 is connected. It is prevented from becoming a non-lighting state.

不点灯検出回路26は、LEDチップ18の不点灯状態を検出する回路である。
本実施形態では、電力供給ラインLを通じてLEDグルーブGに流れる電流を検出するカレントセンサ24がLEDグループGごとに設けられており、不点灯検出回路26は、カレントセンサ24の電流値に基づいて、LEDグループGごとに、LEDチップ18の不点灯を検出する。
また不点灯検出回路26は、不点灯状態を検討した場合、光硬化処理装置1の外部に設けられた制御盤などに不点灯警告信号を出力し、LEDチップ18の不点灯状態を検出した旨を通知する。
The non-lighting detection circuit 26 is a circuit that detects a non-lighting state of the LED chip 18.
In the present embodiment, a current sensor 24 that detects a current flowing through the LED groove G through the power supply line L is provided for each LED group G, and the non-lighting detection circuit 26 is based on the current value of the current sensor 24. The non-lighting of the LED chip 18 is detected for each LED group G.
In addition, when the non-lighting detection circuit 26 examines the non-lighting state, it outputs a non-lighting warning signal to a control panel or the like provided outside the photocuring processing apparatus 1 to detect that the non-lighting state of the LED chip 18 has been detected. To be notified.

次いで、不点灯検出回路26の不点灯検出動作について詳述する。   Next, the non-lighting detection operation of the non-lighting detection circuit 26 will be described in detail.

本実施形態の不点灯検出回路26は、カレントセンサ24の電流値が定常値Ioから所定値Ith以上に低下した場合に、LEDチップ18の不点灯状態を検出する。
定常値Ioは、LEDグループGの全てのLEDチップ18が点灯しているときに当該LEDグループGに電力供給ラインLに流れる電流値であり、各LEDチップ18の駆動電流Idの合算値に概ね一致する。
The non-lighting detection circuit 26 of the present embodiment detects the non-lighting state of the LED chip 18 when the current value of the current sensor 24 decreases from the steady value Io to a predetermined value Ith or more.
The steady value Io is a current value that flows through the power supply line L to the LED group G when all the LED chips 18 of the LED group G are lit, and is approximately the sum of the drive currents Id of the LED chips 18. Match.

所定値Ithは、LEDチップ18の不点灯状態によって低下する電流値である。
上述の通り、本実施形態では、光硬化処理時に、ワークWの面内のどの箇所においてもNb個のLEDチップ18の紫外線が重畳しており、これらNb個の全てのLEDチップ18が不点灯状態になるまでは、その箇所での極端な照度低下は回避される。このとき、不点灯状態によって、光硬化照射処理に必要な均斉度が維持されなくなるLEDチップ18の数をNd個(ただし、Nb≧Nd≧2)とすると、少なくともNd個が不点灯状態になるまでは、光硬化処理に支障を来すことがない。
The predetermined value Ith is a current value that decreases due to the non-lighting state of the LED chip 18.
As described above, in the present embodiment, the ultraviolet rays of the Nb LED chips 18 are superimposed at any location in the surface of the workpiece W during the photocuring process, and all the Nb LED chips 18 are not lit. Until the state is reached, an extreme decrease in illuminance at that point is avoided. At this time, assuming that the number of LED chips 18 in which the uniformity required for the photocuring irradiation process is not maintained due to the non-lighting state is Nd (where Nb ≧ Nd ≧ 2), at least Nd is in the non-lighting state. Until then, there is no problem in the photocuring treatment.

そこで、所定値Ithには、Nd個のLEDチップ18の分の駆動電流Id(すなわち、Ith=Nb×Id)が設定され、不点灯検出回路26は、Nd個のLEDチップ18が不点灯状態となった場合、すなわち均斉度が維持されなくなった場合に、LEDグループGに生じた不点灯状態を検出する。不点灯検出回路26は、不点灯状態を検出すると、その旨を外部の制御盤などに通知する。制御盤は、係る通知を受信した場合、光硬化処理を停止し、液晶パネルの光硬化不良の発生を抑える。   Therefore, the drive current Id corresponding to the Nd LED chips 18 (that is, Ith = Nb × Id) is set as the predetermined value Ith, and the non-lighting detection circuit 26 indicates that the Nd LED chips 18 are not lighted. In this case, that is, when the uniformity is not maintained, the non-lighting state generated in the LED group G is detected. When the non-lighting detection circuit 26 detects the non-lighting state, the non-lighting detection circuit 26 notifies the control panel or the like to that effect. When the control panel receives such a notification, the control panel stops the photocuring process and suppresses the occurrence of poor photocuring of the liquid crystal panel.

これにより、不点灯状態になったLEDチップ18の個数が、各LEDグループGにおいて少なくともNd個に達するまでは、光硬化処理が正常に行われるので、不点灯状態に起因した光硬化処理の停止回数が抑えられる。   As a result, the photocuring process is normally performed until the number of LED chips 18 in the non-lighted state reaches at least Nd in each LED group G. Therefore, the photocuring process is stopped due to the unlit state. The number of times can be reduced.

また、Na個のLEDチップ18を、Nc個ごとのLEDグループGに分けて電流値の低下を検出ことで、カレントセンサ24による検出精度が高められる。
各LEDグループGは、実装基板16を格子状に区画したときに同一の区画エリア30(図3(B))に含まれるLEDチップ18で構成されている。これにより、ワークWの被照射面の同一箇所を照射しないLEDチップ18だけが不点灯状態になった場合を、不点灯検出回路26が検出することがないので、LEDチップ18の不点灯状態による光硬化処理の停止回数を、さらに抑えることができる。
Moreover, the detection accuracy by the current sensor 24 is improved by dividing the Na LED chips 18 into Nc LED groups G and detecting a decrease in the current value.
Each LED group G is composed of LED chips 18 included in the same partition area 30 (FIG. 3B) when the mounting substrate 16 is partitioned in a grid pattern. Thereby, when only the LED chip 18 that does not irradiate the same portion of the irradiated surface of the work W is in the non-lighting state, the non-lighting detection circuit 26 does not detect it. The number of times the photocuring process is stopped can be further suppressed.

なお、所定値Ithは、少なくともカレントセンサ24の分解能によって計測可能な電流値を超えるように設定されることは勿論である。   Needless to say, the predetermined value Ith is set to exceed a measurable current value by at least the resolution of the current sensor 24.

図5、及び図6は、紫外線照射装置4の均斉度のシミュレーション結果を示す図であり、図5はLEDチップ18の半値角が29度の場合を示し、図6はLEDチップ18の半値角が60度(いわゆる、ランバート配光)の場合を示す。
シミュレーションにおいて、LEDチップ18の配置間隔αは5mmであり、紫外線照射装置4とワークWの距離dは10mmである。そして、ワークWの被照射面の同一箇所を照射するNb個のLEDチップ18のうち、0個(全点灯)、3個、及び5個を消灯させたときの各々の均斉度をシミュレーションによって求めている。
なお、均斉度(%)は次式で定義される値であり、この数値が小さいほど均斉度は高い。
均斉度(%)=(照度最大値−照度最小値)/(照度最大値+照度最小値)×100
5 and 6 are diagrams showing simulation results of the uniformity of the ultraviolet irradiation device 4. FIG. 5 shows a case where the half-value angle of the LED chip 18 is 29 degrees, and FIG. 6 shows a half-value angle of the LED chip 18. Is 60 degrees (so-called Lambert light distribution).
In the simulation, the arrangement interval α of the LED chips 18 is 5 mm, and the distance d between the ultraviolet irradiation device 4 and the workpiece W is 10 mm. Then, among Nb LED chips 18 that irradiate the same portion of the surface to be irradiated of the workpiece W, the uniformity of each of 0 (all turned on), 3 and 5 turned off is obtained by simulation. ing.
The degree of uniformity (%) is a value defined by the following formula. The smaller the value, the higher the degree of uniformity.
Uniformity (%) = (maximum illuminance value−minimum illuminance value) / (maximum illuminance value + minimum illuminance value) × 100

図5、及び図6に示すように、LEDチップ18の消灯数が0個、すなわち全点灯の場合、被照射面の均斉度は0〜5%の範囲に高く維持されており、一方、消灯数が増加するほど、それらが照射している箇所での均斉度が劣化し、また半値角が小さいほど少ない消灯数で均斉度が劣化することが分かる。   As shown in FIG. 5 and FIG. 6, when the number of LED chips 18 that are turned off is zero, that is, when all the lights are turned on, the uniformity of the irradiated surface is kept high in the range of 0 to 5%, while the lights are turned off. It can be seen that as the number increases, the uniformity at the point where they are irradiated deteriorates, and as the half-value angle decreases, the uniformity decreases with a smaller number of extinctions.

また一般に、ODFの光硬化処理において、好ましい均斉度の上限値は20%である。
均斉度が20%以下に抑えられる消灯数、すなわち、不点灯検出回路26が検出すべき不点灯状態のLEDチップ18の数Ndは、半値角が60度である場合には少なくとも5個未満であり、半値角が29度である場合には少なくとも3個未満である。
不点灯検出回路26が検出する上記所定値Ithは、Ndが大きいほど大きくなるのでカレントセンサ24による検出精度が向上し、またNdが大きいほどカレントセンサ24の数が減りコストが抑えられることに鑑み、Ndは3個以上、すなわち半値角が30度以上であることが好ましい。
In general, in the ODF photocuring treatment, a preferable upper limit of the uniformity is 20%.
The number of light extinctions in which the uniformity is suppressed to 20% or less, that is, the number Nd of the non-lighting LED chips 18 to be detected by the non-lighting detection circuit 26 is less than at least 5 when the half-value angle is 60 degrees. Yes, when the half-value angle is 29 degrees, it is at least less than 3.
The predetermined value Ith detected by the non-lighting detection circuit 26 increases as Nd increases, so that the detection accuracy by the current sensor 24 improves, and the number of current sensors 24 decreases and the cost is reduced as Nd increases. , Nd is preferably 3 or more, that is, the half-value angle is preferably 30 degrees or more.

以上説明したように、本実施形態によれば次のような効果を奏する。   As described above, according to the present embodiment, the following effects can be obtained.

本実施形態の紫外線照射装置4では、不点灯検出回路26が、Nc個のLEDチップ18に駆動用電力を供給する電力供給ラインLの電流値の低下に基づいて、これらNc個のLEDチップ18の中に生じた不点灯状態を検出する構成とした。
これにより、個々のLEDチップ18ごとに受光センサを設けて不点灯状態を検出する構成に比べ、センサの数を減らすことができるのでコストが抑えられる。
In the ultraviolet irradiation device 4 of the present embodiment, the non-lighting detection circuit 26 is based on a decrease in the current value of the power supply line L that supplies driving power to the Nc LED chips 18, and the Nc LED chips 18. It was set as the structure which detects the non-lighting state which arose in the inside.
As a result, the number of sensors can be reduced as compared with a configuration in which a light receiving sensor is provided for each LED chip 18 to detect a non-lighting state, thereby reducing costs.

本実施形態の紫外線照射装置4では、LEDチップ18が広角配光を有し、ワークWの被照射面のいずれの箇所に対してもNb(ただし、Na≧Nb≧2)個のLEDチップ18の光を重ねて照射する構成とした。
これにより、同一箇所を照射するNb個の全てのLEDチップ18が不点灯状態になるまで、その箇所での極端な照度低下を回避できる。
In the ultraviolet irradiation device 4 of the present embodiment, the LED chip 18 has a wide-angle light distribution, and Nb (where Na ≧ Nb ≧ 2) LED chips 18 are provided at any location on the irradiated surface of the workpiece W. It was set as the structure which irradiates and overlaps.
Thereby, until all the Nb LED chips 18 that irradiate the same place are in a non-lighting state, it is possible to avoid an extremely low illuminance at that place.

本実施形態の紫外線照射装置4では、不点灯検出回路26は、発光面20を区画した区画エリア30に含まれるNc(Na≧Nc≧Nb)個のLEDチップ18ごとに不点灯状態を検出する構成とした。
これにより、ワークWの被照射面の同一箇所を照射しないLEDチップ18だけが不点灯状態になった場合、換言すれば、照度の極端な落ち込みを生じさせない不点灯状態を、不点灯検出回路26が検出することを防止できる。
In the ultraviolet irradiation device 4 of the present embodiment, the non-lighting detection circuit 26 detects a non-lighting state for each of the Nc (Na ≧ Nc ≧ Nb) LED chips 18 included in the partition area 30 that partitions the light emitting surface 20. The configuration.
As a result, when only the LED chip 18 that does not irradiate the same portion of the surface to be irradiated of the workpiece W is in a non-lighting state, in other words, a non-lighting state that does not cause an extreme drop in illuminance is detected. Can be prevented from being detected.

本実施形態の紫外線照射装置4では、Ncの個数を、被照射面の均斉度が所定値以上になるLEDチップ18の個数とした。
これにより、被照射面の均斉度が所定値以上になるような不点灯状態の発生を、確実に検出できる。
In the ultraviolet irradiation device 4 of the present embodiment, the number of Nc is the number of LED chips 18 whose uniformity of the irradiated surface is equal to or greater than a predetermined value.
Thereby, it is possible to reliably detect the occurrence of a non-lighting state in which the uniformity of the irradiated surface is equal to or greater than a predetermined value.

本実施形態の紫外線照射装置4では、LEDチップ18配光を、半値角が30°以上とした。
これにより、コストを抑えつつ適切な検出精度でLEDチップ18の不点灯状態を検出できる。
In the ultraviolet irradiation device 4 of the present embodiment, the LED chip 18 light distribution has a half-value angle of 30 ° or more.
Thereby, the non-lighting state of the LED chip 18 can be detected with appropriate detection accuracy while suppressing cost.

なお、上述した実施形態は、あくまでも本発明の一態様を例示したものであって、本発明の趣旨を逸脱しない範囲で任意に変形、及び応用が可能である。   The above-described embodiment is merely an example of one aspect of the present invention, and can be arbitrarily modified and applied without departing from the spirit of the present invention.

上述した実施形態において、不点灯検出回路26は、電力供給ラインLに流れる電流値を検出したが、LEDチップ18が電圧駆動される場合などには電圧値を検出してもよい。   In the embodiment described above, the non-lighting detection circuit 26 detects the value of the current flowing through the power supply line L. However, the voltage value may be detected when the LED chip 18 is voltage driven.

上述した実施形態では、LEDチップ18が広角配光を有する構成としたが、これに限らない。例えばLEDチップ18が備える光学素子が、LEDの光を拡散する拡散部材として機能することで、LEDチップ18が比較的広い範囲に光を放射する構成としてもよい。また、複数のLEDチップ18を拡散板で覆い、当該拡散板がLEDチップ18の光を拡散する構成でもよい。   In the above-described embodiment, the LED chip 18 has a wide-angle light distribution, but is not limited thereto. For example, the optical element included in the LED chip 18 may function as a diffusing member that diffuses the light of the LED, so that the LED chip 18 emits light over a relatively wide range. Moreover, the structure which covers the some LED chip 18 with a diffusion plate, and the said diffusion plate diffuses the light of the LED chip 18 may be sufficient.

上述した実施形態において、光照射装置の例として、紫外線を照射する紫外線照射装置4を例示したが、照射光の波長は、紫外線に限らず可視光線などの他の波長でもよい。
またLEDチップ18の代わりに例えば有機ELなどの他の発光素子を用いてもよい。
In the above-described embodiment, the ultraviolet irradiation device 4 that irradiates ultraviolet rays is illustrated as an example of the light irradiation device, but the wavelength of the irradiation light is not limited to ultraviolet rays, but may be other wavelengths such as visible light.
Further, instead of the LED chip 18, other light emitting elements such as an organic EL may be used.

上述した実施形態では、光硬化処理に用いられる紫外線照射装置4を例示したが、本発明は、任意の光処理用の光照射装置に適用できる。   In the embodiment described above, the ultraviolet irradiation device 4 used for the photocuring process is exemplified, but the present invention can be applied to any light irradiation device for light processing.

1 光硬化処理装置
4 紫外線照射装置(光照射装置)
7 発光部
16 実装基板
18 LEDチップ(発光素子)
20 発光面
21 電源線
23 電源装置
24 カレントセンサ
26 点灯検出回路
30 区画エリア
Id 駆動電流
Io 定常値
Ith 所定値
L 電力供給ライン
W ワーク(照射対象物)
d 距離
α 配置間隔
1 Photo-curing treatment device 4 Ultraviolet irradiation device (light irradiation device)
7 Light Emitting Unit 16 Mounting Board 18 LED Chip (Light Emitting Element)
DESCRIPTION OF SYMBOLS 20 Light emission surface 21 Power supply line 23 Power supply device 24 Current sensor 26 Lighting detection circuit 30 Compartment area Id Drive current Io Steady value Ith Predetermined value L Electric power supply line W Work (Irradiation target)
d Distance α Arrangement interval

Claims (5)

Na(ただしNa≧2)個の発光素子と、
前記発光素子の不点灯状態を検出する不点灯検出回路と、を有し、
照射対象物の平面状の被照射面に前記発光素子の光を照射する光照射装置において、
前記不点灯検出回路は、
複数の発光素子に駆動用電力を供給する電力供給ラインの電流、或いは電圧の低下に基づいて前記複数の発光素子の中に生じた不点灯状態を検出する
ことを特徴とする光照射装置。
Na (where Na ≧ 2) light emitting elements;
A non-lighting detection circuit for detecting a non-lighting state of the light emitting element,
In the light irradiation device for irradiating the light of the light emitting element onto the planar irradiated surface of the irradiation object,
The non-lighting detection circuit is
A non-lighting state generated in the plurality of light emitting elements is detected based on a decrease in current or voltage of a power supply line that supplies driving power to the plurality of light emitting elements.
前記発光素子が広角配光を有し、或いは、前記発光素子の各々の光を拡散する拡散部材を備え、
前記被照射面のいずれかの箇所に、Nb(ただし、Na≧Nb≧2)個の発光素子の光を重ねて照射する、
ことを特徴とする請求項1に記載の光照射装置。
The light emitting element has a wide-angle light distribution, or includes a diffusing member that diffuses each light of the light emitting element,
Irradiate the light of Nb (however, Na ≧ Nb ≧ 2) light emitting elements in any place on the irradiated surface,
The light irradiation apparatus according to claim 1.
前記不点灯検出回路は、
前記Na個の発光素子が配置された発光面を区画した区画エリアに含まれるNc(Na≧Nc≧Nb)個の発光素子ごとに前記不点灯状態を検出する
ことを特徴とする請求項2に記載の光照射装置。
The non-lighting detection circuit is
The non-lighting state is detected for each of Nc (Na ≧ Nc ≧ Nb) light emitting elements included in a section area that partitions a light emitting surface on which the Na light emitting elements are arranged. The light irradiation apparatus of description.
前記Nc個は、前記被照射面の同一箇所を照射する前記Nb個の発光素子の中に生じた不点灯状態によって前記被照射面の均斉度が所定値以上になる前記発光素子の個数である、
ことを特徴とする請求項3に記載の光照射装置。
The Nc number is the number of the light emitting elements in which the uniformity of the irradiated surface is equal to or greater than a predetermined value due to a non-lighting state generated in the Nb light emitting elements that irradiate the same portion of the irradiated surface. ,
The light irradiation apparatus according to claim 3.
前記発光素子の配光は、半値角が30°以上である
ことを特徴とする請求項2〜4のいずれかに記載の光照射装置。
The light distribution device according to any one of claims 2 to 4, wherein the light distribution of the light emitting element has a half-value angle of 30 ° or more.
JP2017051490A 2017-03-16 2017-03-16 Light irradiation device Pending JP2018153738A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017051490A JP2018153738A (en) 2017-03-16 2017-03-16 Light irradiation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017051490A JP2018153738A (en) 2017-03-16 2017-03-16 Light irradiation device

Publications (1)

Publication Number Publication Date
JP2018153738A true JP2018153738A (en) 2018-10-04

Family

ID=63717538

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017051490A Pending JP2018153738A (en) 2017-03-16 2017-03-16 Light irradiation device

Country Status (1)

Country Link
JP (1) JP2018153738A (en)

Similar Documents

Publication Publication Date Title
JP4279738B2 (en) UV irradiation equipment
JP2008141038A (en) Method and device for ultraviolet irradiation
CN105026823A (en) Light irradiation device
JP5035272B2 (en) Light irradiation device
KR101510922B1 (en) Line type illuminating device
JP5257308B2 (en) Light irradiation device
KR20120082805A (en) Exposure method and exposure apparatus
US8803109B1 (en) Energy efficient multi-spectrum screen exposure system
JP2018153738A (en) Light irradiation device
KR101526937B1 (en) The apparatus for lighting white light
KR102576187B1 (en) Ultraviolet light curing device
KR102566424B1 (en) Curing apparatus
JP5416918B2 (en) Light irradiation device and method for correcting illuminance of light emitting diode used in the same
JP2016068052A (en) Light source device
KR20170008370A (en) Light Irradiation System for Semiconductor Device and Control Method Therefor
JP4766799B2 (en) Solar simulator for solar cell measurement
KR101586062B1 (en) LED exposure apparatus capable of controlling light output and method for controlling the same
JP5691726B2 (en) Reflector for lighting device and lighting device
JP2011206731A (en) Ultraviolet irradiation apparatus
JP2013093107A (en) Ultraviolet irradiation device
JP5382373B2 (en) Light irradiation device
KR20120035782A (en) Sealant curing apparatus and arrangement structure of led for sealant curing apparatus
KR20120040096A (en) Light irradiation apparatus
US20200031026A1 (en) Curing-device
JP7288274B2 (en) light irradiation system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200930

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201006

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201118

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20210406