JP2010128477A - 光学部品の製造方法及び光学部品 - Google Patents

光学部品の製造方法及び光学部品 Download PDF

Info

Publication number
JP2010128477A
JP2010128477A JP2008306723A JP2008306723A JP2010128477A JP 2010128477 A JP2010128477 A JP 2010128477A JP 2008306723 A JP2008306723 A JP 2008306723A JP 2008306723 A JP2008306723 A JP 2008306723A JP 2010128477 A JP2010128477 A JP 2010128477A
Authority
JP
Japan
Prior art keywords
substrate
buffer layer
substrates
optical component
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008306723A
Other languages
English (en)
Other versions
JP5132534B2 (ja
Inventor
Kazumasa Adachi
和正 安達
Motoo Takada
元生 高田
Kozo Ono
公三 小野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nihon Dempa Kogyo Co Ltd
Original Assignee
Nihon Dempa Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Dempa Kogyo Co Ltd filed Critical Nihon Dempa Kogyo Co Ltd
Priority to JP2008306723A priority Critical patent/JP5132534B2/ja
Priority to US12/590,915 priority patent/US8424746B2/en
Publication of JP2010128477A publication Critical patent/JP2010128477A/ja
Application granted granted Critical
Publication of JP5132534B2 publication Critical patent/JP5132534B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C45/00Amorphous alloys
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/42Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect
    • G02B27/46Systems using spatial filters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T156/00Adhesive bonding and miscellaneous chemical manufacture
    • Y10T156/10Methods of surface bonding and/or assembly therefor
    • Y10T156/1052Methods of surface bonding and/or assembly therefor with cutting, punching, tearing or severing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24942Structurally defined web or sheet [e.g., overall dimension, etc.] including components having same physical characteristic in differing degree

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Polarising Elements (AREA)

Abstract

【課題】内部に光を透過させて用いられる光学部品を製造するにあたり、互いに線膨張係数の異なる材料からなる基板同士であっても容易に接合すること。
【解決手段】互いに線膨張係数の異なる複数の基板の接合面に、脆性破壊を起こすアモルファス状の無機物からなるバッファ層を形成し、このバッファ層同士が相対向するように接合する基板同士を積層する。そして、この積層体に対して加熱処理を行うことにより、バッファ層同士の間で原子を介した直接接合を形成する。
【選択図】図1

Description

本発明は、その内部に光を透過させて用いられる光学部品の製造方法及び光学部品に関する。
例えばデジタルカメラ用のCCD素子やCMOSセンサのためのオプチカルローパスフィルタなどの光学部品の材料としては、例えばチップ状の水晶が用いられている。この光学部品は、例えば水晶の結晶軸の向きがチップの水平面と平行でかつチップの水平面の4辺に対して所定の角度だけ傾斜するように当該チップを切り出しておき、このチップの水平面に対して垂直に光を入射させることによって、チップに入射した光が当該チップを直線的に透過する常光線と、この常光線と平行に且つ常光線から所定の距離だけ離れた位置において放出される異光線と、の2つの経路に入射光が分離されるという現象を利用したものである。チップの裏面側においてこの異光線が放出される位置は、例えばチップの4辺に対する水晶の結晶軸の傾斜角度に応じて変わることになる。
従って、例えば結晶軸の傾斜角度が互いに異なる複数の水晶チップを重ね合わせて一体化した積層体に対して、水晶チップの積層方向に向かって垂直に光を照射することによって、1本の入射光が始めの1枚の水晶チップを透過すると2本に増え、この2本の透過光が続く水晶チップを透過すると各々が2本に増えるので合わせて例えば4本に増えていき、そして順次後続の水晶チップを透過する毎に透過光の本数が増えていくことになる。そのため、水晶チップの積層枚数や各々の水晶チップにおける結晶軸の傾斜角度に応じて、積層体を透過する光の経路の数を増やしたり、あるいは積層体を透過する透過光(常光線及び異光線)の並び(配置)を調整したりできることになる。そこで、この水晶を用いた光学部品は、例えばこの積層体を透過した光が到達する部位に設けられた撮像素子の画素の数や配置などに応じて、積層体の積層枚数や各々の水晶チップの結晶軸の傾斜角度などが調整されている。また、光路長の調整のために、これらの水晶チップ間にアモルファス状のガラスチップを介在させる場合もあるし、また例えば各々の光の透過領域や不透過領域などの光学特性が互いに異なるガラスチップ同士を貼り合わせて積層して水晶チップ間に介在させる場合もある。
そのため、この積層体は、上記のように各々の水晶チップ間において結晶軸の角度がずれていたり、あるいは水晶とは物性の異なるガラス板が介在したりすることにより、更には隣り合うガラス板間においても物性が異なることにより、線膨張係数が互いに異なる複数の層により構成されていることになる。このような積層体からなるチップ状の光学部品は、例えば以下のようにして基板から切り出される。
先ず、後述の図2に示すように、結晶軸の向きが水平面に平行で且つ水平面の周囲の1つの辺に対する傾斜角度θが各々異なる複数枚の水晶や、アモルファス状のガラスなどからなる互いに線膨張係数の異なる複数枚の基板103を例えばアクリル系の接着剤102を用いて接着して、図10(a)に示すように積層体101を形成する。そして、同図(b)に示すように、この積層体101に対して例えば冷却水や潤滑油などの切削液を供給すると共に、切断用の砥石104を用いてダイシングと呼ばれる加工により碁盤の目状に積層体101を切断することによって、矩形の水晶チップ100が積層体101から切り出されることになる。この時、水晶チップ100の切断面の上下の角部にはダイシング加工によりチッピングと呼ばれるカケが多く生成することから、このカケの大きさや数を抑えるために、このダイシング加工は例えば積層体101に対して砥石104が切り込んでいく速度(加工速度)を例えば数mm/min程度の極めて遅い速度に設定して行うようにしている。その後、このチップは、洗浄により表面に付着した切削液や切削カスが除去される。
一方、例えば1枚の単板からなる基板103からチップを切り出す加工方法としては、上記のダイシング加工以外にも、例えばスクライビングと呼ばれる加工方法が知られている。具体的にはこの加工方法は、例えば図11(a)に示すように、先ず基板103の表面に例えば鋭利なダイヤモンドの刃105などを押し当てると共に、同図(b)のようにチップの外縁に沿ってライン状のクラックを碁盤の目状に形成する。次いで、同図(c)に示すように、基板103に加重を加えてこのクラックを基板103の厚さ方向に伝搬させて割断し、同図(d)のように基板103を割って(ブレークして)矩形の水晶チップ100を製造する方法である。
この加工方法では、ダイヤモンド刃105による加工は基板103の表面にクラックを付けるだけなので、加工が容易であることから砥石104よりも例えば数十倍程度速くダイヤモンド刃105を走行させることができ、そのため既述のダイシング加工よりも速く加工することができる。従って、ダイシング加工よりも生産性が高くなり、また加工装置の台数も少なくて済む。また、スクライビング加工はこのように基板103の表面にクラックを形成してチップ化するだけなので、ダイシング加工よりもカケの大きさや数を抑えることができる。更に、このスクライビング加工には切削液が不要であるため、加工後のチップの洗浄や廃液の処理を簡略化することができる。
そこで、上記の積層体101に対してもこのスクライビングにより加工することが望ましい。しかし、この積層体101は上記のように各々の基板103、103間に緩衝材となる接着剤102が介在しており、この接着剤102は脆性破壊を起こさないので、上層からのクラックの伝搬が遮られてしまう。そのため、図12に示すように、下層側の基板103に向かう程クラックが到達しにくくなり、この積層体101を割断するのは困難である。
一方、例えば特許文献1に記載されているように、このような接着剤102を介さずに複数の基板103を直接接合する方法が知られている。この方法は、基板103、103間に例えば酸素(O)や水素(H)などを含む分子を介在させて例えば400℃程度に加熱することで、分子間で強固な結合を持たせて複数の基板103を接合する方法である。この方法であれば、基板103、103間には接着剤102が介在せず、そのためスクライビングにより積層体101に対して一体的に亀裂を入れることができると考えられる。しかし、既述のようにこの積層体101は各々線膨張係数の異なる複数の基板103からなり、接合時の加熱や冷却によって膨張収縮する割合が各々の基板103毎に異なるため、接合処理時に基板103内において割れが発生したり、接合できなかったりする。
特許文献2には、線膨張係数の異なる2枚の基板同士を直接接合するにあたって、2枚の基板の間に一方の基板とほぼ同じ線膨張係数を持つ基板を介在させる技術が記載されているが、この方法では積層体101が極めて厚くなってしまう。
特開2006−248895(段落(0113)〜(0126)) 特開平07−086106(段落(0008)〜(0009))
本発明はこのような事情に基づいてなされたものであり、その目的は、互いに線膨張係数の異なる複数の基板の積層体からなる光学部品用の個片をスクライビングにより得ることのできる光学部品の製造方法及び光学部品を提供することにある。
本発明の光学部品の製造方法は、
内部に光を透過させて用いられる光学部品の製造方法において、
光学材料基板からなる第1の基板の表面に、脆性破壊を起こすアモルファス状の無機物からなる第1のバッファ層を形成する工程と、
前記第1の基板とは線膨張係数の異なる光学材料基板からなる第2の基板の表面に、脆性破壊を起こすアモルファス状の無機物からなる第2のバッファ層を形成する工程と、
次いで、前記第1のバッファ層及び前記第2のバッファ層とを重ね合わせて加熱処理を行い、当該第1のバッファ層及び第2のバッファ層を介して両基板を接合して積層体を得る工程と、
しかる後、スクライビング加工により前記積層体を積層方向に切断して光学部品用の個片を得る工程と、を含むことを特徴とする。
前記第1のバッファ層及び前記第2のバッファ層の屈折率は、各々2.5以下であることが好ましい。
前記第1のバッファ層及び前記第2のバッファ層は、各々金属、金属酸化物及び金属フッ化物のいずれかであることが好ましい。
前記第1のバッファ層及び前記第2のバッファ層は、各々スパッタ法あるいは蒸着法により形成されることが好ましい。
本発明の光学部品は、
内部に光を透過させて用いられる光学部品において、
光学材料基板からなる第1の基板と、
前記第1の基板とは線膨張係数の異なる光学材料基板からなる第2の基板と、
前記第1の基板と前記第2の基板との間に形成され、脆性破壊を起こすアモルファス状の無機物からなるバッファ層と、を備えたことを特徴とする。
本発明によれば、内部に光を透過させて用いられる光学部品を製造するために互いに線膨張係数の異なる基板同士を接合するにあたって、各々の基板の接合面に脆性破壊を起こすアモルファス状の無機物からなるバッファ層を形成し、熱処理によりこのバッファ層同士を接合させているので、基板間の線膨張係数の違いによって熱処理時に発生する応力をバッファ層が緩和するため、互いに線膨張係数の異なる基板同士でも確実に一体化させて積層体を形成できる。そのため、基板間にはクラックの伝搬を遮る緩衝材が介在しないので、この積層体をスクライビング加工により一体的に切断することができ、光学部品を簡便に得ることができる。
本発明の光学部品の製造方法の第1の実施の形態として、互いに線膨張係数の異なる光学材料基板である第1の基板1と第2の基板2とを接合する場合について、図1に示すフローチャートに基づいて説明する。初めにこれらの基板1、2について説明すると、図2に示すように、基板1、2は各々例えば水平面の大きさが40.5×48mmの板状の水晶から構成されており、また厚さ寸法が夫々例えば0.3mm、0.3mmとなっている。また、これらの基板1、2は、結晶軸(Z軸)の向きが各々の基板1、2の水平面に平行でかつ当該結晶軸の向きと1つの辺(この例では図2中下側の辺)とのなす傾斜角度θが基板1については例えば45°、基板2については例えば135°となるように、つまり基板1、2間では結晶軸の向きが直交するように調整されている。これらの基板1、2の線膨張係数は、Z軸に垂直方向が13.1×10−6/K、Z軸に平行方向が7.1×10−6/Kとなっている。従って、例えばこれらの基板1、2を厚さ方向に重ね合わせると、面方向の線膨張係数が互いに異なっていることになる。また、これらの基板1、2の屈折率n、nは、夫々1.54、1.54となっている。
先ず、例えば両面研磨装置を用いて、図3(a)に示すこれらの基板1、2の水平面が同図(b)のように平滑となるように研磨する(ステップS11)。次いで、例えばスパッタリング装置、イオンビームアシスト(IAD)蒸着装置、イオンビームスパッタ(IBS)装置またはラジカルアシストスパッタ(RAS)装置などを用いて、これらの基板1、2の表面に、夫々膜厚が例えば70nm〜700nmの透明で且つ屈折率が例えば1.63〜1.7好ましくは1.67の脆性破壊を起こす無機物例えばアルミニウム酸化物(Al;アルミナ)からなる第1のバッファ層3及び第2のバッファ層4を成膜する(ステップS12)。上記のような装置を用いて成膜処理を行うことにより、図3(c)に示すように、各バッファ層3、4は基板1、2の表面の形状に倣うように平滑で、且つ緻密でアモルファス(非結晶質)状となる。また、各々のバッファ層3、4は、下層側の基板1、2と夫々強い結合力で固着することとなる。
そして、図4(a)に示すように、第1のバッファ層3と及び第2のバッファ層4とが相対向するように、第1の基板1と第2の基板2とを重ね合わせる(ステップS13)。次いで、例えば真空雰囲気中において、例えば500℃で所定時間の加熱処理を行う(ステップS14)。この加熱処理により、図4(b)に示すように、バッファ層3、4間では原子の拡散が起こるので、あるいは原子間において結合が生成するので、いわば当該バッファ層3、4間における界面がなくなっていき、バッファ層3、4が直接接合されて、当該バッファ層3、4を介して基板1、2が一体化して積層体5が形成される。
この時、基板1、2は加熱処理により例えば水平方向に伸びようとするが、既述のように夫々の線膨張係数が異なるので、例えば図5(a)に示すように夫々の膨張率(膨張する長さ)が異なる。そのため、これらの基板1、2を直接接触させて接合しようとすると、加熱時の膨張量の差あるいは加熱処理が終了した後の冷却時の収縮量の差により、基板1、2間に応力が生じて当該基板1、2が割れてしまったり、あるいは接合できなかったりすることになる。しかし、基板1、2間にはアモルファス状のバッファ層3、4が介在しており、このバッファ層3、4は、この加熱処理によっても結晶化しないか、あるいは部分的に結晶化してもほぼアモルファス状態が保たれることとなる。そのため、これらのバッファ層3、4により各々の基板1、2間における膨張収縮率の差やこの差により生じる応力が緩和されるので、つまり微視的に見るとバッファ層3、4は基板1、2の近傍では当該基板1、2に強く固着されたまま基板1、2の膨張収縮に伴って伸縮し、また基板1、2の表面から離れるにつれて伸縮量が小さくなっていき、バッファ層3、4間の境界付近ではほとんど伸縮しないかあるいは問題とならないレベルにまで伸縮量が小さくなる。そのため、基板1、2は、割れたりあるいは応力によって変形したりすることが抑えられながら、バッファ層3、4により一体的に接合されることになる。
この時、図5(b)に示すように、基板1、2の間に介在する第1のバッファ層3及び第2のバッファ層4を接合層6とすると、この接合層6の屈折率nは、例えば1.63〜1.7好ましくは1.67となる。そのため、積層体5の屈折率n、n及びnは、ほとんど同じ値となる。その後、以下のようにこの積層体5に対してスクライビング加工を行う。
先ず、図6(a)に示すように、この積層体5の表面にダイヤモンド刃8などを押し当てながら当該表面を例えば10,000mm/sec程度の速度で移動させて、同図(b)及び図8(a)のように積層体5の表面に光学部品となる水晶チップ7の形状に応じて碁盤の目状にクラック9を入れる(ステップS15)。そして、図7(a)に示すように、例えばこのクラック9の形成された部位を下側から押圧(支持)すると共に、このクラック9を挟むように例えば2ヶ所において上方から荷重を加える(ステップS16)。この時、基板1、2は水晶から構成されているので脆性破壊を起こす材料であり、また基板1、2間に介在する接合層6についてもアルミナからなる脆性破壊を起こす材料である。従って、このように荷重を加えていくと、この図7(a)に示すように、積層体5にはクラック9が厚さ方向に対して伝搬していき、その後積層体5の下面にまで亀裂が到達し、同図(b)のように基板1、2の積層方向に対して積層体5が一体的に切断(ブレーク)されることとなる。こうしてクラック9を基点とした切断を繰り返していくことにより、図8(b)のように大きさが例えば7×8mm程度の個片である複数の水晶チップ7が分離される。その後、この水晶チップ7は、例えば洗浄された後、光が当該水晶チップ7内を透過する光学部品として用いられることになる。尚、実際にはクラック9は極めて小さいが、上記の図6及び図7においてはこのクラック9を模式的に示している。
上述の実施の形態によれば、互いに線膨張係数の異なる基板1、2を接合するにあたって、基板1、2の夫々の接合面に脆性破壊を起こすアモルファス状の無機物からなるバッファ層3、4を形成し、加熱処理によりこれらのバッファ層3、4を接合させることによって、基板1、2を一体的に接合している。そのため、これらのバッファ層3、4が加熱処理時における基板1、2間の膨張収縮率の差やこの差により生じる応力を緩和するので、互いに線膨張係数の異なる基板1、2同士であっても接合できる。また、基板1、2間には例えば接着剤のように緩衝材となってクラック9の伝搬を阻害する弾性体が介在しないので、スクライビング加工を行う時にクラック9が厚さ方向に伝搬し、当該積層体5を容易に確実に切断することができる。従って、既述のダイシング加工時の砥石による加工速度よりもダイヤモンド刃8による加工速度を極めて速くすることができるので、生産性を高めることができるし、また加工(切断)装置の数量も抑えることができる。更にダイシング加工と比べてカケの大きさや数を抑えることもできるし、また切断後の洗浄や廃液の処理を簡略化することができる。
また、基板1、2間に介在させるバッファ層3、4は、既述のように屈折率が極めて小さいので、当該バッファ層3、4における光の屈折が抑えられ、光学部品としての機能の低下を最小限に抑えながら上記のように高い生産性で当該光学部品を製造することができる。この時、これらのバッファ層3、4からなる接合層6は、既述のように膜厚が極めて薄く形成されているので、光学部品の大型化を抑えることができる。
更に、バッファ層3、4同士を直接接合するにあたって、基板1、2の表面を研磨した後当該バッファ層3、4を成膜しているので、バッファ層3、4の表面についても平滑となる。そのため、接合する時にはバッファ層3、4同士が面内に亘って均一に接触するので、面内に亘って強い結合力で基板1、2を接合することができる。
更にまた、上記のような成膜方法によりバッファ層3、4を形成することにより緻密なバッファ層3、4が形成されるので、極めて強い接合強度で基板1、2同士を接合することができる。
尚、基板1、2を接合するにあたって、例えば一方の基板1(2)のみにバッファ層3(4)を形成し、他方の基板2(1)にはバッファ層4(3)を形成せずに直接接合しても良いが、既述のように基板1、2間における膨張収縮の影響を抑えるためには、基板1、2の両面にバッファ層3、4を形成することが好ましい。
上記の例においては、光学材料基板である基板1、2として水晶を例に挙げて説明したが、水晶だけでなく、例えば光学的特性が異なるために互いに線膨張係数の異なる光学ガラス同士の接合に本発明を適用しても良い。また、例えば水晶、石英及びガラス等のシリコン酸化物からなる互いに物性の異なる材料同士を接合する場合に本発明を適用しても良い。
また、上記の実施の形態においては、2枚の基板1、2を接合した積層体5について説明したが、本発明は2枚以上の積層体5を接合する場合にも適用できる。このような例について図9を参照して説明する。この例では、図9(a)に示すように、屈折率nが夫々1.52、1.52、1.52、傾斜角度θが夫々45°、135°、90°の水晶からなる基板10、11、12を上側からこの順番で積層すると共に、基板10と基板11との間に例えば屈折率が1.51のガラス基板13を介在させている。
そして、上記の例と同様に、これらの基板10〜13の上下面を研磨した後、基板10〜13における接合面つまり基板10の下面と、ガラス基板13及び基板11の上下面と、基板12の上面と、に対して既述のように例えばアルミナからなるバッファ層14を成膜する。そして、同図(b)に示すように、これらの基板10〜13を積層し、加熱処理を行って相対向するバッファ層14、14からなる接合層16を介して積層体15を一体的に接合する。次いで、同図(c)のようにスクライビング加工を行うことにより、このような多層の積層体15においても同様に、クラック9が厚さ方向に伝搬して一体的に切断されることになる。
この実施の形態においても既述の例と同様の効果が得られる。また、このような多数枚の基板10〜13であっても接合して切断でき、また水晶とは材質の異なるガラス基板13であっても、積層体15として一体化して切断できるので、機能性の高い光学部品を簡便に製造することができる。
既述のバッファ層3、4としては、アルミナ以外にも、金属、金属酸化物及び金属フッ化物のいずれかであっても良く、具体的にはアルミニウム、シリコン及びジルコニウムのいずれかを含む酸化物(アルミナ、二酸化珪素(SiO)、二酸化ジルコニウム(ZrO))と、マグネシウム、リチウム及びストロンチウムのいずれかを含むフッ化物(2フッ化マグネシウム(MgF)、フッ化リチウム(LiF)、2フッ化ストロンチウム(SrF))と、の中から選ばれる1種以上であれば良い。また、これらの材料以外にも、屈折率が2.5以下の無機物のフッ化物例えばCeF(フッ化セリウム)などであっても良い。つまり、透明であり脆性破壊を起こす無機物であれば良い。
尚、上記のバッファ層3、4、14としては、各々の材質が異なっていても良いし、膜厚が各々のバッファ層3、4、14において異なっていても良い。この時、接合する2枚の基板1、2(10〜13)間における接合層6、16の厚さは、例えば0.001mm以下の場合にはこの接合層6、16により加熱処理時の基板1、2(10〜13)の応力を緩和する作用が弱くなり、また0.02mm以上の場合には水晶チップ7が大型化してしまうことから、0.01mm〜0.003mmであることが好ましい。
本発明の光学部品の製造方法の工程の一例を示すフローチャート図である。 本発明に用いられる基板である水晶の特性を示す概略図である。 上記の光学部品の製造方法の工程の一部を示す概略図である。 上記の光学部品の製造方法の工程の一部を示す概略図である。 上記の光学部品の製造方法の工程の一部を示す概略図である。 上記の光学部品の製造方法の工程の一部を示す概略図である。 上記の光学部品の製造方法の工程の一部を示す概略図である。 上記の光学部品の製造方法の工程の一部を示す概略図である。 上記の光学部品の製造方法の他の実施の形態における工程の一例を示す概略図である。 従来の光学部品の製造方法を示す概略図である。 従来の光学部品の製造方法を示す概略図である。 従来の光学部品の製造方法を示す概略図である。
符号の説明
1 第1の基板
2 第2の基板
3 第1のバッファ層
4 第2のバッファ層
θ 傾斜角度

Claims (5)

  1. 内部に光を透過させて用いられる光学部品の製造方法において、
    光学材料基板からなる第1の基板の表面に、脆性破壊を起こすアモルファス状の無機物からなる第1のバッファ層を形成する工程と、
    前記第1の基板とは線膨張係数の異なる光学材料基板からなる第2の基板の表面に、脆性破壊を起こすアモルファス状の無機物からなる第2のバッファ層を形成する工程と、
    次いで、前記第1のバッファ層及び前記第2のバッファ層とを重ね合わせて加熱処理を行い、当該第1のバッファ層及び第2のバッファ層を介して両基板を接合して積層体を得る工程と、
    しかる後、スクライビング加工により前記積層体を積層方向に切断して光学部品用の個片を得る工程と、を含むことを特徴とする光学部品の製造方法。
  2. 前記第1のバッファ層及び前記第2のバッファ層の屈折率は、各々2.5以下であることを特徴とする請求項1に記載の光学部品の製造方法。
  3. 前記第1のバッファ層及び前記第2のバッファ層は、各々金属、金属酸化物及び金属フッ化物のいずれかであることを特徴とする請求項1または2に記載の光学部品の製造方法。
  4. 前記第1のバッファ層及び前記第2のバッファ層は、各々スパッタ法あるいは蒸着法により形成されることを特徴とする請求項1ないし3のいずれか一つに記載の光学部品の製造方法。
  5. 内部に光を透過させて用いられる光学部品において、
    光学材料基板からなる第1の基板と、
    前記第1の基板とは線膨張係数の異なる光学材料基板からなる第2の基板と、
    前記第1の基板と前記第2の基板との間に形成され、脆性破壊を起こすアモルファス状の無機物からなるバッファ層と、を備えたことを特徴とする光学部品。
JP2008306723A 2008-12-01 2008-12-01 光学部品の製造方法 Expired - Fee Related JP5132534B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2008306723A JP5132534B2 (ja) 2008-12-01 2008-12-01 光学部品の製造方法
US12/590,915 US8424746B2 (en) 2008-12-01 2009-11-16 Method of manufacturing optical component and optical component

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008306723A JP5132534B2 (ja) 2008-12-01 2008-12-01 光学部品の製造方法

Publications (2)

Publication Number Publication Date
JP2010128477A true JP2010128477A (ja) 2010-06-10
JP5132534B2 JP5132534B2 (ja) 2013-01-30

Family

ID=42223083

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008306723A Expired - Fee Related JP5132534B2 (ja) 2008-12-01 2008-12-01 光学部品の製造方法

Country Status (2)

Country Link
US (1) US8424746B2 (ja)
JP (1) JP5132534B2 (ja)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8399175B2 (en) 2008-04-07 2013-03-19 Addison Clear Wave, Llc Photopolymer resins for photo replication of information layers
JP5644129B2 (ja) * 2010-02-12 2014-12-24 日本電気硝子株式会社 強化板ガラス及びその製造方法
JP5511705B2 (ja) * 2011-02-10 2014-06-04 ギガフォトン株式会社 ターゲット供給装置及び極端紫外光生成装置
DE112012004373T5 (de) * 2011-10-18 2014-07-10 Fuji Electric Co., Ltd Verfahren zur trennung eines trägersubstrats von einem festphasengebundenen wafer und verfahren zur herstellung einer halbleitervorrichtung
US10052848B2 (en) * 2012-03-06 2018-08-21 Apple Inc. Sapphire laminates
US9154678B2 (en) 2013-12-11 2015-10-06 Apple Inc. Cover glass arrangement for an electronic device
US10406634B2 (en) 2015-07-01 2019-09-10 Apple Inc. Enhancing strength in laser cutting of ceramic components
JP2019004007A (ja) * 2017-06-14 2019-01-10 富士通株式会社 半導体装置及びその製造方法
US11183412B2 (en) * 2017-08-14 2021-11-23 Watlow Electric Manufacturing Company Method for joining quartz pieces and quartz electrodes and other devices of joined quartz

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003084255A (ja) * 2001-09-12 2003-03-19 Shin Etsu Chem Co Ltd 光学デバイスおよびその製造方法
JP2006527162A (ja) * 2003-06-13 2006-11-30 ジョー−ワン ハン、 セラミックス接合方法:反応拡散接合
JP2007041117A (ja) * 2005-08-01 2007-02-15 Nippon Dempa Kogyo Co Ltd 積層光学素子及びその製造方法
JP2008532802A (ja) * 2005-03-11 2008-08-21 サンドビック インテレクチュアル プロパティー アクティエボラーグ Pvdにより疎水性金属酸化物を被覆した非粘着性金属物品

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2742921C2 (de) * 1977-09-23 1985-07-11 Siemens AG, 1000 Berlin und 8000 München Verfahren zum mittelbaren Verbinden zweier Teile durch Verschweißung zweier Metallauflagen
JP2559700B2 (ja) * 1986-03-18 1996-12-04 富士通株式会社 半導体装置の製造方法
US5248079A (en) * 1988-11-29 1993-09-28 Li Chou H Ceramic bonding method
JPH04268225A (ja) * 1991-02-22 1992-09-24 Nec Corp 光磁気記録媒体とその記録再生方法
JP3194822B2 (ja) 1993-09-14 2001-08-06 松下電器産業株式会社 複合基板材料の製造方法
US5726805A (en) * 1996-06-25 1998-03-10 Sandia Corporation Optical filter including a sub-wavelength periodic structure and method of making
US7295742B2 (en) * 2002-05-31 2007-11-13 Matsushita Electric Industrial Co., Ltd. Optical element and method for producing the same
TW582099B (en) * 2003-03-13 2004-04-01 Ind Tech Res Inst Method of adhering material layer on transparent substrate and method of forming single crystal silicon on transparent substrate
JP2005049831A (ja) * 2003-07-15 2005-02-24 Nippon Dempa Kogyo Co Ltd 光学素子及びその製造方法
JP4776907B2 (ja) * 2003-11-11 2011-09-21 日本電波工業株式会社 光学フィルタの製造方法
JP4695014B2 (ja) 2003-12-02 2011-06-08 ボンドテック株式会社 接合方法及びこの方法により作成されるデバイス並びに接合装置
US7186461B2 (en) * 2004-05-27 2007-03-06 Delaware Capital Formation, Inc. Glass-ceramic materials and electronic packages including same
US20080055717A1 (en) * 2006-09-01 2008-03-06 Atul Pradhan Optical transmission filter with extended out-of-band blocking
US7891486B2 (en) * 2006-12-26 2011-02-22 Nihon Dempa Kogyo Co., Ltd. Shipping tray for optical elements, and optical element shipped therein
JP5295524B2 (ja) * 2007-06-05 2013-09-18 日本電波工業株式会社 光学薄膜成膜方法
JP4693836B2 (ja) * 2007-12-17 2011-06-01 日本電波工業株式会社 赤外線カットフィルタ及びその製造方法
JP4471004B2 (ja) * 2008-01-23 2010-06-02 セイコーエプソン株式会社 接合体の形成方法
US8078712B2 (en) * 2008-11-26 2011-12-13 Red Hat, Inc. Systems and methods for network command delegation using auto-discovered pathways
JP5096425B2 (ja) * 2009-07-23 2012-12-12 日本電波工業株式会社 光学フィルタの製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003084255A (ja) * 2001-09-12 2003-03-19 Shin Etsu Chem Co Ltd 光学デバイスおよびその製造方法
JP2006527162A (ja) * 2003-06-13 2006-11-30 ジョー−ワン ハン、 セラミックス接合方法:反応拡散接合
JP2008532802A (ja) * 2005-03-11 2008-08-21 サンドビック インテレクチュアル プロパティー アクティエボラーグ Pvdにより疎水性金属酸化物を被覆した非粘着性金属物品
JP2007041117A (ja) * 2005-08-01 2007-02-15 Nippon Dempa Kogyo Co Ltd 積層光学素子及びその製造方法

Also Published As

Publication number Publication date
US8424746B2 (en) 2013-04-23
US20100136306A1 (en) 2010-06-03
JP5132534B2 (ja) 2013-01-30

Similar Documents

Publication Publication Date Title
JP5132534B2 (ja) 光学部品の製造方法
JP6095132B2 (ja) サファイア積層体
KR101650065B1 (ko) 광학 필터 부재 및 이것을 구비한 촬상장치
JP6452743B2 (ja) 携帯機器用カバーガラス、携帯機器用ガラス基板
JP2007041117A (ja) 積層光学素子及びその製造方法
TW201501378A (zh) 複合基板、彈性波裝置及彈性波裝置的製法
US6777311B2 (en) Thick wafer processing and resultant products
CN106414352B (zh) 光学玻璃及玻璃基板的切断方法
JP2007043063A (ja) 固体撮像素子収納用パッケージおよび固体撮像素子搭載用基板ならびに固体撮像装置
JP6819613B2 (ja) ガラス基板、積層基板、積層体、および半導体パッケージの製造方法
WO2014119780A1 (ja) ガラス基板の切断方法、ガラス基板、近赤外線カットフィルタガラス、ガラス基板の製造方法
KR20170059964A (ko) 지지 유리 기판 및 이것을 사용한 적층체
JP2007279692A (ja) 偏光分離素子とその製造方法
WO2013027645A1 (ja) ガラス基板の切断方法、固体撮像装置用光学ガラス
CN101738668B (zh) 偏振立方体及其制造方法
WO2019138875A1 (ja) 機能素子および機能素子の製造方法ならびに電子機器
JP6811053B2 (ja) 赤外線吸収ガラス板及びその製造方法、並びに固体撮像素子デバイス
JP2006276313A (ja) 光学フィルタの製造方法
JP7259301B2 (ja) 偏光子及び光アイソレータ
JP6660113B2 (ja) 複合基板およびその製造方法
JP4443425B2 (ja) 光学多層膜素子
JP5994686B2 (ja) 光学ガラス
JP2008203851A (ja) ウエハーの接着工程を用いるグレースケールマスクの製造方法
JP4273945B2 (ja) 複合プリズムの製造方法
JP2006071754A (ja) 偏光ビームスプリッター及びその製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101102

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111213

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121030

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121106

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151116

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151116

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees