JP2010112699A - 熱媒体配管システム - Google Patents

熱媒体配管システム Download PDF

Info

Publication number
JP2010112699A
JP2010112699A JP2009234498A JP2009234498A JP2010112699A JP 2010112699 A JP2010112699 A JP 2010112699A JP 2009234498 A JP2009234498 A JP 2009234498A JP 2009234498 A JP2009234498 A JP 2009234498A JP 2010112699 A JP2010112699 A JP 2010112699A
Authority
JP
Japan
Prior art keywords
piping system
pump
heat medium
inverter
temperature control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009234498A
Other languages
English (en)
Other versions
JP5350166B2 (ja
Inventor
Shigeru Mizushima
茂 水島
Satoru Noguchi
哲 野口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanki Engineering Co Ltd
Original Assignee
Sanki Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanki Engineering Co Ltd filed Critical Sanki Engineering Co Ltd
Priority to JP2009234498A priority Critical patent/JP5350166B2/ja
Publication of JP2010112699A publication Critical patent/JP2010112699A/ja
Application granted granted Critical
Publication of JP5350166B2 publication Critical patent/JP5350166B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Other Air-Conditioning Systems (AREA)
  • Steam Or Hot-Water Central Heating Systems (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

【課題】 熱媒体の搬送動力の削減を図る。
【解決手段】 複数のゾーンをそれぞれ独立して空調するための温度制御配管系と、熱源装置と、1次ポンプと、インバータ付き2次ポンプと、往きヘッダと還りヘッダとを繋ぐヘッダ間バイパス管とを有し、各温度制御配管系を纏めた入口出口の差圧と2次側流量により2次ポンプの流量を変化させて供給熱媒体量を必要最小量にする熱源機ループとを備え、各温度制御配管系は、上流側から下流側に向かってインバータ付きポンプと空調機とON/OFFの二方弁とを順に備え、インバータ付きポンプは、空調機が対象とするゾーンの温度計測値と設定値との偏差により羽根車の回転数が制御され、インバータ付きポンプの立ち上げ時に二方弁を閉じ、インバータ付きポンプの回転数が所定の回転数に達した後に二方弁を全開するように、インバータ付きポンプと二方弁との動きを制御する制御装置を備える。
【選択図】 図1

Description

本発明は、ビル、工場等の空気調和設備における冷水、温水等の熱媒体を送給するための熱媒体配管システムに関するものである。
複数の店舗及び事務所等が入居するオフィスビル等の建造物には、複数の空調機が設けられ、各空調機には、熱源機からポンプにより冷水又は温水等の熱媒体が各空調機が受け持つ部屋やゾーンの熱負荷に対応した流量で供給され、冷房や暖房が行なわれる。
図5は、斯かる空調機を備えた従来の熱媒体配管システムの一例を示す。
図5に示す熱媒体配管システムは、冷凍機又はボイラのような熱源機1と、熱源機1の出口側に接続されて冷水又は温水等の熱媒体が送給される熱媒体往き主管路2と、熱媒体往き主管路2から分岐した複数の熱媒体往き管路3と、入口側が各熱媒体往き管路3に接続されて互いに並列配置されるAHU等の空調機4と、各空調機4の出口側に接続される熱媒体還り管路5と、各熱媒体還り管路5が合流するように接続されると共に、熱源機1の入口側に接続される熱媒体還り主管路6と、熱媒体往き主管路2側においては、最も熱源機1側の空調機4よりも熱媒体流れ方向上流側において熱媒体往き主管路2に接続され、熱媒体還り主管路6側においては、最も熱源機1側の空調機4よりも熱媒体流れ方向下流側において熱媒体還り主管路6に接続されたバイパス管路7とを備えている。
熱媒体往き主管路2には、バイパス管路7の熱媒体往き主管路2との接続位置よりも熱源機1側において熱源ポンプ8が接続されると共に、熱媒体流れ方向最上流側における熱媒体往き管路3の接続位置よりもバイパス管路7側において熱媒体ポンプ9が接続され、各熱媒体還り管路5には流量制御弁10が設けられている。
図5に示す熱媒体配管システムでは、冷却若しくは加熱されて熱源機1から送出された熱媒体は、熱源ポンプ8により熱媒体往き主管路2へ送給され、一部の熱媒体はバイパス管路7を通って熱媒体還り主管路6へ流入する。
又、残りの熱媒体は、熱媒体ポンプ9により更に熱媒体往き主管路2へ送給され、熱媒体往き管路3から空調機4へ導入されて冷熱若しくは温熱を消費し、熱媒体還り管路5を通って熱媒体還り主管路6へ流入し、バイパス管路7からの熱媒体と共に、熱源機1へ戻る。この際、空調機4を通る熱媒体は、空調機4を経て対象空間11に送給される空気により対象空間11が所定の温度になるよう、流量制御弁10により流量制御される。又、バイパス管路7で熱媒体の冷熱又は温熱を消費せず熱源機1に戻すのは、熱源機1が不具合を起こさないようにするため最低確保すべき熱源機1の熱媒体流量が決まっており、その流量を確保するためである。
図7、空調機を備えた従来の熱媒体配管システムの他の例を示す(例えば、特許文献1参照)。
図7に示す熱媒体配管システムでは、熱媒体往き主管路2には、図5に示す熱源ポンプ8、熱媒体ポンプ9及びバイパス管路7を設けず、各熱媒体往き管路3に、インバータ制御による回転数制御を行い得るようにした熱媒体ポンプ12を設けている。図7中、図5に示すものと同一のものには同一の符号が付してある。
図7に示す熱媒体配管システムでは、熱源機1からの熱媒体は熱媒体往き主管路2及び熱媒体往き管路3を経て熱媒体ポンプ12へ導入され、熱媒体ポンプ12から熱媒体往き管路3を経て空調機4へ送給され、冷熱若しくは温熱を消費して熱媒体還り管路5を通り熱媒体還り主管路6へ送給され、熱媒体還り主管路6を経て熱源機1へ戻る。この際、空調機4を通る熱媒体は、空調機4を経て対象空間11に送給される空気により対象空間11が所定の温度になるよう、熱媒体ポンプ12の回転数がインバータ制御されることにより流量制御される。
図8は、空調機を備えた従来の熱媒体配管システムの他の例を示す(例えば、特許文献2参照)。
図8に示す熱媒体配管システムでは、図7に示す熱媒体配管システムにおいて、各熱媒体往き管路3に設けたインバータ制御による回転数制御を行い得るようにした熱媒体ポンプ12の上流側又は下流側に逆止弁13を設けている。図8中、図7及び図5に示すものと同一のものには同一の符号が付してある。
図8に示す熱媒体配管システムでは、熱源機1からの熱媒体は熱媒体往き主管路2及び熱媒体往き管路3を経て熱媒体ポンプ12へ導入され、熱媒体ポンプ12から熱媒体往き管路3を経て空調機4へ送給され、冷熱若しくは温熱を消費して熱媒体還り管路5を通り熱媒体還り主管路6へ送給され、熱媒体還り主管路6を経て熱源機1へ戻る。この際、空調機4を通る熱媒体は、空調機4を経て対象空間11に送給される空気により対象空間11が所定の温度になるよう、熱媒体ポンプ12の回転数がインバータ制御されることにより流量制御される。そして、部分負荷時や時間外運転時等で一部の対象空間11の熱媒体ポンプ12を運転しない場合には、逆止弁13を閉止して空調機4に熱媒体が流入しないようにする。
特許第3490986号公報 特開平10−232000号公報
図5に示す熱媒体配管システムにおいては、熱媒体の流量制御は流量制御弁10の開度調整により行なわれるため、流量制御弁10を通る熱媒体の流れに常に流動抵抗による圧力損失(例えば、3mAq程度)が生じ、各熱媒体還り管路5の内1箇所の対象空間の熱負荷が減ると、該当熱媒体還り管路5の流量制御弁10が閉じることにより、他の流量制御弁10には余分に流れることとなり、他の流量制御弁も絞られ、熱媒体ポンプの揚程をいたずらに各流量制御弁10の損失で消費する。その結果、熱媒体ポンプ9の消費動力が大きくなるうえ、バイパス管路7で熱媒体の冷熱又は温熱を消費せず熱源機1に戻すのは、熱源機1が凍結などの不具合を起こさないようにするため、最低確保すべき熱源機1の熱媒体流量が決まっており、その流量を確保するには、空調機4へ送給しない熱媒体はバイパス管路7をバイパスさせるために熱源ポンプ8も必要となる。このように、図5に示すシステムでは、熱媒体の搬送動力が大きくなり、省エネルギ上不利である。
又、図5では、熱媒体ポンプ9の回転数が一定の場合を示しており、この場合は対象空間の熱負荷が減って流量制御弁10が閉止方向に動くと、配管系の圧力損失が増えることとなり、そのため流量が減ることとなるので、熱媒体ポンプの仕事は変わらず消費電力もほぼ変わらない。
この図5の熱媒体ポンプ9にインバータなどの回転数制御機構を付加し、熱媒体ポンプ9の出口吐出圧一定制御機構も付加して運転した場合の、ある流量Qと流量Q/2とでの、横軸に送水流量、縦軸に揚程(圧力)を各々表現する配管抵抗曲線とポンプの能力曲線とのそれぞれの場合の比較、及びその際の熱媒体ポンプ9の軸動力を模式的に表したものを図6に示す。図6(a)に示す配管抵抗曲線とポンプの能力曲線では、対象空間の熱負荷が減って流量制御弁10が閉止方向に動くと、配管抵抗曲線に反映されて同じ流量なら必要揚程が上昇するところ、必要な流量も減少するので、ポンプの回転数を下げてポンプの能力を小さくして揚程を一定にする制御を行っている。つまり、設定圧力Hの圧力上を状態点SQからSQ/2(配管抵抗曲線とポンプの能力曲線の交点)へ動くこととなる。
この場合、熱媒体ポンプ9の軸動力は、図6(b)に示すように、送水流量ゼロでも軸動力が所定の値である、切片をもった比例線上を変化するので、流量が半分になってもあまり軸動力が減らないこととなる。
図7に示す熱媒体配管システムでは、熱媒体の流量制御は、各空調機4で要求される熱媒体の流量を基に熱媒体ポンプ12の回転数制御により行なっているため、図5の場合よりも熱媒体の搬送動力を削減することができる。
しかしながら、熱媒体は、熱媒体ポンプ12のみで搬送しているため、例えば、空調機4側の要求熱媒体流量がほとんどなくなったとしても、熱源機1の凍結等の不具合を避けるための最低流量は確保せざるを得ず、その場合、空調機4を通して熱媒体の流量を確保するため、空調機4の熱交換器の圧力損失や空調機4までの配管抵抗を加えた搬送となり、熱媒体の搬送動力の削減を充分に行なうことが困難であるという問題がある。
又、各熱媒体往き管路3と熱媒体還り管路5で繋がる各対象空間11用のローカル配管系統は、自動バルブのように熱媒体流れをせき止めることができる機構がなく、部分負荷時や時間外運転時などで一部の熱媒体ポンプ12が停止し、残りの熱媒体ポンプ12が動いている時に、熱媒体還り管路5から熱媒体往き管路3へ逆流が発生し、例えば冷熱を空調機4で消費されることで暖まった熱媒体が、他の対象空間11用のローカル配管系統に流入して冷房が不能となる。
図8に示す熱媒体配管システムでは、図7に示す熱媒体配管システムであった逆流を逆止弁を設けて防いでいるが、バイパス管路が無いことによって、図7に示す熱媒体配管システムと同様の問題点がある上に、逆止弁13によって逆流を防止しているため、逆止弁13を通る熱媒体の流れに常に流動抵抗による圧力損失が生じ、その結果、熱媒体ポンプ12の消費動力が大きくなる。その結果、図8に示す熱媒体配管システムでは、熱媒体の搬送動力が大きくなり、省エネルギ上不利である。
又、図8の複数の熱媒体ポンプ12が、例えば各対象空間の熱負荷が全く同じ変化をすると仮定して運転した場合の、ある流量Qと流量Q/2とでの、配管抵抗曲線とポンプの能力曲線とのそれぞれの場合の比較、及びその際の熱媒体ポンプ9の軸動力を模式的に表したものを図2に示す。
図2(a)に示す配管抵抗曲線とポンプの能力曲線では、対象空間の熱負荷が減ってくると配管抵抗曲線上を変化するよう、ポンプの回転数を下げていく制御を行うが、逆止弁13の流動抵抗が終始圧力損失として働くので、理想配管抵抗曲線βに加えて逆止弁分下駄を履いた実配管抵抗曲線α上を状態点(配管抵抗曲線とポンプの能力曲線の交点)が動くこととなる。つまり、流量Q時の圧力Hから実配管抵抗曲線α上を状態点SQからSQ/2へ動き、流量Q/2では必要揚程H’へ動くこととなる。理想配管抵抗曲線β上を動けば、流量が1/2になれば、揚程は2次曲線なので1/2×1/2=1/4、さらに軸動力は、図2(b)に示すように、(1/2)3乗=1/8となるところ、実配管抵抗曲線α上を動くとポンプの軸動力は1/8まで下がらない。図2(a)に示すように流量を絞っても状態点SQ/2とSAQ/2の揚程差、つまり逆止弁の圧力損失分上乗せされる。
又、図8に示す熱媒体配管システムの熱媒体往き主管路2にブースターポンプを設けてローカル側での主管路の圧力損失分を持つ無駄を分散させるようにした場合、部分負荷時や時間外運転時などで一部の熱媒体ポンプ12が停止し、残りの熱媒体ポンプ12が動いている時に、停止している熱媒体ポンプのあるローカル配管系統にも熱媒が流れて無駄である。
本発明は、斯かる従来の問題点を解決するために為されたもので、その目的は、熱媒体の搬送動力の削減を図ることができる熱媒体配管システムを提供することにある。
請求項1に係る発明は、複数のゾーンをそれぞれ独立して空調機により熱媒と空気を熱交換して空調するための温度制御配管系と、前記各温度制御配管系に温度調整した熱媒体を供給する熱源装置と、前記熱源装置の出口側に繋がる往き管と、前記熱源装置入口側に繋がる還り管と、前記還り管の前記熱源装置の近傍に位置し前記熱媒体を搬送する1次ポンプと、前記各温度制御配管系へ前記熱媒体を搬送する前記往き管途中にあるインバータ付き2次ポンプと、前記インバータ付き2次ポンプの還り側に繋がる往きヘッダと、前記各温度制御配管系の還り側に還り管を介して途中で繋がる還りヘッダと、前記往きヘッダと前記還りヘッダとを繋ぐヘッダ間バイパス管と、前記各温度制御配管系の内最上流の温度制御配管系より前記熱源装置側の往き管及び還り管にそれぞれ1個ずつ設置される圧力計と、前記還り管の圧力計設置箇所近傍に設置される流量計とを有する熱媒体主搬送ループとを備え、前記各温度制御配管系は、各両端を前記往き管と前記還り管にそれぞれ接続され、前記熱媒体主搬送ループは、前記各温度制御配管系の内最上流の温度制御配管系より前記熱源装置側の往き管及び還り管に一つずつ設置した前記2つの圧力計の差圧を、前記流量計の計測流量値の二乗値に相関させて前記インバータ付き2次ポンプ流量制御値を演算し入力することで、前記インバータ付き2次ポンプの流量を変化させて供給熱媒体量を必要最小量にし、前記各温度制御配管系は、前記空調機が対象とするゾーンの温度計測値と設定値との偏差により羽根車の回転数が制御されるインバータ付きポンプと、前記空調機と全閉全開が可能な二方弁とを備え、前記インバータ付きポンプの立ち上げ時に前記全閉全開が可能な二方弁を閉じ、前記インバータ付きポンプの回転数が所定の回転数に達した後に前記全閉全開が可能な二方弁を全開するように、前記インバータ付きポンプと前記全閉全開が可能な二方弁との動きを制御する制御装置を備えることを特徴とする。
請求項2に係る発明は、複数のゾーンをそれぞれ独立して空調機により熱媒と空気を熱交換して空調するための温度制御配管系と、前記各温度制御配管系に温度調整した熱媒体を供給する熱源装置と、前記熱源装置の熱媒入口近傍に位置し前記熱媒体を搬送する1次ポンプと、前記熱源装置と前記1次ポンプとを接続しかつ環状に接続される配管とからなる熱源機ループと、前記各温度制御配管系の両端と前記熱源機ループとを該熱源装置の出口側に繋がる往き管と、前記熱源装置入口側に繋がる還り管とで接続する熱搬送ループとを備え、前記各温度制御配管系は、上流側から下流側に向かってインバータ付きポンプと空調機と全閉全開が可能な二方弁とを備え、前記インバータ付きポンプは、前記空調機が対象とするゾーンの温度計測値と設定値との偏差により羽根車の回転数が制御され、前記インバータ付きポンプの立ち上げ時に前記全閉全開が可能な二方弁を閉じ、前記インバータ付きポンプの回転数が所定の回転数に達した後に前記全閉全開が可能な二方弁を開くことによって、熱媒体の逆流を防止すると共に、前記インバータ付きポンプの停止時に前記全閉全開が可能な二方弁を閉じるように、前記インバータ付きポンプと前記全閉全開が可能な二方弁との動きを制御する制御装置を備えることを特徴とする。
請求項3に係る発明は、請求項2に記載の熱媒体配管システムにおいて、前記熱搬送ループは、インバータ付きブースターポンプと、前記各温度制御配管系の内最上流の温度制御配管系より前記各温度制御配管系の内最上流の温度制御配管系より前記熱源装置側の往き管及び還り管にそれぞれ1個ずつ配置される圧力計と、前記還り管の圧力計設置箇所近傍に配置される流量計と、前記熱源装置側の往き管及び還り管に一つずつ設置した前記2つの圧力計の差圧を、前記流量計の計測流量値の二乗値に相関させて前記インバータ付きブースターポンプ流量制御値を演算し入力することで、前記インバータ付きブースターポンプの流量を変化させて供給熱媒体量を必要最小量に制御する制御部とを更に備えることを特徴とする。
請求項4に係る発明は、請求項1又は3に記載の熱媒体配管システムにおいて、膨張タンクを末端に接続し、前記還り管の前記1次ポンプの還り側近傍又は前記還りヘッダに接続される膨張管と、前記往き管の最下流に接続される前記温度制御配管系の両端部の配管内圧が負圧とならないように、前記還り管の膨張管との接続点の圧力と、前記各温度制御配管系の内最上流の温度制御配管系より前記熱源装置側の往き管及び還り管に設置した二つの圧力計の差圧の設定値とを調整する制御部を更に備えることを特徴とする。
請求項5に係る発明は、請求項1乃至請求項4の何れかに記載の熱媒体配管システムにおいて、前記温度制御配管系は、運転されない前記温度制御配管系がある場合には、その運転されない前記温度制御配管系の前記空調機のファン停止に伴い、前記全閉全開が可能な二方弁を全閉し、運転される前記温度制御配管系だけに熱媒体が供給されるように運転されることを特徴とする。
請求項6に係る発明は、請求項1乃至請求項5の何れかに記載の熱媒体配管システムにおいて、前記全閉全開が可能な二方弁は、二位置制御式フルボア電動ボール弁であることを特徴とする。
請求項7に係る発明は、請求項1乃至請求項5の何れかに記載の熱媒体配管システムにおいて、前記全閉全開が可能な二方弁は、二位置制御式バタフライ弁であることを特徴とする。
本発明によれば、熱源機の最低流量を熱源機周りの短距離の配管分揚程のみの1次ポンプ軸動力で確保でき、かつ各温度制御配管系のうち一部に停止系があっても逆流せずに、熱媒体の搬送動力の削減を図ることができる。又、温度制御配管系のインバータ付きポンプはその流量制御を、理想配管抵抗曲線上で状態点を移動させる究極の省エネ運転をはかることができる。特に、部分負荷時、時間外運転時への適応性を高めることが可能となる。
本発明の第一実施形態に係る熱媒体配管システムを示す説明図である。 インバータ付きポンプの揚程と送水量との関係を示すグラフである。 配管系の圧力状態を表す管内圧力分布線図である。 本発明の第二実施形態に係る熱媒体配管システムを示す説明図である。 従来の熱媒体配管システムを示す説明図である。 図5の熱媒体ポンプ9にインバータなどの回転数制御機構を付加し、熱媒体ポンプ9の出口吐出圧一定制御機構も付加して運転した場合の、ある流量Qと流量Q/2とでの、横軸に送水流量、縦軸に揚程(圧力)を各々表現する配管抵抗曲線とポンプの能力曲線とのそれぞれの場合の比較、及びその際の熱媒体ポンプ9の軸動力を模式的に表した図である。 従来の別の熱媒体配管システムを示す説明図である。 従来の更に別の熱媒体配管システムを示す説明図である。
(第一実施形態)
図1は、本発明の第一実施形態に係る熱媒体配管システムを示す。
本実施形態に係る熱媒体配管システム20は、複数のゾーン36をそれぞれ独立して空調するための温度制御配管系Aと、熱媒体主搬送ループBとを備えている。
複数のゾーン36をそれぞれ独立して空調するための温度制御配管系Aは、上流側から下流側に向かってインバータ付きポンプ31と、空調機(送風機、エリミネータ、加湿器、加熱コイル、冷却コイル、フィルタ及びドレーンパン等を含んだエアハンドリングユニット又はファンコイルユニット)32と、全閉全開が可能な二方弁33とを順に配管30に備え、熱媒体主搬送ループBの往き管47と還り管48との間にそれぞれ接続することによって構成されている。又、各温度制御配管系Aによって空調されるゾーン36には、温度センサ(室温センサ)34を設置している。
インバータ付きポンプ31と全閉全開が可能な二方弁33とは、制御装置35によって動きが制御されている。インバータ付きポンプ31は、制御装置35によって、各温度制御配管系Aの空調機32が対象とするゾーン36の温度センサ(室温センサ)34による計測値と設定値との偏差により羽根車の回転数が制御される。全閉全開が可能な二方弁33は、制御装置35によって、インバータ付きポンプ31の立ち上げ時には閉じ、インバータ付きポンプ31の回転数が所定の回転数に達した後に全開するように制御されている。尚、全閉全開が可能な二方弁33としては、望ましくは配管30と同径とされ、更に配管30での流路抵抗の小さいボール弁、特に二位置制御式フルボア電動ボール弁が好適である。又、配管30と同径とされる二位置制御式電動バタフライ弁が好適である。全閉全
開が可能な二方弁33には、下記のような利点がある。弁全開時には、流路がバルブと同形状になり、熱媒体に抵抗を与える要素がないため、圧力損失が極めて少ない。ハンドルを90°回転することによってバルブの開閉ができ、操作機も容易に取り付けられるので、簡単に自動操作バルブとして使用できる。弁座がソフトシートであり、弁棒が90°回転で、パッキンとの摺動が少なく、気密性に優れている。仕切弁や玉形弁のようなヨーク構造がないため、高さが低く、設置スペースが小さくて良い。一般的には、耐食性、耐摩耗性に優れたPTFEがシートに用いられているため、万一シートが破損しても、これらの交換が容易である。
熱媒体主搬送ループBは、各温度制御配管系Aに温度調整した熱媒体を供給する熱源装置41と、熱媒体を搬送する1次ポンプ42と、温度制御配管系Aへ熱媒体を搬送するインバータ付き2次ポンプ43と、インバータ付き2次ポンプ43の往き側に繋がる往きヘッダ44Aと、インバータ付き2次ポンプ43の還り側に繋がる往きヘッダ44Bと、温度制御配管系Aの還り側に還り管48を介して途中に纏がる還りヘッダ45と、往きヘッダ44Bと還りヘッダ45とを繋ぐヘッダ間バイパス管46と、往き管47と、還り管48と、膨張管61を介して還りヘッダ45へ接続される膨張タンク62とを備えている。尚、熱源装置41としては、冷凍機と冷却塔等から構成される冷熱源装置や、蒸気ボイラと蒸気・水熱交換器等から構成される温熱源装置が用いられる。
熱媒体主搬送ループBは、温度制御配管系Aを纏めた入口出口の差圧について、還り管48の流量計63の計測値による設定値を変化させつつ、差圧設定値と差圧実測値との偏差に基づく比例積分演算で求められる回転数制御信号により、インバータ付き2次ポンプ43の流量を変化させて供給熱媒体量を必要最小量にするために、複数のゾーン36をそれぞれ独立して空調するための温度制御配管系Aに対する往き管47と還り管48との差圧ΔP実測値を演算で求め、温度制御配管系Aを纏めた位置の還り管48に設けられている流量計63の計測値による差圧設定値演算を行って逐次の差圧設定値を求め、差圧ΔP実測値と差圧設定値との偏差により、最上階の温度制御配管系Aの配管30内圧が負圧とならないように制御する圧力制御機構50を備えている。
圧力制御機構50は、往き管47の圧力を測定する圧力計51と、還り管48の圧力を測定する圧力計52と、温度制御配管系Aを纏めた位置の還り管48に設けられている流量計63と、圧力計51,52の計測値を取り込み、その差圧ΔP実測値を求め、流量計63の計測値による差圧設定値演算を行って逐次の差圧設定値を求め(いわゆるカスケード制御の形態)、差圧ΔP実測値と差圧設定値との偏差により、最上階の温度制御配管系Aの配管30内圧が負圧とならないように、インバータ付き2次ポンプ43を制御する制御部53とを備えている。尚、最上階の温度制御配管系Aの配管30内圧が負圧となると、キャビテーションが発生するなどして温度制御配管系Aのインバータ付きポンプ31の吐出量が一定にならなくなり、振動も発生して系が不安定となり、故障する虞も出てくる。そこで、例えば、図3に示す、最上階分散ポンプサクション側圧力X点において、大気圧よりも正圧となる圧力、例えば、大気圧にさらに2mAq程度加えた圧力を確保するように制御する。
次に、本実施形態に係る熱媒体配管システム20の作用を説明する。
本実施形態に係る熱媒体配管システム20においては、1次ポンプ42とインバータ付き2次ポンプ43とは、基本的に1次ポンプ42の揚程は熱源装置41の冷凍機の蒸発器分や熱源機器回りの弁装置や往きヘッダ44Bと還りヘッダ45との間の熱源回りの配管の損失圧力分を受け持ち、インバータ付き2次ポンプ43の揚程は、往き管47と還り管48との管路抵抗分の損失圧力分を受け持って分担する。モジュール化できる温度制御配管系A部分のインバータ付きポンプ31は、空調機32と全閉全開が可能な二方弁33と温度制御配管系Aの配管30との損失圧力分を受け持つ。全閉全開が可能な二方弁33については、ボール弁型のもの、特にフルボア型のものであれば弁としての損失圧力は全開時ほぼ無視できる。
インバータ付き2次ポンプ43の流量は、インバータ付きポンプ31の合計流量と基本的に同じ流量になるように調整する。1次ポンプ42は熱源機器41と連動して一定回転数で運転され、あるいは流量可変でも冷凍機である熱源装置41の最低確保流量で運転される。インバータ付き2次ポンプ43と1次ポンプ42の流量ミスマッチが生じて1次ポンプ42の流量が多くなる場合は、1次ポンプ42の流量の一部をヘッダ間バイパス管46にバイパスして流し、流量の整合をとる。インバータ付き2次ポンプ43とインバータ付きポンプ31との合計の流量が、制御の時定数によるずれがある場合でも、ヘッダ間バイパス管46などで圧力を分散して整合をとる。
最初に、熱源装置41、1次ポンプ42及びインバータ付き2次ポンプ43を運転すると共に、制御装置35からの指示によって、各温度制御配管系Aの配管30に接続される全閉全開が可能な二方弁33を閉じ、次いで、インバータ付きポンプ31を立ち上げ、インバータ付きポンプ31の回転数が所定の回転数に達した時点で、全閉全開が可能な二方弁33を全開する。熱源装置41及び1次ポンプ42は、往き管47及び還り管48にそれぞれ設けられた温度計(図示せず)と還り管48に設けられた流量計(図示せず、ただし流量計63との併用でも可)とから各計測信号を制御装置(図示せず)に送って全体熱量を演算し、その熱量演算値を用いて運転能力を制御され、熱媒体を所定の供給温度及び温度差で返す運転を行う。インバータ付き2次ポンプ43は、後述する圧力制御機構50により熱媒体の所定の流量、所定の供給温度を確保して熱媒体を供給する。
次に、熱源装置41により一定温度に調温された熱媒体は、1次ポンプ42及びインバータ付き2次ポンプ43から往き管47を介して各温度制御配管系Aの配管30に接続される各インバータ付きポンプ31により圧送されて各配管30に流入する。各配管30に流入した熱媒体は、各空調機32にそれぞれ供給される。各空調機32は並列に接続され、各室やゾーン36に設置された温度センサ(室温センサ)34からの計測信号と制御装置35に設定された各室やゾーン36の温度設定値との偏差により演算された結果の制御信号を、各インバータに送信してポンプ回転数を制御するので、各空調機32に供給される熱媒体の流量は、まちまちである。
しかし、各温度制御配管系Aから戻される温度がまちまちな還水は、還り管48で混合されてある所定の温度になり、熱量演算等されて、所定の供給温度になるように熱源装置41で冷却され一定な供給温度にすることができる。
次に、熱交換された熱媒体は、各空調機32から流出し全開状態の全閉全開が可能な二方弁33を通る際に、この全開状態の全閉全開が可能な二方弁33で流通抵抗を受けることなく配管30を流れて還り管48に流入し、この還り管48を通って熱源装置41に還る。
そして、各温度制御配管系A毎に温度センサ(室温センサ)34の検出信号と各温度制御配管系Aの設定温度とを比較してこれらの温度偏差に基づいてインバータ付きポンプ31の羽根車の回転数を制御して、空調機32に流入する熱媒体の流量を調整し各室又はゾーン36の熱負荷に対応する。
同時に、圧力制御機構50は、往き管47の熱媒体の圧力計51で計測した計測値と、還り管48の熱媒体の圧力を圧力計52で計測した計測値とを取り込み、その差圧ΔP実測値を求め、流量計63の計測値による差圧設定値演算を行って逐次の差圧設定値を求め(いわゆるカスケード制御の形態)、差圧ΔP実測値と差圧設定値との偏差により、制御部53が最上階の温度制御配管系Aの配管30内圧が負圧とならないようにインバータ付き2次ポンプ43を制御する。
そして、熱源装置41により熱媒体は再び調温され、以後、前述した同様の作用が繰り返される。
この運転中に、例えば、全体の負荷が半分になると、各室やゾーン36に設置された温度センサ(室温センサ)34からの計測信号と制御装置35に設定された各室やゾーン36の温度設定値との偏差により演算された結果の制御信号を、各温度制御配管系Aのインバータ付きポンプ31の各インバータに送信してポンプ回転数を制御していく。この各温度制御配管系Aの合計流量が還り管48で少なくなっていることを流量計(図示せず)と、往き管47及び還り管48にそれぞれ設けられた温度計(図示せず)とから各計測信号を制御装置(図示せず)に送って全体熱量を演算し、その熱量演算値を用いて運転能力を下げられた熱源装置41と1次ポンプ42とヘッダ間バイパス管46とを流れる熱媒体から、往き管47及び還り管48を流れる流量が半分となってくる。ここで、圧力制御機構50によって、インバータ付き2次ポンプ43の流量と揚程を以下のように調整する。往き管47の熱媒体の圧力計51で計測した計測値と、還り管48の熱媒体の圧力を圧力計52で計測した計測値とを取り込み、その差圧ΔP実測値を演算して求め、流量計63の計測値による差圧設定値演算を行って逐次の差圧設定値を求め(いわゆるカスケード制御の形態)、差圧ΔP実測値と差圧設定値との偏差をもってインバータ付き2次ポンプ43のインバータへ回転数制御信号を出す。流量が半分となると、配管及び熱交換器における圧力損失が減少し、その減少度合いは流量の減少の2乗となってくる。よって、差圧設定値についても流量の2乗の減少を基礎として変化していく。
これらから、インバータ付きポンプ31の流量が調整されるのだが、その部分負荷時のポンプの軸動力について、図2に基づいて説明する。図2(a)に示すように、一点鎖線で示されるのが、理想配管抵抗曲線βであり、ポンプだけで流量調整を行う本実施形態の温度制御配管系A、往き管47、及び還り管48の配管経路での抵抗曲線でもある。各室やゾーン36に熱負荷が定格で存在する場合の熱媒体流量をQとした場合、本実施形態のインバータ付きポンプ31の流量Q時のポンプ能力曲線(外側2点鎖線)であり、このポンプ能力曲線と理想配管抵抗曲線βとの交点SAQとなって、そのときの流量はQ、揚程はhとなる。ここで、上記のように各室やゾーン36に熱負荷が半分になった場合は、熱媒体の温度差を同じとすると熱媒体流量はQ/2となるので、理想配管抵抗曲線β上を変化して流量Q/2のY座標平行線との交点SAQ/2となって、そのときの揚程はh/4となる。本実施形態のインバータ付きポンプ31の流量Q/2時のポンプ能力曲線は内側の2点鎖線のものまで能力を低減できる。この流量QとQ/2の時のポンプの軸動力は、図2(b)に示すように、ポンプ流量Qの時に軸動力WAとすると、流量Q/2の時は、ポンプ軸動力は流量変化の3乗、つまりWA/8と非常に小さくなる。
次に、時間外運転時等のように一部の温度制御配管系Aの空調機32を停止する場合には、該当する温度制御配管系Aの配管30に接続される全閉全開が可能な二方弁33を閉じた後に、その配管30に接続されるインバータ付きポンプ31を停止する。
そして、運転すべき各温度制御配管系Aでは、上述と同様にしてインバータ付きポンプ31と空調機32と全閉全開が可能な二方弁33とを運転することによって、各温度制御配管系Aを設定温度に空調することができる。
これによって、使用しない温度制御配管系Aの配管30へは熱媒体が流入することがないので、他の温度制御配管系Aから熱媒体が回り込む虞はない。
又、各温度制御配管系Aにおける部分負荷運転時においては、必要とされる温度制御配管系Aのインバータ付きポンプ31とインバータ付き2次ポンプ43との回転数を制御することによって、熱媒体の流入量を増加する運転を行うことができる。
そして、図3に配管系の圧力状態を表す管内圧力分布線図を示し、それに基づいて、圧力制御機構50がどのように最上階の温度制御配管系Aの配管30内圧が負圧とならないように制御するかを説明する。
図3は、縦軸に高さ、横軸に配管内圧力を示し、右下下がりの45度の線は、高さヘッドが圧力に変換される状態を示す立て管の基準線であって、膨張管61などの静止水の高さと管内揚程の関係を示し、実線の圧力分布線と立て管の基準線との勾配差は、立て管の摩擦損失を表すようになっている。右方向への動きはポンプ揚程である。例えば、図3の最上階5階の温度制御配管系Aのインバータ付きポンプ31が、その対象室又はゾーン36の熱負荷が急激に変化して、ポンプ回転数が急増した際に、ポンプの吸い込み側の配管圧力損失が大きい場合で、かつ膨張タンク62の高さが5階からあまり高くない場合、ポンプ吸い込み部分で大気圧以下の圧力になる場合がある。温度制御配管系Aの配管30内圧が大気圧よりも負圧となると、キャビテーションが発生するなどして温度制御配管系Aのインバータ付きポンプ31の吐出量が一定にならなくなり、振動も発生して系が不安定となり、故障する虞も出てくる。よって、最上階5階の温度制御配管系Aでの往き管47と還り管48との差圧ΔP値及び往き管47の圧力値をテンポラリーな圧力計で実測したり、配管ロスなどから演算で求め、最上階の温度制御配管系Aの配管30内最低圧点(最上階分散ポンプサクション側圧力X点)が大気圧よりも正圧となる圧力、例えば、大気圧にさらに2mAq程度加えた圧力を確保するように、往き管47の最上流の温度制御配管系Aより上流側の圧力と還り管48の最上流の温度制御配管系Aより上流側の圧力との基準になる差圧設定値を演算で求め、往き管47の最上流の温度制御配管系Aより上流側の圧力と還り管48の最上流の温度制御配管系Aより上流側の圧力との差圧ΔP実測値に対し、温度制御配管系Aを纏めた位置の還り管48に設けられている流量計63の計測値による、基準になる差圧設定値の流量補正の演算を行って逐次の差圧設定値を求めたうえで、差圧ΔP実測値と逐次の差圧設定値との偏差がゼロになるようインバータ付き2次ポンプ43の回転数を制御する。すなわち、図3のX点が、インバータ付きポンプ31の吸い込み圧力を正圧となるように制御を行う。
以上のように、本実施形態によれば、インバータ付きポンプ31の立ち上げ時に全閉全開が可能な二方弁33を閉じ、インバータ付きポンプ31の回転数が所定の回転数に達した後に全閉全開が可能な二方弁33を全開するように、インバータ付きポンプ31と全閉全開が可能な二方弁33との動きを制御装置35が制御するので、インバータ付きポンプ31が流量調整弁の機能をも併せ持つことができる。特に、従来のインバータ付きポンプと逆止弁とを併用する熱媒体配管システムにおいて、逆止弁による配管抵抗増を減らし、例えば、図2に示すように、理想の抵抗曲線に従ってインバータ付きポンプの回転数を制御して省エネルギーを計ることが可能となる。
又、各温度制御配管系Aでの熱媒体の逆流を防止し、流れの方向を一定に保つことが可能となる。しかも、全閉全開が可能な二方弁33は、全開時には配管30の内径とほとんど同径となり熱媒体の流れに抵抗を与えることがないため、圧力損失を低減することが可能となる。
更に、各空調機32の発停に伴い、各温度制御配管系Aの全閉全開が可能な二方弁33を閉とし、必要な系統の温度制御配管系Aのみに熱媒体を流すことができるため、省エネルギー運転が可能となる。
尚、既設の熱媒体配管システムに対し、温度制御配管系Aの中のインバータ付きポンプ31、制御装置35、インバータ付き2次ポンプ43及び圧力制御機構50を設置することによって、本実施形態に係る熱媒体配管システムと同様の運転を可能とすることができる。
(第二実施形態)
図4は、本発明の第二実施形態に係る熱媒体配管システムを示す。
本実施形態に係る熱媒体配管システム60は、複数のゾーン36をそれぞれ独立して空調するための温度制御配管系Aと、熱源機ループCと、複数のゾーン36をそれぞれ独立して空調するための温度制御配管系Aと熱源機ループCとを接続する熱搬送ループDとを備えている。
本実施形態において、複数のゾーン36をそれぞれ独立して空調するための温度制御配管系Aは、第一実施形態における複数のゾーン36をそれぞれ独立して空調するための温度制御配管系Aと同様に構成されている。
熱源機ループCは、第一実施形態における熱媒体主搬送ループBの熱源装置41と熱媒体を搬送する1次ポンプ42とで構成されている。
熱搬送ループDは、第一実施形態における熱媒体主搬送ループBから熱源装置41と熱媒体を搬送する1次ポンプ42とで構成されるループとヘッダ間バイパス管46とを取り除いて構成されている。
本実施形態においては、複数のゾーン36をそれぞれ独立して空調するための温度制御配管系Aの運転は、第一実施形態と同じであり、熱源機ループCの運転は、熱源装置41の冷凍機の最低確保流量を維持できるように1次ポンプ42を制御することによって行われ、熱搬送ループDの運転は、複数のゾーン36をそれぞれ独立して空調するための温度制御配管系Aにおける熱媒体の供給要求に応じられるようにインバータ付き2次ポンプ43の揚程を確保するように為される。
次に、本実施形態に係る熱媒体配管システム60の作用を説明する。
本実施形態に係る熱媒体配管システム60においては、1次ポンプ42とインバータ付き2次ポンプ43とは、基本的に1次ポンプ42の揚程は熱源装置41の冷凍機の蒸発器分や熱源機器回りの弁装置や往きヘッダ44Bと還りヘッダ45との間の熱源回りの配管の損失圧力分を受け持ち、インバータ付き2次ポンプ43の揚程は、往き管47と還り管48との管路抵抗分の損失圧力分を受け持って分担する。モジュール化できる温度制御配管系A部分のインバータ付きポンプ31は、空調機32と全閉全開が可能な二方弁33と温度制御配管系Aの配管30との損失圧力分を受け持つ。全閉全開が可能な二方弁33については、ボール弁型のもの、特にフルボア型のものであれば弁としての損失圧力は全開時ほぼ無視できる。
インバータ付き2次ポンプ43の流量は、インバータ付きポンプ31の合計流量と基本的に同じ流量になるように調整する。1次ポンプ42は熱源機器41と連動して一定回転数で運転され、あるいは流量可変でも冷凍機である熱源装置41の最低確保流量で運転される。インバータ付き2次ポンプ43と1次ポンプ42の流量ミスマッチが生じて1次ポンプ42の流量が多くなる場合は、1次ポンプ42の流量の一部が往き管47と還り管48と熱源機ループCとが接続される2点間の短い側を逆流したりして、流量の整合をとる。インバータ付き2次ポンプ43とインバータ付きポンプ31との合計の流量が、制御の時定数によるずれがある場合でも、往き管47と還り管48と熱源機ループCとが接続される2点間の短い側などで圧力を分散して整合をとる。
最初に、熱源装置41、1次ポンプ42及びインバータ付き2次ポンプ43を運転すると共に、制御装置35からの指令によって、各温度制御配管系Aの配管30に接続される全閉全開が可能な二方弁33を閉じ、次いで、インバータ付きポンプ31を立ち上げ、インバータ付きポンプ31の回転数が所定の回転数に達した時点で、全閉全開が可能な二方弁33を全開する。熱源装置41、1次ポンプ42及びインバータ付き2次ポンプ43は、各温度制御配管系Aの温度制御の程度に応じてその運転能力を制御し、熱媒体を所定の一定温度にする。
次に、熱源装置41により一定温度に調温された熱媒体は、1次ポンプ42及びインバータ付き2次ポンプ43から往き管47を介して各温度制御配管系Aの配管30に接続される各インバータ付きポンプ31により圧送されて各配管30に流入する。各配管30に流入した熱媒体は、各空調機32にそれぞれ供給される。各空調機32は並列に接続され、各室やゾーン36に設置された温度センサ(室温センサ)34からの計測信号と制御装置35に設定された各室やゾーン36の温度設定値との偏差により演算された結果の制御信号を、各インバータに送信してポンプ回転数を制御するので、各空調機32に供給される熱媒体の流量は、まちまちである。
しかし、各温度制御配管系Aから戻される温度がまちまちな還水は、還り管48で混合
されてある所定の温度になり、熱量演算等されて、所定の供給温度になるように熱源装置41で冷却され一定な供給温度にすることができる。
次に、熱交換された熱媒体は、各空調機32から流出し全開状態の全閉全開が可能な二方弁33を通る際に、この全開状態の全閉全開が可能な二方弁33で流通抵抗を受けることなく配管30を流れて還り管48に流入し、この還り管48を通って熱源装置41に還る。
そして、各温度制御配管系A毎に温度センサ(室温センサ)34の検出信号と各温度制御配管系Aの設定温度とを比較してこれらの温度差に基づいてインバータ付きポンプ31の羽根車の回転数を制御して、空調機32に流入する熱媒体の流量を調整し各温度制御配管系Aに対応した設定温度にする。
同時に、圧力制御機構50は、往き管47の熱媒体の圧力計51で計測した計測値と、還り管48の熱媒体の圧力を圧力計52で計測した計測値とを取り込み、その差圧ΔP実測値を演算して求め、流量計63の計測値による差圧設定値演算を行って逐次の差圧設定値を求め(いわゆるカスケード制御の形態)、差圧ΔP実測値と差圧設定値との偏差により、制御部53が最上階の温度制御配管系Aの配管30内圧が負圧とならないように、インバータ付き2次ポンプ43を制御する。
そして、熱源装置41により熱媒体は再び調温され、以降、前述した同様の作用が繰り返される。
この運転中に、例えば、全体の負荷が半分になると、各室やゾーン36に設置された温度センサ(室温センサ)34からの計測信号と制御装置35に設定された各室やゾーン36の温度設定値との偏差により演算された結果の制御信号を、各温度制御配管系Aのインバータ付きポンプ31の各インバータに送信してポンプ回転数を制御していく。この各温度制御配管系Aの合計流量が還り管48で少なくなっていることを流量計(図示せず)と
、往き管47及び還り管48にそれぞれ設けられた温度計(図示せず)とから各計測信号
を制御装置(図示せず)に送って全体熱量を演算し、その熱量演算値を用いて運転能力を
下げられた熱源装置41と1次ポンプ42から熱搬送ループDへ供給される熱媒体から、往き管47及び還り管48を流れる流量が半分となってくる。ここで、圧力制御機構50によって、インバータ付き2次ポンプ43の流量と揚程とを以下のように調整する。往き管47の熱媒体の圧力計51で計測した計測値と、還り管48の熱媒体の圧力を圧力計52で計測した計測値とを取り込み、その差圧ΔP実測値を演算して求め、流量計63の計測値による差圧設定値演算を行って逐次の差圧設定値を求め(いわゆるカスケード制御の形態)、差圧ΔP実測値と差圧設定値との偏差をもってインバータ付き2次ポンプ43のインバータへ回転数制御信号をだすのである。流量が半分となると、配管及び熱交換器における圧力損失が減少し、その減少度合いは流量の減少の2乗となってくる。よって、差圧設定値についても流量の2乗の減少を基礎として変化していく。
これらから、インバータ付きポンプ31の流量が調整されるのだが、その部分負荷時のポンプの軸動力について、図2に基づいて説明する。図2(a)に示すように、一点鎖線で示されるのが、理想配管抵抗曲線βであり、ポンプだけで流量調整を行う本実施形態の温度制御配管系A、往き管47、及び還り管48の配管経路での抵抗曲線でもある。各室やゾーン36に熱負荷が定格で存在する場合の熱媒体流量をQとした場合、本実施形態のインバータ付きポンプ31の流量Q時のポンプ能力曲線(外側2点鎖線)であり、このポンプ能力曲線と理想配管抵抗曲線βとの交点SAQとなって、そのときの流量はQ、揚程はhとなる。ここで、上記のように各室やゾーン36に熱負荷が半分になった場合は、熱媒体の温度差を同じとすると熱媒体流量はQ/2となるので、理想配管抵抗曲線β上を変化して流量Q/2のY座標平行線との交点SAQ/2となって、そのときの揚程はh/4となる。本実施形態のインバータ付きポンプ31の流量Q/2時のポンプ能力曲線は内側
の2点鎖線のものまで能力を低減できる。この流量QとQ/2の時のポンプの軸動力は、図2(b)に示し、ポンプ流量Qの時に軸動力WAとすると、流量Q/2の時は、ポンプ軸動力は流量変化の3乗、つまりWA/8と非常に小さくなる。
次に、時間外運転時等のように一部の温度制御配管系Aの空調機32を停止する場合には、該当する温度制御配管系Aの配管30に接続される全閉全開が可能な二方弁33を閉じた後に、その配管30に接続されるインバータ付きポンプ31を停止する。
そして、運転すべき各温度制御配管系Aでは、上述と同様にしてインバータ付きポンプ31と空調機32と全閉全開が可能な二方弁33とを運転することによって、各温度制御配管系Aを設定温度に空調することができる。
これによって、使用しない温度制御配管系Aの配管30へは熱媒体が流入することがないので、他の温度制御配管系Aから熱媒体が回り込む虞はない。
又、各温度制御配管系Aにおける部分負荷運転時においては、必要とされる温度制御配管系Aのインバータ付きポンプ31とインバータ付き2次ポンプ43との回転数を制御することによって熱媒体の流入量を増加する運転を行うことができる。
以上のように、本実施形態によれば、インバータ付きポンプ31の立ち上げ時に全閉全開が可能な二方弁33を閉じ、インバータ付きポンプ31の回転数が所定の回転数に達した後に全閉全開が可能な二方弁33を全開するように、インバータ付きポンプ31と全閉全開が可能な二方弁33との動きを制御装置35が制御するので、インバータ付きポンプ31が流量調整弁の機能をも併せ持つことができる。特に、従来のインバータ付きポンプと逆止弁とを併用する熱媒体配管システムにおいて、逆止弁による配管抵抗増を減らし、例えば、図2に示すように、理想の抵抗曲線に従ってインバータ付きポンプの回転数を制御して省エネルギーを計ることが可能となる。
又、各温度制御配管系Aでの熱媒体の逆流を防止し、流れの方向を一定に保つことが可能となる。しかも、全閉全開が可能な二方弁33は、全開時には配管30の内径とほとんど同径となり熱媒体の流れに抵抗を与えることがないため、圧力損失を低減することが可能となる。
更に、各空調機32の発停に伴い、各温度制御配管系Aの全閉全開が可能な二方弁33を閉とし、必要な系統の温度制御配管系Aのみに熱媒体を流すことができるため、省エネルギー運転が可能となる。
尚、既設の熱媒体配管システムに対し、温度制御配管系A、制御装置35、インバータ付き2次ポンプ43及び圧力制御機構50を設置することによって、本実施形態に係る熱媒体配管システムと同様の運転を可能とすることができる。
20、60 熱媒体配管システム
30 配管
31 インバータ付きポンプ
32 空調機
33 全閉全開が可能な二方弁
34 温度センサ(室温センサ)
35 制御装置
36 ゾーン
41 熱源装置
42 1次ポンプ
43 インバータ付き2次ポンプ
44A、44B 往きヘッダ
45 還りヘッダ
46 ヘッダ間バイパス管
47 往き管
48 還り管
50 圧力制御機構
51,52 圧力計
53 制御部
61 膨張管
62 膨張タンク
63 流量計
A 温度制御配管系
B 熱媒体主搬送ループ
C 熱源機ループ
D 熱搬送ループ

Claims (7)

  1. 複数のゾーンをそれぞれ独立して空調機により熱媒と空気を熱交換して空調するための温度制御配管系と、
    前記各温度制御配管系に温度調整した熱媒体を供給する熱源装置と、前記熱源装置の出口側に繋がる往き管と、前記熱源装置入口側に繋がる還り管と、前記還り管の前記熱源装置の近傍に位置し前記熱媒体を搬送する1次ポンプと、前記各温度制御配管系へ前記熱媒体を搬送する前記往き管途中にあるインバータ付き2次ポンプと、前記インバータ付き2次ポンプの還り側に繋がる往きヘッダと、前記各温度制御配管系の還り側に還り管を介して途中で繋がる還りヘッダと、前記往きヘッダと前記還りヘッダとを繋ぐヘッダ間バイパス管と、前記各温度制御配管系の内最上流の温度制御配管系より前記熱源装置側の往き管及び還り管にそれぞれ1個ずつ設置される圧力計と、前記還り管の圧力計設置箇所近傍に設置される流量計とを有する熱媒体主搬送ループと
    を備え、
    前記各温度制御配管系は、各両端を前記往き管と前記還り管にそれぞれ接続され、
    前記熱媒体主搬送ループは、前記各温度制御配管系の内最上流の温度制御配管系より前記熱源装置側の往き管及び還り管に一つずつ設置した前記2つの圧力計の差圧を、前記流量計の計測流量値の二乗値に相関させて前記インバータ付き2次ポンプ流量制御値を演算し入力することで、前記インバータ付き2次ポンプの流量を変化させて供給熱媒体量を必要最小量にし、
    前記各温度制御配管系は、前記空調機が対象とするゾーンの温度計測値と設定値との偏差により羽根車の回転数が制御されるインバータ付きポンプと、前記空調機と全閉全開が可能な二方弁とを備え、
    前記インバータ付きポンプの立ち上げ時に前記全閉全開が可能な二方弁を閉じ、前記インバータ付きポンプの回転数が所定の回転数に達した後に前記全閉全開が可能な二方弁を全開するように、前記インバータ付きポンプと前記全閉全開が可能な二方弁との動きを制御する制御装置を備える
    ことを特徴とする熱媒体配管システム。
  2. 複数のゾーンをそれぞれ独立して空調機により熱媒と空気を熱交換して空調するための温度制御配管系と、
    前記各温度制御配管系に温度調整した熱媒体を供給する熱源装置と、前記熱源装置の熱媒入口近傍に位置し前記熱媒体を搬送する1次ポンプと、前記熱源装置と前記1次ポンプとを接続しかつ環状に接続される配管とからなる熱源機ループと、
    前記各温度制御配管系の両端と前記熱源機ループとを該熱源装置の出口側に繋がる往き管と、前記熱源装置入口側に繋がる還り管とで接続する熱搬送ループと
    を備え、
    前記各温度制御配管系は、上流側から下流側に向かってインバータ付きポンプと空調機と全閉全開が可能な二方弁とを備え、
    前記インバータ付きポンプは、前記空調機が対象とするゾーンの温度計測値と設定値との偏差により羽根車の回転数が制御され、
    前記インバータ付きポンプの立ち上げ時に前記全閉全開が可能な二方弁を閉じ、前記インバータ付きポンプの回転数が所定の回転数に達した後に前記全閉全開が可能な二方弁を開くことによって、熱媒体の逆流を防止すると共に、前記インバータ付きポンプの停止時に前記全閉全開が可能な二方弁を閉じるように、前記インバータ付きポンプと前記全閉全開が可能な二方弁との動きを制御する制御装置を備える
    ことを特徴とする熱媒体配管システム。
  3. 請求項2に記載の熱媒体配管システムにおいて、
    前記熱搬送ループは、
    インバータ付きブースターポンプと、
    前記各温度制御配管系の内最上流の温度制御配管系より前記各温度制御配管系の内最上流の温度制御配管系より前記熱源装置側の往き管及び還り管にそれぞれ1個ずつ配置される圧力計と、
    前記還り管の圧力計設置箇所近傍に配置される流量計と、
    前記熱源装置側の往き管及び還り管に一つずつ設置した前記2つの圧力計の差圧を、前記流量計の計測流量値の二乗値に相関させて前記インバータ付きブースターポンプ流量制御値を演算し入力することで、前記インバータ付きブースターポンプの流量を変化させて供給熱媒体量を必要最小量に制御する制御部とを更に備える
    ことを特徴とする熱媒体配管システム。
  4. 請求項1又は3に記載の熱媒体配管システムにおいて、
    膨張タンクを末端に接続し、前記還り管の前記1次ポンプの還り側近傍又は前記還りヘッダに接続される膨張管と、
    前記往き管の最下流に接続される前記温度制御配管系の両端部の配管内圧が負圧とならないように、前記還り管の膨張管との接続点の圧力と、前記各温度制御配管系の内最上流の温度制御配管系より前記熱源装置側の往き管及び還り管に設置した二つの圧力計の差圧の設定値とを調整する制御部を更に備える
    ことを特徴とする熱媒体配管システム。
  5. 請求項1乃至請求項4の何れかに記載の熱媒体配管システムにおいて、
    前記温度制御配管系は、運転されない前記温度制御配管系がある場合には、その運転されない前記温度制御配管系の前記空調機のファン停止に伴い、前記全閉全開が可能な二方弁を全閉し、運転される前記温度制御配管系だけに熱媒体が供給されるように運転される
    ことを特徴とする熱媒体配管システム。
  6. 請求項1乃至請求項5の何れかに記載の熱媒体配管システムにおいて、
    前記全閉全開が可能な二方弁は、二位置制御式フルボア電動ボール弁である
    ことを特徴とする熱媒体配管システム。
  7. 請求項1乃至請求項5の何れかに記載の熱媒体配管システムにおいて、
    前記全閉全開が可能な二方弁は、二位置制御式バタフライ弁である
    ことを特徴とする熱媒体配管システム。
JP2009234498A 2008-10-09 2009-10-08 熱媒体配管システム Active JP5350166B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009234498A JP5350166B2 (ja) 2008-10-09 2009-10-08 熱媒体配管システム

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2008262805 2008-10-09
JP2008262805 2008-10-09
JP2009234498A JP5350166B2 (ja) 2008-10-09 2009-10-08 熱媒体配管システム

Publications (2)

Publication Number Publication Date
JP2010112699A true JP2010112699A (ja) 2010-05-20
JP5350166B2 JP5350166B2 (ja) 2013-11-27

Family

ID=42301381

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009234498A Active JP5350166B2 (ja) 2008-10-09 2009-10-08 熱媒体配管システム

Country Status (1)

Country Link
JP (1) JP5350166B2 (ja)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012145241A (ja) * 2011-01-07 2012-08-02 Osaka Gas Co Ltd 熱供給システム及びその運転方法
JP2012172874A (ja) * 2011-02-18 2012-09-10 Kobe Steel Ltd 温水製造供給ユニット
JP2012220104A (ja) * 2011-04-08 2012-11-12 Shimizu Corp 配管システム
JP2012247113A (ja) * 2011-05-26 2012-12-13 Sanki Eng Co Ltd 空調配管システム
JP2013204833A (ja) * 2012-03-27 2013-10-07 Sanki Eng Co Ltd 熱媒体配管システム
KR101692050B1 (ko) * 2016-11-16 2017-01-03 한국지역난방기술 (주) 지역난방 열원의 이중 압력 시스템
JP6388987B1 (ja) * 2017-08-14 2018-09-12 伸和コントロールズ株式会社 液体供給装置及び液体温調システム
CN109945460A (zh) * 2019-03-28 2019-06-28 中铁第四勘察设计院集团有限公司 一种空调冷却水二次泵变流量系统及控制方法
CN109963445A (zh) * 2019-04-08 2019-07-02 突破电气(天津)有限公司 多级调控智能精密送风系统及控制方法
JP2021046953A (ja) * 2019-09-17 2021-03-25 東芝キヤリア株式会社 空気調和機
KR102342497B1 (ko) * 2021-05-31 2021-12-23 한일호 지역난방 발전시설 또는 열병합 발전시설의 열배관 연계 시 부스터 펌프(Inverter제어펌프)를 활용한 효율적인 연계방법
CN114198832A (zh) * 2021-12-21 2022-03-18 宁波奥克斯电气股份有限公司 一种空调系统、恒流节能控制方法及变流节能控制方法
WO2022259396A1 (ja) * 2021-06-09 2022-12-15 三菱電機株式会社 空気調和装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05189659A (ja) * 1992-01-10 1993-07-30 Hitachi Bill Shisetsu Eng Kk セントラル冷暖房装置の料金算出方法および同料金算出装置
JPH10232000A (ja) * 1997-02-20 1998-09-02 Takasago Thermal Eng Co Ltd 熱利用に供する液体配管設備
JP2001241735A (ja) * 2000-02-24 2001-09-07 Matsushita Electric Works Ltd 空気調和システムおよびその制御方法
JP2002213802A (ja) * 2001-01-22 2002-07-31 Yokogawa Electric Corp 空調システム
JP3490986B2 (ja) * 2001-07-13 2004-01-26 株式会社きんでん 空気調和施設における搬送動力削減システム
JP2005214281A (ja) * 2004-01-29 2005-08-11 Yamatake Corp 空調制御システム
JP2006090620A (ja) * 2004-09-24 2006-04-06 Sanki Eng Co Ltd 熱媒体配管システム
JP2006162153A (ja) * 2004-12-07 2006-06-22 Kawamoto Pump Mfg Co Ltd 空調用ポンプシステム

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05189659A (ja) * 1992-01-10 1993-07-30 Hitachi Bill Shisetsu Eng Kk セントラル冷暖房装置の料金算出方法および同料金算出装置
JPH10232000A (ja) * 1997-02-20 1998-09-02 Takasago Thermal Eng Co Ltd 熱利用に供する液体配管設備
JP2001241735A (ja) * 2000-02-24 2001-09-07 Matsushita Electric Works Ltd 空気調和システムおよびその制御方法
JP2002213802A (ja) * 2001-01-22 2002-07-31 Yokogawa Electric Corp 空調システム
JP3490986B2 (ja) * 2001-07-13 2004-01-26 株式会社きんでん 空気調和施設における搬送動力削減システム
JP2005214281A (ja) * 2004-01-29 2005-08-11 Yamatake Corp 空調制御システム
JP2006090620A (ja) * 2004-09-24 2006-04-06 Sanki Eng Co Ltd 熱媒体配管システム
JP2006162153A (ja) * 2004-12-07 2006-06-22 Kawamoto Pump Mfg Co Ltd 空調用ポンプシステム

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012145241A (ja) * 2011-01-07 2012-08-02 Osaka Gas Co Ltd 熱供給システム及びその運転方法
JP2012172874A (ja) * 2011-02-18 2012-09-10 Kobe Steel Ltd 温水製造供給ユニット
JP2012220104A (ja) * 2011-04-08 2012-11-12 Shimizu Corp 配管システム
JP2012247113A (ja) * 2011-05-26 2012-12-13 Sanki Eng Co Ltd 空調配管システム
JP2013204833A (ja) * 2012-03-27 2013-10-07 Sanki Eng Co Ltd 熱媒体配管システム
KR101692050B1 (ko) * 2016-11-16 2017-01-03 한국지역난방기술 (주) 지역난방 열원의 이중 압력 시스템
JP2019035538A (ja) * 2017-08-14 2019-03-07 伸和コントロールズ株式会社 液体供給装置及び液体温調システム
WO2019035377A1 (ja) * 2017-08-14 2019-02-21 伸和コントロールズ株式会社 液体供給装置及び液体温調システム
JP6388987B1 (ja) * 2017-08-14 2018-09-12 伸和コントロールズ株式会社 液体供給装置及び液体温調システム
KR20200041858A (ko) * 2017-08-14 2020-04-22 신와 콘트롤즈 가부시키가이샤 액체 공급 장치 및 액체 온조 시스템
KR102515048B1 (ko) 2017-08-14 2023-03-29 신와 콘트롤즈 가부시키가이샤 액체 공급 장치 및 액체 온조 시스템
CN109945460A (zh) * 2019-03-28 2019-06-28 中铁第四勘察设计院集团有限公司 一种空调冷却水二次泵变流量系统及控制方法
CN109963445A (zh) * 2019-04-08 2019-07-02 突破电气(天津)有限公司 多级调控智能精密送风系统及控制方法
JP2021046953A (ja) * 2019-09-17 2021-03-25 東芝キヤリア株式会社 空気調和機
JP7360285B2 (ja) 2019-09-17 2023-10-12 東芝キヤリア株式会社 空気調和機
KR102342497B1 (ko) * 2021-05-31 2021-12-23 한일호 지역난방 발전시설 또는 열병합 발전시설의 열배관 연계 시 부스터 펌프(Inverter제어펌프)를 활용한 효율적인 연계방법
WO2022259396A1 (ja) * 2021-06-09 2022-12-15 三菱電機株式会社 空気調和装置
CN114198832A (zh) * 2021-12-21 2022-03-18 宁波奥克斯电气股份有限公司 一种空调系统、恒流节能控制方法及变流节能控制方法

Also Published As

Publication number Publication date
JP5350166B2 (ja) 2013-11-27

Similar Documents

Publication Publication Date Title
JP5350166B2 (ja) 熱媒体配管システム
KR101244536B1 (ko) 2차 펌프 방식 열원 시스템 및 2차 펌프 방식 열원 제어 방법
JP4505363B2 (ja) 空調システムの冷温水制御方法
JP5274222B2 (ja) 空調設備用の熱源制御システム
JP5869394B2 (ja) 熱媒体配管システム
JP6644559B2 (ja) 熱源制御システム、制御方法および制御装置
JP6033674B2 (ja) 熱供給制御装置、熱供給システム及び熱供給制御方法
JP2023161037A (ja) 熱源システム、熱源機、制御装置
JP4864587B2 (ja) 熱媒体配管システム
JP6434848B2 (ja) 熱源制御システム
US20180259219A1 (en) Air-conditioning apparatus
KR101147829B1 (ko) 계량정보를 이용한 복합제어장치 및 복합제어방법
JP5595975B2 (ja) 空調配管システム
JP3957309B2 (ja) 2ポンプ方式熱源設備の運転制御方法
JP3733371B2 (ja) 温度制御系
JP4477914B2 (ja) 空調システム
JP4369841B2 (ja) 熱媒体配管システム
CN105509120B (zh) 多分区温室的加热装置及控制方法
US11892218B2 (en) Air-conditioning apparatus and heat-medium flow-rate calculation method
JP2011127859A (ja) 熱源システムの連携制御装置及び連携制御方法
KR102580588B1 (ko) 열원 시스템
EP2141423A1 (en) Sequence control
US20240044543A1 (en) Method, system and computer program product for controlling an hvac system
EP3525060B1 (en) Flow control module and method for controlling the flow in a hydronic system
Bhatia HVAC chilled water distribution schemes

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120613

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130809

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130820

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130821

R150 Certificate of patent or registration of utility model

Ref document number: 5350166

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250