JP2010089147A - Manufacturing method of heat transfer plate - Google Patents

Manufacturing method of heat transfer plate Download PDF

Info

Publication number
JP2010089147A
JP2010089147A JP2008263694A JP2008263694A JP2010089147A JP 2010089147 A JP2010089147 A JP 2010089147A JP 2008263694 A JP2008263694 A JP 2008263694A JP 2008263694 A JP2008263694 A JP 2008263694A JP 2010089147 A JP2010089147 A JP 2010089147A
Authority
JP
Japan
Prior art keywords
metal member
heat medium
heat
medium pipe
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008263694A
Other languages
Japanese (ja)
Other versions
JP5163419B2 (en
Inventor
Nobushiro Seo
伸城 瀬尾
Hisashi Hori
久司 堀
Shinya Makita
慎也 牧田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Light Metal Co Ltd
Original Assignee
Nippon Light Metal Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Light Metal Co Ltd filed Critical Nippon Light Metal Co Ltd
Priority to JP2008263694A priority Critical patent/JP5163419B2/en
Priority to CN201310548745.7A priority patent/CN103624396B/en
Priority to PCT/JP2009/065474 priority patent/WO2010041529A1/en
Priority to KR1020117010225A priority patent/KR101249186B1/en
Priority to CN200980138293.7A priority patent/CN102159357B/en
Priority to TW098130493A priority patent/TWI402477B/en
Publication of JP2010089147A publication Critical patent/JP2010089147A/en
Application granted granted Critical
Publication of JP5163419B2 publication Critical patent/JP5163419B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Pressure Welding/Diffusion-Bonding (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method of a heat transfer plate that includes high heat-exchange efficiency and is easily manufactured even if a heat medium pipe bent at least in part is included. <P>SOLUTION: The method includes: a preparatory step in which a first recessed groove 5 formed in a first metallic member 2 is superposed on a second recessed groove 6 formed in a second metallic member 3 and in which a heat medium pipe 4 is inserted in a space K formed between the recessed grooves mutually; and an inflow stirring step in which an inflow stirring rotary tool 25 is moved along the space K, wherein the inflow stirring rotary tool is inserted at least from one face of the front and the rear face of a temporary assembled structure U formed in the preparatory step, and in which a plastic fluidized material Q fluidized by a frictional heat is made to flow in voids P1-P4 formed around the heat medium pipe 4. The heat transfer plate is characterized in that at least either the width or the height of the space K is larger than the outer diameter of the heat medium pipe 4. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、例えば熱交換器や加熱機器あるいは冷却機器などに用いられる伝熱板の製造方法に関する。   The present invention relates to a method for manufacturing a heat transfer plate used in, for example, a heat exchanger, a heating device, a cooling device, or the like.

熱交換、加熱あるいは冷却すべき対象物に接触し又は近接して配置される伝熱板は、例えば板厚の金属部材に高温液や冷却水などの熱媒体を循環させる熱媒体用管を挿通させて形成されている。   A heat transfer plate placed in contact with or close to an object to be heat exchanged, heated or cooled is inserted, for example, through a heat medium pipe that circulates a heat medium such as high-temperature liquid or cooling water through a thick metal member. Is formed.

かかる伝熱板の製造方法としては、例えば、特許文献1に記載された方法が知られている。図13は、特許文献1に係る伝熱板を示した図であって、(a)は、斜視図、(b)は断面図である。特許文献1に係る伝熱板100は、表面に開口する断面視矩形の蓋溝106と蓋溝106の底面に開口する凹溝108とを有する第一金属部材102と、凹溝108に挿入される熱媒体用管116と、蓋溝106に嵌合される第二金属部材110と、を備え、蓋溝106における両側壁105,105と第二金属部材110の両側面113,114とのそれぞれの突合せ面に沿って摩擦攪拌接合を施して形成されている。蓋溝106と第二金属部材110の突合せ面には、塑性化領域W,Wが形成されている。 As a method for manufacturing such a heat transfer plate, for example, a method described in Patent Document 1 is known. FIG. 13 is a view showing a heat transfer plate according to Patent Document 1, in which (a) is a perspective view and (b) is a cross-sectional view. A heat transfer plate 100 according to Patent Document 1 is inserted into a first metal member 102 having a cover groove 106 having a rectangular cross-sectional view opening on the surface and a groove 108 opening on the bottom surface of the cover groove 106, and the groove 108. A heat medium pipe 116 and a second metal member 110 fitted in the lid groove 106, and both side walls 105, 105 in the lid groove 106 and both side surfaces 113, 114 of the second metal member 110, respectively. Are formed by friction stir welding along the butt surfaces. Plasticized regions W 0 and W 0 are formed on the abutting surfaces of the lid groove 106 and the second metal member 110.

特開2004−314115号公報JP 2004-314115 A

図13の(b)に示すように、伝熱板100には、凹溝108と熱媒体用管116の外側面と第二金属部材110の裏面とによって空隙部120が形成されているが、伝熱板100の内部に空隙部120が存在していると、熱媒体用管116から放熱された熱が第一金属部材102及び第二金属部材110に伝わりにくくなるため、伝熱板100の熱交換効率が低下するという問題があった。したがって、凹溝108の深さや幅を熱媒体用管116の外径と同一に形成して、空隙部120が小さくなるように形成することが好ましい。   As shown in FIG. 13B, the heat transfer plate 100 has a gap 120 formed by the concave groove 108, the outer surface of the heat medium pipe 116, and the back surface of the second metal member 110. If the gap 120 is present inside the heat transfer plate 100, the heat radiated from the heat medium pipe 116 becomes difficult to be transmitted to the first metal member 102 and the second metal member 110. There was a problem that heat exchange efficiency fell. Therefore, it is preferable that the depth and width of the concave groove 108 be formed to be the same as the outer diameter of the heat medium pipe 116 so that the gap 120 is made smaller.

一方、熱媒体用管116の少なくとも一部を湾曲させて第一金属部材102及び第二金属部材110の内部に埋め込む場合には、凹溝108に熱媒体用管116を挿入し、蓋溝106に第二金属部材110を配置する作業が困難となるため、凹溝108の深さや幅を熱媒体用管116の外径よりも大きく確保しなければならない。即ち、熱媒体用管116の少なくとも一部を湾曲させて第一金属部材102及び第二金属部材110の内部に埋め込む場合は、熱媒体用管116の外径に比べて凹溝108の深さや幅を大きくせざるを得ず、それに伴って空隙部120が大きくなってしまう。これにより、伝熱板100の熱交換効率の低下を招来するという問題があった。   On the other hand, when at least a part of the heat medium pipe 116 is curved and embedded in the first metal member 102 and the second metal member 110, the heat medium pipe 116 is inserted into the concave groove 108, and the lid groove 106. In this case, it is difficult to dispose the second metal member 110, so that the depth and width of the groove 108 must be ensured to be larger than the outer diameter of the heat medium pipe 116. That is, when at least a part of the heat medium tube 116 is curved and embedded in the first metal member 102 and the second metal member 110, the depth of the concave groove 108 is smaller than the outer diameter of the heat medium tube 116. The width must be increased, and the gap 120 is increased accordingly. Thereby, there existed a problem that the fall of the heat exchange efficiency of the heat exchanger plate 100 was caused.

このような観点から本発明は、少なくとも一部が湾曲した熱媒体用管を備える場合であっても、伝熱板の熱交換効率が高く、かつ、容易に製造することができる伝熱板の製造方法を提供することを課題とする。   From this point of view, the present invention provides a heat transfer plate that has a high heat exchange efficiency and can be easily manufactured even when it includes a heat medium pipe that is at least partially curved. It is an object to provide a manufacturing method.

このような課題を解決するために本発明は、凹溝が形成された第一金属部材と、凹溝が形成された第二金属部材とを前記凹溝同士で中空の空間部が形成されるように重ね合わるとともに、前記空間部に熱媒体用管を挿入する準備工程と、前記準備工程で形成された仮組構造体の表面及び裏面の少なくとも一方の面から挿入した流入攪拌用回転ツールを前記空間部に沿って移動させ、前記熱媒体用管の周囲に形成された空隙部に摩擦熱によって流動化させた塑性流動材を流入させる流入攪拌工程と、を含み、前記空間部の幅及び高さの少なくとも一方が、前記熱媒体用管の外径よりも大きいことを特徴とする。   In order to solve such a problem, in the present invention, a hollow space is formed between the first metal member in which the groove is formed and the second metal member in which the groove is formed. And a rotating tool for inflow agitation inserted from at least one of the front surface and the back surface of the temporary assembly structure formed in the preparation step, and the preparation step of inserting the heat medium pipe into the space portion An inflow agitation step of moving the plastic fluid material moved along the space portion and fluidized by frictional heat into a gap formed around the heat medium pipe, the width of the space portion and At least one of the heights is larger than the outer diameter of the heat medium pipe.

かかる製造方法によれば、凹溝同士で形成された空間部の幅及び高さの少なくともいずれか一方が、前記熱媒体用管の外径よりも大きいため、熱媒体用管の一部が湾曲していても、準備工程を容易に行うことができる。また、流入攪拌工程により、熱媒体用管の周囲に形成された空隙部に塑性流動材を流入させることで、当該空隙部を埋めることができるため、熱媒体用管とその周囲の第一金属部材及び第二金属部材との間で熱を効率よく伝達することができる。これにより、熱交換効率の高い伝熱板を製造することができ、例えば、熱媒体用管に冷却水を通して伝熱板及び冷却対象物を効率的に冷却できる。   According to this manufacturing method, since at least one of the width and the height of the space formed by the concave grooves is larger than the outer diameter of the heat medium pipe, a part of the heat medium pipe is curved. Even if it does, a preparatory process can be performed easily. In addition, since the plastic fluidized material is allowed to flow into the gap formed around the heat medium pipe by the inflow stirring step, the gap can be filled, so the heat medium pipe and the surrounding first metal Heat can be efficiently transferred between the member and the second metal member. Thereby, a heat exchanger plate with high heat exchange efficiency can be manufactured, for example, a heat exchanger plate and a cooling target can be efficiently cooled through cooling water through a heat medium pipe.

また本発明は、凹溝が形成された第一金属部材と第二金属部材とを、前記凹溝と前記第二金属部材の裏面とで中空の空間部が形成されるように重ね合わせるとともに、前記空間部に熱媒体用管を挿入する準備工程と、前記準備工程で形成された仮組構造体の表面及び裏面のうち少なくとも一方の面から挿入した流入攪拌用回転ツールを前記空間部に沿って移動させ、前記熱媒体用管の周囲に形成された空隙部に摩擦熱によって流動化させた塑性流動材を流入させる流入攪拌工程と、を含み、前記空間部の幅及び高さの少なくとも一方が、前記熱媒体用管の外径よりも大きいことを特徴とする。   In addition, the present invention superimposes the first metal member and the second metal member on which the concave groove is formed so that a hollow space is formed between the concave groove and the back surface of the second metal member, A preparatory step for inserting the heat medium pipe into the space portion, and an inflow stirring rotary tool inserted from at least one of the front and back surfaces of the temporary assembly structure formed in the preparatory step along the space portion. And an inflow stirring step of flowing a plastic fluidized material fluidized by frictional heat into a gap formed around the heat medium pipe, and at least one of the width and height of the space portion Is larger than the outer diameter of the heat medium pipe.

かかる製造方法によれは、第一金属部材の凹溝と第二金属部材の裏面とで形成された空間部の幅及び高さの少なくとも一方が、前記熱媒体用管の外径よりも大きいため、熱媒体用管の一部が湾曲していても、準備工程を容易に行うことができる。また、流入攪拌工程により、熱媒体用管の周囲に形成された空隙部に塑性流動材を流入させることで、当該空隙部を埋めることができるため、熱媒体用管とその周囲の第一金属部材及び第二金属部材との間で熱を効率よく伝達することができる。これにより、熱交換効率の高い伝熱板を製造することができ、例えば、熱媒体用管に冷却水を通して伝熱板及び冷却対象物を効率的に冷却できる。   According to this manufacturing method, at least one of the width and height of the space formed by the concave groove of the first metal member and the back surface of the second metal member is larger than the outer diameter of the heat medium pipe. Even if a part of the heat medium pipe is curved, the preparation process can be easily performed. In addition, since the plastic fluidized material is allowed to flow into the gap formed around the heat medium pipe by the inflow stirring step, the gap can be filled, so the heat medium pipe and the surrounding first metal Heat can be efficiently transferred between the member and the second metal member. Thereby, a heat exchanger plate with high heat exchange efficiency can be manufactured, for example, a heat exchanger plate and a cooling target can be efficiently cooled through cooling water through a heat medium pipe.

また、前記流入攪拌工程では、前記流入攪拌用回転ツールの先端と、前記熱媒体用管に接する仮想鉛直面との最近接距離を1〜3mmに設定することが好ましい。また、前記流入攪拌工程では、前記流入攪拌用回転ツールの先端を、前記第一金属部材と前記第二金属部材とを突き合わせて形成された突合部よりも深く挿入することが好ましい。かかる製造方法によれば、空隙部に塑性流動材を確実に流入させることができる。   In the inflow stirring step, it is preferable that a closest distance between a tip of the inflow stirring rotating tool and a virtual vertical plane in contact with the heat medium pipe is set to 1 to 3 mm. In the inflow agitation step, it is preferable that the tip of the inflow agitation rotating tool is inserted deeper than an abutting portion formed by abutting the first metal member and the second metal member. According to this manufacturing method, the plastic fluidized material can surely flow into the gap.

また、前記第一金属部材と前記第二金属部材とを突き合わせて形成された突合部に沿って摩擦攪拌接合を行う接合工程を含むことが好ましい。また、前記接合工程では、前記突合部に沿って間欠的に摩擦攪拌接合を行うことが好ましい。   Moreover, it is preferable to include the joining process of performing friction stir welding along the abutting part formed by abutting said 1st metal member and said 2nd metal member. Moreover, it is preferable to perform friction stir welding intermittently along the said abutting part in the said joining process.

かかる製造方法によれば、第一金属部材及び第二金属部材を固定した状態で流入攪拌工程を行うことができるため、流入攪拌工程の作業性を高めることができる。   According to this manufacturing method, since the inflow stirring process can be performed with the first metal member and the second metal member fixed, the workability of the inflow stirring process can be improved.

また、前記流入攪拌用回転ツールよりも小型の回転ツールを用いて前記接合工程を行うことが好ましい。かかる製造方法によれば、流入攪拌工程では深い部分まで塑性流動化することができるとともに、接合工程での摩擦攪拌接合における塑性化領域は小さくて済むので、接合作業が容易になる。   Moreover, it is preferable to perform the said joining process using a rotary tool smaller than the said rotation tool for inflow stirring. According to such a manufacturing method, plastic fluidization can be achieved up to a deep portion in the inflow stirring step, and the plasticizing region in the friction stir welding in the joining step can be small, so that the joining operation is facilitated.

また、前記第一金属部材と前記第二金属部材とを突き合せて形成された突合部に沿って溶接を行う溶接工程を含むことが好ましい。また、前記溶接工程では、前記突合部に沿って間欠的に溶接を行うことが好ましい。   Moreover, it is preferable to include the welding process which welds along the abutting part formed by abutting said 1st metal member and said 2nd metal member. In the welding process, it is preferable that welding is intermittently performed along the butt portion.

かかる製造方法によれば、第一金属部材及び第二金属部材を固定した状態で流入攪拌工程を行うことができるため、流入攪拌工程の作業性を高めることができる。   According to this manufacturing method, since the inflow stirring process can be performed with the first metal member and the second metal member fixed, the workability of the inflow stirring process can be improved.

本発明に係る伝熱板の製造方法によれば、熱媒体用管の一部が湾曲している場合であっても、伝熱板を容易に製造することができるとともに、熱交換効率の高い伝熱板を提供することができる。   According to the method for manufacturing a heat transfer plate according to the present invention, the heat transfer plate can be easily manufactured and the heat exchange efficiency is high even when a portion of the heat medium pipe is curved. A heat transfer plate can be provided.

[第一実施形態]
本発明の最良の実施形態について、図面を参照して詳細に説明する。図1は、第一実施形態に係る伝熱板を示した斜視図である。図2は、第一実施形態に係る伝熱板を示した分解斜視図である。図3の(a)は、第一実施形態に係る伝熱板を示した分解断面図であり、(b)は、第一実施形態に係る第一金属部材に熱媒体用管と第二金属部材を配置した断面図である。図4は、第一実施形態に係る伝熱板を示した断面図である。なお、説明における上下左右前後は、特に断りのない限り図1の矢印に従う。
[First embodiment]
The best embodiment of the present invention will be described in detail with reference to the drawings. FIG. 1 is a perspective view showing a heat transfer plate according to the first embodiment. FIG. 2 is an exploded perspective view showing the heat transfer plate according to the first embodiment. FIG. 3A is an exploded cross-sectional view illustrating the heat transfer plate according to the first embodiment, and FIG. 3B is a diagram illustrating a heat medium tube and a second metal in the first metal member according to the first embodiment. It is sectional drawing which has arrange | positioned the member. FIG. 4 is a cross-sectional view showing the heat transfer plate according to the first embodiment. In the description, up, down, left, and right, front and rear follow the arrows in FIG. 1 unless otherwise specified.

第一実施形態に係る伝熱板1は、図1乃至図4に示すように、厚板形状の第一金属部材2と、第一金属部材2の上に配置される第二金属部材3と、第一金属部材2と第二金属部材3の間に挿入される熱媒体用管4とを主に備えている。熱媒体用管4は、平面視U字状を呈するように湾曲して形成されている。   As shown in FIGS. 1 to 4, the heat transfer plate 1 according to the first embodiment includes a thick plate-shaped first metal member 2 and a second metal member 3 disposed on the first metal member 2. The heat medium pipe 4 is mainly provided between the first metal member 2 and the second metal member 3. The heat medium pipe 4 is curved and formed so as to have a U-shape in plan view.

第一金属部材2と第二金属部材3は、図1及び図4に示すように、摩擦攪拌接合により生成された塑性化領域W1,W2によって一体形成されている。ここで、「塑性化領域」とは、回転ツールの摩擦熱によって加熱されて現に塑性化している状態と、回転ツールが通り過ぎて常温に戻った状態の両方を含むこととする。一方、第二金属部材3の表面3aには、塑性化領域W3,W4が形成されている。さらに、第一金属部材2の裏面2bには塑性化領域W5,W6が形成されている。   As shown in FIGS. 1 and 4, the first metal member 2 and the second metal member 3 are integrally formed by plasticized regions W1 and W2 generated by friction stir welding. Here, the “plasticization region” includes both a state heated by frictional heat of the rotary tool and actually plasticized, and a state where the rotary tool passes and returns to room temperature. On the other hand, on the surface 3a of the second metal member 3, plasticized regions W3 and W4 are formed. Further, plasticized regions W5 and W6 are formed on the back surface 2b of the first metal member 2.

第一金属部材2は、例えば、アルミニウム合金(JIS:A6061)で形成されている。第一金属部材2は、熱媒体用管4に流れる熱媒体の熱を外部に伝達させる役割、あるいは、外部の熱を熱媒体用管4に流れる熱媒体に伝達させる役割を果たす。図3に示すように、第一金属部材2の表面2aには、熱媒体用管4の一方側(下半部)を収容する第一凹溝5が凹設されている。   The first metal member 2 is made of, for example, an aluminum alloy (JIS: A6061). The first metal member 2 plays a role of transferring the heat of the heat medium flowing through the heat medium pipe 4 to the outside or a role of transferring external heat to the heat medium flowing through the heat medium pipe 4. As shown in FIG. 3, a first groove 5 that accommodates one side (lower half) of the heat medium pipe 4 is formed in the surface 2 a of the first metal member 2.

第一凹溝5は、熱媒体用管4の下半部を収容する部分であって、平面視U字状を呈し、上方が開口するように断面視矩形に形成されている。第一凹溝5は、底面5cと、底面5cから垂直に立ち上がる立面5a,5bを備えている。   The first concave groove 5 is a portion that accommodates the lower half of the heat medium pipe 4, has a U shape in plan view, and is formed in a rectangular shape in cross section so that the upper part is open. The first concave groove 5 includes a bottom surface 5c and rising surfaces 5a and 5b that rise vertically from the bottom surface 5c.

第二金属部材3は、図2及び図3に示すように、第一金属部材2と同様のアルミニウム合金からなり、第一金属部材2と略同じ矩形断面に形成されている。第二金属部材3の両端面は、第一金属部材2の両端面と面一に形成されている。また、第二金属部材3の両側面3c,3dは、第一金属部材2の両側面2c,2dとそれぞれ面一に形成されている。第二金属部材3の裏面3bには、平面視U字状を呈し、第一凹溝5に重ね合わされる位置に対応して第二凹溝6が形成されている。   As shown in FIGS. 2 and 3, the second metal member 3 is made of the same aluminum alloy as that of the first metal member 2, and has a rectangular cross section substantially the same as that of the first metal member 2. Both end surfaces of the second metal member 3 are formed flush with both end surfaces of the first metal member 2. Further, both side surfaces 3c and 3d of the second metal member 3 are formed flush with both side surfaces 2c and 2d of the first metal member 2, respectively. On the back surface 3 b of the second metal member 3, a second groove 6 is formed corresponding to a position that is U-shaped in plan view and overlaps the first groove 5.

第二凹溝6は、図3の(a)及び(b)に示すように、熱媒体用管4の他方側(上半部)を収容する部分であって、下方が開口するように断面視矩形に形成されている。第二凹溝6は、天面6cと天面6cから垂直に立ち下がる立面6a,6bを備えている。   As shown in FIGS. 3A and 3B, the second concave groove 6 is a portion that accommodates the other side (upper half portion) of the heat medium pipe 4, and has a cross section that opens downward. It is formed in a viewing rectangle. The second concave groove 6 includes a top surface 6c and vertical surfaces 6a and 6b that vertically fall from the top surface 6c.

熱媒体用管4は、図2及び図3に示すように、平面視U字状を呈する円筒管である。熱媒体用管4の材質は特に制限されるものではないが、本実施形態では銅製としている。熱媒体用管4は、中空部4aに、例えば高温液、高温ガスなどの熱媒体を循環させて、第一金属部材2及び第二金属部材3に熱を伝達させる部材、あるいは中空部4aに、例えば冷却水、冷却ガスなどの熱媒体を循環させて、第一金属部材2及び第二金属部材3から熱を伝達される部材である。なお、熱媒体用管4の中空部4aに、例えばヒーターを通して、ヒーターから発生する熱を第一金属部材2及び第二金属部材3に伝達させる部材として利用してもよい。   As shown in FIGS. 2 and 3, the heat medium pipe 4 is a cylindrical pipe having a U-shape in plan view. The material of the heat medium pipe 4 is not particularly limited, but is made of copper in the present embodiment. The heat medium pipe 4 is a member that circulates a heat medium such as a high-temperature liquid or a high-temperature gas in the hollow portion 4a and transmits heat to the first metal member 2 and the second metal member 3, or the hollow portion 4a. For example, the heat is transferred from the first metal member 2 and the second metal member 3 by circulating a heat medium such as cooling water or cooling gas. In addition, you may utilize as a member which transmits the heat which generate | occur | produces from a heater to the 1st metal member 2 and the 2nd metal member 3 through the hollow part 4a of the pipe | tube 4 for heat media, for example.

図3の(b)に示すように、第一金属部材2に第二金属部材3を配置すると、第一金属部材2の第一凹溝5と第二金属部材3の第二凹溝6とが合わさり、断面視矩形の空間部Kが形成される。空間部Kには、熱媒体用管4が収容される。   As shown in FIG. 3B, when the second metal member 3 is disposed on the first metal member 2, the first groove 5 of the first metal member 2 and the second groove 6 of the second metal member 3 To form a space K having a rectangular cross section. In the space K, the heat medium pipe 4 is accommodated.

ここで、第一凹溝5の深さは、熱媒体用管4の外径の1/2に形成されている。また、第一凹溝5の幅は、熱媒体用管4の外径の1.1倍となるように形成されている。一方、第二凹溝6の深さは、熱媒体用管4の半径の1.1倍に形成されている。また、第二凹溝6の幅は、熱媒体用管4の外径の1.1倍に形成されている。したがって、第一金属部材2に熱媒体用管4及び第二金属部材3を配置すると、第一凹溝5と熱媒体用管4の下端は接触し、熱媒体用管4の左右端及び上端は、第一凹溝5及び第二凹溝6と微細な隙間をあけて離間する。言い換えると、空間部Kの幅及び高さは、熱媒体用管4の外径よりも大きく形成されている。   Here, the depth of the first concave groove 5 is formed to be ½ of the outer diameter of the heat medium pipe 4. Further, the width of the first concave groove 5 is formed to be 1.1 times the outer diameter of the heat medium pipe 4. On the other hand, the depth of the second concave groove 6 is formed to be 1.1 times the radius of the heat medium pipe 4. The width of the second concave groove 6 is 1.1 times the outer diameter of the heat medium pipe 4. Therefore, when the heat medium pipe 4 and the second metal member 3 are arranged on the first metal member 2, the first groove 5 and the lower end of the heat medium pipe 4 are in contact with each other, and the left and right ends and the upper end of the heat medium pipe 4 are in contact with each other. Are spaced apart from the first concave groove 5 and the second concave groove 6 with a fine gap. In other words, the width and height of the space K are formed larger than the outer diameter of the heat medium pipe 4.

矩形断面の空間部K内に、円形断面の熱媒体用管4を挿入しているため、熱媒体用管4の周囲には、空隙部が形成される。例えば、図2に示すように、熱媒体用管4内を流れる媒体の流動方向を「Y」とすると、熱媒体用管4の周囲に形成される空隙部のうち、流動方向Yに対して左上側に形成される部分を「第一空隙部P1」とし、右上側に形成される部分を「第二空隙部P2」とし、左下側に形成される部分を「第三空隙部P3」とし、右下側に形成される部分を「第四空隙部P4」とする。また、第一金属部材2、第二金属部材3及び熱媒体用管4からなる部材を「仮組構造体U」とする。   Since the heat medium pipe 4 having a circular cross section is inserted into the space K having a rectangular cross section, a gap is formed around the heat medium pipe 4. For example, as shown in FIG. 2, if the flow direction of the medium flowing in the heat medium pipe 4 is “Y”, among the voids formed around the heat medium pipe 4, the flow direction Y The portion formed on the upper left side is referred to as “first gap P1”, the portion formed on the upper right side is referred to as “second gap P2”, and the portion formed on the lower left side is referred to as “third gap P3”. A portion formed on the lower right side is referred to as a “fourth gap P4”. A member made up of the first metal member 2, the second metal member 3, and the heat medium pipe 4 is referred to as a “temporary assembly U”.

また、図3の(b)に示すように、第一金属部材2と第二金属部材3とが突き合わされて突合部Vが形成される。突合部Vのうち、仮組構造体Uの一方の側面に現われ部分を「突合部V1」とし、他方の側面に現れる部分を「突合部V2」とする。   Further, as shown in FIG. 3B, the first metal member 2 and the second metal member 3 are abutted to form an abutting portion V. Of the butt portion V, a portion appearing on one side surface of the temporary assembly U is referred to as “butt portion V1”, and a portion appearing on the other side surface is referred to as “butt portion V2”.

塑性化領域W1,W2は、図1及び図4に示すように、突合部V1,V2に摩擦攪拌接合を施した際に、第一金属部材2及び第二金属部材3の一部が塑性流動して一体化された領域である。即ち、突合部V1,V2に沿って、後記する接合用回転ツール50(図5参照)を用いて摩擦攪拌接合を行うと、突合部V1,V2にかかる第一金属部材2及び第二金属部材3の金属材料が、接合用回転ツール50の摩擦熱により流動化して一体化されることで、第一金属部材2と第二金属部材3が接合される。   As shown in FIGS. 1 and 4, when the friction stir welding is performed on the abutting portions V <b> 1 and V <b> 2, a part of the first metal member 2 and the second metal member 3 is plastically flown in the plasticizing regions W <b> 1 and W <b> 2. It is an integrated area. That is, when friction stir welding is performed along the abutting portions V1 and V2 using a joining rotary tool 50 (see FIG. 5) described later, the first metal member 2 and the second metal member applied to the abutting portions V1 and V2. The first metal member 2 and the second metal member 3 are joined by fluidizing and integrating the three metal materials by the frictional heat of the joining rotary tool 50.

塑性化領域W3,W4は、図1及び図4に示すように、第二金属部材3の表面3a側から挿入した流入攪拌用回転ツール55(図5参照)を第二凹溝6に沿って移動させた際に形成されたものである。塑性化領域W3の一部は、熱媒体用管4の周囲に形成された第一空隙部P1に流入している。塑性化領域W4の一部は、熱媒体用管4の周囲に形成された第二空隙部P2に流入している。即ち、塑性化領域W3,W4は、第二金属部材3の一部が塑性流動して、第一空隙部P1及び第二空隙部P2にそれぞれ流入して一体化された領域であって、熱媒体用管4と接触している。   As shown in FIGS. 1 and 4, the plasticizing regions W <b> 3 and W <b> 4 are formed along the second groove 6 with the inflow stirring rotary tool 55 (see FIG. 5) inserted from the surface 3 a side of the second metal member 3. It is formed when moved. A part of the plasticizing region W3 flows into the first gap P1 formed around the heat medium pipe 4. A part of the plasticized region W4 flows into the second gap P2 formed around the heat medium pipe 4. That is, the plasticized regions W3 and W4 are regions in which a part of the second metal member 3 is plastically flowed and flows into the first gap P1 and the second gap P2, respectively, It is in contact with the medium tube 4.

塑性化領域W5,W6は、第一金属部材2の裏面2b側から挿入した流入攪拌用回転ツール55を第一凹溝5に沿って移動させた際に形成されたものである。塑性化領域W5の一部は、熱媒体用管4の周囲に形成された第三空隙部P3に流入している。塑性化領域W6は、熱媒体用管4の周囲に形成された第四空隙部P4に流入している。即ち、塑性化領域W5,W6は、第一金属部材2及び第二金属部材3の一部が塑性流動して、第三空隙部P3、第四空隙部P4にそれぞれ流入して一体化する領域であって、熱媒体用管4と接触する。   The plasticized regions W5 and W6 are formed when the inflow stirring rotary tool 55 inserted from the back surface 2b side of the first metal member 2 is moved along the first concave groove 5. A part of the plasticized region W5 flows into the third gap P3 formed around the heat medium pipe 4. The plasticized region W6 flows into a fourth gap P4 formed around the heat medium pipe 4. That is, the plasticized regions W5 and W6 are regions in which a part of the first metal member 2 and the second metal member 3 are plastically flowed and flow into the third gap portion P3 and the fourth gap portion P4, respectively. Then, it contacts the heat medium pipe 4.

次に、伝熱板1の製造方法について、図5乃至図7を用いて説明する。図5は、第一実施形態に係る伝熱板の製造方法を示した断面図であって、(a)は、切削工程、(b)は、挿入工程及び配置工程、(c)は、接合工程、(d)は、第一表面側流入攪拌工程を示した図である。図6は、第一実施形態に係る伝熱板の製造方法を示した断面図であって、(a)は、第二表面側流入攪拌工程、(b)は、第一裏面側流入攪拌工程、(c)は、第二裏面側流入攪拌工程を示した図である。図7は、第一実施形態に係る第一表面側流入攪拌工程を示した模式断面図である。   Next, a method for manufacturing the heat transfer plate 1 will be described with reference to FIGS. FIG. 5 is a cross-sectional view illustrating a method for manufacturing a heat transfer plate according to the first embodiment, where (a) is a cutting process, (b) is an insertion process and an arrangement process, and (c) is a bonding process. Step (d) is a view showing a first surface side inflow stirring step. FIG. 6 is a cross-sectional view showing a method for manufacturing a heat transfer plate according to the first embodiment, wherein (a) is a second surface side inflow stirring step, and (b) is a first back side inflow stirring step. (C) is the figure which showed the 2nd back surface side inflow stirring process. FIG. 7 is a schematic cross-sectional view showing a first surface side inflow stirring step according to the first embodiment.

第一実施形態に係る伝熱板の製造方法は、第一金属部材2及び第二金属部材3を形成するとともに、第一金属部材2に熱媒体用管4及び第二金属部材3を配置する準備工程と、突合部V1,V2に沿って接合用回転ツール50を移動させて摩擦攪拌接合を行う接合工程と、第二金属部材3の表面3a側及び第一金属部材2の裏面2b側から流入攪拌用回転ツール55を移動させて第一空隙部P1〜第四空隙部P4に塑性流動材Qを流入させる流入攪拌工程とを含む。   The manufacturing method of the heat exchanger plate according to the first embodiment forms the first metal member 2 and the second metal member 3 and arranges the heat medium pipe 4 and the second metal member 3 on the first metal member 2. From the preparation step, the joining step of performing the friction stir welding by moving the joining rotary tool 50 along the abutting portions V1 and V2, and from the front surface 3a side of the second metal member 3 and the back surface 2b side of the first metal member 2 An inflow agitation step of moving the inflow agitation rotating tool 55 to cause the plastic fluid material Q to flow into the first gap part P1 to the fourth gap part P4.

(準備工程)
準備工程は、第一金属部材2及び第二金属部材3を形成する切削工程と、第一金属部材2に形成された第一凹溝5に熱媒体用管4を挿入する挿入工程と、第一金属部材2に第二金属部材3を配置する配置工程とを含む。
(Preparation process)
The preparation step includes a cutting step for forming the first metal member 2 and the second metal member 3, an insertion step for inserting the heat medium pipe 4 into the first concave groove 5 formed in the first metal member 2, A disposing step of disposing the second metal member 3 on the one metal member 2.

切削工程では、図5の(a)に示すように、公知の切削加工により、厚板部材に断面視矩形を呈する第一凹溝5を形成する。これにより、上方に開口する第一凹溝5を備えた第一金属部材2が形成される。
また、切削工程では、公知の切削加工により、板厚部材に断面視矩形を呈する第二凹溝6形成する。これにより、下方に開口する第二凹溝6を備えた第二金属部材3が形成される。
なお、第一実施形態においては、第一金属部材2及び第二金属部材3を切削加工により形成したが、アルミニウム合金製の押出形材や鋳造品を用いてもよい。
In the cutting step, as shown in FIG. 5A, the first concave groove 5 having a rectangular shape in cross section is formed on the thick plate member by a known cutting process. Thereby, the 1st metal member 2 provided with the 1st ditch | groove 5 opened upwards is formed.
In the cutting process, the second concave groove 6 having a rectangular shape in cross section is formed in the plate thickness member by a known cutting process. Thereby, the 2nd metal member 3 provided with the 2nd ditch | groove 6 opened below is formed.
In addition, in 1st embodiment, although the 1st metal member 2 and the 2nd metal member 3 were formed by cutting, you may use the extrusion shape material and castings made from aluminum alloy.

挿入工程では、図5の(b)に示すように、第一凹溝5に熱媒体用管4を挿入する。このとき、熱媒体用管4の下半部は、第一凹溝5の底面5cと接触し、第一凹溝5の立面5a,5bとは微細な隙間をあけて離間する。   In the insertion step, the heat medium pipe 4 is inserted into the first concave groove 5 as shown in FIG. At this time, the lower half of the heat medium pipe 4 is in contact with the bottom surface 5c of the first concave groove 5, and is separated from the standing surfaces 5a and 5b of the first concave groove 5 with a fine gap.

配置工程では、図5の(b)に示すように、熱媒体用管4の上半部を第二金属部材3に形成された第二凹溝6に挿入しつつ、第一金属部材2上に第二金属部材3を配置する。これにより、第一金属部材2、第二金属部材3及び熱媒体用管4からなる仮組構造体Uが形成される。このとき、熱媒体用管4と、第二金属部材3の裏面3bに形成された第二凹溝6の両立面6a,6b及び天面6cとは微細な隙間をあけて離間する。また、第一金属部材2と第二金属部材3とが突き合わされて突合部V1,V2が形成される。   In the arranging step, as shown in FIG. 5B, the upper half of the heat medium pipe 4 is inserted into the second concave groove 6 formed in the second metal member 3, The 2nd metal member 3 is arrange | positioned. Thereby, the temporary assembly structure U which consists of the 1st metal member 2, the 2nd metal member 3, and the pipe | tube 4 for heat media is formed. At this time, the heat medium pipe 4 and the compatible surfaces 6a and 6b and the top surface 6c of the second groove 6 formed on the back surface 3b of the second metal member 3 are separated from each other with a fine gap. Further, the first metal member 2 and the second metal member 3 are abutted to form the abutting portions V1 and V2.

(接合工程)
次に、図5の(c)に示すように、仮組構造体Uのうち突合部V1が現れる面を上にした後、突合部V1沿って摩擦攪拌接合を行う。摩擦攪拌接合は、接合用回転ツール50(公知の回転ツール)を用いて行う。接合用回転ツール50は、例えば、工具鋼からなり、円柱形のツール本体51と、ツール本体51の底面52の中心部から同心軸で垂下するピン53とを有する。ピン53は、先端に向けて幅狭となるテーパ状に形成されている。なお、ピン53の周面には、その軸方向に沿って図示しない複数の小溝や径方向に沿ったネジ溝が形成されていてもよい。
(Joining process)
Next, as shown in FIG. 5C, after the surface where the abutting portion V1 appears in the temporary assembly structure U is faced up, friction stir welding is performed along the abutting portion V1. Friction stir welding is performed using a welding rotary tool 50 (a known rotary tool). The joining rotary tool 50 is made of, for example, tool steel, and includes a cylindrical tool body 51 and a pin 53 that hangs down on a concentric axis from the center of the bottom surface 52 of the tool body 51. The pin 53 is formed in a tapered shape that becomes narrower toward the tip. A plurality of small grooves (not shown) and screw grooves along the radial direction may be formed on the peripheral surface of the pin 53 along the axial direction.

摩擦攪拌接合は、第一金属部材2及び第二金属部材3を図示しない治具により拘束した状態で、突合部V1に高速回転する接合用回転ツール50を押し込み、突合部V1に沿って移動させる。高速回転するピン53により、その周囲の第一金属部材2及び第二金属部材3のアルミニウム合金材料は、摩擦熱によって加熱され流動化した後に冷却されて一体化する。突合部V1に対して摩擦攪拌接合を行ったら、突合部V2に対しても同様に摩擦攪拌接合を行う。   In the friction stir welding, the first metal member 2 and the second metal member 3 are constrained by a jig (not shown), and the joining rotary tool 50 that rotates at a high speed is pushed into the abutting portion V1 and moved along the abutting portion V1. . The aluminum alloy material of the surrounding first metal member 2 and second metal member 3 is heated and fluidized by friction heat, and then cooled and integrated by the pin 53 rotating at high speed. When friction stir welding is performed on the abutting portion V1, friction stir welding is similarly performed on the abutting portion V2.

(流入攪拌工程)
流入攪拌工程では、図5の(d)、図6の(a)乃至(c)に示すように、第一金属部材2、熱媒体用管4及び第二金属部材3からなる仮組構造体Uの表面及び裏面から流入攪拌用回転ツール55を移動させて第一空隙部P1〜第四空隙部P4に塑性流動材Qを流入させる。本実施形態に係る流入攪拌工程は、第二金属部材3の表面3aで流入攪拌用回転ツール55を移動させて第一空隙部P1及び第二空隙部P2に塑性流動材Qを流入させる表面側流入攪拌工程と、第一金属部材2の裏面2bで流入攪拌用回転ツール55を移動させて第三空隙部P3及び第四空隙部P4に塑性流動材Qを流入させる裏面側流入攪拌工程を含むものである。
(Inflow stirring process)
In the inflow stirring step, as shown in FIG. 5D and FIG. 6A to FIG. 6C, the temporary assembly structure including the first metal member 2, the heat medium pipe 4, and the second metal member 3. The inflow stirring rotary tool 55 is moved from the front surface and the back surface of U to cause the plastic fluid material Q to flow into the first gap portion P1 to the fourth gap portion P4. In the inflow agitation process according to the present embodiment, the inflow agitation rotating tool 55 is moved on the surface 3a of the second metal member 3 to allow the plastic fluid material Q to flow into the first gap P1 and the second gap P2. An inflow agitation step, and a back side inflow agitation step in which the inflow agitation rotary tool 55 is moved on the back surface 2b of the first metal member 2 to cause the plastic fluid material Q to flow into the third gap portion P3 and the fourth gap portion P4. It is a waste.

なお、表面側流入攪拌工程のうち、第一空隙部P1に塑性流動材Qを流入させる工程を第一表面側流入攪拌工程とし、第二空隙部P2に塑性流動材Qを流入させる工程を第二表面側流入攪拌工程とする。また、第三空隙部P3に塑性流動材Qを流入させる工程を第一裏面側流入攪拌工程とし、第四空隙部P4に塑性流動材Qを流入させる工程を第二裏面側流入攪拌工程とする。   Of the surface side inflow stirring step, the step of flowing the plastic fluid material Q into the first gap portion P1 is referred to as the first surface side inflow stirring step, and the step of flowing the plastic fluid material Q into the second gap portion P2 is the first step. Two surface side inflow stirring step. Further, the step of flowing the plastic fluid material Q into the third gap P3 is referred to as a first back side inflow stirring step, and the step of flowing the plastic fluid material Q into the fourth gap P4 is referred to as a second back side inflow stirring step. .

第一表面側流入攪拌工程では、図5の(d)に示すように、熱媒体用管4の流動方向Y(図2参照)に対して左上側に形成された第一空隙部P1に、摩擦攪拌によって流動化させた塑性流動材Qを流入させる。流入攪拌用回転ツール55は、例えば、工具鋼からなり、接合用回転ツール50と同等の形状を有しており、円柱形のツール本体56と、ツール本体56の底面57の中心部から同心軸で垂下するピン58とを有する。流入攪拌用回転ツール55は、接合用回転ツール50よりも大型のものを使用している。   In the first surface side inflow stirring step, as shown in FIG. 5D, in the first gap P1 formed on the upper left side with respect to the flow direction Y of the heat medium pipe 4 (see FIG. 2), The plastic fluidized material Q fluidized by friction stirring is introduced. The inflow stirring rotary tool 55 is made of, for example, tool steel and has a shape equivalent to the joining rotary tool 50, and a concentric shaft is formed from the center of the cylindrical tool body 56 and the bottom surface 57 of the tool body 56. And a pin 58 that hangs down. The inflow stirring rotary tool 55 is larger than the joining rotary tool 50.

第一表面側流入攪拌工程では、第二金属部材3の表面3aで、高速回転する流入攪拌用回転ツール55を押し込み、下方の第二凹溝6に沿って平面視U字状の軌跡となるように流入攪拌用回転ツール55を移動させる。流入攪拌用回転ツール55は、ツール本体56の底面57(ショルダ)の投影部分の一部が第一空隙部P1と重なるように移動させる。このとき、高速回転するピン58により、その周囲の第二金属部材3のアルミニウム合金材料は、摩擦熱によって加熱され流動化される。流入攪拌用回転ツール55が、所定の深さで押し込まれているため、塑性流動化された塑性流動材Qは、第一空隙部P1に流入し、熱媒体用管4と接触する。   In the first surface side inflow agitation step, the inflow agitation rotating tool 55 that rotates at a high speed is pushed on the surface 3a of the second metal member 3, and a U-shaped trajectory in plan view is formed along the second concave groove 6 below. Thus, the inflow stirring rotary tool 55 is moved. The inflow stirring rotary tool 55 is moved so that a part of the projected portion of the bottom surface 57 (shoulder) of the tool main body 56 overlaps the first gap P1. At this time, the aluminum alloy material of the surrounding second metal member 3 is heated and fluidized by frictional heat by the pin 58 rotating at high speed. Since the inflow stirring rotary tool 55 is pushed in at a predetermined depth, the plastic fluidized material Q plastically fluidized flows into the first gap P1 and contacts the heat medium pipe 4.

ここで、図3の(b)に示すように、熱媒体用管4の左右端及び上端は、第一凹溝5及び第二凹溝6と微細な隙間をあけて配置されているが、塑性流動材Qが第一空隙部P1に流れ込むと、塑性流動材Qの熱が熱媒体用管4に奪われるため流動性が低下する。したがって、第一空隙部P1に流入した塑性流動材Qは、第二空隙部P2及び第三空隙部P3には流入せずに、第一空隙部P1に留まって充填され、硬化する。   Here, as shown in (b) of FIG. 3, the left and right ends and the upper end of the heat medium pipe 4 are arranged with a fine gap between the first concave groove 5 and the second concave groove 6. When the plastic fluid material Q flows into the first gap P1, the heat of the plastic fluid material Q is taken away by the heat medium pipe 4, so that the fluidity is lowered. Therefore, the plastic fluid material Q that has flowed into the first gap P1 does not flow into the second gap P2 and the third gap P3, but remains in the first gap P1 to be filled and hardened.

第二表面側流入攪拌工程では、図6の(a)に示すように、熱媒体用管4の流動方向Y(図2参照)に対して右上側に形成された第二空隙部P2に摩擦攪拌によって流動化された塑性流動材Qを流入させる。第二表面側流入攪拌工程は、第二空隙部P2に行うことを除いては、第一表面側流入攪拌工程と同等であるため説明を省略する。なお、表面側流入攪拌工程が終了したら、第二金属部材3の表面3aに形成されたバリを切削除去して表面3aを平滑にするのが好ましい。   In the second surface-side inflow stirring step, as shown in FIG. 6A, the second gap P2 formed on the upper right side with respect to the flow direction Y (see FIG. 2) of the heat medium pipe 4 is rubbed. The plastic fluidized material Q fluidized by stirring is introduced. Since the second surface side inflow stirring step is the same as the first surface side inflow stirring step except that the second surface side inflow stirring step is performed in the second gap P2, description thereof will be omitted. In addition, after the surface side inflow stirring process is complete | finished, it is preferable to cut and remove the burr | flash formed in the surface 3a of the 2nd metal member 3, and to make the surface 3a smooth.

裏面側流入攪拌工程では、図6の(b)及び(c)に示すように、仮組構造体Uの表裏を逆にした後、第一金属部材2の裏面2bで第一凹溝5に沿って流入攪拌用回転ツール55を移動させて第三空隙部P3及び第四空隙部P4に摩擦熱によって流動化させた塑性流動材Qを流入させる。   In the back side inflow stirring step, as shown in FIGS. 6B and 6C, the front and back surfaces of the temporary assembly U are reversed, and then the first concave groove 5 is formed on the back side 2 b of the first metal member 2. The inflow agitating rotary tool 55 is moved along the flow path, and the plastic fluidized material Q fluidized by frictional heat is caused to flow into the third gap portion P3 and the fourth gap portion P4.

第一裏面側流入攪拌工程では、図6の(b)に示すように、摩擦攪拌によって流動化させた塑性流動材Qを第三空隙部P3に流入させる。第一裏面側流入攪拌工程では、第一金属部材2の裏面2bで高速回転する流入攪拌用回転ツール55を押し込み、第一凹溝5に沿って平面視U字状の軌跡となるように流入攪拌用回転ツール55を移動させる。流入攪拌用回転ツール55は、ツール本体56の底面57(ショルダ)の投影部分の一部が熱媒体用管4の第三空隙部P3と重なるように移動させる。このとき、高速回転するピン58により、その周囲の第一金属部材2のアルミニウム合金材料は、摩擦熱によって加熱され流動化される。流入攪拌用回転ツール55が、所定の深さで押し込まれているため、塑性流動化された塑性流動材Qは、第三空隙部P3に流入し、熱媒体用管4と接触する。   In the first back side inflow agitation step, as shown in FIG. 6B, the plastic fluid material Q fluidized by friction agitation is caused to flow into the third gap P3. In the first back side inflow agitation step, the inflow agitation rotating tool 55 that rotates at a high speed on the back surface 2b of the first metal member 2 is pushed in, and flows along the first concave groove 5 so as to form a U-shaped trajectory in plan view. The stirring rotary tool 55 is moved. The inflow stirring rotary tool 55 is moved so that a part of the projected portion of the bottom surface 57 (shoulder) of the tool body 56 overlaps the third gap P3 of the heat medium pipe 4. At this time, the aluminum alloy material of the surrounding first metal member 2 is heated and fluidized by frictional heat by the pin 58 rotating at high speed. Since the inflow stirring rotary tool 55 is pushed in at a predetermined depth, the plastic fluidized material Q plastically fluidized flows into the third gap P3 and contacts the heat medium pipe 4.

第二裏面側流入攪拌工程では、図6の(c)に示すように、摩擦攪拌によって流動化された塑性流動材Qを第四空隙部P4に流入させる。第二裏面側流入攪拌工程は、第四空隙部P4に行うことを除いては、第一裏面側流入攪拌工程と同等であるため、説明を省略する。裏面側流入攪拌工程が終了したら、第一金属部材2の裏面2bに形成されたバリを切削除去して裏面2bを平滑にするのが好ましい。   In the second back-side inflow stirring step, as shown in FIG. 6C, the plastic fluid material Q fluidized by friction stirring is caused to flow into the fourth gap P4. The second back-side inflow stirring process is the same as the first back-side inflow stirring process except that the second back-side inflow stirring process is performed in the fourth gap P4, and thus the description thereof is omitted. When the back side inflow stirring step is completed, it is preferable to cut and remove burrs formed on the back surface 2b of the first metal member 2 to make the back surface 2b smooth.

なお、表面側流入攪拌工程及び裏面側流入攪拌工程では、第一空隙部P1〜第四空隙部P4の形状や大きさ等に基づいて、流入攪拌用回転ツール55の押込み量及び挿入位置等を設定する。熱媒体用管4がつぶれない程度に、流入攪拌用回転ツール55を近づけて、第一空隙部P1〜第四空隙部P4に塑性流動材Qを隙間なく流入させることが好ましい。   In the front-side inflow agitation step and the back-side inflow agitation step, the pushing amount and insertion position of the inflow agitation rotating tool 55 are determined based on the shape and size of the first gap portion P1 to the fourth gap portion P4. Set. It is preferable that the inflow and stirring rotary tool 55 is brought close to the heat medium pipe 4 so that the heat medium pipe 4 is not crushed, and the plastic fluid material Q flows into the first gap portion P1 to the fourth gap portion P4 without gaps.

例えば、図7に示すように、流入攪拌用回転ツール55のピン58の先端を、第二凹溝6の天面6c(裏面側流入攪拌工程の場合は第一凹溝5の底面5c)よりも深く挿入するとともに、流入攪拌用回転ツール55のピン58の先端と、熱媒体用管4に接する仮想鉛直面との最近接距離Lが1〜3mmであることが好ましい。これにより、熱媒体用管4を潰さない程度に第一空隙部P1に塑性流動材Qを確実に流入させることができる。最近接距離Lが1mmより小さいと、流入攪拌用回転ツール55が熱媒体用管4に近すぎて、熱媒体用管4が潰れる可能性がある。また、最近接距離Lが3mmより大きいと、第一空隙部P1に塑性流動材Qが流入しない可能性がある。   For example, as shown in FIG. 7, the tip of the pin 58 of the inflow agitation rotating tool 55 is connected to the top surface 6c of the second groove 6 (in the case of the back side inflow agitation step, the bottom surface 5c of the first groove 5). It is preferable that the closest distance L between the tip of the pin 58 of the inflow stirring rotary tool 55 and the virtual vertical plane in contact with the heat medium pipe 4 is 1 to 3 mm. Thereby, the plastic fluidized material Q can be surely flowed into the first gap P1 to such an extent that the heat medium pipe 4 is not crushed. If the closest distance L is smaller than 1 mm, the inflow stirring rotary tool 55 is too close to the heat medium tube 4 and the heat medium tube 4 may be crushed. If the closest distance L is greater than 3 mm, the plastic fluid material Q may not flow into the first gap P1.

また、流入攪拌用回転ツール55の押込み量(押込み長さ)は、例えば第一表面側流入攪拌工程において、ツール本体56が押し退ける第二金属部材3(又は第一金属部材2)の金属の体積が、第一空隙部P1に充填される塑性流動化されたアルミニウム合金材料の体積、及び塑性化領域W3の幅方向両側に発生するバリの体積との和と同等になるような長さとなっている。   The indentation amount (indentation length) of the inflow stirring rotary tool 55 is, for example, the volume of the metal of the second metal member 3 (or the first metal member 2) from which the tool body 56 is pushed away in the first surface side inflow stirring process. Is a length equivalent to the sum of the volume of the plastic fluidized aluminum alloy material filled in the first gap P1 and the volume of burrs generated on both sides in the width direction of the plasticized region W3. Yes.

以上説明した伝熱板の製造方法によれば、第一金属部材2の表面2aに形成された第一凹溝5と、第二金属部材3の裏面3bに形成された第二凹溝6からなる空間部Kにおいて、空間部Kの幅及び高さを熱媒体用管4の外径よりも大きく形成したため、熱媒体用管4の一部が湾曲している場合であっても、前記した挿入工程及び配置工程を容易に行うことができる。   According to the heat transfer plate manufacturing method described above, from the first groove 5 formed on the front surface 2 a of the first metal member 2 and the second groove 6 formed on the back surface 3 b of the second metal member 3. In the space portion K to be formed, the width and height of the space portion K are formed larger than the outer diameter of the heat medium tube 4, so that even when a part of the heat medium tube 4 is curved, it is described above. An insertion process and an arrangement process can be easily performed.

また、表面側流入攪拌工程及び裏面側流入攪拌工程により、熱媒体用管4の周囲に形成された第一空隙部P1〜第四空隙部P4に塑性流動材Qを流入させることで、当該空隙部を埋めることができるため、伝熱板1の熱交換効率を高めることができる。   Further, the plastic fluidized material Q is caused to flow into the first gap portion P1 to the fourth gap portion P4 formed around the heat medium pipe 4 by the front surface side inflow stirring step and the back surface side inflow stirring step, whereby the gap Since the portion can be filled, the heat exchange efficiency of the heat transfer plate 1 can be increased.

また、本実施形態によれば、表面側流入攪拌工程の前に、比較的小さい接合用回転ツール50を用いて、第一金属部材2と第二金属部材3とを接合しているので、表面側流入攪拌工程では、第二金属部材3が確実に固定された状態で摩擦攪拌を行うことができる。したがって、比較的大きい流入攪拌用回転ツール55を用いて大きい押込み力が作用する摩擦攪拌接合を、安定した状態で行うことができる。   Moreover, according to this embodiment, since the 1st metal member 2 and the 2nd metal member 3 are joined using the comparatively small joining rotary tool 50 before the surface side inflow stirring process, In the side inflow stirring step, friction stirring can be performed in a state where the second metal member 3 is securely fixed. Therefore, the friction stir welding in which a large pushing force is applied using the relatively large inflow stirring rotary tool 55 can be performed in a stable state.

なお、本実施形態では、接合工程の後に表面側流入攪拌工程を行っているが、表面側流入攪拌工程の後に接合工程を行うようにしてもよい。このとき、第一金属部材2及び第二金属部材3を幅方向及び長手方向から図示しない治具を用いて固定しておけば、表面側流入攪拌工程における摩擦攪拌を安定した状態で行うことができる。   In the present embodiment, the surface-side inflow stirring step is performed after the joining step, but the joining step may be performed after the surface-side inflow stirring step. At this time, if the first metal member 2 and the second metal member 3 are fixed from the width direction and the longitudinal direction using a jig (not shown), the friction stirring in the surface side inflow stirring step can be performed in a stable state. it can.

また、本実施形態では、接合工程において、突合部V1,V2の全長に亘って、摩擦攪拌接合を施しているが、これに限定されるものではなく、突合部V1,V2に沿って所定の間隔を隔てて摩擦攪拌接合を間欠的に行って、第一金属部材2と第二金属部材3とを仮付けを施すようにしてもよい。このような伝熱板の製造方法によれば、接合工程に要する手間と時間を低減しつつ、第一金属部材2と第二金属部材3とを確実に固定した状態で表面側流入攪拌工程を行うことができるとともに、前記した作用効果と同様に、加工環境が良好で精度の高い伝熱板を製造することができる。   Further, in the present embodiment, the friction stir welding is performed over the entire length of the abutting portions V1 and V2 in the joining step, but the present invention is not limited to this, and a predetermined amount is provided along the abutting portions V1 and V2. The first metal member 2 and the second metal member 3 may be temporarily attached by intermittently performing friction stir welding at intervals. According to such a method of manufacturing a heat transfer plate, the surface side inflow stirring step is performed in a state in which the first metal member 2 and the second metal member 3 are securely fixed while reducing the labor and time required for the joining step. As well as the above-described effects, it is possible to manufacture a heat transfer plate with a favorable processing environment and high accuracy.

また、本実施形態では、空間部Kの幅及び高さの両方を熱媒体用管4の外径よりも大きく形成しているが、いずれか一方を大きく形成すればよい。また、熱媒体用管4の断面形状は本実施形態では円形としているが、他の形状であってもよい。また、熱媒体用管4の平面視形状を本実施形態ではU字状としているが、例えば蛇行状や、円形状としてもよい。また、前記した第一凹溝5及び第二凹溝6の幅や深さ寸法はあくまで例示であって、本発明を限定するものではない。例えば、熱媒体用管4の平面視の形状が複雑になる場合は、それに伴って第一凹溝5及び第二凹溝6の幅や深さを適宜大きくしてもよい。また、本実施形態では、第一金属部材2に熱媒体用管4及び第二金属部材3を配置するようにしたが、これに限定されるものではない。例えば、第二金属部材3の第二凹溝6に熱媒体用管4を挿入した後、第二金属部材3の上方から第一金属部材2を覆うように配置してもよい。   Further, in the present embodiment, both the width and height of the space K are formed larger than the outer diameter of the heat medium pipe 4, but either one may be formed larger. Moreover, although the cross-sectional shape of the heat medium pipe 4 is circular in this embodiment, other shapes may be used. Moreover, although the planar view shape of the pipe | tube 4 for heat-medium is U shape in this embodiment, for example, it may be meandering shape or circular shape. Further, the width and depth dimensions of the first concave groove 5 and the second concave groove 6 described above are merely examples, and do not limit the present invention. For example, when the shape of the heat medium pipe 4 in a plan view becomes complicated, the width and depth of the first concave groove 5 and the second concave groove 6 may be appropriately increased accordingly. In the present embodiment, the heat medium pipe 4 and the second metal member 3 are arranged on the first metal member 2, but the present invention is not limited to this. For example, the heat medium pipe 4 may be inserted into the second concave groove 6 of the second metal member 3 and then disposed so as to cover the first metal member 2 from above the second metal member 3.

[第二実施形態]
次に、本発明の第二実施形態について説明する。第二実施形態に係る伝熱板の製造方法は、裏面側流入攪拌工程を行っていない点などで第一実施形態と相違する。
[Second Embodiment]
Next, a second embodiment of the present invention will be described. The manufacturing method of the heat exchanger plate which concerns on 2nd embodiment is different from 1st embodiment by the point which is not performing the back surface side inflow stirring process.

図8は、第二実施形態に係る伝熱板の製造方法を示した断面図であって、(a)は、切削工程、(b)は、挿入工程及び配置工程を示した図である。図9は、第二実施形態に係る伝熱板の製造方法を示した断面図であって、(a)は、接合工程、(b)は、第一表面側流入攪拌工程、(c)は、第二表面側流入攪拌工程を示す。また、具体的な図示はしないが、熱媒体用管4は、第一実施形態と同様に平面視U字状を呈するものとする。   FIG. 8 is a cross-sectional view showing a method for manufacturing a heat transfer plate according to the second embodiment, where (a) shows a cutting process and (b) shows an insertion process and an arrangement process. FIG. 9 is a cross-sectional view illustrating a method of manufacturing a heat transfer plate according to the second embodiment, where (a) is a joining step, (b) is a first surface side inflow stirring step, and (c) is a step. The 2nd surface side inflow stirring process is shown. Although not specifically illustrated, the heat medium pipe 4 is assumed to have a U-shape in plan view as in the first embodiment.

第二実施形態に係る伝熱板の製造方法は、図8及び図9に示すように、第一金属部材12及び第二金属部材13を形成するとともに、第一金属部材12に熱媒体用管4及び第二金属部材13を配置する準備工程と、突合部V1,V2に沿って接合用回転ツール50を移動させて摩擦攪拌接合を行う接合工程と、第二金属部材13の表面13aで、流入攪拌用回転ツール55を移動させて第一空隙部P1及び第二空隙部P2に塑性流動材Qを流入させる表面側流入攪拌工程を含むものである。   As shown in FIGS. 8 and 9, the heat transfer plate manufacturing method according to the second embodiment forms the first metal member 12 and the second metal member 13, and the heat medium pipe on the first metal member 12. 4 and the second metal member 13, a preparatory step, a joining step of moving the joining rotary tool 50 along the abutting portions V 1, V 2 to perform friction stir welding, and a surface 13 a of the second metal member 13, This includes a front-side inflow agitation step in which the inflow agitation rotating tool 55 is moved to cause the plastic fluid material Q to flow into the first gap P1 and the second gap P2.

(準備工程)
準備工程は、第一金属部材12及び第二金属部材13を形成する切削工程と、第一金属部材12に形成された第一凹溝15に熱媒体用管4を挿入する挿入工程と、第一金属部材12に第二金属部材13を配置する配置工程を含む。
(Preparation process)
The preparation process includes a cutting process for forming the first metal member 12 and the second metal member 13, an insertion process for inserting the heat medium pipe 4 into the first groove 15 formed in the first metal member 12, The arrangement | positioning process which arrange | positions the 2nd metal member 13 in the one metal member 12 is included.

切削工程では、図8の(a)に示すように、公知の切削加工により、板厚部材に断面視U字状を呈する第一凹溝15を切り欠いて第一金属部材12を形成する。第一凹溝15の底部15aは円弧状に切り欠かれており、熱媒体用管4と同等の曲率で形成されている。第一凹溝15の深さは、熱媒体用管4の外径よりも小さく形成されており、第一凹溝15の幅は熱媒体用管4の外径と略同等に形成されている。   In the cutting step, as shown in FIG. 8A, the first metal member 12 is formed by notching the first concave groove 15 having a U-shaped cross-sectional view in the plate member by a known cutting process. The bottom portion 15 a of the first concave groove 15 is notched in an arc shape and is formed with a curvature equivalent to that of the heat medium pipe 4. The depth of the first groove 15 is formed smaller than the outer diameter of the heat medium pipe 4, and the width of the first groove 15 is formed substantially equal to the outer diameter of the heat medium pipe 4. .

次に、公知の切削加工により、板厚部材に断面視矩形を呈する第二凹溝16を切り欠いて第二金属部材13を形成する。第二凹溝16の幅は、熱媒体用管4の外径と略同等に形成されている。また、第二凹溝16の深さは、図8の(b)に示すように、第一金属部材12に熱媒体用管4及び第二金属部材13を配置したときに、第二凹溝16の天面16cと熱媒体用管4とが微細な隙間をあけて離間するように形成されている。   Next, a second metal member 13 is formed by notching the second concave groove 16 having a rectangular shape in cross section in the plate thickness member by a known cutting process. The width of the second concave groove 16 is formed substantially equal to the outer diameter of the heat medium pipe 4. Further, as shown in FIG. 8B, the depth of the second groove 16 is the second groove when the heat medium pipe 4 and the second metal member 13 are arranged on the first metal member 12. The 16 top surfaces 16c and the heat medium pipe 4 are formed so as to be separated from each other with a fine gap.

挿入工程では、図8の(b)に示すように、第一凹溝15に熱媒体用管4を挿入する。このとき、熱媒体用管4の下半部は、第一凹溝15の底部15aと面接触する。なお、熱媒体用管4を第一凹溝15に挿入すると、熱媒体用管4の上端は、第一金属部材12の表面12aよりも上方に位置する。   In the insertion step, the heat medium pipe 4 is inserted into the first concave groove 15 as shown in FIG. At this time, the lower half of the heat medium pipe 4 is in surface contact with the bottom 15 a of the first groove 15. When the heat medium pipe 4 is inserted into the first concave groove 15, the upper end of the heat medium pipe 4 is positioned above the surface 12 a of the first metal member 12.

配置工程では、図8の(b)に示すように、熱媒体用管4の上部を第二金属部材13に形成された第二凹溝16に挿入しつつ、第一金属部材12に第二金属部材13を配置する。このとき、熱媒体用管4と、第二金属部材13形成された第二凹溝16の両立面16a,16b及び天面16cとは微細な隙間をあけて離間する。即ち、第一凹溝15と第二凹溝16とで形成された空間部K1の幅は、熱媒体用管4の外径と略同等に形成されており、空間部K1の高さHは、熱媒体用管4の外径よりも大きく形成されている。   In the arranging step, as shown in FIG. 8B, the upper portion of the heat medium pipe 4 is inserted into the second concave groove 16 formed in the second metal member 13, while the second metal member 12 is inserted into the second metal member 12. A metal member 13 is disposed. At this time, the heat medium pipe 4 and the compatible surfaces 16a and 16b and the top surface 16c of the second concave groove 16 formed with the second metal member 13 are separated from each other with a fine gap. That is, the width of the space portion K1 formed by the first groove 15 and the second groove 16 is formed substantially equal to the outer diameter of the heat medium pipe 4, and the height H of the space K1 is The outer diameter of the heat medium pipe 4 is larger.

ここで、空間部K1において、熱媒体用管4の周囲に形成される空隙部のうち、流動方向Y(図2参照)に対して左上側に形成される部分を第一空隙部P1とし、右上に形成される部分を第二空隙部P2とする。   Here, in the space portion K1, the portion formed on the upper left side with respect to the flow direction Y (see FIG. 2) among the space portions formed around the heat medium pipe 4 is defined as the first space portion P1. A portion formed in the upper right is defined as a second gap portion P2.

(接合工程)
接合工程では、図9の(a)に示すように、第一金属部材12と第二金属部材13との突合せ部である突合部V1,V2(図8の(b)参照)に沿って接合用回転ツール50を用いて摩擦攪拌接合を行う。これにより、第一金属部材12と第二金属部材13とを接合することができる。
(Joining process)
In the joining step, as shown in FIG. 9A, joining is performed along the abutting portions V1 and V2 (see FIG. 8B) which are the abutting portions of the first metal member 12 and the second metal member 13. Friction stir welding is carried out using the rotary tool 50 for use. Thereby, the 1st metal member 12 and the 2nd metal member 13 can be joined.

(表面側流入攪拌工程)
表面側流入攪拌工程では、図9の(b)及び(c)に示すように、第二金属部材13の表面13a側から第二凹溝16に沿って摩擦攪拌を行う。表面側流入攪拌工程は、本実施形態では、第一空隙部P1に塑性流動材Qを流入させる第一表面側流入攪拌工程と、第二空隙部P2に塑性流動材Qを流入させる第二表面側流入攪拌工程とを含む。
(Surface-side inflow stirring process)
In the surface side inflow agitation step, friction agitation is performed along the second groove 16 from the surface 13a side of the second metal member 13, as shown in FIGS. In the present embodiment, the surface-side inflow stirring step is a first surface-side inflow stirring step for causing the plastic fluid material Q to flow into the first gap P1, and a second surface for causing the plastic fluid material Q to flow into the second gap P2. Side inflow stirring step.

第一表面側流入攪拌工程では、第二金属部材13の表面13a側から高速回転する流入攪拌用回転ツール55を押し込み、第二凹溝16に沿って平面視U字状を呈するように、流入攪拌用回転ツール55を移動させる。流入攪拌用回転ツール55は、ツール本体56の底面57(ショルダ)の投影部分の一部が第一空隙部P1と重なるように移動させる。   In the first surface side inflow agitation step, the inflow agitation rotating tool 55 that rotates at a high speed from the surface 13a side of the second metal member 13 is pushed in, and the inflow so as to exhibit a U shape in plan view along the second concave groove 16 The stirring rotary tool 55 is moved. The inflow stirring rotary tool 55 is moved so that a part of the projected portion of the bottom surface 57 (shoulder) of the tool main body 56 overlaps the first gap P1.

このとき、高速回転するピン58により、その周囲の第一金属部材12及び第二金属部材13のアルミニウム合金材料は、摩擦熱によって加熱され流動化される。第二実施形態では、流入攪拌用回転ツール55の先端が、第一金属部材12と第二金属部材13との突合部Vよりも下方に位置するように押し込まれているため、塑性流動化された塑性流動材Qは、第一空隙部P1に確実に流入し熱媒体用管4と接触する。   At this time, the aluminum alloy material of the surrounding first metal member 12 and second metal member 13 is heated and fluidized by frictional heat by the pin 58 rotating at high speed. In the second embodiment, the tip of the inflow stirring rotary tool 55 is pushed so as to be positioned below the abutting portion V between the first metal member 12 and the second metal member 13, so that it is plasticized. The plastic fluidized material Q surely flows into the first gap P1 and comes into contact with the heat medium pipe 4.

ここで、図9の(b)に示すように、熱媒体用管4の上端は、第二凹溝16と微細な隙間をあけて配置されているが、塑性流動材Qが第一空隙部P1に流れ込むと、塑性流動材Qの熱が熱媒体用管4に奪われるため流動性が低下する。したがって、塑性流動材Qは、第二空隙部P2には流入せずに、第一空隙部P1に留まって充填され、硬化する。   Here, as shown in FIG. 9 (b), the upper end of the heat medium pipe 4 is arranged with a minute gap from the second concave groove 16, but the plastic fluid material Q is in the first gap portion. When flowing into P1, the heat of the plastic fluidized material Q is taken away by the heat medium pipe 4, so that the fluidity is lowered. Therefore, the plastic fluid material Q does not flow into the second gap P2, but remains in the first gap P1 and is filled and cured.

第二表面側流入攪拌工程では、図9の(c)に示すように、熱媒体用管4の流動方向Y(図2参照)に対して右上側に形成された第二空隙部P2に摩擦攪拌によって流動化された塑性流動材Qを流入させる。第二表面側流入攪拌工程は、第二空隙部P2に行うことを除いては、第一表面側流入攪拌工程と同等であるため説明を省略する。なお、表面側流入攪拌工程が終了したら、第二金属部材13の表面13aに形成されたバリを切削除去して表面13aを平滑にするのが好ましい。   In the second surface side inflow stirring step, as shown in FIG. 9C, the second gap P2 formed on the upper right side with respect to the flow direction Y of the heat medium pipe 4 (see FIG. 2) is rubbed. The plastic fluidized material Q fluidized by stirring is introduced. Since the second surface side inflow stirring step is the same as the first surface side inflow stirring step except that the second surface side inflow stirring step is performed in the second gap P2, description thereof will be omitted. In addition, after the surface side inflow stirring process is complete | finished, it is preferable to cut and remove the burr | flash formed in the surface 13a of the 2nd metal member 13, and to make the surface 13a smooth.

以上説明した伝熱板の製造方法によれば、第一金属部材12に形成された第一凹溝15と、第二金属部材13に形成された第二凹溝16からなる空間部K1において、空間部K1の高さを熱媒体用管4の外径よりも大きく形成したため、熱媒体用管4の一部が湾曲している場合であっても、前記した配置工程を容易に行うことができる。
また、表面側流入攪拌工程により、熱媒体用管4の周囲に形成された第一空隙部P1及び第二空隙部P2に塑性流動材Qを流入させることで、当該空隙部を埋めることができるため、伝熱板の熱交換効率を高めることができる。
According to the heat transfer plate manufacturing method described above, in the space portion K1 including the first concave groove 15 formed in the first metal member 12 and the second concave groove 16 formed in the second metal member 13, Since the height of the space K1 is formed to be larger than the outer diameter of the heat medium pipe 4, the arrangement step described above can be easily performed even when a part of the heat medium pipe 4 is curved. it can.
Further, the void portion can be filled by flowing the plastic fluid material Q into the first void portion P1 and the second void portion P2 formed around the heat medium pipe 4 by the surface side inflow stirring step. Therefore, the heat exchange efficiency of the heat transfer plate can be increased.

なお、本実施形態では、第一凹溝15の幅を熱媒体用管4の外径と略同等に形成したが、これに限定されるものではなく、第一凹溝15の幅を熱媒体用管4の外径よりも大きく形成してもよい。また、第一凹溝15の底部15aの曲率を熱媒体用管4の曲率よりも小さくなるように形成してもよい。これにより、熱媒体用管4を挿入する挿入工程や、第二金属部材13を配置する配置工程を容易に行うことができる。   In the present embodiment, the width of the first concave groove 15 is formed to be approximately equal to the outer diameter of the heat medium pipe 4, but the present invention is not limited to this. You may form larger than the outer diameter of the pipe 4 for work. Moreover, you may form so that the curvature of the bottom part 15a of the 1st ditch | groove 15 may become smaller than the curvature of the pipe | tube 4 for heat media. Thereby, the insertion process which inserts the pipe | tube 4 for heat media, and the arrangement | positioning process which arrange | positions the 2nd metal member 13 can be performed easily.

[第三実施形態]
次に、本発明の第三実施形態について説明する。第三実施形態に係る伝熱板の製造方法は、第一凹溝25及び第二凹溝26が共に曲面で形成されている点で第一実施形態と相違する。図10は、第三実施形態に係る伝熱板の製造方法を示した断面図であって、(a)は、切削工程、(b)は、接合工程、(c)は、表面側流入攪拌工程を示す。なお、具体的な図示はしないが、熱媒体用管4は、第一実施形態と同様に平面視U字状を呈するものとする。
[Third embodiment]
Next, a third embodiment of the present invention will be described. The manufacturing method of the heat exchanger plate according to the third embodiment is different from the first embodiment in that both the first concave groove 25 and the second concave groove 26 are formed with curved surfaces. FIG. 10 is a cross-sectional view illustrating a method of manufacturing a heat transfer plate according to the third embodiment, where (a) is a cutting step, (b) is a joining step, and (c) is a surface-side inflow agitation. A process is shown. Although not specifically illustrated, it is assumed that the heat medium pipe 4 has a U-shape in plan view as in the first embodiment.

第三実施形態に係る伝熱板の製造方法は、図10に示すように、第一金属部材22及び第二金属部材23を形成するとともに、第一金属部材22に熱媒体用管4及び第二金属部材23を配置する準備工程と、突合部V1,V2に沿って接合用回転ツール50を移動させて摩擦攪拌接合を行う接合工程と、第二金属部材23の表面23aで、第二凹溝26に沿って流入攪拌用回転ツール55を移動させて熱媒体用管4の周囲に形成された第一空隙部P1及び第二空隙部P2に摩擦熱によって流動化させた塑性流動材Qを流入させる表面側流入攪拌工程を含むものである。   As shown in FIG. 10, the heat transfer plate manufacturing method according to the third embodiment forms the first metal member 22 and the second metal member 23, and the heat medium pipe 4 and the first metal member 22 on the first metal member 22. In the preparation step of arranging the two metal members 23, the joining step of moving the joining rotary tool 50 along the abutting portions V1 and V2 to perform friction stir welding, and the surface 23a of the second metal member 23, the second concave The plastic fluid material Q fluidized by frictional heat in the first gap P1 and the second gap P2 formed around the heat medium pipe 4 by moving the inflow stirring rotary tool 55 along the groove 26. It includes a front-side inflow stirring step for inflow.

(準備工程)
準備工程は、第一金属部材22及び第二金属部材23を形成する切削工程と、第一金属部材22に形成された第一凹溝25に熱媒体用管4を挿入する挿入工程と、第一金属部材22に第二金属部材23を配置する配置工程を含む。
(Preparation process)
The preparation step includes a cutting step for forming the first metal member 22 and the second metal member 23, an insertion step for inserting the heat medium pipe 4 into the first concave groove 25 formed in the first metal member 22, and a first step The arrangement | positioning process which arrange | positions the 2nd metal member 23 to the one metal member 22 is included.

切削工程では、図10の(a)に示すように、公知の切削加工により、板厚部材に断面視半円形状を呈する第一凹溝25を切り欠いて第一金属部材22を形成する。第一凹溝25の半径は、熱媒体用管4の半径と同等に形成されている。
また、同様に板厚部材に断面視矩形を呈する第二凹溝26を切り欠いて第二金属部材23を形成する。第二凹溝26は、下方に向けて開口しており、開口部の幅は、熱媒体用管4の外径と略同等に形成されている。また、第二凹溝26の天面26cの曲率は、熱媒体用管4の曲率よりも大きくなるように形成されている。
In the cutting process, as shown in FIG. 10A, the first metal member 22 is formed by notching the first concave groove 25 having a semicircular shape in cross section in the plate thickness member by a known cutting process. The radius of the first concave groove 25 is formed to be equal to the radius of the heat medium pipe 4.
Similarly, the second metal member 23 is formed by cutting out the second concave groove 26 having a rectangular shape in cross section in the plate thickness member. The second concave groove 26 is opened downward, and the width of the opening is formed substantially equal to the outer diameter of the heat medium pipe 4. Further, the curvature of the top surface 26 c of the second concave groove 26 is formed so as to be larger than the curvature of the heat medium pipe 4.

挿入工程では、図10の(b)に示すように、第一凹溝25に熱媒体用管4の下半部を挿入する。熱媒体用管4の下半部は、第一凹溝25に面接触する。   In the inserting step, the lower half of the heat medium pipe 4 is inserted into the first concave groove 25 as shown in FIG. The lower half of the heat medium pipe 4 is in surface contact with the first concave groove 25.

配置工程では、図10の(b)に示すように、熱媒体用管4の上半部を第二金属部材23に形成された第二凹溝26に挿入しつつ、第一金属部材22に第二金属部材23を配置する。第一凹溝25と第二凹溝26とを重ね合わせて形成された空間部K2の高さHは、熱媒体用管4の外径よりも大きくなるように形成されている。
ここで、熱媒体用管4の周囲に形成される空隙部のうち、流動方向Y(図2参照)に対して左上側に形成される部分を第一空隙部P1とし、右上側に形成される部分を第二空隙部P2とする。
In the arrangement step, as shown in FIG. 10B, the upper half of the heat medium pipe 4 is inserted into the second concave groove 26 formed in the second metal member 23, and the first metal member 22 is inserted. The second metal member 23 is disposed. The height H of the space K2 formed by overlapping the first concave groove 25 and the second concave groove 26 is formed to be larger than the outer diameter of the heat medium pipe 4.
Here, of the gap formed around the heat medium pipe 4, the portion formed on the upper left side with respect to the flow direction Y (see FIG. 2) is defined as the first gap P1, and is formed on the upper right side. This portion is defined as a second gap portion P2.

(接合工程)
次に、図10の(b)に示すように、接合用回転ツール50(図5参照)を用いて突合部V1,V2に沿って摩擦攪拌接合を行う。これにより、第一金属部材22と第二金属部材23とを接合することができる。
(Joining process)
Next, as shown in FIG. 10B, friction stir welding is performed along the abutting portions V <b> 1 and V <b> 2 by using a welding rotary tool 50 (see FIG. 5). Thereby, the 1st metal member 22 and the 2nd metal member 23 can be joined.

(表面側流入攪拌工程)
次に、図10の(c)に示すように、第二金属部材23の表面23a側から第二凹溝26に沿って摩擦攪拌を行う。表面側流入攪拌工程は、本実施形態では、第一空隙部P1に塑性流動材Qを流入させる第一表面側流入攪拌工程と、第二空隙部P2に塑性流動材Qを流入させる第二表面側流入攪拌工程とを含む。
(Surface-side inflow stirring process)
Next, as shown in FIG. 10C, friction stirring is performed along the second concave groove 26 from the surface 23 a side of the second metal member 23. In the present embodiment, the surface-side inflow stirring step is a first surface-side inflow stirring step for causing the plastic fluid material Q to flow into the first gap P1, and a second surface for causing the plastic fluid material Q to flow into the second gap P2. Side inflow stirring step.

第一表面側流入攪拌工程における摩擦攪拌では、第二金属部材23の表面23a側から高速回転する流入攪拌用回転ツール55を押し込み、第二凹溝26に沿って平面視U字状を呈するように、流入攪拌用回転ツール55を移動させる。流入攪拌用回転ツール55は、ツール本体56の底面57(ショルダ)の投影部分の一部が第一空隙部P1と重なるように移動する。このとき、高速回転するピン58により、その周囲の第二金属部材23のアルミニウム合金材料は、摩擦熱によって加熱され流動化される。流入攪拌用回転ツール55は、所定の深さで押し込まれているため、塑性流動化された塑性流動材Qが第一空隙部P1に流入し熱媒体用管4と接触する。   In the friction agitation in the first surface side inflow agitation step, the inflow agitation rotating tool 55 that rotates at a high speed from the surface 23a side of the second metal member 23 is pushed in so as to exhibit a U shape in plan view along the second concave groove 26. Next, the rotating tool 55 for inflow stirring is moved. The inflow stirring rotary tool 55 moves so that a part of the projected portion of the bottom surface 57 (shoulder) of the tool main body 56 overlaps the first gap P1. At this time, the aluminum alloy material of the surrounding second metal member 23 is heated and fluidized by frictional heat by the pin 58 rotating at high speed. Since the inflow stirring rotary tool 55 is pushed in at a predetermined depth, the plastic fluidized material Q plastically fluidized flows into the first gap P1 and contacts the heat medium pipe 4.

第二表面側流入攪拌工程では、熱媒体用管4の流動方向Y(図2参照)に対して右上側に形成された第二空隙部P2に摩擦攪拌によって流動化された塑性流動材Qを流入させる。第二表面側流入攪拌工程は、第二空隙部P2に行うことを除いては、第一表面側流入攪拌工程と同等であるため、説明を省略する。表面側流入攪拌工程が終了したら、第二金属部材23の表面23aに形成されたバリを切削除去して平滑にするのが好ましい。   In the second surface side inflow agitation step, the plastic fluid material Q fluidized by friction agitation is applied to the second gap P2 formed on the upper right side with respect to the flow direction Y of the heat medium pipe 4 (see FIG. 2). Let it flow. Since the second surface side inflow stirring step is the same as the first surface side inflow stirring step except that the second surface side inflow stirring step is performed in the second gap P2, description thereof is omitted. When the front-side inflow stirring step is completed, it is preferable that the burrs formed on the surface 23a of the second metal member 23 are cut and removed to be smooth.

以上説明した伝熱板の製造方法によれば、第一凹溝25及び第二凹溝26をともに曲面となるように形成しても、第一凹溝25と第二凹溝26とで形成される空間部K2の高さHを熱媒体用管4の外径よりも大きく形成しているため、熱媒体用管4の一部が湾曲している場合であっても、前記した配置工程を容易に行うことができる。
また、表面側流入攪拌工程により、熱媒体用管4の周囲に形成された第一空隙部P1及び第二空隙部P2に塑性流動材Qを流入させることで、当該空隙部を埋めることができるため、伝熱板の熱交換効率を高めることができる。
According to the method for manufacturing a heat transfer plate described above, even if the first concave groove 25 and the second concave groove 26 are both formed to be curved surfaces, the first concave groove 25 and the second concave groove 26 are formed. Since the height H of the space portion K2 to be formed is larger than the outer diameter of the heat medium pipe 4, even if the heat medium pipe 4 is partially curved, the arrangement step described above Can be easily performed.
Further, the void portion can be filled by flowing the plastic fluid material Q into the first void portion P1 and the second void portion P2 formed around the heat medium pipe 4 by the surface side inflow stirring step. Therefore, the heat exchange efficiency of the heat transfer plate can be increased.

[第四実施形態]
次に、本発明の第四実施形態について説明する。第四実施形態に係る伝熱板の製造方法は、第二金属部材に凹溝が形成されていない点で第一実施形態と相違する。
[Fourth embodiment]
Next, a fourth embodiment of the present invention will be described. The manufacturing method of the heat exchanger plate which concerns on 4th embodiment differs from 1st embodiment by the point by which the ditch | groove is not formed in the 2nd metal member.

図11は、第四実施形態に係る伝熱板の製造方法を示した断面図であって、(a)は、切削工程、(b)は、挿入工程及び配置工程、(c)は、表面側流入攪拌工程を示した図である。なお、具体的な図示はしないが、熱媒体用管4は、第一実施形態と同様に平面視U字状を呈するものとする。   FIG. 11 is a cross-sectional view illustrating a method of manufacturing a heat transfer plate according to the fourth embodiment, where (a) is a cutting process, (b) is an insertion process and an arrangement process, and (c) is a surface. It is the figure which showed the side inflow stirring process. Although not specifically illustrated, it is assumed that the heat medium pipe 4 has a U-shape in plan view as in the first embodiment.

第四実施形態に係る伝熱板の製造方法は、図11に示すように、第一金属部材32及び第二金属部材33を形成するとともに、第二金属部材33に第一金属部材32を配置する準備工程と、突合部V1,V2に沿って接合用回転ツール50(図5参照)を移動させて摩擦攪拌接合を行う接合工程と、第二金属部材33の表面33a側及び第一金属部材32の裏面32b側から流入攪拌用回転ツール55を移動させて第一空隙部P1〜第四空隙部P4に塑性流動材Qを流入させる流入攪拌工程とを含む。   As shown in FIG. 11, the method for manufacturing a heat transfer plate according to the fourth embodiment forms the first metal member 32 and the second metal member 33 and arranges the first metal member 32 on the second metal member 33. A preparatory process, a joining process of moving the joining rotary tool 50 (see FIG. 5) along the abutting portions V1 and V2 to perform friction stir welding, the surface 33a side of the second metal member 33, and the first metal member 32, the inflow stirring step of moving the inflow stirring rotary tool 55 from the back surface 32b side of the 32 and flowing the plastic fluid material Q into the first gap portion P1 to the fourth gap portion P4.

(準備工程)
準備工程は、第一金属部材32及び第二金属部材33を形成する切削工程と、第一金属部材32に形成された第一凹溝35に熱媒体用管4を挿入する挿入工程と、第一金属部材32に第二金属部材33を配置する配置工程を含む。
(Preparation process)
The preparation step includes a cutting step for forming the first metal member 32 and the second metal member 33, an insertion step for inserting the heat medium pipe 4 into the first concave groove 35 formed in the first metal member 32, and a first step The arrangement | positioning process which arrange | positions the 2nd metal member 33 to the one metal member 32 is included.

切削工程では、図11の(a)に示すように、公知の切削加工により、板厚部材に断面視矩形の第一凹溝35を切り欠いて第一金属部材32を形成する。第一凹溝35の深さは、熱媒体用管4の外径の1.1倍に形成されている。また、第一凹溝35の幅は、熱媒体用管4の外径の1.1倍に形成されている。   In the cutting step, as shown in FIG. 11A, the first metal member 32 is formed by cutting out the first concave groove 35 having a rectangular cross-sectional view in the plate thickness member by a known cutting process. The depth of the first groove 35 is 1.1 times the outer diameter of the heat medium pipe 4. The width of the first groove 35 is 1.1 times the outer diameter of the heat medium pipe 4.

挿入工程では、図11の(b)に示すように、第一金属部材32の第一凹溝35に熱媒体用管4を挿入する。   In the inserting step, the heat medium pipe 4 is inserted into the first concave groove 35 of the first metal member 32 as shown in FIG.

配置工程では、図11の(b)に示すように、第一金属部材32の上方に第二金属部材33を配置する。即ち、第一凹溝35と第二金属部材33の底面(下面)33bとで形成された空間部K3に、熱媒体用管4が配置される。この際、図11の(b)に示すように、熱媒体用管4の下端は、第一凹溝35の底面35cと接触し、上端は、第二金属部材33の底面33bと離間する。   In the arranging step, the second metal member 33 is arranged above the first metal member 32 as shown in FIG. That is, the heat medium pipe 4 is disposed in the space K3 formed by the first concave groove 35 and the bottom surface (lower surface) 33b of the second metal member 33. At this time, as shown in FIG. 11B, the lower end of the heat medium pipe 4 is in contact with the bottom surface 35 c of the first groove 35, and the upper end is separated from the bottom surface 33 b of the second metal member 33.

(接合工程)
接合工程では、図11の(b)及び(c)に示すように、突合部V1,V2に沿って接合用回転ツール50(図5参照)を用いて摩擦攪拌接合を行う。接合工程については、前記した第一実施形態の接合工程と同様であるため詳細な説明を省略する。
(Joining process)
In the joining step, as shown in FIGS. 11B and 11C, friction stir welding is performed using the joining rotary tool 50 (see FIG. 5) along the abutting portions V1 and V2. Since the joining process is the same as the joining process of the first embodiment described above, detailed description thereof is omitted.

(流入攪拌工程)
流入攪拌工程では、第一金属部材32、熱媒体用管4及び第二金属部材33からなる仮組構造体Uの表面及び裏面から流入攪拌用回転ツール55を移動させて第一空隙部P1〜第四空隙部P4に塑性流動材Qを流入させる。
流入攪拌工程については第一実施形態に係る流入攪拌工程と略同等であるため詳細な説明を省略する
(Inflow stirring process)
In the inflow agitation step, the inflow agitation rotating tool 55 is moved from the front surface and the back surface of the temporary assembly U composed of the first metal member 32, the heat medium pipe 4 and the second metal member 33, and the first gap portions P1 to P1 are moved. The plastic fluid material Q is caused to flow into the fourth gap P4.
Since the inflow stirring process is substantially the same as the inflow stirring process according to the first embodiment, detailed description thereof is omitted.

以上説明した第四実施形態に係る製造方法によれば、第二金属部材33に凹溝を設けず、第一金属部材32のみに第一凹溝35を設ける場合であっても、第一凹溝35の幅及び深さを熱媒体用管4の外径より大きく形成することで、第一実施形態と略同等の効果を得ることができる。   According to the manufacturing method according to the fourth embodiment described above, even if the first metal groove 32 is provided only in the first metal member 32 without providing the groove in the second metal member 33, the first groove By forming the width and depth of the groove 35 to be larger than the outer diameter of the heat medium pipe 4, it is possible to obtain substantially the same effect as that of the first embodiment.

なお、第一凹溝35は、本実施形態では断面視矩形に形成したが、これに限定されるものではなく曲面を含むように形成してもよい。また、流入攪拌工程は、第一金属部材32、熱媒体用管4及び第二金属部材33からなる仮組構造体Uの表面及び裏面から行ったが、空間部K3と熱媒体用管4の形状によってはいずれか一方から行うだけでもよい。   In addition, although the 1st ditch | groove 35 was formed in the cross sectional view rectangle in this embodiment, it is not limited to this, You may form so that a curved surface may be included. Moreover, although the inflow stirring process was performed from the surface and the back surface of the temporary assembly structure U which consists of the 1st metal member 32, the pipe | tube 4 for a heat medium, and the 2nd metal member 33, the space part K3 and the pipe | tube 4 for a heat medium. Depending on the shape, it may be performed from either one.

以上、本発明に係る実施形態について説明したが、これに限定されるものではなく本発明の趣旨を逸脱しない範囲において、適宜変更が可能である。例えば、接合工程に替えて、溶接工程を行ってもよい。図12は、本実施形態に係る溶接工程を示した斜視図である。   The embodiment according to the present invention has been described above. However, the present invention is not limited to this, and can be appropriately changed without departing from the spirit of the present invention. For example, a welding process may be performed instead of the joining process. FIG. 12 is a perspective view showing a welding process according to the present embodiment.

溶接工程では、前記準備工程で形成された仮組構造体(第一金属部材2、第二金属部材3及び熱媒体用管4)の側面に現れる突合部V(V1,V2)に沿って溶接を行う。溶接工程における溶接の種類は特に制限を受けないが、MIG溶接又はTIG溶接等の肉盛り溶接を行って、溶接金属Tで突合部V1,V2を覆うことが好ましい。このように、溶接工程を行うことで、第一金属部材2と第二金属部材3とを固定した状態で流入攪拌工程を行うことができるため、流入攪拌工程の作業性を高めることができる。なお、溶接工程では、突合部V1,V2の全長に亘って溶接を行ってもよいし、所定の間隔をあけて間欠的に行ってもよい。また、溶接工程では、突合部V1,V2に沿って溝を形成し、当該溝に溶接金属Tを充填させてもよい。   In the welding process, welding is performed along the abutting portions V (V1, V2) appearing on the side surfaces of the temporarily assembled structure (first metal member 2, second metal member 3, and heat medium pipe 4) formed in the preparation process. I do. The type of welding in the welding process is not particularly limited, but it is preferable to perform overlay welding such as MIG welding or TIG welding and cover the butt portions V1 and V2 with the weld metal T. Thus, by performing a welding process, since an inflow stirring process can be performed in the state which fixed the 1st metal member 2 and the 2nd metal member 3, workability | operativity of an inflow stirring process can be improved. In the welding process, welding may be performed over the entire length of the abutting portions V1 and V2, or may be performed intermittently with a predetermined interval. In the welding process, a groove may be formed along the abutting portions V1 and V2, and the weld metal T may be filled in the groove.

また、前記した実施形態では、流入攪拌工程で使用する流入攪拌用回転ツール55を接合工程で使用する接合用回転ツール50よりも大型のものとしているが、接合工程で流入攪拌用回転ツール55を使用するようにしてもよい。このようにすれば、各工程で使用する回転ツールを統一することができ、回転ツールの交換時間を省略することができ、施工時間を短縮できる。   Further, in the above-described embodiment, the inflow stirring rotary tool 55 used in the inflow stirring process is made larger than the joining rotary tool 50 used in the joining process. It may be used. If it does in this way, the rotation tool used at each process can be unified, the exchange time of a rotation tool can be omitted, and construction time can be shortened.

第一実施形態に係る伝熱板を示した斜視図である。It is the perspective view which showed the heat exchanger plate which concerns on 1st embodiment. 第一実施形態に係る伝熱板を示した分解斜視図である。It is the disassembled perspective view which showed the heat exchanger plate which concerns on 1st embodiment. (a)は、第一実施形態に係る伝熱板を示した分解断面図であり、(b)第一実施形態に係る第一金属部材に熱媒体用管と第二金属部材を配置した断面図である。(A) is a disassembled sectional view showing the heat transfer plate according to the first embodiment, (b) a cross section in which the heat medium pipe and the second metal member are arranged on the first metal member according to the first embodiment. FIG. 第一実施形態に係る伝熱板を示した断面図である。It is sectional drawing which showed the heat exchanger plate which concerns on 1st embodiment. 第一実施形態に係る伝熱板の製造方法を示した断面図であって、(a)は、切削工程、(b)は、挿入工程及び配置工程、(c)は、接合工程、(d)は、第一表面側流入攪拌工程を示した図である。It is sectional drawing which showed the manufacturing method of the heat exchanger plate which concerns on 1st embodiment, Comprising: (a) is a cutting process, (b) is an insertion process and an arrangement | positioning process, (c) is a joining process, (d () Is the figure which showed the 1st surface side inflow stirring process. 第一実施形態に係る伝熱板の製造方法を示した断面図であって、(a)は、第二表面側流入攪拌工程、(b)は、第一裏面側流入攪拌工程、(c)は、第二裏面側流入攪拌工程を示した図である。It is sectional drawing which showed the manufacturing method of the heat exchanger plate which concerns on 1st embodiment, Comprising: (a) is a 2nd surface side inflow stirring process, (b) is a 1st back surface side inflow stirring process, (c). These are figures which showed the 2nd back surface side inflow stirring process. 第一実施形態に係る第一表面側流入攪拌工程を示した模式断面図である。It is the schematic cross section which showed the 1st surface side inflow stirring process which concerns on 1st embodiment. 第二実施形態に係る伝熱板の製造方法を示した断面図であって、(a)は、切削工程、(b)は、挿入工程及び配置工程を示した図である。It is sectional drawing which showed the manufacturing method of the heat exchanger plate which concerns on 2nd embodiment, Comprising: (a) is a cutting process, (b) is the figure which showed the insertion process and the arrangement | positioning process. 第二実施形態に係る伝熱板の製造方法を示した断面図であって、(a)は、接合工程、(b)は、第一表面側流入攪拌工程、(c)は、第二表面側流入攪拌工程を示す。It is sectional drawing which showed the manufacturing method of the heat exchanger plate which concerns on 2nd embodiment, Comprising: (a) is a joining process, (b) is a 1st surface side inflow stirring process, (c) is a 2nd surface. A side inflow stirring process is shown. 第三実施形態に係る伝熱板の製造方法を示した断面図であって、(a)は、切削工程、(b)は、接合工程、(c)は、表面側流入攪拌工程を示す。It is sectional drawing which showed the manufacturing method of the heat exchanger plate which concerns on 3rd embodiment, (a) is a cutting process, (b) is a joining process, (c) shows the surface side inflow stirring process. 第四実施形態に係る伝熱板の製造方法を示した断面図であって、(a)は、切削工程、(b)は、挿入工程及び配置工程、(c)は、表面側流入攪拌工程を示した図である。It is sectional drawing which showed the manufacturing method of the heat exchanger plate which concerns on 4th embodiment, Comprising: (a) is a cutting process, (b) is an insertion process and an arrangement | positioning process, (c) is a surface side inflow stirring process. FIG. 本実施形態に係る溶接工程を示した斜視図である。It is the perspective view which showed the welding process which concerns on this embodiment. 特許文献1に係る伝熱板を示した図であって、(a)は、斜視図、(b)は断面図である。It is the figure which showed the heat exchanger plate which concerns on patent document 1, Comprising: (a) is a perspective view, (b) is sectional drawing.

1 伝熱板
2 第一金属部材
3 第二金属部材
4 熱媒体用管
5 第一凹溝
6 第二凹溝
50 接合用回転ツール
55 流入攪拌用回転ツール
K 空間部
L 最近接距離
P 空隙部
Q 塑性流動材
U 仮組構造体
V 突合部
W 塑性化領域


DESCRIPTION OF SYMBOLS 1 Heat-transfer plate 2 1st metal member 3 2nd metal member 4 Heat medium pipe 5 1st groove 6 Second groove 50 Joining rotary tool 55 Inflow stirring rotary tool K Space part L Nearest distance P Space part Q Plastic flow material U Temporary assembly structure V Butt joint W Plasticization region


Claims (9)

凹溝が形成された第一金属部材と、凹溝が形成された第二金属部材とを前記凹溝同士で中空の空間部が形成されるように重ね合わるとともに、前記空間部に熱媒体用管を挿入する準備工程と、
前記準備工程で形成された仮組構造体の表面及び裏面の少なくとも一方の面から挿入した流入攪拌用回転ツールを前記空間部に沿って移動させ、前記熱媒体用管の周囲に形成された空隙部に摩擦熱によって流動化させた塑性流動材を流入させる流入攪拌工程と、を含み、
前記空間部の幅及び高さの少なくとも一方が、前記熱媒体用管の外径よりも大きいことを特徴とする伝熱板の製造方法。
The first metal member formed with the groove and the second metal member formed with the groove are overlapped so that a hollow space is formed between the grooves, and the heat medium is formed in the space. A preparation step of inserting a tube;
A gap formed around the heat medium pipe by moving the inflow stirring rotary tool inserted from at least one of the front surface and the back surface of the temporary assembly structure formed in the preparation step along the space. An inflow agitation step for introducing a plastic fluidized material fluidized by frictional heat into the part,
At least one of the width | variety and height of the said space part is larger than the outer diameter of the said pipe | tube for heat media, The manufacturing method of the heat exchanger plate characterized by the above-mentioned.
凹溝が形成された第一金属部材と第二金属部材とを、前記凹溝と前記第二金属部材の裏面とで中空の空間部が形成されるように重ね合わせるとともに、前記空間部に熱媒体用管を挿入する準備工程と、
前記準備工程で形成された仮組構造体の表面及び裏面のうち少なくとも一方の面から挿入した流入攪拌用回転ツールを前記空間部に沿って移動させ、前記熱媒体用管の周囲に形成された空隙部に摩擦熱によって流動化させた塑性流動材を流入させる流入攪拌工程と、を含み、
前記空間部の幅及び高さの少なくとも一方が、前記熱媒体用管の外径よりも大きいことを特徴とする伝熱板の製造方法。
The first metal member and the second metal member on which the groove is formed are overlapped so that a hollow space is formed between the groove and the back surface of the second metal member, and heat is applied to the space. A preparation step of inserting a medium tube;
The inflow stirring rotary tool inserted from at least one of the front and back surfaces of the temporary assembly structure formed in the preparation step is moved along the space portion, and is formed around the heat medium pipe. An inflow agitation step for injecting a plastic fluidized material fluidized by frictional heat into the void, and
At least one of the width | variety and height of the said space part is larger than the outer diameter of the said pipe | tube for heat media, The manufacturing method of the heat exchanger plate characterized by the above-mentioned.
前記流入攪拌工程では、前記流入攪拌用回転ツールの先端と、前記熱媒体用管に接する仮想鉛直面との最近接距離を1〜3mmに設定することを特徴とする請求項1又は請求項2に記載の伝熱板の製造方法。   3. The closest distance between the distal end of the inflow stirring rotary tool and the virtual vertical plane in contact with the heat medium pipe is set to 1 to 3 mm in the inflow stirring step. The manufacturing method of the heat exchanger plate as described in 2. 前記流入攪拌工程では、前記流入攪拌用回転ツールの先端を、前記第一金属部材と前記第二金属部材とを突き合わせて形成された突合部よりも深く挿入することを特徴とする請求項1乃至請求項3のいずれか一項に記載の伝熱板の製造方法。   In the inflow stirring step, the tip of the inflow stirring rotating tool is inserted deeper than an abutting portion formed by abutting the first metal member and the second metal member. The manufacturing method of the heat exchanger plate as described in any one of Claims 3. 前記第一金属部材と前記第二金属部材とを突き合わせて形成された突合部に沿って摩擦攪拌接合を行う接合工程を含むことを特徴とする請求項1乃至請求項4のいずれか一項に記載の伝熱板の製造方法。   5. The method according to claim 1, further comprising a joining step in which friction stir welding is performed along an abutting portion formed by abutting the first metal member and the second metal member. The manufacturing method of the heat-transfer board of description. 前記接合工程では、前記突合部に沿って間欠的に摩擦攪拌接合を行うことを特徴とする請求項5に記載の伝熱板の製造方法。   6. The method for manufacturing a heat transfer plate according to claim 5, wherein in the joining step, friction stir welding is intermittently performed along the abutting portion. 前記流入攪拌用回転ツールよりも小型の回転ツールを用いて前記接合工程を行うことを特徴とする請求項5又は請求項6に記載の伝熱板の製造方法。   The method for manufacturing a heat transfer plate according to claim 5 or 6, wherein the joining step is performed using a rotating tool smaller than the rotating tool for inflow stirring. 前記第一金属部材と前記第二金属部材とを突き合せて形成された突合部に沿って溶接を行う溶接工程を含むことを特徴とする請求項1乃至請求項4のいずれか一項に記載の伝熱板の製造方法。   5. The welding process according to claim 1, further comprising a welding step of performing welding along a butted portion formed by butting the first metal member and the second metal member. Manufacturing method of heat transfer plate. 前記溶接工程では、前記突合部に沿って間欠的に溶接を行うことを特徴とする請求項8に記載の伝熱板の製造方法。   The method for manufacturing a heat transfer plate according to claim 8, wherein in the welding step, welding is intermittently performed along the abutting portion.
JP2008263694A 2008-10-06 2008-10-10 Manufacturing method of heat transfer plate Expired - Fee Related JP5163419B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2008263694A JP5163419B2 (en) 2008-10-10 2008-10-10 Manufacturing method of heat transfer plate
CN201310548745.7A CN103624396B (en) 2008-10-06 2009-09-04 The manufacture method of heat transfer plate
PCT/JP2009/065474 WO2010041529A1 (en) 2008-10-06 2009-09-04 Method of manufacturing heat transfer plate
KR1020117010225A KR101249186B1 (en) 2008-10-06 2009-09-04 Method of manufacturing heat transfer plate
CN200980138293.7A CN102159357B (en) 2008-10-06 2009-09-04 Method of manufacturing heat transfer plate
TW098130493A TWI402477B (en) 2008-10-06 2009-09-10 Manufacture of heat transfer plates

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008263694A JP5163419B2 (en) 2008-10-10 2008-10-10 Manufacturing method of heat transfer plate

Publications (2)

Publication Number Publication Date
JP2010089147A true JP2010089147A (en) 2010-04-22
JP5163419B2 JP5163419B2 (en) 2013-03-13

Family

ID=42252370

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008263694A Expired - Fee Related JP5163419B2 (en) 2008-10-06 2008-10-10 Manufacturing method of heat transfer plate

Country Status (1)

Country Link
JP (1) JP5163419B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012104944A1 (en) * 2011-01-31 2012-08-09 三菱電機株式会社 Heat exchanger, method for manufacturing the heat exchanger, and refrigeration cycle device with the heat exchanger
KR101301682B1 (en) 2010-09-13 2013-08-30 오타케 루트 코교 컴퍼니 리미티드 Automatic screw tightening apparatus
JP2015080787A (en) * 2013-10-21 2015-04-27 日本軽金属株式会社 Method for manufacturing heat exchanger plate
WO2015060007A1 (en) * 2013-10-21 2015-04-30 日本軽金属株式会社 Method for manufacturing heat transfer plate and joining method
JP2015104750A (en) * 2013-12-02 2015-06-08 日本軽金属株式会社 Production method of heat transfer plate
JP2015142945A (en) * 2015-04-01 2015-08-06 日本軽金属株式会社 Frictional agitation joining method
JP2016163909A (en) * 2012-10-10 2016-09-08 日本軽金属株式会社 Manufacturing method of heat transfer plate and friction agitation joining method
JP2016533265A (en) * 2013-09-26 2016-10-27 アイソレールマテリアレンインダストリー プル ビー.ヴィ. Method for producing a layered panel
US9566661B2 (en) 2011-08-19 2017-02-14 Nippon Light Metal Company, Ltd. Friction stir welding method
DE102017218225A1 (en) * 2017-10-12 2019-04-18 TRUMPF Hüttinger GmbH + Co. KG cooling unit
JP2021527567A (en) * 2018-06-13 2021-10-14 プロセス テクノロジー ストラテジック コンサルタンシー リミテッドProcess Technology Strategic Consultancy Limited Batch processing equipment

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001313357A (en) * 2000-04-27 2001-11-09 Hitachi Ltd Method for manufacturing heat sink plate, and heat sink structure
WO2003001136A1 (en) * 2001-06-20 2003-01-03 Showa Denko K.K. Cooling plate and method of producing the same
JP2004314115A (en) * 2003-04-15 2004-11-11 Nippon Light Metal Co Ltd Heat transfer element, and method for manufacturing the same
JP2005319503A (en) * 2004-05-11 2005-11-17 Nippon Light Metal Co Ltd Metallic member joining method, heat exchange plate manufacturing method, and heat exchanger manufacturing method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001313357A (en) * 2000-04-27 2001-11-09 Hitachi Ltd Method for manufacturing heat sink plate, and heat sink structure
WO2003001136A1 (en) * 2001-06-20 2003-01-03 Showa Denko K.K. Cooling plate and method of producing the same
JP2004314115A (en) * 2003-04-15 2004-11-11 Nippon Light Metal Co Ltd Heat transfer element, and method for manufacturing the same
JP2005319503A (en) * 2004-05-11 2005-11-17 Nippon Light Metal Co Ltd Metallic member joining method, heat exchange plate manufacturing method, and heat exchanger manufacturing method

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101301682B1 (en) 2010-09-13 2013-08-30 오타케 루트 코교 컴퍼니 리미티드 Automatic screw tightening apparatus
GB2501413A (en) * 2011-01-31 2013-10-23 Mitsubishi Electric Corp Heat exchanger, method for manufacturing the heat exchanger, and refrigeration cycle device with the heat exchanger
JP5490265B2 (en) * 2011-01-31 2014-05-14 三菱電機株式会社 Heat exchanger, method for manufacturing the heat exchanger, and refrigeration cycle apparatus including the heat exchanger
GB2501413B (en) * 2011-01-31 2017-06-07 Mitsubishi Electric Corp Heat exchanger, method of making the same, and refrigeration cycle apparatus including the same
WO2012104944A1 (en) * 2011-01-31 2012-08-09 三菱電機株式会社 Heat exchanger, method for manufacturing the heat exchanger, and refrigeration cycle device with the heat exchanger
US9566661B2 (en) 2011-08-19 2017-02-14 Nippon Light Metal Company, Ltd. Friction stir welding method
JP2016163909A (en) * 2012-10-10 2016-09-08 日本軽金属株式会社 Manufacturing method of heat transfer plate and friction agitation joining method
JP2016533265A (en) * 2013-09-26 2016-10-27 アイソレールマテリアレンインダストリー プル ビー.ヴィ. Method for producing a layered panel
WO2015060007A1 (en) * 2013-10-21 2015-04-30 日本軽金属株式会社 Method for manufacturing heat transfer plate and joining method
JP2015080787A (en) * 2013-10-21 2015-04-27 日本軽金属株式会社 Method for manufacturing heat exchanger plate
JP2015104750A (en) * 2013-12-02 2015-06-08 日本軽金属株式会社 Production method of heat transfer plate
JP2015142945A (en) * 2015-04-01 2015-08-06 日本軽金属株式会社 Frictional agitation joining method
DE102017218225A1 (en) * 2017-10-12 2019-04-18 TRUMPF Hüttinger GmbH + Co. KG cooling unit
JP2021527567A (en) * 2018-06-13 2021-10-14 プロセス テクノロジー ストラテジック コンサルタンシー リミテッドProcess Technology Strategic Consultancy Limited Batch processing equipment

Also Published As

Publication number Publication date
JP5163419B2 (en) 2013-03-13

Similar Documents

Publication Publication Date Title
JP5163419B2 (en) Manufacturing method of heat transfer plate
JP4962423B2 (en) Manufacturing method of heat transfer plate
WO2010041529A1 (en) Method of manufacturing heat transfer plate
JP5262822B2 (en) Manufacturing method of liquid cooling jacket
KR20150034223A (en) Method for producing heat exchanger plate and method for friction stir welding
KR20100016504A (en) Method of producing heat transfer plate and heat transfer plate
JP5168212B2 (en) Manufacturing method of liquid cooling jacket
JP5195098B2 (en) Manufacturing method of heat transfer plate
JP5141487B2 (en) Manufacturing method of heat transfer plate
JP5440676B2 (en) Heat transfer plate manufacturing method and heat transfer plate
JP2013121622A (en) Method of manufacturing liquid-cooled jacket
TWI402476B (en) The method of manufacturing the heat transfer plate and the heat conducting plate
JP5071132B2 (en) Manufacturing method of heat transfer plate
CN110573288B (en) Method for manufacturing liquid cooling jacket
JP4888422B2 (en) Heat transfer plate manufacturing method and heat transfer plate
JP6617834B2 (en) Manufacturing method of heat transfer plate
JP6365752B2 (en) Heat transfer plate manufacturing method and heat transfer plate
JP5071274B2 (en) Heat transfer plate manufacturing method and heat transfer plate
JP6201882B2 (en) Heat transfer plate manufacturing method and heat transfer plate
JP6274257B2 (en) Manufacturing method of heat transfer plate and manufacturing method of composite plate having no flow path inside
JP5125760B2 (en) Heat transfer plate manufacturing method and heat transfer plate
JP2018108594A (en) Manufacturing method for heat transfer plate and friction stir welding method
JP2018065163A (en) Heat exchanger plate manufacturing method and friction stir welding method
JP2015139800A (en) Production method of heat transfer plate and friction stir welding method
JP6248730B2 (en) Manufacturing method of heat transfer plate and manufacturing method of composite plate having no flow path inside

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110701

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121120

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121203

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151228

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5163419

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees