WO2012104944A1 - Heat exchanger, method for manufacturing the heat exchanger, and refrigeration cycle device with the heat exchanger - Google Patents

Heat exchanger, method for manufacturing the heat exchanger, and refrigeration cycle device with the heat exchanger Download PDF

Info

Publication number
WO2012104944A1
WO2012104944A1 PCT/JP2011/006338 JP2011006338W WO2012104944A1 WO 2012104944 A1 WO2012104944 A1 WO 2012104944A1 JP 2011006338 W JP2011006338 W JP 2011006338W WO 2012104944 A1 WO2012104944 A1 WO 2012104944A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat transfer
heat exchanger
heat
refrigerant
transfer member
Prior art date
Application number
PCT/JP2011/006338
Other languages
French (fr)
Japanese (ja)
Inventor
浩昭 中宗
寿守務 吉村
瑞朗 酒井
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2012555580A priority Critical patent/JP5490265B2/en
Priority to GB1311658.7A priority patent/GB2501413B/en
Publication of WO2012104944A1 publication Critical patent/WO2012104944A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/0008Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one medium being in heat conductive contact with the conduits for the other medium
    • F28D7/0025Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one medium being in heat conductive contact with the conduits for the other medium the conduits for one medium or the conduits for both media being flat tubes or arrays of tubes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/04Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/0041Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for only one medium being tubes having parts touching each other or tubes assembled in panel form
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/02Tubular elements of cross-section which is non-circular
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/40Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only inside the tubular element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/12Elements constructed in the shape of a hollow panel, e.g. with channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F7/00Elements not covered by group F28F1/00, F28F3/00 or F28F5/00
    • F28F7/02Blocks traversed by passages for heat-exchange media
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/04Details of condensers
    • F25B2339/047Water-cooled condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0068Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for refrigerant cycles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2250/00Arrangements for modifying the flow of the heat exchange media, e.g. flow guiding means; Particular flow patterns
    • F28F2250/10Particular pattern of flow of the heat exchange media
    • F28F2250/104Particular pattern of flow of the heat exchange media with parallel flow

Definitions

  • the present invention relates to a heat exchanger for exchanging heat between a first refrigerant and a second refrigerant, a method for manufacturing the heat exchanger, and a refrigeration cycle apparatus including the heat exchanger.
  • this heat exchanger 1 includes an aluminum extruded tube 2 connected between the refrigerant inlet side tank 11 and the refrigerant outlet side tank 12, and an inlet for tap water.
  • a stainless molded tube 3 connected between the side header 13 and the outlet header 14 for tap water, and the aluminum extruded tube 2 and the stainless molded tube 3 are joined by means such as sawlock or vacuum brazing.
  • Patent Document 1 has been proposed (for example, Patent Document 1).
  • JP 2001-153571 paragraph 0026, FIG. 1
  • the present invention has been made to solve the above-described problems, and a heat exchanger with good heat exchange performance that can prevent deterioration in heat transfer performance due to the degree of thermal joining of the joint surfaces. It aims at obtaining the manufacturing method and the refrigerating-cycle apparatus provided with this heat exchanger.
  • the heat exchanger includes a plurality of heat transfer members in which a plurality of through holes serving as flow paths for the first refrigerant are formed, and a plurality of heat transfer tubes serving as flow paths for the second refrigerant,
  • the heat transfer member includes a first surface portion and a second surface portion formed on the opposite side of the first surface portion on an outer peripheral portion thereof, and heat transfer tubes are fitted to the first surface portion and the second surface portion.
  • a mating groove is formed, and the plurality of heat transfer members are stacked so that the first surface portion and the second surface portion face each other, and the adjacent heat transfer members are arranged to face each other.
  • the heat transfer tube is fitted and connected to a fitting groove formed in the second surface portion.
  • the manufacturing method of the heat exchanger which concerns on this invention is a manufacturing method of said heat exchanger, Comprising: Between the several heat-transfer member arrange
  • a refrigeration cycle apparatus includes the above heat exchanger.
  • the heat transfer surface of the heat transfer tube can be used effectively. Can do. Further, the adjacent heat transfer members do not contribute to heat exchange at the joint surfaces (the surfaces facing each other). For this reason, in the present invention, since brazing or the like is not necessary, a high-performance heat exchanger that can prevent a decrease in heat transfer performance due to the degree of thermal bonding of the conventional bonding surfaces, a method for manufacturing the heat exchanger, and the A refrigeration cycle apparatus including a heat exchanger can be provided.
  • FIG. 1 is a perspective view showing a unit heat exchange unit of the heat exchanger according to Embodiment 1 of the present invention.
  • the heat exchanger 100 according to Embodiment 1 is formed by stacking a plurality of unit heat exchange units A shown in FIG. 1 (details of the heat exchanger 100 will be described later with reference to FIG. 2). ).
  • each configuration of the heat exchanger 100 will be described according to the direction shown in FIG. 1, but this direction does not limit the installation direction of the heat exchanger 100.
  • FIG. 1 in order to illustrate the structure of the heat-transfer member 1, some heat-transfer tubes 2 are cut and described.
  • the unit heat exchange unit A includes a heat transfer member 1 through which the first refrigerant flows and a heat transfer tube 2 through which the second refrigerant flows.
  • the heat transfer member 1 has, for example, a substantially rectangular shape, and a plurality of refrigerant flow paths 3 are formed through it.
  • a plurality of first fitting grooves 4 a for fitting the heat transfer tubes 2 are formed on the upper surface portion of the heat transfer member 1 along the refrigerant flow path 3, for example.
  • a plurality of second fitting grooves 4 b for fitting the heat transfer tubes 2 are formed on the lower surface portion of the heat transfer member 1 along the refrigerant flow path 3, for example.
  • the refrigerant flow path 3 corresponds to the through hole in the present invention.
  • the upper surface portion of the heat transfer member 1 corresponds to the first surface portion in the present invention
  • the lower surface portion of the heat transfer member 1 corresponds to the second surface portion in the present invention.
  • coolant flow path 3 is arrange
  • coolant flow path is not limited to this.
  • the refrigerant flow paths 3 may be arranged in a staggered manner.
  • the cross-sectional shape of the refrigerant flow path 3 is not limited to a substantially circular shape, but is arbitrary.
  • the heat transfer tube 2 has a substantially circular cross section, and is fitted into the first fitting groove 4 a and the second fitting groove 4 b of the heat transfer member 1.
  • the inner peripheral surface shape of the first fitting groove 4a and the second fitting groove 4b corresponds to the outer peripheral surface shape of the heat transfer tube 2, and the heat transfer tube 2 is connected to the first fitting groove 4a and the second fitting groove.
  • the outer peripheral surface of the heat transfer tube 2 and the inner peripheral surfaces of the first fitting groove 4a and the second fitting groove 4b are in close contact with each other.
  • FIG. 1 the state which fitted the heat exchanger tube 2 to the 1st fitting groove 4a of the heat-transfer member 1 is shown.
  • the first refrigerant flowing through the refrigerant flow path 3 of the heat transfer member 1 is a refrigerant used in a refrigeration cycle apparatus such as a heat pump (for example, a chlorofluorocarbon refrigerant, a hydrocarbon refrigerant, carbon dioxide, etc. Natural refrigerant).
  • a heat pump for example, a chlorofluorocarbon refrigerant, a hydrocarbon refrigerant, carbon dioxide, etc. Natural refrigerant.
  • the heat-transfer member 1 is formed using the aluminum and aluminum alloy which have corrosion resistance with respect to the said refrigerant
  • the heat transfer member 1 can be processed (formed) at low cost by extrusion molding.
  • the heat exchanger tube 2 is formed using the copper and copper alloy which have corrosion resistance with respect to the said refrigerant
  • the materials of the heat transfer member 1 and the heat transfer tube 2 can be appropriately selected according to the corrosion characteristics of the first refrigerant and the second refrigerant.
  • the first refrigerant for example, a natural refrigerant such as a chlorofluorocarbon refrigerant, a hydrocarbon refrigerant, and carbon dioxide
  • the second refrigerant water
  • Various refrigerants can be selected as the first refrigerant and the second refrigerant according to the refrigeration cycle apparatus in which the heat exchanger 100 is used.
  • FIG. 2 is a perspective view showing the heat exchanger according to Embodiment 1 of the present invention.
  • the heat exchanger 100 according to Embodiment 1 can be formed by stacking a plurality of unit heat exchange units A shown in FIG. More specifically, the second heat transfer tube 2 of the unit heat exchange unit A disposed below (the heat transfer tube 2 fitted in the first fitting groove 4a) of the unit heat exchange unit A disposed below is second. It fits in the fitting groove 4b. Thereby, the adjacent unit heat exchange unit A can be connected and the heat exchanger 100 can be formed.
  • the heat exchanger tube 2 has shown the example in which the heat exchanger tube 2 is not provided in the 2nd fitting groove 4b of the unit heat exchange unit A arrange
  • the heat transfer tube 2 may be provided in the second fitting groove 4b of the unit heat exchange unit A disposed in the unit.
  • the heat exchanger 100 was formed by laminating
  • the heat transfer tube 2 provided in one unit heat exchange unit A is connected to the fitting groove (first fitting groove 4a or the other unit heat exchange unit A). It can be formed by fitting in the second fitting groove 4b).
  • the outer peripheral surface (heat-transfer surface) of the heat exchanger tube 2 provided between these can be closely adhered and covered by the adjacent heat-transfer member 1, the heat-transfer surface of a heat-transfer tube can be used effectively.
  • the adjacent heat transfer members 1 are symmetrically arranged on the joint surface 110 (that is, the opposing surfaces of the adjacent heat transfer members 1, see FIG. 2).
  • the heat exchanger 100 according to Embodiment 1 can improve the heat exchange performance as compared with the conventional one.
  • the heat exchanger 100 according to the first embodiment is configured such that the heat transfer tube 2 provided in one unit heat exchange unit A is connected to the fitting groove (first fitting groove 4a or the other unit heat exchange unit A). Since it can form by making it fit in the 2nd fitting groove 4b), an assembly process can be performed easily and the processing cost of the heat exchanger 100 can also be suppressed.
  • Embodiment 2 FIG.
  • the unit heat exchange unit A is not limited to the configuration shown in the first embodiment, and may be configured as follows, for example.
  • items that are not particularly described are the same as those in the first embodiment, and the same functions and configurations are described using the same reference numerals.
  • FIG. 3 is a perspective view showing a unit heat exchange unit of the heat exchanger according to Embodiment 2 of the present invention.
  • the unit heat exchange unit A that is, the heat exchanger 100
  • the first fitting groove 4a formed on the upper surface portion of the heat transfer member 1 is formed substantially orthogonal to the refrigerant flow path 3.
  • the 2nd fitting groove 4b formed in the lower surface part of the heat-transfer member 1 is formed along the 1st fitting groove 4a. That is, the second fitting groove 4 b formed on the lower surface portion of the heat transfer member 1 is also formed substantially orthogonal to the refrigerant flow path 3. Therefore, the unit heat exchange unit A (that is, the heat exchanger 100) according to the second embodiment has a configuration in which the heat transfer tubes 2 and the refrigerant flow paths 3 are arranged substantially orthogonally.
  • the heat transfer tube 2 can be arranged at the position of the refrigerant flow path 3 according to the state of the first refrigerant. For example, when the second refrigerant is heated by utilizing the condensation change of the first refrigerant, the diameter of the heat transfer tube 2 is reduced and densely arranged at the position of the refrigerant flow path 3 where the first refrigerant is in the subcooled state. By adopting such a configuration, the heat exchange performance of the heat exchanger 100 can be improved.
  • the first fitting groove 4a and the second fitting groove 4b can be formed by cutting or the like after processing (forming) only the coolant channel 3 into the heat transfer member 1 by extrusion molding.
  • Embodiment 3 In the first embodiment, when the heat exchanger 100 is configured, the bonding surfaces 110 of the adjacent heat transfer members 1 (facing surfaces of the adjacent heat transfer members 1) are brought into contact with each other. Not only this but when comprising the heat exchanger 100, you may form a clearance gap in the joint surface 110 of the adjacent heat-transfer member 1.
  • FIG. 3 items that are not particularly described are the same as those in Embodiment 1 or Embodiment 2, and the same functions and configurations are described using the same reference numerals.
  • FIG. 4 is a perspective view showing a heat exchanger according to Embodiment 3 of the present invention.
  • the heat exchanger 100 according to Embodiment 3 when a plurality of unit heat exchange units A shown in FIG. 1 are stacked, a gap 111 is formed on the joint surface 110 of the adjacent heat transfer member 1. Since the joining surface 110 does not contribute to heat exchange, the same effects as those of the first and second embodiments can be obtained even if the heat exchanger 100 is configured in this manner. Further, by forming a gap 111 on the joint surface 110 as in the heat exchanger 100 according to the third embodiment, when the refrigerant leaks from the heat transfer member 1 or the heat transfer tube 2 due to corrosion or the like, the refrigerant is not a gap. Leakage can be easily detected because it flows out through 111.
  • Embodiment 4 The heat exchange performance of the heat exchanger 100 can be further improved by forming the inner peripheral surface of the refrigerant flow path 3 formed in the heat transfer member 1 and the heat transfer tube 2 as follows.
  • items that are not particularly described are the same as those in Embodiments 1 to 3, and the same functions and configurations are described using the same reference numerals.
  • FIG. 5 is a perspective view (main part enlarged view) showing a unit heat exchange unit of a heat exchanger according to Embodiment 4 of the present invention.
  • the heat transfer tube 2 is cut and described in order to illustrate the configuration of the heat transfer member 1.
  • the heat transfer member 1 of the heat exchanger 100 according to the fourth embodiment is formed with a refrigerant flow path 31 having a plurality of grooves formed on the inner peripheral surface. That is, the refrigerant flow path 31 of the fourth embodiment has a groove formed on the inner peripheral surface of the refrigerant flow path 3 shown in the first embodiment (in other words, the inner peripheral surface of the refrigerant flow path 3). Ridges are formed on the top).
  • a groove can be processed on the inner peripheral surface of the refrigerant flow path 31 at low cost by extrusion molding.
  • a plurality of grooves are formed on the inner peripheral surface of the heat transfer tube 21 of the heat exchanger 100 according to the fourth embodiment. That is, the heat transfer tube 21 of the fourth embodiment has a groove formed on the inner peripheral surface of the heat transfer tube 2 shown in the first embodiment (in other words, a protrusion on the inner peripheral surface of the heat transfer tube 2. Is formed).
  • channel formed in the internal peripheral surface of the heat exchanger tube 21 may be formed straight, for example along a flow path, for example, may be formed helically.
  • the heat exchanger 100 using the unit heat exchange unit A configured as described above since the grooves are formed in the inner peripheral surfaces of the refrigerant flow path 31 and the heat transfer tube 21, the heat of the heat exchanger 100 is obtained.
  • the exchange performance can be further improved.
  • the grooves are formed on the inner peripheral surfaces of both the refrigerant flow path 31 and the heat transfer tube 21, but the heat of the heat exchanger 100 can be obtained only by forming the grooves on one of the inner peripheral surfaces. Exchange performance can be improved.
  • Embodiment 5 FIG. Moreover, the heat exchange performance of the heat exchanger 100 can be further improved by forming the heat transfer tube 21 shown in the fourth embodiment as follows.
  • items that are not particularly described are the same as those in Embodiments 1 to 4, and the same functions and configurations are described using the same reference numerals.
  • FIG. 6 is a perspective view (major part enlarged view) showing a unit heat exchange unit of a heat exchanger according to Embodiment 5 of the present invention.
  • the heat transfer tube 2 is cut and illustrated in order to illustrate the configuration of the heat transfer member 1.
  • the heat exchanger 100 according to the fifth embodiment is different from the heat exchanger 100 shown in the fourth embodiment in the shape of the heat transfer tube. More specifically, the heat transfer tube 22 according to the fifth embodiment has a flat tube shape, and a groove is formed on the inner peripheral surface.
  • the inner peripheral surface shape is a shape corresponding to the outer peripheral surface shape of the heat transfer tube 22. That is, the inner peripheral shape of the first fitting groove 42a and the second fitting groove 42b is determined when the heat transfer tube 22 is fitted into the first fitting groove 42a and the second fitting groove 42b. The outer peripheral surface of the heat tube 22 and the inner peripheral surfaces of the first fitting groove 42a and the second fitting groove 42b are in close contact with each other.
  • the unit heat exchange unit A is formed as follows. That is, the heat transfer tube (the heat transfer tube 21 shown in the fourth embodiment) having a substantially circular cross section is disposed in the first fitting groove 42 a formed in the heat transfer member 1. Then, the heat transfer member 1 and the heat transfer tube having a substantially circular cross section are pressed, for example. As a result, the heat transfer tube having a substantially circular cross section becomes a flat heat transfer tube 22 and is fitted into the first fitting groove 42a.
  • the heat transfer tube 22 having a flat shape from the beginning may be prepared and fitted into the first fitting groove 42a.
  • the representative length of the heat transfer tube 22 is shown in the fourth embodiment. Since it can be made smaller than the heat pipe 21, the heat transfer performance can be further improved as compared with the heat exchanger 100 according to the fourth embodiment.
  • the flat heat transfer tube 22 having a groove formed on the inner peripheral surface is used.
  • a flat heat transfer tube having no groove formed on the inner peripheral surface may be used.
  • connection pipes may be provided in the heat exchanger shown in the first to fifth embodiments.
  • the example which provided the said connection piping in the heat-transfer member 1 shown in Embodiment 1 is demonstrated.
  • items that are not particularly described are the same as those in the first to fifth embodiments, and the same functions and configurations are described using the same reference numerals.
  • FIG. 7 is a perspective view showing a heat transfer member of a heat exchanger according to Embodiment 6 of the present invention.
  • a communication hole 5 having one end opening in the right side surface portion of the heat transfer member 1 is formed.
  • the communication hole 5 communicates with each of the refrigerant flow paths 3 formed in the heat transfer member 1.
  • the connection piping 6 is connected to the opening part of the communicating hole 5 by brazing etc., for example.
  • each of the refrigerant flow paths 3 is closed by, for example, a substantially cylindrical plug 9 being press-fitted into an end portion on the side where the communication hole 5 (connection pipe 6) is provided.
  • the end of the refrigerant flow path 3 may be closed by brazing the plug 9 to the refrigerant flow path 3 or the like.
  • the refrigerant flowing through the plurality of refrigerant flow paths 3 can be flowed in and out from one connection pipe 6, and the structure of the heat exchanger 100 Can be simplified.
  • the end of the refrigerant flow path 3 is closed by the plug 9, but the refrigerant flow path 3 can be closed by various methods.
  • the end of the refrigerant flow path 3 may be closed only with the brazing material.
  • FIG. 7 the structure near the front end (one end) of the heat transfer member 1 is described, but the connection pipe 6 is connected near the rear end (the other end) of the heat transfer member 1.
  • the refrigerant flow path 3 may be combined into one flow path at both ends of the refrigerant flow path 3.
  • connection pipe 6 is provided by forming the communication hole 5 in the heat transfer member 1, but the connection pipe 6 can be provided by various methods.
  • the connection pipe 6 may be provided at the end (for example, the front end) of the heat transfer member 1. If the through-hole is formed in the side surface of the connection pipe 6 (more specifically, the position corresponding to the end of each refrigerant flow path 3), each refrigerant flow path 3 and the connection pipe 6 can be communicated. For this reason, since the refrigerant
  • Embodiment 7 When the communication hole 5 is formed in the heat transfer member 1 and the connection pipe 6 is provided, for example, the end of the refrigerant flow path 3 may be closed as follows. In addition, below, the example which provided the said connection piping in the heat-transfer member 1 shown in Embodiment 1 is demonstrated.
  • items that are not particularly described are the same as those in the first to sixth embodiments, and the same functions and configurations are described using the same reference numerals.
  • FIG. 8 is a perspective view showing a heat transfer member of a heat exchanger according to Embodiment 7 of the present invention.
  • one end portion is the heat transfer member 1 as in the sixth embodiment.
  • a communication hole 5 is formed in the right side surface portion.
  • the communication hole 5 communicates with each of the refrigerant flow paths 3 formed in the heat transfer member 1.
  • the connection piping 6 is connected to the opening part of the communicating hole 5 by brazing etc., for example.
  • the heat transfer member 1 includes a blocking plate 10 having a shape corresponding to the ends (front end and rear end) of the heat transfer member 1. Then, the end portion of the refrigerant flow path 3 is closed by brazing the shielding plate 10 to the end portion of the heat transfer member 1.
  • the refrigerant flowing through the plurality of refrigerant flow paths 3 can flow in and out from one connection pipe 6, and the structure of the heat exchanger 100 Can be simplified.
  • Embodiment 8 FIG. Further, when the communication pipe 5 is formed in the heat transfer member 1 and the connection pipe 6 is provided, for example, the end of the refrigerant flow path 3 may be closed as follows. In addition, below, the example which provided the said connection piping in the heat-transfer member 1 shown in Embodiment 1 is demonstrated. In the eighth embodiment, items that are not particularly described are the same as those in the first to seventh embodiments, and the same functions and configurations are described using the same reference numerals.
  • FIG. 9 is a perspective view showing a heat transfer member of a heat exchanger according to Embodiment 8 of the present invention.
  • one end portion is the same as in the sixth and seventh embodiments.
  • the communication hole 5 communicates with each of the refrigerant flow paths 3 formed in the heat transfer member 1.
  • the connection piping 6 is connected to the opening part of the communicating hole 5 by brazing etc., for example.
  • the heat transfer member 1 according to the eighth embodiment is configured so that each end portion (at least one of the front end portion and the rear end portion) on which the connection pipe 6 is provided is pinched to each refrigerant. The end of the flow path 3 is closed.
  • the refrigerant flowing through the plurality of refrigerant flow paths 3 can flow in and out from one connection pipe 6, and the structure of the heat exchanger 100 Can be simplified. Moreover, since the edge part of each refrigerant flow path 3 can be obstruct
  • Embodiment 9 By providing a header pipe in the heat exchanger 100, the peripheral piping of the heat exchanger 100 may be simplified.
  • the heat exchanger 100 using the heat transfer member 1 shown in the sixth embodiment will be described as an example.
  • items that are not particularly described are the same as those in the first to eighth embodiments, and the same functions and configurations are described using the same reference numerals.
  • FIG. 10 is a perspective view showing a heat exchanger according to Embodiment 9 of the present invention.
  • the heat exchanger 100 according to the ninth embodiment includes a header pipe 7 and a header pipe 8.
  • the header pipe 7 communicates with each of the connection pipes 6 provided in each unit heat exchange unit A.
  • the header pipe 7 corresponds to the first refrigerant header pipe in the present invention.
  • the header pipe 8 communicates with each of the heat transfer pipes 2 provided in the unit heat exchange unit A.
  • the header pipe 8 corresponds to the second refrigerant header pipe in the present invention.
  • Embodiment 10 FIG.
  • the heat exchanger 100 may be formed by the following manufacturing method.
  • items not particularly described are the same as those in the first to ninth embodiments, and the same functions and configurations are described using the same reference numerals.
  • FIG. 11 is an explanatory diagram showing a method for manufacturing a heat exchanger according to Embodiment 10 of the present invention.
  • the heat transfer tube 2 is cut and described in order to illustrate the configuration of the heat transfer member 1.
  • the heat exchanger 100 according to the tenth embodiment is manufactured by the following procedure.
  • the heat transfer member 1 is installed.
  • the heat transfer tube 2 is installed on the first fitting groove 4a of the heat transfer member 1 installed in FIG. 11 (a).
  • the heat transfer member 1 and the heat transfer tube 2 shown in FIG. 11 (b) are laminated. More specifically, the heat transfer member 1 is arranged above the heat transfer tube 2 so that the heat transfer tube 2 shown in FIG. 11B is arranged below the second fitting groove 4b. The heat transfer tube 2 is installed on the first fitting groove 4 a of the heat transfer member 1. This process is repeated to stack a desired number of heat transfer members 1 and heat transfer tubes 2.
  • the heat transfer member 1 and the heat transfer tube 2 stacked in FIG. 11 (c) are pressed (pressed) in the stacking direction of the heat transfer member 1 by pressing.
  • the heat transfer tube 2 is fitted into the first fitting groove 4 a of the heat transfer member 1 disposed at the lower portion of the heat transfer tube 2 and is disposed at the upper portion of the heat transfer tube 2.
  • the heat member 1 is fitted into the second fitting groove 4b.
  • the heat exchanger 100 can be manufactured in one operation step, so that the processing cost of the heat exchanger 100 can be suppressed.
  • the example in which the heat transfer member 1 and the heat transfer tube 2 are stacked in two stages has been described, but it is of course possible to stack the heat transfer member 1 and the heat transfer tube 2 in three or more stages.
  • the heat transfer tube 2 is provided in the first fitting groove 4a arranged at the uppermost part, but the first fitting arranged at the uppermost part.
  • the heat transfer tube 2 may not be provided in the groove 4a.
  • connection pipe 6 is provided on the heat transfer member 1 as shown in the sixth to eighth embodiments
  • the heat transfer member 1 provided with the connection pipe 6 in advance is used, as shown in FIGS. You may perform the process of 11 (d).
  • end processing of the heat transfer member 1 processing of the communication hole 5 or processing of closing the end of the refrigerant flow path 3, etc.
  • the heat exchanger 100 can be easily manufactured.
  • the header tube 8 When the header tube 8 is provided as shown in the ninth embodiment, the plurality of heat transfer tubes 2 are connected to the header tube 8 in advance, and the processing shown in FIGS. 11 (b) to 11 (d) is performed using these. You may go. By manufacturing the heat exchanger 100 in this manner, the post-processing is reduced, so that the operation can be facilitated.
  • Embodiment 11 FIG.
  • the heat exchanger 100 shown in the first to tenth embodiments can be used, for example, in the following refrigeration cycle apparatus.
  • items not particularly described are the same as those in the first to tenth embodiments, and the same functions and configurations are described using the same reference numerals.
  • FIG. 12 is a refrigerant circuit diagram showing an example of a refrigeration cycle apparatus according to Embodiment 11 of the present invention.
  • the refrigeration cycle apparatus 200 according to the eleventh embodiment includes a heat source side refrigerant circuit 210 and a use side refrigerant circuit 220.
  • the heat source side refrigerant circuit 210 the first refrigerant flows.
  • the heat source side refrigerant circuit 210 is configured by sequentially connecting a compressor 201, the refrigerant flow path 3 of the heat exchanger 100, a decompression device 202 such as an expansion valve, and an evaporator 203.
  • the use side refrigerant circuit 220 is a circuit through which a second refrigerant (for example, water) flows, and is connected to the heat transfer tube 2 of the heat exchanger 100 and a use side device (not shown).
  • the usage-side equipment is, for example, a hot water storage tank when the refrigeration cycle apparatus 200 is used in a hot water storage machine. Further, for example, the usage-side equipment is an indoor heat exchanger when the refrigeration cycle apparatus 200 is used for an air conditioner.
  • the heat exchanger 100 heats the second refrigerant (for example, water) by the first refrigerant.
  • the heated second refrigerant for example, water
  • the heated water is supplied to the use side device.
  • the refrigeration cycle apparatus 200 is used in a hot water storage device, the heated water is stored in a hot water storage tank or the like.
  • the heated water heats indoor air with an indoor heat exchanger and heats the room.
  • the heat exchanger 100 is used as a radiator (condenser) of the heat source side refrigerant circuit 210, but the heat exchanger 100 may be used as an evaporator of the heat source side refrigerant circuit.
  • coolant can be supplied to a utilization side apparatus.

Abstract

A heat exchanger (100) is provided with: heat transfer members (1) in which refrigerant conduits (3) serving as the conduits for a first refrigerant are formed; and heat transfer tubes (2) serving as the conduits for a second refrigerant. Each of the heat transfer members (1) has fitting grooves (4a, 4b) which are formed in the upper surface and the lower surface of the heat transfer member (1) and in which heat transfer tubes are fitted. The heat exchanger (100) is formed by stacking the heat transfer members (1), and adjacent heat transfer members (1) are connected while the heat transfer tubes (2) are fitted in the fitting grooves (4a, 4b).

Description

熱交換器、この熱交換器の製造方法、及びこの熱交換器を備えた冷凍サイクル装置Heat exchanger, method for manufacturing the heat exchanger, and refrigeration cycle apparatus including the heat exchanger
 本発明は、第一の冷媒と第二の冷媒とが熱交換する熱交換器、この熱交換器の製造方法、及びこの熱交換器を備えた冷凍サイクル装置に関するものである。 The present invention relates to a heat exchanger for exchanging heat between a first refrigerant and a second refrigerant, a method for manufacturing the heat exchanger, and a refrigeration cycle apparatus including the heat exchanger.
 従来より、第一の冷媒と第二の冷媒とが熱交換する熱交換器が提案されている。このような従来の熱交換器としては、例えば「この熱交換器1は、冷媒用入口側タンク11と冷媒用出口側タンク12との間に接続されたアルミ押出しチューブ2と、水道水用入口側ヘッダ13と水道水用出口側ヘッダ14との間に接続されたステンレス成形チューブ3とを備え、これらのアルミ押出しチューブ2とステンレス成形チューブ3とをノコロックろう付けまたは真空ろう付け等の接合手段を用いて熱的に密に接合している。」というものが提案されている(例えば特許文献1)。 Conventionally, a heat exchanger in which heat exchange between the first refrigerant and the second refrigerant has been proposed. As such a conventional heat exchanger, for example, “this heat exchanger 1 includes an aluminum extruded tube 2 connected between the refrigerant inlet side tank 11 and the refrigerant outlet side tank 12, and an inlet for tap water. A stainless molded tube 3 connected between the side header 13 and the outlet header 14 for tap water, and the aluminum extruded tube 2 and the stainless molded tube 3 are joined by means such as sawlock or vacuum brazing. Has been proposed (for example, Patent Document 1).
特開2001-153571号公報(段落0026、図1)JP 2001-153571 (paragraph 0026, FIG. 1)
 従来の熱交換器は、冷媒(第一の冷媒に相当)が流れるアルミ押出しチューブと水道水(第二の冷媒に相当)が流れるステンレス成形チューブとをろう付け等によって接合している。このため、従来の熱交換器は、両チューブを接合するろう付け層にボイドが発生すると、両チューブの熱的接合度合いが悪化し、熱交換性能が低下するという課題があった。 In a conventional heat exchanger, an aluminum extruded tube through which a refrigerant (corresponding to a first refrigerant) flows and a stainless steel tube through which tap water (corresponding to a second refrigerant) flows are joined by brazing or the like. For this reason, when the void generate | occur | produced in the brazing layer which joins both tubes, the conventional heat exchanger had the subject that the thermal joining degree of both tubes deteriorated and heat exchange performance fell.
 本発明は、上記のような課題を解決するためになされたものであり、接合面の熱的接合度合いによる伝熱性能低下を防止できる熱交換性能が良好な熱交換器、この熱交換器の製造方法、及びこの熱交換器を備えた冷凍サイクル装置を得ることを目的とする。 The present invention has been made to solve the above-described problems, and a heat exchanger with good heat exchange performance that can prevent deterioration in heat transfer performance due to the degree of thermal joining of the joint surfaces. It aims at obtaining the manufacturing method and the refrigerating-cycle apparatus provided with this heat exchanger.
 本発明に係る熱交換器は、第一の冷媒の流路となる複数の貫通孔が形成された複数の伝熱部材と、第二の冷媒の流路となる複数の伝熱管とを備え、伝熱部材は、その外周部に、第一の面部及び当該第一の面部の反対側に形成された第二の面部を備え、第一の面部及び第二の面部には、伝熱管を嵌合する嵌合溝が形成され、複数の前記伝熱部材は、第一の面部と第二の面部とが対向するように積層され、隣接する伝熱部材は、対向配置された第一の面部と第二の面部に形成された嵌合溝に伝熱管が嵌合されて接続されているものである。 The heat exchanger according to the present invention includes a plurality of heat transfer members in which a plurality of through holes serving as flow paths for the first refrigerant are formed, and a plurality of heat transfer tubes serving as flow paths for the second refrigerant, The heat transfer member includes a first surface portion and a second surface portion formed on the opposite side of the first surface portion on an outer peripheral portion thereof, and heat transfer tubes are fitted to the first surface portion and the second surface portion. A mating groove is formed, and the plurality of heat transfer members are stacked so that the first surface portion and the second surface portion face each other, and the adjacent heat transfer members are arranged to face each other. The heat transfer tube is fitted and connected to a fitting groove formed in the second surface portion.
 また、本発明に係る熱交換器の製造方法は、上記の熱交換器の製造方法であって、第一の面部と第二の面部を対向させて配置された複数の伝熱部材の間に伝熱管を配置し、これらを伝熱部材の積層方向にプレスし、伝熱管を嵌合溝に嵌合させ、伝熱部材を接続するものである。 Moreover, the manufacturing method of the heat exchanger which concerns on this invention is a manufacturing method of said heat exchanger, Comprising: Between the several heat-transfer member arrange | positioned facing the 1st surface part and the 2nd surface part, Heat transfer tubes are arranged, these are pressed in the stacking direction of the heat transfer members, the heat transfer tubes are fitted into the fitting grooves, and the heat transfer members are connected.
 また、本発明に係る冷凍サイクル装置は、上記の熱交換器を備えたものである。 Further, a refrigeration cycle apparatus according to the present invention includes the above heat exchanger.
 本発明においては、隣接する伝熱部材によってこれらの間に設けられた伝熱管の外周面(伝熱面)を密着して覆うことができるので、伝熱管の伝熱面を有効に利用することができる。また、隣接する伝熱部材は、接合面(互いの対向面)が熱交換に寄与しなくなる。このため、本発明においては、ろう付け等が必要なくなるので、従来の接合面の熱的接合度合いによる伝熱性能低下を防止できる高性能な熱交換器、この熱交換器の製造方法、及びこの熱交換器を備えた冷凍サイクル装置を提供できる。 In the present invention, since the outer peripheral surface (heat transfer surface) of the heat transfer tube provided between them can be adhered and covered by the adjacent heat transfer members, the heat transfer surface of the heat transfer tube can be used effectively. Can do. Further, the adjacent heat transfer members do not contribute to heat exchange at the joint surfaces (the surfaces facing each other). For this reason, in the present invention, since brazing or the like is not necessary, a high-performance heat exchanger that can prevent a decrease in heat transfer performance due to the degree of thermal bonding of the conventional bonding surfaces, a method for manufacturing the heat exchanger, and the A refrigeration cycle apparatus including a heat exchanger can be provided.
本発明の実施の形態1に係る熱交換器の単位熱交換ユニットを示す斜視図である。It is a perspective view which shows the unit heat exchange unit of the heat exchanger which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る熱交換器を示す斜視図である。It is a perspective view which shows the heat exchanger which concerns on Embodiment 1 of this invention. 本発明の実施の形態2に係る熱交換器の単位熱交換ユニットを示す斜視図である。It is a perspective view which shows the unit heat exchange unit of the heat exchanger which concerns on Embodiment 2 of this invention. 本発明の実施の形態3に係る熱交換器を示す斜視図である。It is a perspective view which shows the heat exchanger which concerns on Embodiment 3 of this invention. 本発明の実施の形態4に係る熱交換器の単位熱交換ユニットを示す斜視図(要部拡大図)である。It is a perspective view (main part enlarged view) which shows the unit heat exchange unit of the heat exchanger which concerns on Embodiment 4 of this invention. 本発明の実施の形態5に係る熱交換器の単位熱交換ユニットを示す斜視図(要部拡大図)である。It is a perspective view (main part enlarged view) which shows the unit heat exchange unit of the heat exchanger which concerns on Embodiment 5 of this invention. 本発明の実施の形態6に係る熱交換器の伝熱部材を示す斜視図である。It is a perspective view which shows the heat-transfer member of the heat exchanger which concerns on Embodiment 6 of this invention. 本発明の実施の形態7に係る熱交換器の伝熱部材を示す斜視図である。It is a perspective view which shows the heat-transfer member of the heat exchanger which concerns on Embodiment 7 of this invention. 本発明の実施の形態8に係る熱交換器の伝熱部材を示す斜視図である。It is a perspective view which shows the heat-transfer member of the heat exchanger which concerns on Embodiment 8 of this invention. 本発明の実施の形態9に係る熱交換器を示す斜視図である。It is a perspective view which shows the heat exchanger which concerns on Embodiment 9 of this invention. 本発明の実施の形態10に係る熱交換器の製造方法を示す説明図である。It is explanatory drawing which shows the manufacturing method of the heat exchanger which concerns on Embodiment 10 of this invention. 本発明の実施の形態11に係る冷凍サイクル装置の一例を示す冷媒回路図である。It is a refrigerant circuit figure which shows an example of the refrigerating-cycle apparatus which concerns on Embodiment 11 of this invention.
実施の形態1.
 図1は、本発明の実施の形態1に係る熱交換器の単位熱交換ユニットを示す斜視図である。
 本実施の形態1に係る熱交換器100は、図1に示す単位熱交換ユニットAを複数積層することにより形成されているものである(熱交換器100の詳細については、図2で後述する)。なお、以下では、図1に示す方向に合わせて熱交換器100の各構成を説明するが、この方向は熱交換器100の設置方向を限定するものではない。また、図1では、伝熱部材1の構成を図示するため、一部の伝熱管2を切断して記載している。
Embodiment 1 FIG.
FIG. 1 is a perspective view showing a unit heat exchange unit of the heat exchanger according to Embodiment 1 of the present invention.
The heat exchanger 100 according to Embodiment 1 is formed by stacking a plurality of unit heat exchange units A shown in FIG. 1 (details of the heat exchanger 100 will be described later with reference to FIG. 2). ). In the following, each configuration of the heat exchanger 100 will be described according to the direction shown in FIG. 1, but this direction does not limit the installation direction of the heat exchanger 100. Moreover, in FIG. 1, in order to illustrate the structure of the heat-transfer member 1, some heat-transfer tubes 2 are cut and described.
 単位熱交換ユニットAは、第一の冷媒が流れる伝熱部材1、及び第二の冷媒が流れる伝熱管2を備えている。伝熱部材1は、例えば略長方形状をしており、内部には複数の冷媒流路3が貫通形成されている。この伝熱部材1の上面部には、伝熱管2を嵌合する複数の第一の嵌合溝4aが、例えば冷媒流路3に沿って形成されている。また、伝熱部材1の下面部には、伝熱管2を嵌合する複数の第二の嵌合溝4bが、例えば冷媒流路3に沿って形成されている。ここで、冷媒流路3が本発明における貫通孔に相当する。また、伝熱部材1の上面部が本発明における第一の面部に相当し、伝熱部材1の下面部が本発明における第二の面部に相当する。なお、冷媒流路3は左右方向に沿って一列に配置されているが、冷媒流路の配置はこれに限定されるものではない。例えば、左右方向に沿って配置された冷媒流路3を上下方向に複数段形成してもよい。また例えば、冷媒流路3を千鳥状に配置してもよい。また、冷媒流路3の断面形状も、略円形状に限らず任意である。 The unit heat exchange unit A includes a heat transfer member 1 through which the first refrigerant flows and a heat transfer tube 2 through which the second refrigerant flows. The heat transfer member 1 has, for example, a substantially rectangular shape, and a plurality of refrigerant flow paths 3 are formed through it. A plurality of first fitting grooves 4 a for fitting the heat transfer tubes 2 are formed on the upper surface portion of the heat transfer member 1 along the refrigerant flow path 3, for example. A plurality of second fitting grooves 4 b for fitting the heat transfer tubes 2 are formed on the lower surface portion of the heat transfer member 1 along the refrigerant flow path 3, for example. Here, the refrigerant flow path 3 corresponds to the through hole in the present invention. The upper surface portion of the heat transfer member 1 corresponds to the first surface portion in the present invention, and the lower surface portion of the heat transfer member 1 corresponds to the second surface portion in the present invention. In addition, although the refrigerant | coolant flow path 3 is arrange | positioned in a line along the left-right direction, arrangement | positioning of a refrigerant | coolant flow path is not limited to this. For example, you may form the refrigerant | coolant flow path 3 arrange | positioned along the left-right direction in multiple steps in the up-down direction. Further, for example, the refrigerant flow paths 3 may be arranged in a staggered manner. Further, the cross-sectional shape of the refrigerant flow path 3 is not limited to a substantially circular shape, but is arbitrary.
 伝熱管2は、断面略円形状をしており、伝熱部材1の第一の嵌合溝4a及び第二の嵌合溝4bに嵌合される。第一の嵌合溝4a及び第二の嵌合溝4bの内周面形状は伝熱管2の外周面形状に対応しており、伝熱管2を第一の嵌合溝4a及び第二の嵌合溝4bに嵌合した際、伝熱管2の外周面と第一の嵌合溝4a及び第二の嵌合溝4bの内周面とが密着するようになっている。なお、図1では、伝熱管2を伝熱部材1の第一の嵌合溝4aに嵌合した状態を示している。 The heat transfer tube 2 has a substantially circular cross section, and is fitted into the first fitting groove 4 a and the second fitting groove 4 b of the heat transfer member 1. The inner peripheral surface shape of the first fitting groove 4a and the second fitting groove 4b corresponds to the outer peripheral surface shape of the heat transfer tube 2, and the heat transfer tube 2 is connected to the first fitting groove 4a and the second fitting groove. When fitted in the joint groove 4b, the outer peripheral surface of the heat transfer tube 2 and the inner peripheral surfaces of the first fitting groove 4a and the second fitting groove 4b are in close contact with each other. In addition, in FIG. 1, the state which fitted the heat exchanger tube 2 to the 1st fitting groove 4a of the heat-transfer member 1 is shown.
 本実施の形態1では、伝熱部材1の冷媒流路3を流れる第一の冷媒として、ヒートポンプ等の冷凍サイクル装置に用いられる冷媒(例えば、フロン系冷媒、炭化水素系冷媒、及び二酸化炭素等の自然冷媒)を想定している。このため、本実施の形態1では、当該冷媒に対して腐食耐力のあるアルミニウムやアルミニウム合金を用いて伝熱部材1を形成している。アルミニウムやアルミニウム合金を用いて伝熱部材1を形成する場合、押し出し成型により安価に伝熱部材1を加工(形成)することができる。
 また、本実施の形態1では、伝熱管2を流れる第二の冷媒として、水等を想定している。このため、本実施の形態1では、当該冷媒に対して腐食耐力のある銅や銅合金を用いて伝熱管2を形成している。
In the first embodiment, the first refrigerant flowing through the refrigerant flow path 3 of the heat transfer member 1 is a refrigerant used in a refrigeration cycle apparatus such as a heat pump (for example, a chlorofluorocarbon refrigerant, a hydrocarbon refrigerant, carbon dioxide, etc. Natural refrigerant). For this reason, in this Embodiment 1, the heat-transfer member 1 is formed using the aluminum and aluminum alloy which have corrosion resistance with respect to the said refrigerant | coolant. When the heat transfer member 1 is formed using aluminum or an aluminum alloy, the heat transfer member 1 can be processed (formed) at low cost by extrusion molding.
Moreover, in this Embodiment 1, water etc. are assumed as a 2nd refrigerant | coolant which flows through the heat exchanger tube 2. FIG. For this reason, in this Embodiment 1, the heat exchanger tube 2 is formed using the copper and copper alloy which have corrosion resistance with respect to the said refrigerant | coolant.
 このように、本実施の形態1に係る熱交換器100においては、第一の冷媒及び第二の冷媒の腐食特性に応じて、伝熱部材1及び伝熱管2の材質を適宜選定することができる。なお、上記の第一の冷媒(例えば、フロン系冷媒、炭化水素系冷媒、及び二酸化炭素等の自然冷媒)及び第二の冷媒(水)はあくまでも一例である。第一の冷媒や第二の冷媒は、熱交換器100が用いられる冷凍サイクル装置に応じて種々の冷媒を選択することができる。 Thus, in the heat exchanger 100 according to the first embodiment, the materials of the heat transfer member 1 and the heat transfer tube 2 can be appropriately selected according to the corrosion characteristics of the first refrigerant and the second refrigerant. it can. Note that the first refrigerant (for example, a natural refrigerant such as a chlorofluorocarbon refrigerant, a hydrocarbon refrigerant, and carbon dioxide) and the second refrigerant (water) are merely examples. Various refrigerants can be selected as the first refrigerant and the second refrigerant according to the refrigeration cycle apparatus in which the heat exchanger 100 is used.
 図2は、本発明の実施の形態1に係る熱交換器を示す斜視図である。なお、図2においても、伝熱部材1の構成を図示するため、一部の伝熱管2を切断して記載している。
 上述したように、本実施の形態1に係る熱交換器100は、図1に示す単位熱交換ユニットAを複数積層することにより形成することができる。より詳しくは、下方に配置された単位熱交換ユニットAの伝熱管2(第一の嵌合溝4aに嵌合された伝熱管2)を上方に配置された単位熱交換ユニットAの第二の嵌合溝4bに嵌合する。これにより、隣接する単位熱交換ユニットAを接続することができ、熱交換器100を形成することができる。
FIG. 2 is a perspective view showing the heat exchanger according to Embodiment 1 of the present invention. In FIG. 2, in order to illustrate the configuration of the heat transfer member 1, a part of the heat transfer tube 2 is cut and described.
As described above, the heat exchanger 100 according to Embodiment 1 can be formed by stacking a plurality of unit heat exchange units A shown in FIG. More specifically, the second heat transfer tube 2 of the unit heat exchange unit A disposed below (the heat transfer tube 2 fitted in the first fitting groove 4a) of the unit heat exchange unit A disposed below is second. It fits in the fitting groove 4b. Thereby, the adjacent unit heat exchange unit A can be connected and the heat exchanger 100 can be formed.
 なお、単位熱交換ユニットAの積層数は、第一の冷媒と第二の冷媒の熱交換量が所望の熱交換量となるように、適宜決定すればよい。また、図2で示した熱交換器100は、最上部に配置された単位熱交換ユニットAの第一の嵌合溝4aに伝熱管2が設けられた例を示しているが、最上部に配置された単位熱交換ユニットAの第一の嵌合溝4aに伝熱管2を設けなくてもよい。また、図2で示した熱交換器100は、最下部に配置された単位熱交換ユニットAの第二の嵌合溝4bに伝熱管2が設けられていない例を示しているが、最下部に配置された単位熱交換ユニットAの第二の嵌合溝4bに伝熱管2を設けても勿論よい。また、本実施の形態1では、第一の嵌合溝4aに伝熱管2が嵌合された単位熱交換ユニットAを積層することにより熱交換器100を形成したが、第二の嵌合溝4bに伝熱管2が嵌合された単位熱交換ユニットAを積層することにより熱交換器100を形成してもよい。 In addition, what is necessary is just to determine suitably the number of lamination | stacking of the unit heat exchange unit A so that the heat exchange amount of a 1st refrigerant | coolant and a 2nd refrigerant may turn into a desired heat exchange amount. Moreover, although the heat exchanger 100 shown in FIG. 2 has shown the example by which the heat exchanger tube 2 was provided in the 1st fitting groove 4a of the unit heat exchange unit A arrange | positioned in the uppermost part, The heat transfer tube 2 may not be provided in the first fitting groove 4a of the arranged unit heat exchange unit A. Moreover, although the heat exchanger 100 shown in FIG. 2 has shown the example in which the heat exchanger tube 2 is not provided in the 2nd fitting groove 4b of the unit heat exchange unit A arrange | positioned at the lowest part, Of course, the heat transfer tube 2 may be provided in the second fitting groove 4b of the unit heat exchange unit A disposed in the unit. Moreover, in this Embodiment 1, although the heat exchanger 100 was formed by laminating | stacking the unit heat exchange unit A by which the heat exchanger tube 2 was fitted to the 1st fitting groove 4a, the 2nd fitting groove | channel was formed. You may form the heat exchanger 100 by laminating | stacking the unit heat exchange unit A by which the heat exchanger tube 2 was fitted by 4b.
 以上、このように構成された熱交換器100においては、一方の単位熱交換ユニットAに設けられた伝熱管2を他方の単位熱交換ユニットAの嵌合溝(第一の嵌合溝4a又は第二の嵌合溝4b)に嵌合させることにより形成することができる。これにより、隣接する伝熱部材1によってこれらの間に設けられた伝熱管2の外周面(伝熱面)を密着して覆うことができるので、伝熱管の伝熱面を有効に利用することができる。また、隣接する伝熱部材1は、接合面110(つまり、隣接する伝熱部材1同士の対向面、図2参照)において対称な配置となる。つまり、接合面110の上下に配置された伝熱部材1は略同一温度となるので、接合面110が熱交換に寄与しなくなる。このため、接合面110での熱交換性能の低下を防止することができ、ろう付け等の接合手段を用いる必要もなく接合面110の接触精度に尤度が確保できる。したがって、本実施の形態1に係る熱交換器100は、従来よりも熱交換性能を向上することができる。 As described above, in the heat exchanger 100 configured as described above, the heat transfer tube 2 provided in one unit heat exchange unit A is connected to the fitting groove (first fitting groove 4a or the other unit heat exchange unit A). It can be formed by fitting in the second fitting groove 4b). Thereby, since the outer peripheral surface (heat-transfer surface) of the heat exchanger tube 2 provided between these can be closely adhered and covered by the adjacent heat-transfer member 1, the heat-transfer surface of a heat-transfer tube can be used effectively. Can do. Further, the adjacent heat transfer members 1 are symmetrically arranged on the joint surface 110 (that is, the opposing surfaces of the adjacent heat transfer members 1, see FIG. 2). That is, since the heat transfer members 1 arranged above and below the joining surface 110 have substantially the same temperature, the joining surface 110 does not contribute to heat exchange. For this reason, it is possible to prevent a decrease in heat exchange performance on the joint surface 110, and it is possible to ensure the likelihood of contact accuracy of the joint surface 110 without using a joining means such as brazing. Therefore, the heat exchanger 100 according to Embodiment 1 can improve the heat exchange performance as compared with the conventional one.
 また、本実施の形態1に係る熱交換器100は、一方の単位熱交換ユニットAに設けられた伝熱管2を他方の単位熱交換ユニットAの嵌合溝(第一の嵌合溝4a又は第二の嵌合溝4b)に嵌合させることにより形成することができるので、容易に組立加工ができ、熱交換器100の加工費を抑制することもできる。 Further, the heat exchanger 100 according to the first embodiment is configured such that the heat transfer tube 2 provided in one unit heat exchange unit A is connected to the fitting groove (first fitting groove 4a or the other unit heat exchange unit A). Since it can form by making it fit in the 2nd fitting groove 4b), an assembly process can be performed easily and the processing cost of the heat exchanger 100 can also be suppressed.
実施の形態2.
 実施の形態1に係る単位熱交換ユニットAにおいては、伝熱部材1の第一の嵌合溝4a及び第二の嵌合溝4bが、冷媒流路3に沿って形成されていた。しかしながら、単位熱交換ユニットAは、実施の形態1で示した構成に限定されるものではなく、例えば次のように構成してもよい。なお、本実施の形態2において、特に記述しない項目については実施の形態1と同様とし、同一の機能や構成については同一の符号を用いて述べることとする。
Embodiment 2. FIG.
In the unit heat exchange unit A according to the first embodiment, the first fitting groove 4 a and the second fitting groove 4 b of the heat transfer member 1 are formed along the refrigerant flow path 3. However, the unit heat exchange unit A is not limited to the configuration shown in the first embodiment, and may be configured as follows, for example. In the second embodiment, items that are not particularly described are the same as those in the first embodiment, and the same functions and configurations are described using the same reference numerals.
 図3は、本発明の実施の形態2に係る熱交換器の単位熱交換ユニットを示す斜視図である。
 本実施の形態2に係る単位熱交換ユニットA(つまり熱交換器100)は、伝熱部材1の上面部に形成された第一の嵌合溝4aが冷媒流路3に略直交して形成されている。また、伝熱部材1の下面部に形成された第二の嵌合溝4bが第一の嵌合溝4aに沿って形成されている。つまり、伝熱部材1の下面部に形成された第二の嵌合溝4bも、冷媒流路3に略直交して形成されている。したがって、本実施の形態2に係る単位熱交換ユニットA(つまり熱交換器100)は、伝熱管2と冷媒流路3とが、略直交して配置された構成となっている。
FIG. 3 is a perspective view showing a unit heat exchange unit of the heat exchanger according to Embodiment 2 of the present invention.
In the unit heat exchange unit A (that is, the heat exchanger 100) according to the second embodiment, the first fitting groove 4a formed on the upper surface portion of the heat transfer member 1 is formed substantially orthogonal to the refrigerant flow path 3. Has been. Moreover, the 2nd fitting groove 4b formed in the lower surface part of the heat-transfer member 1 is formed along the 1st fitting groove 4a. That is, the second fitting groove 4 b formed on the lower surface portion of the heat transfer member 1 is also formed substantially orthogonal to the refrigerant flow path 3. Therefore, the unit heat exchange unit A (that is, the heat exchanger 100) according to the second embodiment has a configuration in which the heat transfer tubes 2 and the refrigerant flow paths 3 are arranged substantially orthogonally.
 このように単位熱交換ユニットAを構成することにより、第一の冷媒の流れと第二の冷媒の流れを直交流にできる。直交流の場合、第一の冷媒の状態に応じた冷媒流路3の位置に伝熱管2を配置することができる。例えば、第一の冷媒の凝縮変化を利用して第二の冷媒を加熱する場合、第一の冷媒がサブクール状態になる冷媒流路3の位置に伝熱管2の径を小さくして密に配置する等の構成とすることにより、熱交換器100の熱交換性能を向上することができる。これは、凝縮変化において温度勾配がある二酸化炭素冷媒等を冷媒流路3に流す場合に、特に有効である。なお、第一の嵌合溝4a及び第二の嵌合溝4bは、冷媒流路3のみを押し出し成型により伝熱部材1に加工(形成)した後、切削加工等で形成することができる。 By constructing the unit heat exchange unit A in this way, the flow of the first refrigerant and the flow of the second refrigerant can be made orthogonal. In the case of cross flow, the heat transfer tube 2 can be arranged at the position of the refrigerant flow path 3 according to the state of the first refrigerant. For example, when the second refrigerant is heated by utilizing the condensation change of the first refrigerant, the diameter of the heat transfer tube 2 is reduced and densely arranged at the position of the refrigerant flow path 3 where the first refrigerant is in the subcooled state. By adopting such a configuration, the heat exchange performance of the heat exchanger 100 can be improved. This is particularly effective when a carbon dioxide refrigerant having a temperature gradient in the condensation change is caused to flow through the refrigerant flow path 3. The first fitting groove 4a and the second fitting groove 4b can be formed by cutting or the like after processing (forming) only the coolant channel 3 into the heat transfer member 1 by extrusion molding.
実施の形態3.
 実施の形態1では、熱交換器100を構成する際、隣接する伝熱部材1の接合面110(隣接する伝熱部材1同士の対向面)を接触させて構成していた。これに限らず、熱交換器100を構成する際、隣接する伝熱部材1の接合面110に隙間を形成してもよい。なお、本実施の形態3において、特に記述しない項目については実施の形態1又は実施の形態2と同様とし、同一の機能や構成については同一の符号を用いて述べることとする。
Embodiment 3 FIG.
In the first embodiment, when the heat exchanger 100 is configured, the bonding surfaces 110 of the adjacent heat transfer members 1 (facing surfaces of the adjacent heat transfer members 1) are brought into contact with each other. Not only this but when comprising the heat exchanger 100, you may form a clearance gap in the joint surface 110 of the adjacent heat-transfer member 1. FIG. In Embodiment 3, items that are not particularly described are the same as those in Embodiment 1 or Embodiment 2, and the same functions and configurations are described using the same reference numerals.
 図4は、本発明の実施の形態3に係る熱交換器を示す斜視図である。
 本実施の形態3に係る熱交換器100は、図1に示す単位熱交換ユニットAを複数積層する際に、隣接する伝熱部材1の接合面110に隙間111を形成したものである。接合面110は熱交換に寄与しないので、このように熱交換器100を構成しても実施の形態1や実施の形態2と同様の効果を得ることができる。また、本実施の形態3に係る熱交換器100のように接合面110に隙間111を形成することにより、伝熱部材1又は伝熱管2から例えば腐食等により冷媒が漏洩した場合、冷媒は隙間111を通って外部に流出するため漏洩が容易に検知できる。
FIG. 4 is a perspective view showing a heat exchanger according to Embodiment 3 of the present invention.
In the heat exchanger 100 according to Embodiment 3, when a plurality of unit heat exchange units A shown in FIG. 1 are stacked, a gap 111 is formed on the joint surface 110 of the adjacent heat transfer member 1. Since the joining surface 110 does not contribute to heat exchange, the same effects as those of the first and second embodiments can be obtained even if the heat exchanger 100 is configured in this manner. Further, by forming a gap 111 on the joint surface 110 as in the heat exchanger 100 according to the third embodiment, when the refrigerant leaks from the heat transfer member 1 or the heat transfer tube 2 due to corrosion or the like, the refrigerant is not a gap. Leakage can be easily detected because it flows out through 111.
実施の形態4.
 伝熱部材1に形成された冷媒流路3の内周面や伝熱管2を以下のように形成することで、熱交換器100の熱交換性能をさらに向上させることが可能である。なお、本実施の形態4において、特に記述しない項目については実施の形態1~実施の形態3と同様とし、同一の機能や構成については同一の符号を用いて述べることとする。
Embodiment 4 FIG.
The heat exchange performance of the heat exchanger 100 can be further improved by forming the inner peripheral surface of the refrigerant flow path 3 formed in the heat transfer member 1 and the heat transfer tube 2 as follows. In Embodiment 4, items that are not particularly described are the same as those in Embodiments 1 to 3, and the same functions and configurations are described using the same reference numerals.
 図5は、本発明の実施の形態4に係る熱交換器の単位熱交換ユニットを示す斜視図(要部拡大図)である。なお、図5においても、伝熱部材1の構成を図示するため、伝熱管2を切断して記載している。
 本実施の形態4に係る熱交換器100の伝熱部材1には、内周面に複数の溝を形成した冷媒流路31が形成されている。つまり、本実施の形態4の冷媒流路31は、実施の形態1で示した冷媒流路3の内周面に溝が形成されたものである(換言すると、冷媒流路3の内周面に突条が形成されたものである)。例えば、アルミニウムやアルミニウム合金を用いて伝熱部材1を形成する場合、押し出し成型により安価に冷媒流路31の内周面に溝を加工することができる。このように冷媒流路31を形成することにより、第一の冷媒の流れが乱れ、第一の冷媒側の伝熱性能が向上する。
FIG. 5 is a perspective view (main part enlarged view) showing a unit heat exchange unit of a heat exchanger according to Embodiment 4 of the present invention. In FIG. 5 also, the heat transfer tube 2 is cut and described in order to illustrate the configuration of the heat transfer member 1.
The heat transfer member 1 of the heat exchanger 100 according to the fourth embodiment is formed with a refrigerant flow path 31 having a plurality of grooves formed on the inner peripheral surface. That is, the refrigerant flow path 31 of the fourth embodiment has a groove formed on the inner peripheral surface of the refrigerant flow path 3 shown in the first embodiment (in other words, the inner peripheral surface of the refrigerant flow path 3). Ridges are formed on the top). For example, when the heat transfer member 1 is formed using aluminum or an aluminum alloy, a groove can be processed on the inner peripheral surface of the refrigerant flow path 31 at low cost by extrusion molding. By forming the refrigerant flow path 31 in this manner, the flow of the first refrigerant is disturbed, and the heat transfer performance on the first refrigerant side is improved.
 本実施の形態4に係る熱交換器100の伝熱管21には、その内周面に複数の溝が形成されている。つまり、本実施の形態4の伝熱管21は、実施の形態1で示した伝熱管2の内周面に溝が形成されたものである(換言すると、伝熱管2の内周面に突条が形成されたものである)。このように伝熱管21を形成することにより、第二の冷媒の流れが乱れ、第二の冷媒側の伝熱性能が向上する。なお、伝熱管21の内周面に形成された溝は、例えば流路に沿ってまっすぐに形成されていてもよいし、例えば螺旋状に形成されていてもよい。 A plurality of grooves are formed on the inner peripheral surface of the heat transfer tube 21 of the heat exchanger 100 according to the fourth embodiment. That is, the heat transfer tube 21 of the fourth embodiment has a groove formed on the inner peripheral surface of the heat transfer tube 2 shown in the first embodiment (in other words, a protrusion on the inner peripheral surface of the heat transfer tube 2. Is formed). By forming the heat transfer tube 21 in this way, the flow of the second refrigerant is disturbed, and the heat transfer performance on the second refrigerant side is improved. In addition, the groove | channel formed in the internal peripheral surface of the heat exchanger tube 21 may be formed straight, for example along a flow path, for example, may be formed helically.
 以上、このように構成された単位熱交換ユニットAを用いた熱交換器100においては、冷媒流路31及び伝熱管21の内周面に溝が形成されているので、熱交換器100の熱交換性能をさらに向上させることができる。 As described above, in the heat exchanger 100 using the unit heat exchange unit A configured as described above, since the grooves are formed in the inner peripheral surfaces of the refrigerant flow path 31 and the heat transfer tube 21, the heat of the heat exchanger 100 is obtained. The exchange performance can be further improved.
 なお、本実施の形態4では、冷媒流路31及び伝熱管21の双方の内周面に溝を形成したが、どちらか一方の内周面に溝を形成するだけでも熱交換器100の熱交換性能を向上させることができる。 In the fourth embodiment, the grooves are formed on the inner peripheral surfaces of both the refrigerant flow path 31 and the heat transfer tube 21, but the heat of the heat exchanger 100 can be obtained only by forming the grooves on one of the inner peripheral surfaces. Exchange performance can be improved.
実施の形態5.
 また、実施の形態4で示した伝熱管21を以下のように形成することにより、熱交換器100の熱交換性能をさらに向上させることが可能である。なお、本実施の形態5において、特に記述しない項目については実施の形態1~実施の形態4と同様とし、同一の機能や構成については同一の符号を用いて述べることとする。
Embodiment 5. FIG.
Moreover, the heat exchange performance of the heat exchanger 100 can be further improved by forming the heat transfer tube 21 shown in the fourth embodiment as follows. In Embodiment 5, items that are not particularly described are the same as those in Embodiments 1 to 4, and the same functions and configurations are described using the same reference numerals.
 図6は、本発明の実施の形態5に係る熱交換器の単位熱交換ユニットを示す斜視図(要部拡大図)である。なお、図6においても、伝熱部材1の構成を図示するため、伝熱管2を切断して記載している。
 本実施の形態5に係る熱交換器100は、実施の形態4で示した熱交換器100と比べ伝熱管の形状が異なっている。より詳しくは、本実施の形態5に係る伝熱管22は、扁平管形状をしており、内周面に溝が形成されている。また、伝熱部材1に形成された第一の嵌合溝42a及び第二の嵌合溝42b(実施の形態4における第一の嵌合溝4a及び第二の嵌合溝4bに相当)の内周面形状は、伝熱管22の外周面形状に対応した形状となっている。つまり、第一の嵌合溝42a及び第二の嵌合溝42bの内周面形状は、伝熱管22を第一の嵌合溝42a及び第二の嵌合溝42bに嵌合した際、伝熱管22の外周面と第一の嵌合溝42a及び第二の嵌合溝42bの内周面とが密着するようになっている。
FIG. 6 is a perspective view (major part enlarged view) showing a unit heat exchange unit of a heat exchanger according to Embodiment 5 of the present invention. In FIG. 6, the heat transfer tube 2 is cut and illustrated in order to illustrate the configuration of the heat transfer member 1.
The heat exchanger 100 according to the fifth embodiment is different from the heat exchanger 100 shown in the fourth embodiment in the shape of the heat transfer tube. More specifically, the heat transfer tube 22 according to the fifth embodiment has a flat tube shape, and a groove is formed on the inner peripheral surface. Further, the first fitting groove 42a and the second fitting groove 42b (corresponding to the first fitting groove 4a and the second fitting groove 4b in the fourth embodiment) formed in the heat transfer member 1 The inner peripheral surface shape is a shape corresponding to the outer peripheral surface shape of the heat transfer tube 22. That is, the inner peripheral shape of the first fitting groove 42a and the second fitting groove 42b is determined when the heat transfer tube 22 is fitted into the first fitting groove 42a and the second fitting groove 42b. The outer peripheral surface of the heat tube 22 and the inner peripheral surfaces of the first fitting groove 42a and the second fitting groove 42b are in close contact with each other.
 本実施の形態5では、例えば次のように単位熱交換ユニットAを形成する。つまり、伝熱部材1に形成された第一の嵌合溝42aに断面略円形状の伝熱管(実施の形態4で示した伝熱管21)を配置する。そして、伝熱部材1及び断面略円形状の伝熱管を例えばプレス加工する。これにより、断面略円形状の伝熱管は扁平形状の伝熱管22となり、第一の嵌合溝42aに嵌合される。なお、初めから扁平形状となった伝熱管22を用意し、第一の嵌合溝42aに嵌合しても勿論よい。 In the fifth embodiment, for example, the unit heat exchange unit A is formed as follows. That is, the heat transfer tube (the heat transfer tube 21 shown in the fourth embodiment) having a substantially circular cross section is disposed in the first fitting groove 42 a formed in the heat transfer member 1. Then, the heat transfer member 1 and the heat transfer tube having a substantially circular cross section are pressed, for example. As a result, the heat transfer tube having a substantially circular cross section becomes a flat heat transfer tube 22 and is fitted into the first fitting groove 42a. Of course, the heat transfer tube 22 having a flat shape from the beginning may be prepared and fitted into the first fitting groove 42a.
 以上、このように構成された単位熱交換ユニットAを用いた熱交換器100においては、扁平形状の伝熱管22を用いることにより、伝熱管22の代表長さを実施の形態4で示した伝熱管21よりも小さくできるので、実施の形態4に係る熱交換器100よりもさらに伝熱性能を向上させることができる。 As described above, in the heat exchanger 100 using the unit heat exchange unit A configured as described above, by using the flat heat transfer tube 22, the representative length of the heat transfer tube 22 is shown in the fourth embodiment. Since it can be made smaller than the heat pipe 21, the heat transfer performance can be further improved as compared with the heat exchanger 100 according to the fourth embodiment.
 なお、本実施の形態5では内周面に溝が形成された扁平形状の伝熱管22を用いたが、内周面に溝が形成されていない扁平形状の伝熱管を用いても勿論よい。このような伝熱管を用いることにより、実施の形態1に係る熱交換器100よりもさらに伝熱性能を向上させることができる。 In the fifth embodiment, the flat heat transfer tube 22 having a groove formed on the inner peripheral surface is used. However, a flat heat transfer tube having no groove formed on the inner peripheral surface may be used. By using such a heat transfer tube, the heat transfer performance can be further improved as compared with the heat exchanger 100 according to the first embodiment.
実施の形態6.
 実施の形態1~実施の形態5で示した熱交換器に以下のような接続配管を設けてもよい。なお、以下では、実施の形態1で示した伝熱部材1に当該接続配管を設けた例について説明する。また、本実施の形態6において、特に記述しない項目については実施の形態1~実施の形態5と同様とし、同一の機能や構成については同一の符号を用いて述べることとする。
Embodiment 6 FIG.
The following connection pipes may be provided in the heat exchanger shown in the first to fifth embodiments. In addition, below, the example which provided the said connection piping in the heat-transfer member 1 shown in Embodiment 1 is demonstrated. In the sixth embodiment, items that are not particularly described are the same as those in the first to fifth embodiments, and the same functions and configurations are described using the same reference numerals.
 図7は、本発明の実施の形態6に係る熱交換器の伝熱部材を示す斜視図である。
 本実施の形態6に係る伝熱部材1の前側端部(一方の端部)近傍には、一方の端部が伝熱部材1の右側面部に開口した連通孔5が形成されている。この連通孔5は、伝熱部材1に形成された冷媒流路3のそれぞれと連通している。そして、連通孔5の開口部には、接続配管6が、例えばろう付け等により接続されている。また、冷媒流路3のそれぞれは、連通孔5(接続配管6)が設けられた側の端部に略円柱状の栓9が例えば圧入されて閉塞されている。なお、冷媒流路3に栓9をろう付けする等により、冷媒流路3の端部を閉塞してもよい。
FIG. 7 is a perspective view showing a heat transfer member of a heat exchanger according to Embodiment 6 of the present invention.
In the vicinity of the front end portion (one end portion) of the heat transfer member 1 according to Embodiment 6, a communication hole 5 having one end opening in the right side surface portion of the heat transfer member 1 is formed. The communication hole 5 communicates with each of the refrigerant flow paths 3 formed in the heat transfer member 1. And the connection piping 6 is connected to the opening part of the communicating hole 5 by brazing etc., for example. Further, each of the refrigerant flow paths 3 is closed by, for example, a substantially cylindrical plug 9 being press-fitted into an end portion on the side where the communication hole 5 (connection pipe 6) is provided. The end of the refrigerant flow path 3 may be closed by brazing the plug 9 to the refrigerant flow path 3 or the like.
 このように構成された伝熱部材1を用いた熱交換器100においては、複数の冷媒流路3を流れる冷媒を1本の接続配管6から流出入させることができ、熱交換器100の構造を簡素化できる。 In the heat exchanger 100 using the heat transfer member 1 configured in this way, the refrigerant flowing through the plurality of refrigerant flow paths 3 can be flowed in and out from one connection pipe 6, and the structure of the heat exchanger 100 Can be simplified.
 なお、本実施の形態6では、栓9によって冷媒流路3の端部を閉塞したが、種々の方法で冷媒流路3を閉塞することができる。例えば、冷媒流路3の端部をろう材のみで閉塞してもよい。
 また、図7では伝熱部材1の前側端部(一方の端部)近傍の構造について記載しているが、伝熱部材1の後ろ側端部(他方の端部)近傍に接続配管6を設けても勿論よい。つまり、冷媒流路3の双方の端部において、冷媒流路3を1つの流路にまとめてもよい。伝熱部材1の双方の端部近傍に接続配管6を設けることにより、熱交換器100の構造をより簡素化できる。
In the sixth embodiment, the end of the refrigerant flow path 3 is closed by the plug 9, but the refrigerant flow path 3 can be closed by various methods. For example, the end of the refrigerant flow path 3 may be closed only with the brazing material.
In addition, in FIG. 7, the structure near the front end (one end) of the heat transfer member 1 is described, but the connection pipe 6 is connected near the rear end (the other end) of the heat transfer member 1. Of course, it may be provided. That is, the refrigerant flow path 3 may be combined into one flow path at both ends of the refrigerant flow path 3. By providing the connection pipes 6 in the vicinity of both ends of the heat transfer member 1, the structure of the heat exchanger 100 can be further simplified.
 また、本実施の形態6では、伝熱部材1に連通孔5を形成して接続配管6を設けたが、接続配管6は種々の方法で設けることが可能である。例えば、伝熱部材1の端部(例えば前側端部)に接続配管6を設けてもよい。接続配管6の側面(より詳しくは、各冷媒流路3の端部と対応する位置)に貫通孔が形成されていれば、各冷媒流路3と接続配管6を連通させることができる。このため、複数の冷媒流路3を流れる冷媒を1本の接続配管6から流出入させることができるので、熱交換器100の構造を簡素化できる。 In the sixth embodiment, the connection pipe 6 is provided by forming the communication hole 5 in the heat transfer member 1, but the connection pipe 6 can be provided by various methods. For example, the connection pipe 6 may be provided at the end (for example, the front end) of the heat transfer member 1. If the through-hole is formed in the side surface of the connection pipe 6 (more specifically, the position corresponding to the end of each refrigerant flow path 3), each refrigerant flow path 3 and the connection pipe 6 can be communicated. For this reason, since the refrigerant | coolant which flows through the several refrigerant | coolant flow path 3 can be flowed in / out from the one connection piping 6, the structure of the heat exchanger 100 can be simplified.
実施の形態7.
 伝熱部材1に連通孔5を形成して接続配管6を設ける場合、例えば以下のように冷媒流路3の端部を閉塞してもよい。なお、以下では、実施の形態1で示した伝熱部材1に当該接続配管を設けた例について説明する。また、本実施の形態7において、特に記述しない項目については実施の形態1~実施の形態6と同様とし、同一の機能や構成については同一の符号を用いて述べることとする。
Embodiment 7 FIG.
When the communication hole 5 is formed in the heat transfer member 1 and the connection pipe 6 is provided, for example, the end of the refrigerant flow path 3 may be closed as follows. In addition, below, the example which provided the said connection piping in the heat-transfer member 1 shown in Embodiment 1 is demonstrated. In the seventh embodiment, items that are not particularly described are the same as those in the first to sixth embodiments, and the same functions and configurations are described using the same reference numerals.
 図8は、本発明の実施の形態7に係る熱交換器の伝熱部材を示す斜視図である。
 本実施の形態7に係る伝熱部材1の端部(前側端部及び後ろ側端部のうちの少なくとも一方)近傍には、実施の形態6と同様に、一方の端部が伝熱部材1の右側面部に開口した連通孔5が形成されている。この連通孔5は、伝熱部材1に形成された冷媒流路3のそれぞれと連通している。そして、連通孔5の開口部には、接続配管6が、例えばろう付け等により接続されている。
FIG. 8 is a perspective view showing a heat transfer member of a heat exchanger according to Embodiment 7 of the present invention.
In the vicinity of the end portion (at least one of the front end portion and the rear end portion) of the heat transfer member 1 according to the seventh embodiment, one end portion is the heat transfer member 1 as in the sixth embodiment. A communication hole 5 is formed in the right side surface portion. The communication hole 5 communicates with each of the refrigerant flow paths 3 formed in the heat transfer member 1. And the connection piping 6 is connected to the opening part of the communicating hole 5 by brazing etc., for example.
 また、本実施の形態7に係る伝熱部材1は、伝熱部材1の端部(前側端部及び後ろ側端部)に対応した形状の遮断板10を備えている。そして、この遮断板10を伝熱部材1の端部にろう付け等することにより、冷媒流路3の端部を閉塞している。 Further, the heat transfer member 1 according to the seventh embodiment includes a blocking plate 10 having a shape corresponding to the ends (front end and rear end) of the heat transfer member 1. Then, the end portion of the refrigerant flow path 3 is closed by brazing the shielding plate 10 to the end portion of the heat transfer member 1.
 このように構成された伝熱部材1を用いた熱交換器100においても、複数の冷媒流路3を流れる冷媒を1本の接続配管6から流出入させることができ、熱交換器100の構造を簡素化できる。 Also in the heat exchanger 100 using the heat transfer member 1 configured as described above, the refrigerant flowing through the plurality of refrigerant flow paths 3 can flow in and out from one connection pipe 6, and the structure of the heat exchanger 100 Can be simplified.
実施の形態8.
 また、伝熱部材1に連通孔5を形成して接続配管6を設ける場合、例えば以下のように冷媒流路3の端部を閉塞してもよい。なお、以下では、実施の形態1で示した伝熱部材1に当該接続配管を設けた例について説明する。また、本実施の形態8において、特に記述しない項目については実施の形態1~実施の形態7と同様とし、同一の機能や構成については同一の符号を用いて述べることとする。
Embodiment 8 FIG.
Further, when the communication pipe 5 is formed in the heat transfer member 1 and the connection pipe 6 is provided, for example, the end of the refrigerant flow path 3 may be closed as follows. In addition, below, the example which provided the said connection piping in the heat-transfer member 1 shown in Embodiment 1 is demonstrated. In the eighth embodiment, items that are not particularly described are the same as those in the first to seventh embodiments, and the same functions and configurations are described using the same reference numerals.
 図9は、本発明の実施の形態8に係る熱交換器の伝熱部材を示す斜視図である。
 本実施の形態8に係る伝熱部材1の端部(前側端部及び後ろ側端部のうちの少なくとも一方)近傍には、実施の形態6及び実施の形態7と同様に、一方の端部が伝熱部材1の右側面部に開口した連通孔5が形成されている。この連通孔5は、伝熱部材1に形成された冷媒流路3のそれぞれと連通している。そして、連通孔5の開口部には、接続配管6が、例えばろう付け等により接続されている。また、本実施の形態8に係る伝熱部材1は、接続配管6が設けられた側の端部(前側端部及び後ろ側端部のうちの少なくとも一方)をピンチ加工することにより、各冷媒流路3の端部を閉塞している。
FIG. 9 is a perspective view showing a heat transfer member of a heat exchanger according to Embodiment 8 of the present invention.
In the vicinity of the end portion (at least one of the front end portion and the rear end portion) of the heat transfer member 1 according to the eighth embodiment, one end portion is the same as in the sixth and seventh embodiments. Is formed in the right side surface of the heat transfer member 1. The communication hole 5 communicates with each of the refrigerant flow paths 3 formed in the heat transfer member 1. And the connection piping 6 is connected to the opening part of the communicating hole 5 by brazing etc., for example. Further, the heat transfer member 1 according to the eighth embodiment is configured so that each end portion (at least one of the front end portion and the rear end portion) on which the connection pipe 6 is provided is pinched to each refrigerant. The end of the flow path 3 is closed.
 このように構成された伝熱部材1を用いた熱交換器100においても、複数の冷媒流路3を流れる冷媒を1本の接続配管6から流出入させることができ、熱交換器100の構造を簡素化できる。
 また、伝熱部材1の端部をピンチ加工することにより各冷媒流路3の端部を閉塞できるので、各冷媒流路3の端部を閉塞する部材を追加する必要がなく、加工費を抑制することができる。なお、ピンチ加工後にさらにろう付け等を行っても勿論よい。
Also in the heat exchanger 100 using the heat transfer member 1 configured as described above, the refrigerant flowing through the plurality of refrigerant flow paths 3 can flow in and out from one connection pipe 6, and the structure of the heat exchanger 100 Can be simplified.
Moreover, since the edge part of each refrigerant flow path 3 can be obstruct | occluded by pinching the edge part of the heat-transfer member 1, it is not necessary to add the member which obstruct | occludes the edge part of each refrigerant | coolant flow path 3, and processing cost is sufficient. Can be suppressed. Of course, further brazing or the like may be performed after the pinch processing.
実施の形態9.
 熱交換器100にヘッダー管を設けることにより、熱交換器100の周辺配管を簡素化してもよい。なお、以下では、実施の形態6で示した伝熱部材1を用いた熱交換器100を例にして説明する。また、本実施の形態9において、特に記述しない項目については実施の形態1~実施の形態8と同様とし、同一の機能や構成については同一の符号を用いて述べることとする。
Embodiment 9 FIG.
By providing a header pipe in the heat exchanger 100, the peripheral piping of the heat exchanger 100 may be simplified. In the following description, the heat exchanger 100 using the heat transfer member 1 shown in the sixth embodiment will be described as an example. In the ninth embodiment, items that are not particularly described are the same as those in the first to eighth embodiments, and the same functions and configurations are described using the same reference numerals.
 図10は、本発明の実施の形態9に係る熱交換器を示す斜視図である。なお、図10においても、伝熱部材1の構成を図示するため、伝熱管2を切断して記載している。
 図10に示すように、本実施の形態9に係る熱交換器100は、ヘッダー管7及びヘッダー管8を備えている。ヘッダー管7は、各単位熱交換ユニットAに設けられた接続配管6のそれぞれと連通している。ヘッダー管7を設けることにより、複数の接続配管6を流れる冷媒を1本のヘッダー管7から流出入させることができ、熱交換器100の周辺配管を簡素化できる。このため、熱交換器100の配置スペースを削減することができる。ここで、ヘッダー管7が、本発明における第一の冷媒用ヘッダー管に相当する。
FIG. 10 is a perspective view showing a heat exchanger according to Embodiment 9 of the present invention. In addition, also in FIG. 10, in order to illustrate the structure of the heat-transfer member 1, the heat-transfer tube 2 is cut and described.
As shown in FIG. 10, the heat exchanger 100 according to the ninth embodiment includes a header pipe 7 and a header pipe 8. The header pipe 7 communicates with each of the connection pipes 6 provided in each unit heat exchange unit A. By providing the header pipe 7, the refrigerant flowing through the plurality of connection pipes 6 can flow in and out from the single header pipe 7, and the peripheral pipes of the heat exchanger 100 can be simplified. For this reason, the arrangement space of the heat exchanger 100 can be reduced. Here, the header pipe 7 corresponds to the first refrigerant header pipe in the present invention.
 また、ヘッダー管8は、単位熱交換ユニットAに設けられた伝熱管2のそれぞれと連通している。ヘッダー管8を設けることにより、複数の伝熱管2を流れる冷媒を1本のヘッダー管8から流出入させることができ、熱交換器100の周辺配管を簡素化できる。このため、熱交換器100の配置スペースを削減することができる。ここで、ヘッダー管8が、本発明における第二の冷媒用ヘッダー管に相当する。 Further, the header pipe 8 communicates with each of the heat transfer pipes 2 provided in the unit heat exchange unit A. By providing the header pipe 8, the refrigerant flowing through the plurality of heat transfer pipes 2 can flow in and out from the single header pipe 8, and the peripheral piping of the heat exchanger 100 can be simplified. For this reason, the arrangement space of the heat exchanger 100 can be reduced. Here, the header pipe 8 corresponds to the second refrigerant header pipe in the present invention.
 なお、本実施の形態9では、ヘッダー管7及びヘッダー管8の双方を設けた例について説明したが、どちらか一方のヘッダー管を設けるのみでも熱交換器100の周辺配管を簡素化でき、熱交換器100の配置スペースを削減することができる。 In the ninth embodiment, the example in which both the header pipe 7 and the header pipe 8 are provided has been described. However, it is possible to simplify the peripheral piping of the heat exchanger 100 by simply providing either one of the header pipes. The arrangement space of the exchanger 100 can be reduced.
実施の形態10.
 実施の形態1では、単位熱交換ユニットAを形成した後、これら単位熱交換ユニットAを積層して熱交換器100を形成した。これに限らず、例えば以下のような製造方法で熱交換器100を形成してもよい。なお、本実施の形態10において、特に記述しない項目については実施の形態1~実施の形態9と同様とし、同一の機能や構成については同一の符号を用いて述べることとする。
Embodiment 10 FIG.
In Embodiment 1, after unit heat exchange unit A was formed, these unit heat exchange units A were laminated | stacked and the heat exchanger 100 was formed. For example, the heat exchanger 100 may be formed by the following manufacturing method. In the tenth embodiment, items not particularly described are the same as those in the first to ninth embodiments, and the same functions and configurations are described using the same reference numerals.
 図11は、本発明の実施の形態10に係る熱交換器の製造方法を示す説明図である。なお、図11においても、伝熱部材1の構成を図示するため、伝熱管2を切断して記載している。
 本実施の形態10に係る熱交換器100は、以下の手順で製造される。
FIG. 11 is an explanatory diagram showing a method for manufacturing a heat exchanger according to Embodiment 10 of the present invention. In FIG. 11 also, the heat transfer tube 2 is cut and described in order to illustrate the configuration of the heat transfer member 1.
The heat exchanger 100 according to the tenth embodiment is manufactured by the following procedure.
 図11(a)に示すように、伝熱部材1を設置する。 As shown in FIG. 11 (a), the heat transfer member 1 is installed.
 次に、図11(b)に示すように、図11(a)で設置した伝熱部材1の第一の嵌合溝4a上に伝熱管2を設置する。 Next, as shown in FIG. 11 (b), the heat transfer tube 2 is installed on the first fitting groove 4a of the heat transfer member 1 installed in FIG. 11 (a).
 次に図11(c)に示すように、図11(b)で示した伝熱部材1及び伝熱管2を積層していく。より詳しくは、図11(b)で示した伝熱管2が第二の嵌合溝4bの下部に配置されるように、当該伝熱管2の上部に伝熱部材1を配置する。この伝熱部材1の第一の嵌合溝4a上に伝熱管2を設置する。この工程を繰り返し、伝熱部材1及び伝熱管2を所望の数だけ積層する。 Next, as shown in FIG. 11 (c), the heat transfer member 1 and the heat transfer tube 2 shown in FIG. 11 (b) are laminated. More specifically, the heat transfer member 1 is arranged above the heat transfer tube 2 so that the heat transfer tube 2 shown in FIG. 11B is arranged below the second fitting groove 4b. The heat transfer tube 2 is installed on the first fitting groove 4 a of the heat transfer member 1. This process is repeated to stack a desired number of heat transfer members 1 and heat transfer tubes 2.
 次に図11(d)に示すように、図11(c)で積層した伝熱部材1及び伝熱管2を、プレス加工で伝熱部材1の積層方向に押さえる(プレスする)。プレス加工されることにより、伝熱管2は、当該伝熱管2の下部に配置された伝熱部材1の第一の嵌合溝4aに嵌合され、当該伝熱管2の上部に配置された伝熱部材1の第二の嵌合溝4bに嵌合される。このように、本実施の形態10で示した製造方法を用いることにより、1度の作業工程で熱交換器100を製造できるので、熱交換器100の加工コストを抑制できる。 Next, as shown in FIG. 11 (d), the heat transfer member 1 and the heat transfer tube 2 stacked in FIG. 11 (c) are pressed (pressed) in the stacking direction of the heat transfer member 1 by pressing. By being pressed, the heat transfer tube 2 is fitted into the first fitting groove 4 a of the heat transfer member 1 disposed at the lower portion of the heat transfer tube 2 and is disposed at the upper portion of the heat transfer tube 2. The heat member 1 is fitted into the second fitting groove 4b. As described above, by using the manufacturing method shown in the tenth embodiment, the heat exchanger 100 can be manufactured in one operation step, so that the processing cost of the heat exchanger 100 can be suppressed.
 なお、本実施の形態10では、伝熱部材1及び伝熱管2を2段積層した例について説明したが、伝熱部材1及び伝熱管2を3段以上積層することも勿論可能である。また、本実施の形態10に係る熱交換器100は、最上部に配置された第一の嵌合溝4aに伝熱管2が設けられているが、最上部に配置された第一の嵌合溝4aに伝熱管2を設けなくてもよい。こうすることで、上下の両プレス面が伝熱部材1のみとなり対称形になるので、プレス冶具が簡素化できる。 In the tenth embodiment, the example in which the heat transfer member 1 and the heat transfer tube 2 are stacked in two stages has been described, but it is of course possible to stack the heat transfer member 1 and the heat transfer tube 2 in three or more stages. Further, in the heat exchanger 100 according to the tenth embodiment, the heat transfer tube 2 is provided in the first fitting groove 4a arranged at the uppermost part, but the first fitting arranged at the uppermost part. The heat transfer tube 2 may not be provided in the groove 4a. By doing so, the upper and lower press surfaces are only the heat transfer member 1 and become symmetrical, so that the press jig can be simplified.
 また、実施の形態6~実施の形態8で示したように伝熱部材1に接続配管6を設ける場合、予め接続配管6が設けられた伝熱部材1を用いて図11(a)~図11(d)の加工を行ってもよい。このように熱交換器100を製造することにより、細部の加工となる伝熱部材1の端部加工(連通孔5の加工や冷媒流路3の端部閉塞加工等)を最初に行うことができるので、熱交換器100の製造を容易にできる効果がある。 Further, when the connection pipe 6 is provided on the heat transfer member 1 as shown in the sixth to eighth embodiments, the heat transfer member 1 provided with the connection pipe 6 in advance is used, as shown in FIGS. You may perform the process of 11 (d). By manufacturing the heat exchanger 100 in this manner, end processing of the heat transfer member 1 (processing of the communication hole 5 or processing of closing the end of the refrigerant flow path 3, etc.), which is a detailed processing, can be performed first. As a result, the heat exchanger 100 can be easily manufactured.
 また、実施の形態9で示したようにヘッダー管8を設ける場合、複数の伝熱管2を予めヘッダー管8に接続し、これらを用いて図11(b)~図11(d)の加工を行ってもよい。このように熱交換器100を製造することにより、後加工が少なくなるので作業が容易にできる。 When the header tube 8 is provided as shown in the ninth embodiment, the plurality of heat transfer tubes 2 are connected to the header tube 8 in advance, and the processing shown in FIGS. 11 (b) to 11 (d) is performed using these. You may go. By manufacturing the heat exchanger 100 in this manner, the post-processing is reduced, so that the operation can be facilitated.
実施の形態11.
 実施の形態1~実施の形態10で示した熱交換器100は、例えば以下のような冷凍サイクル装置に用いることができる。なお、本実施の形態11において、特に記述しない項目については実施の形態1~実施の形態10と同様とし、同一の機能や構成については同一の符号を用いて述べることとする。
Embodiment 11 FIG.
The heat exchanger 100 shown in the first to tenth embodiments can be used, for example, in the following refrigeration cycle apparatus. In the eleventh embodiment, items not particularly described are the same as those in the first to tenth embodiments, and the same functions and configurations are described using the same reference numerals.
 図12は、本発明の実施の形態11に係る冷凍サイクル装置の一例を示す冷媒回路図である。
 本実施の形態11に係る冷凍サイクル装置200は、熱源側冷媒回路210及び利用側冷媒回路220を備えている。熱源側冷媒回路210は、第一の冷媒が流れるものである。この熱源側冷媒回路210は、圧縮機201、熱交換器100の冷媒流路3、膨張弁等の減圧装置202、及び蒸発器203を順次配管接続して構成されている。また、利用側冷媒回路220は、第二の冷媒(例えば水等)が流れるものであり、熱交換器100の伝熱管2及び利用側機器(図示せず)に接続されている。利用側機器とは、例えば冷凍サイクル装置200を貯湯機に用いる場合、貯湯タンク等である。また例えば、利用側機器とは、冷凍サイクル装置200を空気調和装置に用いる場合、室内熱交換器である。
FIG. 12 is a refrigerant circuit diagram showing an example of a refrigeration cycle apparatus according to Embodiment 11 of the present invention.
The refrigeration cycle apparatus 200 according to the eleventh embodiment includes a heat source side refrigerant circuit 210 and a use side refrigerant circuit 220. In the heat source side refrigerant circuit 210, the first refrigerant flows. The heat source side refrigerant circuit 210 is configured by sequentially connecting a compressor 201, the refrigerant flow path 3 of the heat exchanger 100, a decompression device 202 such as an expansion valve, and an evaporator 203. The use side refrigerant circuit 220 is a circuit through which a second refrigerant (for example, water) flows, and is connected to the heat transfer tube 2 of the heat exchanger 100 and a use side device (not shown). The usage-side equipment is, for example, a hot water storage tank when the refrigeration cycle apparatus 200 is used in a hot water storage machine. Further, for example, the usage-side equipment is an indoor heat exchanger when the refrigeration cycle apparatus 200 is used for an air conditioner.
 図12に示す冷凍サイクル装置200のように熱交換器100を用いる場合、熱交換器100では、第一の冷媒によって第二の冷媒(例えば水等)を加熱する。この加熱された第二の冷媒(例えば水等)は、利用側機器に供給される。例えば、冷凍サイクル装置200を貯湯機に用いる場合、貯湯タンク等にこの加熱された水が貯留される。また例えば、冷凍サイクル装置200を空気調和装置に用いる場合、この加熱された水は室内熱交換器で室内空気を加熱し、室内を暖房する。 When the heat exchanger 100 is used like the refrigeration cycle apparatus 200 shown in FIG. 12, the heat exchanger 100 heats the second refrigerant (for example, water) by the first refrigerant. The heated second refrigerant (for example, water) is supplied to the use side device. For example, when the refrigeration cycle apparatus 200 is used in a hot water storage device, the heated water is stored in a hot water storage tank or the like. Further, for example, when the refrigeration cycle apparatus 200 is used in an air conditioner, the heated water heats indoor air with an indoor heat exchanger and heats the room.
 以上、このように構成された冷凍サイクル装置200においては、実施の形態1~実施の形態10で示した熱交換器100を用いることにより、省スペースで高性能な冷凍サイクル装置200を得ることができる。 As described above, in the refrigeration cycle apparatus 200 configured as described above, by using the heat exchanger 100 shown in the first to tenth embodiments, a space-saving and high-performance refrigeration cycle apparatus 200 can be obtained. it can.
 なお、本実施の形態11では、熱交換器100を熱源側冷媒回路210の放熱器(凝縮器)として用いたが、熱交換器100を熱源側冷媒回路の蒸発器として用いてもよい。この場合、第一の冷媒で冷却された第二の冷媒を利用側機器に供給することができる。 In the eleventh embodiment, the heat exchanger 100 is used as a radiator (condenser) of the heat source side refrigerant circuit 210, but the heat exchanger 100 may be used as an evaporator of the heat source side refrigerant circuit. In this case, the 2nd refrigerant | coolant cooled with the 1st refrigerant | coolant can be supplied to a utilization side apparatus.
 1 伝熱部材、2 伝熱管、3 冷媒流路、4a 第一の嵌合溝、4b 第二の嵌合溝、5 連通孔、6 接続配管、7 ヘッダー管、8 ヘッダー管、9 栓、10 遮断板、21 伝熱管(溝付)、22 伝熱管(扁平管)、31 冷媒流路(溝付)、42a 第一の嵌合溝、42b 第二の嵌合溝、100 熱交換器、110 接合面、111 隙間、200 冷凍サイクル装置、201 圧縮機、202 減圧装置、203 蒸発器、210 熱源側冷媒回路、220 利用側冷媒回路。 1 heat transfer member, 2 heat transfer tube, 3 refrigerant flow path, 4a first fitting groove, 4b second fitting groove, 5 communication hole, 6 connection pipe, 7 header pipe, 8 header pipe, 9 plug, 10 Blocking plate, 21 heat transfer tube (with groove), 22 heat transfer tube (flat tube), 31 refrigerant flow path (with groove), 42a first fitting groove, 42b second fitting groove, 100 heat exchanger, 110 Joint surface, 111 gap, 200 refrigeration cycle device, 201 compressor, 202 decompression device, 203 evaporator, 210 heat source side refrigerant circuit, 220 utilization side refrigerant circuit.

Claims (12)

  1.  第一の冷媒と第二の冷媒とが熱交換する熱交換器において、
     前記第一の冷媒の流路となる複数の貫通孔が形成された複数の伝熱部材と、
     前記第二の冷媒の流路となる複数の伝熱管と、
     を備え、
     前記伝熱部材は、その外周部に、第一の面部及び当該第一の面部の反対側に形成された第二の面部を備え、
     前記第一の面部及び前記第二の面部には、前記伝熱管を嵌合する嵌合溝が形成され、
     複数の前記伝熱部材は、前記第一の面部と前記第二の面部とが対向するように積層され、
     隣接する前記伝熱部材は、対向配置された前記第一の面部と前記第二の面部に形成された前記嵌合溝に前記伝熱管が嵌合されて接続されていることを特徴とする熱交換器。
    In the heat exchanger in which the first refrigerant and the second refrigerant exchange heat,
    A plurality of heat transfer members in which a plurality of through-holes serving as flow paths for the first refrigerant are formed;
    A plurality of heat transfer tubes serving as flow paths for the second refrigerant;
    With
    The heat transfer member includes a first surface portion and a second surface portion formed on the opposite side of the first surface portion on the outer periphery thereof,
    A fitting groove for fitting the heat transfer tube is formed in the first surface portion and the second surface portion,
    The plurality of heat transfer members are stacked such that the first surface portion and the second surface portion face each other,
    The adjacent heat transfer members are connected to each other by fitting the heat transfer tubes into the fitting grooves formed in the first surface portion and the second surface portion arranged to face each other. Exchanger.
  2.  隣接する前記伝熱部材は、対向配置された前記第一の面部と前記第二の面部との間に隙間が形成されていることを特徴とする請求項1に記載の熱交換器。 2. The heat exchanger according to claim 1, wherein a gap is formed between the adjacent heat transfer members between the first surface portion and the second surface portion arranged to face each other.
  3.  前記第一の冷媒の流路となる前記貫通孔と前記第二の流路となる前記伝熱管が略直交して配置されていることを特徴とする請求項1又は請求項2に記載の熱交換器。 The heat according to claim 1 or 2, wherein the through-hole serving as the flow path for the first refrigerant and the heat transfer tube serving as the second flow path are disposed substantially orthogonal to each other. Exchanger.
  4.  前記第一の冷媒の流路となる前記貫通孔及び前記第二の流路となる前記伝熱管のうちの少なくとも一方の内周面に、溝が形成されていることを特徴とする請求項1~請求項3のいずれか一項に記載の熱交換器。 2. A groove is formed on an inner peripheral surface of at least one of the through hole serving as the flow path for the first refrigerant and the heat transfer tube serving as the second flow path. The heat exchanger according to any one of claims 3 to 4.
  5.  前記伝熱管の断面形状が扁平形状となっていることを特徴とする請求項1~請求項4のいずれか一項に記載の熱交換器。 The heat exchanger according to any one of claims 1 to 4, wherein a cross-sectional shape of the heat transfer tube is a flat shape.
  6.  前記伝熱部材は、複数の前記貫通孔に連通する接続配管を備えたことを特徴とする請求項1~請求項5のいずれか一項に記載の熱交換器。 The heat exchanger according to any one of claims 1 to 5, wherein the heat transfer member includes a connection pipe communicating with the plurality of through holes.
  7.  前記伝熱部材には、一方の端部が当該伝熱部材の外周部に開口し、複数の前記貫通孔に連通する連通孔が形成され、
     複数の前記貫通孔は、前記連通孔が形成された側の端部が遮断板により閉塞され、
     前記接続配管は、前記連通孔の開口部に設けられていることを特徴とする請求項6に記載の熱交換器。
    In the heat transfer member, one end portion is opened in the outer peripheral portion of the heat transfer member, and a communication hole communicating with the plurality of through holes is formed,
    The plurality of through-holes are closed at the end on the side where the communication holes are formed by a blocking plate,
    The heat exchanger according to claim 6, wherein the connection pipe is provided at an opening of the communication hole.
  8.  前記伝熱部材には、一方の端部が当該伝熱部材の外周部に開口し、複数の前記貫通孔に連通する連通孔が形成され、
     複数の前記貫通孔は、前記連通孔が形成された側の端部がピンチ加工により閉塞され、
     前記接続配管は、前記連通孔の開口部に設けられていることを特徴とする請求項6に記載の熱交換器。
    In the heat transfer member, one end portion is opened in the outer peripheral portion of the heat transfer member, and a communication hole communicating with the plurality of through holes is formed,
    The plurality of through-holes are closed by pinching at the end on the side where the communication holes are formed,
    The heat exchanger according to claim 6, wherein the connection pipe is provided at an opening of the communication hole.
  9.  積層された複数の前記伝熱部材のそれぞれに設けられた前記接続配管と連通する第一の冷媒用ヘッダー管を備えたことを特徴とする請求項6~請求項8のいずれか一項に記載の熱交換器。 The first refrigerant header pipe communicating with the connection pipe provided in each of the plurality of stacked heat transfer members is provided. Heat exchanger.
  10.  隣接する前記伝熱部材の間に設けられた前記伝熱管のそれぞれと連通する第二の冷媒用ヘッダー管を備えたことを特徴とする請求項1~請求項9のいずれか一項に記載の熱交換器。 The second refrigerant header pipe that communicates with each of the heat transfer pipes provided between the adjacent heat transfer members, according to any one of claims 1 to 9. Heat exchanger.
  11.  請求項1~請求項10のいずれか一項に記載の熱交換器の製造方法であって、
     前記第一の面部と前記第二の面部を対向させて配置された複数の前記伝熱部材の間に前記伝熱管を配置し、
     これらを前記伝熱部材の積層方向にプレスし、前記伝熱管を前記嵌合溝に嵌合させ、
     前記伝熱部材を接続することを特徴とする熱交換器の製造方法。
    A method of manufacturing a heat exchanger according to any one of claims 1 to 10,
    The heat transfer tube is disposed between the plurality of heat transfer members disposed such that the first surface portion and the second surface portion are opposed to each other,
    These are pressed in the laminating direction of the heat transfer member, the heat transfer tube is fitted into the fitting groove,
    A method of manufacturing a heat exchanger, wherein the heat transfer member is connected.
  12.  請求項1~請求項10のいずれか一項に記載の熱交換器を備えたことを特徴とする冷凍サイクル装置。 A refrigeration cycle apparatus comprising the heat exchanger according to any one of claims 1 to 10.
PCT/JP2011/006338 2011-01-31 2011-11-14 Heat exchanger, method for manufacturing the heat exchanger, and refrigeration cycle device with the heat exchanger WO2012104944A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012555580A JP5490265B2 (en) 2011-01-31 2011-11-14 Heat exchanger, method for manufacturing the heat exchanger, and refrigeration cycle apparatus including the heat exchanger
GB1311658.7A GB2501413B (en) 2011-01-31 2011-11-14 Heat exchanger, method of making the same, and refrigeration cycle apparatus including the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011017488 2011-01-31
JP2011-017488 2011-01-31

Publications (1)

Publication Number Publication Date
WO2012104944A1 true WO2012104944A1 (en) 2012-08-09

Family

ID=46602192

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/006338 WO2012104944A1 (en) 2011-01-31 2011-11-14 Heat exchanger, method for manufacturing the heat exchanger, and refrigeration cycle device with the heat exchanger

Country Status (3)

Country Link
JP (1) JP5490265B2 (en)
GB (1) GB2501413B (en)
WO (1) WO2012104944A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015045455A (en) * 2013-08-28 2015-03-12 三菱電機株式会社 Heat exchanger
JP2015092122A (en) * 2013-11-08 2015-05-14 三菱電機株式会社 Heat exchanger
JP2016065657A (en) * 2014-09-24 2016-04-28 オリオン機械株式会社 Temperature adjustment device for chemical

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITUB20160089A1 (en) * 2016-01-29 2017-07-29 Archimede S R L HEAT EXCHANGER
US20180038654A1 (en) * 2016-08-08 2018-02-08 General Electric Company System for fault tolerant passage arrangements for heat exchanger applications
JP2018084308A (en) * 2016-11-25 2018-05-31 株式会社Ihi Pressure container
IT201700046660A1 (en) * 2017-04-28 2018-10-28 Milano Politecnico LUBRICATED BEARING FOR ROTATING MACHINES
FR3086743B1 (en) * 2018-09-27 2020-09-04 Valeo Systemes Thermiques THERMAL MANAGEMENT DEVICE OF AN ELECTRICAL STORAGE DEVICE FOR MOTOR VEHICLES
WO2020167563A2 (en) * 2019-02-05 2020-08-20 The Government Of The United States Of America, As Represented By The Secretary Of The Navy Vascular composite heat exchanger
KR20210076689A (en) 2019-12-16 2021-06-24 삼성전자주식회사 Heat exchanger module, assembly type heat exchanger comprising heat exchanger module and assembly system of heat exchanger
US11662150B2 (en) 2020-08-13 2023-05-30 General Electric Company Heat exchanger having curved fluid passages for a gas turbine engine
EP4299450A1 (en) * 2022-07-01 2024-01-03 Airbus Defence and Space SAS Improved system for thermal regulation of a spacecraft

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS587068U (en) * 1981-07-01 1983-01-18 三菱電機株式会社 Heat exchanger
JPH1054688A (en) * 1996-08-08 1998-02-24 Japan Atom Energy Res Inst Manufacture of wall body for cooling
JP2006266576A (en) * 2005-03-23 2006-10-05 Calsonic Kansei Corp Stacked heat exchanger and its manufacturing method
JP2008524545A (en) * 2004-12-21 2008-07-10 コミツサリア タ レネルジー アトミーク Method for creating part including fluid flow path
JP2009248169A (en) * 2008-04-09 2009-10-29 Calsonic Kansei Corp Manufacturing method of cold plate
JP2010089147A (en) * 2008-10-10 2010-04-22 Nippon Light Metal Co Ltd Manufacturing method of heat transfer plate
WO2010093050A1 (en) * 2009-02-13 2010-08-19 日清紡ホールディングス株式会社 Hot plate, heating/cooling device and method of manufacturing hot plate

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS587068U (en) * 1981-07-01 1983-01-18 三菱電機株式会社 Heat exchanger
JPH1054688A (en) * 1996-08-08 1998-02-24 Japan Atom Energy Res Inst Manufacture of wall body for cooling
JP2008524545A (en) * 2004-12-21 2008-07-10 コミツサリア タ レネルジー アトミーク Method for creating part including fluid flow path
JP2006266576A (en) * 2005-03-23 2006-10-05 Calsonic Kansei Corp Stacked heat exchanger and its manufacturing method
JP2009248169A (en) * 2008-04-09 2009-10-29 Calsonic Kansei Corp Manufacturing method of cold plate
JP2010089147A (en) * 2008-10-10 2010-04-22 Nippon Light Metal Co Ltd Manufacturing method of heat transfer plate
WO2010093050A1 (en) * 2009-02-13 2010-08-19 日清紡ホールディングス株式会社 Hot plate, heating/cooling device and method of manufacturing hot plate

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015045455A (en) * 2013-08-28 2015-03-12 三菱電機株式会社 Heat exchanger
JP2015092122A (en) * 2013-11-08 2015-05-14 三菱電機株式会社 Heat exchanger
JP2016065657A (en) * 2014-09-24 2016-04-28 オリオン機械株式会社 Temperature adjustment device for chemical

Also Published As

Publication number Publication date
GB2501413B (en) 2017-06-07
JP5490265B2 (en) 2014-05-14
JPWO2012104944A1 (en) 2014-07-03
GB2501413A (en) 2013-10-23
GB201311658D0 (en) 2013-08-14

Similar Documents

Publication Publication Date Title
JP5490265B2 (en) Heat exchanger, method for manufacturing the heat exchanger, and refrigeration cycle apparatus including the heat exchanger
JP6005267B2 (en) Laminated header, heat exchanger, and air conditioner
JP5787992B2 (en) Heat exchanger and refrigeration cycle apparatus including the same
CN102494547B (en) Miniature micro-channel plate-fin heat exchanger
WO2014184912A1 (en) Laminated header, heat exchanger, and air conditioner
JP6005268B2 (en) Laminated header, heat exchanger, and air conditioner
WO2018074343A1 (en) Heat exchanger and refrigeration system using same
WO2018074345A1 (en) Heat exchanger and refrigeration device using same
JP2018066536A (en) Heat exchanger and refrigeration system using the same
JP5661205B2 (en) Laminated heat exchanger, heat pump system equipped with the same, and manufacturing method of laminated heat exchanger
JP2016038115A (en) Heat exchanger
JP6016935B2 (en) Plate heat exchanger and refrigeration cycle apparatus equipped with the plate heat exchanger
JP2005147570A (en) Double pipe type heat exchanger
JP2006317080A (en) Heat exchanger and method of manufacturing heat exchanger
JP6120998B2 (en) Laminated header, heat exchanger, and air conditioner
JP2005147567A (en) Double pipe type heat exchanger
WO2017103965A1 (en) Distributor, heat exchanger, air conditioning device, and method for manufacturing distributor
EP3306248B1 (en) Double pipe heat exchanger and method for manufacturing the same
WO2012043380A1 (en) Heat exchanger
JP2010060215A (en) Refrigerating device
KR20130026631A (en) Heat exchanger
JP2010261685A (en) Heat exchanger
JP5401876B2 (en) Refrigeration apparatus and water heat exchanger manufacturing method
JP6601380B2 (en) Heat exchanger and air conditioner
JP2005061807A (en) Heat exchanger

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11857896

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012555580

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 1311658

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20111114

WWE Wipo information: entry into national phase

Ref document number: 1311658.7

Country of ref document: GB

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11857896

Country of ref document: EP

Kind code of ref document: A1