JP5125760B2 - Heat transfer plate manufacturing method and heat transfer plate - Google Patents

Heat transfer plate manufacturing method and heat transfer plate Download PDF

Info

Publication number
JP5125760B2
JP5125760B2 JP2008131748A JP2008131748A JP5125760B2 JP 5125760 B2 JP5125760 B2 JP 5125760B2 JP 2008131748 A JP2008131748 A JP 2008131748A JP 2008131748 A JP2008131748 A JP 2008131748A JP 5125760 B2 JP5125760 B2 JP 5125760B2
Authority
JP
Japan
Prior art keywords
lid
groove
lid member
heat
transfer plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008131748A
Other languages
Japanese (ja)
Other versions
JP2009279594A (en
Inventor
久司 堀
伸城 瀬尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Light Metal Co Ltd
Original Assignee
Nippon Light Metal Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2008131748A priority Critical patent/JP5125760B2/en
Application filed by Nippon Light Metal Co Ltd filed Critical Nippon Light Metal Co Ltd
Priority to CN200980118474.3A priority patent/CN102036779B/en
Priority to KR1020107027171A priority patent/KR101179353B1/en
Priority to PCT/JP2009/057069 priority patent/WO2009142070A1/en
Priority to CN201210559581.3A priority patent/CN103042302B/en
Priority to TW098116520A priority patent/TWI417500B/en
Priority to TW102128416A priority patent/TWI558970B/en
Publication of JP2009279594A publication Critical patent/JP2009279594A/en
Application granted granted Critical
Publication of JP5125760B2 publication Critical patent/JP5125760B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2275/00Fastening; Joining
    • F28F2275/06Fastening; Joining by welding
    • F28F2275/062Fastening; Joining by welding by impact pressure or friction welding

Description

本発明は、例えば熱交換器や加熱機器あるいは冷却機器などに用いられる伝熱板の製造方法及び伝熱板に関する。   The present invention relates to a heat transfer plate manufacturing method and a heat transfer plate used for, for example, a heat exchanger, a heating device, or a cooling device.

熱交換、加熱あるいは冷却すべき対象物に接触し又は近接して配置される伝熱板は、その本体であるベース部材に例えば高温液や冷却水などの熱媒体を循環させる熱媒体用管を挿通させて形成されている。   A heat transfer plate arranged in contact with or close to an object to be heat exchanged, heated or cooled is provided with a heat medium pipe for circulating a heat medium such as high-temperature liquid or cooling water through a base member as a main body. It is formed by insertion.

図10は、従来の伝熱板を示した図であって、(a)は、斜視図、(b)は側面図である。従来の伝熱板100は、表面に開口する断面視矩形の蓋溝106と、蓋溝106の底面に開口する凹溝108を有するベース部材102と、凹溝108に挿入される熱媒体用管116と、蓋溝106に嵌合される蓋板110と、を備え、蓋溝106における両側壁105,105と蓋板110の両側面113,114とのそれぞれの突合せ面に沿って摩擦攪拌接合を施すことにより、塑性化領域W,Wが形成されている。 FIG. 10 is a view showing a conventional heat transfer plate, in which (a) is a perspective view and (b) is a side view. A conventional heat transfer plate 100 includes a lid groove 106 having a rectangular cross-section opening on the surface, a base member 102 having a concave groove 108 opening on the bottom surface of the lid groove 106, and a heat medium tube inserted into the concave groove 108. 116 and a lid plate 110 fitted in the lid groove 106, and friction stir welding along the abutting surfaces of both side walls 105, 105 in the lid groove 106 and both side surfaces 113, 114 of the lid plate 110. Is applied to form plasticized regions W 1 and W 2 .

特開2004−314115号公報JP 2004-314115 A

しかしながら、従来の伝熱板100は、蓋溝106における両側壁105,105と蓋板110の両側面113,114とのそれぞれの突合せ面に対して少なくとも二条の摩擦攪拌を行うため、作業工程が多くなるという問題があった。
このような観点から、本発明は、作業工程の少ない伝熱板の製造方法及び伝熱板を提供することを課題とする。
However, the conventional heat transfer plate 100 performs at least two lines of friction agitation on the abutting surfaces of the side walls 105, 105 in the lid groove 106 and the side surfaces 113, 114 of the lid plate 110. There was a problem of increasing.
From such a viewpoint, an object of the present invention is to provide a heat transfer plate manufacturing method and a heat transfer plate with fewer work steps.

このような課題を解決する本発明に係る伝熱板の製造方法は、ベース部材の表面側に開口する蓋溝の底面に形成された凹溝に、熱媒体用管を挿入する熱媒体用管挿入工程と、前記蓋溝に蓋部材を挿入し、前記蓋溝の底面に前記蓋部材を当接させる蓋部材挿入工程と、前記蓋溝の側壁と前記蓋部材の側面とが対向する突合部に対して回転ツールを相対的に移動させて摩擦攪拌を行う接合工程と、を含み、前記回転ツールのショルダ部の外径は、前記蓋溝の開口部の幅以上であり、前記接合工程では、前記熱媒体用管が塑性変形しない状態で、前記回転ツールを一回移動させて、前記蓋溝の一方の側壁と前記蓋部材の一方の側面との突合部、及び、前記蓋溝の他方の側壁と前記蓋部材の他方の側面との突合部に対して同時に摩擦攪拌を行うことを特徴とする。   A method of manufacturing a heat transfer plate according to the present invention that solves such a problem includes a heat medium tube in which a heat medium tube is inserted into a concave groove formed in a bottom surface of a lid groove that opens to the surface side of a base member. An insertion step, a lid member insertion step in which a lid member is inserted into the lid groove, and the lid member is brought into contact with a bottom surface of the lid groove, and a side wall of the lid groove and a side surface of the lid member are opposed to each other A rotating step of moving the rotating tool relative to each other to perform frictional stirring, and the outer diameter of the shoulder portion of the rotating tool is equal to or greater than the width of the opening of the lid groove, In a state where the heat medium pipe is not plastically deformed, the rotary tool is moved once, and the abutting portion between one side wall of the lid groove and one side surface of the lid member, and the other side of the lid groove Simultaneously performing frictional stirring on the abutting portion of the side wall of the lid member and the other side surface of the lid member And butterflies.

かかる製造方法によれば、回転ツールのショルダ部の外径を蓋溝の開口部の幅以上に設定することで、一対の突合部に対して回転ツールを一度移動させるだけで摩擦攪拌を行うことができる。これにより、接合工程の作業工程を少なくすることができる。   According to such a manufacturing method, by setting the outer diameter of the shoulder portion of the rotating tool to be equal to or larger than the width of the opening of the lid groove, friction stirring is performed only by moving the rotating tool once with respect to the pair of abutting portions. Can do. Thereby, the work process of a joining process can be decreased.

また、前記凹溝の底部から前記蓋部材の下部までの距離は、前記熱媒体用管の鉛直方向高さよりも大きいことが好ましい。   Moreover, it is preferable that the distance from the bottom part of the said ditch | groove to the lower part of the said cover member is larger than the vertical direction height of the said pipe | tube for heat media.

かかる製造方法によれば、蓋部材と熱媒体用管とが離間しているため、摩擦攪拌の際に熱媒体用管の塑性変形を確実に防止することができる。   According to this manufacturing method, since the lid member and the heat medium pipe are separated from each other, plastic deformation of the heat medium pipe can be reliably prevented during friction stirring.

また、前記蓋部材の下部は、前記熱媒体用管の形状に沿って形成されており、前記熱媒体用管と接していることが好ましい。かかる接合方法によれば、熱媒体用管の周辺に形成される空洞を少なくすることができるため、伝熱板の熱伝導効率を高めることができる。   Moreover, it is preferable that the lower part of the said cover member is formed along the shape of the said heat | fever medium pipe | tube, and is in contact with the said heat | fever medium pipe | tube. According to this joining method, since the cavities formed around the heat medium pipe can be reduced, the heat conduction efficiency of the heat transfer plate can be increased.

また、前記蓋部材挿入工程前に、前記凹溝と、前記熱媒体用管の周囲とで囲まれた空間に熱伝導性物質を充填する充填工程を含むことが好ましい。また、前記熱伝導性物質は、金属粉末、金属粉末ペースト又は金属シートであることが好ましい。また、前記熱伝導性物質は、低融点ろう材であることが好ましい。   Moreover, it is preferable to include the filling process which fills the space enclosed by the said ditch | groove and the circumference | surroundings of the said heat | fever medium pipe | tube before the said cover member insertion process. Moreover, it is preferable that the said heat conductive substance is a metal powder, a metal powder paste, or a metal sheet. The heat conductive material is preferably a low melting point brazing material.

かかる接合方法によれば、熱媒体用管の周辺に形成される空洞の発生を抑制することができるとともに、熱伝導性物質を介して効率よく熱を伝達させることができる。   According to such a joining method, generation of cavities formed around the heat medium pipe can be suppressed, and heat can be efficiently transmitted through the heat conductive substance.

また、前記回転ツールの撹拌ピンの最大径は、前記蓋溝の幅以上であることが好ましい。また、前記回転ツールの撹拌ピンの最小径は、前記蓋溝の幅以上であることが好ましい。   Moreover, it is preferable that the maximum diameter of the stirring pin of the rotating tool is not less than the width of the lid groove. Moreover, it is preferable that the minimum diameter of the stirring pin of the rotating tool is not less than the width of the lid groove.

かかる接合方法によれば、蓋溝の開口部の幅よりも大きくなるように撹拌ピンの大きさを設定することで、一対の突合部に対して回転ツールを一度移動させるだけで確実に摩擦攪拌を行うことができる。   According to such a joining method, by setting the size of the stirring pin to be larger than the width of the opening of the lid groove, it is possible to reliably frictionally stir only by moving the rotary tool once with respect to the pair of abutting portions. It can be performed.

また、前記接合工程では、塑性流動化させる範囲(深さ)に制限はないが、蓋部材とベース部材をより強固に接合するためには、塑性化領域の最深部が、前記蓋部材の上部1/3の深さ位置に達することが好ましい。より好ましくは、塑性化領域の最深部が、前記蓋部材の上部1/2の深さ位置に達することが好ましい。より一層好ましくは、塑性化領域の最深部が、前記蓋部材の上部2/3の深さ位置に達することが好ましい。   In the joining step, there is no limitation on the range (depth) for plastic fluidization, but in order to join the lid member and the base member more firmly, the deepest part of the plasticizing region is the upper part of the lid member. It is preferable to reach a depth position of 1/3. More preferably, it is preferable that the deepest portion of the plasticized region reaches the depth position of the upper half of the lid member. Even more preferably, it is preferable that the deepest part of the plasticized region reaches the depth position of the upper 2/3 of the lid member.

また、前記接合工程後に、前記ベース部材の表面側に、前記蓋溝の幅よりも幅広に形成された上蓋溝の底面に上蓋部材を当接させる上蓋部材挿入工程と、前記上蓋溝の側壁と前記上蓋部材の側面との上側突合部に沿って回転ツールを相対的に移動させて摩擦攪拌を行う上蓋部材接合工程と、を含むことが好ましい。   Further, after the joining step, an upper lid member inserting step of bringing the upper lid member into contact with the bottom surface of the upper lid groove formed wider than the width of the lid groove on the surface side of the base member; and a side wall of the upper lid groove; It is preferable to include an upper lid member joining step in which frictional stirring is performed by relatively moving the rotary tool along the upper abutting portion with the side surface of the upper lid member.

かかる接合方法によれば、蓋部材の上にさらに上蓋部材を配置することにより、熱媒体用管をより深い位置に形成することができる。   According to this joining method, the heat medium pipe can be formed at a deeper position by further disposing the upper cover member on the cover member.

また、本発明は、表面側に開口する蓋溝の底面に形成された凹溝を有するベース部材と、前記凹溝に挿入された熱媒体用管と、前記蓋溝に挿入された蓋部材と、を有し、回転ツールを用いて摩擦攪拌接合されるとともに前記熱媒体用管が塑性変形していない伝熱板であって、前記蓋溝の一方の側壁と前記蓋部材の一方の側面との突合部、及び、前記蓋溝の他方の側壁と前記蓋部材の他方の側面との突合部に対して形成された一条の塑性化領域の幅は、前記蓋溝の幅以上に形成されていることを特徴とする。   Further, the present invention provides a base member having a concave groove formed on the bottom surface of the lid groove that opens to the front surface side, a heat medium pipe inserted into the concave groove, and a lid member inserted into the lid groove. A heat transfer plate that is friction stir welded using a rotary tool and the heat medium tube is not plastically deformed, and one side wall of the lid groove and one side surface of the lid member And the width of the single plasticizing region formed with respect to the abutting portion of the abutting portion and the abutting portion of the other side wall of the lid groove and the other side surface of the lid member is greater than the width of the lid groove. It is characterized by being.

かかる構成によれば、回転ツールのショルダ部の外径を蓋溝の開口部の幅以上に設定することで、一対の突合部に対して回転ツールを一度移動させるだけで摩擦攪拌を行うことができる。これにより、少ない作業工程で伝熱板を製造することができる。   According to such a configuration, by setting the outer diameter of the shoulder portion of the rotating tool to be equal to or larger than the width of the opening portion of the lid groove, it is possible to perform friction stirring only by moving the rotating tool once with respect to the pair of abutting portions. it can. Thereby, a heat exchanger plate can be manufactured with few work processes.

また、前記ベース部材の表面側に、前記蓋溝よりも幅広に形成された上蓋溝を備えた前記ベース部材と、前記上蓋溝に挿入された上蓋部材と、を有し、前記上蓋溝の側壁と前記上蓋部材の側面との上側突合部に沿って摩擦攪拌が施されていることが好ましい。   Further, the base member having the upper lid groove formed wider than the lid groove on the surface side of the base member, and the upper lid member inserted into the upper lid groove, the sidewall of the upper lid groove It is preferable that friction stirring is performed along the upper abutting portion between the upper lid member and the side surface of the upper lid member.

かかる構成によれば、蓋部材の上にさらに上蓋部材を配置することにより、熱媒体用管をより深い位置に形成することができる。   According to such a configuration, the heat medium pipe can be formed at a deeper position by further disposing the upper cover member on the cover member.

本発明に係る伝熱板の製造方法によれば、少ない作業工程で伝熱板を製造することができる。   According to the heat transfer plate manufacturing method of the present invention, the heat transfer plate can be manufactured with a small number of work steps.

[第一実施形態]
本発明の最良の実施形態について、図面を参照して詳細に説明する。図1は、第一実施形態に係る伝熱板を示した斜視図である。図2の(a)は、第一実施形態に係る回転ツールの側面図及び伝熱板の分解側面図であり、(b)は、第一実施形態に係る伝熱板の模式配置図である。
[First embodiment]
The best embodiment of the present invention will be described in detail with reference to the drawings. FIG. 1 is a perspective view showing a heat transfer plate according to the first embodiment. 2A is a side view of the rotary tool according to the first embodiment and an exploded side view of the heat transfer plate, and FIG. 2B is a schematic arrangement view of the heat transfer plate according to the first embodiment. .

第一実施形態に係る伝熱板1は、図1及び図2に示すように、表面3及び裏面4を有する厚板形状のベース部材2と、ベース部材2の表面3に開口した蓋溝6に配置される蓋部材10と、蓋溝6の底面6aに開口する凹溝8に挿入される熱媒体用管16とを主に備え、摩擦攪拌接合により形成された塑性化領域Wによって一体形成されている。ここで、「塑性化領域」とは、回転ツールの摩擦熱によって加熱されて現に塑性化している状態と、回転ツールが通り過ぎて常温に戻った状態の両方を含むこととする。 As shown in FIGS. 1 and 2, the heat transfer plate 1 according to the first embodiment includes a thick plate-shaped base member 2 having a front surface 3 and a back surface 4, and a lid groove 6 opened on the front surface 3 of the base member 2. integral with the lid member 10 disposed, comprising mainly a thermal medium pipe 16 which is inserted into the concave groove 8 open to the bottom face 6a of Futamizo 6, the plasticized region W 1 formed by friction stir welding Is formed. Here, the “plasticization region” includes both a state heated by frictional heat of the rotary tool and actually plasticized, and a state where the rotary tool passes and returns to room temperature.

ベース部材2は、図2に示すように、熱媒体用管16に流れる熱媒体の熱を外部に伝達させる役割、あるいは、外部の熱を熱媒体用管16に流れる熱媒体に伝達させる役割を果たすものである。ベース部材2の表面3には、蓋溝6が凹設されており、蓋溝6の底面6aの中央には、蓋溝6よりも幅狭の凹溝8が凹設されている。蓋溝6は、蓋部材10が配置される部分であって、ベース部材2の長手方向に亘って連続して形成されている。蓋溝6は、断面視矩形を呈し、蓋溝6の底面6aから垂直に立ち上がる側壁5a,5bを備えている。   As shown in FIG. 2, the base member 2 has a role of transmitting heat of the heat medium flowing through the heat medium pipe 16 to the outside, or a role of transferring external heat to the heat medium flowing through the heat medium pipe 16. To fulfill. A lid groove 6 is recessed in the surface 3 of the base member 2, and a recessed groove 8 narrower than the lid groove 6 is recessed in the center of the bottom surface 6 a of the lid groove 6. The lid groove 6 is a portion where the lid member 10 is disposed, and is formed continuously over the longitudinal direction of the base member 2. The lid groove 6 has a rectangular shape in a sectional view, and includes side walls 5 a and 5 b that rise vertically from the bottom surface 6 a of the lid groove 6.

凹溝8は、熱媒体用管16が挿入される部分であって、ベース部材2の長手方向に亘って連続して形成されている。凹溝8は、上方が開口した断面視U字状の溝であって、下端には断面視半円形状を呈する底部7が形成されている。凹溝8の開口部分の幅Aは、熱媒体用管16の外径Bと略同等に形成されており、凹溝8の深さCは、熱媒体用管16の外径Bよりも大きく形成されている。また、蓋溝6の幅Eは、凹溝8の幅Aよりも大きく形成されており、蓋溝6の深さJは、後記する蓋部材10の厚さFと略同等に形成されている。なお、ベース部材2は、例えば、アルミニウム合金(JIS:A6061)で形成されている。 The concave groove 8 is a portion into which the heat medium pipe 16 is inserted, and is formed continuously over the longitudinal direction of the base member 2. The concave groove 8 is a U-shaped groove with an upper opening, and a bottom 7 having a semicircular shape in cross section is formed at the lower end. The width A of the opening portion of the groove 8 is formed substantially equal to the outer diameter B of the heat medium pipe 16, and the depth C of the groove 8 is larger than the outer diameter B of the heat medium pipe 16. Is formed. Further, the width E of the lid groove 6 is formed larger than the width A of the concave groove 8, and the depth J of the lid groove 6 is formed substantially equal to the thickness F of the lid member 10 described later. . The base member 2 is made of, for example, an aluminum alloy (JIS: A6061).

蓋部材10は、図1及び図2に示すように、ベース部材2と同種のアルミニウム合金からなり、ベース部材2の蓋溝6の断面と略同じ矩形断面を形成し、上面11、下面12、側面13a及び側面13bを有する。また、蓋部材10の厚さFは、蓋溝6の深さJと略同等に形成されており、蓋部材10の幅Gは、蓋溝6の幅Eと略同等に形成されている。   As shown in FIGS. 1 and 2, the lid member 10 is made of the same kind of aluminum alloy as the base member 2, and has a rectangular section substantially the same as the section of the lid groove 6 of the base member 2. It has a side surface 13a and a side surface 13b. Further, the thickness F of the lid member 10 is formed substantially equal to the depth J of the lid groove 6, and the width G of the lid member 10 is formed substantially equal to the width E of the lid groove 6.

図2の(b)に示すように、蓋溝6に蓋部材10を挿入すると、蓋部材10の下面12(下部)が、蓋溝6の底面6aに当接する。蓋部材10の側面13a,13bは、蓋溝6の側壁5a,5bと面接触するか又は微細な隙間をあけて対向する。ここで、蓋部材10の一方の側面13aと蓋溝6の一方の側壁5aとの突合せ面を以下、突合部Vとする。また、蓋部材10の他方の側面13bと蓋溝6の他方の側壁5bとの突合せ面を以下、突合部Vとする。また、突合部V及び突合部Vを単に突合部Vともいう。 As shown in FIG. 2B, when the lid member 10 is inserted into the lid groove 6, the lower surface 12 (lower part) of the lid member 10 comes into contact with the bottom surface 6 a of the lid groove 6. The side surfaces 13a and 13b of the lid member 10 are in surface contact with the side walls 5a and 5b of the lid groove 6 or face each other with a fine gap. Here, the abutting faces of the one side wall 5a of the one side surface 13a and Futamizo 6 of the lid member 10 below the butting portion V 1. Further, the abutting faces of the other side wall 5b of the other side surface 13b and Futamizo 6 of the lid member 10 below the butting portion V 2. In addition, the abutting portion V 1 and the abutting portion V 2 are also simply referred to as a butting portion V.

熱媒体用管16は、図2に示すように、断面視円形の中空部18を有する円筒管である。熱媒体用管16の外径Bは、凹溝8の幅Aと略同等に形成されており、図1に示すように、熱媒体用管16の下半部と凹溝8の底部7とが面接触する。   As shown in FIG. 2, the heat medium pipe 16 is a cylindrical pipe having a hollow portion 18 having a circular cross section. The outer diameter B of the heat medium pipe 16 is formed to be approximately equal to the width A of the groove 8, and as shown in FIG. 1, the lower half of the heat medium pipe 16 and the bottom 7 of the groove 8 Makes surface contact.

熱媒体用管16は、中空部18に例えば高温液、高温ガスなどの熱媒体を循環させて、ベース部材2及び蓋部材10に熱を伝達させる部材、あるいは中空部18に例えば冷却水、冷却ガスなどの熱媒体を循環させて、ベース部材2及び蓋部材10から熱を伝達される部材である。また、熱媒体用管16の中空部18に、例えばヒーターを通して、ヒーターから発生する熱をベース部材2及び蓋部材10に伝達させる部材として利用してもよい。   The heat medium pipe 16 is a member that circulates a heat medium such as a high-temperature liquid or a high-temperature gas in the hollow portion 18 to transmit heat to the base member 2 and the lid member 10, or the hollow portion 18 has cooling water, cooling, or the like. It is a member that transfers heat from the base member 2 and the lid member 10 by circulating a heat medium such as gas. Further, for example, a heater may be passed through the hollow portion 18 of the heat medium pipe 16 to transmit heat generated from the heater to the base member 2 and the lid member 10.

なお、第一実施形態においては、熱媒体用管16は、断面視円形としたが、断面視角形であってもよい。また、熱媒体用管16は、第一実施形態においては、銅管を用いたが、他の材料の管を用いてもよい。   In the first embodiment, the heat medium pipe 16 is circular in cross section, but may be square in cross section. Moreover, although the copper pipe was used for the heat medium pipe 16 in the first embodiment, a pipe made of another material may be used.

また、第一実施形態においては、凹溝8の底部7と熱媒体用管16の下半部を面接触させ、かつ、熱媒体用管16の上端と蓋部材10の下面12とを離間させたが、これに限定されるものではない。例えば、凹溝8の深さCと外径Bとを、B≦C<1.2Bの範囲で形成してもよい。また、凹溝8の幅Aと熱媒体用管16の外径Bとを、B≦A<1.1Bの範囲で形成してもよい。   In the first embodiment, the bottom 7 of the groove 8 and the lower half of the heat medium pipe 16 are brought into surface contact, and the upper end of the heat medium pipe 16 and the lower surface 12 of the lid member 10 are separated from each other. However, the present invention is not limited to this. For example, the depth C and the outer diameter B of the concave groove 8 may be formed in a range of B ≦ C <1.2B. Further, the width A of the concave groove 8 and the outer diameter B of the heat medium pipe 16 may be formed in a range of B ≦ A <1.1B.

ここで、図2の(b)に示すように、蓋部材10の下面12は、蓋溝6の底面6aに当接するとともに、凹溝8の深さCは、熱媒体用管16の外径Bよりも大きく形成されている。したがって、ベース部材2の凹溝8に熱媒体用管16を挿入した後に、蓋溝6に蓋部材10を挿入すると、凹溝8と熱媒体用管16の外周と蓋部材10の下面12とで囲まれた空隙部Pが形成される。空隙部Pには、後記する熱伝導性物質が充填される。   Here, as shown in FIG. 2B, the lower surface 12 of the lid member 10 contacts the bottom surface 6 a of the lid groove 6, and the depth C of the concave groove 8 is the outer diameter of the heat medium pipe 16. It is formed larger than B. Accordingly, when the lid member 10 is inserted into the cover groove 6 after the heat medium pipe 16 is inserted into the concave groove 8 of the base member 2, the concave groove 8, the outer periphery of the heat medium pipe 16, the lower surface 12 of the lid member 10, A void P surrounded by is formed. The void portion P is filled with a heat conductive material to be described later.

塑性化領域Wは、図1に示すように、突合部V,Vに摩擦攪拌接合を施した際に、ベース部材2及び蓋部材10の一部が塑性流動して一体化された領域である。本実施形態では、塑性化領域Wの最大幅Wa(表面3における幅)は、蓋溝6の幅E(図2の(a)参照)よりも大きくなるように形成されている。 As shown in FIG. 1, when the friction stir welding is performed on the abutting portions V 1 and V 2 , the plasticizing region W 1 is integrated by a part of the base member 2 and the lid member 10 being plastically flowed. It is an area. In the present embodiment, the maximum width Wa of the plasticized region W 1 (the width at the surface 3) is formed to be larger than the width of Futamizo 6 E (the (a) see FIG. 2).

本実施形態では、塑性化領域Wの最深部が、蓋部材10の略中央に達するように設定したが、塑性化領域Wの大きさは、蓋部材10の大きさや後記する回転ツールの大きさに基づいて適宜設定すればよく、例えば、塑性化領域Wの最深部が、蓋部材10の上側約2/3〜1/3の位置に達するように設定すればよい。 In the present embodiment, the deepest part of the plasticized region W 1 is, has been set to reach the substantially center of the lid member 10, the plasticized region W 1 magnitude, the rotating tool for size and below the lid member 10 may be appropriately set based on the size, for example, the deepest portion of the plasticized region W 1 may be set so as to reach the position above about 2 / 3-1 / 3 of the lid member 10.

次に、伝熱板1の製造方法について、図3を用いて説明する。図3は、第一実施形態に係る伝熱板の製造方法を示した側面図であって、(a)は、熱媒体用管を挿入した熱媒体用管挿入工程を示し、(b)は、蓋部材挿入工程を示し、(c)は、接合工程を示し、(d)は、完成図を示す。   Next, the manufacturing method of the heat exchanger plate 1 is demonstrated using FIG. FIG. 3 is a side view showing a method for manufacturing a heat transfer plate according to the first embodiment, in which (a) shows a heat medium tube insertion step in which a heat medium tube is inserted, and (b) shows The lid member inserting step is shown, (c) shows the joining step, and (d) shows the completed drawing.

第一実施形態に係る伝熱板の製造方法は、ベース部材2を形成する準備工程と、ベース部材2に形成された凹溝8に熱媒体用管16を挿入する熱媒体用管挿入工程と、凹溝8及び熱媒体用管16の上に熱伝導性物質25を充填する充填工程と、蓋溝6に蓋部材10を挿入する蓋部材挿入工程と、突合部Vに沿って接合用回転ツール20を移動させて摩擦攪拌接合を施す接合工程とを含むものである。   The heat transfer plate manufacturing method according to the first embodiment includes a preparation process for forming the base member 2, and a heat medium pipe insertion process for inserting the heat medium pipe 16 into the concave groove 8 formed in the base member 2. , A filling step for filling the groove 8 and the heat medium pipe 16 with the heat conductive material 25, a lid member insertion step for inserting the lid member 10 into the lid groove 6, and rotation for joining along the abutting portion V And a joining step of moving the tool 20 to perform friction stir welding.

まず、接合工程の摩擦攪拌で用いる回転ツールについて図2の(a)を用いて説明する。本実施形態で用いる接合用回転ツール20は、例えば、工具鋼からなり、円柱形のショルダ部22と、その下面24の中心部から同心軸で垂下する撹拌ピン26とを有する。撹拌ピン26は、先端に向けて幅狭となるテーパ状を呈し、長さLで形成されている。なお、撹拌ピン26の周面には、その軸方向に沿って図示しない複数の小溝や径方向に沿ったネジ溝が形成されていてもよい。 First, a rotating tool used for friction stirring in the joining process will be described with reference to FIG. The joining rotary tool 20 used in the present embodiment is made of, for example, tool steel, and includes a cylindrical shoulder portion 22 and a stirring pin 26 that hangs down from the center portion of the lower surface 24 on a concentric axis. Stirring pin 26 exhibits a tapered shape that is narrower toward the distal end is formed with a length L A. A plurality of small grooves (not shown) and screw grooves along the radial direction may be formed on the peripheral surface of the stirring pin 26 along the axial direction.

本実施形態では、ショルダ部22の外径Xは、蓋溝6の幅E以上の大きさに形成されている。これにより、蓋部材10(蓋溝6)に沿って接合用回転ツール20を一回通り移動させることで、突合部V,Vに対して同時に摩擦攪拌を行うことができる。
なお、本実施形態では、接合用回転ツール20を前記したように設定したが、例えば、撹拌ピン26の基端部(最大外径X)を、蓋溝6の幅E以上に設定してもよい。また、例えば、撹拌ピン26の先端部(最小外径X)を、蓋溝6の幅E以上に設定してもよい。このように、幅Eに対して、接合用回転ツール20の大きさを大きく設定することで、突合部V,Vを一回の移動でより確実に摩擦攪拌を行うことができる。
In this embodiment, the outer diameter X 1 of the shoulder portion 22 is formed on the above dimensions the width of Futamizo 6 E. Accordingly, the joining rotation tool 20 along the cover member 10 (Futamizo 6) by moving as one, can be performed simultaneously friction stir against butting portion V 1, V 2.
In the present embodiment, the joining rotary tool 20 is set as described above. For example, the base end portion (maximum outer diameter X 2 ) of the stirring pin 26 is set to be equal to or larger than the width E of the lid groove 6. Also good. Further, for example, the tip end portion (minimum outer diameter X 3 ) of the stirring pin 26 may be set to be equal to or larger than the width E of the lid groove 6. Thus, by setting the size of the joining rotary tool 20 to be larger than the width E, the friction stir can be more reliably performed by moving the abutting portions V 1 and V 2 once.

(準備工程)
まず、図2の(a)を参照するように、例えばフラットエンドミル加工により、厚板部材に蓋溝6を形成する。そして、蓋溝6の底面6aに、例えばボールエンドミル加工により半円形断面を備えた凹溝8を形成する。これにより、蓋溝6と、蓋溝6の底面6aに開口された凹溝8を備えたベース部材2が形成される。凹溝8は、下半部に断面半円形の底部7を備えており、底部7の上端から一定の幅で上方に向けて開口されている。
なお、ベース部材2を本実施形態においては切削加工により形成したが、アルミニウム合金の押出形材を用いてもよい。
(Preparation process)
First, as shown in FIG. 2A, the lid groove 6 is formed in the thick plate member by, for example, flat end milling. Then, a concave groove 8 having a semicircular cross section is formed on the bottom surface 6a of the lid groove 6 by, for example, ball end milling. Thereby, the base member 2 provided with the cover groove 6 and the concave groove 8 opened in the bottom face 6a of the cover groove 6 is formed. The concave groove 8 includes a bottom portion 7 having a semicircular cross section in the lower half portion, and is opened upward with a certain width from the upper end of the bottom portion 7.
Although the base member 2 is formed by cutting in this embodiment, an extruded shape of an aluminum alloy may be used.

(熱媒体用管挿入工程)
次に、図3の(a)に示すように、凹溝8に熱媒体用管16を挿入する。熱媒体用管16の下半部は、凹溝8の下半分を形成する底部7と面接触する。
(Heat medium tube insertion process)
Next, as shown in FIG. 3A, the heat medium pipe 16 is inserted into the groove 8. The lower half of the heat medium pipe 16 is in surface contact with the bottom 7 forming the lower half of the groove 8.

(充填工程)
次に、図3の(a)に示すように、凹溝8と熱媒体用管16によって囲まれた部分に熱伝導性物質25を充填する。充填工程では、熱伝導性物質25の上面と、蓋溝6の底面6aとが面一になるまで充填する。熱伝導性物質25は、空隙部P(図2の(b)参照)に充填されることで、空隙部Pを埋めて伝熱板1の熱伝導効率を高めるとともに、水密性及び気密性を高める役割を果たす。熱伝導性物質25は、本実施形態では、公知の金属粉末の低融点ろう材を用いる。なお、熱伝導性物質25は、伝熱板1の空隙部Pを埋めて、伝熱効率を高める材料であればよく金属粉末ペースト及び金属シートなどであってもよい。
(Filling process)
Next, as shown in FIG. 3A, a portion surrounded by the groove 8 and the heat medium pipe 16 is filled with a heat conductive material 25. In the filling step, filling is performed until the upper surface of the heat conductive material 25 and the bottom surface 6a of the lid groove 6 are flush with each other. The heat conductive material 25 is filled in the gap P (see FIG. 2B), thereby filling the gap P to increase the heat conduction efficiency of the heat transfer plate 1, and also improve water tightness and air tightness. Play a role to enhance. In the present embodiment, a known low melting point brazing material of metal powder is used as the heat conductive material 25. In addition, the heat conductive substance 25 should just be a material which fills the space | gap part P of the heat exchanger plate 1, and improves heat transfer efficiency, and may be a metal powder paste, a metal sheet, etc.

(蓋部材挿入工程)
次に、図3の(b)に示すように、ベース部材2の蓋溝6内に、蓋部材10を挿入する。この際、蓋部材10の下面12が蓋溝6の底面6aに当接すると共に、蓋部材10の上面11が、ベース部材2の表面3と面一なる。また、蓋溝6の側壁5a,5bと蓋部材10の側面13a,13bによって突合部V,Vが形成される。
(Cover member insertion process)
Next, as shown in FIG. 3B, the lid member 10 is inserted into the lid groove 6 of the base member 2. At this time, the lower surface 12 of the lid member 10 contacts the bottom surface 6 a of the lid groove 6, and the upper surface 11 of the lid member 10 is flush with the surface 3 of the base member 2. Further, the abutting portions V 1 and V 2 are formed by the side walls 5 a and 5 b of the lid groove 6 and the side surfaces 13 a and 13 b of the lid member 10.

(接合工程)
次に、図3の(c)に示すように、突合部V(突合部V,V)に対して接合用回転ツール20を用いて摩擦攪拌を行う。即ち、接合用回転ツール20の中心と、蓋溝6の幅方向の中心とを合わせた後、接合用回転ツール20のショルダ部22の下面24をベース部材2の表面3に所定の深さで押し込み、突合部Vに沿って相対移動させる。
(Joining process)
Next, as shown in (c) of FIG. 3, friction agitation is performed on the abutting portion V (the abutting portions V 1 and V 2 ) using the joining rotary tool 20. That is, after aligning the center of the joining rotary tool 20 with the center of the lid groove 6 in the width direction, the lower surface 24 of the shoulder portion 22 of the joining rotary tool 20 is placed on the surface 3 of the base member 2 at a predetermined depth. Push in and move relative to the butt portion V.

本実施形態では、接合用回転ツール20の回転数は、例えば50〜1500rpm、送り速度は、0.05〜2m/分であり、接合用回転ツール20の軸方向に加える押し込み力は、1kN〜20kNである。
図3の(d)に示すように、接合工程によってベース部材2の表面3に塑性化領域Wが形成される。塑性化領域Wの最深部は、本実施形態では、蓋部材10の略中央に達するように撹拌ピン26の長さ及び接合用回転ツール20の押込み量等を設定している。また、突合部V,Vにおける塑性化領域Wの深さWbは、蓋部材10の厚さの1/4程度となるように設定している。突合部V,Vにおける塑性化領域Wの深さWbを大きく設定することにより、ベース部材2と蓋部材10との接合力を高めることができる。
なお、塑性化領域Wの大きさ(深さ)、接合用回転ツール20の形状や回転数又は押込み量等はあくまで例示であって、限定されるものではなく、ベース部材2及び蓋部材10の材料等を加味して適宜設定すればよい。
In the present embodiment, the rotational speed of the joining rotary tool 20 is, for example, 50 to 1500 rpm, the feed rate is 0.05 to 2 m / min, and the pushing force applied in the axial direction of the joining rotary tool 20 is 1 kN to 20 kN.
As shown in FIG. 3 (d), plasticized region W 1 is formed on the surface 3 of the base member 2 by the joining process. The deepest part of the plasticized region W 1 is, in this embodiment, by setting the pushing amount of the length and joining rotation tool 20 of the stirring pin 26 as substantially reach the center of the lid member 10. Further, the depth Wb of the plasticized region W 1 at the abutting portions V 1 and V 2 is set to be about ¼ of the thickness of the lid member 10. By setting the depth Wb of the plasticized region W 1 at the abutting portions V 1 and V 2 to be large, the joining force between the base member 2 and the lid member 10 can be increased.
The size of the plasticized region W 1 (depth), shape and number of revolutions or the pushing amount of the joining rotation tool 20 is merely illustrative and not intended to be limiting, the base member 2 and the lid member 10 These may be set as appropriate in consideration of the above materials.

以上のように本実施形態に係る伝熱板の製造方法によれば、接合用回転ツール20のショルダ部22の外径Xを、蓋溝6の幅Eよりも大きく設定しているため、蓋部材10の幅方向の中央に沿って接合用回転ツール20を一回移動させるだけで、突合部V,Vを同時に摩擦攪拌することができ、ベース部材2と蓋部材10とを摩擦攪拌によって一体化することができる。 According to the method of manufacturing a heat transfer plate according to the present embodiment as described above, the outer diameter X 1 of the shoulder portion 22 of the joining rotation tool 20, since the set larger than the width E of Futamizo 6, The abutting portions V 1 and V 2 can be simultaneously frictionally stirred by moving the joining rotary tool 20 once along the center in the width direction of the lid member 10, and the base member 2 and the lid member 10 are frictionally agitated. It can be integrated by stirring.

また、蓋部材10の下面12が蓋溝6の底面6aに当接して熱媒体用管16と蓋部材10とが離間しているため、蓋部材10の上面11から接合用回転ツール20を押し込んでも熱媒体用管16が潰れることがない。これにより、熱媒体用管16の流路を確実に確保することができる。また、蓋溝6及び蓋部材10の上下方向の高さを大きくすることで、ベース部材2の深い位置に熱媒体用管16を配設することができる。   Further, since the lower surface 12 of the lid member 10 is in contact with the bottom surface 6 a of the lid groove 6 and the heat medium pipe 16 and the lid member 10 are separated from each other, the bonding rotary tool 20 is pushed in from the upper surface 11 of the lid member 10. However, the heat medium pipe 16 is not crushed. Thereby, the flow path of the heat-medium pipe | tube 16 can be ensured reliably. Moreover, the heat medium pipe | tube 16 can be arrange | positioned in the deep position of the base member 2 by enlarging the height of the cover groove | channel 6 and the cover member 10 in the up-down direction.

また、熱媒体用管16の周囲に形成された空隙部P(図2の(b)参照)に熱伝導性物質25を充填させることで、熱媒体からの熱を効率よく伝達することができる。また、伝熱板1の内部に形成される可能性のある空隙部Pを埋めることで、伝熱板1の気密性及び水密性を高めることができる。   Further, by filling the gap P (see FIG. 2B) formed around the heat medium pipe 16 with the heat conductive material 25, heat from the heat medium can be efficiently transmitted. . Moreover, the airtightness of the heat exchanger plate 1 and watertightness can be improved by filling the space | gap part P which may be formed in the inside of the heat exchanger plate 1. FIG.

なお、本実施形態では、熱媒体用管16と蓋部材10とを離間させた状態で接合工程を行ったが、これに限定されるものではなく、熱媒体用管16と蓋部材10とを接触させた状態で接合工程を行ってもよい。この場合は、熱媒体用管16が塑性変形しない程度に接合用回転ツール20の大きさや押込み量を設定すればよい。   In this embodiment, the joining step is performed in a state where the heat medium pipe 16 and the lid member 10 are separated from each other, but the present invention is not limited to this, and the heat medium pipe 16 and the lid member 10 are connected to each other. You may perform a joining process in the state made to contact. In this case, the size and pushing amount of the joining rotary tool 20 may be set so that the heat medium pipe 16 is not plastically deformed.

[第二実施形態]
次に、本発明の第二実施形態に係る伝熱板の製造方法について説明する。
第二実施形態に係る伝熱板の製造方法は、図4に示すように、蓋部材30が断面視略T字状を呈することを特徴とする。なお、第一実施形態と重複する部分については説明を省略する。
[Second Embodiment]
Next, the manufacturing method of the heat exchanger plate which concerns on 2nd embodiment of this invention is demonstrated.
As shown in FIG. 4, the method for manufacturing a heat transfer plate according to the second embodiment is characterized in that the lid member 30 has a substantially T shape in cross section. In addition, description is abbreviate | omitted about the part which overlaps with 1st embodiment.

図4の(a)に示すように、ベース部材32の表面33には、蓋溝36が凹設されており、蓋溝36の底面36aの中央には、蓋溝36よりも幅狭の凹溝38が凹設されている。蓋溝36は、蓋部材30が配置される部分であって、ベース部材32の長手方向に亘って連続して形成されている。蓋溝36は、断面視矩形を呈し、蓋溝36の底面36aから垂直に立ち上がる側壁35a,35bを備えている。蓋溝36の幅eは、後記する蓋部材30の幅gと略同等に形成されており、蓋溝36の深さjは、蓋部材30の深さfと略同等に形成されている。 As shown in FIG. 4A, a lid groove 36 is formed in the surface 33 of the base member 32, and a recess having a narrower width than the lid groove 36 is formed at the center of the bottom surface 36 a of the lid groove 36. A groove 38 is recessed. The lid groove 36 is a portion where the lid member 30 is disposed, and is formed continuously over the longitudinal direction of the base member 32. The lid groove 36 has a rectangular shape in sectional view, and includes side walls 35 a and 35 b that rise vertically from the bottom surface 36 a of the lid groove 36. The width e of the lid groove 36 is formed substantially equal to the width g 1 of the lid member 30 described later, and the depth j of the lid groove 36 is formed substantially equal to the depth f 1 of the lid member 30. Yes.

凹溝38は、熱媒体用管16及び蓋部材30が挿入される部分であって、ベース部材32の長手方向に亘って連続して形成されている。凹溝38は、上方が開口した断面視U字状の溝であって、下端には断面視半円形状を呈する底部37が形成されている。凹溝38の幅Aは、熱媒体用管16の外径Bと略同等に形成されている。   The concave groove 38 is a portion into which the heat medium pipe 16 and the lid member 30 are inserted, and is formed continuously along the longitudinal direction of the base member 32. The concave groove 38 is a U-shaped groove with an upper opening, and a bottom portion 37 having a semicircular shape in cross section is formed at the lower end. The width A of the concave groove 38 is formed substantially equal to the outer diameter B of the heat medium pipe 16.

蓋部材30は、図4の(a)に示すように、ベース部材32の蓋溝36と、凹溝38に挿入される部材であって、幅広に形成された幅広部41と、幅広部41よりも幅狭に形成された幅狭部42とを有する。幅広部41は、上面43、下面44、側面43a,43bを有する。幅広部41の幅gは、蓋溝36の幅eと略同等に形成されており、厚さfは、蓋溝36の深さjと略同等に形成されている。
幅狭部42は、幅広部41の下面44の中央から下方に延設されている。幅狭部42の幅gは、凹溝38の幅Aと略同等に形成されている。
As shown in FIG. 4A, the lid member 30 is a member inserted into the lid groove 36 and the concave groove 38 of the base member 32, and has a wide portion 41 formed wide and a wide portion 41. And a narrow portion 42 formed to be narrower than that. The wide portion 41 has an upper surface 43, a lower surface 44, and side surfaces 43a and 43b. The width g 1 of the wide portion 41 is formed substantially equal to the width e of the lid groove 36, and the thickness f 1 is formed substantially equal to the depth j of the lid groove 36.
The narrow portion 42 extends downward from the center of the lower surface 44 of the wide portion 41. The width g 2 of the narrow portion 42 is formed substantially equal to the width A of the concave groove 38.

図4の(b)に示すように、蓋溝36に蓋部材30を挿入すると、蓋部材30の幅広部41の下面44が、蓋溝36の底面36aに当接する。幅広部41の側面43a,43bは、蓋溝36の側壁35a,35bと面接触するか又は微細な隙間をあけて対向する。ここで、蓋部材30の一方の側面43aと蓋溝36の一方の側壁35aとの突き合せ面を以下、突合部Vとする。また、蓋部材30の他方の側面43bと蓋溝36の他方の側壁35bとの突き合せ面を以下、突合部Vとする。また、突合部V及び突合部Vを単に突合部Vともいう。 As shown in FIG. 4B, when the lid member 30 is inserted into the lid groove 36, the lower surface 44 of the wide portion 41 of the lid member 30 contacts the bottom surface 36 a of the lid groove 36. The side surfaces 43a and 43b of the wide portion 41 are in surface contact with the side walls 35a and 35b of the lid groove 36 or face each other with a fine gap. Here, the butting face between the one side wall 35a of one side 43a and Futamizo 36 of the cover member 30 below the butting portion V 3. Further, the abutment surfaces of the other side wall 35b of the other side surface 43b and Futamizo 36 of the cover member 30 below the butting portion V 4. Further, the abutting portion V 3 and the abutting portion V 4 are also simply referred to as a butting portion V.

また、蓋溝36に蓋部材30を挿入すると、蓋部材30の幅狭部42の両側面は、凹溝38の両側面と面接触するか又は微細な隙間をあけて対向する。幅狭部42の厚さfと熱媒体用管16の外径Bとの和は、凹溝38の深さcよりも小さく形成されている。言い換えると、図2の(b)に示すように、凹溝38の底部37から蓋部材30の幅狭部42の下面(下部)45までの距離は、熱媒体用管16の外径Bよりも大きい。したがって、図4の(b)に示すように、蓋溝36に蓋部材30を挿入すると、熱媒体用管16の上端は、幅狭部42の下面45と所定の間隔をあけて離間する。 Further, when the lid member 30 is inserted into the lid groove 36, both side surfaces of the narrow portion 42 of the lid member 30 are in surface contact with both side surfaces of the concave groove 38 or face each other with a fine gap. The sum of the thickness f 2 of the narrow portion 42 and the outer diameter B of the heat medium pipe 16 is formed to be smaller than the depth c of the concave groove 38. In other words, as shown in FIG. 2B, the distance from the bottom 37 of the concave groove 38 to the lower surface (lower part) 45 of the narrow portion 42 of the lid member 30 is greater than the outer diameter B of the heat medium pipe 16. Is also big. Therefore, as shown in FIG. 4B, when the lid member 30 is inserted into the lid groove 36, the upper end of the heat medium pipe 16 is separated from the lower surface 45 of the narrow portion 42 with a predetermined interval.

これにより、ベース部材32の凹溝38に熱媒体用管16を挿入した後に、蓋溝36に蓋部材30を挿入すると、凹溝38と熱媒体用管16の外周と蓋部材30の下面45で形成された空隙部P1が形成される。空隙部P1には、熱伝導性物質が充填される。   Thus, when the lid member 30 is inserted into the cover groove 36 after the heat medium pipe 16 is inserted into the concave groove 38 of the base member 32, the concave groove 38, the outer periphery of the heat medium pipe 16, and the lower surface 45 of the lid member 30. The gap P1 formed in (1) is formed. The space P1 is filled with a heat conductive material.

次に、第二実施形態に係る伝熱板49の製造方法について、図5を用いて説明する。図5の(a)は、第二実施形態に係る接合工程を示した図であり、(b)は、第二実施形態に係る完成図を示す。   Next, the manufacturing method of the heat exchanger plate 49 which concerns on 2nd embodiment is demonstrated using FIG. (A) of FIG. 5 is the figure which showed the joining process which concerns on 2nd embodiment, (b) shows the completion figure which concerns on 2nd embodiment.

第二実施形態に係る伝熱板の製造方法は、ベース部材32を形成する準備工程と、ベース部材32に形成された凹溝38に熱媒体用管16を挿入する熱媒体用管挿入工程と、凹溝38及び熱媒体用管16の上に熱伝導性物質25を充填する充填工程と、蓋溝36に蓋部材30を挿入する蓋部材挿入工程と、突合部Vに沿って接合用回転ツール20を移動させて摩擦攪拌接合を施す接合工程とを含むものである。
なお、第二実施形態に係る伝熱板の製造方法の準備工程、熱媒体用管挿入工程は、第一実施形態と略同等であるため、説明を省略する。
The heat transfer plate manufacturing method according to the second embodiment includes a preparation step for forming the base member 32, and a heat medium tube insertion step for inserting the heat medium tube 16 into the concave groove 38 formed in the base member 32. , A filling step of filling the heat conductive material 25 on the concave groove 38 and the heat medium pipe 16, a lid member inserting step of inserting the lid member 30 into the lid groove 36, and rotation for joining along the abutting portion V And a joining step of moving the tool 20 to perform friction stir welding.
In addition, since the preparatory process of the manufacturing method of the heat exchanger plate which concerns on 2nd embodiment, and the pipe | tube insertion process for heat medium are substantially equivalent to 1st embodiment, description is abbreviate | omitted.

(充填工程)
図5の(a)を参照するように、凹溝8と熱媒体用管16によって囲まれた部分に熱伝導性物質25を充填する。本実施形態では、熱媒体用管16、凹溝38及び蓋部材30の下面45で囲まれる部分に所定の厚さで熱伝導性物質25を充填する。
(Filling process)
As shown in FIG. 5A, a portion surrounded by the groove 8 and the heat medium pipe 16 is filled with a heat conductive material 25. In the present embodiment, a portion surrounded by the heat medium pipe 16, the concave groove 38, and the lower surface 45 of the lid member 30 is filled with the heat conductive material 25 with a predetermined thickness.

(蓋部材挿入工程)
蓋部材挿入工程では、図4を参照するように、ベース部材32の蓋溝36内に、蓋部材30を挿入する。この際、蓋部材30の幅広部41の下面44が、蓋溝36の底面36aに当接するとともに、幅広部41の上面43がベース部材32の表面3と面一になる。また、幅狭部42の下面45は、熱伝導性物質25に当接する。
(Cover member insertion process)
In the lid member insertion step, as shown in FIG. 4, the lid member 30 is inserted into the lid groove 36 of the base member 32. At this time, the lower surface 44 of the wide portion 41 of the lid member 30 contacts the bottom surface 36 a of the lid groove 36, and the upper surface 43 of the wide portion 41 is flush with the surface 3 of the base member 32. Further, the lower surface 45 of the narrow portion 42 abuts on the heat conductive material 25.

(接合工程)
接合工程では、図5の(a)及び(b)に示すように、突合部V,Vに対して接合用回転ツール20を用いて摩擦攪拌を行う。即ち、接合用回転ツール20の中心と、蓋溝36の中心を合わせた後、接合用回転ツール20のショルダ部22の下面24をベース部材32の表面3に所定の深さで押し込み、突合部Vに沿って相対移動させる。
(Joining process)
In the joining step, as shown in FIGS. 5A and 5B, friction agitation is performed on the abutting portions V 1 and V 2 using the joining rotary tool 20. That is, after the center of the joining rotary tool 20 and the center of the lid groove 36 are aligned, the lower surface 24 of the shoulder portion 22 of the joining rotary tool 20 is pushed into the surface 3 of the base member 32 at a predetermined depth, and the abutting portion Relative movement along V.

以上説明した本実施形態に係る伝熱板の製造方法によれば、接合用回転ツール20のショルダ部22の外径Xを、蓋溝36の幅eよりも大きく設定しているため、蓋部材30の幅方向の中央に沿って接合用回転ツール20を一回移動させるだけで、突合部V,Vを同時に摩擦攪拌することができ、ベース部材32と蓋部材30とを摩擦攪拌によって一体化することができる。即ち、接合工程によって形成される、塑性化領域Wの最大幅は、蓋溝36の幅eよりも大きく形成される。 Above according to the method of manufacturing a heat transfer plate according to the present embodiment described, the outer diameter X 1 of the shoulder portion 22 of the joining rotation tool 20, since the set larger than the width e of Futamizo 36, lid The abutting portions V 3 and V 4 can be simultaneously frictionally stirred by moving the joining rotary tool 20 once along the center in the width direction of the member 30, and the base member 32 and the lid member 30 can be frictionally stirred. Can be integrated. That is, the maximum width of the plasticized region W <b> 2 formed by the joining process is formed larger than the width e of the lid groove 36.

また、蓋部材30の幅広部41の下面44が、蓋溝36の底面36aに当接して幅狭部42の下面45と熱媒体用管16とが離間しているため、蓋部材30の上面43から接合用回転ツール20を押し込んでも熱媒体用管16が潰れることがない。これにより、熱媒体用管16の流路を確実に確保することができる。また、蓋部材30の幅狭部42及び凹溝38の長さ(深さ)を長く設定することで、熱媒体用管16を深い位置に配設することができる。   Further, since the lower surface 44 of the wide portion 41 of the lid member 30 is in contact with the bottom surface 36 a of the lid groove 36 and the lower surface 45 of the narrow portion 42 and the heat medium pipe 16 are separated from each other, the upper surface of the lid member 30. Even if the bonding rotary tool 20 is pushed in from 43, the heat medium pipe 16 is not crushed. Thereby, the flow path of the heat-medium pipe | tube 16 can be ensured reliably. Moreover, the heat medium pipe | tube 16 can be arrange | positioned in a deep position by setting the length (depth) of the narrow part 42 and the ditch | groove 38 of the cover member 30 long.

[第三実施形態]
次に、本発明の第三実施形態に係る伝熱板の製造方法について説明する。
第三実施形態に係る伝熱板の製造方法は、図6の(a)に示すように、蓋部材50の下部が熱媒体用管16の形状に沿って形成されている点で第一実施形態と相違する。なお、第一実施形態と重複する部分については説明を省略する。
[Third embodiment]
Next, the manufacturing method of the heat exchanger plate which concerns on 3rd embodiment of this invention is demonstrated.
The heat transfer plate manufacturing method according to the third embodiment is the first implementation in that the lower part of the lid member 50 is formed along the shape of the heat medium pipe 16 as shown in FIG. It differs from the form. In addition, description is abbreviate | omitted about the part which overlaps with 1st embodiment.

第三実施形態に係る蓋部材50は、図6の(a)に示すように、ベース部材2の蓋溝6と、凹溝8の一部に挿入される部材であって、幅広に形成された幅広部51と、幅広部51よりも幅狭に形成された幅狭部52とを有する。幅広部51は、上面53、下面55、側面54a,54bを有する。幅広部51の幅Gは、蓋溝6の幅Eと略同等に形成されており、厚さFは、蓋溝6の深さJと略同等に形成されている。幅狭部52は、幅広部51の下面55の中央から下方に延設されている。幅狭部52の下部には、熱媒体用管16の外径Bと同じ曲率を備えた曲部56が形成されている。幅狭部52の幅G1は、凹溝8の幅Aと略同等に形成されている。   The lid member 50 according to the third embodiment is a member that is inserted into a part of the lid groove 6 and the concave groove 8 of the base member 2 as shown in FIG. A wide portion 51 and a narrow portion 52 formed narrower than the wide portion 51. The wide portion 51 has an upper surface 53, a lower surface 55, and side surfaces 54a and 54b. The width G of the wide portion 51 is formed substantially equal to the width E of the lid groove 6, and the thickness F is formed substantially equal to the depth J of the lid groove 6. The narrow portion 52 extends downward from the center of the lower surface 55 of the wide portion 51. A bent portion 56 having the same curvature as the outer diameter B of the heat medium pipe 16 is formed in the lower portion of the narrow portion 52. The width G1 of the narrow portion 52 is formed substantially equal to the width A of the recessed groove 8.

図6の(b)に示すように、蓋溝6に蓋部材50を挿入すると、蓋部材50の幅広部51の下面55が蓋溝6の底面6aに当接するとともに、幅狭部52の曲部56が熱媒体用管16と当接する。即ち、図2の(b)に示すように、蓋部材10の下面12が平坦であると、空隙部Pが形成されるが、第三実施形態のように蓋部材10の下端が熱媒体用管16の外径Bに倣って形成されることで、熱媒体用管16の周囲を密閉することができる。   As shown in FIG. 6B, when the lid member 50 is inserted into the lid groove 6, the lower surface 55 of the wide portion 51 of the lid member 50 comes into contact with the bottom surface 6 a of the lid groove 6, and the narrow portion 52 is bent. The part 56 contacts the heat medium pipe 16. That is, as shown in FIG. 2B, when the lower surface 12 of the lid member 10 is flat, a gap portion P is formed, but the lower end of the lid member 10 is for the heat medium as in the third embodiment. By being formed following the outer diameter B of the tube 16, the periphery of the heat medium tube 16 can be sealed.

なお、第三実施形態に係る伝熱板の製造方法は、充填工程を含まないことを除いては、第一実施形態と同一であるため、詳細な説明は省略する。   In addition, since the manufacturing method of the heat exchanger plate which concerns on 3rd embodiment is the same as 1st embodiment except not including a filling process, detailed description is abbreviate | omitted.

第三実施形態に係る伝熱板の製造方法によれば、図7に示すように、蓋部材50の幅広部51の下面55が蓋溝6の底面6aに当接するため、蓋部材50の上面53から接合用回転ツール20を押し込んで摩擦攪拌を行ったとしても熱媒体用管16が潰れることがない。また、蓋部材50の下部が熱媒体用管16の外周の形状に沿って形成されているため、空隙の発生を防止することができる。これにより、伝熱板61の熱伝導効率を高めることができる。   According to the method for manufacturing a heat transfer plate according to the third embodiment, the lower surface 55 of the wide portion 51 of the lid member 50 abuts against the bottom surface 6a of the lid groove 6 as shown in FIG. Even if the rotating tool 20 for welding is pushed in from 53 and frictional stirring is performed, the heat medium pipe 16 is not crushed. Moreover, since the lower part of the cover member 50 is formed along the shape of the outer periphery of the heat medium pipe 16, it is possible to prevent the generation of voids. Thereby, the heat conduction efficiency of the heat transfer plate 61 can be increased.

なお、本実施形態では、幅狭部52の下部の断面形状は熱媒体用管16の外周の形状に倣って円弧に形成されているが、熱媒体用管の断面形状が他の形状である場合には、その形状に倣って幅狭部52の形状を形成すればよい。   In the present embodiment, the cross-sectional shape of the lower portion of the narrow portion 52 is formed in an arc following the shape of the outer periphery of the heat medium pipe 16, but the cross-sectional shape of the heat medium pipe is another shape. In that case, the shape of the narrow portion 52 may be formed following the shape.

[第四実施形態]
次に、第四実施形態に係る伝熱板について説明する。図8は、第四実施形態に係る伝熱板を示した分解側面図である。図9は、第四実施形態に係る伝熱板を示した側面図である。
図8に示す第四実施形態に係る伝熱板81は、第一実施形態に係る伝熱板1(図1参照)と略同等の構造を内包し、蓋部材10の表面側にさらに上蓋部材70を配置して、摩擦攪拌接合を施して接合した点で第一実施形態と相違する。
なお、前記した伝熱板1と同等の構造を以下、下蓋部Mともいう。また、第一実施形態に係る伝熱板1と重複する部材については、同等の符号を付し、重複する説明は省略する。
[Fourth embodiment]
Next, a heat transfer plate according to the fourth embodiment will be described. FIG. 8 is an exploded side view showing a heat transfer plate according to the fourth embodiment. FIG. 9 is a side view showing a heat transfer plate according to the fourth embodiment.
A heat transfer plate 81 according to the fourth embodiment shown in FIG. 8 includes a structure substantially equivalent to that of the heat transfer plate 1 according to the first embodiment (see FIG. 1), and is further provided on the surface side of the lid member 10 with an upper lid member. It differs from 1st embodiment by the point which has arrange | positioned 70 and performed friction stir welding.
In addition, the structure equivalent to the above-described heat transfer plate 1 is also referred to as a lower lid portion M below. Moreover, about the member which overlaps with the heat exchanger plate 1 which concerns on 1st embodiment, an equivalent code | symbol is attached | subjected and the overlapping description is abbreviate | omitted.

伝熱板81は、図8及び図9に示すように、ベース部材62と、凹溝8に挿入された熱媒体用管16と、蓋部材10と、蓋部材10の表面側に配置された上蓋部材70とを有し、塑性化領域W、塑性化領域W,Wで摩擦攪拌接合により一体化されている。 As shown in FIGS. 8 and 9, the heat transfer plate 81 is disposed on the surface side of the base member 62, the heat medium pipe 16 inserted into the concave groove 8, the lid member 10, and the lid member 10. And an upper lid member 70, which are integrated by friction stir welding in the plasticized region W 1 and the plasticized regions W 4 and W 5 .

ベース部材62は、図8及び図9に示すように、例えばアルミニウム合金からなり、ベース部材62の表面63に、長手方向に亘って形成された上蓋溝64と、上蓋溝64の底面66に長手方向に亘って連続して形成された蓋溝6と、蓋溝6の底面に長手方向に亘って形成された凹溝8とを有する。上蓋溝64は、断面視矩形を呈し、底面66から垂直に立ち上がる側壁65a,65bを備えている。上蓋溝64の幅は、蓋溝6の幅よりも大きく形成されている。   As shown in FIGS. 8 and 9, the base member 62 is made of, for example, an aluminum alloy, and has a top cover groove 64 formed in the longitudinal direction on the surface 63 of the base member 62 and a bottom surface 66 of the top cover groove 64. It has the cover groove | channel 6 formed continuously over the direction, and the ditch | groove 8 formed in the bottom face of the cover groove | channel 6 over the longitudinal direction. The upper lid groove 64 has a rectangular shape in cross section, and includes side walls 65 a and 65 b that rise vertically from the bottom surface 66. The width of the upper lid groove 64 is formed larger than the width of the lid groove 6.

図8に示すように、ベース部材62の下部に形成された凹溝8には、熱媒体用管16が挿入されており、蓋部材10によって閉塞され、摩擦攪拌接合により塑性化領域Wで接合されている。即ち、ベース部材62の内部に形成された下蓋部Mは、第一実施形態に係る伝熱板1と略同等に形成されている。 As shown in FIG. 8, the heat medium pipe 16 is inserted into the groove 8 formed in the lower part of the base member 62, is closed by the lid member 10, and is formed in the plasticized region W 1 by friction stir welding. It is joined. That is, the lower lid portion M formed inside the base member 62 is formed substantially equivalent to the heat transfer plate 1 according to the first embodiment.

なお、上蓋溝64の底面66には、摩擦攪拌接合を行ったことにより、段差(溝)やバリが発生している可能性がある。したがって、例えば塑性化領域Wの表面を基準に、上蓋溝64の底面66に面削加工を施して平滑に形成することが好ましい。これにより、上蓋部材70の下面72と、面削後の上蓋溝64の底面66とを隙間なく配置することができる。 Note that a step (groove) or a burr may be generated on the bottom surface 66 of the upper lid groove 64 due to the friction stir welding. Thus, for example, based on the surface of the plasticized region W 1, it is preferable to smooth surface by subjecting the scalped machining the bottom surface 66 of the upper lid groove 64. Thereby, the lower surface 72 of the upper lid member 70 and the bottom surface 66 of the upper lid groove 64 after chamfering can be arranged without a gap.

上蓋部材70は、図8及び図9に示すように、例えば、アルミニウム合金からなり、上蓋溝64の断面と略同じ矩形断面を形成し、下面72から垂直に形成された側面73a及び側面73bとを有する。上蓋部材70は、上蓋溝64に挿入される。即ち、上蓋部材70の側面73a,73bは、上蓋溝64の側壁65a,65bと面接触されるか又は微細な隙間をあけて配置されている。ここで、一方の側面73aと一方の側壁65aとの突合せ面を以下、上側突合部Vとする。また、他方の側面73bと他方の側壁65bとの突合せ面を以下、上側突合部Vとする。上側突合部V,Vは、摩擦攪拌接合により、塑性化領域W,Wで一体化されている。 As shown in FIGS. 8 and 9, the upper lid member 70 is made of, for example, an aluminum alloy, has a rectangular cross section substantially the same as the cross section of the upper lid groove 64, and has side surfaces 73 a and 73 b formed vertically from the lower surface 72. Have The upper lid member 70 is inserted into the upper lid groove 64. That is, the side surfaces 73a and 73b of the upper lid member 70 are in surface contact with the side walls 65a and 65b of the upper lid groove 64 or are arranged with a fine gap. Here, the abutting faces of the one side 73a and one of the side walls 65a below the upper butt portions V 5. Further, the abutting faces of the other side surface 73b and the other side wall 65b below the upper butt portion V 6. The upper abutting portions V 5 and V 6 are integrated in the plasticized regions W 4 and W 5 by friction stir welding.

伝熱板81の製造方法は、伝熱板1と同等の製造方法により、ベース部材62の下部に下蓋部Mを形成した後、上蓋溝64の底面66を面削する面削工程と、上蓋部材70を配置する上蓋部材挿入工程と、上側突合部V,Vに沿って摩擦攪拌接合を施す上蓋部材接合工程を含むものである。 The manufacturing method of the heat transfer plate 81 includes a chamfering step of chamfering the bottom surface 66 of the upper cover groove 64 after forming the lower lid portion M on the lower portion of the base member 62 by a manufacturing method equivalent to the heat transfer plate 1. It includes an upper lid member inserting step for arranging the upper lid member 70 and an upper lid member joining step for performing friction stir welding along the upper abutting portions V 5 and V 6 .

(面削工程)
面削工程では、上蓋溝64の底面66に形成された段差(溝)やバリを切削除去して、底面66を平滑にする。
(Chamfering process)
In the chamfering step, the step (groove) and burrs formed on the bottom surface 66 of the upper lid groove 64 are cut and removed, and the bottom surface 66 is smoothed.

(上蓋部材挿入工程)
上蓋部材挿入工程では、面削工程をした後、上蓋溝64の底面に上蓋部材70を配置する。面削工程を行ったことにより、上蓋部材70の下面72と、上蓋溝64の底面とを隙間なく配置することができる。
(Upper cover member insertion process)
In the upper lid member inserting step, the upper lid member 70 is disposed on the bottom surface of the upper lid groove 64 after the chamfering step. By performing the chamfering step, the lower surface 72 of the upper lid member 70 and the bottom surface of the upper lid groove 64 can be arranged without a gap.

(上蓋部材接合工程)
上蓋部材接合工程は、上側突合部V,Vに沿って接合用回転ツール(図示省略)を移動させて摩擦攪拌接合を施す。上蓋部材接合工程における接合用回転ツールの押し込み量は、当該接合用回転ツールの撹拌ピンの長さ及び上蓋部材70の厚さF’を考慮して適宜設定すればよい。なお、上蓋部材接合工程では、第一実施形態で使用する接合用回転ツール20を用いてもよい。
(Top cover member joining process)
In the upper lid member joining step, the joining rotary tool (not shown) is moved along the upper abutting portions V 5 and V 6 to perform friction stir welding. The pushing amount of the joining rotary tool in the upper lid member joining step may be appropriately set in consideration of the length of the stirring pin of the joining rotary tool and the thickness F ′ of the upper lid member 70. In the upper lid member joining step, the joining rotary tool 20 used in the first embodiment may be used.

実施形態に係る伝熱板81によれば、下蓋部Mの上方にさらに上蓋部材70を配置して、摩擦攪拌接合を施すことにより、より深い位置に熱媒体用管16を配置させることができる。   According to the heat transfer plate 81 according to the embodiment, the heat medium pipe 16 can be disposed at a deeper position by further disposing the upper cover member 70 above the lower cover portion M and performing friction stir welding. it can.

なお、第四実施形態においては、上蓋部材70の両側面を摩擦攪拌して二条の塑性化領域W,Wが形成されるようにしたが、これに限定されるものではない。例えば、上蓋溝64の溝幅を、接合用回転ツール20(図4の(a)参照)のショルダ部22の外径Xよりも小さく形成して、接合用回転ツール20を用いて上蓋部材70を一条の摩擦攪拌で行ってもよい。これにより、接合工程を削減することができる。 In the fourth embodiment, the two sides of the upper lid member 70 are frictionally stirred to form the two plasticized regions W 4 and W 5. However, the present invention is not limited to this. For example, the groove width of the upper lid groove 64, and smaller than the outer diameter X 1 of the shoulder portion 22 of the joining rotation tool 20 (see (a) in FIG. 4), upper lid member by using the joining rotation tool 20 70 may be performed with a single friction stir. Thereby, a joining process can be reduced.

第一実施形態に係る伝熱板を示した斜視図である。It is the perspective view which showed the heat exchanger plate which concerns on 1st embodiment. (a)は、第一実施形態に係る回転ツールの側面図及び伝熱板の分解側面図であり、(b)は、第一実施形態に係る伝熱板の模式配置図である。(A) is a side view of the rotary tool according to the first embodiment and an exploded side view of the heat transfer plate, and (b) is a schematic layout view of the heat transfer plate according to the first embodiment. 第一実施形態に係る伝熱板の製造方法を示した側面図であって、(a)は、熱媒体用管を挿入した熱媒体用管挿入工程を示し、(b)は、蓋部材挿入工程を示し、(c)は、接合工程を示し、(d)は、完成図を示す。It is the side view which showed the manufacturing method of the heat exchanger plate which concerns on 1st embodiment, Comprising: (a) shows the pipe | tube insertion process for heat media which inserted the pipe | tube for heat media, (b) is cover member insertion (C) shows a joining process and (d) shows a completed drawing. (a)は、第二実施形態に係る回転ツールの側面図及び伝熱板の分解側面図であり、(b)は、第二実施形態に係る伝熱板の模式配置図である。(A) is a side view of the rotary tool according to the second embodiment and an exploded side view of the heat transfer plate, and (b) is a schematic layout view of the heat transfer plate according to the second embodiment. 第二実施形態に係る伝熱板の製造方法を示した側面図であって、(a)は、接合工程を示し、(b)は、完成図を示す。It is the side view which showed the manufacturing method of the heat exchanger plate which concerns on 2nd embodiment, Comprising: (a) shows a joining process, (b) shows a completion drawing. (a)は、第三実施形態に係る回転ツールの側面図及び伝熱板の分解側面図であり、(b)は、第三実施形態に係る伝熱板の模式配置図である。(A) is a side view of the rotary tool according to the third embodiment and an exploded side view of the heat transfer plate, and (b) is a schematic layout view of the heat transfer plate according to the third embodiment. 第三実施形態に係る伝熱板を示した側面図である。It is the side view which showed the heat exchanger plate which concerns on 3rd embodiment. 第四実施形態に係る伝熱板の分解側面図である。It is a disassembled side view of the heat exchanger plate which concerns on 4th embodiment. 第四実施形態に係る伝熱板を示した側面図である。It is the side view which showed the heat exchanger plate which concerns on 4th embodiment. 従来の伝熱板を示した図であって、(a)は、斜視図、(b)は側面図である。It is the figure which showed the conventional heat exchanger plate, Comprising: (a) is a perspective view, (b) is a side view.

符号の説明Explanation of symbols

1 伝熱板
2 ベース部材
5a 側壁
5b 側壁
6 蓋溝
6a 底面
8 凹溝
10 蓋部材
13a 側面
13b 側面
16 熱媒体用管
20 接合用回転ツール
V 突合部
W 塑性化領域
DESCRIPTION OF SYMBOLS 1 Heat-transfer plate 2 Base member 5a Side wall 5b Side wall 6 Lid groove 6a Bottom surface 8 Concave groove 10 Lid member 13a Side surface 13b Side surface 16 Heating medium tube 20 Joining rotary tool V Butting part W Plasticization area

Claims (14)

ベース部材の表面側に開口する蓋溝の底面に形成された凹溝に、熱媒体用管を挿入する熱媒体用管挿入工程と、
前記蓋溝に蓋部材を挿入し、前記蓋溝の底面に前記蓋部材を当接させる蓋部材挿入工程と、
前記蓋溝の側壁と前記蓋部材の側面とが対向する突合部に対して回転ツールを相対的に移動させて摩擦攪拌を行う接合工程と、を含み、
前記回転ツールのショルダ部の外径は、前記蓋溝の開口部の幅以上であり、
前記接合工程では、前記熱媒体用管が塑性変形しない状態で、前記回転ツールを一回移動させて、前記蓋溝の一方の側壁と前記蓋部材の一方の側面との突合部、及び、前記蓋溝の他方の側壁と前記蓋部材の他方の側面との突合部に対して同時に摩擦攪拌を行うことを特徴とする伝熱板の製造方法。
A heat medium tube insertion step of inserting the heat medium tube into the concave groove formed in the bottom surface of the lid groove opening on the surface side of the base member;
A lid member inserting step of inserting a lid member into the lid groove and bringing the lid member into contact with the bottom surface of the lid groove;
A joining step of performing frictional stirring by moving the rotary tool relative to the abutting portion where the side wall of the lid groove and the side surface of the lid member face each other,
The outer diameter of the shoulder portion of the rotating tool is not less than the width of the opening of the lid groove,
In the joining step, in a state where the heat medium pipe is not plastically deformed, the rotary tool is moved once, and a butt portion between one side wall of the lid groove and one side surface of the lid member, and A method of manufacturing a heat transfer plate, wherein friction stir is simultaneously performed on an abutting portion between the other side wall of the lid groove and the other side surface of the lid member.
前記凹溝の底部から前記蓋部材の下部までの距離は、前記熱媒体用管の鉛直方向高さよりも大きいことを特徴とする請求項1に記載の伝熱板の製造方法。   The method for manufacturing a heat transfer plate according to claim 1, wherein a distance from a bottom portion of the concave groove to a lower portion of the lid member is larger than a vertical height of the heat medium pipe. 前記蓋部材の下部は、前記熱媒体用管の形状に沿って形成されており、前記熱媒体用管と接していることを特徴とする請求項1又は請求項2に記載の伝熱板の製造方法。   3. The heat transfer plate according to claim 1, wherein a lower portion of the lid member is formed along a shape of the heat medium pipe and is in contact with the heat medium pipe. Production method. 前記蓋部材挿入工程前に、前記凹溝と、前記熱媒体用管の周囲とで囲まれた空間に熱伝導性物質を充填する充填工程を含むことを特徴とする請求項1又は請求項2に記載の伝熱板の製造方法。   3. The filling step of filling a space surrounded by the concave groove and the periphery of the heat medium pipe before the lid member inserting step is filled with a heat conductive material. The manufacturing method of the heat exchanger plate as described in 2. 前記熱伝導性物質は、金属粉末、金属粉末ペースト又は金属シートであることを特徴とする請求項4に記載の伝熱板の製造方法。   The method for manufacturing a heat transfer plate according to claim 4, wherein the heat conductive material is a metal powder, a metal powder paste, or a metal sheet. 前記熱伝導性物質は、低融点ろう材であることを特徴とする請求項4又は請求項5に記載の伝熱板の製造方法。   The said heat conductive substance is a low melting-point brazing material, The manufacturing method of the heat exchanger plate of Claim 4 or Claim 5 characterized by the above-mentioned. 前記回転ツールの撹拌ピンの最大径は、前記蓋溝の幅以上であることを特徴とする請求項1乃至請求項6のいずれか一項に記載の伝熱板の製造方法。   The method for manufacturing a heat transfer plate according to any one of claims 1 to 6, wherein a maximum diameter of the stirring pin of the rotary tool is equal to or greater than a width of the lid groove. 前記回転ツールの撹拌ピンの最小径は、前記蓋溝の幅以上であることを特徴とする請求項1乃至請求項6のいずれか一項に記載の伝熱板の製造方法。   The method for manufacturing a heat transfer plate according to any one of claims 1 to 6, wherein a minimum diameter of the stirring pin of the rotating tool is equal to or greater than a width of the lid groove. 前記接合工程では、摩擦攪拌によって形成される塑性化領域の最深部が、前記蓋部材の上部2/3の深さ位置に達することを特徴とする請求項1乃至請求項8のいずれか一項に記載の伝熱板の製造方法。   The deepest portion of the plasticized region formed by friction stirring in the joining step reaches a depth position of the upper 2/3 of the lid member. The manufacturing method of the heat exchanger plate as described in 2. 前記接合工程では、摩擦攪拌によって形成される塑性化領域の最深部が、前記蓋部材の上部1/2の深さ位置に達することを特徴とする請求項1乃至請求項8のいずれか一項に記載の伝熱板の製造方法。   The deepest portion of the plasticized region formed by friction stirring reaches the depth position of the upper half of the lid member in the joining step. The manufacturing method of the heat exchanger plate as described in 2. 前記接合工程では、摩擦攪拌によって形成される塑性化領域の最深部が、前記蓋部材の上部1/3の深さ位置に達することを特徴とする請求項1乃至請求項8のいずれか一項に記載の伝熱板の製造方法。   The deepest portion of the plasticized region formed by friction stir in the joining step reaches the depth position of the upper third of the lid member. The manufacturing method of the heat exchanger plate as described in 2. 前記接合工程後に、
前記ベース部材の表面側に、前記蓋溝の幅よりも幅広に形成された上蓋溝の底面に上蓋部材を当接させる上蓋部材挿入工程と、
前記上蓋溝の側壁と前記上蓋部材の側面との上側突合部に沿って回転ツールを相対的に移動させて摩擦攪拌を行う上蓋部材接合工程と、を含むことを特徴とする請求項1乃至請求項11のいずれか一項に記載の伝熱板の製造方法。
After the joining step,
An upper lid member inserting step of bringing the upper lid member into contact with the bottom surface of the upper lid groove formed wider than the width of the lid groove on the surface side of the base member;
An upper lid member joining step of performing frictional stirring by relatively moving a rotary tool along an upper abutting portion between a side wall of the upper lid groove and a side surface of the upper lid member. Item 12. The method for manufacturing a heat transfer plate according to any one of Items 11 to 11.
表面側に開口する蓋溝の底面に形成された凹溝を有するベース部材と、
前記凹溝に挿入された熱媒体用管と、
前記蓋溝に挿入された蓋部材と、を有し、回転ツールを用いて摩擦攪拌接合されるとともに前記熱媒体用管が塑性変形していない伝熱板であって、
前記蓋溝の一方の側壁と前記蓋部材の一方の側面との突合部、及び、前記蓋溝の他方の側壁と前記蓋部材の他方の側面との突合部に対して形成された一条の塑性化領域の幅は、前記蓋溝の幅以上に形成されていることを特徴とする伝熱板。
A base member having a concave groove formed on the bottom surface of the lid groove opening on the front surface side;
A heat medium pipe inserted into the concave groove;
A lid member inserted into the lid groove, and a heat transfer plate that is friction stir welded using a rotary tool and the heat medium tube is not plastically deformed,
A line of plastic formed on the abutting portion between one side wall of the lid groove and one side surface of the lid member and the abutting portion between the other side wall of the lid groove and the other side surface of the lid member. The heat transfer plate is characterized in that the width of the control region is greater than the width of the lid groove.
前記ベース部材の表面側に、前記蓋溝よりも幅広に形成された上蓋溝を備えた前記ベース部材と、前記上蓋溝に挿入された上蓋部材と、を有し、
前記上蓋溝の側壁と前記上蓋部材の側面との上側突合部に沿って摩擦攪拌が施されていることを特徴とする請求項13に記載の伝熱板。
On the surface side of the base member, the base member provided with an upper lid groove formed wider than the lid groove, and an upper lid member inserted into the upper lid groove,
The heat transfer plate according to claim 13, wherein friction stirring is performed along an upper abutting portion between a side wall of the upper lid groove and a side surface of the upper lid member.
JP2008131748A 2008-05-20 2008-05-20 Heat transfer plate manufacturing method and heat transfer plate Expired - Fee Related JP5125760B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2008131748A JP5125760B2 (en) 2008-05-20 2008-05-20 Heat transfer plate manufacturing method and heat transfer plate
KR1020107027171A KR101179353B1 (en) 2008-05-20 2009-04-06 Method for producing heat exchanger plate, and heat exchanger plate
PCT/JP2009/057069 WO2009142070A1 (en) 2008-05-20 2009-04-06 Method for producing heat exchanger plate, and heat exchanger plate
CN201210559581.3A CN103042302B (en) 2008-05-20 2009-04-06 Heat transmit plate manufacturing method and heat transmit plate
CN200980118474.3A CN102036779B (en) 2008-05-20 2009-04-06 Method for producing heat exchanger plate, and heat exchanger plate
TW098116520A TWI417500B (en) 2008-05-20 2009-05-19 A method of manufacturing a heat transfer plate and a heat transfer plate
TW102128416A TWI558970B (en) 2008-05-20 2009-05-19 A method of manufacturing a heat transfer plate and a heat transfer plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008131748A JP5125760B2 (en) 2008-05-20 2008-05-20 Heat transfer plate manufacturing method and heat transfer plate

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2012236417A Division JP5440676B2 (en) 2012-10-26 2012-10-26 Heat transfer plate manufacturing method and heat transfer plate

Publications (2)

Publication Number Publication Date
JP2009279594A JP2009279594A (en) 2009-12-03
JP5125760B2 true JP5125760B2 (en) 2013-01-23

Family

ID=41450617

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008131748A Expired - Fee Related JP5125760B2 (en) 2008-05-20 2008-05-20 Heat transfer plate manufacturing method and heat transfer plate

Country Status (1)

Country Link
JP (1) JP5125760B2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5738112U (en) * 1980-08-12 1982-03-01
JP3818084B2 (en) * 2000-12-22 2006-09-06 日立電線株式会社 Cooling plate and manufacturing method thereof, and sputtering target and manufacturing method thereof
JP4385533B2 (en) * 2001-03-02 2009-12-16 日本軽金属株式会社 Manufacturing method of heat plate
JP4325260B2 (en) * 2003-04-15 2009-09-02 日本軽金属株式会社 Manufacturing method of heat transfer element
JP5012339B2 (en) * 2007-09-06 2012-08-29 日本軽金属株式会社 Heat transfer plate manufacturing method and heat transfer plate

Also Published As

Publication number Publication date
JP2009279594A (en) 2009-12-03

Similar Documents

Publication Publication Date Title
JP4962423B2 (en) Manufacturing method of heat transfer plate
JP5440676B2 (en) Heat transfer plate manufacturing method and heat transfer plate
WO2009142070A1 (en) Method for producing heat exchanger plate, and heat exchanger plate
KR101411143B1 (en) Method of producing heat transfer plate and heat transfer plate
JP5262822B2 (en) Manufacturing method of liquid cooling jacket
JP4325260B2 (en) Manufacturing method of heat transfer element
KR20150034223A (en) Method for producing heat exchanger plate and method for friction stir welding
JP5012339B2 (en) Heat transfer plate manufacturing method and heat transfer plate
JP5573973B2 (en) Manufacturing method of liquid cooling jacket
WO2019123678A1 (en) Method for manufacturing liquid cooling jacket
WO2019123679A1 (en) Method for manufacturing liquid cooling jacket
KR101213247B1 (en) Heat exchange plate manufacturing method and heat exchange plate
JP4888422B2 (en) Heat transfer plate manufacturing method and heat transfer plate
JP5071144B2 (en) Manufacturing method of heat transfer plate
JP5125760B2 (en) Heat transfer plate manufacturing method and heat transfer plate
JP2009178762A (en) Method for manufacturing heat transfer plate
JP5071249B2 (en) Heat transfer plate manufacturing method and heat transfer plate
JP6617834B2 (en) Manufacturing method of heat transfer plate
JP6365752B2 (en) Heat transfer plate manufacturing method and heat transfer plate
JP5071274B2 (en) Heat transfer plate manufacturing method and heat transfer plate
JP4998481B2 (en) Manufacturing method of heat transfer element
JP6201882B2 (en) Heat transfer plate manufacturing method and heat transfer plate
JP6577696B2 (en) Manufacturing method of composite plate without internal flow path
WO2021171637A1 (en) Method for manufacturing heat exchanger
JP2021133381A (en) Heat exchanger manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110105

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121002

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121015

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5125760

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151109

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees