JP5071132B2 - Manufacturing method of heat transfer plate - Google Patents

Manufacturing method of heat transfer plate Download PDF

Info

Publication number
JP5071132B2
JP5071132B2 JP2008022228A JP2008022228A JP5071132B2 JP 5071132 B2 JP5071132 B2 JP 5071132B2 JP 2008022228 A JP2008022228 A JP 2008022228A JP 2008022228 A JP2008022228 A JP 2008022228A JP 5071132 B2 JP5071132 B2 JP 5071132B2
Authority
JP
Japan
Prior art keywords
plate
lid
groove
heat transfer
base member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008022228A
Other languages
Japanese (ja)
Other versions
JP2009178762A (en
Inventor
伸城 瀬尾
久司 堀
慎也 牧田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Light Metal Co Ltd
Original Assignee
Nippon Light Metal Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2008022228A priority Critical patent/JP5071132B2/en
Application filed by Nippon Light Metal Co Ltd filed Critical Nippon Light Metal Co Ltd
Priority to EP13185217.0A priority patent/EP2679331B1/en
Priority to KR1020097023670A priority patent/KR101411143B1/en
Priority to EP08722604.9A priority patent/EP2145719B1/en
Priority to US12/595,118 priority patent/US8365408B2/en
Priority to CN2011101601098A priority patent/CN102248276B/en
Priority to PCT/JP2008/055240 priority patent/WO2008132900A1/en
Priority to CN2008800119386A priority patent/CN101657289B/en
Priority to TW097112783A priority patent/TW200843888A/en
Publication of JP2009178762A publication Critical patent/JP2009178762A/en
Application granted granted Critical
Publication of JP5071132B2 publication Critical patent/JP5071132B2/en
Priority to US13/731,229 priority patent/US8782892B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/14Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending longitudinally
    • F28F1/22Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending longitudinally the means having portions engaging further tubular elements

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)

Description

本発明は、例えば熱交換器や加熱機器あるいは冷却機器などに用いられる伝熱板の製造方法に関する。   The present invention relates to a method for manufacturing a heat transfer plate used in, for example, a heat exchanger, a heating device, a cooling device, or the like.

熱交換、加熱あるいは冷却すべき対象物に接触し又は近接して配置される伝熱板は、その本体であるベース部材に例えば高温液や冷却水などの熱媒体を循環させる熱媒体用管を挿通させて形成されている。
かかる伝熱板の製造方法としては、例えば、特許文献1に記載された方法が知られている。図10は、特許文献1に係る伝熱板を示した図であって、(a)は、斜視図、(b)は断面図である。特許文献1に係る伝熱板100は、表面に開口する断面視矩形の蓋溝106と、蓋溝106の底面に開口する凹溝108を有するベース材102と、凹溝108に挿入される熱媒体用管116と、蓋溝106に嵌合される蓋板110と、を備え、蓋溝106における両側壁105,105と蓋板110の両側面113,114とのそれぞれの突合せ面に沿って摩擦撹拌接合を施すことにより、塑性化領域W,Wが形成されている。
A heat transfer plate arranged in contact with or close to an object to be heat exchanged, heated or cooled is provided with a heat medium pipe for circulating a heat medium such as high-temperature liquid or cooling water through a base member as a main body. It is formed by insertion.
As a method for manufacturing such a heat transfer plate, for example, a method described in Patent Document 1 is known. FIG. 10 is a view showing a heat transfer plate according to Patent Document 1, in which (a) is a perspective view and (b) is a cross-sectional view. A heat transfer plate 100 according to Patent Document 1 includes a base groove 102 having a lid groove 106 having a rectangular cross-sectional view opening on the surface, a concave groove 108 opening on the bottom surface of the lid groove 106, and heat inserted into the concave groove 108. A medium pipe 116 and a lid plate 110 fitted in the lid groove 106, and along the abutting surfaces of the side walls 105, 105 and the side surfaces 113, 114 of the lid plate 110 in the lid groove 106. By performing the friction stir welding, the plasticized regions W 0 and W 0 are formed.

特開2004−314115号公報JP 2004-314115 A

図10の(b)に示すように、伝熱板100には、凹溝108と熱媒体用管116の外側面と蓋板110の下面とによって空隙部120が形成されているが、伝熱板100の内部に空隙部120が存在していると、熱媒体用管116から放熱された熱が蓋板110に伝わりにくくなるため、伝熱板100の熱交換効率が低下するという問題があった。   As shown in FIG. 10B, the heat transfer plate 100 has a gap 120 formed by the concave groove 108, the outer surface of the heat medium pipe 116 and the lower surface of the lid plate 110. If the gap portion 120 exists inside the plate 100, the heat radiated from the heat medium pipe 116 becomes difficult to be transmitted to the cover plate 110, and the heat exchange efficiency of the heat transfer plate 100 is reduced. It was.

このような観点から、本発明は、摩擦撹拌接合により製造される伝熱板において、熱交換効率の高い伝熱板の製造方法を提供することを課題とする。   From such a viewpoint, an object of the present invention is to provide a method for manufacturing a heat transfer plate with high heat exchange efficiency in a heat transfer plate manufactured by friction stir welding.

このような課題を解決するための請求項1に係る発明は、ベース部材の表面側に開口する蓋溝の底面に形成された凹溝に、熱媒体用管を挿入する挿入工程と、前記蓋溝に蓋板を配置する蓋溝閉塞工程と、前記蓋板の表面で、前記凹溝に沿って流入撹拌用回転ツールを移動させて前記熱媒体用管の周囲に形成された空隙部に、摩擦熱によって流動化させた塑性流動材を流入させる流入撹拌工程と、を有することを特徴とする伝熱板の製造方法である。   The invention according to claim 1 for solving such a problem includes an insertion step of inserting a heat medium pipe into a concave groove formed in a bottom surface of a lid groove opened on the surface side of the base member, and the lid A lid groove closing step of placing a lid plate in the groove, and a gap formed on the periphery of the heat medium tube by moving the rotating tool for inflow stirring along the concave groove on the surface of the lid plate; And an inflow stirring step for introducing a plastic fluidized material fluidized by frictional heat.

かかる製造方法によれば、空隙部に塑性流動材を流入させることで、空隙部を埋めることができるため、熱媒体用管とその周囲のベース部材および蓋板との間で、熱を効率よく伝達することができる。これにより、熱交換効率の高い伝熱板を製造することができ、例えば、熱媒体用管に冷却水を通して伝熱板および冷却対象物を効率的に冷却できる。   According to such a manufacturing method, since the gap can be filled by flowing the plastic fluid material into the gap, heat can be efficiently transferred between the heat medium pipe and the surrounding base member and the cover plate. Can communicate. Thereby, a heat exchanger plate with high heat exchange efficiency can be manufactured, for example, a heat exchanger plate and a cooling subject can be cooled efficiently through cooling water through a heat medium pipe.

請求項2に係る発明は、前記流入撹拌工程前に、前記蓋溝の側壁と前記蓋板の側面との突合せ部に沿って接合用回転ツールを移動させて前記ベース部材と前記蓋板との摩擦撹拌接合を施す接合工程をさらに有することを特徴とする請求項1に記載の伝熱板の製造方法である。   According to a second aspect of the present invention, before the inflow stirring step, the joining rotary tool is moved along the abutting portion between the side wall of the lid groove and the side surface of the lid plate, and the base member and the lid plate are moved. The method for manufacturing a heat transfer plate according to claim 1, further comprising a joining step of performing friction stir welding.

かかる製造方法によれば、蓋板を確実に固定した状態で流入撹拌工程を行うことができるので、加工環境が良好で精度の高い伝熱板を製造することができる。   According to this manufacturing method, since the inflow stirring step can be performed in a state where the lid plate is securely fixed, a heat transfer plate having a favorable processing environment and high accuracy can be manufactured.

請求項3に係る発明は、前記接合工程において、前記蓋溝の側壁と前記蓋板の側面との突合せ部に沿って間欠的に摩擦撹拌接合を行う前記蓋板の仮付けを施すことを特徴とする請求項2に記載の伝熱板の製造方法である。   The invention according to claim 3 is characterized in that, in the joining step, the lid plate that performs friction stir welding intermittently along the abutting portion between the side wall of the lid groove and the side surface of the lid plate is temporarily attached. It is a manufacturing method of the heat exchanger plate of Claim 2.

かかる製造方法によれば、接合工程に要する手間と時間を低減しつつ、蓋板を確実に固定した状態で流入撹拌工程を行うことができ、加工環境が良好で精度の高い伝熱板を製造することができる。   According to such a manufacturing method, the inflow stirring process can be performed while the lid plate is securely fixed while reducing the labor and time required for the joining process, and a heat transfer plate with a favorable processing environment and high accuracy is manufactured. can do.

請求項4に係る発明は、前記流入撹拌用回転ツールが、前記接合用回転ツールよりも大型のものが使用されることを特徴とする請求項2乃至請求項3のいずれか1項に記載の伝熱板の製造方法である。   The invention according to claim 4 is characterized in that the inflow stirring rotary tool is larger than the joining rotary tool. It is a manufacturing method of a heat exchanger plate.

かかる製造方法によれば、流入撹拌用回転ツールで蓋板の底面よりも深い部分まで塑性流動化することができるとともに、接合工程での摩擦撹拌接合における塑性化領域は小さくて済むので、施工が容易になる。   According to such a manufacturing method, it is possible to plastically fluidize to a portion deeper than the bottom surface of the lid plate with the inflow agitation rotating tool, and the plasticization region in the friction agitation welding in the joining process can be small. It becomes easy.

請求項5に係る発明は、前記流入撹拌工程において、前記流入撹拌用回転ツールの先端を、前記蓋溝の底面よりも深く挿入することを特徴とする請求項1乃至請求項4のいずれか1項に記載の伝熱板の製造方法である。   The invention according to claim 5 is characterized in that, in the inflow stirring step, the tip of the inflow stirring rotating tool is inserted deeper than the bottom surface of the lid groove. It is a manufacturing method of the heat exchanger plate as described in a term.

かかる製造方法によれば、確実に流入撹拌用回転ツールで蓋板の底面よりも深い部分まで塑性流動化することができる。   According to this manufacturing method, plastic fluidization can be reliably performed to a deeper portion than the bottom surface of the cover plate with the inflow stirring rotary tool.

請求項6に係る発明は、前記流入撹拌工程において、前記接合工程にて生成した塑性化領域を、前記流入撹拌用回転ツールによって再撹拌することを特徴とする請求項2乃至請求項5のいずれか1項に記載の伝熱板の製造方法である。   The invention according to claim 6 is characterized in that, in the inflow stirring step, the plasticized region generated in the joining step is re-stirred by the rotating tool for inflow stirring. It is a manufacturing method of the heat exchanger plate of Claim 1.

かかる製造方法によれば、蓋板を確実に固定した状態で流入撹拌工程を行うことができるとともに、伝熱板の表面に露出される塑性化領域を流入撹拌用回転ツールによるものだけとすることができる。   According to such a manufacturing method, the inflow stirring process can be performed with the lid plate fixed securely, and the plasticized region exposed to the surface of the heat transfer plate is only by the rotating tool for inflow stirring. Can do.

請求項7に係る発明は、前記流入撹拌接合工程後に、前記ベース部材の前記蓋溝よりも表面側に、前記蓋溝よりも幅広に形成された上蓋溝に前記蓋板を覆う上蓋板を配置する上蓋溝閉塞工程と、前記上蓋溝の側壁と前記上蓋板の側面との上側突合せ部に沿って接合用回転ツールを移動させて前記ベース部材と前記上蓋板との摩擦攪拌接合を施す上蓋接合工程と、をさらに有することを特徴とする請求項1乃至請求項6のいずれか1項に記載の伝熱板の製造方法である。   In the invention according to claim 7, after the inflow stirring joining step, an upper lid plate that covers the lid plate in an upper lid groove formed wider than the lid groove on the surface side of the lid groove of the base member. An upper lid groove closing step to be arranged, and a friction rotating stir welding between the base member and the upper lid plate by moving the joining rotary tool along the upper abutting portion between the side wall of the upper lid groove and the side surface of the upper lid plate The method for manufacturing a heat transfer plate according to any one of claims 1 to 6, further comprising an upper lid joining step.

かかる製造方法によれば、伝熱板の表面側において、蓋板よりも幅広の上蓋板を用いてさらに摩擦攪拌接合を施すため、伝熱板のより深い位置に熱媒体用管を配置させることができる。   According to this manufacturing method, on the surface side of the heat transfer plate, since the friction stir welding is further performed using the upper cover plate wider than the cover plate, the heat medium pipe is disposed at a deeper position of the heat transfer plate. be able to.

本発明に係る伝熱板の製造方法によれば、熱交換効率の高い伝熱板を提供することができるといった優れた効果を発揮する。   The method for producing a heat transfer plate according to the present invention exhibits an excellent effect that a heat transfer plate with high heat exchange efficiency can be provided.

[第一実施形態]
本発明の最良の実施形態について、図面を参照して詳細に説明する。図1は、実施形態に係る伝熱板を示した斜視図である。図2は、実施形態に係る伝熱板を示した分解断面図である。図3は、実施形態に係る伝熱板を示した断面図である。
[First embodiment]
The best embodiment of the present invention will be described in detail with reference to the drawings. FIG. 1 is a perspective view showing a heat transfer plate according to the embodiment. FIG. 2 is an exploded cross-sectional view illustrating the heat transfer plate according to the embodiment. FIG. 3 is a cross-sectional view showing the heat transfer plate according to the embodiment.

第一実施形態に係る伝熱板1は、図1乃至図3に示すように、表面3および裏面4を有する厚板形状のベース部材2と、ベース部材2の表面3に開口した蓋溝6に配置される蓋板10と、蓋溝6の底面に開口する凹溝8に挿入される熱媒体用管16とを主に備えている。ベース部材2と蓋板10は、摩擦撹拌接合により形成された塑性化領域W,Wによって一体形成されている。ここで、「塑性化領域」とは、回転ツールの摩擦熱によって加熱されて現に塑性化している状態と、回転ツールが通り過ぎて常温に戻った状態の両方を含むこととする。塑性化領域W,Wは、蓋溝6の側壁5a,5bと蓋板10の側面13a,13bとの突合せ部Vに沿って構成されており、接合用回転ツール20(図4参照)を突合せ部Vに沿って移動させることで生成されている。一方、蓋板10には、前記の塑性化領域W,Wよりも深く、ベース部材2まで達する第2の塑性化領域W,Wが生成されている。この塑性化領域W,Wは、蓋板10の表面で、下方の凹溝8に沿って流入撹拌用回転ツール25(図4参照)を移動させることで生成されており、熱媒体用管16の周囲に形成された空隙部Pまで流入して生成されている。 As shown in FIGS. 1 to 3, the heat transfer plate 1 according to the first embodiment includes a thick plate-shaped base member 2 having a front surface 3 and a back surface 4, and a lid groove 6 opened on the front surface 3 of the base member 2. And a heat medium pipe 16 to be inserted into the concave groove 8 opened in the bottom surface of the lid groove 6. The base member 2 and the cover plate 10 are integrally formed by plasticizing regions W 1 and W 2 formed by friction stir welding. Here, the “plasticization region” includes both a state heated by frictional heat of the rotary tool and actually plasticized, and a state where the rotary tool passes and returns to room temperature. The plasticized regions W 1 and W 2 are configured along the abutting portion V between the side walls 5a and 5b of the lid groove 6 and the side surfaces 13a and 13b of the lid plate 10, and the joining rotary tool 20 (see FIG. 4). Is moved along the butting portion V. On the other hand, the cover plate 10, deeper than the plasticized region W 1, W 2 of the second plasticized region W 3, W 4 reaching the base member 2 is generated. The plasticized regions W 3 and W 4 are generated on the surface of the cover plate 10 by moving the inflow stirring rotary tool 25 (see FIG. 4) along the lower concave groove 8, and are used for the heat medium. It is generated by flowing into the gap P formed around the pipe 16.

ベース部材2は、例えば、アルミニウム合金(JIS:A6061)で形成されている。ベース部材2は、熱媒体用管16に流れる熱媒体の熱を外部に伝達させる役割、あるいは、外部の熱を熱媒体用管16に流れる熱媒体に伝達させる役割を果たすものであって、図2に示すように、熱媒体用管16を内部に収容する。ベース部材2の表面3には、蓋溝6が凹設されており、蓋溝6の底面の中央には、蓋溝6よりも幅狭の凹溝8が凹設されている。蓋溝6は、熱媒体用管16を覆う蓋板10が配置される部分であって、ベース部材2の長手方向に亘って連続して形成されている。蓋溝6は、断面視矩形を呈しており、蓋溝6の底面5cから垂直に立ち上がる側壁5a,5bを備えている。凹溝8は、熱媒体用管16が挿入される部分であって、ベース部材2の長手方向に亘って連続して形成されている。凹溝8は、上方が開口した断面視U字状の溝であって、下端には熱媒体用管16の外周と同等の曲率半径を有する半円形の曲面7が形成されている。凹溝8の開口部分は、熱媒体用管16の外周直径と略同等の幅で形成されている。   The base member 2 is made of, for example, an aluminum alloy (JIS: A6061). The base member 2 serves to transmit the heat of the heat medium flowing through the heat medium pipe 16 to the outside, or plays a role of transferring external heat to the heat medium flowing through the heat medium pipe 16. As shown in FIG. 2, the heat medium pipe 16 is accommodated therein. A cover groove 6 is formed in the surface 3 of the base member 2, and a groove 8 narrower than the cover groove 6 is formed in the center of the bottom surface of the cover groove 6. The lid groove 6 is a portion where the lid plate 10 covering the heat medium pipe 16 is disposed, and is continuously formed over the longitudinal direction of the base member 2. The lid groove 6 has a rectangular shape in a sectional view, and includes side walls 5 a and 5 b that rise vertically from the bottom surface 5 c of the lid groove 6. The concave groove 8 is a portion into which the heat medium pipe 16 is inserted, and is formed continuously over the longitudinal direction of the base member 2. The concave groove 8 is a U-shaped groove with an upper opening, and a semicircular curved surface 7 having a radius of curvature equivalent to the outer periphery of the heat medium pipe 16 is formed at the lower end. The opening of the groove 8 is formed with a width substantially equal to the outer diameter of the heat medium pipe 16.

蓋板10は、図2および図3に示すように、ベース部材2と同様のアルミニウム合金からなり、ベース部材2の蓋溝6の断面と略同じ矩形断面を形成する上面(表面)11、下面12、側面13aおよび側面13bを有する。蓋板10は、図3に示すように、蓋溝6に挿入されて配置されている。蓋板10の側面13a,13bは、蓋溝6の側壁5a,5bと面接触するか又は微細な隙間をあけて対向する。ここで、図3に示すように、側面13aと側壁5aとの突合せ面を以下、突合せ部Vとし、側面13bと側壁5bとの突合せ面を以下、突合せ部Vとする。 As shown in FIGS. 2 and 3, the cover plate 10 is made of an aluminum alloy similar to the base member 2, and has an upper surface (surface) 11 and a lower surface that form a rectangular cross section substantially the same as the cross section of the cover groove 6 of the base member 2. 12, side surface 13a and side surface 13b. As shown in FIG. 3, the lid plate 10 is inserted and disposed in the lid groove 6. The side surfaces 13a and 13b of the lid plate 10 are in surface contact with the side walls 5a and 5b of the lid groove 6 or face each other with a fine gap. Here, as shown in FIG. 3, below the abutting faces of the side surface 13a and the side walls 5a, and butt portion V 1, following the abutting faces of the side face 13b and the sidewall 5b, the butt portion V 2.

熱媒体用管16は、例えば、銅管にて構成されており、図2に示すように、断面視円形の中空部18を有する円筒管である。熱媒体用管16の外径は、凹溝8の幅と略同等に形成されており、図3に示すように、熱媒体用管16の下半部と凹溝8の曲面7とが面接触する。熱媒体用管16の上端は、蓋板10の下面12と接触部16aで線接触する。熱媒体用管16は、中空部18に、例えば高温液、高温ガスなどの熱媒体を循環させて、ベース部材2および蓋板10に熱を伝達させる部材、あるいは中空部18に、例えば冷却水、冷却ガスなどの熱媒体を循環させて、ベース部材2および蓋板10から熱を伝達される部材である。また、熱媒体用管16の中空部18に、例えばヒーターを通して、ヒーターから発生する熱をベース部材2および蓋板10に伝達させる部材として利用してもよい。   The heat medium pipe 16 is formed of, for example, a copper pipe, and is a cylindrical pipe having a hollow portion 18 having a circular cross section as shown in FIG. The outer diameter of the heat medium pipe 16 is formed to be approximately equal to the width of the groove 8, and the lower half of the heat medium pipe 16 and the curved surface 7 of the groove 8 are surfaces as shown in FIG. 3. Contact. The upper end of the heat medium pipe 16 is in line contact with the lower surface 12 of the cover plate 10 at the contact portion 16a. The heat medium pipe 16 is a member that circulates a heat medium such as a high-temperature liquid or a high-temperature gas in the hollow portion 18 to transmit heat to the base member 2 and the cover plate 10, or a cooling water in the hollow portion 18, for example. A member that circulates a heat medium such as a cooling gas to transmit heat from the base member 2 and the cover plate 10. Moreover, you may utilize as a member which transmits the heat which generate | occur | produces from a heater to the base member 2 and the cover board 10, for example through a hollow part 18 of the pipe | tube 16 for heat-medium.

なお、第一実施形態においては、凹溝8と熱媒体用管16の下半部を面接触させ、かつ、熱媒体用管16の上端と蓋板10の下面12とを線接触させたが、これに限定されるものではない。例えば、凹溝8の深さを、熱媒体用管16の外径と同等か、あるいはその1.2倍までの範囲となるようにしてもよい。また、凹溝8の幅を、熱媒体用管16の外径と同等か、あるいはその1.1倍までの範囲となるようにしてもよい。   In the first embodiment, the concave groove 8 and the lower half of the heat medium pipe 16 are brought into surface contact, and the upper end of the heat medium pipe 16 and the lower surface 12 of the cover plate 10 are brought into line contact. However, the present invention is not limited to this. For example, the depth of the concave groove 8 may be the same as the outer diameter of the heat medium pipe 16 or a range up to 1.2 times the outer diameter. Further, the width of the groove 8 may be the same as the outer diameter of the heat medium pipe 16 or a range up to 1.1 times the outer diameter.

熱媒体用管16の周囲に形成される空隙部Pは、図2に示すように、熱媒体用管16と凹溝8と蓋板10の下面12とにより囲まれた空間である。第一実施形態においては、熱媒体用管16の上端と蓋板10の下面12とが、接触部16aで接触しているので、接触部16aを境界として、二つの空隙部P,Pが形成されている。なお、空隙部Pは、凹溝8、熱媒体用管16の形状等に基づいて適宜決定されるものであり、前記した形態に限定されるものではない。 The space P formed around the heat medium pipe 16 is a space surrounded by the heat medium pipe 16, the groove 8, and the lower surface 12 of the lid plate 10, as shown in FIG. 2. In the first embodiment, since the upper end of the heat medium pipe 16 and the lower surface 12 of the cover plate 10 are in contact with each other at the contact portion 16a, the two gap portions P 1 and P 2 with the contact portion 16a as a boundary. Is formed. In addition, the space | gap part P is suitably determined based on the shape of the ditch | groove 8, the heat medium pipe | tube 16, etc., and is not limited to an above described form.

塑性化領域W,Wは、図1および図3に示すように、突合せ部V,Vに摩擦攪拌接合を施した際に、ベース部材2および蓋板10の一部が塑性流動して一体化された領域である。なお、塑性化領域とは、回転ツールの摩擦熱によって加熱されて現に塑性化している状態と、回転ツールが通り過ぎて常温に戻った状態の両方を含むこととする。塑性化領域W,Wは、図3においては、ハッチング部分で示す。即ち、突合せ部V,Vに沿って、後記する接合用回転ツール20を用いて摩擦攪拌接合を施すと、突合せ部V,Vの周辺にかかるベース部材2および蓋板10の金属材料が、接合用回転ツール20の摩擦熱により流動化して一体化されることで、ベース部材2と蓋板10が接合される。 As shown in FIGS. 1 and 3, the plasticized regions W 1 and W 2 are such that when the abutting portions V 1 and V 2 are subjected to friction stir welding, part of the base member 2 and the cover plate 10 is plastically flowed. It is an integrated area. Note that the plasticizing region includes both a state in which the rotating tool is heated by frictional heat and is actually plasticized, and a state in which the rotating tool passes and returns to room temperature. The plasticized regions W 1 and W 2 are indicated by hatched portions in FIG. That is, along the butt portion V 1, V 2, when subjected to friction stir welding using the joining rotation tool 20 to be described later, the base member 2 and the lid plate 10 according to the periphery of the butted portion V 1, V 2 metal The base member 2 and the cover plate 10 are joined by the material being fluidized and integrated by frictional heat of the joining rotary tool 20.

塑性化領域W,Wは、図1および図3に示すように、蓋板10の上面(表面)11で、下方の凹溝8に沿って流入撹拌用回転ツール25(図4参照)を移動させることで生成されている。なお、塑性化領域とは、回転ツールの摩擦熱によって加熱されて現に塑性化している状態と、回転ツールが通り過ぎて常温に戻った状態の両方を含むこととする。塑性化領域W,Wは、流入撹拌用回転ツール25の回転による摩擦熱によって流動化させた塑性流動材Q(塑性化領域W,Wの一部)を熱媒体用管16の周囲に形成された空隙部Pに流入させる際に生成される部分である。すなわち、塑性化領域W,Wは、ベース部材2および蓋板10の一部が塑性流動して、空隙部Pに流入して一体化する領域であって、熱媒体用管16と接触する。塑性化領域W,Wは、図3においては、ハッチング部分で示す。 As shown in FIGS. 1 and 3 , the plasticizing regions W 3 and W 4 are the upper surface (surface) 11 of the lid plate 10 and the inflow stirring stirring rotary tool 25 along the lower groove 8 (see FIG. 4). It is generated by moving. Note that the plasticizing region includes both a state in which the rotating tool is heated by frictional heat and is actually plasticized, and a state in which the rotating tool passes and returns to room temperature. The plasticizing regions W 3 and W 4 are made of plastic fluid material Q (a part of the plasticizing regions W 3 and W 4 ) fluidized by frictional heat generated by the rotation of the inflow stirring rotary tool 25 of the heat medium pipe 16. It is a part generated when flowing into the void P formed in the periphery. That is, the plasticized regions W 3 and W 4 are regions in which a part of the base member 2 and the cover plate 10 are plastically flowed and flow into the gap portion P to be integrated, and are in contact with the heat medium pipe 16. To do. The plasticized regions W 3 and W 4 are indicated by hatched portions in FIG.

摩擦攪拌接合を行う際には、空隙部Pの形状や大きさ等に基づいて、流入撹拌用回転ツール25の押込み量および挿入位置等を設定することにより、空隙部Pに塑性流動材Qを好適に流入させることができる。つまり、熱媒体用管16がつぶれない程度に、回転ツールを近づけて、空隙部Pに塑性流動材Qを隙間なく流入させることが好ましい。   When performing friction stir welding, by setting the pushing amount and insertion position of the inflow stirring rotary tool 25 based on the shape and size of the gap P, the plastic fluid material Q is placed in the gap P. It can flow in suitably. That is, it is preferable to bring the plastic fluid material Q into the gap P without gaps by bringing the rotary tool closer to the extent that the heat medium pipe 16 does not collapse.

以上のような伝熱板1によれば、ベース部材2と蓋板10とが、塑性化領域W,Wにおいて、両者の金属材料が摩擦撹拌接合により塑性流動化されて一体化するとともに、塑性化領域W,Wにおいて、流動化された塑性流動材Qが空隙部Pに流入されている。これにより、ベース部材2と蓋板10とを接合するとともに、空隙部Pを埋めることができる。また、摩擦撹拌接合の際に、熱媒体用管16は、塑性流動材Qを介して、流入撹拌用回転ツール25のツール本体26の底面27(ショルダ)によって加圧されるので、凹溝8の曲面7と面接触させることができる。これにより、例えば、熱媒体用管16中を循環する熱媒体からの熱を、効率よく伝達することができる。 According to the heat transfer plate 1 as described above, the base member 2 and the cover plate 10 are integrated in a plasticized region W 1 , W 2 by both metal materials being plastically fluidized by friction stir welding. In the plasticized regions W 3 and W 4 , the fluidized plastic fluid material Q flows into the gap P. Thereby, while joining the base member 2 and the cover board 10, the space | gap part P can be filled up. Further, at the time of friction stir welding, the heat medium pipe 16 is pressurized by the bottom surface 27 (shoulder) of the tool body 26 of the inflow stirring rotary tool 25 through the plastic fluid material Q, so that the groove 8 The curved surface 7 can be brought into surface contact. Thereby, for example, heat from the heat medium circulating in the heat medium pipe 16 can be efficiently transmitted.

次に、伝熱板1の製造方法について、図4を用いて説明する。図4は、第一実施形態に係る伝熱板の製造方法を示した断面図であって、(a)は、エンドミル工程および切削工程を示した図であり、(b)は、パイプを挿入した挿入工程を示した図であり、(c)は、蓋溝閉塞工程を示した図であり、(d)は、接合工程を示した図であり、(e)は、流入撹拌工程を示した図であり、(f)は、完成図である。図5は、第一実施形態に係る伝熱板を用いた伝熱ユニットを示した平面図である。   Next, the manufacturing method of the heat exchanger plate 1 is demonstrated using FIG. FIG. 4 is a cross-sectional view showing a method of manufacturing a heat transfer plate according to the first embodiment, wherein (a) is a view showing an end mill process and a cutting process, and (b) is a pipe insertion process. (C) is a view showing a lid groove closing step, (d) is a view showing a joining step, and (e) is an inflow stirring step. (F) is a completed drawing. FIG. 5 is a plan view showing a heat transfer unit using the heat transfer plate according to the first embodiment.

第一実施形態に係る伝熱板の製造方法は、ベース部材2を形成するエンドミル工程および切削工程と、ベース部材2に形成された凹溝8に熱媒体用管16を挿入する挿入工程と、蓋溝6に蓋板10を配置する蓋溝閉塞工程と、突合せ部V,Vに沿って接合用回転ツール20を移動させて摩擦撹拌接合を施す接合工程と、蓋板10の表面で、凹溝8に沿って流入撹拌用回転ツールを移動させて熱媒体用管16の周囲に形成された空隙部Pに、摩擦熱によって流動化させた塑性流動材Qを流入させる流入撹拌工程と、を含むものである。 The heat transfer plate manufacturing method according to the first embodiment includes an end mill process and a cutting process for forming the base member 2, an insertion process for inserting the heat medium pipe 16 into the concave groove 8 formed in the base member 2, and On the surface of the lid plate 10, a lid groove closing step for placing the lid plate 10 in the lid groove 6, a joining step for moving the joining rotary tool 20 along the abutting portions V 1 and V 2 to perform friction stir welding, and a surface of the lid plate 10. An inflow agitation step in which the plastic fluid material Q fluidized by frictional heat is caused to flow into the gap P formed around the heat medium pipe 16 by moving the inflow agitation rotating tool along the concave groove 8; , Including.

(エンドミル工程および切削工程)
まず、図4の(a)に示すように、公知のエンドミル加工により、厚板部材に蓋溝6を形成する。そして、蓋溝6の底面に、切削加工等により半円形断面を備えた凹溝8を形成する。これにより、蓋溝6と、蓋溝6の底面に開口された凹溝8を備えたベース部材2が形成される。凹溝8は、下半部に断面半円形の曲面7を備えており、曲面7の上端から一定の幅で上方に向けて開口されている。なお、第一実施形態においては、ベース部材2をエンドミル加工および切削加工により形成したが、アルミニウム合金製の押出形材や鋳造品を用いてもよい。
(End mill process and cutting process)
First, as shown in FIG. 4A, the lid groove 6 is formed in the thick plate member by a known end mill process. Then, a concave groove 8 having a semicircular cross section is formed on the bottom surface of the lid groove 6 by cutting or the like. Thereby, the base member 2 provided with the cover groove 6 and the concave groove 8 opened in the bottom face of the cover groove 6 is formed. The concave groove 8 is provided with a curved surface 7 having a semicircular cross section in the lower half, and is opened upward with a certain width from the upper end of the curved surface 7. In the first embodiment, the base member 2 is formed by end milling and cutting, but an extruded shape or cast product made of aluminum alloy may be used.

(挿入工程)
次に、図4の(b)に示すように、凹溝8に熱媒体用管16を挿入する。このとき、熱媒体用管16の下半部は、凹溝8の下半分を形成する曲面7と面接触する。
(Insertion process)
Next, as shown in FIG. 4B, the heat medium pipe 16 is inserted into the groove 8. At this time, the lower half of the heat medium pipe 16 is in surface contact with the curved surface 7 forming the lower half of the groove 8.

(蓋溝閉塞工程)
次に、図4の(c)に示すように、ベース部材2の蓋溝6内に、アルミニウム合金からなる蓋板10を配置する。このとき、蓋板10の下面12と熱媒体用管16の上端が線接触すると共に、蓋板10の上面11が、ベース部材2の表面3と面一なる。また、ここで蓋溝6の側壁5a,5b(図4の(b)参照)と、蓋板10の側面13a,13bとによって突合せ部V,Vが形成される。
(Cover groove closing process)
Next, as shown in FIG. 4C, a lid plate 10 made of an aluminum alloy is disposed in the lid groove 6 of the base member 2. At this time, the lower surface 12 of the cover plate 10 and the upper end of the heat medium pipe 16 are in line contact, and the upper surface 11 of the cover plate 10 is flush with the surface 3 of the base member 2. Further, here, the abutting portions V 1 and V 2 are formed by the side walls 5 a and 5 b (see FIG. 4B) of the lid groove 6 and the side surfaces 13 a and 13 b of the lid plate 10.

(接合工程)
次に、図4の(d)に示すように、突合せ部V,Vに沿って、摩擦撹拌接合を施す。摩擦撹拌接合は、接合用回転ツール20(公知の回転ツール)を用いて行う。接合用回転ツール20は、例えば、工具鋼からなり、円柱形のツール本体21と、その底面22の中心部から同心軸で垂下するピン23とを有する。ピン23は、先端に向けて幅狭となるテーパ状に形成されている。なお、ピン23の周面には、その軸方向に沿って図示しない複数の小溝や径方向に沿ったネジ溝が形成されていてもよい。
(Joining process)
Next, as shown in FIG. 4D, friction stir welding is performed along the butted portions V 1 and V 2 . Friction stir welding is performed using a welding rotary tool 20 (a known rotary tool). The joining rotary tool 20 is made of, for example, tool steel, and includes a cylindrical tool body 21 and a pin 23 depending on a concentric axis from the center of the bottom surface 22 thereof. The pin 23 is formed in a tapered shape that becomes narrower toward the tip. Note that a plurality of small grooves (not shown) and screw grooves along the radial direction may be formed on the peripheral surface of the pin 23 along the axial direction thereof.

摩擦撹拌接合は、ベース部材2および蓋板10を図示しない治具により拘束した状態で、各突合せ部V,Vに高速回転する接合用回転ツール20を押し込み、突合せ部V,Vに沿って移動させる。高速回転するピン23により、その周囲のベース部材2および蓋板10のアルミニウム合金材料は、摩擦熱によって加熱され流動化した後に冷却されて一体化する。 Friction stir welding is a base member 2 and in a state of being restrained by a jig the cover plate 10 (not shown), push the joining rotation tool 20 rotating at a high speed to the respective butt portions V 1, V 2, butt portions V 1, V 2 Move along. By the pin 23 rotating at high speed, the surrounding base member 2 and the aluminum alloy material of the lid plate 10 are heated and fluidized by frictional heat, and then cooled and integrated.

(流入撹拌工程)
次に、図4の(e)に示すように、蓋板10の上面(表面)11で、下方の凹溝8に沿って、摩擦撹拌接合を施す。流入撹拌工程は、熱媒体用管16の周囲に形成された空隙部P(図3参照)に、摩擦撹拌接合によって流動化させた塑性流動材Qを流入させる工程であって、その摩擦撹拌接合は、流入撹拌用回転ツール25(公知の回転ツール)を用いて行う。流入撹拌用回転ツール25は、例えば、工具鋼からなり、接合用回転ツール20と同等の形状を有しており、円柱形のツール本体26と、その底面27の中心部から同心軸で垂下するピン28とを有する。流入撹拌用回転ツール25は、接合用回転ツール20よりも大型のものが使用されている。具体的には、流入撹拌用回転ツール25を蓋板10の上面11に押し込んで摩擦撹拌接合を施す際に、ピン28の下端部(流入撹拌用回転ツール25の先端)が、蓋溝6の底面5cよりも低くなる大きさのものが採用されている。
(Inflow stirring process)
Next, as shown in FIG. 4E, friction stir welding is performed on the upper surface (surface) 11 of the lid plate 10 along the lower groove 8. The inflow stirring step is a step of flowing the plastic fluidized material Q fluidized by friction stir welding into a gap P (see FIG. 3) formed around the heat medium pipe 16, and the friction stir welding Is performed using the inflow stirring rotary tool 25 (a known rotary tool). The inflow agitation rotating tool 25 is made of, for example, tool steel and has a shape equivalent to that of the joining rotating tool 20, and hangs down on a concentric shaft from the center of the cylindrical tool body 26 and its bottom surface 27. Pin 28. The inflow stirring rotary tool 25 is larger than the joining rotary tool 20. Specifically, when the inflow stirring rotary tool 25 is pushed into the upper surface 11 of the lid plate 10 to perform friction stir welding, the lower end portion of the pin 28 (the tip of the inflow stirring rotary tool 25) The thing of the magnitude | size which becomes lower than the bottom face 5c is employ | adopted.

流入撹拌工程における摩擦撹拌接合は、蓋板10の上面(表面)11で、高速回転する流入撹拌用回転ツール25を押し込み、下方の凹溝8に沿って流入撹拌用回転ツール25を移動させる。流入撹拌用回転ツール25は、ツール本体26の底面27(ショルダ)の投影部分の一部が熱媒体用管16の空隙部Pと重なるように配置される。このとき、流入撹拌用回転ツール25の先端が、蓋溝6の底面5cよりも深く挿入され、高速回転するピン28により、その周囲の蓋板10およびベース部材2のアルミニウム合金材料は、摩擦熱によって加熱され流動化される。流入撹拌用回転ツール25は、ツール本体26の底面27が、蓋板10の上面11よりも低くなるように押し込まれる。その押込み量(長さ)は、ツール本体26が押し退ける蓋体10の金属の体積が、熱媒体用管16の周囲の一方の空隙部Pに充填される塑性流動化されたアルミニウム合金材料の体積、および塑性化領域W(W)の幅方向両側に発生するバリの体積との和と同等になるような長さとなっている。そして、流動化された塑性流動材Qは、流入撹拌用回転ツール25のツール本体26の底面27の押込み力によって、空隙部Pへと押し出されて流入される。流入撹拌工程における摩擦撹拌接合の後に、塑性化領域W,Wの幅方向両側に発生したバリを取り除く。前記の摩擦撹拌接合は、凹溝8の幅方向両側でそれぞれ施されて、熱媒体用管16の上側に位置する一対の空隙部P,Pに塑性流動材Qが流入される。 In the friction stir welding in the inflow agitation step, the inflow agitation rotating tool 25 that rotates at a high speed is pushed on the upper surface (surface) 11 of the lid plate 10, and the inflow agitation rotation tool 25 is moved along the lower groove 8. The inflow stirring rotary tool 25 is arranged so that a part of the projected portion of the bottom surface 27 (shoulder) of the tool body 26 overlaps the gap P of the heat medium pipe 16. At this time, the tip of the inflow agitation rotating tool 25 is inserted deeper than the bottom surface 5c of the lid groove 6, and the aluminum alloy material of the surrounding lid plate 10 and the base member 2 is caused by frictional heat by the pin 28 rotating at high speed. Is heated and fluidized. The inflow stirring rotary tool 25 is pushed so that the bottom surface 27 of the tool body 26 is lower than the top surface 11 of the cover plate 10. The pushing amount (length) is determined by the volume of the plastic fluidized aluminum alloy material in which the volume of the metal of the lid body 10 from which the tool body 26 is pushed back is filled in one of the gaps P around the heat medium pipe 16. And a length equivalent to the sum of the volume of burrs generated on both sides in the width direction of the plasticized region W 3 (W 4 ). Then, the fluidized plastic fluid material Q is pushed out and flows into the gap P by the pushing force of the bottom surface 27 of the tool body 26 of the inflow stirring rotary tool 25. After the friction stir welding in the inflow stirring step, burrs generated on both sides in the width direction of the plasticized regions W 3 and W 4 are removed. The friction stir welding is performed on both sides of the concave groove 8 in the width direction, and the plastic fluid material Q flows into the pair of gap portions P 1 and P 2 located above the heat medium pipe 16.

以上説明した伝熱板の製造方法によれば、図4の(f)に示すように、突合せ部V,Vに沿って塑性化領域W,Wが形成されて、ベース部材2と蓋板10とが接合され、一方、蓋板10の上面11で凹溝8に沿って塑性化領域W,Wが形成され、ベース部材2と蓋板10とで熱媒体用管16が密閉される。さらに、空隙部Pに塑性流動材Qが流入されて空隙部Pが充填されるため、熱媒体用管16とベース部材2および蓋板10とが隙間なく密着することになるので、熱交換効率の高い伝熱板1を形成することができる。 According to the heat transfer plate manufacturing method described above, as shown in FIG. 4F, the plasticized regions W 1 and W 2 are formed along the butted portions V 1 and V 2 , and the base member 2 is formed. On the other hand, plasticized regions W 3 and W 4 are formed along the concave groove 8 on the upper surface 11 of the cover plate 10, and the heat medium tube 16 is formed by the base member 2 and the cover plate 10. Is sealed. Furthermore, since the plastic fluid material Q flows into the gap P and fills the gap P, the heat medium pipe 16 and the base member 2 and the cover plate 10 are in close contact with each other without any gap, so that the heat exchange efficiency High heat transfer plate 1 can be formed.

さらに、本実施形態によれば、先に比較的小さい接合用回転ツール20を用いて、蓋板10をベース部材2に接合しているので、流入撹拌工程では、蓋板10が確実に固定された状態で摩擦撹拌接合を施すことができる。したがって、比較的大きい流入撹拌用回転ツール25を用いて大きい押込み力がかかる摩擦撹拌接合を、安定した状態で行うことができる。   Furthermore, according to this embodiment, since the lid plate 10 is joined to the base member 2 using the relatively small joining rotary tool 20, the lid plate 10 is securely fixed in the inflow stirring step. In this state, friction stir welding can be performed. Therefore, the friction stir welding that requires a large pushing force using the relatively large inflow stirring rotary tool 25 can be performed in a stable state.

なお、本実施形態では、接合工程の後に流入撹拌工程を行っているが、流入撹拌工程の後に接合工程を行うようにしてもよい。このとき、蓋板10を長手方向から図示しない治具を用いて固定しておけば、蓋板10の幅方向は、ベース部材2によって固定されているので、流入撹拌工程における摩擦撹拌接合を、蓋板10が確実に固定された状態で施すことができる。   In this embodiment, the inflow stirring process is performed after the joining process, but the joining process may be performed after the inflow stirring process. At this time, if the cover plate 10 is fixed from the longitudinal direction using a jig (not shown), the width direction of the cover plate 10 is fixed by the base member 2, so that the friction stir welding in the inflow stirring step is performed. It can be applied in a state where the lid plate 10 is securely fixed.

また、本実施形態では、接合工程において、突合せ部V,Vの全長に亘って、摩擦撹拌接合を施しているが、これに限定されるものではなく、突合せ部V,Vに沿って所定の間隔を隔てて摩擦撹拌接合を間欠的に行って、ベース部材2に蓋板10の仮付けを施すようにしてもよい。このような伝熱板の製造方法によれば、接合工程に要する手間と時間を低減しつつ、蓋板10を確実に固定した状態で流入撹拌工程を行うことができるとともに、前記した作用効果と同様に、加工環境が良好で精度の高い伝熱板を製造することができる。 In the present embodiment, the friction stir welding is performed over the entire length of the abutting portions V 1 and V 2 in the joining step, but the present invention is not limited to this, and the abutting portions V 1 and V 2 are applied to the abutting portions V 1 and V 2 . The base plate 2 may be temporarily attached to the base member 2 by intermittently performing friction stir welding at predetermined intervals along the same. According to such a method for manufacturing a heat transfer plate, the inflow stirring step can be performed in a state where the lid plate 10 is securely fixed while reducing the labor and time required for the joining step, and the above-described operation and effects can be achieved. Similarly, a heat transfer plate having a good processing environment and high accuracy can be manufactured.

図5は、第一実施形態に係る伝熱板を用いた伝熱ユニットを示した平面図である。
伝熱板1は、例えば、図5に示すように、複数の伝熱板1を連結して伝熱ユニット90を形成して使用される。伝熱ユニット90は、複数の伝熱板1をベース部材2の短手方向に並設し、各ベース部材2の長手方向の両端から突出した熱媒体用管16を平面視U字状の連結パイプ91で連結して形成される。このような、伝熱ユニット90によれば、一の連通した熱媒体用管96が形成されているため、熱媒体用管96に熱媒体を流通させることにより、ベース部材2および蓋板10に接触又は近接する図示しない対象物を迅速に冷却又は加熱することができる。
FIG. 5 is a plan view showing a heat transfer unit using the heat transfer plate according to the first embodiment.
For example, as shown in FIG. 5, the heat transfer plate 1 is used by connecting a plurality of heat transfer plates 1 to form a heat transfer unit 90. The heat transfer unit 90 includes a plurality of heat transfer plates 1 arranged in parallel in the short direction of the base member 2, and the heat medium pipes 16 protruding from both ends in the longitudinal direction of the base members 2 are connected in a U shape in plan view. It is formed by connecting with a pipe 91. According to such a heat transfer unit 90, since one heat medium pipe 96 is formed, the heat medium is circulated through the heat medium pipe 96, whereby the base member 2 and the lid plate 10 are connected. An object (not shown) in contact with or in close proximity can be quickly cooled or heated.

なお、伝熱板1の連結方法は、一例であって他の連結方法によって伝熱ユニットを形成してもよい。また、伝熱ユニット90においては、連結パイプ91が伝熱板1の外部に露出しているが、熱媒体用管16をS字状に形成して熱媒体用管16が伝熱板1の内部に納まるように形成してもよい。   In addition, the connection method of the heat exchanger plate 1 is an example, and you may form a heat transfer unit with another connection method. Further, in the heat transfer unit 90, the connection pipe 91 is exposed to the outside of the heat transfer plate 1, but the heat medium pipe 16 is formed in an S shape so that the heat medium pipe 16 is the heat transfer plate 1. You may form so that it may fit inside.

さらに、本実施形態では、連結パイプ91を介して複数の伝熱板1を連結して伝熱ユニット90を形成しているが、これに限られるものではない。例えば、図6に示すように、一つのベース部材51に複数の凹溝8,8・・を有する蓋溝53を形成して、一枚の蓋板54を接合用回転ツール(図示せず)でベース部材51に固定して、蓋板54の上面(表面)55から流入撹拌用回転ツール(図示せず)を各凹溝8に沿って移動させることで、熱媒体用管16の空隙部Pに、塑性流動材Qを流入させるようにしてもよい。このようにすれば、蓋板54の接合工程を一度行うだけで、複数の熱媒体用管16,16・・を固定することができる。   Furthermore, in this embodiment, although the several heat exchanger plate 1 is connected via the connection pipe 91 and the heat transfer unit 90 is formed, it is not restricted to this. For example, as shown in FIG. 6, a lid groove 53 having a plurality of concave grooves 8, 8,... Is formed in one base member 51, and a single lid plate 54 is joined to a rotating tool (not shown). By fixing the rotating tool for inflow stirring (not shown) from the upper surface (front surface) 55 of the cover plate 54 along the concave grooves 8, the gap portion of the heat medium pipe 16 is fixed to the base member 51. The plastic fluid material Q may be allowed to flow into P. In this way, it is possible to fix the plurality of heat medium tubes 16, 16,... By performing the joining process of the lid plate 54 only once.

[第二実施形態]
次に、第二実施形態に係る伝熱板について説明する。図7は、第二実施形態に係る伝熱板を示した斜視図である。図8は、第二実施形態に係る伝熱板を示した断面図である。
[Second Embodiment]
Next, the heat transfer plate according to the second embodiment will be described. FIG. 7 is a perspective view showing a heat transfer plate according to the second embodiment. FIG. 8 is a cross-sectional view showing a heat transfer plate according to the second embodiment.

図7および図8に示すように、第二実施形態に係る伝熱板31は、蓋板32と、ベース部材34の蓋溝35とが、第一実施形態よりも幅が狭く形成されている。具体的には、蓋板32の側面33と、ベース部材34の蓋溝35の側壁36との突合せ部V,Vが、流入撹拌工程における摩擦撹拌接合によって生成される塑性化領域W,Wに含まれるように、蓋板32と、ベース部材34の蓋溝35の幅が決まっている。すなわち、接合工程にて生成した塑性化領域W,W上を、流入撹拌工程において流入撹拌用回転ツール25が移動し、塑性化領域W,Wが再撹拌されるようになっている。流入撹拌用回転ツール25は、第一実施形態と同様のものが用いられる。なお、その他の構成については、第一実施形態と同様であるので、同じ符号を付して説明を省略する。 As shown in FIGS. 7 and 8, in the heat transfer plate 31 according to the second embodiment, the cover plate 32 and the cover groove 35 of the base member 34 are formed to be narrower than in the first embodiment. . Specifically, the plasticized region W 3 in which the butted portions V 3 and V 4 between the side surface 33 of the cover plate 32 and the side wall 36 of the cover groove 35 of the base member 34 are generated by friction stir welding in the inflow stirring process. , as contained in the W 4, a cover plate 32, the width of Futamizo 35 of the base member 34 is fixed. That is, the plasticized region W 1, W 2 above produced by bonding step, the rotation tool 25 is inflow stirring moves in the inflow stirring process, plasticized region W 1, W 2 is adapted to be re-agitated Yes. The inflow stirring rotary tool 25 is the same as that of the first embodiment. Since other configurations are the same as those in the first embodiment, the same reference numerals are given and description thereof is omitted.

次に、第二実施形態に係る伝熱板の製造方法を説明する。本実施形態の伝熱板の製造方法も、ベース部材34を形成するエンドミル工程および切削工程と、ベース部材34に形成された凹溝8に熱媒体用管16を挿入する挿入工程と、蓋溝35に蓋板32を配置する蓋溝閉塞工程と、突合せ部V,Vに沿って接合用回転ツール(図示せず)を移動させて摩擦撹拌接合を施す接合工程と、蓋板32の表面で、凹溝8に沿って流入撹拌用回転ツール25(図8参照)を移動させて熱媒体用管16の周囲に形成された空隙部Pに、摩擦熱によって流動化させた塑性流動材Qを流入させる流入撹拌工程と、を含むものである。 Next, the manufacturing method of the heat exchanger plate which concerns on 2nd embodiment is demonstrated. The heat transfer plate manufacturing method of the present embodiment also includes an end mill process and a cutting process for forming the base member 34, an insertion process for inserting the heat medium pipe 16 into the concave groove 8 formed in the base member 34, and a lid groove. 35, a lid groove closing step for placing the lid plate 32 on 35, a joining step for moving the joining rotary tool (not shown) along the abutting portions V 3 and V 4 to perform friction stir welding, A plastic fluidized material fluidized by frictional heat in a gap P formed around the heat medium pipe 16 by moving the inflow stirring rotary tool 25 (see FIG. 8) along the concave groove 8 on the surface. An inflow agitation step for allowing Q to flow in.

エンドミル工程、切削工程、挿入工程および蓋溝閉塞工程は、蓋板32と、ベース部材34の蓋溝35の幅が狭い構成以外は、第一実施形態と同様である。   The end mill process, the cutting process, the insertion process, and the lid groove closing process are the same as those in the first embodiment except for the configuration in which the lid plate 32 and the lid groove 35 of the base member 34 are narrow.

接合工程では、図7および図8の(a)に示すように、突合せ部V,Vに沿って所定の間隔をあけて摩擦撹拌接合を間欠的に行い破線状に塑性化領域W,Wを形成し、蓋板32をベース部材34に仮止めしておく。このとき用いられる接合用回転ツール(図示せず)は、第一実施形態の接合用回転ツール20と同様のものであって、流入撹拌用回転ツール25よりも小型のものである。 In the joining process, as shown in FIG. 7 and FIG. 8A, friction stir welding is intermittently performed at predetermined intervals along the butted portions V 3 and V 4 to form a plasticized region W 1 in a broken line shape. , W 2 , and the cover plate 32 is temporarily fixed to the base member 34. The joining rotary tool (not shown) used at this time is the same as the joining rotary tool 20 of the first embodiment, and is smaller than the inflow stirring rotary tool 25.

次に、図8の(b)に示すように、蓋板10の上面(表面)11で、下方の凹溝8に沿って、摩擦撹拌接合を施す。流入撹拌工程は、第一実施形態と同様に、熱媒体用管16の周囲に形成された空隙部Pに、摩擦撹拌接合によって流動化させた塑性流動材Qを流入させる工程であって、その摩擦撹拌接合は、流入撹拌用回転ツール25(公知の回転ツール)を用いて行う。   Next, as shown in FIG. 8B, friction stir welding is performed on the upper surface (surface) 11 of the cover plate 10 along the lower groove 8. As in the first embodiment, the inflow stirring step is a step of flowing the plastic fluid material Q fluidized by friction stir welding into the void portion P formed around the heat medium pipe 16. The friction stir welding is performed using an inflow stirring rotary tool 25 (a known rotary tool).

流入撹拌工程における摩擦撹拌接合は、蓋板10の上面(表面)11で、高速回転する流入撹拌用回転ツール25を押し込み、下方の凹溝8に沿って流入撹拌用回転ツール25を移動させる。流入撹拌用回転ツール25は、ツール本体26の底面27(ショルダ)の投影部分の一部が熱媒体用管16の空隙部P、および接合工程で生成された塑性化領域W(W)と重なるように配置される。このとき、流入撹拌用回転ツール25の先端が、蓋溝6の底面5cよりも深く挿入され、高速回転するピン28により、その周囲の蓋板10およびベース部材2のアルミニウム合金材料は、摩擦熱によって加熱され流動化され、流動化された塑性流動材Qは、流入撹拌用回転ツール25のツール本体26の底面27の押込み力によって、空隙部Pへと押し出されて流入される。これとともに、塑性化領域W(W)は、流入撹拌用回転ツール25によって生成される塑性化領域W(W)に含まれることとなり、再撹拌される。 In the friction stir welding in the inflow agitation step, the inflow agitation rotating tool 25 that rotates at a high speed is pushed on the upper surface (surface) 11 of the lid plate 10, and the inflow agitation rotation tool 25 is moved along the lower groove 8. In the inflow agitation rotating tool 25, a part of the projected portion of the bottom surface 27 (shoulder) of the tool body 26 is a gap P of the heat medium pipe 16 and a plasticized region W 1 (W 2 ) generated in the joining step. It is arranged so as to overlap. At this time, the tip of the inflow agitation rotating tool 25 is inserted deeper than the bottom surface 5c of the lid groove 6, and the aluminum alloy material of the surrounding lid plate 10 and the base member 2 is caused by frictional heat by the pin 28 rotating at high speed. The plastic fluidized material Q heated and fluidized by the above and fluidized is pushed into the gap P by the pushing force of the bottom surface 27 of the tool body 26 of the inflow stirring rotary tool 25 and flows in. At the same time, the plasticized region W 1 (W 2 ) is included in the plasticized region W 3 (W 4 ) generated by the inflow stirring rotary tool 25 and is re-stirred.

以上説明した伝熱板の製造方法によれば、蓋板10をベース部材2に固定した状態で安定して流入撹拌工程を行うことができるとともに、図7に示すように、突合せ部V,V(図8の(a)参照)に沿って塑性化領域W,Wが形成されて、ベース部材2と蓋板10とで熱媒体用管16が密閉され、さらに、塑性化領域W,Wには、塑性化領域W,Wが含まれて、ベース部材2と蓋板10とが接合される。このように塑性化領域W,Wは、流入撹拌用回転ツール25で再撹拌されて塑性化領域W,Wに含まれるので、伝熱板1の表面に露出される塑性化領域を少なくすることができる。 According to the method of manufacturing a heat transfer plate as described above, it is possible to perform stable inflow stirring process in a state of fixing the lid plate 10 to the base member 2, as shown in FIG. 7, the butt portion V 3, Plasticization regions W 3 and W 4 are formed along V 4 (see FIG. 8A), the heat medium pipe 16 is sealed by the base member 2 and the cover plate 10, and further, the plasticization region is formed. W 3 and W 4 include plasticized regions W 1 and W 2 , and the base member 2 and the cover plate 10 are joined. As described above, since the plasticization regions W 1 and W 2 are re-stirred by the inflow stirring rotary tool 25 and are included in the plasticization regions W 3 and W 4 , the plasticization regions exposed to the surface of the heat transfer plate 1. Can be reduced.

なお、本実施形態では、接合工程において、突合せ部V,Vに沿って間欠的に摩擦撹拌接合を行ってベース部材34に蓋板32の仮付けを施すようになっているが、ベース部材34と蓋板32との接合は、仮付けに限定されるものではなく、突合せ部V,Vの全長に亘って摩擦撹拌接合を行ってもよい。このように、突合せ部V,Vの全長に亘って摩擦撹拌接合を行った場合、蓋板10をより一層確実に固定した状態で流入撹拌工程を行うことができる。 In the present embodiment, in the joining step, the friction stir welding is intermittently performed along the abutting portions V 3 and V 4 to temporarily attach the cover plate 32 to the base member 34. The joining of the member 34 and the cover plate 32 is not limited to the temporary attachment, and the friction stir welding may be performed over the entire length of the butt portions V 3 and V 4 . As described above, when the friction stir welding is performed over the entire length of the abutting portions V 3 and V 4 , the inflow stirring step can be performed in a state where the lid plate 10 is more securely fixed.

[第三実施形態]
次に、第三実施形態に係る伝熱板について説明する。図9の(a)は、第三実施形態に係る伝熱板を示した分解断面図で、(b)は、第三実施形態に係る伝熱板を示した断面図である。
[Third embodiment]
Next, the heat transfer plate according to the third embodiment will be described. FIG. 9A is an exploded cross-sectional view showing the heat transfer plate according to the third embodiment, and FIG. 9B is a cross-sectional view showing the heat transfer plate according to the third embodiment.

第三実施形態に係る伝熱板61は、前記した伝熱板1と略同等の構造を内包し、蓋板10の表面側にさらに上蓋板70を配置して、摩擦撹拌接合を施して接合した点で第一実施形態と相違する。   The heat transfer plate 61 according to the third embodiment includes a structure substantially equivalent to the above-described heat transfer plate 1, further disposes the upper cover plate 70 on the surface side of the cover plate 10, and performs friction stir welding. It is different from the first embodiment in that it is joined.

なお、前記した伝熱板1と同等の構造を以下、下蓋部Mともいう。また、第一実施形態に係る伝熱板1と重複する部材については、同等の符号を付し、重複する説明は省略する。   In addition, the structure equivalent to the above-described heat transfer plate 1 is also referred to as a lower lid portion M below. Moreover, about the member which overlaps with the heat exchanger plate 1 which concerns on 1st embodiment, an equivalent code | symbol is attached | subjected and the overlapping description is abbreviate | omitted.

伝熱板61は、ベース部材62と、凹溝8に挿入された熱媒体用管16と、蓋板10と、蓋板10の表面側に配置された上蓋板70とを有し、塑性化領域W〜Wで摩擦攪拌接合により一体化されている。 The heat transfer plate 61 includes a base member 62, a heat medium pipe 16 inserted into the groove 8, the lid plate 10, and an upper lid plate 70 disposed on the surface side of the lid plate 10, and is plastic. The integrated regions W 1 to W 6 are integrated by friction stir welding.

ベース部材62は、図9の(a)および(b)に示すように、例えばアルミニウム合金からなり、ベース部材62の表面63に、長手方向に亘って形成された上蓋溝64と、上蓋溝64の底面に長手方向に亘って連続して形成された蓋溝6と、蓋溝6の底面に長手方向に亘って形成された凹溝8とを有する。上蓋溝64は、断面視矩形を呈し、底面から垂直に立ち上がる側壁65a,65bを備えている。上蓋溝64の幅は、蓋溝6の幅よりも大きく形成されている。上蓋溝64の底面65cは、塑性化領域W,Wの生成後に、面削加工されて、塑性化領域W,Wの表面と面一となっている。 As shown in FIGS. 9A and 9B, the base member 62 is made of, for example, an aluminum alloy, and has an upper lid groove 64 formed on the surface 63 of the base member 62 in the longitudinal direction, and an upper lid groove 64. The cover groove 6 is formed continuously on the bottom surface of the cover groove 6 in the longitudinal direction, and the concave groove 8 is formed on the bottom surface of the cover groove 6 in the longitudinal direction. The upper lid groove 64 has a rectangular shape in cross section and includes side walls 65a and 65b that rise vertically from the bottom surface. The width of the upper lid groove 64 is formed larger than the width of the lid groove 6. The bottom surface 65c of the upper lid groove 64 is chamfered after the plasticized regions W 3 and W 4 are generated, and is flush with the surfaces of the plasticized regions W 3 and W 4 .

ベース部材62の下部に形成された凹溝8には、熱媒体用管16が挿入されており、蓋板10によって閉塞され、摩擦撹拌接合により塑性化領域W,Wで接合され、さらに蓋板10の表面から、蓋溝6の底面5cの下側まで塑性化領域W,Wが形成されて熱媒体用管16の周囲の空隙部P,Pに塑性流動材Qが流入されている。即ち、ベース部材62の内部に形成された下蓋部Mは、第一実施形態に係る伝熱板1と面削された部分を除いて略同等に形成されている。 A heat medium pipe 16 is inserted into the groove 8 formed in the lower part of the base member 62, is closed by the cover plate 10, and is joined at the plasticized regions W 1 and W 2 by friction stir welding. Plasticization regions W 3 and W 4 are formed from the surface of the lid plate 10 to the lower side of the bottom surface 5c of the lid groove 6 so that the plastic fluid material Q is placed in the voids P 1 and P 2 around the heat medium pipe 16. Inflow. In other words, the lower lid portion M formed inside the base member 62 is formed substantially the same except for the portion that is chamfered with the heat transfer plate 1 according to the first embodiment.

上蓋板70は、図9の(a)および(b)に示すように、例えば、アルミニウム合金からなり、上蓋溝64の断面と略同じ矩形断面を形成し、上面71と、下面72と、この下面72から垂直に形成された側面73aおよび側面73bとを有する。上蓋板70は、上蓋溝64に嵌合される。即ち、上蓋板70の側面73a,73bは、上蓋溝64の側壁65a,65bと面接触されるか又は微細な隙間をあけて配置されている。ここで、側面73aと側壁65aとの突合せ面を以下、上側突合せ部Vとし、側面73bと側壁65bとの突合せ面を以下、上側突合せ部Vとする。上側突合せ部V,Vは、摩擦攪拌接合により、塑性化領域W,Wで一体化されている。 As shown in FIGS. 9A and 9B, the upper lid plate 70 is made of, for example, an aluminum alloy, has a rectangular cross section substantially the same as the cross section of the upper lid groove 64, and includes an upper surface 71, a lower surface 72, A side surface 73 a and a side surface 73 b are formed perpendicularly from the lower surface 72. The upper lid plate 70 is fitted in the upper lid groove 64. That is, the side surfaces 73 a and 73 b of the upper lid plate 70 are in surface contact with the side walls 65 a and 65 b of the upper lid groove 64 or are arranged with a fine gap. Here, below the abutting faces of the side surface 73a and the side wall 65a, and an upper butt portion V 5, following the abutting faces of the side face 73b and the sidewall 65b, and upper butt portion V 6. The upper butt portions V 5 and V 6 are integrated in the plasticized regions W 5 and W 6 by friction stir welding.

伝熱板61の製造方法は、伝熱板1と同等の製造方法により、ベース部材62の下部に下蓋部Mを形成した後、上蓋板70を配置する上蓋溝閉塞工程と、上側突合せ部V,Vに沿って摩擦攪拌接合を施す上蓋接合工程を含むものである。 The heat transfer plate 61 is manufactured by the same manufacturing method as that of the heat transfer plate 1, after forming the lower cover portion M below the base member 62, the upper cover groove closing step of placing the upper cover plate 70, It includes an upper lid joining step in which friction stir welding is performed along the parts V 5 and V 6 .

上蓋溝閉塞工程は、下蓋部Mを形成した後、上蓋溝64に上蓋板70を配置する。この際、上蓋溝64の底面65c、蓋板10および塑性化領域W〜Wの上面は、前記した接合工程により平面状でない(凹凸がある)ので、上蓋溝64の底面65c、蓋板10および塑性化領域W〜Wの上面を削って平坦にする面削加工を施す(図9の(a)の破線部分参照)。 In the upper lid groove closing step, after the lower lid portion M is formed, the upper lid plate 70 is disposed in the upper lid groove 64. In this case, the bottom surface 65c of the upper lid groove 64, the upper surface of the lid plate 10 and the plasticized region W 1 to W-4, since not planar with the above-described bonding step (is uneven), the bottom surface 65c of the upper lid groove 64, the cover plate 10 and a chamfering process for flattening the upper surfaces of the plasticized regions W 1 to W 4 (see the broken line portion in FIG. 9A).

上蓋接合工程は、上側突合せ部V,Vに沿って接合用回転ツール(図示せず)を移動させて摩擦撹拌接合を施す。上蓋接合工程における接合用回転ツールの埋設深さは、ピンの長さおよび上蓋板70の厚み等の各種条件によって、適宜設定すればよい。 In the upper lid joining process, the joining rotary tool (not shown) is moved along the upper abutting portions V 5 and V 6 to perform friction stir welding. What is necessary is just to set suitably the embedding depth of the rotation tool for joining in an upper cover joining process according to various conditions, such as the length of a pin and the thickness of the upper cover board 70. FIG.

実施形態に係る伝熱板61によれば、下蓋部Mの上方にさらに上蓋板70を配置して、摩擦攪拌接合を施すことにより、より深い位置に熱媒体用管16を配置させることができる。   According to the heat transfer plate 61 according to the embodiment, the upper cover plate 70 is further disposed above the lower cover portion M, and the heat medium pipe 16 is disposed at a deeper position by performing friction stir welding. Can do.

以上、本発明に係る実施形態について説明したが、これに限定されるものではなく本発明の趣旨を逸脱しない範囲において、適宜変更が可能である。例えば、前記した実施形態においては、蓋板10,32,55および上蓋板70は、ベース部材2,34,51,62の上面側に配置したが、下面側に配置させてもよい。   The embodiment according to the present invention has been described above. However, the present invention is not limited to this, and can be appropriately changed without departing from the spirit of the present invention. For example, in the above-described embodiment, the cover plates 10, 32, 55 and the upper cover plate 70 are disposed on the upper surface side of the base members 2, 34, 51, 62, but may be disposed on the lower surface side.

また、前記した実施形態では、流入撹拌工程で使用する流入撹拌用回転ツール25を接合工程で使用する接合用回転ツール20よりも大型のものとしているが、接合工程で流入撹拌用回転ツール25を使用するようにしてもよい。このようにすれば、各工程で使用する回転ツールを統一することができ、回転ツールの交換時間を省略することができ、施工時間を短縮できる。   In the above-described embodiment, the inflow agitation rotating tool 25 used in the inflow agitation process is larger than the joining rotation tool 20 used in the joining process. It may be used. If it does in this way, the rotation tool used at each process can be unified, the exchange time of a rotation tool can be omitted, and construction time can be shortened.

第一実施形態に係る伝熱板を示した斜視図である。It is the perspective view which showed the heat exchanger plate which concerns on 1st embodiment. 第一実施形態に係る伝熱板を示した分解断面図である。It is an exploded sectional view showing the heat exchanger plate concerning a first embodiment. 第一実施形態に係る伝熱板を示した断面図である。It is sectional drawing which showed the heat exchanger plate which concerns on 1st embodiment. 第一実施形態に係る伝熱板の製造方法を示した断面図であって、(a)は、エンドミル工程および切削工程を示した図であり、(b)は、パイプを挿入した挿入工程を示した図であり、(c)は、閉塞工程を示した図であり、(d)は、接合工程を示した図であり、(e)は、流入撹拌工程を示した図であり、(f)は、完成図である。It is sectional drawing which showed the manufacturing method of the heat exchanger plate which concerns on 1st embodiment, (a) is the figure which showed the end mill process and the cutting process, (b) is the insertion process which inserted the pipe. (C) is a diagram showing a closing step, (d) is a diagram showing a joining step, (e) is a diagram showing an inflow stirring step, ( f) is a completed drawing. 第一実施形態に係る伝熱板を用いた伝熱ユニットを示した平面図である。It is the top view which showed the heat-transfer unit using the heat-transfer board which concerns on 1st embodiment. 伝熱板の変形例を示した断面図である。It is sectional drawing which showed the modification of the heat exchanger plate. 第二実施形態に係る伝熱板を示した斜視図である。It is the perspective view which showed the heat exchanger plate which concerns on 2nd embodiment. 第二実施形態に係る伝熱板の製造方法を示した断面図であって、(a)は、流入撹拌工程の流入撹拌用回転ツールの押込み前の状態を示した図、(b)は、流入撹拌工程の流入撹拌用回転ツールの押込み中の状態を示した図である。It is sectional drawing which showed the manufacturing method of the heat exchanger plate which concerns on 2nd embodiment, Comprising: (a) is the figure which showed the state before pushing in of the rotation tool for inflow stirring of an inflow stirring process, (b), It is the figure which showed the state in pushing in of the rotation tool for inflow stirring of an inflow stirring process. 第三実施形態に係る伝熱板を示した図であって、(a)は、分解断面図、(b)は、断面図である。It is the figure which showed the heat exchanger plate which concerns on 3rd embodiment, Comprising: (a) is an exploded sectional view, (b) is sectional drawing. 従来の伝熱板を示した図であって(a)は、斜視図、(b)は、断面図である。It is the figure which showed the conventional heat exchanger plate, (a) is a perspective view, (b) is sectional drawing.

1 伝熱板
2 ベース部材
5a (蓋溝の)側壁
5b (蓋溝の)側壁
5c (蓋溝の)底面
6 蓋溝
8 凹溝
10 蓋板
11 (蓋板の)上面(表面)
13a (蓋板の)側面
13b (蓋板の)側面
16 熱媒体用管
20 接合用回転ツール
25 流入撹拌用回転ツール
31 伝熱板
32 蓋板
33 (蓋板の)側面
34 ベース部材
35 蓋溝
36 (蓋溝の)側壁
51 ベース部材
53 蓋溝
54 蓋板
61 伝熱板
62 ベース部材
64 上蓋溝
65a (上蓋溝の)側壁
65b (上蓋溝の)側壁
70 上蓋板
73a (上蓋板の)側面
73b (上蓋板の)側面
P 空隙部
Q 塑性流動材
V 突合せ部
W 塑性化領域
DESCRIPTION OF SYMBOLS 1 Heat-transfer plate 2 Base member 5a Side wall of lid groove 5b Side wall of lid groove 5c Bottom surface of lid groove 6 Lid groove 8 Concave groove 10 Lid plate 11 Upper surface of lid plate 11
13a (Cover plate) side surface 13b (Cover plate) side surface 16 Heat medium tube 20 Joining rotary tool 25 Inflow stirring rotary tool 31 Heat transfer plate 32 Cover plate 33 (Cover plate) side surface 34 Base member 35 Cover groove 36 Side wall 51 (of the lid groove) 51 Base member 53 Lid groove 54 Lid plate 61 Heat transfer plate 62 Base member 64 Upper lid groove 65a Side wall 65b (of the upper lid groove) Side wall 70 Upper lid plate 73a (of the upper lid plate) ) Side surface 73b Side surface (on top cover plate) P Void part Q Plastic fluidized material V Butt part W Plasticization region

Claims (7)

ベース部材の表面側に開口する蓋溝の底面に形成された凹溝に、熱媒体用管を挿入する挿入工程と、
前記蓋溝に蓋板を配置する蓋溝閉塞工程と、
前記蓋板の表面で、前記凹溝に沿って流入撹拌用回転ツールを移動させて前記熱媒体用管の周囲に形成された空隙部に、摩擦熱によって流動化させた塑性流動材を流入させる流入撹拌工程と、を有する
ことを特徴とする伝熱板の製造方法。
An insertion step of inserting the heat medium pipe into the concave groove formed on the bottom surface of the lid groove opening on the surface side of the base member;
A lid groove closing step of disposing a lid plate in the lid groove;
On the surface of the lid plate, the inflow agitating rotary tool is moved along the concave groove to flow the plastic fluidized material fluidized by frictional heat into the gap formed around the heat medium pipe. A heat transfer plate manufacturing method, comprising: an inflow stirring step.
前記流入撹拌工程前に、
前記蓋溝の側壁と前記蓋板の側面との突合せ部に沿って接合用回転ツールを移動させて前記ベース部材と前記蓋板との摩擦撹拌接合を施す接合工程をさらに有する
ことを特徴とする請求項1に記載の伝熱板の製造方法。
Before the inflow stirring step,
The method further comprises a joining step of moving the joining rotary tool along the abutting portion between the side wall of the lid groove and the side surface of the lid plate to perform friction stir welding between the base member and the lid plate. The manufacturing method of the heat exchanger plate of Claim 1.
前記接合工程において、前記蓋溝の側壁と前記蓋板の側面との突合せ部に沿って間欠的に摩擦撹拌接合を行う前記蓋板の仮付けを施す
ことを特徴とする請求項2に記載の伝熱板の製造方法。
The temporary joining of the said cover plate which performs friction stir welding intermittently along the abutting part of the side wall of the said cover groove | channel and the side surface of the said cover plate is given in the said joining process. Manufacturing method of heat transfer plate.
前記流入撹拌用回転ツールは、前記接合用回転ツールよりも大型のものが使用される
ことを特徴とする請求項2乃至請求項3のいずれか1項に記載の伝熱板の製造方法。
The method for manufacturing a heat transfer plate according to any one of claims 2 to 3, wherein the inflow agitation rotating tool is larger than the joining rotating tool.
前記流入撹拌工程において、前記流入撹拌用回転ツールの先端を、前記蓋溝の底面よりも深く挿入する
ことを特徴とする請求項1乃至請求項4のいずれか1項に記載の伝熱板の製造方法。
5. The heat transfer plate according to claim 1, wherein, in the inflow stirring step, a tip of the inflow stirring rotating tool is inserted deeper than a bottom surface of the lid groove. Production method.
前記流入撹拌工程において、前記接合工程にて生成した塑性化領域を、前記流入撹拌用回転ツールによって再撹拌する
ことを特徴とする請求項2乃至請求項5のいずれか1項に記載の伝熱板の製造方法。
The heat transfer according to any one of claims 2 to 5, wherein, in the inflow stirring step, the plasticized region generated in the joining step is re-stirred by the inflow stirring rotating tool. A manufacturing method of a board.
前記流入撹拌接合工程後に、
前記ベース部材の前記蓋溝よりも表面側に、前記蓋溝よりも幅広に形成された上蓋溝に前記蓋板を覆う上蓋板を配置する上蓋溝閉塞工程と、
前記上蓋溝の側壁と前記上蓋板の側面との上側突合せ部に沿って接合用回転ツールを移動させて前記ベース部材と前記上蓋板との摩擦攪拌接合を施す上蓋接合工程と、をさらに有する
ことを特徴とする請求項1乃至請求項6のいずれか1項に記載の伝熱板の製造方法。
After the inflow stirring joining step,
An upper lid groove closing step of disposing an upper lid plate that covers the lid plate in an upper lid groove formed wider than the lid groove on the surface side of the base member than the lid groove;
An upper lid joining step of moving the joining rotary tool along the upper abutting portion between the side wall of the upper lid groove and the side surface of the upper lid plate to perform friction stir welding between the base member and the upper lid plate; The method for manufacturing a heat transfer plate according to any one of claims 1 to 6, wherein the heat transfer plate is provided.
JP2008022228A 2007-04-16 2008-02-01 Manufacturing method of heat transfer plate Active JP5071132B2 (en)

Priority Applications (10)

Application Number Priority Date Filing Date Title
JP2008022228A JP5071132B2 (en) 2008-02-01 2008-02-01 Manufacturing method of heat transfer plate
CN2008800119386A CN101657289B (en) 2007-04-16 2008-03-21 Method for manufacturing heat exchanger plate, and heat exchanger plate
EP08722604.9A EP2145719B1 (en) 2007-04-16 2008-03-21 Method of producing heat transfer plate and heat transfer plate
US12/595,118 US8365408B2 (en) 2007-04-16 2008-03-21 Heat transfer plate and method of manufacturing the same
CN2011101601098A CN102248276B (en) 2007-04-16 2008-03-21 Heat transfer plate and method of manufacturing same
PCT/JP2008/055240 WO2008132900A1 (en) 2007-04-16 2008-03-21 Method of producing heat transfer plate and heat transfer plate
EP13185217.0A EP2679331B1 (en) 2007-04-16 2008-03-21 Method of producing heat transfer plate and heat transfer plate
KR1020097023670A KR101411143B1 (en) 2007-04-16 2008-03-21 Method of producing heat transfer plate and heat transfer plate
TW097112783A TW200843888A (en) 2007-04-16 2008-04-09 Method of producing heat transfer plate and heat transfer plate
US13/731,229 US8782892B2 (en) 2007-04-16 2012-12-31 Heat transfer plate and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008022228A JP5071132B2 (en) 2008-02-01 2008-02-01 Manufacturing method of heat transfer plate

Publications (2)

Publication Number Publication Date
JP2009178762A JP2009178762A (en) 2009-08-13
JP5071132B2 true JP5071132B2 (en) 2012-11-14

Family

ID=41033138

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008022228A Active JP5071132B2 (en) 2007-04-16 2008-02-01 Manufacturing method of heat transfer plate

Country Status (1)

Country Link
JP (1) JP5071132B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8561323B2 (en) 2004-11-22 2013-10-22 Frampton E. Ellis Footwear devices with an outer bladder and a foamed plastic internal structure separated by an internal flexibility sipe
US8670246B2 (en) 2007-11-21 2014-03-11 Frampton E. Ellis Computers including an undiced semiconductor wafer with Faraday Cages and internal flexibility sipes
US8732230B2 (en) 1996-11-29 2014-05-20 Frampton Erroll Ellis, Iii Computers and microchips with a side protected by an internal hardware firewall and an unprotected side connected to a network

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5267381B2 (en) * 2009-08-19 2013-08-21 日本軽金属株式会社 Manufacturing method of heat transfer plate

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3025441B2 (en) * 1996-08-08 2000-03-27 日本原子力研究所 Method for manufacturing first cooling wall of fusion reactor
JP2006150454A (en) * 2000-12-22 2006-06-15 Hitachi Cable Ltd Cooling plate, manufacturing method thereof, sputtering target and manufacturing method thereof
JP4385533B2 (en) * 2001-03-02 2009-12-16 日本軽金属株式会社 Manufacturing method of heat plate
JP2003329379A (en) * 2002-05-10 2003-11-19 Furukawa Electric Co Ltd:The Heat pipe circuit board
JP4126966B2 (en) * 2002-06-10 2008-07-30 株式会社日立製作所 Bonding structure of main body and lid
JP4325260B2 (en) * 2003-04-15 2009-09-02 日本軽金属株式会社 Manufacturing method of heat transfer element

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8732230B2 (en) 1996-11-29 2014-05-20 Frampton Erroll Ellis, Iii Computers and microchips with a side protected by an internal hardware firewall and an unprotected side connected to a network
US8561323B2 (en) 2004-11-22 2013-10-22 Frampton E. Ellis Footwear devices with an outer bladder and a foamed plastic internal structure separated by an internal flexibility sipe
US8562678B2 (en) 2004-11-22 2013-10-22 Frampton E. Ellis Surgically implantable electronic and/or electromechanical prosthetic device enclosed in an inner bladder surrounded by an outer bladder and having an internal sipe between bladders
US8567095B2 (en) 2004-11-22 2013-10-29 Frampton E. Ellis Footwear or orthotic inserts with inner and outer bladders separated by an internal sipe including a media
US8732868B2 (en) 2004-11-22 2014-05-27 Frampton E. Ellis Helmet and/or a helmet liner with at least one internal flexibility sipe with an attachment to control and absorb the impact of torsional or shear forces
US8670246B2 (en) 2007-11-21 2014-03-11 Frampton E. Ellis Computers including an undiced semiconductor wafer with Faraday Cages and internal flexibility sipes

Also Published As

Publication number Publication date
JP2009178762A (en) 2009-08-13

Similar Documents

Publication Publication Date Title
JP4962423B2 (en) Manufacturing method of heat transfer plate
JP5163419B2 (en) Manufacturing method of heat transfer plate
KR101411143B1 (en) Method of producing heat transfer plate and heat transfer plate
JP5262822B2 (en) Manufacturing method of liquid cooling jacket
WO2010041529A1 (en) Method of manufacturing heat transfer plate
JP5168212B2 (en) Manufacturing method of liquid cooling jacket
JP5440676B2 (en) Heat transfer plate manufacturing method and heat transfer plate
JP5573973B2 (en) Manufacturing method of liquid cooling jacket
TWI417500B (en) A method of manufacturing a heat transfer plate and a heat transfer plate
JP5012339B2 (en) Heat transfer plate manufacturing method and heat transfer plate
JP5195098B2 (en) Manufacturing method of heat transfer plate
JP5071132B2 (en) Manufacturing method of heat transfer plate
JP5141487B2 (en) Manufacturing method of heat transfer plate
TWI402476B (en) The method of manufacturing the heat transfer plate and the heat conducting plate
JP5062155B2 (en) Liquid cooling jacket manufacturing method and friction stir welding method
JP4888422B2 (en) Heat transfer plate manufacturing method and heat transfer plate
JP5071144B2 (en) Manufacturing method of heat transfer plate
JP6617834B2 (en) Manufacturing method of heat transfer plate
JP5071274B2 (en) Heat transfer plate manufacturing method and heat transfer plate
JP5125760B2 (en) Heat transfer plate manufacturing method and heat transfer plate
JP5071249B2 (en) Heat transfer plate manufacturing method and heat transfer plate
JP6547517B2 (en) Heat exchanger manufacturing method
JP6248730B2 (en) Manufacturing method of heat transfer plate and manufacturing method of composite plate having no flow path inside

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100818

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120724

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120806

R150 Certificate of patent or registration of utility model

Ref document number: 5071132

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150831

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350