JP4962423B2 - Manufacturing method of heat transfer plate - Google Patents

Manufacturing method of heat transfer plate Download PDF

Info

Publication number
JP4962423B2
JP4962423B2 JP2008156348A JP2008156348A JP4962423B2 JP 4962423 B2 JP4962423 B2 JP 4962423B2 JP 2008156348 A JP2008156348 A JP 2008156348A JP 2008156348 A JP2008156348 A JP 2008156348A JP 4962423 B2 JP4962423 B2 JP 4962423B2
Authority
JP
Japan
Prior art keywords
lid
plate
groove
heat
base member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008156348A
Other languages
Japanese (ja)
Other versions
JP2009297761A (en
Inventor
伸城 瀬尾
久司 堀
慎也 牧田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Light Metal Co Ltd
Original Assignee
Nippon Light Metal Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Light Metal Co Ltd filed Critical Nippon Light Metal Co Ltd
Priority to JP2008156348A priority Critical patent/JP4962423B2/en
Publication of JP2009297761A publication Critical patent/JP2009297761A/en
Application granted granted Critical
Publication of JP4962423B2 publication Critical patent/JP4962423B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Pressure Welding/Diffusion-Bonding (AREA)

Description

本発明は、例えば熱交換器や加熱機器あるいは冷却機器などに用いられる伝熱板の製造方法に関する。   The present invention relates to a method for manufacturing a heat transfer plate used in, for example, a heat exchanger, a heating device, a cooling device, or the like.

熱交換、加熱あるいは冷却すべき対象物に接触し又は近接して配置される伝熱板は、その本体であるベース部材に例えば高温液や冷却水などの熱媒体を循環させる熱媒体用管を挿通させて形成されている。
かかる伝熱板の製造方法としては、例えば、特許文献1に記載された方法が知られている。図10は、従来の伝熱板を示した図であって、(a)は、斜視図、(b)は断面図である。図10に示すように、従来の伝熱板100は、表面に開口する断面視矩形の蓋溝106と蓋溝106の底面に開口する凹溝108とを有するベース材102と、凹溝108に挿入される熱媒体用管116と、蓋溝106に嵌合される蓋板110と、を備え、蓋溝106における両側壁105,105と蓋板110の両側面113,114とのそれぞれの突合部V,Vに沿って摩擦攪拌接合(本接合)を施すことにより、塑性化領域W,Wが形成されている。なお、本接合をよりよい環境下で作業を行うために、本接合で用いる回転ツールよりも小さい回転ツールを用いて、突合部V,Vに対して仮接合を行う場合がある。
A heat transfer plate arranged in contact with or close to an object to be heat exchanged, heated or cooled is provided with a heat medium pipe for circulating a heat medium such as high-temperature liquid or cooling water through a base member as a main body. It is formed by insertion.
As a method for manufacturing such a heat transfer plate, for example, a method described in Patent Document 1 is known. 10A and 10B are diagrams showing a conventional heat transfer plate, in which FIG. 10A is a perspective view and FIG. 10B is a cross-sectional view. As shown in FIG. 10, the conventional heat transfer plate 100 includes a base material 102 having a lid groove 106 having a rectangular cross-section opening on the surface and a concave groove 108 opening on the bottom surface of the lid groove 106, and a concave groove 108. A heat medium pipe 116 to be inserted; and a lid plate 110 fitted in the lid groove 106; By performing friction stir welding (main joining) along the parts V 0 and V 0 , plasticized regions W 0 and W 0 are formed. In addition, in order to perform the work in a better environment, the temporary joining may be performed on the abutting portions V 0 and V 0 using a rotating tool smaller than the rotating tool used in the main joining.

特開2004−314115号公報JP 2004-314115 A

図10の(b)に示すように、伝熱板100には、凹溝108と熱媒体用管116の外側面と蓋板110の下面とによって空隙部120が形成されているが、伝熱板100の内部に空隙部120が存在していると、熱媒体用管116から放熱された熱が蓋板110に伝わりにくくなるため、伝熱板100の熱伝導効率が低下するという問題があった。   As shown in FIG. 10B, the heat transfer plate 100 has a gap 120 formed by the concave groove 108, the outer surface of the heat medium pipe 116 and the lower surface of the lid plate 110. If the gap portion 120 exists inside the plate 100, the heat radiated from the heat medium pipe 116 becomes difficult to be transmitted to the cover plate 110, and the heat conduction efficiency of the heat transfer plate 100 is reduced. It was.

また、伝熱板100の蓋板110が比較的薄い場合、回転ツールの下端に攪拌ピンの付いた回転ツールで仮接合を行うと、突合部に応力が集中するため蓋板110が変形しやすくなるという問題があった。蓋板110が変形すると、本接合の作業が煩雑になるとともに、製品の質が低下するという問題があった。   In addition, when the cover plate 110 of the heat transfer plate 100 is relatively thin, if temporary bonding is performed with a rotary tool having a stirring pin at the lower end of the rotary tool, the cover plate 110 is easily deformed because stress concentrates on the abutting portion. There was a problem of becoming. When the cover plate 110 is deformed, there is a problem that the work of the main joining becomes complicated and the quality of the product is lowered.

このような観点から、本発明は、摩擦攪拌接合により製造される伝熱板において、熱伝導効率が高く、突合部の接合を容易に行うことができる伝熱板の製造方法を提供することを課題とする。   From such a point of view, the present invention provides a method for manufacturing a heat transfer plate that has a high heat conduction efficiency and can easily join a butt portion in a heat transfer plate manufactured by friction stir welding. Let it be an issue.

このような課題を解決するために本発明は、ベース部材の表面側に開口する蓋溝の底面に形成された凹溝に、熱媒体用管を挿入する挿入工程と、前記蓋溝に蓋板を配置する蓋溝閉塞工程と、ピン無し回転ツールを前記蓋溝の側壁と前記蓋板の側面との突合部に押し当てて、前記突合部に沿って相対移動させて摩擦熱により仮接合を行う仮接合工程と、前記蓋板の表面で、前記凹溝に沿って流入攪拌用回転ツールを相対移動させて前記熱媒体用管の周囲に形成された空隙部に、摩擦熱によって流動化させた塑性流動材を流入させる流入攪拌工程と、を有することを特徴とする。   In order to solve such a problem, the present invention includes an insertion step of inserting a heat medium pipe into a concave groove formed on a bottom surface of a lid groove opened on the surface side of the base member, and a lid plate in the lid groove. A lid groove closing step of arranging the pin, and a pinless rotating tool is pressed against the abutting portion between the side wall of the lid groove and the side surface of the lid plate, and is relatively moved along the abutting portion to perform temporary joining by frictional heat. And a temporary joining step to be performed, and the surface of the lid plate is made to fluidize by frictional heat in a gap formed around the heat medium pipe by relatively moving the inflow stirring rotary tool along the concave groove. And an inflow stirring step for allowing the plastic fluidized material to flow in.

かかる製造方法によれば、空隙部に塑性流動材を流入させることで、空隙部を埋めることができるため、熱媒体用管とその周囲のベース部材及び蓋板との間で、熱を効率よく伝達することができる。これにより、熱伝導効率の高い伝熱板を製造することができ、例えば、熱媒体用管に冷却水を通して伝熱板及び冷却対象物を効率的に冷却できる。また、ピン無し回転ツールを突合部に押し当てて移動させることで、蓋板の変形を抑制しつつ、摩擦熱によって蓋板とベース部材とを接合することができる。これにより、よりよい環境下で流入攪拌工程を行うことができる。   According to this manufacturing method, since the gap can be filled by flowing the plastic fluid material into the gap, heat can be efficiently transferred between the heat medium pipe and the surrounding base member and cover plate. Can communicate. As a result, a heat transfer plate with high heat conduction efficiency can be manufactured. For example, the heat transfer plate and the object to be cooled can be efficiently cooled by passing cooling water through the heat medium pipe. Further, by pressing and moving the pinless rotating tool against the abutting portion, the lid plate and the base member can be joined by frictional heat while suppressing deformation of the lid plate. Thereby, an inflow stirring process can be performed in a better environment.

また、前記仮接合工程では、円周方向に回転する前記ピン無し回転ツールの端面を前記突合部に押し当てて前記突合部に沿って相対移動させて仮接合を行うことが好ましい。また、前記ピン無し回転ツールの端面に、渦巻状の突状体が突設されていることが好ましい。かかる製造方法によれば、仮接合工程をより好適に行うことができる。   Further, in the temporary joining step, it is preferable that the end surface of the pinless rotating tool rotating in the circumferential direction is pressed against the abutting portion and relatively moved along the abutting portion to perform temporary joining. Moreover, it is preferable that a spiral protrusion is provided on the end face of the pinless rotary tool. According to this manufacturing method, a temporary joining process can be performed more suitably.

また、本発明は、ベース部材の表面側に開口する蓋溝の底面に形成された凹溝に、熱媒体用管を挿入する挿入工程と、前記蓋溝に蓋板を配置する蓋溝閉塞工程と、円板状を呈する円板状回転ツールを円周方向に回転させて、前記円板状回転ツールの円周面を前記蓋溝の側壁と前記蓋板の側面との突合部に押し当てて、前記突合部に沿って相対移動させて摩擦熱により仮接合を行う仮接合工程と、前記蓋板の表面で、前記凹溝に沿って流入攪拌用回転ツールを相対移動させて前記熱媒体用管の周囲に形成された空隙部に、摩擦熱によって流動化させた塑性流動材を流入させる流入攪拌工程と、を有することを特徴とする。   Further, the present invention provides an insertion step of inserting a heat medium tube into a concave groove formed on the bottom surface of the lid groove that opens on the surface side of the base member, and a lid groove closing step of arranging a lid plate in the lid groove. And rotating the disk-shaped rotating tool having a disk shape in the circumferential direction, and pressing the circumferential surface of the disk-shaped rotating tool against the abutting portion between the side wall of the lid groove and the side surface of the lid plate A temporary joining step of relatively moving along the abutting portion and temporarily joining by frictional heat; and a relative movement of the rotating tool for inflow stirring along the concave groove on the surface of the lid plate, And an inflow stirring step of allowing a plastic fluidized material fluidized by frictional heat to flow into a gap formed around the working tube.

かかる製造方法によれば、空隙部に塑性流動材を流入させることで、空隙部を埋めることができるため、熱媒体用管とその周囲のベース部材及び蓋板との間で、熱を効率よく伝達することができる。これにより、熱伝導効率の高い伝熱板を製造することができ、例えば、熱媒体用管に冷却水を通して伝熱板及び冷却対象物を効率的に冷却できる。また、円板状回転ツールの円周面を突合部に押し当てて移動させることで、蓋板の変形を抑制しつつ、摩擦熱によって蓋板とベース部材とを接合することができる。これにより、よりよい環境下で流入攪拌工程を行うことができる。   According to this manufacturing method, since the gap can be filled by flowing the plastic fluid material into the gap, heat can be efficiently transferred between the heat medium pipe and the surrounding base member and cover plate. Can communicate. As a result, a heat transfer plate with high heat conduction efficiency can be manufactured. For example, the heat transfer plate and the object to be cooled can be efficiently cooled by passing cooling water through the heat medium pipe. Moreover, the cover plate and the base member can be joined by frictional heat while suppressing the deformation of the cover plate by pressing and moving the circumferential surface of the disk-shaped rotating tool against the abutting portion. Thereby, an inflow stirring process can be performed in a better environment.

また、前記円板状回転ツールの円周面に、凹溝が凹設されていることが好ましい。かかる製造方法によれば、仮接合工程をより好適に行うことができる。   Moreover, it is preferable that the ditch | groove is provided in the circumferential surface of the said disk shaped rotation tool. According to this manufacturing method, a temporary joining process can be performed more suitably.

また、前記仮接合工程前に、前記ベース部材及び前記蓋板を脱脂する脱脂工程を行うことが好ましい。かかる製造方法によれば、ベース部材と蓋板の突合せ面の油や水分を取り除くことができるため、各部材同士をより密接させることができ、塑性化領域に有機物の残渣や分解ガスが混入するのを防止することができる。   Moreover, it is preferable to perform the degreasing process which degreases the said base member and the said cover board before the said temporary joining process. According to this manufacturing method, the oil and moisture on the abutting surfaces of the base member and the cover plate can be removed, so that the members can be brought into closer contact with each other, and organic residues and decomposition gas are mixed into the plasticized region. Can be prevented.

また、前記仮接合工程前に、前記蓋溝の側壁及び前記蓋板の側面のいずれか一方に対して、前記ベース部材及び前記蓋板よりも低融点の金属でメッキしてメッキ層を設けるメッキ工程を含むことが好ましい。   Further, before the temporary joining step, plating is performed by plating with a metal having a melting point lower than that of the base member and the lid plate on one of the side wall of the lid groove and the side surface of the lid plate. It is preferable to include a process.

かかる製造方法によれば、回転するツールを突合部に押し当てるだけで、摩擦熱によりメッキ層が容易に溶融し、2つの金属部材を密着した状態で良好に接合することができる。また、加圧していることにより、空気層が形成されにくい。したがって、熱伝導効率の高い接合部を得ることができる。
また、メッキ層は低融点の金属から形成され、容易に溶融するため、回転ツールを押し当てる力を弱くしたり、回転ツールの移動速度を遅くしたりしても、良好に接合することができる。これにより、蓋板の変形をより抑制することができる。
According to such a manufacturing method, the plating layer can be easily melted by frictional heat simply by pressing the rotating tool against the abutting portion, and the two metal members can be bonded well together. Moreover, it is difficult to form an air layer due to the pressurization. Therefore, it is possible to obtain a joint having high heat conduction efficiency.
In addition, since the plating layer is made of a low melting point metal and melts easily, it can be satisfactorily bonded even if the force of pressing the rotating tool is weakened or the moving speed of the rotating tool is reduced. . Thereby, a deformation | transformation of a cover board can be suppressed more.

また、前記仮接合工程において、前記突合部に沿って間欠的に前記ピン無し回転ツール又は円板状回転ツールを押し当てて摩擦熱により仮接合を行うことが好ましい。かかる製造方法によれば、接合工程に要する手間と時間を低減しつつ、蓋板を確実に固定した状態で流入攪拌工程を行うことができる。   Further, in the temporary joining step, it is preferable that the pinless rotating tool or the disk-shaped rotating tool is intermittently pressed along the abutting portion to perform temporary joining by frictional heat. According to this manufacturing method, the inflow stirring process can be performed in a state where the lid plate is securely fixed while reducing the labor and time required for the joining process.

また、前記流入攪拌工程では、前記流入攪拌用回転ツールの先端を、前記蓋溝の底面よりも深く挿入することが好ましい。かかる製造方法によれば、蓋板とベース部材とをより確実に接合するとともに、空隙部に塑性流動材を容易に流入させることができる。   In the inflow stirring step, it is preferable to insert the tip of the inflow stirring rotary tool deeper than the bottom surface of the lid groove. According to this manufacturing method, the lid plate and the base member can be more reliably joined, and the plastic fluidized material can easily flow into the gap.

また、前記流入攪拌工程では、前記仮接合工程で形成された塑性化領域を前記流入攪拌用回転ツールによって攪拌することが好ましい。かかる製造方法によれば、蓋板を確実に固定した状態で流入攪拌工程を行うことができるとともに、伝熱板の表面に露出される塑性化領域を流入攪拌用回転ツールによるものだけとすることができる。   In the inflow agitation step, it is preferable that the plasticized region formed in the temporary joining step is agitated by the inflow agitation rotating tool. According to such a manufacturing method, the inflow stirring process can be performed with the lid plate fixed securely, and the plasticized region exposed to the surface of the heat transfer plate is limited only to the rotating tool for inflow stirring. Can do.

また、前記流入攪拌工程後に、前記ベース部材の前記蓋溝よりも表面側に、前記蓋溝よりも幅広に形成された上蓋溝に前記蓋板を覆う上蓋板を配置する上蓋溝閉塞工程と、前記上蓋溝の側壁と、前記上蓋板の側面との突合部に沿って接合用回転ツールを相対移動させて前記ベース部材と前記上蓋板との摩擦攪拌を行う上蓋接合工程を含むことが好ましい。   Further, after the inflow stirring step, an upper lid groove closing step of disposing an upper lid plate that covers the lid plate in an upper lid groove formed wider than the lid groove on the surface side of the lid groove of the base member; An upper lid joining step of performing frictional stirring between the base member and the upper lid plate by relatively moving a rotary tool for joining along the abutting portion between the side wall of the upper lid groove and the side surface of the upper lid plate. Is preferred.

かかる製造方法によれば、伝熱板の表面側において、蓋板よりも幅広の上蓋板を用いてさらに摩擦攪拌接合を施すため、伝熱板のより深い位置に熱媒体用管を配置させることができる。   According to this manufacturing method, on the surface side of the heat transfer plate, since the friction stir welding is further performed using the upper cover plate wider than the cover plate, the heat medium pipe is disposed at a deeper position of the heat transfer plate. be able to.

本発明に係る伝熱板の製造方法によれば、突合部の接合を容易に行うことができるとともに、熱伝導効率が高い製品を製造することができる。   According to the method for manufacturing a heat transfer plate according to the present invention, it is possible to easily join the butt portion and to manufacture a product having high heat conduction efficiency.

[第一実施形態]
本発明の最良の実施形態について、図面を参照して詳細に説明する。図1は、第一実施形態に係る伝熱板を示した斜視図である。図2は、第一実施形態に係る伝熱板を示した分解断面図である。図3は、第一実施形態に係る伝熱板を示した断面図である。
[First embodiment]
The best embodiment of the present invention will be described in detail with reference to the drawings. FIG. 1 is a perspective view showing a heat transfer plate according to the first embodiment. FIG. 2 is an exploded cross-sectional view showing the heat transfer plate according to the first embodiment. FIG. 3 is a cross-sectional view showing the heat transfer plate according to the first embodiment.

第一実施形態に係る伝熱板1は、図1乃至図3に示すように、表面3及び裏面4を有する厚板形状のベース部材2と、ベース部材2の表面3に開口した蓋溝6に配置される蓋板10と、蓋溝6の底面5cに開口する凹溝8に挿入される熱媒体用管16とを主に備えている。ベース部材2と蓋板10は、摩擦攪拌接合により形成された塑性化領域W,Wによって一体形成されている。 As shown in FIGS. 1 to 3, the heat transfer plate 1 according to the first embodiment includes a thick plate-shaped base member 2 having a front surface 3 and a back surface 4, and a lid groove 6 opened on the front surface 3 of the base member 2. And a heat medium pipe 16 to be inserted into the concave groove 8 opened in the bottom surface 5 c of the lid groove 6. The base member 2 and the cover plate 10 are integrally formed by plasticizing regions W 3 and W 4 formed by friction stir welding.

ベース部材2は、例えば、アルミニウム合金(JIS:A6061)で形成されている。ベース部材2は、熱媒体用管16に流れる熱媒体の熱を外部に伝達させる役割、あるいは、外部の熱を熱媒体用管16に流れる熱媒体に伝達させる役割を果たすものであって、図2に示すように、熱媒体用管16を内部に収容する。ベース部材2の表面3には、蓋溝6が凹設されており、蓋溝6の底面5cの中央には、蓋溝6よりも幅狭の凹溝8が凹設されている。蓋溝6は、熱媒体用管16を覆う蓋板10が配置される部分であって、ベース部材2の長手方向に亘って連続して形成されている。蓋溝6は、断面視矩形を呈しており、蓋溝6の底面5cから垂直に立ち上がる側壁5a,5bを備えている。   The base member 2 is made of, for example, an aluminum alloy (JIS: A6061). The base member 2 serves to transmit the heat of the heat medium flowing through the heat medium pipe 16 to the outside, or plays a role of transferring external heat to the heat medium flowing through the heat medium pipe 16. As shown in FIG. 2, the heat medium pipe 16 is accommodated therein. A lid groove 6 is recessed in the surface 3 of the base member 2, and a recessed groove 8 narrower than the lid groove 6 is recessed in the center of the bottom surface 5 c of the lid groove 6. The lid groove 6 is a portion where the lid plate 10 covering the heat medium pipe 16 is disposed, and is continuously formed over the longitudinal direction of the base member 2. The lid groove 6 has a rectangular shape in a sectional view, and includes side walls 5 a and 5 b that rise vertically from the bottom surface 5 c of the lid groove 6.

凹溝8は、熱媒体用管16が挿入される部分であって、ベース部材2の長手方向に亘って連続して形成されている。凹溝8は、上方が開口した断面視U字状の溝であって、下端には熱媒体用管16の外周と同等の曲率半径を有する半円形の曲面7が形成されている。凹溝8の開口部分は、熱媒体用管16の外径と略同等の幅で形成されている。   The concave groove 8 is a portion into which the heat medium pipe 16 is inserted, and is formed continuously over the longitudinal direction of the base member 2. The concave groove 8 is a U-shaped groove with an upper opening, and a semicircular curved surface 7 having a radius of curvature equivalent to the outer periphery of the heat medium pipe 16 is formed at the lower end. The opening portion of the concave groove 8 is formed with a width substantially equal to the outer diameter of the heat medium pipe 16.

蓋板10は、図2及び図3に示すように、ベース部材2と同様のアルミニウム合金からなり、ベース部材2の蓋溝6の断面と略同じ矩形断面を形成する上面(表面)11、下面12、側面13a及び側面13bを有する。蓋板10は、蓋溝6に挿入されて配置されている。蓋板10の側面13a,13bは、蓋溝6の側壁5a,5bと面接触するか又は微細な隙間をあけて対向する。ここで、図3に示すように、側面13aと側壁5aとの突合せ面を以下、突合部Vとし、側面13bと側壁5bとの突合せ面を以下、突合部Vとする。 As shown in FIGS. 2 and 3, the cover plate 10 is made of an aluminum alloy similar to the base member 2, and has an upper surface (front surface) 11 and a lower surface that form a rectangular cross section substantially the same as the cross section of the cover groove 6 of the base member 2. 12, side surface 13a and side surface 13b. The lid plate 10 is disposed by being inserted into the lid groove 6. The side surfaces 13a and 13b of the lid plate 10 are in surface contact with the side walls 5a and 5b of the lid groove 6 or face each other with a fine gap. Here, as shown in FIG. 3, below the abutting faces of the side surface 13a and the side walls 5a, and butting portion V 1, following the abutting faces of the side face 13b and the sidewall 5b, the butting portion V 2.

なお、本実施形態では、図2に示すように、蓋板10の側面13a,13bにベース部材2及び蓋板10よりも低融点の金属でメッキされたメッキ層m,mを設けている。蓋板10とベース部材2の間にメッキ層mを設けることで、摩擦熱によりメッキ層mが比較的低い温度で溶融するため、ベース部材2と蓋板10とを密着した状態で良好に接合することができる。なお、メッキ層mは、蓋溝6の側壁5a,5bに形成してもよい。メッキ層mの詳細な説明については後記する。   In the present embodiment, as shown in FIG. 2, plating layers m and m plated with a metal having a lower melting point than the base member 2 and the cover plate 10 are provided on the side surfaces 13 a and 13 b of the cover plate 10. By providing the plating layer m between the cover plate 10 and the base member 2, the plating layer m melts at a relatively low temperature due to frictional heat, so that the base member 2 and the cover plate 10 are bonded together in a close contact state. can do. The plating layer m may be formed on the side walls 5a and 5b of the lid groove 6. A detailed description of the plating layer m will be described later.

熱媒体用管16は、例えば、銅管にて構成されており、図2に示すように、断面視円形の中空部18を有する円筒管である。熱媒体用管16の外径は、凹溝8の幅と略同等に形成されており、図3に示すように、熱媒体用管16の下半部と凹溝8の曲面7とが面接触する。熱媒体用管16の上端は、蓋板10の下面12と線接触する。熱媒体用管16は、中空部18に、例えば高温液、高温ガスなどの熱媒体を循環させて、ベース部材2及び蓋板10に熱を伝達させる部材、あるいは中空部18に、例えば冷却水、冷却ガスなどの熱媒体を循環させて、ベース部材2及び蓋板10から熱を伝達される部材である。また、熱媒体用管16の中空部18に、例えばヒーターを通して、ヒーターから発生する熱をベース部材2及び蓋板10に伝達させる部材として利用してもよい。   The heat medium pipe 16 is formed of, for example, a copper pipe, and is a cylindrical pipe having a hollow portion 18 having a circular cross section as shown in FIG. The outer diameter of the heat medium pipe 16 is formed to be approximately equal to the width of the groove 8, and the lower half of the heat medium pipe 16 and the curved surface 7 of the groove 8 are surfaces as shown in FIG. 3. Contact. The upper end of the heat medium pipe 16 is in line contact with the lower surface 12 of the cover plate 10. The heat medium pipe 16 is a member that circulates a heat medium such as a high-temperature liquid or a high-temperature gas in the hollow portion 18 to transmit heat to the base member 2 and the cover plate 10, or a cooling water in the hollow portion 18, for example. A member that circulates a heat medium such as a cooling gas to transmit heat from the base member 2 and the cover plate 10. Further, for example, a heater may be passed through the hollow portion 18 of the heat medium pipe 16 to transmit heat generated from the heater to the base member 2 and the cover plate 10.

なお、本実施形態においては、凹溝8と熱媒体用管16の下半部を面接触させ、かつ、熱媒体用管16の上端と蓋板10の下面12とを線接触させたが、これに限定されるものではない。例えば、凹溝8の深さを、熱媒体用管16の外径と同等か、あるいはその1.2倍までの範囲となるようにしてもよい。また、凹溝8の幅を、熱媒体用管16の外径と同等か、あるいはその1.1倍までの範囲となるようにしてもよい。   In the present embodiment, the groove 8 and the lower half of the heat medium pipe 16 are brought into surface contact, and the upper end of the heat medium pipe 16 and the lower surface 12 of the cover plate 10 are brought into line contact. It is not limited to this. For example, the depth of the concave groove 8 may be the same as the outer diameter of the heat medium pipe 16 or a range up to 1.2 times the outer diameter. Further, the width of the groove 8 may be the same as the outer diameter of the heat medium pipe 16 or a range up to 1.1 times the outer diameter.

熱媒体用管16の周囲に形成される空隙部P,Pは、図2に示すように、熱媒体用管16と凹溝8と蓋板10の下面12とにより囲まれた空間である。本実施形態においては、熱媒体用管16の上端と蓋板10の下面12とが接触しているので、接触部分を境界として、二つの空隙部P,Pが形成されている。なお、空隙部P,Pは、凹溝8、熱媒体用管16の形状等に基づいて適宜決定されるものであり、前記した形態に限定されるものではない。 As shown in FIG. 2, the gaps P 1 and P 2 formed around the heat medium pipe 16 are spaces surrounded by the heat medium pipe 16, the concave groove 8, and the lower surface 12 of the lid plate 10. is there. In the present embodiment, since the upper end of the heat medium pipe 16 and the lower surface 12 of the lid plate 10 are in contact with each other, two gaps P 1 and P 2 are formed with the contact portion as a boundary. Note that the gaps P 1 and P 2 are appropriately determined based on the shape of the concave groove 8 and the heat medium pipe 16 and the like, and are not limited to the above-described form.

塑性化領域W,Wは、図1及び図3に示すように、突合部V,Vに対して後記する仮接合工程を行った際に、ベース部材2及び蓋板10の一部が塑性流動して一体化された領域である。なお、塑性化領域とは、回転ツールの摩擦熱によって加熱されて現に塑性化している状態と、回転ツールが通り過ぎて常温に戻った状態の両方を含むこととする。塑性化領域W,Wは、図3においては、黒く塗りつぶした部分で示す。即ち、突合部V,Vに沿って、後記するピン無し回転ツール20を用いて仮接合工程を行うと、突合部V,Vの周辺にかかるベース部材2、蓋板10及びメッキ層mの金属材料が、ピン無し用回転ツール20の摩擦熱により流動化した後、再び固まって一体化される。 As shown in FIGS. 1 and 3, the plasticized regions W 1 and W 2 are formed on the base member 2 and the cover plate 10 when the temporary joining process described later is performed on the abutting portions V 1 and V 2 . This is an area where the parts are integrated by plastic flow. Note that the plasticizing region includes both a state in which the rotating tool is heated by frictional heat and is actually plasticized, and a state in which the rotating tool passes and returns to room temperature. The plasticized regions W 1 and W 2 are indicated by blackened portions in FIG. That is, along the butting portion V 1, V 2, when performing the temporary bonding step using a pinless rotation tool 20 to be described later, the base member 2 according to the periphery of the butting portion V 1, V 2, cover plate 10 and the plating After the metal material of the layer m is fluidized by the frictional heat of the pinless rotary tool 20, it is solidified again and integrated.

塑性化領域W,Wは、図1及び図3に示すように、塑性化領域W,Wを含み、凹溝8に沿って後記する流入攪拌用回転ツール25(図4参照)を移動させることで生成されている。塑性化領域W,Wは、流入攪拌用回転ツール25の回転による摩擦熱によって流動化させた塑性流動材Q(塑性化領域W,Wの一部)を熱媒体用管16の周囲に形成された空隙部Pに流入させる際に生成される部分である。すなわち、塑性化領域W,Wは、ベース部材2及び蓋板10の一部が塑性流動して、空隙部Pに流入して一体化する領域であって、熱媒体用管16と接触する。塑性化領域W,Wは、図3においては、ハッチング部分で示す。 As shown in FIGS. 1 and 3 , the plasticizing regions W 3 and W 4 include the plasticizing regions W 1 and W 2 , and will be described later along the concave groove 8. It is generated by moving. The plasticizing regions W 3 and W 4 are made of the plastic fluid material Q (a part of the plasticizing regions W 3 and W 4 ) fluidized by frictional heat generated by the rotation of the inflow stirring rotary tool 25 of the heat medium pipe 16. It is a part generated when flowing into the void P formed in the periphery. That is, the plasticized regions W 3 and W 4 are regions in which a part of the base member 2 and the cover plate 10 are plastically flowed and flow into the gap portion P to be integrated, and are in contact with the heat medium pipe 16. To do. The plasticized regions W 3 and W 4 are indicated by hatched portions in FIG.

摩擦攪拌接合を行う際には、空隙部Pの形状や大きさ等に基づいて、流入攪拌用回転ツール25の押込み量及び挿入位置等を設定することにより、空隙部Pに塑性流動材Qを好適に流入させることができる。つまり、熱媒体用管16がつぶれない程度に、流入攪拌用回転ツール25を近づけて、空隙部Pに塑性流動材Qを隙間なく流入させることが好ましい。   When performing friction stir welding, the plastic fluid material Q is placed in the gap P by setting the push-in amount and insertion position of the inflow stirring rotary tool 25 based on the shape, size, etc. of the gap P. It can flow in suitably. That is, it is preferable that the inflow and stirring rotary tool 25 is brought close to the heat medium pipe 16 so that the heat medium pipe 16 is not crushed, and the plastic fluid material Q flows into the gap portion P without a gap.

次に、伝熱板1の製造方法について説明する。
図4は、第一実施形態に係る回転ツールを示した図であって、(a)は、ピン無し回転ツールを示した斜視図、(b)は、流入攪拌用回転ツールを示した側面図である。図5は、伝熱板の製造方法を示した断面図であって、(a)は、切削工程を示した図であり、(b)は、熱媒体用管を挿入した挿入工程を示した図であり、(c)は、蓋溝閉塞工程を示した図である。図6は、伝熱板の製造方法を示した断面図であって、(a)は、仮接合工程を示した図であり、(b)は、流入攪拌工程を示した図である。
Next, a method for manufacturing the heat transfer plate 1 will be described.
4A and 4B are diagrams showing the rotary tool according to the first embodiment, in which FIG. 4A is a perspective view showing a pinless rotary tool, and FIG. 4B is a side view showing the inflow stirring rotary tool. It is. FIG. 5 is a cross-sectional view showing a method of manufacturing a heat transfer plate, where (a) shows a cutting process, and (b) shows an insertion process in which a heat medium pipe is inserted. It is a figure and (c) is the figure which showed the cover groove | channel obstruction | occlusion process. 6A and 6B are cross-sectional views showing a method for manufacturing a heat transfer plate, wherein FIG. 6A is a view showing a temporary joining step, and FIG. 6B is a view showing an inflow stirring step.

第一実施形態に係る伝熱板の製造方法は、ベース部材2を形成する切削工程と、ベース部材2及び蓋板10を脱脂する脱脂工程と、蓋板10にメッキ層mを形成するメッキ工程と、ベース部材2に形成された凹溝8に熱媒体用管16を挿入する挿入工程と、蓋溝6に蓋板10を配置する蓋溝閉塞工程と、突合部V,Vに沿ってピン無し回転ツール20を移動させて仮接合を行う仮接合工程と、蓋板10の表面11で、凹溝8に沿って流入攪拌用回転ツール25を移動させて熱媒体用管16の周囲に形成された空隙部Pに、摩擦熱によって流動化させた塑性流動材Qを流入させる流入攪拌工程と、を含むものである。 The manufacturing method of the heat transfer plate according to the first embodiment includes a cutting step for forming the base member 2, a degreasing step for degreasing the base member 2 and the lid plate 10, and a plating step for forming the plating layer m on the lid plate 10. An insertion step of inserting the heat medium pipe 16 into the concave groove 8 formed in the base member 2, a lid groove closing step of disposing the lid plate 10 in the lid groove 6, and the abutting portions V 1 and V 2 A temporary joining step in which the pinless rotating tool 20 is moved and temporarily joined, and the surface 11 of the cover plate 10 is moved along the concave groove 8 to move the inflow agitating rotating tool 25 around the heat medium pipe 16. And an inflow stirring step of allowing the plastic fluidized material Q fluidized by frictional heat to flow into the gap P formed in the above.

ここで、図4を用いて、ピン無し回転ツール20と流入攪拌用回転ツール25について詳細に説明する。
ピン無し回転ツール20は、図4の(a)に示すように、例えば、工具鋼からなり、円柱形のツール本体21と、その底面22(下端面)の中心から放射状に延設された複数の突状体23,23・・・とを有する。即ち、ピン無し回転ツール20は、図4の(b)に相当するピン28(攪拌ピン)を備えていない点を特徴とする。突状体23は、放射状に配置されており、所定の曲率で弧を描くように形成されている。突状体23の形状、個数は、特に限定されるものではないが、ピン無し回転ツール20を突合部V,Vに押し当てたときに、バランスよく塑性化される形態であることが好ましい。
Here, the pinless rotation tool 20 and the inflow stirring rotation tool 25 will be described in detail with reference to FIG.
As shown in FIG. 4A, the pinless rotating tool 20 is made of, for example, tool steel, and a plurality of cylindrical tool main bodies 21 and a plurality of radial extending from the center of the bottom surface 22 (lower end surface) thereof. Of the projections 23, 23. That is, the pinless rotating tool 20 is characterized in that it does not include the pin 28 (stirring pin) corresponding to FIG. The projecting bodies 23 are arranged radially and are formed to draw an arc with a predetermined curvature. The shape and the number of the protrusions 23 are not particularly limited, but when the pinless rotary tool 20 is pressed against the abutting portions V 1 and V 2 , it may be plasticized with a good balance. preferable.

流入攪拌用回転ツール25は、図4の(b)に示すように、例えば、工具鋼からなり、円柱形のツール本体26と、その底面27の中心部から同心軸で垂下するピン28とを有する。ピン28は、先端に向けて幅狭となるテーパ状に形成されている。なお、ピン28の周面には、その軸方向に沿って図示しない複数の小溝や径方向に沿ったネジ溝が形成されていてもよい。   As shown in FIG. 4B, the inflow stirring rotary tool 25 is made of, for example, tool steel, and includes a cylindrical tool body 26 and a pin 28 that is suspended from the center of the bottom surface 27 with a concentric axis. Have. The pin 28 is formed in a tapered shape that becomes narrower toward the tip. A plurality of small grooves (not shown) and screw grooves along the radial direction may be formed on the peripheral surface of the pin 28 along the axial direction.

流入攪拌用回転ツール25は、ピン無し回転ツール20よりも大型のものが使用されている。具体的には、流入攪拌用回転ツール25を蓋板10の上面11に押し込んで摩擦攪拌接合を施す際に、ピン28の下端部(流入攪拌用回転ツール25の先端)が、蓋溝6の底面5cよりも低くなる大きさのものが採用されている。   The inflow agitation rotating tool 25 is larger than the pinless rotating tool 20. Specifically, when the friction stir welding is performed by pushing the inflow stirring rotary tool 25 into the upper surface 11 of the lid plate 10, the lower end portion of the pin 28 (the tip of the inflow stirring rotary tool 25) The thing of the magnitude | size which becomes lower than the bottom face 5c is employ | adopted.

(切削工程)
まず、図5の(a)に示すように、公知のエンドミル加工により、厚板部材に蓋溝6を形成する。さらに、蓋溝6の底面5cに、エンドミル加工により半円形断面を備えた凹溝8を形成する。これにより、蓋溝6と、蓋溝6の底面5cに開口された凹溝8を備えたベース部材2が形成される。凹溝8は、下半部に断面半円形の曲面7を備えており、曲面7の上端から一定の幅で上方に向けて開口されている。なお、第一実施形態においては、ベース部材2をエンドミル加工により形成したが、アルミニウム合金製の押出形材や鋳造品を用いてもよい。
(脱脂工程)
次に、ベース部材2及び蓋板10に対して脱脂工程を行う。脱脂工程では、ベース部材2及び蓋板10を、図示せぬ脱脂用処理槽内のアルコールやアセトン等の脱脂処理液に浸けて、表面に付着した加工油等の油脂分や汚れを取り除く。これによって、ベース部材2及び蓋板10の油等の有機物や水分を取り除くことができるので、摩擦攪拌によって形成される塑性化領域に有機物の残渣や分解ガスが混入するのを防止することができ、摩擦攪拌の接合性を高めることができる。
(Cutting process)
First, as shown in FIG. 5A, the lid groove 6 is formed in the thick plate member by a known end mill process. Further, a concave groove 8 having a semicircular cross section is formed on the bottom surface 5c of the lid groove 6 by end milling. Thereby, the base member 2 provided with the cover groove 6 and the concave groove 8 opened in the bottom surface 5c of the cover groove 6 is formed. The concave groove 8 is provided with a curved surface 7 having a semicircular cross section in the lower half, and is opened upward with a certain width from the upper end of the curved surface 7. In addition, in 1st embodiment, although the base member 2 was formed by the end mill process, you may use the extrusion shape material and castings made from aluminum alloy.
(Degreasing process)
Next, a degreasing process is performed on the base member 2 and the cover plate 10. In the degreasing step, the base member 2 and the cover plate 10 are immersed in a degreasing treatment liquid such as alcohol or acetone in a degreasing treatment tank (not shown) to remove oil and fat such as processing oil and dirt attached to the surface. As a result, it is possible to remove organic substances such as oil and moisture from the base member 2 and the cover plate 10, so that it is possible to prevent organic residues and decomposition gases from entering the plasticized region formed by friction stirring. In addition, it is possible to improve the bondability of friction stirring.

(挿入工程)
次に、図5の(b)に示すように、凹溝8に熱媒体用管16を挿入する。このとき、熱媒体用管16の下半部は、凹溝8の下半分を形成する曲面7と面接触する。
(Insertion process)
Next, as shown in FIG. 5B, the heat medium pipe 16 is inserted into the groove 8. At this time, the lower half of the heat medium pipe 16 is in surface contact with the curved surface 7 forming the lower half of the groove 8.

(メッキ工程)
次に、図5の(c)に示すように、蓋板10の側面13a,13bに対して所定の金属を用いてメッキ処理を行ってメッキ層m,mを形成する。本実施形態では、蓋板10の側面13a,13bにメッキ層mを設けているが、蓋溝6の側壁5a,5b及び蓋板10の側面13a,13b少なくともいずれか一方に設ければよい。メッキする金属の種類は、接合対象であるベース部材2及び蓋板10を形成する金属よりも低融点の金属が選択される。また、メッキする金属は、ベース部材2及び蓋板10に係る金属と共晶反応または包晶反応する金属であることが好ましい。
(Plating process)
Next, as shown in FIG. 5C, the side surfaces 13a and 13b of the lid plate 10 are plated using a predetermined metal to form plated layers m and m. In the present embodiment, the plating layer m is provided on the side surfaces 13 a and 13 b of the lid plate 10, but it may be provided on at least one of the side walls 5 a and 5 b of the lid groove 6 and the side surfaces 13 a and 13 b of the lid plate 10. As the type of metal to be plated, a metal having a lower melting point than the metal forming the base member 2 and the cover plate 10 to be joined is selected. Further, the metal to be plated is preferably a metal that undergoes a eutectic reaction or a peritectic reaction with the metal of the base member 2 and the cover plate 10.

メッキ層m,mの厚みは特に限定されるものではないが、1〜30μmであることが好ましい。これは、メッキ層mが、1μm未満であると、ベース部材2と蓋板10とが好適に密着して接合しないためである。一方、メッキ層mが30μmより厚いと、接合後の熱伝導度が大きく低下してしまう。   The thickness of the plating layers m and m is not particularly limited, but is preferably 1 to 30 μm. This is because when the plating layer m is less than 1 μm, the base member 2 and the lid plate 10 are preferably in close contact with each other and are not bonded. On the other hand, if the plating layer m is thicker than 30 μm, the thermal conductivity after bonding is greatly reduced.

メッキする方法は、特に限定されないが、例えば、電気メッキ方法や、所謂ドブづけ方法などを採用できる。このうち、電気メッキ方法を採用した場合、電流密度やメッキ時間を制御することによって、メッキ層mの厚さを精密に制御し、薄層状のメッキ層mを形成することもできる。したがって、接合後に熱伝導度がばらつくことがない。
なお、メッキ層mは、必ずしも必要なものではなく、必要に応じて適宜設ければよい。
The plating method is not particularly limited, and for example, an electroplating method or a so-called dotting method can be employed. Among these, when the electroplating method is adopted, the thickness of the plating layer m can be precisely controlled by controlling the current density and the plating time to form the thin plating layer m. Therefore, the thermal conductivity does not vary after joining.
Note that the plating layer m is not necessarily required, and may be appropriately provided as necessary.

(蓋溝閉塞工程)
次に、図5の(c)に示すように、ベース部材2の蓋溝6内に、蓋板10を配置する。このとき、蓋板10の下面12と熱媒体用管16の上端が線接触すると共に、蓋板10の上面11が、ベース部材2の表面3と面一なる。また、蓋溝6の側壁5a,5b(図5の(b)参照)と、蓋板10の側面13a,13bとによって突合部V,Vが形成される。
(Cover groove closing process)
Next, as shown in FIG. 5C, the lid plate 10 is disposed in the lid groove 6 of the base member 2. At this time, the lower surface 12 of the cover plate 10 and the upper end of the heat medium pipe 16 are in line contact, and the upper surface 11 of the cover plate 10 is flush with the surface 3 of the base member 2. Further, abutting portions V 1 and V 2 are formed by the side walls 5 a and 5 b (see FIG. 5B) of the lid groove 6 and the side surfaces 13 a and 13 b of the lid plate 10.

(仮接合工程)
次に、図6の(a)に示すように、ピン無し回転ツール20を用いて突合部V,Vに対して仮接合を行う。仮接合工程では、突合部V,Vに、ピン無し回転ツール20を押し当てつつ、突合部V,Vに沿ってピン無し回転ツール20を相対移動させる。ピン無し回転ツール20の移動軌跡には、摩擦熱により流動化した後に冷却された塑性化領域W,Wが形成されている。
なお、本実施形態では、突合部V,Vに沿って連続して仮接合工程を行うが、間欠的に仮接合工程を行ってもよい。これにより、仮接合の作業を省力化することができる。
(Temporary joining process)
Next, as shown in FIG. 6 (a), performing temporary bonded to the butting portion V 1, V 2 using the pinless rotation tool 20. The provisional bonding step, the butting portion V 1, V 2, while pressing the pinless rotation tool 20, the pinless rotation tool 20 is relatively moved along the butt portions V 1, V 2. The movement trajectory of the pinless rotary tool 20 is formed with plasticized regions W 1 and W 2 that are cooled after being fluidized by frictional heat.
In the present embodiment, the temporary joining process is continuously performed along the abutting portions V 1 and V 2 , but the temporary joining process may be intermittently performed. Thereby, labor of temporary joining can be saved.

(流入攪拌工程)
次に、図6の(b)に示すように、蓋板10の上面(表面)11で、下方の凹溝8に沿って、摩擦攪拌接合を施す。流入攪拌工程は、熱媒体用管16の周囲に形成された空隙部P(図2参照)に、摩擦攪拌接合によって流動化させた塑性流動材Qを流入させる工程であって、その摩擦攪拌接合は、流入攪拌用回転ツール25を用いて行う。本実施形態では、流入攪拌用回転ツール25を蓋板10の上面11に押し込んで摩擦攪拌接合を施す際に、ピン28の下端部(流入攪拌用回転ツール25の先端)が、蓋溝6の底面5cよりも低くなる大きさのものが採用されている。
(Inflow stirring process)
Next, as shown in FIG. 6B, friction stir welding is performed on the upper surface (surface) 11 of the lid plate 10 along the lower groove 8. The inflow agitation step is a step in which the plastic fluid material Q fluidized by friction stir welding is caused to flow into a gap P (see FIG. 2) formed around the heat medium pipe 16, and the friction stir welding is performed. Is performed using the inflow agitation rotating tool 25. In the present embodiment, when the inflow stirring rotary tool 25 is pushed into the upper surface 11 of the lid plate 10 to perform friction stir welding, the lower end of the pin 28 (the tip of the inflow stirring rotary tool 25) is The thing of the magnitude | size which becomes lower than the bottom face 5c is employ | adopted.

流入攪拌工程における摩擦攪拌接合は、蓋板10の上面(表面)11で、高速回転する流入攪拌用回転ツール25を押し込み、下方の凹溝8に沿って流入攪拌用回転ツール25を移動させる。流入攪拌用回転ツール25は、ツール本体26の底面27(ショルダ)の投影部分の一部が熱媒体用管16の空隙部Pと重なるように配置される。このとき、流入攪拌用回転ツール25の先端が、蓋溝6の底面5cよりも深く挿入され、高速回転するピン28により、その周囲の蓋板10及びベース部材2のアルミニウム合金材料は、摩擦熱によって加熱され流動化される。流入攪拌用回転ツール25は、ツール本体26の底面27が、蓋板10の上面11よりも低くなるように押し込まれる。その押込み量(長さ)は、ツール本体26が押し退ける蓋板10の金属の体積が、熱媒体用管16の周囲の一方の空隙部Pに充填される塑性流動化されたアルミニウム合金材料の体積及び塑性化領域W(W)の幅方向両側に発生するバリの体積との和と同等になるような長さとなっている。そして、流動化された塑性流動材Qは、流入攪拌用回転ツール25のツール本体26の底面27の押込み力によって、空隙部Pへと押し出されて流入される。流入攪拌工程における摩擦攪拌接合の後に、塑性化領域W,Wの幅方向両側に発生したバリを取り除く。前記の摩擦攪拌接合は、凹溝8の幅方向両側でそれぞれ施されて、熱媒体用管16の上側に位置する一対の空隙部P,Pに塑性流動材Qが流入される。 In the friction stir welding in the inflow agitation step, the inflow agitation rotating tool 25 that rotates at a high speed is pushed on the upper surface (surface) 11 of the lid plate 10, and the inflow agitation rotation tool 25 is moved along the lower groove 8. The inflow stirring rotary tool 25 is arranged so that a part of the projected portion of the bottom surface 27 (shoulder) of the tool body 26 overlaps the gap P of the heat medium pipe 16. At this time, the tip of the inflow agitation rotating tool 25 is inserted deeper than the bottom surface 5c of the lid groove 6, and the aluminum alloy material of the surrounding lid plate 10 and the base member 2 is caused by frictional heat by the pin 28 rotating at high speed. Is heated and fluidized. The inflow stirring rotary tool 25 is pushed so that the bottom surface 27 of the tool body 26 is lower than the top surface 11 of the lid plate 10. The pushing amount (length) is determined by the volume of the plastic fluidized aluminum alloy material in which the volume of the metal of the cover plate 10 from which the tool body 26 is pushed back is filled in one of the gaps P around the heat medium pipe 16. And the length is equal to the sum of the volume of burrs generated on both sides in the width direction of the plasticized region W 3 (W 4 ). Then, the fluidized plastic fluid material Q is pushed out and flows into the gap P by the pushing force of the bottom surface 27 of the tool body 26 of the inflow stirring rotary tool 25. After the friction stir welding in the inflow stirring process, burrs generated on both sides in the width direction of the plasticized regions W 3 and W 4 are removed. The friction stir welding is performed on both sides of the groove 8 in the width direction, and the plastic fluid material Q flows into the pair of gaps P 1 and P 2 located above the heat medium pipe 16.

以上、本実施形態に係る伝熱板の製造方法について説明したが、前記した工程順に限定されるものではなく、挿入工程の後にメッキ工程を行ってもよい。   As mentioned above, although the manufacturing method of the heat exchanger plate which concerns on this embodiment was demonstrated, it is not limited to an above described process order, You may perform a plating process after an insertion process.

以上のようにして形成された伝熱板1によれば、ベース部材2と蓋板10とが塑性化領域W,Wにおいて一体化されるとともに、流動化された塑性流動材Qが空隙部Pに流入されている。これにより、ベース部材2と蓋板10とを接合するとともに、空隙部Pを埋めることができる。また、熱媒体用管16は、流入攪拌工程の際に、塑性流動材Qを介して、流入攪拌用回転ツール25のツール本体26の底面27(ショルダ)によって加圧されるので、凹溝8の曲面7と確実に面接触させることができる。これにより、例えば、熱媒体用管16中を循環する熱媒体からの熱を、効率よく伝達することができる。 According to the heat transfer plate 1 formed as described above, the base member 2 and the cover plate 10 are integrated in the plasticized regions W 3 and W 4 , and the fluidized plastic fluid material Q is void. It flows into the part P. Thereby, while joining the base member 2 and the cover board 10, the space | gap part P can be filled up. Further, the heat medium pipe 16 is pressurized by the bottom surface 27 (shoulder) of the tool body 26 of the inflow stirring rotary tool 25 through the plastic fluidized material Q during the inflow stirring process. The curved surface 7 can be reliably brought into surface contact. Thereby, for example, heat from the heat medium circulating in the heat medium pipe 16 can be efficiently transmitted.

また、仮接合工程では、ピンを備えていないピン無し回転ツール20を用いて、仮接合を行うため、蓋板10の変形を抑制することができる。即ち、例えば、比較的薄い蓋板10を用いた場合、仮接合工程でピンを有する回転ツールで摩擦攪拌を行うと、突合部V,Vに応力が集中するため、蓋板10が撓んで変形する。これにより、仮接合工程及び流入攪拌工程の作業が煩雑になるばかりでなく、伝熱板1の表面が平坦にならず製品の質が低下する可能性があった。しかし、本実施形態によれば、ピン無し回転ツール20を押し当てることで比較的浅い領域で塑性化させるため、蓋板10の変形を抑制することができる。 Moreover, in the temporary joining process, since temporary joining is performed using the pinless rotary tool 20 that does not include pins, deformation of the cover plate 10 can be suppressed. That is, for example, when a relatively thin cover plate 10 is used, if friction stirring is performed with a rotary tool having a pin in the temporary joining step, stress concentrates on the abutting portions V 1 and V 2 , so that the cover plate 10 is bent. Deform. Thereby, not only the work of the temporary joining process and the inflow stirring process becomes complicated, but the surface of the heat transfer plate 1 may not be flat and the quality of the product may be lowered. However, according to this embodiment, since it plasticizes in a comparatively shallow area | region by pressing the rotation tool 20 without a pin, a deformation | transformation of the cover board 10 can be suppressed.

また、本実施形態によれば、流入攪拌工程に先だって仮接合を行って蓋板10をベース部材2に予め接合しているので、流入攪拌工程では、蓋板10が固定された状態で摩擦攪拌接合を施すことができる。したがって、比較的大きい流入攪拌用回転ツール25を用いて大きい押込み力がかかる摩擦攪拌接合を、安定した状態で行うことができる。   In addition, according to the present embodiment, since the lid plate 10 is preliminarily joined to the base member 2 by performing temporary joining prior to the inflow stirring step, the friction stirring is performed with the lid plate 10 fixed in the inflow stirring step. Bonding can be performed. Therefore, the friction stir welding to which a large pushing force is applied using the relatively large inflow stirring rotary tool 25 can be performed in a stable state.

なお、蓋溝6及び蓋板10の幅が大きい場合には、仮接合工程によって形成された塑性化領域W,Wは、塑性化領域W,Wの外に形成されることもあるが、好ましくは、本実施形態のように、塑性化領域W,Wが、塑性化領域W,Wの内部に含まれることが好ましい。これにより、塑性化領域W,Wが外部に露出するのを防ぐことができるとともに、流入攪拌工程では、塑性化領域W,Wを目印として流入攪拌用回転ツール25を移動させればよいため、作業性を高めることができる。 Incidentally, in the case where the width of the Futamizo 6 and the cover plate 10 is large, plasticized region W 1 formed by the provisional bonding step, W 2 can also be formed outside the plasticized region W 3, W 4 However, it is preferable that the plasticized regions W 1 and W 2 are included in the plasticized regions W 3 and W 4 as in the present embodiment. As a result, the plasticizing regions W 1 and W 2 can be prevented from being exposed to the outside, and the inflow stirring rotary tool 25 can be moved using the plasticizing regions W 1 and W 2 as marks in the inflow stirring step. Therefore, workability can be improved.

[第二実施形態]
次に、第二実施形態に係る伝熱板について説明する。図7の(a)は、第二実施形態に係る伝熱板を示した分解断面図であり、(b)は、第二実施形態に係る伝熱板を示した断面図である。
[Second Embodiment]
Next, the heat transfer plate according to the second embodiment will be described. FIG. 7A is an exploded cross-sectional view showing the heat transfer plate according to the second embodiment, and FIG. 7B is a cross-sectional view showing the heat transfer plate according to the second embodiment.

第二実施形態に係る伝熱板61は、前記した伝熱板1と略同等の構造を内包し、蓋板10の表面側にさらに上蓋板70を配置して、摩擦攪拌接合を施して接合した点で第一実施形態と相違する。   The heat transfer plate 61 according to the second embodiment includes a structure substantially equivalent to the above-described heat transfer plate 1, further disposes the upper cover plate 70 on the surface side of the cover plate 10, and performs friction stir welding. It is different from the first embodiment in that it is joined.

なお、前記した伝熱板1と同等の構造を以下、下蓋部Mともいう。また、第一実施形態に係る伝熱板1と重複する部材については、同等の符号を付し、重複する説明は省略する。   In addition, the structure equivalent to the above-described heat transfer plate 1 is also referred to as a lower lid portion M below. Moreover, about the member which overlaps with the heat exchanger plate 1 which concerns on 1st embodiment, an equivalent code | symbol is attached | subjected and the overlapping description is abbreviate | omitted.

伝熱板61は、ベース部材62と、凹溝8に挿入された熱媒体用管16と、蓋板10と、蓋板10の表面側に配置された上蓋板70とを有し、塑性化領域W〜Wで摩擦攪拌接合により一体化されている。 The heat transfer plate 61 includes a base member 62, a heat medium pipe 16 inserted into the groove 8, the lid plate 10, and an upper lid plate 70 disposed on the surface side of the lid plate 10, and is plastic. The integrated regions W 1 to W 6 are integrated by friction stir welding.

ベース部材62は、図7の(a)及び(b)に示すように、例えばアルミニウム合金からなり、ベース部材62の表面63に、長手方向に亘って形成された上蓋溝65と、上蓋溝65の底面65cに長手方向に亘って連続して形成された蓋溝6と、蓋溝6の底面に長手方向に亘って形成された凹溝8とを有する。上蓋溝65は、断面視矩形を呈し、底面から垂直に立ち上がる側壁65a,65bを備えている。上蓋溝65の幅は、蓋溝6の幅よりも大きく形成されている。上蓋溝65の底面65cは、塑性化領域W,Wの生成後に、面削加工されて、塑性化領域W,Wの表面と面一となっている。 As shown in FIGS. 7A and 7B, the base member 62 is made of, for example, an aluminum alloy, and has an upper lid groove 65 formed on the surface 63 of the base member 62 over the longitudinal direction, and an upper lid groove 65. The cover groove 6 is formed continuously in the longitudinal direction on the bottom surface 65c of the cover groove 6 and the concave groove 8 is formed on the bottom surface of the cover groove 6 in the longitudinal direction. The upper lid groove 65 has a rectangular shape in cross section and includes side walls 65a and 65b that rise vertically from the bottom surface. The width of the upper lid groove 65 is formed larger than the width of the lid groove 6. The bottom surface 65c of the upper cover groove 65 is chamfered after the plasticized regions W 3 and W 4 are generated, and is flush with the surfaces of the plasticized regions W 3 and W 4 .

ベース部材62の下部に形成された凹溝8には、熱媒体用管16が挿入されており、蓋板10によって閉塞された後、塑性化領域W,Wで仮接合され、さらに蓋板10の表面から、蓋溝6の底面の下側まで塑性化領域W,Wが形成されて熱媒体用管16の周囲の空隙部P,Pに塑性流動材Qが流入されている。即ち、ベース部材62の内部に形成された下蓋部Mは、第一実施形態に係る伝熱板1と面削された部分を除いて略同等に形成されている。 The heat medium pipe 16 is inserted into the concave groove 8 formed in the lower part of the base member 62, and after being closed by the lid plate 10, is temporarily joined in the plasticized regions W 1 and W 2 , and further the lid The plasticized regions W 3 and W 4 are formed from the surface of the plate 10 to the lower side of the bottom surface of the lid groove 6, and the plastic fluid material Q flows into the voids P 1 and P 2 around the heat medium pipe 16. ing. In other words, the lower lid portion M formed inside the base member 62 is formed substantially the same except for the portion that is chamfered with the heat transfer plate 1 according to the first embodiment.

上蓋板70は、図7の(a)及び(b)に示すように、例えば、アルミニウム合金からなり、上蓋溝65の断面と略同じ矩形断面を形成し、上面71と、下面72と、この下面72から垂直に形成された側面73a及び側面73bとを有する。上蓋板70は、上蓋溝65に嵌合される。即ち、上蓋板70の側面73a,73bは、上蓋溝65の側壁65a,65bと面接触されるか又は微細な隙間をあけて配置されている。ここで、側面73aと側壁65aとの突合せ面を以下、上側突合部Vとし、側面73bと側壁65bとの突合せ面を以下、上側突合部Vとする。上側突合部V,Vは、摩擦攪拌接合により、塑性化領域W,Wで一体化されている。 As shown in FIGS. 7A and 7B, the upper lid plate 70 is made of, for example, an aluminum alloy and has a rectangular cross section substantially the same as the cross section of the upper lid groove 65, and includes an upper surface 71, a lower surface 72, A side surface 73 a and a side surface 73 b are formed perpendicularly from the lower surface 72. The upper lid plate 70 is fitted in the upper lid groove 65. That is, the side surfaces 73 a and 73 b of the upper lid plate 70 are in surface contact with the side walls 65 a and 65 b of the upper lid groove 65 or are arranged with a fine gap. Here, below the abutting faces of the side surface 73a and the side wall 65a, and an upper butt portion V 5, following the abutting faces of the side face 73b and the sidewall 65b, and upper butt portion V 6. The upper abutting portions V 5 and V 6 are integrated in the plasticized regions W 5 and W 6 by friction stir welding.

伝熱板61の製造方法は、伝熱板1と同等の製造方法により、ベース部材62の下部に下蓋部Mを形成した後、上蓋板70を配置する上蓋溝閉塞工程と、上側突合部V,Vに沿って摩擦攪拌接合を施す上蓋接合工程を含むものである。 The heat transfer plate 61 is manufactured by the same manufacturing method as that of the heat transfer plate 1, after the lower lid portion M is formed in the lower part of the base member 62, the upper lid groove closing step of arranging the upper lid plate 70, It includes an upper lid joining step in which friction stir welding is performed along the parts V 5 and V 6 .

(上蓋溝閉塞工程)
上蓋溝閉塞工程は、下蓋部Mを形成した後、上蓋溝65に上蓋板70を配置する。この際、上蓋溝65の底面65c、蓋板10及び塑性化領域W,Wの上面は、前記した流入攪拌工程により平面状でない(凹凸がある)ので、上蓋溝65の底面65c、蓋板10及び塑性化領域W,Wの上面を削って平坦にする面削加工を施す。
(Upper cover groove closing process)
In the upper lid groove closing step, the upper lid plate 70 is disposed in the upper lid groove 65 after the lower lid portion M is formed. At this time, the bottom surface 65c of the upper cover groove 65, and the upper surfaces of the cover plate 10 and the plasticized regions W 3 and W 4 are not flat due to the inflow stirring process described above. The surface of the plate 10 and the plasticized regions W 3 and W 4 is cut and flattened.

(上蓋接合工程)
上蓋接合工程は、上側突合部V,Vに沿って接合用回転ツール(図示せず)を移動させて摩擦攪拌接合を施す。当該接合用回転ツールは、前記した流入攪拌用回転ツール25と同様に、ピンを有する回転ツールであることが好ましい。上蓋接合工程における接合用回転ツールの押し込み深さは、ピンの長さ及び上蓋板70の厚み等の各種条件によって、適宜設定すればよい。
(Upper lid joining process)
In the upper lid joining process, the joining rotary tool (not shown) is moved along the upper abutting portions V 5 and V 6 to perform friction stir welding. The joining rotary tool is preferably a rotary tool having a pin, like the inflow stirring rotary tool 25 described above. What is necessary is just to set suitably the pushing depth of the rotation tool for joining in an upper cover joining process according to various conditions, such as the length of a pin and the thickness of the upper cover board 70. FIG.

実施形態に係る伝熱板61によれば、下蓋部Mの上方にさらに上蓋板70を配置して、摩擦攪拌接合を施すことにより、より深い位置に熱媒体用管16を配置させることができる。
[第三実施形態]
次に、第三実施形態に係る伝熱板の製造方法について説明する。図8の(a)は、第三実施形態に係る円板状回転ツールを示した側面図であり、(b)は、第三実施形態に係る仮接合工程を示した側面図である。
第三実施形態では、仮接合工程において、突合部V,Vに対して円板状回転ツールの円周面を接触させる点で第一実施形態と相違する。
According to the heat transfer plate 61 according to the embodiment, the upper cover plate 70 is further disposed above the lower cover portion M, and the heat medium pipe 16 is disposed at a deeper position by performing friction stir welding. Can do.
[Third embodiment]
Next, the manufacturing method of the heat exchanger plate which concerns on 3rd embodiment is demonstrated. FIG. 8A is a side view showing a disk-shaped rotary tool according to the third embodiment, and FIG. 8B is a side view showing a temporary joining step according to the third embodiment.
The third embodiment is different from the first embodiment in that the circumferential surface of the disk-like rotary tool is brought into contact with the abutting portions V 1 and V 2 in the temporary joining step.

図8の(a)に示すように、円板状回転ツール40は、軸の円周方向に回転する軸部41と、軸部41の先端に取り付けられ円柱状を呈する本体部42とを有する。軸部41の一端側は、図示しない駆動源と連結されており、軸部41の円周方向に回転するように形成されている。本体部42の円周面(円筒面)には、全面に亘って鉛直線に対して傾斜するように凹溝43が所定の深さで凹設されている。   As shown to (a) of FIG. 8, the disk-shaped rotation tool 40 has the axial part 41 rotated in the circumferential direction of an axis | shaft, and the main-body part 42 attached to the front-end | tip of the axial part 41, and exhibiting a column shape. . One end side of the shaft portion 41 is connected to a drive source (not shown) and is formed to rotate in the circumferential direction of the shaft portion 41. On the circumferential surface (cylindrical surface) of the main body portion 42, a concave groove 43 is recessed at a predetermined depth so as to be inclined with respect to the vertical line over the entire surface.

仮接合工程では、図8の(b)に示すように、突合部V,Vに対して、回転させた円板状回転ツール40の円周面を押し当てて仮接合を行う。これにより、摩擦熱によってベース部材2と蓋板10とを仮接合することができる。 In the temporary joining step, as shown in FIG. 8B, the circumferential surface of the rotated disk-shaped rotating tool 40 is pressed against the abutting portions V 1 and V 2 to perform temporary joining. Thereby, the base member 2 and the cover plate 10 can be temporarily joined by frictional heat.

なお、円板状回転ツール40の円周面に形成された凹溝43は、本実施形態の形状に限定されるものではない。例えば、鉛直線と平行に凹溝を形成してもよい。   The concave grooves 43 formed on the circumferential surface of the disk-shaped rotating tool 40 are not limited to the shape of the present embodiment. For example, you may form a ditch | groove in parallel with a perpendicular line.

以上、本発明に係る実施形態について説明したが、これに限定されるものではなく本発明の趣旨を逸脱しない範囲において、適宜変更が可能である。例えば、図9は、ピン無し回転ツールの他の形態を示した斜視図である。図9に示すピン無し回転ツール200のように、ツールの端面220に渦巻状の突状体230を設けてもよい。このような形態であっても、好適に仮接合工程を行うことができる。   The embodiment according to the present invention has been described above. However, the present invention is not limited to this, and can be appropriately changed without departing from the spirit of the present invention. For example, FIG. 9 is a perspective view showing another form of the pinless rotary tool. Like the pinless rotating tool 200 shown in FIG. 9, a spiral protrusion 230 may be provided on the end surface 220 of the tool. Even if it is such a form, a temporary joining process can be performed suitably.

第一実施形態に係る伝熱板を示した斜視図である。It is the perspective view which showed the heat exchanger plate which concerns on 1st embodiment. 第一実施形態に係る伝熱板を示した分解断面図である。It is an exploded sectional view showing the heat exchanger plate concerning a first embodiment. 第一実施形態に係る伝熱板を示した断面図である。It is sectional drawing which showed the heat exchanger plate which concerns on 1st embodiment. 第一実施形態に係る回転ツールを示した図であって、(a)は、ピン無し回転ツールを示した斜視図、(b)は、流入攪拌用回転ツールを示した側面図である。It is the figure which showed the rotation tool which concerns on 1st embodiment, Comprising: (a) is the perspective view which showed the rotation tool without a pin, (b) is the side view which showed the rotation tool for inflow stirring. 第一実施形態に係る伝熱板の製造方法を示した断面図であって、(a)は、切削工程を示した図であり、(b)は、熱媒体用管を挿入した挿入工程を示した図であり、(c)は、蓋溝閉塞工程を示した図である。It is sectional drawing which showed the manufacturing method of the heat exchanger plate which concerns on 1st embodiment, (a) is the figure which showed the cutting process, (b) is the insertion process which inserted the pipe | tube for heat media. It is the figure shown, (c) is the figure which showed the cover groove | channel closing process. 第一実施形態に係る伝熱板の製造方法を示した断面図であって、(a)は、仮接合工程を示した図であり、(b)は、流入攪拌工程を示した図である。It is sectional drawing which showed the manufacturing method of the heat exchanger plate which concerns on 1st embodiment, (a) is the figure which showed the temporary joining process, (b) is the figure which showed the inflow stirring process. . (a)は、第二実施形態に係る伝熱板を示した分解断面図であり、(b)は、第二実施形態に係る伝熱板を示した断面図である。(A) is the exploded sectional view showing the heat exchanger plate concerning a second embodiment, and (b) is the sectional view showing the heat exchanger plate concerning a second embodiment. (a)は、第三実施形態に係る円板状回転ツールを示した側面図であり、(b)は、第三実施形態に係る仮接合工程を示した側面図である。(A) is the side view which showed the disk shaped rotation tool which concerns on 3rd embodiment, (b) is the side view which showed the temporary joining process which concerns on 3rd embodiment. ピン無し回転ツールの他の形態を示した斜視図である。It is the perspective view which showed the other form of the rotation tool without a pin. 従来の伝熱板を示した図であって、(a)は、斜視図、(b)は断面図である。It is the figure which showed the conventional heat exchanger plate, Comprising: (a) is a perspective view, (b) is sectional drawing.

符号の説明Explanation of symbols

1 伝熱板
2 ベース部材
5a (蓋溝の)側壁
5b (蓋溝の)側壁
5c (蓋溝の)底面
6 蓋溝
8 凹溝
10 蓋板
11 (蓋板の)上面(表面)
13a (蓋板の)側面
13b (蓋板の)側面
16 熱媒体用管
20 ピン無し回転ツール
25 流入攪拌用回転ツール
40 円板状回転ツール
43 凹溝
61 伝熱板
62 ベース部材
65 上蓋溝
65a (上蓋溝の)側壁
65b (上蓋溝の)側壁
70 上蓋板
73a (上蓋板の)側面
73b (上蓋板の)側面
P 空隙部
Q 塑性流動材
V 突合部
W 塑性化領域
DESCRIPTION OF SYMBOLS 1 Heat-transfer plate 2 Base member 5a Side wall of lid groove 5b Side wall of lid groove 5c Bottom surface of lid groove 6 Lid groove 8 Concave groove 10 Lid plate 11 Upper surface of lid plate 11
13a (Cover plate) side surface 13b (Cover plate) side surface 16 Heat medium tube 20 Pinless rotation tool 25 Inflow stirring rotation tool 40 Disk-shaped rotation tool 43 Concave groove 61 Heat transfer plate 62 Base member 65 Upper cover groove 65a Side wall 65b (of upper lid groove) Side wall 70 Upper lid plate 73a Side surface of upper lid plate 73b Side surface of upper lid plate P Cavity portion Q Plastic fluidizing material V Butting portion W Plasticization region

Claims (11)

ベース部材の表面側に開口する蓋溝の底面に形成された凹溝に、熱媒体用管を挿入する挿入工程と、
前記蓋溝に蓋板を配置する蓋溝閉塞工程と、
ピン無し回転ツールを前記蓋溝の側壁と前記蓋板の側面との突合部に押し当てて、前記突合部に沿って相対移動させて摩擦熱により仮接合を行う仮接合工程と、
前記蓋板の表面で、前記凹溝に沿って流入攪拌用回転ツールを相対移動させて前記熱媒体用管の周囲に形成された空隙部に、摩擦熱によって流動化させた塑性流動材を流入させる流入攪拌工程と、を有することを特徴とする伝熱板の製造方法。
An insertion step of inserting the heat medium pipe into the concave groove formed on the bottom surface of the lid groove opening on the surface side of the base member;
A lid groove closing step of disposing a lid plate in the lid groove;
A temporary joining step in which a pinless rotating tool is pressed against the abutting portion between the side wall of the lid groove and the side surface of the lid plate, and is temporarily moved by frictional heat by relatively moving along the abutting portion;
On the surface of the lid plate, a plastic fluidized material fluidized by frictional heat flows into a gap formed around the heat medium tube by relatively moving the inflow stirring rotary tool along the concave groove. An inflow agitation step for producing a heat transfer plate.
前記仮接合工程では、円周方向に回転する前記ピン無し回転ツールの端面を前記突合部に押し当てて前記突合部に沿って相対移動させて仮接合を行うことを特徴とする請求項1に記載の伝熱板の製造方法。   In the temporary joining step, the end surface of the pinless rotating tool rotating in the circumferential direction is pressed against the abutting portion and relatively moved along the abutting portion to perform temporary joining. The manufacturing method of the heat-transfer board of description. 前記ピン無し回転ツールの端面に、渦巻状の突状体が突設されていることを特徴とする請求項2に記載の伝熱板の製造方法。   The method of manufacturing a heat transfer plate according to claim 2, wherein a spiral protrusion is provided on an end face of the pinless rotating tool. ベース部材の表面側に開口する蓋溝の底面に形成された凹溝に、熱媒体用管を挿入する挿入工程と、
前記蓋溝に蓋板を配置する蓋溝閉塞工程と、
円板状を呈する円板状回転ツールを円周方向に回転させて、前記円板状回転ツールの円周面を前記蓋溝の側壁と前記蓋板の側面との突合部に押し当てて、前記突合部に沿って相対移動させて摩擦熱により仮接合を行う仮接合工程と、
前記蓋板の表面で、前記凹溝に沿って流入攪拌用回転ツールを相対移動させて前記熱媒体用管の周囲に形成された空隙部に、摩擦熱によって流動化させた塑性流動材を流入させる流入攪拌工程と、を有することを特徴とする伝熱板の製造方法。
An insertion step of inserting the heat medium pipe into the concave groove formed on the bottom surface of the lid groove opening on the surface side of the base member;
A lid groove closing step of disposing a lid plate in the lid groove;
Rotate the disk-shaped rotating tool that exhibits a disk shape in the circumferential direction, and press the circumferential surface of the disk-shaped rotating tool against the abutting portion between the side wall of the lid groove and the side surface of the lid plate, A temporary bonding step of performing temporary bonding by frictional heat by relatively moving along the abutting portion;
On the surface of the lid plate, a plastic fluidized material fluidized by frictional heat flows into a gap formed around the heat medium tube by relatively moving the inflow stirring rotary tool along the concave groove. An inflow agitation step for producing a heat transfer plate.
前記円板状回転ツールの円周面に、凹溝が凹設されていることを特徴とする請求項4に記載の伝熱板の製造方法。   The method for manufacturing a heat transfer plate according to claim 4, wherein a concave groove is formed in a circumferential surface of the disk-shaped rotating tool. 前記仮接合工程前に、前記ベース部材及び前記蓋板を脱脂する脱脂工程を行うことを特徴とする請求項1乃至請求項5のいずれか一項に記載の伝熱板の製造方法。   The method for manufacturing a heat transfer plate according to any one of claims 1 to 5, wherein a degreasing step of degreasing the base member and the lid plate is performed before the temporary joining step. 前記仮接合工程前に、前記蓋溝の側壁及び前記蓋板の側面のいずれか一方に対して、前記ベース部材及び前記蓋板よりも低融点の金属でメッキしてメッキ層を設けるメッキ工程を含むことを特徴とする請求項1乃至請求項6のいずれか一項に記載の伝熱板の製造方法。   A plating step of providing a plating layer by plating with a metal having a melting point lower than that of the base member and the lid plate on either the side wall of the lid groove or the side surface of the lid plate before the temporary joining step. The manufacturing method of the heat exchanger plate as described in any one of Claims 1 thru | or 6 characterized by the above-mentioned. 前記仮接合工程において、前記突合部に沿って間欠的に前記ピン無し回転ツール又は円板状回転ツールを押し当てて摩擦熱により仮接合を行うことを特徴とする請求項1乃至請求項7のいずれか一項に記載の伝熱板の製造方法。   8. The temporary joining step according to claim 1, wherein, in the temporary joining step, the pinless rotating tool or the disk-shaped rotating tool is intermittently pressed along the abutting portion to perform temporary joining by frictional heat. 9. The manufacturing method of the heat exchanger plate as described in any one of Claims. 前記流入攪拌工程では、前記流入攪拌用回転ツールの先端を、前記蓋溝の底面よりも深く挿入することを特徴とする請求項1乃至請求項8のいずれか一項に記載の伝熱板の製造方法。   The heat transfer plate according to any one of claims 1 to 8, wherein in the inflow stirring step, a tip of the inflow stirring rotary tool is inserted deeper than a bottom surface of the lid groove. Production method. 前記流入攪拌工程では、前記仮接合工程で形成された塑性化領域を前記流入攪拌用回転ツールによって攪拌することを特徴とする請求項1乃至請求項9のいずれか一項に記載の伝熱板の製造方法。   The heat transfer plate according to any one of claims 1 to 9, wherein, in the inflow stirring step, the plasticized region formed in the temporary joining step is stirred by the inflow stirring rotary tool. Manufacturing method. 前記流入攪拌工程後に、前記ベース部材の前記蓋溝よりも表面側に、前記蓋溝よりも幅広に形成された上蓋溝に前記蓋板を覆う上蓋板を配置する上蓋溝閉塞工程と、前記上蓋溝の側壁と、前記上蓋板の側面との突合部に沿って接合用回転ツールを相対移動させて、前記ベース部材と前記上蓋板との摩擦攪拌を行う上蓋接合工程を含むことを特徴とする請求項1乃至請求項10のいずれか一項に記載の伝熱板の製造方法。   After the inflow stirring step, an upper lid groove closing step of disposing an upper lid plate covering the lid plate on an upper lid groove formed wider than the lid groove on the surface side of the lid groove of the base member; Including a top lid joining step of performing frictional stirring between the base member and the top lid plate by relatively moving the rotary tool for joining along the abutting portion between the side wall of the top lid groove and the side surface of the top lid plate. The manufacturing method of the heat exchanger plate as described in any one of Claims 1 thru | or 10 characterized by the above-mentioned.
JP2008156348A 2008-06-16 2008-06-16 Manufacturing method of heat transfer plate Active JP4962423B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008156348A JP4962423B2 (en) 2008-06-16 2008-06-16 Manufacturing method of heat transfer plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008156348A JP4962423B2 (en) 2008-06-16 2008-06-16 Manufacturing method of heat transfer plate

Publications (2)

Publication Number Publication Date
JP2009297761A JP2009297761A (en) 2009-12-24
JP4962423B2 true JP4962423B2 (en) 2012-06-27

Family

ID=41545203

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008156348A Active JP4962423B2 (en) 2008-06-16 2008-06-16 Manufacturing method of heat transfer plate

Country Status (1)

Country Link
JP (1) JP4962423B2 (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102085598B (en) * 2009-12-03 2015-10-14 鸿富锦精密工业(深圳)有限公司 Friction stirring connecting method
KR20120085920A (en) 2009-12-25 2012-08-01 미쓰이 가가쿠 가부시키가이샤 Polarizing diffusion film, production method therefor, and liquid crystal display device comprising polarizing diffusion film
CN102626824A (en) * 2012-04-28 2012-08-08 沈阳航空航天大学 Friction stir welding process for preparing high-performance aluminum alloy sheet
JP5754431B2 (en) * 2012-10-10 2015-07-29 日本軽金属株式会社 Heat sink manufacturing method and heat transfer plate manufacturing method
JP2014094409A (en) 2012-10-10 2014-05-22 Nippon Light Metal Co Ltd Method of producing heat exchanger plate and friction agitation joining method
JP6274257B2 (en) * 2012-10-10 2018-02-07 日本軽金属株式会社 Manufacturing method of heat transfer plate and manufacturing method of composite plate having no flow path inside
JP2019058933A (en) 2017-09-27 2019-04-18 日本軽金属株式会社 Manufacturing method of liquid-cooled jacket
JP2019058934A (en) 2017-09-27 2019-04-18 日本軽金属株式会社 Manufacturing method of liquid-cooled jacket
JP6769427B2 (en) 2017-12-18 2020-10-14 日本軽金属株式会社 How to manufacture a liquid-cooled jacket
JP6927128B2 (en) 2018-04-02 2021-08-25 日本軽金属株式会社 How to manufacture a liquid-cooled jacket
JP2019181473A (en) 2018-04-02 2019-10-24 日本軽金属株式会社 Liquid-cooled jacket manufacturing method
JP2020032429A (en) * 2018-08-27 2020-03-05 日本軽金属株式会社 Heat exchanger plate manufacturing method
JP7070389B2 (en) 2018-12-19 2022-05-18 日本軽金属株式会社 Joining method
JP7322748B2 (en) * 2020-02-26 2023-08-08 日本軽金属株式会社 Composite structure manufacturing method
JP7322749B2 (en) * 2020-02-26 2023-08-08 日本軽金属株式会社 Composite structure manufacturing method

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5890387A (en) * 1981-11-20 1983-05-30 Toshiba Mach Co Ltd Method and apparatus for friction pressure welding
JP3818084B2 (en) * 2000-12-22 2006-09-06 日立電線株式会社 Cooling plate and manufacturing method thereof, and sputtering target and manufacturing method thereof
JP4126966B2 (en) * 2002-06-10 2008-07-30 株式会社日立製作所 Bonding structure of main body and lid
JP4325260B2 (en) * 2003-04-15 2009-09-02 日本軽金属株式会社 Manufacturing method of heat transfer element
JP4305273B2 (en) * 2004-05-11 2009-07-29 日本軽金属株式会社 Manufacturing method of heat exchange plate and manufacturing method of heat exchanger
JP4808949B2 (en) * 2004-10-12 2011-11-02 助川電気工業株式会社 Method for manufacturing a heating element having an embedded heater

Also Published As

Publication number Publication date
JP2009297761A (en) 2009-12-24

Similar Documents

Publication Publication Date Title
JP4962423B2 (en) Manufacturing method of heat transfer plate
JP5163419B2 (en) Manufacturing method of heat transfer plate
JP5262822B2 (en) Manufacturing method of liquid cooling jacket
KR101411143B1 (en) Method of producing heat transfer plate and heat transfer plate
WO2010041529A1 (en) Method of manufacturing heat transfer plate
JP5440676B2 (en) Heat transfer plate manufacturing method and heat transfer plate
WO2017033923A1 (en) Bonding method, liquid cooling jacket production method, and liquid cooling jacket
WO2009142070A1 (en) Method for producing heat exchanger plate, and heat exchanger plate
KR20150034223A (en) Method for producing heat exchanger plate and method for friction stir welding
JP2020032429A (en) Heat exchanger plate manufacturing method
JP5573973B2 (en) Manufacturing method of liquid cooling jacket
JP5012339B2 (en) Heat transfer plate manufacturing method and heat transfer plate
JP5141487B2 (en) Manufacturing method of heat transfer plate
JP5195098B2 (en) Manufacturing method of heat transfer plate
JP2010140951A (en) Method of manufacturing liquid-cooled jacket and frictional agitation bonding method
JP4888422B2 (en) Heat transfer plate manufacturing method and heat transfer plate
JP5071132B2 (en) Manufacturing method of heat transfer plate
JP6828675B2 (en) How to manufacture a liquid-cooled jacket
JP5071144B2 (en) Manufacturing method of heat transfer plate
JP6617834B2 (en) Manufacturing method of heat transfer plate
JP2017159351A (en) Manufacturing method of liquid-cooled jacket
JP5125760B2 (en) Heat transfer plate manufacturing method and heat transfer plate
JP6365752B2 (en) Heat transfer plate manufacturing method and heat transfer plate
JP5071249B2 (en) Heat transfer plate manufacturing method and heat transfer plate
JP5071274B2 (en) Heat transfer plate manufacturing method and heat transfer plate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100818

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120228

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120312

R150 Certificate of patent or registration of utility model

Ref document number: 4962423

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150406

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350