JP7322748B2 - Composite structure manufacturing method - Google Patents

Composite structure manufacturing method Download PDF

Info

Publication number
JP7322748B2
JP7322748B2 JP2020030244A JP2020030244A JP7322748B2 JP 7322748 B2 JP7322748 B2 JP 7322748B2 JP 2020030244 A JP2020030244 A JP 2020030244A JP 2020030244 A JP2020030244 A JP 2020030244A JP 7322748 B2 JP7322748 B2 JP 7322748B2
Authority
JP
Japan
Prior art keywords
metal member
composite structure
friction
manufacturing
pin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020030244A
Other languages
Japanese (ja)
Other versions
JP2021133386A (en
Inventor
久司 堀
知広 河本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Light Metal Co Ltd
Original Assignee
Nippon Light Metal Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Light Metal Co Ltd filed Critical Nippon Light Metal Co Ltd
Priority to JP2020030244A priority Critical patent/JP7322748B2/en
Publication of JP2021133386A publication Critical patent/JP2021133386A/en
Application granted granted Critical
Publication of JP7322748B2 publication Critical patent/JP7322748B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T30/00Transportation of goods or passengers via railways, e.g. energy recovery or reducing air resistance

Description

本発明は、複合構造体の製造方法に関する。 The present invention relates to a method of manufacturing a composite structure.

特許文献1には、複合スラブ(複合構造体)の製造方法が開示されている。当該複合構造体の製造方法では、箱型の第一金属部材の凹部に第二金属部材を配置して、両者を摩擦攪拌接合することで複合構造体を形成している。 Patent Literature 1 discloses a method for manufacturing a composite slab (composite structure). In the manufacturing method of the composite structure, the composite structure is formed by arranging the second metal member in the concave portion of the box-shaped first metal member and friction stir welding them.

特開2019-214193号公報JP 2019-214193 A

板厚が数ミリ程度の第一金属部材を用いて比較的薄い複合構造体を形成する場合がある。このような場合には、成形性を考慮すると金属板をプレス成形して箱型の第一金属部材を成形することが好ましい。しかし、プレス成形であるとスプリングバックが発生するため、第一金属部材ひいては複合構造体を所望の形状に形成することが困難となっている。 A relatively thin composite structure may be formed using a first metal member having a thickness of several millimeters. In such a case, it is preferable to form the box-shaped first metal member by press-molding a metal plate in consideration of formability. However, press molding causes springback, which makes it difficult to form the first metal member, and thus the composite structure, into a desired shape.

例えば、複合構造体を構成する第一金属部材の底部と周壁部とのなす角度を直角にしたい場合、プレス成形後にスプリングバックによって周壁部が外側に傾倒してしまう。また、摩擦攪拌接合中の摩擦熱による軟化や回転ツールの押圧力に起因して、周壁部が外側に傾倒することも起こり得る。特に、プレス成形であると、底部と周壁部との角部は厳密には丸く屈曲するため、第一金属部材の底部の裏面と周壁部の外周面との角部を面同士で直角にすることは極めて難しい。 For example, when it is desired to make the angle formed by the bottom portion of the first metal member constituting the composite structure and the peripheral wall portion a right angle, the peripheral wall portion tilts outward due to springback after press molding. In addition, the peripheral wall may tilt outward due to softening due to frictional heat during friction stir welding or the pressing force of the rotating tool. In particular, in the case of press molding, the corners of the bottom and the peripheral wall are strictly rounded, so the corners of the back surface of the bottom of the first metal member and the outer peripheral surface of the peripheral wall are made to be perpendicular to each other. is extremely difficult.

また、例えば、複合構造体を構成する第一金属部材の底部と周壁部とのなす角度を鋭角にしたい場合、型抜きの関係上プレス成形で第一金属部材を成形することができない。これにより、第一金属部材の底部と周壁部とのなす角度が鋭角(アンダーカット)となる複合構造体を形成することは困難となっている。 Further, for example, when it is desired to form an acute angle between the bottom portion and the peripheral wall portion of the first metal member that constitutes the composite structure, the first metal member cannot be formed by press molding due to die cutting. This makes it difficult to form a composite structure in which the angle between the bottom portion of the first metal member and the peripheral wall portion is an acute angle (undercut).

このような観点から、本発明は複合構造体を構成する第一金属部材の底部と周壁部とのなす角度を容易に直角又は鋭角にすることができる複合構造体の製造方法を提供することを課題とする。 From this point of view, the present invention aims to provide a method of manufacturing a composite structure that can easily form a right angle or an acute angle between the bottom portion of the first metal member and the peripheral wall portion that constitute the composite structure. Make it an issue.

このような課題を解決するために本発明は、摩擦攪拌を行って複合構造体を製造する複合構造体の製造方法であって、底部と前記底部の周縁部から立ち上がる枠状の周壁部とで構成される凹部を有し、前記周壁部の端部から外側に張り出すフランジ部を備える第一金属部材と、前記第一金属部材の前記凹部に配置される第二金属部材と、を準備する準備工程と、前記第一金属部材の凹部に前記第二金属部材を載置して前記第一金属部材の周壁部の内周面と、前記第二金属部材の外周面とを突き合わせて第一突合せ部を形成する載置工程と、回転する回転ツールを用いて前記第一突合せ部を摩擦攪拌接合する第一突合せ部接合工程と、前記第二金属部材の表面から回転する回転ツールを挿入しつつ前記第一突合せ部に沿って当該回転ツールを相対移動させ、前記第一金属部材の裏側に配置された成形型の成形面に前記第一金属部材の周壁部を押し付けて賦形する摩擦成形工程と、を含み、前記摩擦成形工程では、前記成形型の成形面の底面と内周面とのなす角度を直角又は鋭角に形成することを特徴とする。 In order to solve such problems, the present invention provides a method for manufacturing a composite structure by performing friction stir, wherein a bottom portion and a frame-shaped peripheral wall portion rising from the peripheral edge portion of the bottom portion are provided. A first metal member having a concave portion and a flange portion protruding outward from an end portion of the peripheral wall portion, and a second metal member arranged in the concave portion of the first metal member are prepared. a preparation step, placing the second metal member in the concave portion of the first metal member, and abutting the inner peripheral surface of the peripheral wall portion of the first metal member against the outer peripheral surface of the second metal member to form the first A placing step of forming a butt portion, a first butt portion joining step of performing friction stir welding of the first butt portion using a rotating rotating tool, and inserting the rotating rotating tool from the surface of the second metal member. Friction molding in which the rotating tool is relatively moved along the first abutting portion while pressing the peripheral wall portion of the first metal member against the molding surface of the mold arranged on the back side of the first metal member. and, in the friction molding step, the angle formed by the bottom surface of the molding surface of the mold and the inner peripheral surface of the mold is formed at a right angle or an acute angle.

かかる製造方法によれば、直角又は鋭角となっている成形型の成形面に第一金属部材の周壁部を押し付けて賦形する摩擦成形工程を行うことで、複合構造体を構成する第一金属部材の底部と周壁部とのなす角度を容易に直角又は鋭角にすることができる。また、摩擦攪拌の摩擦熱によって第一金属部材及び第二金属部材が軟化するため、容易に賦形することができる。 According to this manufacturing method, the first metal member constituting the composite structure is formed by performing a friction molding step in which the peripheral wall portion of the first metal member is pressed against the molding surface of the mold having a right angle or an acute angle to form the shape. The angle formed by the bottom portion of the member and the peripheral wall portion can be easily made a right angle or an acute angle. In addition, since the first metal member and the second metal member are softened by the frictional heat of friction stirring, they can be easily shaped.

また、前記摩擦成形工程では、回転ツールの攪拌ピンの外周面を前記成形面の前記内周面と平行にすることが好ましい。 Further, in the friction molding step, it is preferable that the outer peripheral surface of the stirring pin of the rotating tool is parallel to the inner peripheral surface of the molding surface.

かかる製造方法によれば、成形面の内周面に周壁部を高さ方向に均一に押圧することができるため、より的確に賦形することができる。 According to this manufacturing method, the peripheral wall portion can be uniformly pressed against the inner peripheral surface of the molding surface in the height direction, so that the shape can be formed more accurately.

また、前記準備工程では、前記第一金属部材の硬度を、前記第二金属部材の硬度よりも高く設定し、前記第一突合せ部接合工程では、第二金属部材の表面から回転する回転ツールを挿入し、当該回転ツールの攪拌ピンを前記第一金属部材にわずかに接触させた状態で摩擦攪拌を行うことが好ましい。 Further, in the preparation step, the hardness of the first metal member is set higher than that of the second metal member, and in the first butt portion joining step, a rotating tool that rotates from the surface of the second metal member is used. It is preferable to perform friction stir while inserting the rotating tool and slightly contacting the stirring pin of the rotating tool with the first metal member.

かかる製造方法によれば、主として第二金属部材と回転ツールとの摩擦攪拌によって第一突合せ部を接合することができる。これにより、硬度の大きい第一金属部材の金属が、第二金属部材に混入し難くなるため、材種の異なる金属同士の摩擦攪拌に起因する接合不良を防ぐことができる。 According to this manufacturing method, the first abutting portion can be joined mainly by friction stir between the second metal member and the rotating tool. This makes it difficult for the metal of the first metal member, which has a high hardness, to mix with the second metal member, thereby preventing defective joining caused by friction stir between metals of different types.

また、前記載置工程では、前記第一金属部材の底部の表面と、前記第二金属部材の裏面とを重ね合わせて重合部を形成し、前記第一突合せ部接合工程を行う前に、前記第二金属部材の表面から回転する回転ツールを挿入し、当該回転ツールの攪拌ピンのみを前記第二金属部材のみ、又は前記第一金属部材及び前記第二金属部材に接触させた状態で摩擦攪拌によって前記重合部を接合する重合部接合工程を含むことが好ましい。 In addition, in the placing step, the surface of the bottom portion of the first metal member and the back surface of the second metal member are overlapped to form an overlapping portion, and before performing the first butt portion joining step, the A rotary tool that rotates is inserted from the surface of the second metal member, and only the stirring pin of the rotary tool is brought into contact with the second metal member or the first metal member and the second metal member, and friction stir is performed. It is preferable to include a step of joining the overlapping portions by joining the overlapping portions.

かかる製造方法によれば、重合部を接合することができるため複合構造体の強度を高めることができる。また、第一突合せ部接合工程において、第一金属部材と第二金属部材の位置ずれを防ぐことができる。 According to this manufacturing method, the strength of the composite structure can be increased because the overlapped portion can be joined. In addition, it is possible to prevent positional deviation between the first metal member and the second metal member in the step of joining the first butt portion.

また、前記重合部接合工程では、前記第二金属部材の表面の中央部に回転ツールを挿入し、前記中央部から外側に向けて平面視で螺旋状の連続的な軌跡を描くように相対移動させて前記重合部の全体を摩擦攪拌することが好ましい。 In addition, in the overlapping portion joining step, a rotating tool is inserted into the central portion of the surface of the second metal member, and relatively moved outward from the central portion so as to draw a continuous spiral trajectory in a plan view. It is preferable to friction stir the entirety of the polymerization portion.

かかる製造方法によれば、重合部の全体を容易に接合することができる。また、中央部から外側に回転ツールを螺旋状に移動させることで、第一金属部材及び第二金属部材にシワが発生するのを防ぐことができる。 According to this manufacturing method, the entire overlapped portion can be easily joined. Further, by spirally moving the rotary tool outward from the central portion, it is possible to prevent wrinkles from occurring in the first metal member and the second metal member.

また、前記重合部接合工程及び前記第一突合せ部接合工程は、一の回転ツールを用いて連続して行うことが好ましい。 Moreover, it is preferable that the overlapped portion joining step and the first butt portion joining step are continuously performed using one rotary tool.

かかる製造方法によれば、回転ツールを工程ごとに交換する必要がなくなるため、接合サイクルを早くすることができる。 According to this manufacturing method, since it is not necessary to replace the rotary tool for each process, the joining cycle can be shortened.

また、前記第一突合せ部接合工程では、基端側ピンと、先端側ピンとを備え、前記基端側ピンのテーパー角度を前記先端側ピンのテーパー角度よりも大きく設定するとともに、前記基端側ピンの外周面に階段状の段差部を形成した回転ツールを使用し、前記基端側ピンの外周面を前記第二金属部材の表面に接触させた状態で摩擦攪拌を行うことが好ましい。 In addition, in the first butt portion joining step, a proximal side pin and a distal side pin are provided, the taper angle of the proximal side pin is set larger than the taper angle of the distal side pin, and the proximal side pin It is preferable to use a rotating tool having a stepped portion formed on the outer peripheral surface of the base end side pin, and perform friction stir while the outer peripheral surface of the proximal pin is in contact with the surface of the second metal member.

かかる製造方法によれば、第一突合せ部接合工程において基端側ピンの外周面で塑性流動材を押さえることができるため、バリの発生を抑制することができる。 According to this manufacturing method, since the plastic flow material can be pressed by the outer peripheral surface of the base end pin in the step of joining the first butt portion, it is possible to suppress the occurrence of burrs.

また、前記第一突合せ部接合工程では、ショルダ部と前記ショルダ部の底面から垂下する攪拌ピンとを備えた回転ツールを使用し、前記ショルダ部の底面を前記第二金属部材の表面に接触させた状態で摩擦攪拌を行うことが好ましい。 In addition, in the first butt portion joining step, a rotary tool having a shoulder portion and an agitating pin hanging down from the bottom surface of the shoulder portion is used to bring the bottom surface of the shoulder portion into contact with the surface of the second metal member. Friction stirring is preferably performed in this state.

かかる製造方法によれば、第一突合せ部接合工程においてショルダ部の底面で塑性流動材を押さえることができるため、バリの発生を抑制することができる。 According to this manufacturing method, since the plastic flow material can be pressed by the bottom surface of the shoulder portion in the step of joining the first butt portion, it is possible to suppress the occurrence of burrs.

また、前記載置工程では、前記第一金属部材に前記第二金属部材を載置した際に、前記第二金属部材の表面が、前記第一金属部材の前記フランジ部の表面と同一か、若しくは前記フランジ部の表面よりも高い位置となるように前記第二金属部材の厚みを設定することが好ましい。 Further, in the placing step, when the second metal member is placed on the first metal member, whether the surface of the second metal member is the same as the surface of the flange portion of the first metal member, Alternatively, it is preferable to set the thickness of the second metal member so as to be higher than the surface of the flange portion.

かかる製造方法によれば、第一突合せ部の接合部が金属不足となるのを防ぐことができる。 According to this manufacturing method, it is possible to prevent metal shortage in the joint portion of the first butt portion.

また、前記第一突合せ部接合工程及び前記摩擦成形工程は、一の回転ツールで同時に行うことが好ましい。 Moreover, it is preferable that the step of joining the first butt portion and the step of friction molding be performed simultaneously with one rotary tool.

かかる製造方法によれば、各工程を同時に行うことができるため、接合サイクルを早くすることができる。また、回転ツールを工程ごとに交換する必要がなくなるため、接合サイクルを早くすることができる。 According to this manufacturing method, each step can be performed simultaneously, so that the bonding cycle can be shortened. In addition, since there is no need to replace the rotary tool for each process, the joining cycle can be shortened.

本発明に係る複合構造体の製造方法によれば、第一金属部材の底部と周壁部とのなす角度を容易に直角又は鋭角にすることができる。 According to the method for manufacturing a composite structure according to the present invention, the angle formed by the bottom portion of the first metal member and the peripheral wall portion can be easily made a right angle or an acute angle.

本発明の実施形態に係る第一回転ツールを示す側面図である。It is a side view which shows the 1st rotation tool which concerns on embodiment of this invention. 第一回転ツールの拡大断面図である。It is an enlarged cross-sectional view of the first rotary tool. 第一回転ツールの第一変形例を示す断面図である。It is a sectional view showing the first modification of the first rotating tool. 第一回転ツールの第二変形例を示す断面図である。It is a cross-sectional view showing a second modification of the first rotating tool. 第一回転ツールの第三変形例を示す断面図である。It is a cross-sectional view showing a third modification of the first rotating tool. 本発明の第一実施形態に係る複合構造体を示す斜視図である。1 is a perspective view showing a composite structure according to a first embodiment of the invention; FIG. 第一実施形態に係る複合構造体を示す断面図である。1 is a cross-sectional view showing a composite structure according to a first embodiment; FIG. 第一実施形態に係る複合構造体の製造方法の準備工程及び載置工程を示す断面図である。FIG. 4A is a cross-sectional view showing a preparation step and a placement step of the manufacturing method of the composite structure according to the first embodiment; 第一実施形態に係る複合構造体の製造方法の重合部接合工程を示す平面図である。FIG. 4 is a plan view showing a step of joining overlapping portions in the method for manufacturing a composite structure according to the first embodiment; 第一実施形態に係る複合構造体の製造方法の重合部接合工程を示す断面図である。FIG. 4 is a cross-sectional view showing a step of joining overlapping portions in the method for manufacturing a composite structure according to the first embodiment; 第一実施形態に係る複合構造体の製造方法の第一突合せ部接合工程を示す平面図である。FIG. 4 is a plan view showing a first butt joint joining step in the method for manufacturing a composite structure according to the first embodiment; 第一実施形態に係る複合構造体の製造方法の第一突合せ部接合工程を示す断面図である。FIG. 4 is a cross-sectional view showing a first butt joint joining step in the method for manufacturing a composite structure according to the first embodiment; 第一実施形態に係る複合構造体の製造方法の摩擦成形工程を示す平面図である。FIG. 4 is a plan view showing a friction molding step in the method for manufacturing a composite structure according to the first embodiment; 第一実施形態に係る複合構造体の製造方法の摩擦成形工程を示す断面図である。FIG. 4 is a cross-sectional view showing a friction molding step in the method for manufacturing a composite structure according to the first embodiment; 本発明の第二実施形態に係る複合構造体の製造方法の準備工程及び載置工程を示す断面図である。FIG. 4A is a cross-sectional view showing a preparation step and a placement step of a method for manufacturing a composite structure according to a second embodiment of the present invention; 第二実施形態に係る複合構造体の製造方法の重合部接合工程を示す平面図である。FIG. 10 is a plan view showing a step of joining overlapping portions in the method for manufacturing a composite structure according to the second embodiment; 第二実施形態に係る複合構造体の製造方法の重合部接合工程を示す断面図である。FIG. 10 is a cross-sectional view showing a step of joining overlapping portions in a method for manufacturing a composite structure according to a second embodiment; 第二実施形態に係る複合構造体の製造方法の第一突合せ部接合工程を示す平面図である。FIG. 11 is a plan view showing a first butt joint joining step in the method for manufacturing a composite structure according to the second embodiment; 第二実施形態に係る複合構造体の製造方法の第一突合せ部接合工程を示す断面図である。FIG. 10 is a cross-sectional view showing a first butt joint joining step in the method for manufacturing a composite structure according to the second embodiment; 第二実施形態に係る複合構造体の製造方法の摩擦成形工程を示す平面図である。FIG. 10 is a plan view showing a friction molding step in the method for manufacturing a composite structure according to the second embodiment; 第二実施形態に係る複合構造体の製造方法の摩擦成形工程を示す断面図である。FIG. 10 is a cross-sectional view showing a friction molding step of the method for manufacturing a composite structure according to the second embodiment; 変形例1に係る複合構造体の製造方法の準備工程及び載置工程を示す断面図である。10A and 10B are cross-sectional views showing a preparation step and a placing step of a method for manufacturing a composite structure according to Modification 1; 変形例1に係る複合構造体の製造方法の重合部接合工程を示す断面図である。FIG. 10 is a cross-sectional view showing a step of joining overlapping portions in a method for manufacturing a composite structure according to Modification 1; 変形例1に係る複合構造体の製造方法の第一突合せ部接合工程を示す断面図である。FIG. 10 is a cross-sectional view showing a first butt joint joining step in the method for manufacturing a composite structure according to Modification 1; 変形例2に係る複合構造体の製造方法の摩擦成形工程を示す断面図である。FIG. 10 is a cross-sectional view showing a friction molding step of a method for manufacturing a composite structure according to Modification 2; 変形例2に係る複合構造体の製造方法の摩擦成形工程後を示す断面図である。FIG. 10 is a cross-sectional view showing the method for manufacturing a composite structure according to Modification 2 after the friction molding step; 本発明の第三実施形態に係る複合構造体を示す断面図である。FIG. 4 is a cross-sectional view showing a composite structure according to a third embodiment of the invention; 第三実施形態に係る複合構造体の製造方法の準備工程及び載置工程を示す断面図である。FIG. 10 is a cross-sectional view showing a preparation step and a placement step of the manufacturing method of the composite structure according to the third embodiment; 第三実施形態に係る複合構造体の製造方法の重合部接合工程を示す断面図である。FIG. 10 is a cross-sectional view showing a step of joining overlapping portions in a method for manufacturing a composite structure according to the third embodiment; 第三実施形態に係る複合構造体の製造方法の第一突合せ部接合工程を示す断面図である。FIG. 11 is a cross-sectional view showing a first butt joint joining step in the method for manufacturing a composite structure according to the third embodiment; 第三実施形態に係る複合構造体の製造方法の摩擦成形工程を示す断面図である。FIG. 10 is a cross-sectional view showing a friction molding step of the method for manufacturing a composite structure according to the third embodiment; 本発明の第四実施形態に係る複合構造体の製造方法の準備工程及び載置工程を示す断面図である。FIG. 10 is a cross-sectional view showing a preparation step and a placement step of a method for manufacturing a composite structure according to a fourth embodiment of the present invention; 第四実施形態に係る複合構造体の製造方法の重合部接合工程を示す断面図である。FIG. 11 is a cross-sectional view showing a step of joining overlapping portions in a method for manufacturing a composite structure according to a fourth embodiment; 第四実施形態に係る複合構造体の製造方法の第一突合せ部接合工程を示す断面図である。FIG. 10 is a cross-sectional view showing a first butt joint joining step in the method for manufacturing a composite structure according to the fourth embodiment; 第四実施形態に係る複合構造体の製造方法の摩擦成形工程を示す断面図である。FIG. 11 is a cross-sectional view showing a friction molding step of a method for manufacturing a composite structure according to the fourth embodiment;

本発明の実施形態について、適宜図面を参照しながら説明する。本発明は以下の実施形態及び変形例のみに限定されるものではない。また、実施形態及び変形例における各構成要素は、一部又は全部を他の実施形態、変形例と適宜組み合わせることができる。 Embodiments of the present invention will be described with reference to the drawings as appropriate. The present invention is not limited only to the following embodiments and modifications. In addition, each component in the embodiment and modifications can be appropriately combined in whole or in part with other embodiments and modifications.

まずは、本実施形態に係る複合構造体の製造方法で用いる第一回転ツールについて説明する。図1に示すように、第一回転ツールFは、例えば工具鋼で形成されており、基軸部F1と、基端側ピンF2と、先端側ピンF3とを備えている。基端側ピンF2及び先端側ピンF3で「攪拌ピン」を構成している。基軸部F1は、円柱状を呈し、摩擦攪拌装置の主軸に接続される部位である。 First, the first rotating tool used in the method for manufacturing a composite structure according to this embodiment will be described. As shown in FIG. 1, the first rotating tool F is made of tool steel, for example, and includes a base shaft portion F1, a proximal pin F2, and a distal pin F3. The proximal pin F2 and the distal pin F3 constitute a "stirring pin". The base shaft portion F1 has a cylindrical shape and is a portion connected to the main shaft of the friction stirrer.

基端側ピンF2は、基軸部F1に連続し、先端に向けて先細りになっている。基端側ピンF2は、円錐台形状を呈する。基端側ピンF2のテーパー角度Aは適宜設定すればよいが、例えば、135~160°になっている。テーパー角度Aが135°未満であるか、又は、160°を超えると摩擦攪拌後の接合表面粗さが大きくなる。テーパー角度Aは、後記する先端側ピンF3のテーパー角度Bよりも大きくなっている。図2に示すように、基端側ピンF2の外周面F5には、階段状のピン段差部F21が高さ方向の全体に亘って形成されている。ピン段差部F21は、右回り又は左回りで螺旋状に形成されている。つまり、ピン段差部F21は、平面視して螺旋状であり、側面視すると階段状になっている。例えば、第一回転ツールFを右回転させる場合、ピン段差部F21は基端側から先端側に向けて左回りに設定する。 The base end pin F2 is continuous with the base shaft portion F1 and tapers toward the tip. The proximal pin F2 has a truncated cone shape. The taper angle A of the proximal pin F2 may be set appropriately, and is, for example, 135 to 160°. If the taper angle A is less than 135° or exceeds 160°, the joint surface roughness after friction stir increases. The taper angle A is larger than the taper angle B of the distal pin F3, which will be described later. As shown in FIG. 2, a stepped pin stepped portion F21 is formed over the entire height direction on the outer peripheral surface F5 of the proximal pin F2. The pin stepped portion F21 is spirally formed clockwise or counterclockwise. That is, the pin stepped portion F21 has a spiral shape when viewed from above, and has a stepped shape when viewed from the side. For example, when rotating the first rotary tool F to the right, the pin stepped portion F21 is set to rotate counterclockwise from the base end side toward the tip end side.

なお、第一回転ツールFを左回転させる場合は、ピン段差部F21を基端側から先端側に向けて右回りに設定することが好ましい。これにより、ピン段差部F21によって塑性流動材が先端側に導かれるため、被接合金属部材の外部に溢れ出る金属を低減することができる。ピン段差部F21は、段差底面F21aと、段差側面F21bとで構成されている。隣り合うピン段差部F21の各頂点F21c,F21cの距離X1(水平方向距離)は、後記する段差角度C及び段差側面F21bの高さY1に応じて適宜設定される。 In addition, when rotating the first rotating tool F to the left, it is preferable to set the pin stepped portion F21 clockwise from the proximal side to the distal side. As a result, the plastic flow material is guided to the tip end side by the pin stepped portion F21, so that the amount of metal overflowing to the outside of the metal members to be joined can be reduced. The pin step portion F21 is composed of a step bottom surface F21a and a step side surface F21b. The distance X1 (horizontal distance) between the vertices F21c, F21c of the adjacent pin stepped portions F21 is appropriately set according to the step angle C and the height Y1 of the step side face F21b, which will be described later.

段差側面F21bの高さY1は適宜設定すればよいが、例えば、0.1~0.4mmで設定されている。高さY1が0.1mm未満であると接合表面粗さが大きくなる。一方、高さY1が0.4mmを超えると接合表面粗さが大きくなる傾向があるとともに、有効段差部数(被接合金属部材と接触しているピン段差部F21の数)も減少する。 The height Y1 of the stepped side surface F21b may be set as appropriate, and is set to 0.1 to 0.4 mm, for example. If the height Y1 is less than 0.1 mm, the joint surface roughness becomes large. On the other hand, when the height Y1 exceeds 0.4 mm, the joint surface roughness tends to increase, and the number of effective stepped portions (the number of pin stepped portions F21 in contact with the metal members to be joined) also decreases.

段差底面F21aと段差側面F21bとでなす段差角度Cは適宜設定すればよいが、例えば、85~120°で設定されている。段差底面F21aは、本実施形態では水平面と平行になっている。段差底面F21aは、ツールの回転軸から外周方向に向かって水平面に対して-5°~15°内の範囲で傾斜していてもよい(マイナスは水平面に対して下方、プラスは水平面に対して上方)。距離X1、段差側面F21bの高さY1、段差角度C及び水平面に対する段差底面F21aの角度は、摩擦攪拌を行う際に、塑性流動材がピン段差部F21の内部に滞留して付着することなく外部に抜けるとともに、段差底面F21aで塑性流動材を押えて接合表面粗さを小さくすることができるように適宜設定する。 The step angle C between the step bottom surface F21a and the step side surface F21b may be set appropriately, but is set to 85 to 120°, for example. The stepped bottom surface F21a is parallel to the horizontal plane in this embodiment. The stepped bottom surface F21a may be inclined in the range of −5° to 15° with respect to the horizontal plane toward the outer peripheral direction from the rotation axis of the tool (minus is downward with respect to the horizontal plane, plus is with respect to the horizontal plane above). The distance X1, the height Y1 of the stepped side surface F21b, the stepped angle C, and the angle of the stepped bottom surface F21a with respect to the horizontal plane are set so that the plastic flow material does not stay inside the pin stepped portion F21 and adhere to the outside when performing friction stir. In addition, the step bottom F21a presses the plastic flow material to reduce the joint surface roughness.

図1に示すように、先端側ピンF3は、基端側ピンF2に連続して形成されている。先端側ピンF3は円錐台形状を呈する。先端側ピンF3の先端は回転軸に対して垂直な先端面F4になっている。先端側ピンF3のテーパー角度Bは、基端側ピンF2のテーパー角度Aよりも小さくなっている。図2に示すように、先端側ピンF3の外周面F6には、螺旋溝F31が刻設されている。螺旋溝F31は、右回り、左回りのどちらでもよいが、第一回転ツールFを右回転させる場合、基端側から先端側に向けて左回りに設定する。 As shown in FIG. 1, the distal pin F3 is formed continuously with the proximal pin F2. The distal pin F3 has a truncated cone shape. The tip of the tip side pin F3 is a tip face F4 perpendicular to the rotation axis. A taper angle B of the distal pin F3 is smaller than a taper angle A of the proximal pin F2. As shown in FIG. 2, a spiral groove F31 is engraved on the outer peripheral surface F6 of the distal pin F3. The spiral groove F31 may be either clockwise or counterclockwise, but when the first rotating tool F is rotated clockwise, it is set counterclockwise from the proximal side to the distal side.

なお、第一回転ツールFを左回転させる場合は、螺旋溝F31を基端側から先端側に向けて右回りに設定することが好ましい。これにより、螺旋溝F31によって塑性流動材が先端側に導かれるため、被接合金属部材の外部に溢れ出る金属を低減することができる。螺旋溝F31は、螺旋底面F31aと、螺旋側面F31bとで構成されている。隣り合う螺旋溝F31の頂点F31c,F31cの距離(水平方向距離)を長さX2とする。螺旋側面F31bの高さを高さY2とする。螺旋底面F31aと、螺旋側面F31bとで構成される螺旋角度Dは例えば、45~90°で形成されている。螺旋溝F31は、被接合金属部材と接触することにより摩擦熱を上昇させるとともに、塑性流動材を先端側に導く役割を備えている。また、第一回転ツールFは、先端にスピンドルユニット等の回転駆動手段を備えたロボットアームに取り付けてもよい。 In addition, when rotating the first rotating tool F counterclockwise, it is preferable to set the spiral groove F31 clockwise from the proximal side to the distal side. As a result, the plastic flow material is guided to the tip side by the spiral groove F31, so that the amount of metal overflowing to the outside of the metal members to be joined can be reduced. The spiral groove F31 is composed of a spiral bottom surface F31a and a spiral side surface F31b. The distance (horizontal distance) between the apexes F31c, F31c of the adjacent spiral grooves F31 is defined as length X2. Let the height of the spiral side surface F31b be a height Y2. A spiral angle D formed by the spiral bottom surface F31a and the spiral side surface F31b is, for example, 45 to 90°. The spiral groove F31 has the role of increasing the frictional heat by coming into contact with the metal members to be joined and guiding the plastic flow material to the tip side. Also, the first rotary tool F may be attached to a robot arm having a rotary drive means such as a spindle unit at its tip.

第一回転ツールFは、適宜設計変更が可能である。図3は、本発明の第一回転ツールの第一変形例を示す側面図である。図3に示すように、第一変形例に係る第一回転ツールFAでは、ピン段差部F21の段差底面F21aと段差側面F21bとのなす段差角度Cが85°になっている。段差底面F21aは、水平面と平行である。このように、段差底面F21aは水平面と平行であるとともに、段差角度Cは、摩擦攪拌中にピン段差部F21内に塑性流動材が滞留して付着することなく外部に抜ける範囲で鋭角としてもよい。 The design of the first rotary tool F can be changed as appropriate. FIG. 3 is a side view showing a first modified example of the first rotating tool of the present invention. As shown in FIG. 3, in the first rotary tool FA according to the first modification, the step angle C between the step bottom surface F21a and the step side surface F21b of the pin step portion F21 is 85°. The stepped bottom surface F21a is parallel to the horizontal plane. In this way, the stepped bottom surface F21a is parallel to the horizontal surface, and the stepped angle C may be an acute angle within a range in which the plastic flow material stays and adheres to the pin stepped portion F21 during friction stirring and escapes to the outside. .

図4は、本発明の第一回転ツールの第二変形例を示す側面図である。図4に示すように、第二変形例に係る第一回転ツールFBでは、ピン段差部F21の段差角度Cが115°になっている。段差底面F21aは水平面と平行になっている。このように、段差底面F21aは水平面と平行であるとともに、ピン段差部F21として機能する範囲で段差角度Cが鈍角となってもよい。 FIG. 4 is a side view showing a second modification of the first rotating tool of the present invention; As shown in FIG. 4, in the first rotary tool FB according to the second modification, the step angle C of the pin step portion F21 is 115°. The stepped bottom surface F21a is parallel to the horizontal plane. In this manner, the stepped bottom surface F21a may be parallel to the horizontal plane, and the stepped angle C may be an obtuse angle within the range of functioning as the pin stepped portion F21.

図5は、本発明の第一回転ツールの第三変形例を示す側面図である。図5に示すように、第三変形例に係る第一回転ツールFCでは、段差底面F21aがツールの回転軸から外周方向に向かって水平面に対して10°上方に傾斜している。段差側面F21bは、鉛直面と平行になっている。このように、摩擦攪拌中に塑性流動材を押さえることができる範囲で、段差底面F21aがツールの回転軸から外周方向に向かって水平面よりも上方に傾斜するように形成されていてもよい。上記の第一回転ツールの第一~第三変形例によっても、下記の実施形態と同等の効果を奏することができる。 FIG. 5 is a side view showing a third modification of the first rotary tool of the present invention; As shown in FIG. 5, in the first rotating tool FC according to the third modification, the stepped bottom surface F21a is inclined upward by 10° with respect to the horizontal plane from the rotating shaft of the tool toward the outer peripheral direction. The stepped side surface F21b is parallel to the vertical plane. In this manner, the stepped bottom surface F21a may be formed so as to be inclined upward from the horizontal surface toward the outer peripheral direction from the rotating shaft of the tool within a range where the plastic flow material can be pressed during friction stirring. The first to third modified examples of the first rotating tool described above can also produce effects equivalent to those of the following embodiments.

第一回転ツールFは、本実施形態では、水平方向及び上下方向に移動可能な摩擦攪拌装置に取り付けられている。なお、第一回転ツールFは、先端にスピンドルユニット等の回転駆動手段を備えたロボットアームに取り付けてもよい。 In this embodiment, the first rotating tool F is attached to a friction stirrer that can move horizontally and vertically. Note that the first rotating tool F may be attached to a robot arm having a rotation drive means such as a spindle unit at its tip.

[第一実施形態]
本発明の実施形態に係る複合構造体及び複合構造体の製造方法について、図面を参照して詳細に説明する。図6に示すように、本発明の実施形態に係る複合構造体の製造方法は、第一金属部材2と第二金属部材3とを摩擦攪拌で接合して複合構造体1を製造するものである。なお、以下の説明における「表面」とは、「裏面」の反対側の面という意味である。
[First embodiment]
A composite structure and a method for manufacturing a composite structure according to embodiments of the present invention will be described in detail with reference to the drawings. As shown in FIG. 6, in the method for manufacturing a composite structure according to the embodiment of the present invention, a composite structure 1 is manufactured by joining a first metal member 2 and a second metal member 3 by friction stir welding. be. In addition, the "front surface" in the following description means the surface on the opposite side of the "back surface".

第一金属部材2は、図6及び図7に示すように、底部10と、周壁部11と、フランジ部12とを備え箱状を呈する。第一金属部材2の板厚は概ね一定になっており、本実施形態では数ミリ程度である。底部10は平面視矩形の板状部である。周壁部11は、底部10の周縁部から立ち上がる矩形枠状の壁である。フランジ部12は、周壁部11の先端部から外側に向けて張り出している。底部10と周壁部11とで凹部13が形成されている。底部10と周壁部11とでなす角度は垂直になっている。より詳しくは、底部10の裏面10bと周壁部11の外周面11bとでなす角度も垂直になっている。 The first metal member 2 has a box shape including a bottom portion 10, a peripheral wall portion 11, and a flange portion 12, as shown in FIGS. The plate thickness of the first metal member 2 is generally constant, and is about several millimeters in this embodiment. The bottom portion 10 is a plate-like portion that is rectangular in plan view. The peripheral wall portion 11 is a rectangular frame-shaped wall rising from the peripheral portion of the bottom portion 10 . The flange portion 12 protrudes outward from the distal end portion of the peripheral wall portion 11 . A concave portion 13 is formed by the bottom portion 10 and the peripheral wall portion 11 . The angle formed by the bottom portion 10 and the peripheral wall portion 11 is vertical. More specifically, the angle formed by the back surface 10b of the bottom portion 10 and the outer peripheral surface 11b of the peripheral wall portion 11 is also perpendicular.

第二金属部材3は、第一金属部材2の凹部13に配置される板状部材である。第二金属部材3は、凹部13と略同等の形状を呈する。第二金属部材3の表面3aとフランジ部12の表面12aとは面一になっている。周壁部11の内周面11aと第二金属部材3の外周面3cとが突き合わされた第一突合せ部J1は、摩擦攪拌で接合され塑性化領域W2が形成されている。塑性化領域W2は、第一突合せ部J1に沿って、周方向全体に亘って形成されている。 The second metal member 3 is a plate-like member arranged in the recess 13 of the first metal member 2 . The second metal member 3 has substantially the same shape as the concave portion 13 . The surface 3a of the second metal member 3 and the surface 12a of the flange portion 12 are flush with each other. A first butted portion J1 where the inner peripheral surface 11a of the peripheral wall portion 11 and the outer peripheral surface 3c of the second metal member 3 are butted against each other is joined by friction stir to form a plasticized region W2. The plasticized region W2 is formed over the entire circumferential direction along the first butted portion J1.

底部10の表面10aと第二金属部材3の裏面3bとが重ね合わされた重合部J2は、摩擦攪拌で接合され塑性化領域W1が形成されている。塑性化領域W1は、重合部J2の全体に亘って形成されている。なお、塑性化領域W3は、後記する摩擦成形工程で形成された塑性化領域である。 A superimposed portion J2 where the surface 10a of the bottom portion 10 and the back surface 3b of the second metal member 3 are superimposed is joined by friction welding to form a plasticized region W1. The plasticized region W1 is formed over the entire overlapping portion J2. The plasticized region W3 is a plasticized region formed by a friction molding process, which will be described later.

第一金属部材2と第二金属部材3とは同種の金属で形成されてもよいが、本実施形態では、異なる材種で形成されている。また、第一金属部材2と第二金属部材3とは同一の硬度となるようにしてもよいが、本実施形態では第一金属部材2の硬度を第二金属部材3の硬度よりも高くしている。例えば、本実施形態では第一金属部材2をAl-Mg合金(A5052等)で形成している。また、例えば、本実施形態では第二金属部材3をAl(A1050等)で形成している。なお、本明細書において硬度はブリネル硬さをいい、JIS Z 2243に準じた方法によって測定することができる。 Although the first metal member 2 and the second metal member 3 may be made of the same kind of metal, they are made of different materials in this embodiment. The first metal member 2 and the second metal member 3 may have the same hardness. ing. For example, in this embodiment, the first metal member 2 is made of an Al--Mg alloy (A5052 or the like). Further, for example, in this embodiment, the second metal member 3 is made of Al (A1050 or the like). In this specification, hardness refers to Brinell hardness, which can be measured by a method according to JIS Z 2243.

次に、本実施形態に係る複合構造体の製造方法について説明する。複合構造体の製造方法では、準備工程と、載置工程と、重合部接合工程と、第一突合せ部接合工程と、摩擦成形工程とを行う。 Next, a method for manufacturing a composite structure according to this embodiment will be described. In the method for manufacturing a composite structure, a preparation step, a placing step, a overlapping portion joining step, a first butt portion joining step, and a friction molding step are performed.

準備工程は、第一金属部材2及び第二金属部材3を準備する工程である。第一金属部材2は、板状の素形材をプレス成形で形成する。第二金属部材3は、例えば、押出成形で形成する。第一金属部材2は、図8に示すように、プレス成形によって底部10と周壁部11とは概ね垂直になっているが、角部は丸く屈曲して形成されている。 The preparation step is a step of preparing the first metal member 2 and the second metal member 3 . The first metal member 2 is formed by press-molding a plate-shaped material. The second metal member 3 is formed by extrusion molding, for example. As shown in FIG. 8, the first metal member 2 is press-formed so that the bottom portion 10 and the peripheral wall portion 11 are substantially perpendicular to each other, but the corner portions are rounded and bent.

載置工程は、図8に示すように、第一金属部材2に第二金属部材3を載置する工程である。載置工程では、まず、成形型30に第二金属部材3を設置する。成形型30は、底面31aと内周面31bとで構成される凹状の成形面31を有している。内周面31bは、底面31aに対して垂直になっている。つまり、成形型30の成形面31は直方体の中空部となるように形成されている。成形型30の表面には、複数のクランプ40が設けられている。クランプ40はフランジ部12を押さえて第一金属部材2を成形型30に移動不能に拘束する部材である。 The placing step is a step of placing the second metal member 3 on the first metal member 2, as shown in FIG. In the placing step, first, the second metal member 3 is placed on the mold 30 . The molding die 30 has a concave molding surface 31 composed of a bottom surface 31a and an inner peripheral surface 31b. The inner peripheral surface 31b is perpendicular to the bottom surface 31a. That is, the molding surface 31 of the molding die 30 is formed to be a rectangular parallelepiped hollow portion. A plurality of clamps 40 are provided on the surface of the mold 30 . The clamp 40 is a member that presses the flange portion 12 and restrains the first metal member 2 to the mold 30 so that it cannot move.

載置工程において、第一金属部材2を成形型30に固定したら、第一金属部材2の凹部13に第二金属部材3を嵌め込んで載置する。載置工程によって、周壁部11の内周面11aと、第二金属部材3の外周面3cとが突き合わされて第一突合せ部J1が形成される。また、底部10の表面10aと第二金属部材3の裏面3bとが重ね合されて重合部J2が形成される。成形型30の角部と第二金属部材3の角部との間には空隙Pが形成されている。第二金属部材3の表面3aと、フランジ部12の表面12aとは面一になっている。なお、成形型30は、プレス成形工程及び載置工程で同じものを用いてもよい。これにより、作業手間を省くことができる。 In the placing step, after fixing the first metal member 2 to the mold 30 , the second metal member 3 is fitted into the concave portion 13 of the first metal member 2 and placed. In the mounting step, the inner peripheral surface 11a of the peripheral wall portion 11 and the outer peripheral surface 3c of the second metal member 3 are brought into contact with each other to form the first butting portion J1. Further, the surface 10a of the bottom portion 10 and the back surface 3b of the second metal member 3 are overlapped to form an overlapped portion J2. A gap P is formed between the corner of the mold 30 and the corner of the second metal member 3 . The surface 3a of the second metal member 3 and the surface 12a of the flange portion 12 are flush with each other. The same mold 30 may be used in the press molding process and the placement process. As a result, work can be saved.

重合部接合工程は、図9及び図10に示すように、重合部J2を摩擦攪拌接合する工程である。重合部接合工程では、図10に示すように、第二回転ツールGを使用する。第二回転ツールGは、工具鋼で形成されており、連結部G1と、攪拌ピンG2とを有する。連結部G1は、摩擦攪拌装置の回転軸に装着される部位である。攪拌ピンG2は、連結部G1から同軸で垂下しており先細りになっている。攪拌ピンG2の先端面G3は平坦であり、回転中心軸線Zに対して垂直になっている。攪拌ピンG2の外周面G4には螺旋溝が形成されている。例えば、第二回転ツールGを右回転させる場合、螺旋溝は基端側から先端側に向けて左回りに設定する。 As shown in FIGS. 9 and 10, the overlapped portion joining step is a step of joining the overlapped portion J2 by friction stir welding. As shown in FIG. 10, a second rotary tool G is used in the overlapping portion joining step. The second rotating tool G is made of tool steel and has a connecting portion G1 and an agitating pin G2. The connecting portion G1 is a portion attached to the rotating shaft of the friction stirrer. The stirring pin G2 is coaxially suspended from the connecting portion G1 and is tapered. The tip surface G3 of the stirring pin G2 is flat and perpendicular to the rotation center axis Z. As shown in FIG. A spiral groove is formed on the outer peripheral surface G4 of the stirring pin G2. For example, when rotating the second rotating tool G to the right, the helical groove is set counterclockwise from the proximal side to the distal side.

なお、第二回転ツールGを左回転させる場合は、螺旋溝を基端側から先端側に向けて右回りに設定することが好ましい。これにより、攪拌ピンG2によって塑性流動材が先端側に導かれるため、被接合金属部材(第一金属部材2及び第二金属部材3)の外部に溢れ出る金属を低減することができる。 In addition, when rotating the second rotating tool G to the left, it is preferable to set the spiral groove clockwise from the proximal side to the distal side. As a result, the plastic flow material is guided to the tip end side by the stirring pin G2, so that the amount of metal overflowing to the outside of the metal members to be joined (the first metal member 2 and the second metal member 3) can be reduced.

重合部接合工程では、図9に示すように、右回転する第二回転ツールGの攪拌ピンG2を表面3aに対して垂直にし、第二金属部材3の表面3aの中央部に設定した開始位置SP1に挿入する。そして、中央部から外側に向けて連続的に第二回転ツールGを相対移動させて重合部J2を摩擦攪拌接合する。第二回転ツールGの移動軌跡には塑性化領域W1が形成される。重合部接合工程では、塑性化領域W1の幅方向の端部を重複させつつ、中央部から外側に向けて螺旋状の移動軌跡となるように第二回転ツールGを相対移動させる。 In the overlapped portion joining step, as shown in FIG. 9, the stirring pin G2 of the second rotary tool G that rotates to the right is set perpendicular to the surface 3a, and the start position is set at the center of the surface 3a of the second metal member 3. Insert into SP1. Then, the second rotating tool G is relatively displaced continuously from the central portion toward the outer side to friction stir weld the overlapped portion J2. A plasticized region W1 is formed in the locus of movement of the second rotating tool G. As shown in FIG. In the overlapped portion joining step, the second rotating tool G is relatively moved so as to form a helical movement trajectory from the central portion toward the outside while overlapping the ends of the plasticized regions W1 in the width direction.

図10に示すように、重合部接合工程では、攪拌ピンG2の先端面G3が第一金属部材2の底部10にわずかに接触するように挿入深さを設定している。また、重合部接合工程では、攪拌ピンG2のみが第一金属部材2及び第二金属部材3に接触するようにしている。つまり、攪拌ピンG2の基端側は露出させた状態で摩擦攪拌を行っている。攪拌ピンG2を、第二金属部材3のみに接触させて重合部接合工程を行ってもよい。この場合は、攪拌ピンG2と第二金属部材3との摩擦熱によって塑性流動化され重合部J2が接合される。 As shown in FIG. 10 , in the overlapped portion joining step, the insertion depth is set so that the tip surface G3 of the stirring pin G2 slightly contacts the bottom portion 10 of the first metal member 2 . Also, in the overlapped portion joining step, only the stirring pin G2 is brought into contact with the first metal member 2 and the second metal member 3. As shown in FIG. In other words, friction stir is performed with the base end side of the stirring pin G2 exposed. The overlapping portion joining step may be performed by bringing the stirring pin G2 into contact only with the second metal member 3 . In this case, the frictional heat between the stirring pin G2 and the second metal member 3 causes plastic flow and the overlapped portion J2 is joined.

重合部接合工程では、図10に示すように、第二金属部材3の外周縁においては周壁部11と第二回転ツールGとが接触しないようにすることが好ましい。これにより、重合部接合工程において、第一金属部材2の金属が第二金属部材3に混入するのを防ぐことができる。第二金属部材3の角部に設定した終了位置EP1に達したら、第二金属部材3から第二回転ツールGを離脱させる。 In the overlapped portion joining step, as shown in FIG. 10 , it is preferable that the peripheral wall portion 11 and the second rotating tool G do not come into contact with each other at the outer peripheral edge of the second metal member 3 . As a result, it is possible to prevent the metal of the first metal member 2 from being mixed into the second metal member 3 in the overlapping portion joining step. When reaching the end position EP<b>1 set at the corner of the second metal member 3 , the second rotating tool G is separated from the second metal member 3 .

なお、本実施形態では、重合部接合工程を第二回転ツールGで行ったが、第一回転ツールF、後記する第三回転ツールH又は第四回転ツールK、若しくは他の回転ツールを用いてもよい。また、重合部接合工程では、他の移動軌跡となるように回転ツールのルートを設定してもよい。 In the present embodiment, the overlapping portion joining step was performed with the second rotating tool G, but the first rotating tool F, the third rotating tool H or the fourth rotating tool K described later, or other rotating tools good too. In addition, in the overlapped portion joining step, the route of the rotary tool may be set so as to follow another movement trajectory.

第一突合せ部接合工程は、図11及び図12に示すように、第一突合せ部J1を摩擦攪拌接合する工程である。第一突合せ部接合工程では、第一回転ツールFを用いる。第一突合せ部接合工程では、第二金属部材3の表面3aにおいて第一突合せ部J1の近傍に設定された開始位置SP2に先端側ピンF3を表面3aに対して垂直に挿入する。そして、第一回転ツールFを第一突合せ部J1に沿って相対移動させ、第一突合せ部J1を摩擦攪拌接合する。 As shown in FIGS. 11 and 12, the first butt portion joining step is a step of friction stir welding the first butt portion J1. A first rotary tool F is used in the first butt portion joining step. In the first butt joint joining step, the tip side pin F3 is inserted perpendicularly to the surface 3a of the second metal member 3 at the start position SP2 set in the vicinity of the first butt J1. Then, the first rotating tool F is relatively moved along the first butted portion J1, and the first butted portion J1 is friction stir welded.

図12に示すように、第一突合せ部接合工程では、基端側ピンF2を第一金属部材2にわずかに接触させて摩擦攪拌接合を行う。また、第一突合せ部接合工程では、第一回転ツールFの基端側ピンF2の外周面F5を第二金属部材3の表面3a及びフランジ部12の表面12aに接触させた状態で摩擦攪拌接合を行う。第一回転ツールFの移動軌跡には塑性化領域W2が形成される。第一回転ツールFを第一突合せ部J1に沿って一周させて、塑性化領域W2をオーバーラップさせたら、終了位置EP2で第二金属部材3の表面3aから第一回転ツールFを離脱させる。なお、本実施形態では第一突合せ部接合工程を第一回転ツールFで行ったが、第二回転ツールG、後記する第三回転ツールH又は第四回転ツールK、若しくは他の回転ツールを用いてもよい。 As shown in FIG. 12, in the first butt portion joining step, the base end pin F2 is brought into slight contact with the first metal member 2 to perform friction stir welding. In the first butt portion welding step, the friction stir welding is performed while the outer peripheral surface F5 of the base end pin F2 of the first rotating tool F is in contact with the surface 3a of the second metal member 3 and the surface 12a of the flange portion 12. I do. A plasticized region W2 is formed in the movement trajectory of the first rotating tool F. As shown in FIG. The first rotating tool F is made to go around along the first abutting portion J1 to overlap the plasticized region W2, and then the first rotating tool F is separated from the surface 3a of the second metal member 3 at the end position EP2. In the present embodiment, the first butt joint joining step was performed with the first rotating tool F, but the second rotating tool G, the third rotating tool H or the fourth rotating tool K described later, or other rotating tools were used. may

摩擦成形工程は、図13及び図14に示すように、第三回転ツールHを用いて成形型30に第一金属部材2を押し付けて第一金属部材2を賦形する工程である。第三回転ツールHは、工具鋼で形成されており、連結部H1と攪拌ピンH2とを有する。 The friction molding step is a step of shaping the first metal member 2 by pressing the first metal member 2 against the mold 30 using the third rotating tool H, as shown in FIGS. The third rotating tool H is made of tool steel and has a connecting portion H1 and a stirring pin H2.

連結部H1は、摩擦攪拌装置の回転軸に装着される部位である。攪拌ピンH2は、連結部H1から同軸で垂下しており円柱状を呈する。つまり、攪拌ピンH2の外径は一定になっている。攪拌ピンH2の先端面H3は平坦であり、回転中心軸線Zに対して垂直になっている。攪拌ピンH2の外周面H4には螺旋溝が形成されている。例えば、第三回転ツールHを右回転させる場合、螺旋溝は基端側から先端側に向けて左回りに設定する。 The connecting portion H1 is a portion attached to the rotating shaft of the friction stirrer. The stirring pin H2 is coaxially suspended from the connecting portion H1 and has a columnar shape. That is, the outer diameter of the stirring pin H2 is constant. The tip surface H3 of the stirring pin H2 is flat and perpendicular to the rotation center axis Z. As shown in FIG. A spiral groove is formed on the outer peripheral surface H4 of the stirring pin H2. For example, when rotating the third rotating tool H to the right, the spiral groove is set counterclockwise from the proximal side to the distal side.

なお、第三回転ツールHを左回転させる場合は、螺旋溝を基端側から先端側に向けて右回りに設定することが好ましい。これにより、攪拌ピンH2によって塑性流動材が先端側に導かれるため、第二金属部材3の外部に溢れ出る金属を低減することができる。 In addition, when rotating the third rotating tool H to the left, it is preferable to set the spiral groove clockwise from the proximal side to the distal side. As a result, the plastic flow material is guided to the tip side by the stirring pin H2, so that the amount of metal overflowing to the outside of the second metal member 3 can be reduced.

摩擦成形工程では、第二金属部材3の表面3aにおいて第一突合せ部J1の近傍に設定された開始位置SP3に攪拌ピンH2を表面3aに対して垂直に挿入する。そして、第三回転ツールHを第一突合せ部J1に沿って相対移動させる。 In the friction molding step, the stirring pin H2 is inserted perpendicularly to the surface 3a of the second metal member 3 at a start position SP3 set near the first butting portion J1 on the surface 3a. Then, the third rotary tool H is relatively moved along the first butted portion J1.

図14に示すように、摩擦成形工程では、第三回転ツールHの攪拌ピンH2を底部10及び周壁部11からわずかに離間させた状態で摩擦攪拌を行い、攪拌ピンH2及び摩擦攪拌された塑性流動材で底部10及び周壁部11を成形面31の底面31a及び内周面31bにそれぞれ押し付けて第一金属部材2を賦形する。攪拌ピンH2の外周面H4と成形面31の内周面31bとは平行又は概ね平行になっている。また、攪拌ピンH2の先端面H3と成形面31の底面31aとは平行又は概ね平行になっている。摩擦成形工程では、隙間P(図12参照)が無くなるように、成形面31に第一金属部材2を押し付けることが好ましい。第三回転ツールHの移動軌跡には、塑性化領域W3が形成される。第三回転ツールHを第一突合せ部J1に沿って一周させて、塑性化領域W3をオーバーラップさせたら、終了位置EP3で第二金属部材3の表面3aから第三回転ツールHを離脱させる。以上の工程によって複合構造体1(図6参照)が形成される。 As shown in FIG. 14, in the friction molding step, friction stir is performed with the stirring pin H2 of the third rotating tool H slightly separated from the bottom portion 10 and the peripheral wall portion 11, and the stirring pin H2 and the friction-stirred plastic The first metal member 2 is shaped by pressing the bottom portion 10 and the peripheral wall portion 11 against the bottom surface 31a and the inner peripheral surface 31b of the molding surface 31 with the fluid material. The outer peripheral surface H4 of the stirring pin H2 and the inner peripheral surface 31b of the molding surface 31 are parallel or substantially parallel. Further, the tip surface H3 of the stirring pin H2 and the bottom surface 31a of the molding surface 31 are parallel or substantially parallel. In the friction molding process, it is preferable to press the first metal member 2 against the molding surface 31 so that the gap P (see FIG. 12) is eliminated. A plasticized region W3 is formed in the movement trajectory of the third rotating tool H. As shown in FIG. The third rotating tool H is made to go around along the first abutting portion J1, and when the plasticized region W3 is overlapped, the third rotating tool H is separated from the surface 3a of the second metal member 3 at the end position EP3. The composite structure 1 (see FIG. 6) is formed by the above steps.

なお、本実施形態では摩擦成形工程を第三回転ツールHで行ったが、第一回転ツールF、第二回転ツールG、後記する第四回転ツールK、若しくは他の回転ツールを用いてもよい。
この際、各回転ツールの回転中心軸を適宜傾斜させて、各回転ツールの攪拌ピンと成形面の内周面とを平行にしてもよい。また、摩擦成形工程では、回転ツールの攪拌ピンと周壁部11とは離間していることが好ましいが、わずかであれば接触させてもよい。
In this embodiment, the friction molding process is performed with the third rotating tool H, but the first rotating tool F, the second rotating tool G, the fourth rotating tool K described later, or other rotating tools may be used. .
At this time, the central axis of rotation of each rotating tool may be appropriately inclined so that the stirring pin of each rotating tool and the inner peripheral surface of the forming surface are parallel to each other. Moreover, in the friction molding process, it is preferable that the stirring pin of the rotary tool and the peripheral wall portion 11 are separated from each other, but they may be brought into contact with each other if only slightly.

本実施形態に係る複合構造体の製造方法によれば、直角となっている成形型30の成形面31(底面31a及び内周面31b)に第一金属部材2の底部10及び周壁部11をそれぞれ押し付けて賦形する摩擦成形工程を行うことで、複合構造体1を構成する第一金属部材2の底部10と周壁部11とのなす角度を容易に直角にすることができる。また、摩擦成形工程では、摩擦攪拌の摩擦熱によって第一金属部材2及び第二金属部材3が軟化するため、容易に賦形することができる。 According to the method for manufacturing a composite structure according to the present embodiment, the bottom portion 10 and the peripheral wall portion 11 of the first metal member 2 are formed on the molding surface 31 (the bottom surface 31a and the inner peripheral surface 31b) of the mold 30 forming a right angle. By carrying out the friction molding process in which they are pressed and shaped, the angle formed between the bottom portion 10 and the peripheral wall portion 11 of the first metal member 2 constituting the composite structure 1 can be easily made a right angle. Further, in the friction molding step, the first metal member 2 and the second metal member 3 are softened by the frictional heat of friction stirring, so that they can be easily shaped.

特に、図12に示すように、プレス成形では第一金属部材2の底部10と周壁部11とで構成される角部の外側は丸く屈曲してしまう。これにより、底部10の裏面10bと周壁部11の外周面11bとの角部を直角にする(平面同士で角部を形成する)ことは困難であった。しかし、本実施形態によれば、摩擦成形工程を行うことで第一金属部材2の角部の外側を直角にする(平面同士で角部を形成する)、若しくは限りなく直角に近づけることができる。 In particular, as shown in FIG. 12 , in press molding, the outer side of the corner formed by the bottom portion 10 and the peripheral wall portion 11 of the first metal member 2 is rounded. Therefore, it is difficult to make the corners of the back surface 10b of the bottom part 10 and the outer peripheral surface 11b of the peripheral wall part 11 at right angles (to form the corners between flat surfaces). However, according to the present embodiment, by performing the friction molding process, the outside of the corners of the first metal member 2 can be made right-angled (the corners are formed between flat surfaces), or can be made as close to right-angled as possible. .

また、本実施形態に係る摩擦成形工程では、第三回転ツールHの攪拌ピンH2の外周面H4を成形面31の内周面31bに沿う形状(平行)にすることで、攪拌ピンH2と周壁部11とを離間させた状態で、周壁部11に攪拌ピンH2を極力近接させることができる。これにより、成形型30の成形面31の内周面31bに周壁部11を高さ方向に均一に押圧することができるため、より的確に賦形することができる。 Further, in the friction molding process according to the present embodiment, the outer peripheral surface H4 of the stirring pin H2 of the third rotary tool H is shaped (parallel) along the inner peripheral surface 31b of the molding surface 31, so that the stirring pin H2 and the peripheral wall The agitating pin H2 can be brought as close as possible to the peripheral wall portion 11 while being spaced apart from the portion 11 . As a result, the peripheral wall portion 11 can be uniformly pressed against the inner peripheral surface 31b of the molding surface 31 of the molding die 30 in the height direction, so that the molding can be shaped more accurately.

特に、本実施形態では、攪拌ピンH2の外周面H4を成形面31の内周面31bに沿う形状にするとともに、先端面H3を成形面31の底面31aに沿う形状(平行)にしているため、攪拌ピンH2と底部10及び周壁部11とを離間させた状態で、底部10及び周壁部11に極力近接させることができる。これにより、さらにより的確に賦形することができる。 In particular, in the present embodiment, the outer peripheral surface H4 of the stirring pin H2 has a shape along the inner peripheral surface 31b of the molding surface 31, and the tip surface H3 has a shape (parallel) along the bottom surface 31a of the molding surface 31. , the stirring pin H2 can be brought close to the bottom portion 10 and the peripheral wall portion 11 as much as possible while keeping the agitation pin H2 away from the bottom portion 10 and the peripheral wall portion 11 . As a result, the shape can be formed more accurately.

また、本実施形態では、準備工程では、第一金属部材2の硬度を、第二金属部材3の硬度よりも高く設定し、第一突合せ部接合工程では、第二金属部材3の表面3aから回転する第一回転ツールFを挿入し、第一回転ツールFの攪拌ピン(基端側ピンF2)を第一金属部材2にわずかに接触させた状態で摩擦攪拌を行う。これにより、主として第二金属部材3と第一回転ツールFとの摩擦攪拌によって第一突合せ部J1を接合することができる。よって、硬度の大きい第一金属部材2の金属が、第二金属部材3に混入し難くなるため、材種の異なる金属同士の摩擦攪拌に起因する接合不良を防ぐことができる。また、第一回転ツールFの攪拌ピンと第一金属部材2とをわずかに接触させることで接合部の接合強度を高めることができる。また、第一金属部材2の硬度を高くすることで、複合構造体1の強度を高めることができる。 Further, in this embodiment, in the preparation step, the hardness of the first metal member 2 is set higher than that of the second metal member 3, and in the first butt portion joining step, from the surface 3a of the second metal member 3 A rotating first rotating tool F is inserted, and friction stirring is performed in a state in which the stirring pin (proximal side pin F2) of the first rotating tool F is brought into slight contact with the first metal member 2 . As a result, the first butted portion J1 can be joined mainly by friction stir between the second metal member 3 and the first rotary tool F. Therefore, since the metal of the first metal member 2 having a large hardness is less likely to be mixed into the second metal member 3, it is possible to prevent defective joining caused by friction stir between metals of different types. Further, by slightly contacting the stirring pin of the first rotary tool F and the first metal member 2, the joint strength of the joint can be increased. Further, by increasing the hardness of the first metal member 2, the strength of the composite structure 1 can be increased.

また、本実施形態に係る第一突合せ部接合工程では、第一回転ツールFを用い、基端側ピンF2の外周面F5を第二金属部材3の表面3a及びフランジ部12の表面12aに接触させた状態で摩擦攪拌接合を行うため、バリの発生を抑制することができる。また、第一回転ツールFによれば、基端側ピンF2の階段状のピン段差部F21は浅く、かつ、出口が広いため、塑性流動材を段差底面F21aで押えつつ塑性流動材がピン段差部F21の外部に抜けやすくなっている。そのため、基端側ピンF2で塑性流動材を押えても基端側ピンF2の外周面F5に塑性流動材が付着し難い。よって、接合表面粗さを小さくすることができるとともに、接合品質を好適に安定させることができる。 In addition, in the first butt portion joining step according to the present embodiment, the first rotating tool F is used to bring the outer peripheral surface F5 of the proximal pin F2 into contact with the surface 3a of the second metal member 3 and the surface 12a of the flange portion 12. Since the friction stir welding is performed in a state where the joints are pressed, the occurrence of burrs can be suppressed. Further, according to the first rotary tool F, since the stepped pin stepped portion F21 of the proximal pin F2 is shallow and the outlet is wide, the plastic flow material is pushed by the step bottom face F21a and the plastic flow material is pushed through the pin step. It is easy to get out of the part F21. Therefore, even if the plastic flow material is pressed by the proximal pin F2, the plastic flow material is less likely to adhere to the outer peripheral surface F5 of the proximal pin F2. Therefore, the joint surface roughness can be reduced, and the joint quality can be preferably stabilized.

また、重合部接合工程を行うことにより、重合部J2を接合することができるため複合構造体1の強度を高めることができる。また、第一突合せ部接合工程の前に重合部接合工程を行うことにより、第一突合せ部接合工程において、第一金属部材2と第二金属部材3の位置ずれを防ぐことができる。 In addition, by performing the overlapped portion joining step, the overlapped portion J2 can be joined, so that the strength of the composite structure 1 can be increased. Further, by performing the overlapping portion joining step before the first butt portion joining step, it is possible to prevent the first metal member 2 and the second metal member 3 from being displaced in the first butt portion joining step.

また、本実施形態に係る重合部接合工程では、第二金属部材3の中央部から外側に向けて平面視で螺旋状の連続的な軌跡を描くように相対移動させて重合部J2の全体を摩擦攪拌するため、重合部J2の全体を容易に接合することができる。また、重合部接合工程では第二回転ツールGをどのように移動させてもよいが、中央部から外側に第二回転ツールGを螺旋状に移動させることで、第一金属部材2及び第二金属部材3にシワが発生するのを防ぐことができる。 In addition, in the overlapped portion joining step according to the present embodiment, the overlapped portion J2 is entirely moved by relatively moving the second metal member 3 from the central portion toward the outside so as to draw a spiral continuous trajectory in a plan view. Since friction stir is performed, the entire overlapped portion J2 can be easily joined. In addition, the second rotating tool G may be moved in any way in the overlapping portion joining step, but by spirally moving the second rotating tool G outward from the central portion, the first metal member 2 and the second metal member 2 It is possible to prevent the metal member 3 from being wrinkled.

また、重合部接合工程では、攪拌ピンG2のみを第一金属部材2、又は、第一金属部材2及び第二金属部材3に接触させた状態で摩擦攪拌接合を行うため摩擦攪拌装置に作用する荷重を低減することができる。 In addition, in the overlapping portion joining process, friction stir welding is performed in a state in which only the stirring pin G2 is in contact with the first metal member 2 or the first metal member 2 and the second metal member 3, so that the friction stir device is affected. Load can be reduced.

以上本発明の実施形態について説明したが、適宜設計変更が可能である。例えば、本実施形態では、第一突合せ部接合工程と摩擦成形工程とを別の回転ツールを用いて別々に行ったが、同一の回転ツールを用いて同時に行ってもよい。これにより、接合サイクルを早めることができる。また、回転ツールを交換する手間を省くことができる。また、重合部接合工程及び第一突合せ部接合工程は、一の回転ツールを用いて連続して行ってもよい。これにより、回転ツールを交換する手間が省けるため、接合サイクルを早めることができる。 Although the embodiments of the present invention have been described above, design changes are possible as appropriate. For example, in the present embodiment, the first butt joint joining process and the friction molding process are performed separately using different rotating tools, but they may be performed simultaneously using the same rotating tool. This can speed up the bonding cycle. Also, it is possible to save the trouble of exchanging the rotary tool. Also, the overlapping portion joining step and the first butt portion joining step may be performed continuously using one rotary tool. This saves the trouble of exchanging the rotary tool, thus speeding up the joining cycle.

[第二実施形態]
次に、本発明の第二実施形態に係る複合構造体の製造方法について説明する。本実施形態に係る複合構造体の製造方法では、図15に示すように、第一金属部材2Aの周壁部11が成形段階で外側に傾倒している点で第一実施形態と相違する。本実施形態では、相違する部分を重点的に説明する。
[Second embodiment]
Next, a method for manufacturing a composite structure according to the second embodiment of the present invention will be described. As shown in FIG. 15, the method for manufacturing a composite structure according to this embodiment differs from the first embodiment in that the peripheral wall portion 11 of the first metal member 2A is tilted outward during the molding stage. In this embodiment, different parts will be mainly described.

本実施形態に係る複合構造体の製造方法では、準備工程と、載置工程と、重合部接合工程と、第一突合せ部接合工程と、摩擦成形工程とを行う。 In the method for manufacturing a composite structure according to the present embodiment, a preparation step, a placing step, a overlapping portion joining step, a first butt portion joining step, and a friction molding step are performed.

準備工程では、第一金属部材2A及び第二金属部材3Aを準備する工程である。第一金属部材2Aは、板状の素形材をプレス成形で形成する。第二金属部材3Aは、例えば、押出成形で形成する。図15に示すように、第一金属部材2Aは、底部10に対して周壁部11がスプリングバック等によって外側に傾倒している。また、底部10の裏面10bと周壁部11の外周面11bとで構成される角部は丸く屈曲している。 The preparation step is a step of preparing the first metal member 2A and the second metal member 3A. The first metal member 2A is formed by press-molding a plate-shaped material. The second metal member 3A is formed by extrusion molding, for example. As shown in FIG. 15, the peripheral wall portion 11 of the first metal member 2A is tilted outward with respect to the bottom portion 10 due to springback or the like. Further, the corner formed by the back surface 10b of the bottom portion 10 and the outer peripheral surface 11b of the peripheral wall portion 11 is rounded.

載置工程では、第一金属部材2Aを成形型30に固定しつつ、第一金属部材2Aの凹部13に第二金属部材3Aを載置する。第二金属部材3Aは、直方体を呈する。第二金属部材3Aの板厚寸法は、周壁部11の高さ寸法よりも大きくなっている。つまり、第一金属部材2Aの凹部13に第二金属部材3Aを載置すると、第二金属部材3Aの表面3aは、フランジ部12の表面12aよりも高い位置となる。 In the placing step, the second metal member 3A is placed in the concave portion 13 of the first metal member 2A while fixing the first metal member 2A to the mold 30 . The second metal member 3A presents a rectangular parallelepiped. The plate thickness dimension of the second metal member 3A is larger than the height dimension of the peripheral wall portion 11 . That is, when the second metal member 3A is placed in the concave portion 13 of the first metal member 2A, the surface 3a of the second metal member 3A is positioned higher than the surface 12a of the flange portion 12. As shown in FIG.

図15に示すように、載置工程によって第一突合せ部J1及び重合部J2が形成される。第一突合せ部J1は、本実施形態のように第二金属部材3Aの外周面3cと周壁部11の内周面11aとの間に断面V字状の隙間がある場合も含み得る。また、成形面31の角部と第一金属部材2Aの角部との間には隙間Qが形成されている。 As shown in FIG. 15, the first butted portion J1 and the overlapping portion J2 are formed by the placing step. The first abutting portion J1 may include a case where there is a V-shaped cross-sectional gap between the outer peripheral surface 3c of the second metal member 3A and the inner peripheral surface 11a of the peripheral wall portion 11 as in the present embodiment. A gap Q is formed between the corner of the molding surface 31 and the corner of the first metal member 2A.

重合部接合工程では、図16及び図17に示すように、第一実施形態と同じ要領で重合部J2を摩擦攪拌接合する。図17に示すように、重合部接合工程では、第二金属部材3Aの外周縁においては塑性流動材が第二金属部材3Aの外側に流出しないように摩擦攪拌接合を行う。 In the overlapped portion joining step, as shown in FIGS. 16 and 17, the overlapped portion J2 is friction stir welded in the same manner as in the first embodiment. As shown in FIG. 17, in the overlapping portion joining step, friction stir welding is performed at the outer peripheral edge of the second metal member 3A so that the plastic flow material does not flow out of the second metal member 3A.

第一突合せ部接合工程では、図18及び図19に示すように、第一実施形態と同じ要領で第一突合せ部J1を摩擦攪拌接合する。図19に示すように、第一突合せ部接合工程では、第一回転ツールFを用い、攪拌ピン(基端側ピンF2及び先端側ピンF3)を第一金属部材2にわずかに接触させつつ、基端側ピンF2の外周面F5を第二金属部材3Aの表面3a及びフランジ部12の表面12aに接触させた状態で第一突合せ部J1に沿って相対移動させる。第一突合せ部接合工程では、第一突合せ部J1に形成された隙間に塑性流動材を流入させながら摩擦攪拌接合を行う。 In the first butt joint joining step, as shown in FIGS. 18 and 19, the first butt joint J1 is friction stir welded in the same manner as in the first embodiment. As shown in FIG. 19, in the first butt portion joining step, the first rotating tool F is used to slightly contact the stirring pins (the proximal pin F2 and the distal pin F3) with the first metal member 2, The outer peripheral surface F5 of the proximal pin F2 is relatively moved along the first abutting portion J1 while being in contact with the surface 3a of the second metal member 3A and the surface 12a of the flange portion 12 . In the first butt portion joining step, friction stir welding is performed while a plastic flow material is caused to flow into the gap formed in the first butt portion J1.

摩擦成形工程では、図20及び図21に示すように、第一実施形態と同じ要領で第三回転ツールHを用いて成形型30に第一金属部材2Aを押し付けて第一金属部材2Aを賦形する。図21に示すように、摩擦成形工程では、第三回転ツールHを底部10及び周壁部11からわずかに離間させた状態で摩擦攪拌を行い、攪拌ピンH2及び摩擦攪拌された塑性流動材で底部10及び周壁部11を成形面31の底面31a及び内周面31bにそれぞれ押し付けて第一金属部材2を賦形する。つまり、攪拌ピンH2の外周面H4と周壁部11の内周面11aとは平行又は概ね平行になっている。また、攪拌ピンH2の先端面H3と底部10の表面10aとは平行又は概ね平行になっている。摩擦成形工程では、隙間Q(図19参照)が無くなるように、成形面31に第一金属部材2Aを押し付けることが好ましい。第三回転ツールHの移動軌跡には、塑性化領域W3が形成される。第三回転ツールHを第一突合せ部J1に沿って一周させて、塑性化領域W3をオーバーラップさせたら、終了位置EP3で第二金属部材3Aの表面3aから第三回転ツールHを離脱させる。以上の工程によって複合構造体が形成される。 In the friction molding step, as shown in FIGS. 20 and 21, the third rotary tool H is used to press the first metal member 2A against the mold 30 in the same manner as in the first embodiment, thereby applying the first metal member 2A. shape. As shown in FIG. 21, in the friction molding process, friction stir is performed with the third rotating tool H slightly spaced from the bottom portion 10 and the peripheral wall portion 11, and the bottom portion is formed by the stirring pin H2 and the friction-stirred plastic flow material. 10 and the peripheral wall portion 11 are pressed against the bottom surface 31a and the inner peripheral surface 31b of the molding surface 31, respectively, to shape the first metal member 2. As shown in FIG. That is, the outer peripheral surface H4 of the stirring pin H2 and the inner peripheral surface 11a of the peripheral wall portion 11 are parallel or substantially parallel. Further, the tip surface H3 of the stirring pin H2 and the surface 10a of the bottom portion 10 are parallel or substantially parallel. In the friction molding process, it is preferable to press the first metal member 2A against the molding surface 31 so as to eliminate the gap Q (see FIG. 19). A plasticized region W3 is formed in the movement trajectory of the third rotating tool H. As shown in FIG. Once the third rotating tool H is made to go around along the first butted portion J1 to overlap the plasticized region W3, the third rotating tool H is separated from the surface 3a of the second metal member 3A at the end position EP3. A composite structure is formed by the above steps.

以上説明した本実施形態に係る複合構造体の製造方法によっても、第一実施形態と略同等の効果を得ることができる。図19に示すように、第一金属部材2Aをプレス成形した後、第一金属部材2Aにスプリングバックが発生するため、載置工程を行うと成形型30と第一金属部材2Aとの間に隙間Qが形成されてしまう場合がある。このような場合であっても、摩擦成形工程を行うことで、第三回転ツールHで第一金属部材2Aを賦形することができるため、複合構造体を構成する第一金属部材2Aの底部10と周壁部11とのなす角度を容易に直角にすることができる。特に、本実施形態に係る摩擦成形工程を行うことで第一金属部材2Aの角部の外側を直角にする(平面同士で角部を形成する)、若しくは限りなく直角に近づけることができる。 Approximately the same effects as those of the first embodiment can be obtained by the method of manufacturing a composite structure according to the present embodiment described above. As shown in FIG. 19, after the first metal member 2A is press-molded, springback occurs in the first metal member 2A. A gap Q may be formed. Even in such a case, by performing the friction molding process, the first metal member 2A can be shaped with the third rotating tool H, so that the bottom portion of the first metal member 2A constituting the composite structure The angle formed by 10 and peripheral wall portion 11 can be easily made a right angle. In particular, by performing the friction molding process according to the present embodiment, the outside of the corners of the first metal member 2A can be made right angles (the corners are formed between flat surfaces), or can be made as close to right angles as possible.

また、本実施形態のように、第二金属部材3Aの形状は第一金属部材2Aの凹部13と必ずしも同一である必要はない。つまり、第一突合せ部J1に隙間があってもよい。これにより、第二金属部材3Aを簡易に成形することができる。また、第二金属部材3Aの高さ寸法を、周壁部11の高さ寸法よりも大きくすることで接合部の金属不足を防ぐことができる。 Also, as in this embodiment, the shape of the second metal member 3A does not necessarily have to be the same as the recess 13 of the first metal member 2A. In other words, there may be a gap in the first butted portion J1. Thereby, the second metal member 3A can be easily formed. Further, by making the height dimension of the second metal member 3A larger than the height dimension of the peripheral wall portion 11, it is possible to prevent metal shortage at the joint portion.

[変形例1]
次に、本発明の変形例1について説明する。変形例1では、成形型30及び成形型35を使い分ける点で前記した実施形態と相違する。
[Modification 1]
Next, Modification 1 of the present invention will be described. Modification 1 differs from the above-described embodiment in that the mold 30 and the mold 35 are selectively used.

成形型35は、図22に示すように、逆推台形状の中空部を有する成形面36が形成されている。成形面36は、底面36aと、底面36aから外側に斜めに立ち上がる内周面36bとで構成されている。底面36aと内周面36bとでなす角度は鈍角になっている。 As shown in FIG. 22, the molding die 35 is formed with a molding surface 36 having an inverted trapezoidal hollow portion. The molding surface 36 is composed of a bottom surface 36a and an inner peripheral surface 36b that rises obliquely outward from the bottom surface 36a. The angle formed by the bottom surface 36a and the inner peripheral surface 36b is an obtuse angle.

第一金属部材2Aを成形型35に固定すると、底部10の裏面10bと、成形面36の底面36aとが面接触する。また、周壁部11の外周面11bと成形面36の内周面36bとが面接触する。また、成形面36の角部と第一金属部材2Aの角部との間には隙間Qが形成されている。 When the first metal member 2A is fixed to the molding die 35, the rear surface 10b of the bottom portion 10 and the bottom surface 36a of the molding surface 36 come into surface contact. Further, the outer peripheral surface 11b of the peripheral wall portion 11 and the inner peripheral surface 36b of the molding surface 36 are in surface contact. A gap Q is formed between the corner of the molding surface 36 and the corner of the first metal member 2A.

重合部接合工程では、図23に示すように、第二実施形態と同じ要領で重合部J2を摩擦攪拌接合する。 In the overlapped portion joining step, as shown in FIG. 23, the overlapped portion J2 is friction stir welded in the same manner as in the second embodiment.

第一突合せ部接合工程では、図24に示すように、第四回転ツールKを用いて第一実施形態と概ね同じ要領で第一突合せ部J1に対して摩擦攪拌接合を行う。第四回転ツールKは、工具鋼からなり、円柱状のショルダ部K1と、ショルダ部K1の底面から垂下する攪拌ピンK2とで構成されている。攪拌ピンK2の外周面K3には螺旋溝が形成されている。例えば、第四回転ツールKを右回転させる場合、螺旋溝は基端側から先端側に向けて左回りに設定する。 In the first butt portion welding step, as shown in FIG. 24, the fourth rotary tool K is used to perform friction stir welding on the first butt portion J1 in substantially the same manner as in the first embodiment. The fourth rotating tool K is made of tool steel, and is composed of a cylindrical shoulder K1 and an agitating pin K2 hanging down from the bottom of the shoulder K1. A spiral groove is formed on the outer peripheral surface K3 of the stirring pin K2. For example, when rotating the fourth rotating tool K to the right, the spiral groove is set counterclockwise from the proximal side to the distal side.

なお、第四回転ツールKを左回転させる場合は、螺旋溝を基端側から先端側に向けて右回りに設定することが好ましい。これにより、攪拌ピンK2によって塑性流動材が先端側に導かれるため、被接合金属部材(第一金属部材2A及び第二金属部材3A)の外部に溢れ出る金属を低減することができる。 When the fourth rotary tool K is rotated counterclockwise, it is preferable to set the spiral groove clockwise from the proximal side to the distal side. As a result, the plastic flow material is guided to the tip side by the stirring pin K2, so that the amount of metal overflowing to the outside of the metal members to be joined (the first metal member 2A and the second metal member 3A) can be reduced.

第一突合せ部接合工程では、ショルダ部K1の底面を第二金属部材3Aの表面3aに接触させた状態で第一突合せ部J1に沿って第四回転ツールKを相対移動させる。また、第一突合せ部接合工程では、第一突合せ部J1の隙間に塑性流動材を流入させつつ摩擦攪拌接合を行う。第一突合せ部接合工程を終えたら、成形型35から第一金属部材2Aを取り外し、第一金属部材2Aを成形型30に固定する。 In the first butt portion joining step, the fourth rotary tool K is relatively moved along the first butt portion J1 while the bottom surface of the shoulder portion K1 is in contact with the surface 3a of the second metal member 3A. In addition, in the first butt portion joining step, friction stir welding is performed while the plastic flow material is allowed to flow into the gap of the first butt portion J1. After completing the first butt joint joining step, the first metal member 2A is removed from the mold 35 and fixed to the mold 30 .

摩擦成形工程では、具体的な図示は省略するが、図21を参照するように、第二実施形態と同じ要領で摩擦成形を行う。つまり、当該摩擦成形工程では、外側に傾倒している第一金属部材2Aの周壁部11を成形面31に押し付けて第一金属部材2Aを賦形する。これにより、第一金属部材2Aの底部10と周壁部11とのなす角度を垂直にすることができる。 In the friction molding step, although the specific illustration is omitted, as shown in FIG. 21, friction molding is performed in the same manner as in the second embodiment. That is, in the friction molding step, the peripheral wall portion 11 of the first metal member 2A tilted outward is pressed against the molding surface 31 to shape the first metal member 2A. Thereby, the angle formed by the bottom portion 10 of the first metal member 2A and the peripheral wall portion 11 can be made vertical.

以上説明した変形例1に係る複合構造体の製造方法によっても、第一実施形態と略同等の効果を得ることができる。また、成形型30,35を工程毎に使い分けて使用してもよい。また、変形例1では、図22に示すように、成形型35の成形面36の内周面36bが傾斜しているため、周壁部11が外側に傾倒した第一金属部材2Aを安定して固定することができる。また、図24に示すように、第一突合せ部接合工程において、周壁部11の外周面11bを成形面36の内周面36bに面接触させることができるため、安定して摩擦攪拌接合を行うことができる。 Approximately the same effects as those of the first embodiment can be obtained by the method of manufacturing the composite structure according to Modification 1 described above. Also, the molds 30 and 35 may be used separately for each process. Further, in Modification 1, as shown in FIG. 22, the inner peripheral surface 36b of the molding surface 36 of the molding die 35 is inclined. can be fixed. In addition, as shown in FIG. 24, in the first butt portion joining step, the outer peripheral surface 11b of the peripheral wall portion 11 can be brought into surface contact with the inner peripheral surface 36b of the molding surface 36, so that friction stir welding can be performed stably. be able to.

[変形例2]
次に、本発明の変形例2について説明する。変形例2では、成形型37を用いて第一金属部材2の底部10と周壁部11とで構成される角部を鋭角(アンダーカット)にする点で他の実施形態及び変形例と相違する。変形例2では、他の実施形態及び変形例1と相違する部分を中心に説明する。
[Modification 2]
Next, Modification 2 of the present invention will be described. Modification 2 is different from the other embodiments and modifications in that the corner formed by the bottom portion 10 and the peripheral wall portion 11 of the first metal member 2 is formed with an acute angle (undercut) using the forming die 37. . Modification 2 will mainly be described with respect to portions that are different from other embodiments and Modification 1. FIG.

変形例に係る複合構造体の製造方法では、第一実施形態と同じ要領で準備工程、載置工程、第一突合せ部接合工程を行う。図25に示すように、変形例2の摩擦成形工程では、成形型37を用いる。成形型37は、推台形状の中空部を有する成形面38が形成されている。成形面38は、底面38aと、底面38aから内側に斜めに立ち上がる内周面38bとで構成されている。底面38aと内周面38bとでなす角度は鋭角になっている。 In the manufacturing method of the composite structure according to the modified example, the preparation step, the placement step, and the first butt portion bonding step are performed in the same manner as in the first embodiment. As shown in FIG. 25, a mold 37 is used in the friction molding process of Modification 2. As shown in FIG. The molding die 37 is formed with a molding surface 38 having a trapezoidal hollow portion. The molding surface 38 is composed of a bottom surface 38a and an inner peripheral surface 38b that rises obliquely inward from the bottom surface 38a. The angle formed by the bottom surface 38a and the inner peripheral surface 38b is an acute angle.

摩擦成形工程では、第二金属部材3の表面3aにおいて第一突合せ部J1の近傍に回転する第三回転ツールHを挿入し、第一突合せ部J1に沿って相対移動させる。摩擦成形工程では、第三回転ツールHの攪拌ピンH2を底部10及び周壁部11からわずかに離間させた状態で摩擦攪拌を行い、攪拌ピンH2及び摩擦攪拌された塑性流動材で底部10及び周壁部11を成形面38の底面38a及び内周面38bにそれぞれ押し付けて第一金属部材2を賦形する。攪拌ピンH2の外周面H4と周壁部11の内周面11aとは平行又は概ね平行になっている。また、攪拌ピンH2の先端面H3と底部10の表面10aとは平行又は概ね平行になっている。図25及び図26に示すように、摩擦成形工程では、隙間Qが無くなるように、成形面38に第一金属部材2を押し付けて賦形することが好ましい。 In the friction molding step, a rotating third rotating tool H is inserted near the first butted portion J1 on the surface 3a of the second metal member 3 and relatively moved along the first butted portion J1. In the friction molding step, friction stirring is performed with the stirring pin H2 of the third rotating tool H slightly separated from the bottom portion 10 and the peripheral wall portion 11, and the bottom portion 10 and the peripheral wall are formed by the stirring pin H2 and the friction-stirred plastic flow material. The first metal member 2 is shaped by pressing the portion 11 against the bottom surface 38a and the inner peripheral surface 38b of the forming surface 38, respectively. The outer peripheral surface H4 of the stirring pin H2 and the inner peripheral surface 11a of the peripheral wall portion 11 are parallel or substantially parallel. Further, the tip surface H3 of the stirring pin H2 and the surface 10a of the bottom portion 10 are parallel or substantially parallel. As shown in FIGS. 25 and 26, in the friction molding process, it is preferable to shape the first metal member 2 by pressing it against the molding surface 38 so that the gap Q is eliminated.

以上説明したように変形例2に係る複合構造体の製造方法によっても、第一実施形態と略同等の効果を得ることができる。ここで、第一金属部材2の底部10と周壁部11とでなす角度を鋭角にすることは困難である。第一金属部材2をプレス成形する場合、型抜きの関係上、第一金属部材2の底部10と周壁部11とを鋭角にすることができない。 As described above, substantially the same effects as those of the first embodiment can be obtained by the method of manufacturing a composite structure according to Modification 2 as well. Here, it is difficult to form an acute angle between the bottom portion 10 of the first metal member 2 and the peripheral wall portion 11 . When the first metal member 2 is press-molded, the bottom portion 10 and the peripheral wall portion 11 of the first metal member 2 cannot be formed at an acute angle due to die cutting.

しかし、本実施形態によれば、鋭角となっている成形面38の内周面38bに第一金属部材2の周壁部11を押し付けて賦形する摩擦成形工程を行うことで、複合構造体を構成する第一金属部材2の底部10と周壁部11とのなす角度を容易に鋭角にすることができる。つまり、アンダーカットを備えた複合構造体を形成することができる。また、摩擦攪拌の摩擦熱によって第一金属部材2及び第二金属部材3が軟化するため、容易に賦形することができる。 However, according to the present embodiment, the composite structure is formed by performing a friction molding process in which the peripheral wall portion 11 of the first metal member 2 is pressed against the inner peripheral surface 38b of the molding surface 38 having an acute angle to form the shape. The angle formed by the bottom portion 10 of the first metal member 2 and the peripheral wall portion 11 can be easily made acute. Thus, composite structures with undercuts can be formed. Moreover, since the first metal member 2 and the second metal member 3 are softened by the frictional heat of friction stirring, they can be easily shaped.

[第三実施形態]
次に、本発明の第三実施形態について説明する。図27に示すように、第三実施形態に係る複合構造体1Bは、底部10と周壁部11とのなす角度が鈍角になっている点で、第一実施形態と相違する。第三実施形態では、第一実施形態と相違する部分を中心に説明する。
[Third embodiment]
Next, a third embodiment of the invention will be described. As shown in FIG. 27, the composite structure 1B according to the third embodiment differs from the first embodiment in that the angle formed by the bottom portion 10 and the peripheral wall portion 11 is an obtuse angle. In the third embodiment, the description will focus on the parts that are different from the first embodiment.

第三実施形態に係る複合構造体1Bは、第一金属部材2Bと第二金属部材3Bとで構成されている。第一金属部材2Bは、底部10と、底部10の周縁部から外側に斜めに立ち上がる周壁部11と、周壁部11の端部から外側に張り出すフランジ部12とを備えている。底部10と周壁部11とのなす角度は鈍角になっている。より詳しくは、底部10の裏面10bと周壁部11の外周面11bとのなす角度も鈍角になっている。 A composite structure 1B according to the third embodiment is composed of a first metal member 2B and a second metal member 3B. The first metal member 2</b>B includes a bottom portion 10 , a peripheral wall portion 11 that rises obliquely outward from the peripheral portion of the bottom portion 10 , and a flange portion 12 that protrudes outward from the end portion of the peripheral wall portion 11 . The angle formed by the bottom portion 10 and the peripheral wall portion 11 is an obtuse angle. More specifically, the angle formed by the back surface 10b of the bottom portion 10 and the outer peripheral surface 11b of the peripheral wall portion 11 is also an obtuse angle.

第二金属部材3Bは、第一金属部材2Bの凹部13に配置される板状部材である。第二金属部材3Bは凹部13と略同等の形状を呈する。第二金属部材3Bの表面3aと、フランジ部12の表面12aとは面一になっている。 The second metal member 3B is a plate-like member arranged in the recess 13 of the first metal member 2B. The second metal member 3B has substantially the same shape as the concave portion 13. As shown in FIG. The surface 3a of the second metal member 3B and the surface 12a of the flange portion 12 are flush with each other.

周壁部11の内周面11aと第二金属部材3の外周面3cとが突き合わされた第一突合せ部J1は、摩擦攪拌で接合され塑性化領域W2が形成されている。塑性化領域W2は、第一突合せ部J1に沿って、周方向全体に亘って形成されている。 A first butted portion J1 where the inner peripheral surface 11a of the peripheral wall portion 11 and the outer peripheral surface 3c of the second metal member 3 are butted against each other is joined by friction stir to form a plasticized region W2. The plasticized region W2 is formed over the entire circumferential direction along the first butted portion J1.

底部10の表面10aと第二金属部材3の裏面3bとが突き合わされた重合部J2は、摩擦攪拌で接合され塑性化領域W1が形成されている。塑性化領域W1は、重合部J2の全体に亘って形成されている。なお、塑性化領域W3は、後記する摩擦成形工程で形成された塑性化領域である。 A superposed portion J2 where the front surface 10a of the bottom portion 10 and the rear surface 3b of the second metal member 3 are butted against each other is joined by friction stir welding to form a plasticized region W1. The plasticized region W1 is formed over the entire overlapping portion J2. The plasticized region W3 is a plasticized region formed by a friction molding process, which will be described later.

第一金属部材2Bと第二金属部材3Bとは同種の金属で形成してもよいが、本実施形態では、異なる材種で形成されている。また、第一金属部材2Bと第二金属部材3Bとは同一の硬度となるようにしてもよいが、本実施形態では第一金属部材2Bの硬度を第二金属部材3Bの硬度よりも高くしている。例えば、本実施形態では第一金属部材2BをAl-Mg合金(A5052等)で形成している。また、例えば、本実施形態では第二金属部材3BをAl(A1050等)で形成している。 Although the first metal member 2B and the second metal member 3B may be made of the same kind of metal, they are made of different materials in this embodiment. The first metal member 2B and the second metal member 3B may have the same hardness, but in the present embodiment, the hardness of the first metal member 2B is made higher than that of the second metal member 3B. ing. For example, in this embodiment, the first metal member 2B is made of an Al--Mg alloy (A5052 or the like). Further, for example, in the present embodiment, the second metal member 3B is made of Al (A1050 or the like).

次に、本実施形態に係る複合構造体の製造方法について説明する。複合構造体の製造方法では、準備工程と、載置工程と、重合部接合工程と、第一突合せ部接合工程と、摩擦成形工程とを行う。 Next, a method for manufacturing a composite structure according to this embodiment will be described. In the method for manufacturing a composite structure, a preparation step, a placing step, a overlapping portion joining step, a first butt portion joining step, and a friction molding step are performed.

準備工程は、第一金属部材2B及び第二金属部材3Bを準備する工程である。第一金属部材2Bは、板状の素形材をプレス成形で形成する。第二金属部材3Bは、例えば、押出成形で形成する。図28に示すように、第一金属部材2Bは、プレス成形によって底部10と周壁部11とのなす角度は鈍角になっているが、角部は丸く湾曲して形成されている。 The preparation step is a step of preparing the first metal member 2B and the second metal member 3B. The first metal member 2B is formed by press-molding a plate-shaped material. The second metal member 3B is formed by extrusion molding, for example. As shown in FIG. 28, the first metal member 2B is press-formed to form an obtuse angle between the bottom portion 10 and the peripheral wall portion 11, but the corner portions are rounded and curved.

載置工程は、図28に示すように、第一金属部材2Bに第二金属部材3Bを載置する工程である。載置工程では、まず、成形型35に第二金属部材3Bを設置する。成形型35は、変形例1で用いたものと同じである。 The placing step is, as shown in FIG. 28, a step of placing the second metal member 3B on the first metal member 2B. In the placing step, first, the second metal member 3B is placed on the mold 35 . The mold 35 is the same as that used in Modification 1.

載置工程では、第一金属部材2Bを成形型35に固定したら、第一金属部材2Bの凹部13に第二金属部材3Bを嵌め込んで載置する。載置工程によって、周壁部11の内周面11aと、第二金属部材3Bの外周面3cとが突き合わされて第一突合せ部J1が形成される。また、底部10の表面10aと第二金属部材3の裏面3bとが重ね合されて重合部J2が形成される。成形型35の角部と第二金属部材3Bの角部との間には隙間Pが形成されている。第二金属部材3Bの表面3aと、フランジ部12の表面12aとは面一になっている。なお、成形型35は、プレス成形工程及び載置工程で同じものを用いてもよい。これにより、作業手間を省くことができる。 In the placing step, after fixing the first metal member 2B to the molding die 35, the second metal member 3B is fitted into the concave portion 13 of the first metal member 2B and placed. In the mounting step, the inner peripheral surface 11a of the peripheral wall portion 11 and the outer peripheral surface 3c of the second metal member 3B are butted against each other to form the first butting portion J1. Further, the surface 10a of the bottom portion 10 and the back surface 3b of the second metal member 3 are overlapped to form an overlapped portion J2. A gap P is formed between the corner of the mold 35 and the corner of the second metal member 3B. The surface 3a of the second metal member 3B and the surface 12a of the flange portion 12 are flush with each other. The same mold 35 may be used in the press molding process and the placing process. As a result, work can be saved.

重合部接合工程では、図29に示すように、第一実施形態と同じ要領で重合部J2を摩擦攪拌接合する。重合部接合工程では、第二金属部材3Bの外周縁においては第二回転ツールGと周壁部11とが接触しないように摩擦攪拌接合を行う。 In the overlapped portion joining step, as shown in FIG. 29, the overlapped portion J2 is friction stir welded in the same manner as in the first embodiment. In the overlapping portion joining step, friction stir welding is performed so that the second rotating tool G and the peripheral wall portion 11 do not come into contact with each other at the outer peripheral edge of the second metal member 3B.

第一突合せ部接合工程では、図30に示すように、第一実施形態と同じ要領で第一突合せ部J1を摩擦攪拌接合する。第一突合せ部接合工程では、第一回転ツールFを用い、攪拌ピン(基端側ピンF2及び先端側ピンF3)を第一金属部材2Bにわずかに接触させつつ、基端側ピンF2の外周面F5を第二金属部材3Bの表面3a及びフランジ部12の表面12aに接触させた状態で第一突合せ部J1に沿って相対移動させる。 In the first butt portion joining step, as shown in FIG. 30, the first butt portion J1 is friction stir welded in the same manner as in the first embodiment. In the first butt portion joining step, the first rotating tool F is used to slightly contact the stirring pins (the proximal pin F2 and the distal pin F3) with the first metal member 2B, and the outer periphery of the proximal pin F2 is moved. With the surface F5 in contact with the surface 3a of the second metal member 3B and the surface 12a of the flange portion 12, the surface F5 is relatively moved along the first abutting portion J1.

摩擦成形工程では、図31に示すように、第一実施形態と同じ要領で第二回転ツールGを用いて成形型35に第一金属部材2Bを押し付けて第一金属部材2Bを賦形する。摩擦成形工程では、第二回転ツールGを用いる。第二回転ツールGの攪拌ピンG2の外周面G4の傾斜角度は、成形面36の内周面36bの傾斜角度と同じになっている。 In the friction molding step, as shown in FIG. 31, the first metal member 2B is shaped by pressing the first metal member 2B against the mold 35 using the second rotating tool G in the same manner as in the first embodiment. A second rotary tool G is used in the friction molding process. The inclination angle of the outer peripheral surface G4 of the stirring pin G2 of the second rotating tool G is the same as the inclination angle of the inner peripheral surface 36b of the molding surface 36. As shown in FIG.

摩擦成形工程では、第二回転ツールGを底部10及び周壁部11からわずかに離間させた状態で摩擦攪拌を行い、攪拌ピンG2及び摩擦攪拌された塑性流動材で底部10及び周壁部11を成形面36の底面36a及び内周面36bにそれぞれ押し付けて第一金属部材2Bを賦形する。攪拌ピンG2の外周面G4と周壁部11の内周面11aとは平行又は概ね平行になっている。また、攪拌ピンG2の先端面G3と底部10の表面10aとは平行又は概ね平行になっている。摩擦成形工程では、隙間P(図30参照)が無くなるように、成形面36に第一金属部材2Bを押し付けることが好ましい。第二回転ツールGの移動軌跡には、塑性化領域W3が形成される。第二回転ツールGを第一突合せ部J1に沿って一周させて、塑性化領域W3をオーバーラップさせたら、終了位置EP3で第二金属部材3Bの表面3aから第二回転ツールGを離脱させる。以上の工程によって複合構造体1B(図27参照)が形成される。 In the friction molding step, friction stir is performed with the second rotary tool G slightly separated from the bottom portion 10 and the peripheral wall portion 11, and the bottom portion 10 and the peripheral wall portion 11 are formed with the stirring pin G2 and the friction-stirred plastic flow material. The first metal member 2B is shaped by pressing against the bottom surface 36a and the inner peripheral surface 36b of the surface 36, respectively. The outer peripheral surface G4 of the stirring pin G2 and the inner peripheral surface 11a of the peripheral wall portion 11 are parallel or substantially parallel. Further, the tip surface G3 of the stirring pin G2 and the surface 10a of the bottom portion 10 are parallel or substantially parallel. In the friction molding process, it is preferable to press the first metal member 2B against the molding surface 36 so as to eliminate the gap P (see FIG. 30). A plasticized region W3 is formed in the movement trajectory of the second rotating tool G. As shown in FIG. After the second rotating tool G is made to go around the first butting portion J1 and overlap the plasticized region W3, the second rotating tool G is separated from the surface 3a of the second metal member 3B at the end position EP3. A composite structure 1B (see FIG. 27) is formed by the above steps.

以上説明した本実施形態に係る複合構造体の製造方法によっても、第一実施形態と略同等の効果を得ることができる。ここで、第一金属部材2Bの底部10と周壁部11とのなす角度を鈍角にして複合構造体を形成したい場合がある。しかし、プレス成形によって第一金属部材2Bを形成してもスプリングバック等が発生するため、所望の角度よりも周壁部11が外側に倒れてしまうおそれがある。 Approximately the same effects as those of the first embodiment can be obtained by the method of manufacturing a composite structure according to the present embodiment described above. Here, it may be desired to form a composite structure by making the angle formed by the bottom portion 10 of the first metal member 2B and the peripheral wall portion 11 an obtuse angle. However, even if the first metal member 2B is formed by press molding, springback or the like occurs, so there is a possibility that the peripheral wall portion 11 may fall outward from the desired angle.

しかし、本実施形態によれば、摩擦成形工程を行うことで、第二回転ツールGで第一金属部材2Bを賦形することができるため、複合構造体1Bを構成する第一金属部材2Bの底部10と周壁部11とのなす角度を容易に鈍角(所望の角度)にすることができる。特に、本実施形態に係る摩擦成形工程を行うことで第一金属部材2Bの角部の外側を構成する裏面10bと外周面11bとを所望の鈍角にする(平面同士で鈍角の角部を形成する)ことができる。 However, according to the present embodiment, the first metal member 2B that constitutes the composite structure 1B can be shaped by the second rotating tool G by performing the friction molding process. The angle formed by the bottom portion 10 and the peripheral wall portion 11 can be easily made obtuse (desired angle). In particular, by performing the friction molding process according to the present embodiment, the rear surface 10b and the outer peripheral surface 11b forming the outer side of the corner of the first metal member 2B are formed at a desired obtuse angle (the obtuse angle is formed between flat surfaces). can do.

また、摩擦成形工程では、攪拌ピンG2の外周面G4と成形型35の内周面36bとを平行にすることで、より的確に賦形することができる。 Further, in the friction molding process, by making the outer peripheral surface G4 of the stirring pin G2 and the inner peripheral surface 36b of the molding die 35 parallel to each other, more accurate shaping can be achieved.

[第四実施形態]
次に、本発明の第四実施形態に係る複合構造体の製造方法について説明する。本実施形態に係る複合構造体は底部10と周壁部11とのなす角度が鈍角である点で第三実施形態と同一である。一方、載置工程を行った際に周壁部11と第二金属部材3Cとの間に隙間が形成される点で第三実施形態と相違する。本実施形態では、第三実施形態と相違する部分を中心に説明する。
[Fourth embodiment]
Next, a method for manufacturing a composite structure according to the fourth embodiment of the present invention will be described. The composite structure according to this embodiment is the same as the third embodiment in that the angle formed by the bottom portion 10 and the peripheral wall portion 11 is an obtuse angle. On the other hand, it is different from the third embodiment in that a gap is formed between the peripheral wall portion 11 and the second metal member 3C when the mounting step is performed. In this embodiment, a description will be given centering on the parts that are different from the third embodiment.

複合構造体の製造方法では、準備工程と、載置工程と、重合部接合工程と、第一突合せ部接合工程と、摩擦成形工程とを行う。準備工程では、第一金属部材2C及び第二金属部材3Cを準備する。第二金属部材3Cは、板状を呈する。第二金属部材3Cの板厚寸法は、周壁部11の高さ寸法よりも大きくなっている。 In the method for manufacturing a composite structure, a preparation step, a placing step, a overlapping portion joining step, a first butt portion joining step, and a friction molding step are performed. In the preparation step, the first metal member 2C and the second metal member 3C are prepared. The second metal member 3C has a plate shape. The plate thickness dimension of the second metal member 3C is larger than the height dimension of the peripheral wall portion 11 .

載置工程では、図32に示すように、第一金属部材2Cに第二金属部材3Cを載置する。第一金属部材2Cの周壁部11の内周面11aと第二金属部材3Cの外周面3cとが突き合わされて第一突合せ部J1が形成される。第一突合せ部J1には断面V字状の隙間が形成される。また、成形型35の角部と第一金属部材2Cの角部との間には隙間Pが形成される。 In the placing step, as shown in FIG. 32, the second metal member 3C is placed on the first metal member 2C. The inner peripheral surface 11a of the peripheral wall portion 11 of the first metal member 2C and the outer peripheral surface 3c of the second metal member 3C are butted together to form a first butted portion J1. A gap having a V-shaped cross section is formed in the first abutting portion J1. A gap P is formed between the corner of the mold 35 and the corner of the first metal member 2C.

重合部接合工程では、図33に示すように、第一実施形態と同じ要領で重合部J2を摩擦攪拌接合する。重合部接合工程では、第二金属部材3Cの外周縁においては塑性流動材が第二金属部材3Cの外側に流出しないように摩擦攪拌接合を行う。 In the overlapped portion joining step, as shown in FIG. 33, the overlapped portion J2 is friction stir welded in the same manner as in the first embodiment. In the overlapping portion joining step, friction stir welding is performed at the outer peripheral edge of the second metal member 3C so that the plastic flow material does not flow out of the second metal member 3C.

第一突合せ部接合工程では、図34に示すように、第一実施形態と同じ要領で第一突合せ部J1を摩擦攪拌接合する。第一突合せ部接合工程では、第一回転ツールFを用い、攪拌ピン(基端側ピンF2及び先端側ピンF3)を第一金属部材2Bにわずかに接触させつつ、基端側ピンF2の外周面F5を第二金属部材3Cの表面3a及びフランジ部12の表面12aに接触させた状態で第一突合せ部J1に沿って相対移動させる。 In the first butt portion joining step, as shown in FIG. 34, the first butt portion J1 is friction stir welded in the same manner as in the first embodiment. In the first butt portion joining step, the first rotating tool F is used to slightly contact the stirring pins (the proximal pin F2 and the distal pin F3) with the first metal member 2B, and the outer periphery of the proximal pin F2 is moved. With the surface F5 in contact with the surface 3a of the second metal member 3C and the surface 12a of the flange portion 12, the surface F5 is relatively moved along the first abutting portion J1.

摩擦成形工程では、図35に示すように、第三実施形態と同じ要領で第二回転ツールGを用いて成形型35に第一金属部材2Cを押し付けて第一金属部材2Cを賦形する。摩擦成形工程では、第二回転ツールGを用いる。第二回転ツールGの攪拌ピンG2の外周面G4の傾斜角度は、成形面36の内周面36bの傾斜角度と同じになっている。 In the friction molding step, as shown in FIG. 35, the first metal member 2C is shaped by pressing the first metal member 2C against the mold 35 using the second rotary tool G in the same manner as in the third embodiment. A second rotary tool G is used in the friction molding process. The inclination angle of the outer peripheral surface G4 of the stirring pin G2 of the second rotating tool G is the same as the inclination angle of the inner peripheral surface 36b of the molding surface 36. As shown in FIG.

以上説明した本実施形態に係る複合構造体の製造方法によっても、第三実施形態と略同等の効果を得ることができる。また、図32に示すように、載置工程の段階で第一突合せ部J1に隙間があったとしても、第一突合せ部接合工程において、当該隙間に塑性流動材を流入させながら第一突合せ部J1を摩擦攪拌接合することができる。また、第二金属部材3Cの板厚寸法を周壁部11の高さ寸法よりも大きくしているため、接合部が金属不足になるのを防ぐことができる。 Approximately the same effects as those of the third embodiment can be obtained by the method of manufacturing a composite structure according to the present embodiment described above. Further, as shown in FIG. 32, even if there is a gap in the first butted portion J1 in the step of placing, in the first butted portion joining step, the first butted portion J1 is allowed to flow while the plastic flow material flows into the gap. J1 can be friction stir welded. Further, since the plate thickness dimension of the second metal member 3C is made larger than the height dimension of the peripheral wall portion 11, it is possible to prevent metal shortage at the joint portion.

以上本発明の実施形態及び変形例について説明したが、本発明の趣旨に反しない範囲で適宜設計変更が可能である。例えば、重合部接合工程は省略してもよい。また、摩擦成形工程では、回転ツールの攪拌ピンの外周面及び先端面が、成形型の底面及び内周面とそれぞれ平行又は概ね平行になるようにしたが、回転ツールの外周面と成形型の内周面とのみを平行又は概ね平行となるようにしてもよい。 Although the embodiments and modifications of the present invention have been described above, design changes can be made as appropriate without departing from the gist of the present invention. For example, the overlapping portion joining step may be omitted. In the friction molding process, the outer peripheral surface and tip end surface of the stirring pin of the rotating tool were made parallel or substantially parallel to the bottom surface and inner peripheral surface of the mold, respectively. You may make it parallel or substantially parallel only with an internal peripheral surface.

1 複合構造体
2 第一金属部材
3 第二金属部材
F 回転ツール(第一回転ツール)
F1 基軸部
F2 基端側ピン
F3 先端側ピン
F4 先端面
F5 外周面
G 回転ツール(第二回転ツール)
G2 攪拌ピン
G3 先端面
G4 外周面
H 回転ツール(第三回転ツール)
H2 攪拌ピン
H3 先端面
H4 外周面
K 回転ツール(第四回転ツール)
K1 ショルダ部
K2 攪拌ピン
K3 先端面
J1 第一突合せ部
J2 重合部
1 composite structure 2 first metal member 3 second metal member F rotating tool (first rotating tool)
F1 Base shaft F2 Base end pin F3 Distal end pin F4 Distal end surface F5 Peripheral surface G Rotating tool (second rotating tool)
G2 Stirring pin G3 Tip surface G4 Peripheral surface H Rotating tool (third rotating tool)
H2 Stirring pin H3 Tip surface H4 Peripheral surface K Rotary tool (fourth rotary tool)
K1 Shoulder part K2 Stirring pin K3 Tip surface J1 First butt part J2 Overlapping part

Claims (10)

摩擦攪拌を行って複合構造体を製造する複合構造体の製造方法であって、
底部と前記底部の周縁部から立ち上がる枠状の周壁部とで構成される凹部を有し、前記周壁部の端部から外側に張り出すフランジ部を備える第一金属部材と、前記第一金属部材の前記凹部に配置される第二金属部材と、を準備する準備工程と、
前記第一金属部材の凹部に前記第二金属部材を載置して前記第一金属部材の周壁部の内周面と、前記第二金属部材の外周面とを突き合わせて第一突合せ部を形成する載置工程と、
回転する回転ツールを用いて前記第一突合せ部を摩擦攪拌接合する第一突合せ部接合工程と、
前記第二金属部材の表面から回転する回転ツールを挿入しつつ前記第一突合せ部に沿って当該回転ツールを相対移動させ、前記第一金属部材の裏側に配置された成形型の成形面に前記第一金属部材の周壁部を押し付けて賦形する摩擦成形工程と、を含み、
前記摩擦成形工程では、前記成形型の成形面の底面と内周面とのなす角度を直角又は鋭角に形成することを特徴とする複合構造体の製造方法。
A method for manufacturing a composite structure by performing friction stir, comprising:
a first metal member having a concave portion composed of a bottom portion and a frame-shaped peripheral wall portion rising from a peripheral edge portion of the bottom portion, the first metal member including a flange portion projecting outward from an end portion of the peripheral wall portion; a preparation step of preparing a second metal member arranged in the recess of
The second metal member is placed in the recess of the first metal member, and the inner peripheral surface of the peripheral wall portion of the first metal member and the outer peripheral surface of the second metal member are butted against each other to form a first abutting portion. a placing step to
a first butt part joining step of friction stir welding the first butt part using a rotating rotary tool;
While inserting a rotary tool that rotates from the surface of the second metal member, the rotary tool is relatively moved along the first abutment portion, and the molding surface of the mold arranged on the back side of the first metal member is pressed against the mold surface. a friction molding step of pressing and shaping the peripheral wall portion of the first metal member,
A method of manufacturing a composite structure, wherein in the friction molding step, the angle formed by the bottom surface of the molding surface of the mold and the inner peripheral surface of the mold is formed at a right angle or an acute angle.
前記摩擦成形工程では、回転ツールの攪拌ピンの外周面を前記成形面の前記内周面と平行にすることを特徴とする請求項1に記載の複合構造体の製造方法。 2. The method of manufacturing a composite structure according to claim 1, wherein in the friction molding step, the outer peripheral surface of the stirring pin of the rotating tool is parallel to the inner peripheral surface of the molding surface. 前記準備工程では、前記第一金属部材の硬度を、前記第二金属部材の硬度よりも高く設定し、
前記第一突合せ部接合工程では、前記第二金属部材の表面から回転する回転ツールを挿入し、当該回転ツールの攪拌ピンを前記第一金属部材にわずかに接触させた状態で摩擦攪拌を行うことを特徴とする請求項1又は請求項2に記載の複合構造体の製造方法。
In the preparation step, the hardness of the first metal member is set higher than the hardness of the second metal member,
In the first butt portion joining step, a rotating rotating tool is inserted from the surface of the second metal member, and friction stir is performed in a state where the stirring pin of the rotating tool is slightly in contact with the first metal member. 3. The method for manufacturing a composite structure according to claim 1 or 2, characterized by:
前記載置工程では、前記第一金属部材の底部の表面と、前記第二金属部材の裏面とを重ね合わせて重合部を形成し、
前記第一突合せ部接合工程を行う前に、前記第二金属部材の表面から回転する回転ツールを挿入し、当該回転ツールの攪拌ピンのみを前記第二金属部材のみ、又は前記第一金属部材及び前記第二金属部材に接触させた状態で摩擦攪拌によって前記重合部を接合する重合部接合工程を含むことを特徴とする請求項1乃至請求項3のいずれか一項に記載の複合構造体の製造方法。
In the placing step, the surface of the bottom portion of the first metal member and the back surface of the second metal member are overlapped to form an overlapping portion,
Before performing the first butt joint joining step, a rotating tool that rotates is inserted from the surface of the second metal member, and only the stirring pin of the rotating tool is moved to the second metal member only, or the first metal member and 4. The composite structure according to any one of claims 1 to 3, further comprising an overlapping portion joining step of joining the overlapping portion by friction stir while being in contact with the second metal member. Production method.
前記重合部接合工程では、前記第二金属部材の表面の中央部に回転ツールを挿入し、前記中央部から外側に向けて平面視で螺旋状の連続的な軌跡を描くように相対移動させて前記重合部の全体を摩擦攪拌することを特徴とする請求項4に記載の複合構造体の製造方法。 In the overlapped portion joining step, a rotating tool is inserted into the central portion of the surface of the second metal member, and relatively moved outward from the central portion so as to draw a continuous helical trajectory in plan view. 5. The method of manufacturing a composite structure according to claim 4, wherein the entire polymerization portion is friction-stirred. 前記重合部接合工程及び前記第一突合せ部接合工程は、一の回転ツールを用いて連続して行うことを特徴とする請求項4又は請求項5に記載の複合構造体の製造方法。 6. The method for manufacturing a composite structure according to claim 4, wherein the overlapping portion joining step and the first butt portion joining step are performed continuously using a single rotary tool. 前記第一突合せ部接合工程では、基端側ピンと、先端側ピンとを備え、前記基端側ピンのテーパー角度を前記先端側ピンのテーパー角度よりも大きく設定するとともに、前記基端側ピンの外周面に階段状の段差部を形成した回転ツールを使用し、前記基端側ピンの外周面を前記第二金属部材の表面に接触させた状態で摩擦攪拌を行うことを特徴とする請求項1乃至請求項5のいずれか一項に記載の複合構造体の製造方法。 In the first butt portion joining step, a proximal side pin and a distal side pin are provided, the taper angle of the proximal side pin is set larger than the taper angle of the distal side pin, and the outer circumference of the proximal side pin Friction stir is performed by using a rotating tool having a step-like stepped portion formed on the surface thereof, with the outer peripheral surface of the base end side pin in contact with the surface of the second metal member. 6. The method of manufacturing a composite structure according to any one of claims 1 to 5. 前記第一突合せ部接合工程では、ショルダ部と前記ショルダ部の底面から垂下する攪拌ピンとを備えた回転ツールを使用し、前記ショルダ部の底面を前記第二金属部材の表面に接触させた状態で摩擦攪拌を行うことを特徴とする請求項1乃至請求項5のいずれか一項に記載の複合構造体の製造方法。 In the first butt portion joining step, a rotary tool having a shoulder portion and an agitating pin hanging down from the bottom surface of the shoulder portion is used, and the bottom surface of the shoulder portion is in contact with the surface of the second metal member. 6. The method for manufacturing a composite structure according to any one of claims 1 to 5, wherein friction stirring is performed. 前記載置工程では、前記第一金属部材に前記第二金属部材を載置した際に、前記第二金属部材の表面が、前記第一金属部材の前記フランジ部の表面と同一か、若しくは前記フランジ部の表面よりも高い位置となるように前記第二金属部材の厚みを設定することを特徴とする請求項1乃至請求項8のいずれか一項に記載の複合構造体の製造方法。 In the placing step, when the second metal member is placed on the first metal member, the surface of the second metal member is the same as the surface of the flange portion of the first metal member, or 9. The method of manufacturing a composite structure according to any one of claims 1 to 8, wherein the thickness of the second metal member is set so as to be higher than the surface of the flange portion. 前記第一突合せ部接合工程及び前記摩擦成形工程は、一の回転ツールで同時に行うことを特徴とする請求項1に記載の複合構造体の製造方法。
2. The method of manufacturing a composite structure according to claim 1, wherein said first butt joint joining step and said friction forming step are performed simultaneously with a single rotating tool.
JP2020030244A 2020-02-26 2020-02-26 Composite structure manufacturing method Active JP7322748B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020030244A JP7322748B2 (en) 2020-02-26 2020-02-26 Composite structure manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020030244A JP7322748B2 (en) 2020-02-26 2020-02-26 Composite structure manufacturing method

Publications (2)

Publication Number Publication Date
JP2021133386A JP2021133386A (en) 2021-09-13
JP7322748B2 true JP7322748B2 (en) 2023-08-08

Family

ID=77659645

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020030244A Active JP7322748B2 (en) 2020-02-26 2020-02-26 Composite structure manufacturing method

Country Status (1)

Country Link
JP (1) JP7322748B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005288525A (en) 2004-04-02 2005-10-20 Sumitomo Light Metal Ind Ltd Spot welding method of different kind of metallic member
JP2008188654A (en) 2007-02-06 2008-08-21 Musashi Seimitsu Ind Co Ltd Metal joining member and its joining method
JP2009297761A (en) 2008-06-16 2009-12-24 Nippon Light Metal Co Ltd Method for producing heat transmit plate
JP2010137269A (en) 2008-12-15 2010-06-24 Calsonic Kansei Corp Friction stir welding method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005288525A (en) 2004-04-02 2005-10-20 Sumitomo Light Metal Ind Ltd Spot welding method of different kind of metallic member
JP2008188654A (en) 2007-02-06 2008-08-21 Musashi Seimitsu Ind Co Ltd Metal joining member and its joining method
JP2009297761A (en) 2008-06-16 2009-12-24 Nippon Light Metal Co Ltd Method for producing heat transmit plate
JP2010137269A (en) 2008-12-15 2010-06-24 Calsonic Kansei Corp Friction stir welding method

Also Published As

Publication number Publication date
JP2021133386A (en) 2021-09-13

Similar Documents

Publication Publication Date Title
WO2019193779A1 (en) Method for manufacturing liquid-cooled jacket
WO2019193778A1 (en) Method for manufacturing liquid-cooled jacket
WO2018193639A1 (en) Method for manufacturing liquid-cooled jacket
WO2019150620A1 (en) Method for manufacturing liquid cooling jacket
WO2019097734A1 (en) Joining method
WO2019150610A1 (en) Method for manufacturing liquid cooling jacket
WO2019064849A1 (en) Method for producing liquid-cooled jacket
WO2020158081A1 (en) Joining method
WO2019064848A1 (en) Method for producing liquid-cooled jacket
KR101881679B1 (en) Method for manufacturing heat transfer plate
WO2021100222A1 (en) Method for manufacturing liquid cooling jacket
JP7322748B2 (en) Composite structure manufacturing method
JP7322749B2 (en) Composite structure manufacturing method
JP2019155415A (en) Manufacturing method for liquid-cooled jacket
JP7347234B2 (en) Liquid cooling jacket manufacturing method and friction stir welding method
WO2021144997A1 (en) Method for manufacturing liquid-cooled jacket
WO2021149271A1 (en) Method for manufacturing liquid cooling jacket
JP6927134B2 (en) How to manufacture a liquid-cooled jacket
JP2019155414A (en) Manufacturing method for liquid-cooled jacket
JP2021133408A (en) Liquid-cooled jacket manufacturing method
JP6950580B2 (en) How to manufacture a liquid-cooled jacket
JP7272153B2 (en) Joining method and manufacturing method of composite rolled material
JP2020171958A (en) Method for manufacturing liquid-cooling jacket
WO2019202754A1 (en) Liquid-cooled jacket manufacturing method
JP2021186870A (en) Liquid-cooled jacket manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220929

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230622

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230627

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230710

R150 Certificate of patent or registration of utility model

Ref document number: 7322748

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150