WO2020158081A1 - Joining method - Google Patents

Joining method Download PDF

Info

Publication number
WO2020158081A1
WO2020158081A1 PCT/JP2019/042274 JP2019042274W WO2020158081A1 WO 2020158081 A1 WO2020158081 A1 WO 2020158081A1 JP 2019042274 W JP2019042274 W JP 2019042274W WO 2020158081 A1 WO2020158081 A1 WO 2020158081A1
Authority
WO
WIPO (PCT)
Prior art keywords
end side
side pin
tip
pin
strut
Prior art date
Application number
PCT/JP2019/042274
Other languages
French (fr)
Japanese (ja)
Inventor
堀 久司
伸城 瀬尾
宏介 山中
Original Assignee
日本軽金属株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本軽金属株式会社 filed Critical 日本軽金属株式会社
Priority to CN201980088861.0A priority Critical patent/CN113302014B/en
Publication of WO2020158081A1 publication Critical patent/WO2020158081A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/12Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding

Definitions

  • the present invention relates to a joining method.
  • Patent Document 1 discloses a method for manufacturing a liquid cooling jacket.
  • FIG. 11 is sectional drawing which shows the manufacturing method of the conventional liquid cooling jacket.
  • a butt portion J10 formed by abutting the step side surface 101c provided on the step portion of the aluminum alloy jacket body 101 and the side surface 102c of the aluminum alloy sealing body 102. Friction stir welding is performed. Further, in the conventional method of manufacturing a liquid cooling jacket, friction stir welding is performed by inserting only the stirring pin F42 into the butt portion J10 while separating the connecting portion F41 of the rotary tool F40 from the jacket body 101 and the sealing body 102. ing. Further, in the conventional method for manufacturing a liquid cooling jacket, the rotation center axis Z of the rotary tool F40 is overlapped with the abutting portion J10 and relatively moved.
  • the jacket body 101 is likely to have a complicated shape, and is formed of, for example, a cast material of 4000 series aluminum alloy, and a relatively simple shape such as the sealing body 102 is a wrought material of 1000 series aluminum alloy. There is a case where it is formed by. In this way, members having different aluminum alloy grades may be joined together to manufacture a liquid cooling jacket. In such a case, the hardness of the jacket body 101 is generally higher than that of the sealing body 102. Therefore, when friction stir welding is performed as shown in FIG. The material resistance received from the jacket body 101 side is larger than the material resistance received from the jacket body 101 side. Therefore, it becomes difficult to stir different materials with a stirring pin F42 of the rotary tool F40 in a well-balanced manner, and there is a problem that a cavity defect occurs in the plasticized region after joining and the joining strength is reduced.
  • the present invention is a joining method for joining a strut and a member having a hole into which the tip of the strut is inserted by friction stirring, wherein the strut is formed of a first aluminum alloy, and the member is It is formed of a second aluminum alloy, the first aluminum alloy is a material having a hardness higher than the second aluminum alloy, the rotary tool used in the friction stirrer comprises a proximal end side pin and a distal end side pin, The taper angle of the base end side pin is larger than the taper angle of the tip end side pin, a stepped step portion is formed on the outer peripheral surface of the base end side pin, and a step bottom surface at the tip of the strut, A step of forming a pillar step portion having a step side surface that obliquely rises from the bottom surface of the step so that the tip of the pillar is tapered; and a step of the pillar step portion by placing the member on the pillar.
  • the rotating tool is moved along the first butting portion with the outer peripheral surface of the tip side pin slightly contacting the step side surface of the strut step portion while the outer peripheral surface of the pin contacting the member.
  • the second aluminum alloy mainly on the member side of the first butting portion is agitated and plasticized by frictional heat between the member and the pin on the tip side. Therefore, the step side surface of the pillar step portion and the hole wall of the hole portion can be joined at the first butting portion. Further, since the outer peripheral surface of the tip side pin is slightly contacted with the step side surface of the strut step portion, it is possible to minimize the mixing of the first aluminum alloy into the member from the strut. As a result, the second aluminum alloy on the member side is mainly friction-stirred in the first abutting portion, so that the reduction in bonding strength can be suppressed. Further, by pressing the member on the outer peripheral surface of the base end side pin, it is possible to suppress the occurrence of burr.
  • the step bottom surface of the strut step portion and the back surface of the member are overlapped to form a second butting portion
  • the tip side pin is the step bottom surface of the strut step portion. It is preferable that the rotary tool is moved along the second butting portion while being slightly contacted with the friction stirrer.
  • the joint strength of the second butt portion can be increased.
  • the present invention is a joining method for joining a strut and a member having a hole into which the tip of the strut is inserted by friction stirring, wherein the strut is formed of copper or a copper alloy, and The member is made of aluminum or an aluminum alloy, and the rotary tool used for friction stirring includes a base end side pin and a tip end side pin, and the taper angle of the base end side pin is larger than the taper angle of the tip end side pin.
  • a step-like step is formed on the outer peripheral surface of the base end side pin, and a step bottom surface is formed at the tip of the pillar, and a step that rises obliquely from the step bottom surface such that the tip of the pillar is tapered.
  • the mounting step of forming the first abutting portion and the rotating distal end side pin are inserted into the member, and the outer peripheral surface of the proximal end side pin is brought into contact with the member while the outer peripheral surface of the distal end side pin is contacted.
  • Main welding in which friction stir is performed while the aluminum or aluminum alloy of the member is caused to flow into the gap when the rotary tool is moved along the first butting portion in a state in which is not in contact with the step side surface of the column step portion. And a process.
  • the aluminum alloy mainly on the member side of the first butting portion is agitated and plasticized by frictional heat between the member and the tip side pin, and the step side surface and the hole wall of the hole portion are formed in the first butting portion. Can be joined. Further, since the tip side pin is brought into contact with only the member to perform frictional stirring, there is almost no mixing of copper or copper alloy from the column into the member. As a result, the aluminum alloy on the member side is mainly friction-stirred in the first butting portion, so that the reduction in bonding strength can be suppressed. Further, by pressing the member on the outer peripheral surface of the base end side pin, it is possible to suppress the occurrence of burr.
  • the step bottom surface of the strut step portion and the back surface of the member are overlapped to form a second butting portion
  • the tip side pin is the step bottom surface of the strut step portion. It is preferable that the rotary tool is moved along the second butting portion without being brought into contact with the friction stirrer.
  • the thickness of the member is set to be larger than the height dimension of the step side surface of the pillar step portion.
  • the traveling direction and the rotating direction of the rotating tool such that the advancing side of the rotating tool is the strut side.
  • the stirring action by the base end side pin and the tip end side pin around the first butting portion is enhanced, and the temperature rise at the first butting portion can be expected. It can be surely joined.
  • the rotary tool is moved along the first butting portion to make one round around the support to perform friction stirring.
  • the rotary tool is a tool used for friction stir welding.
  • the rotary tool F is formed of, for example, tool steel, and is mainly configured by a base shaft portion F1, a base end side pin F2, and a tip end side pin F3.
  • the base shaft portion F1 has a cylindrical shape and is a portion connected to the main shaft of the friction stirrer.
  • the base end pin F2 is continuous with the base shaft F1 and tapers toward the tip.
  • the proximal pin F2 has a truncated cone shape.
  • the taper angle A of the proximal pin F2 may be set appropriately, but is, for example, 135 to 160°. If the taper angle A is less than 135° or exceeds 160°, the joint surface roughness after frictional stirring increases.
  • the taper angle A is larger than the taper angle B of the tip side pin F3 described later.
  • a stepped pin stepped portion F21 is formed on the outer peripheral surface of the base end side pin F2 over the entire height direction.
  • the pin step portion F21 is formed in a spiral shape in a clockwise or counterclockwise direction.
  • the pin step portion F21 has a spiral shape in a plan view and a step shape in a side view.
  • the pin step portion F21 is set counterclockwise from the base end side toward the tip end side.
  • the pin step portion F21 includes a step bottom surface F21a and a step side surface F21b.
  • the distance X1 (horizontal direction distance) between the vertices F21c and F21c of the adjacent pin step portions F21 is appropriately set according to the step angle C and the height Y1 of the step side surface F21b described later.
  • the height Y1 of the step side face F21b may be set appropriately, but is set to, for example, 0.1 to 0.4 mm. If the height Y1 is less than 0.1 mm, the joint surface roughness becomes large. On the other hand, when the height Y1 exceeds 0.4 mm, the joint surface roughness tends to increase, and the number of effective step portions (the number of pin step portions F21 in contact with the metal member to be joined) also decreases.
  • the step angle C formed by the step bottom surface F21a and the step side surface F21b may be set appropriately, but is set to 85 to 120°, for example.
  • the step bottom surface F21a is parallel to the horizontal surface in the present embodiment.
  • the step bottom surface F21a may be inclined in the range of ⁇ 5° to 15° with respect to the horizontal plane from the rotation axis of the tool toward the outer peripheral direction (minus is downward with respect to the horizontal plane, plus is with respect to the horizontal plane).
  • the distance X1, the height Y1 of the step side surface F21b, the step angle C, and the angle of the step bottom surface F21a with respect to the horizontal plane are set such that the plastic flow material does not stay inside the pin step portion F21 and adhere to the outside during friction stirring. It is set appropriately so that the joint surface roughness can be reduced by pressing the plastic fluidized material at the step bottom surface F21a while being removed.
  • the tip side pin F3 is formed continuously with the base side pin F2.
  • the tip side pin F3 has a truncated cone shape.
  • the tip of the tip side pin F3 is a flat surface F4 perpendicular to the rotation axis.
  • the taper angle B of the tip end side pin F3 is smaller than the taper angle A of the base end side pin F2.
  • a spiral groove F31 is formed on the outer peripheral surface of the tip side pin F3.
  • the spiral groove F31 may be either clockwise or counterclockwise, but in the present embodiment, the spiral groove F31 is engraved counterclockwise from the base end side to the tip side in order to rotate the rotary tool F clockwise.
  • the spiral groove F31 includes a spiral bottom surface F31a and a spiral side surface F31b.
  • the distance (horizontal direction distance) between the vertices F31c and F31c of the adjacent spiral grooves F31 is defined as the length X2.
  • the height of the spiral side surface F31b is defined as the height Y2.
  • the spiral angle D formed by the spiral bottom surface F31a and the spiral side surface F31b is, for example, 45 to 90°.
  • the spiral groove F31 has a role of increasing frictional heat by coming into contact with the metal member to be joined and guiding the plastic fluid material to the tip side.
  • FIG. 3 is a side view showing a first modification of the rotary tool of the present invention.
  • the step angle C between the step bottom face F21a of the pin step F21 and the step side face F21b is 85°.
  • the step bottom surface F21a is parallel to the horizontal plane.
  • the step bottom surface F21a is parallel to the horizontal plane, and the step angle C may be an acute angle within a range in which the plastic fluid material stays in the pin step portion F21 during frictional stirring and is discharged to the outside without adhering. ..
  • FIG. 4 is a side view showing a second modification of the rotary tool of the present invention.
  • the step angle C of the pin step portion F21 is 115°.
  • the step bottom surface F21a is parallel to the horizontal plane.
  • the step bottom surface F21a may be parallel to the horizontal plane, and the step angle C may be an obtuse angle within the range of functioning as the pin step portion F21.
  • FIG. 5 is a side view showing a third modified example of the rotary tool of the present invention.
  • the step bottom surface F21a is inclined upward by 10° with respect to the horizontal plane from the rotation axis of the tool toward the outer peripheral direction.
  • the step side face F21b is parallel to the vertical plane.
  • the step bottom surface F21a may be formed so as to incline upward from the horizontal surface from the rotation axis of the tool toward the outer peripheral direction within a range in which the plastic fluid material can be pressed during friction stirring.
  • the first to third modified examples of the above rotary tool can also achieve the same effects as the following embodiments.
  • the joining method of the present embodiment is to join the column 15 and the member (hereinafter, also referred to as “sealing body”) 3 by friction stirring, but here the column 15 is joined.
  • An example of joining the provided jacket body 2 and the sealing body 3 will be described.
  • the present invention is a joining method for joining a support pillar and a member, and the shape of the support pillar, the shape of the member, the use, etc. are not particularly limited.
  • the joining method of the present embodiment is to manufacture the liquid cooling jacket 1 by friction stir welding the jacket body 2 and the sealing body 3.
  • the liquid cooling jacket 1 is a member that installs a heating element (not shown) on the sealing body 3 and causes a fluid to flow inside to exchange heat with the heating element.
  • "front surface” means the surface opposite to the "back surface”.
  • the joining method according to the present embodiment includes a preparation step, a placing step, and a main joining step.
  • the preparation step is a step of preparing the jacket body 2 and the sealing body 3.
  • the jacket body 2 is mainly composed of a bottom portion 10, a peripheral wall portion 11, and a plurality of columns 15.
  • the jacket body 2 is formed mainly including the first aluminum alloy.
  • the first aluminum alloy for example, an aluminum alloy casting material such as JIS H5302 ADC12 (Al-Si-Cu system) is used.
  • the bottom portion 10 is a plate-shaped member having a rectangular shape in plan view.
  • the peripheral wall portion 11 is a wall portion that stands up in a rectangular frame shape from the peripheral portion of the bottom portion 10.
  • a peripheral wall step portion 12 is formed on the inner peripheral edge of the peripheral wall portion 11.
  • the peripheral wall step portion 12 is composed of a step bottom surface 12a and a step side surface 12b rising from the step bottom surface 12a.
  • the step side surface 12b is inclined so as to spread outward from the step bottom surface 12a toward the opening.
  • the inclination angle ⁇ (FIG. 7) of the step side surface 12b may be set appropriately, but is, for example, 3° to 30° with respect to the vertical plane.
  • a concave portion 13 is formed by the bottom portion 10 and the peripheral wall portion 11.
  • the column 15 stands upright from the bottom portion 10.
  • the number of columns 15 is not particularly limited, but four columns are formed in this embodiment.
  • the pillar 15 has a cylindrical shape in this embodiment, it may have another shape such as a prism.
  • a protrusion 16 is formed at the tip of the column 15.
  • the shape of the protruding portion 16 is not particularly limited, but in this embodiment, it is a truncated cone shape.
  • the height of the protrusion 16 is smaller than the plate thickness of the sealing body 3.
  • a pillar step portion 17 is formed at the tip of the pillar 15.
  • the column step portion 17 is composed of a step bottom surface 17a and a step side surface 17b rising from the step bottom surface 17a.
  • the step bottom surface 17a is formed at the same height as the step bottom surface 12a of the peripheral wall step portion 12.
  • the height dimension of the step side surface 17b is smaller than the plate thickness of the sealing body 3.
  • the step side surface 17b is inclined so as to be separated from the hole wall 4a so as to taper toward the tip.
  • the sealing body 3 is a plate-shaped member that seals the opening of the jacket body 2.
  • the sealing body 3 is sized to be placed on the peripheral wall step portion 12.
  • the plate thickness of the sealing body 3 is larger than the height of the step side surface 12b.
  • Holes 4 are formed in the sealing body 3 at positions corresponding to the columns 15.
  • the hole 4 is formed so that the protrusion 16 is fitted therein.
  • the sealing body 3 is formed mainly including the second aluminum alloy.
  • the second aluminum alloy is a material having a lower hardness than the first aluminum alloy.
  • the second aluminum alloy is formed of an wrought aluminum alloy such as JIS A1050, A1100, A6063, for example.
  • the placing step is a step of placing the sealing body 3 on the jacket body 2 as shown in FIG. 7.
  • the back surface 3b of the sealing body 3 is mounted on the step bottom surface 12a.
  • the step side surface 12b and the outer peripheral side surface 3c of the sealing body 3 are butted against each other to form a butted portion J11. Further, the step bottom surface 12a and the back surface 3b of the sealing body 3 are butted against each other to form a butted portion J12.
  • the hole wall 4a of the hole 4 and the step side surface 17b of the pillar step portion 17 are butted with each other in the placing step to form the first butted portion J1.
  • the first butting portion J1 may include a case where the hole wall 4a and the step side surface 17b of the column step portion 17 are butted with each other with a gap having a substantially V-shaped cross section.
  • the back surface 3b of the sealing body 3 and the step bottom surface 17a of the pillar step portion 17 are butted against each other to form the second butted portion J2.
  • the main joining step is, as shown in FIGS. 8 and 9, a step of friction stir welding the first butting portion J1 using the rotary tool F.
  • the tip side pin F3 rotated clockwise is inserted at the start position Sp set on the surface 3a of the sealing body 3.
  • the outer peripheral surface of the base end pin F2 is brought into contact with the sealing body 3, while the outer peripheral surface of the tip end pin F3 is slightly contacted with the step side surface 17b of the column step portion 17.
  • the rotating tool F is moved along the first butting portion J1
  • the second aluminum alloy of the sealing body 3 is caused to flow into the gap of the first butting portion J1 to perform friction stirring.
  • the rotating tool F is rotated once along the first butting portion J1.
  • a plasticized region W1 is formed on the movement locus of the rotary tool F by hardening the frictionally stirred metal.
  • the outer peripheral surface of the tip side pin F3 is slightly contacted with the step side surface 17b of the column step portion 17, and the flat surface F4 of the tip side pin F3 is not contacted with the step bottom surface 17a.
  • the contact amount of the outer peripheral surface of the tip side pin F3 with respect to the step side surface 17b is defined as the offset amount N.
  • the offset amount N is set to, for example, , 0 ⁇ N ⁇ 0.5 mm, preferably 0 ⁇ N ⁇ 0.25 mm.
  • the start end and the end of the plasticized region W1 overlap.
  • the rotating tool F may be gradually lifted and pulled out while relatively moving the rotating tool F on the surface 3a of the sealing body 3.
  • frictional heat between the sealing body (member) 3 and the tip side pin F3 stirs mainly the second aluminum alloy of the first butting portion J1 on the sealing body 3 side. And is plasticized. Therefore, the step side surface 17b of the pillar step portion 17 and the hole wall 4a of the hole 4 can be joined at the first abutting portion J1. Similarly, at the first abutting portion J1, the step bottom surface 17a of the column step portion 17 and the back surface 3b of the sealing body 3 can be joined. Further, since the outer peripheral surface of the tip side pin F3 is only slightly contacted with the step side surface 17b of the column step portion 17, the mixing of the first aluminum alloy from the column 15 into the sealing body 3 can be minimized. As a result, the second aluminum alloy on the side of the sealing body 3 is mainly friction-stirred in the first abutting portion J1, so that the reduction in bonding strength can be suppressed.
  • the tip side pin F3 since the step side surface 17b of the strut step portion 17 is tilted in a direction of separating from the hole wall 4a toward the tip (so that the tip of the strut 15 is tapered), the tip side pin F3. It is possible to easily avoid contact between the column 15 and the column 15. Further, in the present embodiment, the inclination angle ⁇ of the step side surface 17b (FIG. 7) and the inclination angle ⁇ of the tip side pin F3 (FIG. 1) are the same (the step side surface 17b and the outer peripheral surface of the tip side pin F3 are parallel. Therefore, it is possible to make the tip side pin F3 and the step side surface 17b as close as possible while avoiding contact between the tip side pin F3 and the step side surface 17b.
  • the rotary tool F of the present embodiment is configured to include a base end side pin F2 and a tip end side pin F3 having a taper angle smaller than the taper angle A of the base end side pin F2. This facilitates insertion of the rotary tool F into the sealing body 3. Further, since the taper angle B of the tip side pin F3 is small, the rotary tool F can be easily inserted to a deep position of the sealing body 3.
  • the plastic fluid material can be pressed by the outer peripheral surface of the base end side pin F2, the stepped groove formed on the joint surface can be made small and the bulging portion formed beside the stepped groove. Can be eliminated or reduced.
  • the stepped pin step portion F21 is shallow and has a wide outlet, the plastic fluid material easily comes out of the pin step portion F21 while pressing the plastic fluid material with the step bottom face F21a. Therefore, even if the plastic fluid material is pressed by the proximal pin F2, the plastic fluid material is unlikely to adhere to the outer peripheral surface of the proximal pin F2. Therefore, the joint surface roughness can be reduced, and the joint quality can be preferably stabilized.
  • the rotation direction and the traveling direction of the rotary tool F may be set as appropriate, but in the plasticized region W1 formed on the movement trajectory of the rotary tool F, the support column 15 side is the shear side, and the sealing is performed.
  • the rotation direction and the traveling direction of the rotary tool F were set so that the body 3 side was the flow side.
  • the shear side is the value of the relative speed of the outer circumference of the rotary tool to the welded part, which is the sum of the tangential speed on the outer circumference of the rotary tool and the magnitude of the moving speed. Means the side.
  • the flow side refers to the side where the relative speed of the rotary tool to the welded part becomes low due to the rotary tool rotating in the direction opposite to the moving direction of the rotary tool.
  • the thickness of the sealing body 3 is set to be larger than the height dimension of the step side surface 17b of the column step portion 17. According to such a joining method, it is possible to prevent metal shortage at the joint.
  • the step bottom surface 17a of the pillar step portion 17 and the flat surface F4 of the tip pin F3 are separated from each other, but the plasticized region W1 reaches the step bottom surface 17a. Thereby, the joint strength of the second abutting portion J2 can be increased.
  • the tip end pin F3 is slightly contacted with the step bottom surface 17a of the column step portion 17, and the rotary tool F is moved along the second butting portion J2 to perform friction stirring. (Not shown).
  • the abutting portions J11 and J12 may be appropriately joined by a method such as friction stirring.
  • the materials of the jacket body 2 and the sealing body 3 are different in the preparation step, and the form of the main joining step is different from the above embodiment.
  • the jacket body 2 is made of copper or a copper alloy.
  • the jacket body 2 made of copper or a copper alloy and the sealing body (member) 3 made of aluminum or an aluminum alloy are exemplified, but, for example, a strut made of copper or a copper alloy and the strut You may join with the member made from aluminum or aluminum alloy joined.
  • the rotating tool F is used to friction stir weld the jacket body 2 and the sealing body 3.
  • friction stir is performed by making a round around the projecting portion 16 without contacting the outer peripheral surface of the tip side pin F3 with the step side surface 17b of the column step 17.
  • the tip of the tip pin F3 is set so as not to contact the step bottom surface 17a.
  • the separation distance L from the step side surface 17b to the outer peripheral surface of the tip side pin F3 may be appropriately set depending on the material of the step side surface 17b and the sealing body 3.
  • 0 ⁇ L ⁇ 0.5 mm is set.
  • the tip side pin F3 of the rotary tool F and the step side surface 17b of the column step portion 17 are not in contact with each other.
  • the aluminum alloy mainly on the sealing body 3 side of the first abutting portion J1 is agitated and plasticized, and at the first abutting portion J1 the step side surface 17b is formed.
  • the hole wall 4a of the hole 4 can be joined.
  • the tip side pin F3 is brought into contact with only the sealing body 3 to perform frictional stirring, there is almost no mixing of copper or copper alloy from the support column 15 into the sealing body 3.
  • the aluminum alloy on the side of the sealing body 3 is mainly friction-stirred in the first butting portion J1, so that the reduction in the bonding strength can be suppressed.
  • the plasticizing region W1 reaches the step bottom surface 17a, so that the joining strength of the second abutting portion J2 can be increased.
  • the tip side pin F3 since the tip side pin F3 is not in contact with the step bottom surface 17a, there is almost no mixing of copper or copper alloy from the support column 15 into the sealing body 3. Thereby, the aluminum alloy on the side of the sealing body 3 is mainly friction-stirred also in the second butting portion J2, so that the reduction in the bonding strength can be suppressed.
  • the rotary tool F is configured to include a base end side pin F2 and a tip end side pin F3 having a taper angle smaller than the taper angle A of the base end side pin F2. This facilitates insertion of the rotary tool F into the sealing body 3. Further, since the taper angle B of the tip side pin F3 is small, the rotary tool F can be easily inserted to a deep position of the sealing body 3.
  • a gap having a V-shaped cross section is formed in the first butting portion J1, but by making the plate thickness of the sealing body 3 larger than that of the step side surface 17b, the joining portion (in the main joining step ( It is possible to prevent metal shortage in the plasticized region W1).
  • the inclination angle ⁇ of the step side surface 17b (FIG. 7) and the inclination angle ⁇ of the tip side pin F3 (FIG. 1) are the same (the step side surface 17b and the outer peripheral surface of the tip side pin F3 are parallel to each other. Therefore, it is possible to make the tip side pin F3 and the step side surface 17b as close as possible while avoiding contact between the tip side pin F3 and the step side surface 17b.
  • the plate thickness of the sealing body 3 may be set to be the same as the height dimension of the protruding portion 16.

Abstract

The invention comprises: a preparation step of forming, at the distal end of a column (15), a column step portion (17) having a step bottom surface (17a) and a step side surface (17b) rising obliquely from the step bottom surface (17a) in such a manner that the distal end of the column (15) is tapered; a placement step of placing a seal body (3) on the column (15), thereby forming a first abutment portion (J1) in such a manner that a gap is present when the step side surface (17b) of the column step portion (17) abuts a hole wall (4a) of a hole portion (4); and a main joining step of inserting a rotating distal end side pin into the seal body (3), causing the outer peripheral surface of a proximal end side pin to contact the seal body (3), while causing the outer peripheral surface of the distal end side pin to barely contact the step side surface (17b) of the column step portion (17), and, when moving the rotating tool along the first abutment portion (J1) in this state, performing friction stirring while flowing a second aluminum alloy from the seal body (3) into the gap.

Description

接合方法Joining method
 本発明は、接合方法に関する。 The present invention relates to a joining method.
 例えば、特許文献1には、液冷ジャケットの製造方法が開示されている。図11は、従来の液冷ジャケットの製造方法を示す断面図である。従来の液冷ジャケットの製造方法では、アルミニウム合金製のジャケット本体101の段差部に設けられた段差側面101cと、アルミニウム合金製の封止体102の側面102cとを突き合わせて形成された突合せ部J10に対して摩擦攪拌接合を行うというものである。また、従来の液冷ジャケットの製造方法では、回転ツールF40の連結部F41をジャケット本体101及び封止体102から離間させつつ、攪拌ピンF42のみを突合せ部J10に挿入して摩擦攪拌接合を行っている。また、従来の液冷ジャケットの製造方法では、回転ツールF40の回転中心軸Zを突合せ部J10に重ねて相対移動させるというものである。 For example, Patent Document 1 discloses a method for manufacturing a liquid cooling jacket. FIG. 11: is sectional drawing which shows the manufacturing method of the conventional liquid cooling jacket. In the conventional method of manufacturing a liquid cooling jacket, a butt portion J10 formed by abutting the step side surface 101c provided on the step portion of the aluminum alloy jacket body 101 and the side surface 102c of the aluminum alloy sealing body 102. Friction stir welding is performed. Further, in the conventional method of manufacturing a liquid cooling jacket, friction stir welding is performed by inserting only the stirring pin F42 into the butt portion J10 while separating the connecting portion F41 of the rotary tool F40 from the jacket body 101 and the sealing body 102. ing. Further, in the conventional method for manufacturing a liquid cooling jacket, the rotation center axis Z of the rotary tool F40 is overlapped with the abutting portion J10 and relatively moved.
特開2015-131321号公報JP, 2005-131321, A
 ここで、ジャケット本体101は複雑な形状となりやすく、例えば、4000系アルミニウム合金の鋳造材で形成し、封止体102のように比較的単純な形状のものは、1000系アルミニウム合金の展伸材で形成するというような場合がある。このように、アルミニウム合金の材種の異なる部材同士を接合して、液冷ジャケットを製造する場合がある。このような場合は、ジャケット本体101の方が封止体102よりも硬度が高くなることが一般的であるため、図11のように摩擦攪拌接合を行うと、攪拌ピンが封止体102側から受ける材料抵抗に比べて、ジャケット本体101側から受ける材料抵抗が大きくなる。そのため、回転ツールF40の攪拌ピンF42によって異なる材種をバランスよく攪拌することが困難となり、接合後の塑性化領域に空洞欠陥が発生し接合強度が低下するという問題がある。 Here, the jacket body 101 is likely to have a complicated shape, and is formed of, for example, a cast material of 4000 series aluminum alloy, and a relatively simple shape such as the sealing body 102 is a wrought material of 1000 series aluminum alloy. There is a case where it is formed by. In this way, members having different aluminum alloy grades may be joined together to manufacture a liquid cooling jacket. In such a case, the hardness of the jacket body 101 is generally higher than that of the sealing body 102. Therefore, when friction stir welding is performed as shown in FIG. The material resistance received from the jacket body 101 side is larger than the material resistance received from the jacket body 101 side. Therefore, it becomes difficult to stir different materials with a stirring pin F42 of the rotary tool F40 in a well-balanced manner, and there is a problem that a cavity defect occurs in the plasticized region after joining and the joining strength is reduced.
 このような観点から、本発明は、材種の異なる支柱及び部材を好適に接合することができる接合方法を提供することを課題とする。 From this point of view, it is an object of the present invention to provide a joining method capable of suitably joining columns and members of different material types.
 本発明は、支柱と、前記支柱の先端が挿入される孔部を有する部材とを摩擦攪拌で接合する接合方法であって、前記支柱は、第一アルミニウム合金で形成されており、前記部材は第二アルミニウム合金で形成されており、前記第一アルミニウム合金は前記第二アルミニウム合金よりも硬度が高い材料であり、摩擦攪拌で用いる回転ツールは、基端側ピンと、先端側ピンとを備え、前記基端側ピンのテーパー角度は、前記先端側ピンのテーパー角度よりも大きく、前記基端側ピンの外周面には階段状の段差部が形成されており、前記支柱の先端に段差底面と、当該段差底面から前記支柱の先端が先細りとなるように斜めに立ち上がる段差側面とを有する支柱段差部を形成する準備工程と、前記支柱に前記部材を載置することにより、前記支柱段差部の段差側面と前記孔部の孔壁とを突き合せた際に隙間があるように第一突合せ部を形成する載置工程と、回転する前記先端側ピンを前記部材に挿入し、前記基端側ピンの外周面を前記部材に接触させつつ、前記先端側ピンの外周面を前記支柱段差部の段差側面にわずかに接触させた状態で、前記第一突合せ部に沿って前記回転ツールを移動させる際に前記部材の第二アルミニウム合金を前記隙間に流入させながら摩擦攪拌を行う本接合工程とを含むことを特徴とする。 The present invention is a joining method for joining a strut and a member having a hole into which the tip of the strut is inserted by friction stirring, wherein the strut is formed of a first aluminum alloy, and the member is It is formed of a second aluminum alloy, the first aluminum alloy is a material having a hardness higher than the second aluminum alloy, the rotary tool used in the friction stirrer comprises a proximal end side pin and a distal end side pin, The taper angle of the base end side pin is larger than the taper angle of the tip end side pin, a stepped step portion is formed on the outer peripheral surface of the base end side pin, and a step bottom surface at the tip of the strut, A step of forming a pillar step portion having a step side surface that obliquely rises from the bottom surface of the step so that the tip of the pillar is tapered; and a step of the pillar step portion by placing the member on the pillar. A mounting step of forming the first butting portion so that there is a gap when the side surface and the hole wall of the hole portion are butted, and the rotating distal end side pin is inserted into the member, and the base end side pin is inserted. When the rotating tool is moved along the first butting portion with the outer peripheral surface of the tip side pin slightly contacting the step side surface of the strut step portion while the outer peripheral surface of the pin contacting the member. And a main joining step of performing frictional stirring while allowing the second aluminum alloy of the member to flow into the gap.
 本発明によれば、部材と先端側ピンとの摩擦熱によって第一突合せ部の主として部材側の第二アルミニウム合金が攪拌されて塑性流動化される。そのため、第一突合せ部において支柱段差部の段差側面と孔部の孔壁とを接合することができる。また、先端側ピンの外周面を支柱段差部の段差側面にわずかに接触させるに留めるため、支柱から部材への第一アルミニウム合金の混入を極力少なくすることができる。これにより、第一突合せ部においては主として部材側の第二アルミニウム合金が摩擦攪拌されるため、接合強度の低下を抑制することができる。また、基端側ピンの外周面で部材を押さえることで、バリの発生を抑制することができる。 According to the present invention, the second aluminum alloy mainly on the member side of the first butting portion is agitated and plasticized by frictional heat between the member and the pin on the tip side. Therefore, the step side surface of the pillar step portion and the hole wall of the hole portion can be joined at the first butting portion. Further, since the outer peripheral surface of the tip side pin is slightly contacted with the step side surface of the strut step portion, it is possible to minimize the mixing of the first aluminum alloy into the member from the strut. As a result, the second aluminum alloy on the member side is mainly friction-stirred in the first abutting portion, so that the reduction in bonding strength can be suppressed. Further, by pressing the member on the outer peripheral surface of the base end side pin, it is possible to suppress the occurrence of burr.
 また、前記載置工程では、前記支柱段差部の段差底面と前記部材の裏面を重ね合わせて第二突合せ部を形成し、前記本接合工程では、前記先端側ピンを前記支柱段差部の段差底面にわずかに接触させた状態で、前記第二突合せ部に沿って前記回転ツールを移動させて摩擦攪拌を行うことが好ましい。 Further, in the placing step, the step bottom surface of the strut step portion and the back surface of the member are overlapped to form a second butting portion, and in the main joining step, the tip side pin is the step bottom surface of the strut step portion. It is preferable that the rotary tool is moved along the second butting portion while being slightly contacted with the friction stirrer.
 本発明によれば、第二突合せ部の接合強度を高めることができる。 According to the present invention, the joint strength of the second butt portion can be increased.
 また、本発明は、支柱と、前記支柱の先端が挿入される孔部を有する部材とを摩擦攪拌で接合する接合方法であって、前記支柱は、銅又は銅合金で形成されており、前記部材はアルミニウム又はアルミニウム合金で形成されており、摩擦攪拌で用いる回転ツールは、基端側ピンと、先端側ピンとを備え、前記基端側ピンのテーパー角度は、前記先端側ピンのテーパー角度よりも大きく、前記基端側ピンの外周面には階段状の段差部が形成されており、前記支柱の先端に段差底面と、当該段差底面から前記支柱の先端が先細りとなるように斜めに立ち上がる段差側面とを有する支柱段差部を形成する準備工程と、前記支柱に前記部材を載置することにより、前記支柱段差部の段差側面と前記孔部の孔壁とを突き合せた際に隙間があるように第一突合せ部を形成する載置工程と、回転する前記先端側ピンを前記部材に挿入し、前記基端側ピンの外周面を前記部材に接触させつつ、前記先端側ピンの外周面を前記支柱段差部の段差側面に接触させない状態で、前記第一突合せ部に沿って前記回転ツールを移動させる際に前記部材のアルミニウム又はアルミニウム合金を前記隙間に流入させながら摩擦攪拌を行う本接合工程とを含むことを特徴とする。 Further, the present invention is a joining method for joining a strut and a member having a hole into which the tip of the strut is inserted by friction stirring, wherein the strut is formed of copper or a copper alloy, and The member is made of aluminum or an aluminum alloy, and the rotary tool used for friction stirring includes a base end side pin and a tip end side pin, and the taper angle of the base end side pin is larger than the taper angle of the tip end side pin. Largely, a step-like step is formed on the outer peripheral surface of the base end side pin, and a step bottom surface is formed at the tip of the pillar, and a step that rises obliquely from the step bottom surface such that the tip of the pillar is tapered. And a step of forming a pillar step portion having a side surface, and by mounting the member on the pillar, there is a gap when the step side surface of the pillar step portion and the hole wall of the hole portion are butted. As described above, the mounting step of forming the first abutting portion and the rotating distal end side pin are inserted into the member, and the outer peripheral surface of the proximal end side pin is brought into contact with the member while the outer peripheral surface of the distal end side pin is contacted. Main welding in which friction stir is performed while the aluminum or aluminum alloy of the member is caused to flow into the gap when the rotary tool is moved along the first butting portion in a state in which is not in contact with the step side surface of the column step portion. And a process.
 本発明によれば、部材と先端側ピンとの摩擦熱によって第一突合せ部の主として部材側のアルミニウム合金が攪拌されて塑性流動化され、第一突合せ部において段差側面と孔部の孔壁とを接合することができる。また、先端側ピンを部材のみに接触させて摩擦攪拌を行うため、支柱から部材への銅又は銅合金の混入は殆どない。これにより、第一突合せ部においては主として部材側のアルミニウム合金が摩擦攪拌されるため、接合強度の低下を抑制することができる。また、基端側ピンの外周面で部材を押さえることで、バリの発生を抑制することができる。 According to the present invention, the aluminum alloy mainly on the member side of the first butting portion is agitated and plasticized by frictional heat between the member and the tip side pin, and the step side surface and the hole wall of the hole portion are formed in the first butting portion. Can be joined. Further, since the tip side pin is brought into contact with only the member to perform frictional stirring, there is almost no mixing of copper or copper alloy from the column into the member. As a result, the aluminum alloy on the member side is mainly friction-stirred in the first butting portion, so that the reduction in bonding strength can be suppressed. Further, by pressing the member on the outer peripheral surface of the base end side pin, it is possible to suppress the occurrence of burr.
 また、前記載置工程では、前記支柱段差部の段差底面と前記部材の裏面を重ね合わせて第二突合せ部を形成し、前記本接合工程では、前記先端側ピンを前記支柱段差部の段差底面に接触させない状態で、前記第二突合せ部に沿って前記回転ツールを移動させて摩擦攪拌を行うことが好ましい。 Further, in the placing step, the step bottom surface of the strut step portion and the back surface of the member are overlapped to form a second butting portion, and in the main joining step, the tip side pin is the step bottom surface of the strut step portion. It is preferable that the rotary tool is moved along the second butting portion without being brought into contact with the friction stirrer.
 本発明によれば、第二突合せ部において、支柱から部材側への銅又は銅合金の流入を防ぐことができる。 According to the present invention, it is possible to prevent the inflow of copper or copper alloy from the support to the member side in the second butting portion.
 また、前記準備工程では、前記部材の厚さを前記支柱段差部の段差側面の高さ寸法よりも大きくなるように設定することが好ましい。 Further, in the preparing step, it is preferable that the thickness of the member is set to be larger than the height dimension of the step side surface of the pillar step portion.
 本発明によれば、本接合工程における接合部の金属不足を防ぐことができる。 According to the present invention, it is possible to prevent metal shortage in the joint portion in the main joining step.
 また、前記本接合工程では、前記回転ツールのアドバンシング側が前記支柱側となるように前記回転ツールの進行方向及び回転方向を設定することが好ましい。 Also, in the main joining step, it is preferable to set the traveling direction and the rotating direction of the rotating tool such that the advancing side of the rotating tool is the strut side.
 本発明によれば、第一突合せ部の周囲における基端側ピン及び先端側ピンによる攪拌作用が高まり、第一突合せ部における温度上昇が期待でき、第一突合せ部において段差側面と部材とをより確実に接合することができる。 According to the present invention, the stirring action by the base end side pin and the tip end side pin around the first butting portion is enhanced, and the temperature rise at the first butting portion can be expected. It can be surely joined.
 また、前記本接合工程では、前記第一突合せ部に沿って前記回転ツールを移動させ前記支柱の周りを一周させて摩擦攪拌を行うことが好ましい。 Further, in the main joining step, it is preferable that the rotary tool is moved along the first butting portion to make one round around the support to perform friction stirring.
 本発明によれば、支柱の全周にわたって支柱と部材とを接合することができる。 According to the present invention, it is possible to join the support and the member over the entire circumference of the support.
 本発明によれば、材種の異なる支柱及び部材を好適に接合することができる接合方法を提供することができる。 According to the present invention, it is possible to provide a joining method capable of suitably joining columns and members of different materials.
本発明の実施形態に係る回転ツールを示す側面図である。It is a side view which shows the rotary tool which concerns on embodiment of this invention. 回転ツールの拡大断面図である。It is an expanded sectional view of a rotation tool. 回転ツールの第一変形例を示す断面図である。It is sectional drawing which shows the 1st modification of a rotary tool. 回転ツールの第二変形例を示す断面図である。It is sectional drawing which shows the 2nd modification of a rotation tool. 回転ツールの第三変形例を示す断面図である。It is sectional drawing which shows the 3rd modification of a rotary tool. 本発明の実施形態に係る接合方法の準備工程を示す斜視図である。It is a perspective view which shows the preparation process of the joining method which concerns on embodiment of this invention. 実施形態に係る接合方法の載置工程を示す断面図である。It is sectional drawing which shows the mounting process of the joining method which concerns on embodiment. 実施形態に係る接合方法の接合工程を示す斜視図である。It is a perspective view which shows the joining process of the joining method which concerns on embodiment. 実施形態に係る接合方法の接合工程を示す断面図である。It is sectional drawing which shows the joining process of the joining method which concerns on embodiment. 変形例に係る接合方法の接合工程を示す断面図である。It is sectional drawing which shows the joining process of the joining method which concerns on a modification. 従来の液冷ジャケットの製造方法を示す断面図である。It is sectional drawing which shows the manufacturing method of the conventional liquid cooling jacket.
 本発明の実施形態について、適宜図面を参照しながら説明する。まずは、本実施形態に係る接合方法で用いる回転ツールについて説明する。回転ツールは、摩擦攪拌接合に用いられるツールである。図1に示すように、回転ツールFは、例えば工具鋼で形成されており、基軸部F1と、基端側ピンF2と、先端側ピンF3とで主に構成されている。基軸部F1は、円柱状を呈し、摩擦攪拌装置の主軸に接続される部位である。 Embodiments of the present invention will be described with reference to the drawings as appropriate. First, a rotating tool used in the joining method according to the present embodiment will be described. The rotary tool is a tool used for friction stir welding. As shown in FIG. 1, the rotary tool F is formed of, for example, tool steel, and is mainly configured by a base shaft portion F1, a base end side pin F2, and a tip end side pin F3. The base shaft portion F1 has a cylindrical shape and is a portion connected to the main shaft of the friction stirrer.
 基端側ピンF2は、基軸部F1に連続し、先端に向けて先細りになっている。基端側ピンF2は、円錐台形状を呈する。基端側ピンF2のテーパー角度Aは適宜設定すればよいが、例えば、135~160°になっている。テーパー角度Aが135°未満であるか、又は、160°を超えると摩擦攪拌後の接合表面粗さが大きくなる。テーパー角度Aは、後記する先端側ピンF3のテーパー角度Bよりも大きくなっている。図2に示すように、基端側ピンF2の外周面には、階段状のピン段差部F21が高さ方向の全体に亘って形成されている。ピン段差部F21は、右回り又は左回りで螺旋状に形成されている。つまり、ピン段差部F21は、平面視して螺旋状であり、側面視すると階段状になっている。本実施形態では、回転ツールFを右回転させるため、ピン段差部F21は基端側から先端側に向けて左回りに設定している。  The base end pin F2 is continuous with the base shaft F1 and tapers toward the tip. The proximal pin F2 has a truncated cone shape. The taper angle A of the proximal pin F2 may be set appropriately, but is, for example, 135 to 160°. If the taper angle A is less than 135° or exceeds 160°, the joint surface roughness after frictional stirring increases. The taper angle A is larger than the taper angle B of the tip side pin F3 described later. As shown in FIG. 2, a stepped pin stepped portion F21 is formed on the outer peripheral surface of the base end side pin F2 over the entire height direction. The pin step portion F21 is formed in a spiral shape in a clockwise or counterclockwise direction. That is, the pin step portion F21 has a spiral shape in a plan view and a step shape in a side view. In the present embodiment, since the rotary tool F is rotated clockwise, the pin step portion F21 is set counterclockwise from the base end side toward the tip end side.
 なお、回転ツールFを左回転させる場合は、ピン段差部F21を基端側から先端側に向けて右回りに設定することが好ましい。これにより、ピン段差部F21によって塑性流動材が先端側に導かれるため、被接合金属部材の外部に溢れ出る金属を低減することができる。ピン段差部F21は、段差底面F21aと、段差側面F21bとで構成されている。隣り合うピン段差部F21の各頂点F21c,F21cの距離X1(水平方向距離)は、後記する段差角度C及び段差側面F21bの高さY1に応じて適宜設定される。 When rotating the rotary tool F counterclockwise, it is preferable to set the pin step F21 clockwise from the base end side toward the tip end side. As a result, the plastic flow material is guided to the tip end side by the pin step portion F21, so that it is possible to reduce the metal that overflows to the outside of the metal member to be joined. The pin step portion F21 includes a step bottom surface F21a and a step side surface F21b. The distance X1 (horizontal direction distance) between the vertices F21c and F21c of the adjacent pin step portions F21 is appropriately set according to the step angle C and the height Y1 of the step side surface F21b described later.
 段差側面F21bの高さY1は適宜設定すればよいが、例えば、0.1~0.4mmで設定されている。高さY1が0.1mm未満であると接合表面粗さが大きくなる。一方、高さY1が0.4mmを超えると接合表面粗さが大きくなる傾向があるとともに、有効段差部数(被接合金属部材と接触しているピン段差部F21の数)も減少する。 The height Y1 of the step side face F21b may be set appropriately, but is set to, for example, 0.1 to 0.4 mm. If the height Y1 is less than 0.1 mm, the joint surface roughness becomes large. On the other hand, when the height Y1 exceeds 0.4 mm, the joint surface roughness tends to increase, and the number of effective step portions (the number of pin step portions F21 in contact with the metal member to be joined) also decreases.
 段差底面F21aと段差側面F21bとでなす段差角度Cは適宜設定すればよいが、例えば、85~120°で設定されている。段差底面F21aは、本実施形態では水平面と平行になっている。段差底面F21aは、ツールの回転軸から外周方向に向かって水平面に対して-5°~15°内の範囲で傾斜していてもよい(マイナスは水平面に対して下方、プラスは水平面に対して上方)。距離X1、段差側面F21bの高さY1、段差角度C及び水平面に対する段差底面F21aの角度は、摩擦攪拌を行う際に、塑性流動材がピン段差部F21の内部に滞留して付着することなく外部に抜けるとともに、段差底面F21aで塑性流動材を押えて接合表面粗さを小さくすることができるように適宜設定する。 The step angle C formed by the step bottom surface F21a and the step side surface F21b may be set appropriately, but is set to 85 to 120°, for example. The step bottom surface F21a is parallel to the horizontal surface in the present embodiment. The step bottom surface F21a may be inclined in the range of −5° to 15° with respect to the horizontal plane from the rotation axis of the tool toward the outer peripheral direction (minus is downward with respect to the horizontal plane, plus is with respect to the horizontal plane). Above). The distance X1, the height Y1 of the step side surface F21b, the step angle C, and the angle of the step bottom surface F21a with respect to the horizontal plane are set such that the plastic flow material does not stay inside the pin step portion F21 and adhere to the outside during friction stirring. It is set appropriately so that the joint surface roughness can be reduced by pressing the plastic fluidized material at the step bottom surface F21a while being removed.
 図1に示すように、先端側ピンF3は、基端側ピンF2に連続して形成されている。先端側ピンF3は円錐台形状を呈する。先端側ピンF3の先端は回転軸に対いて垂直な平坦面F4になっている。先端側ピンF3のテーパー角度Bは、基端側ピンF2のテーパー角度Aよりも小さくなっている。図2に示すように、先端側ピンF3の外周面には、螺旋溝F31が刻設されている。螺旋溝F31は、右回り、左回りのどちらでもよいが、本実施形態では回転ツールFを右回転させるため、基端側から先端側に向けて左回りに刻設されている。 As shown in FIG. 1, the tip side pin F3 is formed continuously with the base side pin F2. The tip side pin F3 has a truncated cone shape. The tip of the tip side pin F3 is a flat surface F4 perpendicular to the rotation axis. The taper angle B of the tip end side pin F3 is smaller than the taper angle A of the base end side pin F2. As shown in FIG. 2, a spiral groove F31 is formed on the outer peripheral surface of the tip side pin F3. The spiral groove F31 may be either clockwise or counterclockwise, but in the present embodiment, the spiral groove F31 is engraved counterclockwise from the base end side to the tip side in order to rotate the rotary tool F clockwise.
 なお、回転ツールFを左回転させる場合は、螺旋溝F31を基端側から先端側に向けて右回りに設定することが好ましい。これにより、螺旋溝F31によって塑性流動材が先端側に導かれるため、被接合金属部材の外部に溢れ出る金属を低減することができる。螺旋溝F31は、螺旋底面F31aと、螺旋側面F31bとで構成されている。隣り合う螺旋溝F31の頂点F31c,F31cの距離(水平方向距離)を長さX2とする。螺旋側面F31bの高さを高さY2とする。螺旋底面F31aと、螺旋側面F31bとで構成される螺旋角度Dは例えば、45~90°で形成されている。螺旋溝F31は、被接合金属部材と接触することにより摩擦熱を上昇させるとともに、塑性流動材を先端側に導く役割を備えている。 When rotating the rotary tool F counterclockwise, it is preferable to set the spiral groove F31 clockwise from the base end side toward the tip end side. As a result, since the plastic fluid material is guided to the tip side by the spiral groove F31, it is possible to reduce the metal that overflows to the outside of the metal member to be joined. The spiral groove F31 includes a spiral bottom surface F31a and a spiral side surface F31b. The distance (horizontal direction distance) between the vertices F31c and F31c of the adjacent spiral grooves F31 is defined as the length X2. The height of the spiral side surface F31b is defined as the height Y2. The spiral angle D formed by the spiral bottom surface F31a and the spiral side surface F31b is, for example, 45 to 90°. The spiral groove F31 has a role of increasing frictional heat by coming into contact with the metal member to be joined and guiding the plastic fluid material to the tip side.
 回転ツールFは、適宜設計変更が可能である。図3は、本発明の回転ツールの第一変形例を示す側面図である。図3に示すように、第一変形例に係る回転ツールFAでは、ピン段差部F21の段差底面F21aと段差側面F21bとのなす段差角度Cが85°になっている。段差底面F21aは、水平面と平行である。このように、段差底面F21aは水平面と平行であるとともに、段差角度Cは、摩擦攪拌中にピン段差部F21内に塑性流動材が滞留して付着することなく外部に抜ける範囲で鋭角としてもよい。 The design of the rotating tool F can be changed appropriately. FIG. 3 is a side view showing a first modification of the rotary tool of the present invention. As shown in FIG. 3, in the rotary tool FA according to the first modification, the step angle C between the step bottom face F21a of the pin step F21 and the step side face F21b is 85°. The step bottom surface F21a is parallel to the horizontal plane. As described above, the step bottom surface F21a is parallel to the horizontal plane, and the step angle C may be an acute angle within a range in which the plastic fluid material stays in the pin step portion F21 during frictional stirring and is discharged to the outside without adhering. ..
 図4は、本発明の回転ツールの第二変形例を示す側面図である。図4に示すように、第二変形例に係る回転ツールFBでは、ピン段差部F21の段差角度Cが115°になっている。段差底面F21aは水平面と平行になっている。このように、段差底面F21aは水平面と平行であるとともに、ピン段差部F21として機能する範囲で段差角度Cが鈍角となってもよい。 FIG. 4 is a side view showing a second modification of the rotary tool of the present invention. As shown in FIG. 4, in the rotary tool FB according to the second modification, the step angle C of the pin step portion F21 is 115°. The step bottom surface F21a is parallel to the horizontal plane. As described above, the step bottom surface F21a may be parallel to the horizontal plane, and the step angle C may be an obtuse angle within the range of functioning as the pin step portion F21.
 図5は、本発明の回転ツールの第三変形例を示す側面図である。図5に示すように、第三変形例に係る回転ツールFCでは、段差底面F21aがツールの回転軸から外周方向に向かって水平面に対して10°上方に傾斜している。段差側面F21bは、鉛直面と平行になっている。このように、摩擦攪拌中に塑性流動材を押さえることができる範囲で、段差底面F21aがツールの回転軸から外周方向に向かって水平面よりも上方に傾斜するように形成されていてもよい。上記の回転ツールの第一~第三変形例によっても、下記の実施形態と同等の効果を奏することができる。 FIG. 5 is a side view showing a third modified example of the rotary tool of the present invention. As shown in FIG. 5, in the rotary tool FC according to the third modification, the step bottom surface F21a is inclined upward by 10° with respect to the horizontal plane from the rotation axis of the tool toward the outer peripheral direction. The step side face F21b is parallel to the vertical plane. As described above, the step bottom surface F21a may be formed so as to incline upward from the horizontal surface from the rotation axis of the tool toward the outer peripheral direction within a range in which the plastic fluid material can be pressed during friction stirring. The first to third modified examples of the above rotary tool can also achieve the same effects as the following embodiments.
 次に、本発明の実施形態に係る接合方法について図面を参照して説明する。図6に示すように、本実施形態の接合方法は、支柱15と部材(以下、「封止体」とも言う。)3を摩擦攪拌で接合するというものであるが、ここでは、支柱15を備えたジャケット本体2と、封止体3とを接合する場合を例示する。本発明は、支柱と部材とを接合する接合方法であって、支柱の形状や部材の形状、用途等は特に制限されるものではない。 Next, a joining method according to the embodiment of the present invention will be described with reference to the drawings. As shown in FIG. 6, the joining method of the present embodiment is to join the column 15 and the member (hereinafter, also referred to as “sealing body”) 3 by friction stirring, but here the column 15 is joined. An example of joining the provided jacket body 2 and the sealing body 3 will be described. The present invention is a joining method for joining a support pillar and a member, and the shape of the support pillar, the shape of the member, the use, etc. are not particularly limited.
 本実施形態の接合方法は、ジャケット本体2と、封止体3とを摩擦攪拌接合して液冷ジャケット1を製造するものである。液冷ジャケット1は、封止体3の上に発熱体(図示省略)を設置するとともに、内部に流体を流して発熱体と熱交換を行う部材である。なお、以下の説明における「表面」とは、「裏面」の反対側の面という意味である。 The joining method of the present embodiment is to manufacture the liquid cooling jacket 1 by friction stir welding the jacket body 2 and the sealing body 3. The liquid cooling jacket 1 is a member that installs a heating element (not shown) on the sealing body 3 and causes a fluid to flow inside to exchange heat with the heating element. In the following description, "front surface" means the surface opposite to the "back surface".
 本実施形態に係る接合方法は、準備工程と、載置工程と、本接合工程と、を行う。準備工程は、ジャケット本体2と封止体3とを準備する工程である。ジャケット本体2は、底部10と、周壁部11と、複数の支柱15と、で主に構成されている。ジャケット本体2は、第一アルミニウム合金を主に含んで形成されている。第一アルミニウム合金は、例えば、JISH5302 ADC12(Al-Si-Cu系)等のアルミニウム合金鋳造材を用いている。 The joining method according to the present embodiment includes a preparation step, a placing step, and a main joining step. The preparation step is a step of preparing the jacket body 2 and the sealing body 3. The jacket body 2 is mainly composed of a bottom portion 10, a peripheral wall portion 11, and a plurality of columns 15. The jacket body 2 is formed mainly including the first aluminum alloy. As the first aluminum alloy, for example, an aluminum alloy casting material such as JIS H5302 ADC12 (Al-Si-Cu system) is used.
 図6に示すように、底部10は、平面視矩形を呈する板状部材である。周壁部11は、底部10の周縁部から矩形枠状に立ち上がる壁部である。周壁部11の内周縁には周壁段差部12が形成されている。周壁段差部12は、段差底面12aと、段差底面12aから立ち上がる段差側面12bとで構成されている。図2に示すように、段差側面12bは、段差底面12aから開口部に向かって外側に広がるように傾斜している。段差側面12bの傾斜角度β(図7)は適宜設定すればよいが、例えば、鉛直面に対して3°~30°になっている。底部10及び周壁部11で凹部13が形成されている。 As shown in FIG. 6, the bottom portion 10 is a plate-shaped member having a rectangular shape in plan view. The peripheral wall portion 11 is a wall portion that stands up in a rectangular frame shape from the peripheral portion of the bottom portion 10. A peripheral wall step portion 12 is formed on the inner peripheral edge of the peripheral wall portion 11. The peripheral wall step portion 12 is composed of a step bottom surface 12a and a step side surface 12b rising from the step bottom surface 12a. As shown in FIG. 2, the step side surface 12b is inclined so as to spread outward from the step bottom surface 12a toward the opening. The inclination angle β (FIG. 7) of the step side surface 12b may be set appropriately, but is, for example, 3° to 30° with respect to the vertical plane. A concave portion 13 is formed by the bottom portion 10 and the peripheral wall portion 11.
 図6に示すように、支柱15は、底部10から垂直に立ちあがっている。支柱15の本数は特に制限がされないが、本実施形態では4本形成されている。また、支柱15の形状は本実施形態では円柱状になっているが、角柱など他の形状であってもよい。支柱15の先端には突出部16が形成されている。突出部16の形状は特に制限されないが、本実施形態では円錐台状になっている。突出部16の高さは、封止体3の板厚よりも小さくなっている。 As shown in FIG. 6, the column 15 stands upright from the bottom portion 10. The number of columns 15 is not particularly limited, but four columns are formed in this embodiment. Further, although the pillar 15 has a cylindrical shape in this embodiment, it may have another shape such as a prism. A protrusion 16 is formed at the tip of the column 15. The shape of the protruding portion 16 is not particularly limited, but in this embodiment, it is a truncated cone shape. The height of the protrusion 16 is smaller than the plate thickness of the sealing body 3.
 突出部16が形成されることにより、支柱15の先端には支柱段差部17が形成されている。支柱段差部17は、段差底面17aと、段差底面17aから立ち上がる段差側面17bとで構成されている。段差底面17aは、周壁段差部12の段差底面12aと同じ高さ位置に形成されている。段差側面17bの高さ寸法は、封止体3の板厚よりも小さくなっている。段差側面17bは、先端に向かうにつれて先細りとなるように、孔壁4aから離間するように傾斜している。 By forming the protruding portion 16, a pillar step portion 17 is formed at the tip of the pillar 15. The column step portion 17 is composed of a step bottom surface 17a and a step side surface 17b rising from the step bottom surface 17a. The step bottom surface 17a is formed at the same height as the step bottom surface 12a of the peripheral wall step portion 12. The height dimension of the step side surface 17b is smaller than the plate thickness of the sealing body 3. The step side surface 17b is inclined so as to be separated from the hole wall 4a so as to taper toward the tip.
 封止体3は、ジャケット本体2の開口部を封止する板状部材である。封止体3は、周壁段差部12に載置される大きさになっている。封止体3の板厚は、段差側面12bの高さよりも大きくなっている。封止体3には、支柱15と対応する位置に孔部4が形成されている。孔部4は突出部16が嵌め合わされるように形成されている。封止体3は、第二アルミニウム合金を主に含んで形成されている。第二アルミニウム合金は、第一アルミニウム合金よりも硬度の低い材料である。第二アルミニウム合金は、例えば、JIS A1050,A1100,A6063等のアルミニウム合金展伸材で形成されている。 The sealing body 3 is a plate-shaped member that seals the opening of the jacket body 2. The sealing body 3 is sized to be placed on the peripheral wall step portion 12. The plate thickness of the sealing body 3 is larger than the height of the step side surface 12b. Holes 4 are formed in the sealing body 3 at positions corresponding to the columns 15. The hole 4 is formed so that the protrusion 16 is fitted therein. The sealing body 3 is formed mainly including the second aluminum alloy. The second aluminum alloy is a material having a lower hardness than the first aluminum alloy. The second aluminum alloy is formed of an wrought aluminum alloy such as JIS A1050, A1100, A6063, for example.
 載置工程は、図7に示すように、ジャケット本体2に封止体3を載置する工程である。載置工程では、段差底面12aに封止体3の裏面3bを載置する。段差側面12bと封止体3の外周側面3cとが突き合わされて突合せ部J11が形成される。また、段差底面12aと、封止体3の裏面3bとが突き合わされて突合せ部J12が形成される。 The placing step is a step of placing the sealing body 3 on the jacket body 2 as shown in FIG. 7. In the mounting step, the back surface 3b of the sealing body 3 is mounted on the step bottom surface 12a. The step side surface 12b and the outer peripheral side surface 3c of the sealing body 3 are butted against each other to form a butted portion J11. Further, the step bottom surface 12a and the back surface 3b of the sealing body 3 are butted against each other to form a butted portion J12.
 また、載置工程によって孔部4の孔壁4aと支柱段差部17の段差側面17bとが突き合わされて第一突合せ部J1が形成される。第一突合せ部J1は、孔壁4aと支柱段差部17の段差側面17bとが断面略V字状の隙間をあけて突き合わされる場合を含み得る。さらに、封止体3の裏面3bと支柱段差部17の段差底面17aとが突き合わされて第二突合せ部J2が形成される。 In addition, the hole wall 4a of the hole 4 and the step side surface 17b of the pillar step portion 17 are butted with each other in the placing step to form the first butted portion J1. The first butting portion J1 may include a case where the hole wall 4a and the step side surface 17b of the column step portion 17 are butted with each other with a gap having a substantially V-shaped cross section. Further, the back surface 3b of the sealing body 3 and the step bottom surface 17a of the pillar step portion 17 are butted against each other to form the second butted portion J2.
 本接合工程は、図8及び図9に示すように、回転ツールFを用いて第一突合せ部J1を摩擦攪拌接合する工程である。本工程では、封止体3の表面3aに設定した開始位置Spに右回転した先端側ピンF3を挿入する。このとき、基端側ピンF2の外周面を封止体3に接触させつつ、先端側ピンF3の外周面を支柱段差部17の段差側面17bにわずかに接触させた状態とする。この状態で、第一突合せ部J1に沿って回転ツールFを移動させる際に封止体3の第二アルミニウム合金を前記の第一突合せ部J1の隙間に流入させながら摩擦攪拌を行う。回転ツールFは、第一突合せ部J1に沿って一周させる。回転ツールFの移動軌跡には摩擦攪拌された金属が硬化することにより塑性化領域W1が形成される。本実施形態では、先端側ピンF3の外周面を支柱段差部17の段差側面17bにわずかに接触させ、かつ、先端側ピンF3の平坦面F4を段差底面17aに接触させていない。 The main joining step is, as shown in FIGS. 8 and 9, a step of friction stir welding the first butting portion J1 using the rotary tool F. In this step, the tip side pin F3 rotated clockwise is inserted at the start position Sp set on the surface 3a of the sealing body 3. At this time, the outer peripheral surface of the base end pin F2 is brought into contact with the sealing body 3, while the outer peripheral surface of the tip end pin F3 is slightly contacted with the step side surface 17b of the column step portion 17. In this state, when the rotary tool F is moved along the first butting portion J1, the second aluminum alloy of the sealing body 3 is caused to flow into the gap of the first butting portion J1 to perform friction stirring. The rotating tool F is rotated once along the first butting portion J1. A plasticized region W1 is formed on the movement locus of the rotary tool F by hardening the frictionally stirred metal. In the present embodiment, the outer peripheral surface of the tip side pin F3 is slightly contacted with the step side surface 17b of the column step portion 17, and the flat surface F4 of the tip side pin F3 is not contacted with the step bottom surface 17a.
 ここで、段差側面17bに対する先端側ピンF3の外周面の接触代をオフセット量Nとする。本実施形態のように、先端側ピンF3の外周面を段差側面17bにわずかに接触させ、かつ、先端側ピンF3の平坦面F4を段差底面17aに接触させない場合は、オフセット量Nを、例えば、0<N≦0.5mmの間で設定し、好ましくは0<N≦0.25mmの間で設定する。 Here, the contact amount of the outer peripheral surface of the tip side pin F3 with respect to the step side surface 17b is defined as the offset amount N. When the outer peripheral surface of the tip side pin F3 slightly contacts the step side surface 17b and the flat surface F4 of the tip side pin F3 does not contact the step bottom surface 17a as in the present embodiment, the offset amount N is set to, for example, , 0<N≦0.5 mm, preferably 0<N≦0.25 mm.
 回転ツールFを突出部16の廻りに一周させたら、塑性化領域W1の始端と終端とを重複させる。回転ツールFは、封止体3の表面3aにおいて、回転ツールFを相対移動させながら徐々に上昇させて引き抜くようにしてもよい。 Once the rotary tool F has been rotated around the projecting portion 16, the start end and the end of the plasticized region W1 overlap. The rotating tool F may be gradually lifted and pulled out while relatively moving the rotating tool F on the surface 3a of the sealing body 3.
 以上説明した本実施形態に係る接合方法によれば、封止体(部材)3と先端側ピンF3との摩擦熱によって第一突合せ部J1の主として封止体3側の第二アルミニウム合金が攪拌されて塑性流動化される。そのため、第一突合せ部J1において支柱段差部17の段差側面17bと孔部4の孔壁4aとを接合することができる。同様に第一突合せ部J1において支柱段差部17の段差底面17aと封止体3の裏面3bとを接合することができる。また、先端側ピンF3の外周面を支柱段差部17の段差側面17bにわずかに接触させるに留めるため、支柱15から封止体3への第一アルミニウム合金の混入を極力少なくすることができる。これにより、第一突合せ部J1においては主として封止体3側の第二アルミニウム合金が摩擦攪拌されるため、接合強度の低下を抑制することができる。 According to the joining method according to the present embodiment described above, frictional heat between the sealing body (member) 3 and the tip side pin F3 stirs mainly the second aluminum alloy of the first butting portion J1 on the sealing body 3 side. And is plasticized. Therefore, the step side surface 17b of the pillar step portion 17 and the hole wall 4a of the hole 4 can be joined at the first abutting portion J1. Similarly, at the first abutting portion J1, the step bottom surface 17a of the column step portion 17 and the back surface 3b of the sealing body 3 can be joined. Further, since the outer peripheral surface of the tip side pin F3 is only slightly contacted with the step side surface 17b of the column step portion 17, the mixing of the first aluminum alloy from the column 15 into the sealing body 3 can be minimized. As a result, the second aluminum alloy on the side of the sealing body 3 is mainly friction-stirred in the first abutting portion J1, so that the reduction in bonding strength can be suppressed.
 また、本接合工程では、支柱段差部17の段差側面17bを先端に向かうにつれて孔壁4aから離間する方向に(支柱15の先端が先細りとなるように)傾斜させているため、先端側ピンF3と支柱15との接触を容易に回避することができる。また、本実施形態では、段差側面17bの傾斜角度γ(図7)と、先端側ピンF3の傾斜角度α(図1)とを同一(段差側面17bと先端側ピンF3の外周面とを平行)にしているため、先端側ピンF3と段差側面17bとの接触を避けつつ、先端側ピンF3と段差側面17bとを極力近接させることもできる。 Further, in the main joining step, since the step side surface 17b of the strut step portion 17 is tilted in a direction of separating from the hole wall 4a toward the tip (so that the tip of the strut 15 is tapered), the tip side pin F3. It is possible to easily avoid contact between the column 15 and the column 15. Further, in the present embodiment, the inclination angle γ of the step side surface 17b (FIG. 7) and the inclination angle α of the tip side pin F3 (FIG. 1) are the same (the step side surface 17b and the outer peripheral surface of the tip side pin F3 are parallel. Therefore, it is possible to make the tip side pin F3 and the step side surface 17b as close as possible while avoiding contact between the tip side pin F3 and the step side surface 17b.
 また、本実施形態の回転ツールFは、基端側ピンF2と、基端側ピンF2のテーパー角度Aよりもテーパー角度が小さい先端側ピンF3を備えた構成になっている。これにより、封止体3に回転ツールFを挿入しやすくなる。また、先端側ピンF3のテーパー角度Bが小さいため、封止体3の深い位置まで回転ツールFを容易に挿入することができる。 Further, the rotary tool F of the present embodiment is configured to include a base end side pin F2 and a tip end side pin F3 having a taper angle smaller than the taper angle A of the base end side pin F2. This facilitates insertion of the rotary tool F into the sealing body 3. Further, since the taper angle B of the tip side pin F3 is small, the rotary tool F can be easily inserted to a deep position of the sealing body 3.
 また、基端側ピンF2の外周面で塑性流動材を押えることができるため、接合表面に形成される段差凹溝を小さくすることができるとともに、段差凹溝の脇に形成される膨出部を無くすか若しくは小さくすることができる。また、階段状のピン段差部F21は浅く、かつ、出口が広いため、塑性流動材を段差底面F21aで押えつつ塑性流動材がピン段差部F21の外部に抜けやすくなっている。そのため、基端側ピンF2で塑性流動材を押えても基端側ピンF2の外周面に塑性流動材が付着し難い。よって、接合表面粗さを小さくすることができるとともに、接合品質を好適に安定させることができる。 Further, since the plastic fluid material can be pressed by the outer peripheral surface of the base end side pin F2, the stepped groove formed on the joint surface can be made small and the bulging portion formed beside the stepped groove. Can be eliminated or reduced. In addition, since the stepped pin step portion F21 is shallow and has a wide outlet, the plastic fluid material easily comes out of the pin step portion F21 while pressing the plastic fluid material with the step bottom face F21a. Therefore, even if the plastic fluid material is pressed by the proximal pin F2, the plastic fluid material is unlikely to adhere to the outer peripheral surface of the proximal pin F2. Therefore, the joint surface roughness can be reduced, and the joint quality can be preferably stabilized.
 また、本接合工程では、回転ツールFの回転方向及び進行方向は適宜設定すればよいが、回転ツールFの移動軌跡に形成される塑性化領域W1のうち、支柱15側がシアー側となり、封止体3側がフロー側となるように回転ツールFの回転方向及び進行方向を設定した。支柱15側がシアー側となるように設定することで、第一突合せ部J1の周囲における基端側ピンF2及び先端側ピンF3による攪拌作用が高まり、第一突合せ部J1における温度上昇が期待でき、第一突合せ部J1において段差側面17bと封止体3とをより確実に接合することができる。 In the main joining step, the rotation direction and the traveling direction of the rotary tool F may be set as appropriate, but in the plasticized region W1 formed on the movement trajectory of the rotary tool F, the support column 15 side is the shear side, and the sealing is performed. The rotation direction and the traveling direction of the rotary tool F were set so that the body 3 side was the flow side. By setting the support 15 side to be the shear side, the stirring action by the base end side pin F2 and the tip end side pin F3 around the first butting part J1 is enhanced, and the temperature rise at the first butting part J1 can be expected, The step side surface 17b and the sealing body 3 can be joined to each other more reliably at the first butting portion J1.
 なお、シアー側(Advancing side:アドバンシング側)とは、被接合部に対する回転ツールの外周の相対速度が、回転ツールの外周における接線速度の大きさに移動速度の大きさを加算した値となる側を意味する。一方、フロー側(Retreating side:リトリーティング側)とは、回転ツールの移動方向の反対方向に回転ツールが回動することで、被接合部に対する回転ツールの相対速度が低速になる側を言う。 In addition, the shear side (Advancing side) is the value of the relative speed of the outer circumference of the rotary tool to the welded part, which is the sum of the tangential speed on the outer circumference of the rotary tool and the magnitude of the moving speed. Means the side. On the other hand, the flow side (Retreating side) refers to the side where the relative speed of the rotary tool to the welded part becomes low due to the rotary tool rotating in the direction opposite to the moving direction of the rotary tool.
 また、準備工程において、封止体3の厚さを支柱段差部17の段差側面17bの高さ寸法よりも大きくなるように設定している。かかる接合方法によれば、接合部の金属不足を防ぐことができる。 Also, in the preparation process, the thickness of the sealing body 3 is set to be larger than the height dimension of the step side surface 17b of the column step portion 17. According to such a joining method, it is possible to prevent metal shortage at the joint.
 また、本接合工程では、支柱段差部17の段差底面17aと先端側ピンF3の平坦面F4とは離間させているが、塑性化領域W1は段差底面17aに達している。これにより、第二突合せ部J2の接合強度を高めることができる。 In the main joining process, the step bottom surface 17a of the pillar step portion 17 and the flat surface F4 of the tip pin F3 are separated from each other, but the plasticized region W1 reaches the step bottom surface 17a. Thereby, the joint strength of the second abutting portion J2 can be increased.
 なお、本接合工程において、さらに先端側ピンF3を支柱段差部17の段差底面17aにわずかに接触させた状態で、第二突合せ部J2に沿って回転ツールFを移動させて摩擦攪拌を行ってもよい(図示省略)。かかる接合方法によれば、接合強度をより高めることができるとともに、支柱15側から封止体3側への第一アルミニウム合金の混入を極力防ぐことができる。また、突合せ部J11,J12に対しては、例えば、摩擦攪拌などの方法により適宜接合すればよい。 In the main joining step, the tip end pin F3 is slightly contacted with the step bottom surface 17a of the column step portion 17, and the rotary tool F is moved along the second butting portion J2 to perform friction stirring. (Not shown). According to such a joining method, it is possible to further increase the joining strength and prevent the first aluminum alloy from being mixed into the sealing body 3 side from the column 15 side as much as possible. Further, the abutting portions J11 and J12 may be appropriately joined by a method such as friction stirring.
 [変形例]
 次に、本発明の変形例に係る接合方法について説明する。変形例では、図10に示すように、準備工程においてジャケット本体2と封止体3との材料が異なる点と、本接合工程の形態が前記実施形態と相違する。当該変形例の準備工程では、ジャケット本体2を銅又は銅合金で形成する。なお、変形例において、銅又は銅合金製のジャケット本体2と、アルミニウム又はアルミニウム合金製の封止体(部材)3とを例示したが、例えば、銅又は銅合金製の支柱と、当該支柱に接合されるアルミニウム又はアルミニウム合金製の部材とを接合してもよい。
[Modification]
Next, a joining method according to a modified example of the present invention will be described. In the modified example, as shown in FIG. 10, the materials of the jacket body 2 and the sealing body 3 are different in the preparation step, and the form of the main joining step is different from the above embodiment. In the preparation process of the modified example, the jacket body 2 is made of copper or a copper alloy. In the modification, the jacket body 2 made of copper or a copper alloy and the sealing body (member) 3 made of aluminum or an aluminum alloy are exemplified, but, for example, a strut made of copper or a copper alloy and the strut You may join with the member made from aluminum or aluminum alloy joined.
 当該変形例の本接合工程では、図10に示すように、回転ツールFを用いてジャケット本体2と封止体3とを摩擦攪拌接合する。本接合工程では、支柱段差17の段差側面17bに先端側ピンF3の外周面を接触させない状態で突出部16周りに一周させて摩擦攪拌を行う。先端側ピンF3の先端は、本実施形態では段差底面17aに接触させないように設定する。 In the main joining process of the modified example, as shown in FIG. 10, the rotating tool F is used to friction stir weld the jacket body 2 and the sealing body 3. In the main joining step, friction stir is performed by making a round around the projecting portion 16 without contacting the outer peripheral surface of the tip side pin F3 with the step side surface 17b of the column step 17. In the present embodiment, the tip of the tip pin F3 is set so as not to contact the step bottom surface 17a.
 段差側面17bから先端側ピンF3の外周面までの距離が遠すぎると第一突合せ部J1の接合強度が低下する。段差側面17bから先端側ピンF3の外周面までの離間距離Lは段差側面17b及び封止体3の材料によって適宜設定すればよい。本実施形態のように先端側ピンF3の外周面F10を段差側面17bに接触させず、かつ、平坦面F4を段差底面17aに接触させない場合は、例えば、0≦L≦0.5mmに設定し、好ましくは0≦L≦0.3mmに設定することがよい。 If the distance from the step side surface 17b to the outer peripheral surface of the tip side pin F3 is too large, the joint strength of the first butted portion J1 will be reduced. The separation distance L from the step side surface 17b to the outer peripheral surface of the tip side pin F3 may be appropriately set depending on the material of the step side surface 17b and the sealing body 3. When the outer peripheral surface F10 of the tip side pin F3 is not brought into contact with the step side surface 17b and the flat surface F4 is not brought into contact with the step bottom surface 17a as in the present embodiment, for example, 0≦L≦0.5 mm is set. , Preferably 0≦L≦0.3 mm.
 以上説明した変形例によれば、回転ツールFの先端側ピンF3と支柱段差部17の段差側面17bとは接触させていない。しかしながら、封止体3と先端側ピンF3との摩擦熱によって第一突合せ部J1の主として封止体3側のアルミニウム合金が攪拌されて塑性流動化され、第一突合せ部J1において段差側面17bと孔部4の孔壁4aとを接合することができる。また、先端側ピンF3を封止体3のみに接触させて摩擦攪拌を行うため、支柱15から封止体3への銅又は銅合金の混入は殆どない。これにより、第一突合せ部J1においては主として封止体3側のアルミニウム合金が摩擦攪拌されるため、接合強度の低下を抑制することができる。 According to the modified example described above, the tip side pin F3 of the rotary tool F and the step side surface 17b of the column step portion 17 are not in contact with each other. However, due to frictional heat between the sealing body 3 and the tip side pin F3, the aluminum alloy mainly on the sealing body 3 side of the first abutting portion J1 is agitated and plasticized, and at the first abutting portion J1 the step side surface 17b is formed. The hole wall 4a of the hole 4 can be joined. Further, since the tip side pin F3 is brought into contact with only the sealing body 3 to perform frictional stirring, there is almost no mixing of copper or copper alloy from the support column 15 into the sealing body 3. As a result, the aluminum alloy on the side of the sealing body 3 is mainly friction-stirred in the first butting portion J1, so that the reduction in the bonding strength can be suppressed.
 また、第二突合せ部J2においても、先端側ピンF3を段差底面17aに接触させていないが、塑性化領域W1が段差底面17aに達するため第二突合せ部J2の接合強度を高めることができる。また、第二突合せ部J2においても、先端側ピンF3を段差底面17aに接触させていないため、支柱15から封止体3への銅又は銅合金の混入は殆どない。これにより、第二突合せ部J2においても主として封止体3側のアルミニウム合金が摩擦攪拌されるため、接合強度の低下を抑制することができる。 Also, in the second abutting portion J2 as well, although the tip side pin F3 is not in contact with the step bottom surface 17a, the plasticizing region W1 reaches the step bottom surface 17a, so that the joining strength of the second abutting portion J2 can be increased. Further, also in the second abutting portion J2, since the tip side pin F3 is not in contact with the step bottom surface 17a, there is almost no mixing of copper or copper alloy from the support column 15 into the sealing body 3. Thereby, the aluminum alloy on the side of the sealing body 3 is mainly friction-stirred also in the second butting portion J2, so that the reduction in the bonding strength can be suppressed.
 前記実施形態同様、本変形例において回転ツールFは、基端側ピンF2と、基端側ピンF2のテーパー角度Aよりもテーパー角度が小さい先端側ピンF3を備えた構成になっている。これにより、封止体3に回転ツールFを挿入しやすくなる。また、先端側ピンF3のテーパー角度Bが小さいため、封止体3の深い位置まで回転ツールFを容易に挿入することができる。 Like the above embodiment, in this modification, the rotary tool F is configured to include a base end side pin F2 and a tip end side pin F3 having a taper angle smaller than the taper angle A of the base end side pin F2. This facilitates insertion of the rotary tool F into the sealing body 3. Further, since the taper angle B of the tip side pin F3 is small, the rotary tool F can be easily inserted to a deep position of the sealing body 3.
 また、本変形例では、第一突合せ部J1に断面V字状の隙間が形成されるが、封止体3の板厚を段差側面17bよりも大きくすることで、本接合工程における接合部(塑性化領域W1)の金属不足を防ぐことができる。 Further, in this modification, a gap having a V-shaped cross section is formed in the first butting portion J1, but by making the plate thickness of the sealing body 3 larger than that of the step side surface 17b, the joining portion (in the main joining step ( It is possible to prevent metal shortage in the plasticized region W1).
 また、本接合工程では、段差側面17bの傾斜角度γ(図7)と、先端側ピンF3の傾斜角度α(図1)とを同一(段差側面17bと先端側ピンF3の外周面とを平行)にしているため、先端側ピンF3と段差側面17bとの接触を避けつつ、先端側ピンF3と段差側面17bとを極力近接させることができる。 In the main joining step, the inclination angle γ of the step side surface 17b (FIG. 7) and the inclination angle α of the tip side pin F3 (FIG. 1) are the same (the step side surface 17b and the outer peripheral surface of the tip side pin F3 are parallel to each other. Therefore, it is possible to make the tip side pin F3 and the step side surface 17b as close as possible while avoiding contact between the tip side pin F3 and the step side surface 17b.
 なお、封止体3の板厚は突出部16の高さ寸法と同一に設定してもよい。 The plate thickness of the sealing body 3 may be set to be the same as the height dimension of the protruding portion 16.
 3   封止体(部材)
 4   孔部
 4a  孔壁
 15  支柱
 17  支柱段差部
 17a 段差底面
 17b 段差側面
 J1  第一突合せ部
 J2  第二突合せ部
 F   回転ツール
 F2  基端側ピン
 F3  先端側ピン
 F21 ピン段差部
 A   テーパー角度
 B   テーパー角度
3 Sealed body (member)
4 hole 4a hole wall 15 pillar 17 pillar step 17a step bottom 17b step side J1 first butting J2 second butting F rotating tool F2 proximal pin F3 tip pin F21 pin step A taper angle B taper angle

Claims (9)

  1.  支柱と、前記支柱の先端が挿入される孔部を有する部材とを摩擦攪拌で接合する接合方法であって、
     前記支柱は、第一アルミニウム合金で形成されており、前記部材は第二アルミニウム合金で形成されており、前記第一アルミニウム合金は前記第二アルミニウム合金よりも硬度が高い材料であり、
     摩擦攪拌で用いる回転ツールは、基端側ピンと、先端側ピンとを備え、前記基端側ピンのテーパー角度は、前記先端側ピンのテーパー角度よりも大きく、前記基端側ピンの外周面には階段状の段差部が形成されており、
     前記支柱の先端に段差底面と、当該段差底面から前記支柱の先端が先細りとなるように斜めに立ち上がる段差側面とを有する支柱段差部を形成する準備工程と、
     前記支柱に前記部材を載置することにより、前記支柱段差部の段差側面と前記孔部の孔壁とを突き合せた際に隙間があるように第一突合せ部を形成する載置工程と、
     回転する前記先端側ピンを前記部材に挿入し、前記基端側ピンの外周面を前記部材に接触させつつ、前記先端側ピンの外周面を前記支柱段差部の段差側面にわずかに接触させた状態で、前記第一突合せ部に沿って前記回転ツールを移動させる際に前記部材の第二アルミニウム合金を前記隙間に流入させながら摩擦攪拌を行う本接合工程とを含むことを特徴とする接合方法。
    A joining method for joining a strut and a member having a hole into which the tip of the strut is inserted by friction stirring,
    The column is formed of a first aluminum alloy, the member is formed of a second aluminum alloy, the first aluminum alloy is a material having a hardness higher than the second aluminum alloy,
    The rotary tool used in the friction stirring includes a base end side pin and a tip end side pin, and the taper angle of the base end side pin is larger than the taper angle of the tip end side pin, and the outer peripheral surface of the base end side pin is A step-like step is formed,
    A preparatory step of forming a pillar step portion having a step bottom surface at the tip of the pillar and a step side surface that rises obliquely from the step bottom surface such that the tip of the pillar is tapered;
    By placing the member on the column, a placing step of forming the first butting portion so that there is a gap when the step side surface of the column step portion and the hole wall of the hole portion are butted.
    The rotating distal end side pin was inserted into the member, and the outer peripheral surface of the base end side pin was brought into contact with the member, while the outer peripheral surface of the distal end side pin was slightly contacted with the step side surface of the strut step portion. In the state, a main joining step of performing friction stirring while flowing the second aluminum alloy of the member into the gap when moving the rotary tool along the first butting portion is included. ..
  2.  前記載置工程では、前記支柱段差部の段差底面と前記部材の裏面を重ね合わせて第二突合せ部を形成し、
     前記本接合工程では、前記先端側ピンを前記支柱段差部の段差底面にわずかに接触させた状態で、前記第二突合せ部に沿って前記回転ツールを移動させて摩擦攪拌を行うことを特徴とする請求項1に記載の接合方法。
    In the placing step, the step bottom surface of the pillar step portion and the back surface of the member are overlapped to form a second butting portion,
    In the main joining step, frictional stirring is performed by moving the rotary tool along the second butting portion in a state in which the tip side pin slightly contacts the step bottom surface of the column step portion. The joining method according to claim 1.
  3.  前記準備工程では、前記部材の厚さを前記支柱段差部の段差側面の高さ寸法よりも大きくなるように設定することを特徴とする請求項1又は請求項2に記載の接合方法。 The joining method according to claim 1 or 2, wherein in the preparing step, the thickness of the member is set to be larger than the height dimension of the step side surface of the strut step portion.
  4.  前記本接合工程では、前記回転ツールのアドバンシング側が前記支柱側となるように前記回転ツールの進行方向及び回転方向を設定することを特徴とする請求項1に記載の接合方法。 The joining method according to claim 1, wherein, in the main joining step, the advancing side and the rotating direction of the rotary tool are set such that the advancing side of the rotary tool is the strut side.
  5.  支柱と、前記支柱の先端が挿入される孔部を有する部材とを摩擦攪拌で接合する接合方法であって、
     前記支柱は、銅又は銅合金で形成されており、前記部材はアルミニウム又はアルミニウム合金で形成されており、
     摩擦攪拌で用いる回転ツールは、基端側ピンと、先端側ピンとを備え、前記基端側ピンのテーパー角度は、前記先端側ピンのテーパー角度よりも大きく、前記基端側ピンの外周面には階段状の段差部が形成されており、
     前記支柱の先端に段差底面と、当該段差底面から前記支柱の先端が先細りとなるように斜めに立ち上がる段差側面とを有する支柱段差部を形成する準備工程と、
     前記支柱に前記部材を載置することにより、前記支柱段差部の段差側面と前記孔部の孔壁とを突き合せた際に隙間があるように第一突合せ部を形成する載置工程と、
     回転する前記先端側ピンを前記部材に挿入し、前記基端側ピンの外周面を前記部材に接触させつつ、前記先端側ピンの外周面を前記支柱段差部の段差側面に接触させない状態で、前記第一突合せ部に沿って前記回転ツールを移動させる際に前記部材のアルミニウム又はアルミニウム合金を前記隙間に流入させながら摩擦攪拌を行う本接合工程とを含むことを特徴とする接合方法。
    A joining method for joining a strut and a member having a hole into which the tip of the strut is inserted by friction stirring,
    The pillar is formed of copper or a copper alloy, the member is formed of aluminum or aluminum alloy,
    The rotary tool used in the friction stirring includes a base end side pin and a tip end side pin, and the taper angle of the base end side pin is larger than the taper angle of the tip end side pin, and the outer peripheral surface of the base end side pin is A step-like step is formed,
    A preparatory step of forming a pillar step portion having a step bottom surface at the tip of the pillar and a step side surface that rises obliquely from the step bottom surface such that the tip of the pillar is tapered;
    By placing the member on the column, a placing step of forming the first butting portion so that there is a gap when the step side surface of the column step portion and the hole wall of the hole portion are butted.
    Inserting the rotating distal end side pin into the member, while contacting the outer peripheral surface of the proximal end side pin with the member, while not contacting the outer peripheral surface of the distal end side pin with the step side surface of the strut step portion, A main joining step of performing friction stirring while flowing aluminum or an aluminum alloy of the member into the gap when moving the rotary tool along the first butting portion.
  6.  前記載置工程では、前記支柱段差部の段差底面と前記部材の裏面を重ね合わせて第二突合せ部を形成し、
     前記本接合工程では、前記先端側ピンを前記支柱段差部の段差底面に接触させない状態で、前記第二突合せ部に沿って前記回転ツールを移動させて摩擦攪拌を行うことを特徴とする請求項5に記載の接合方法。
    In the placing step, the step bottom surface of the pillar step portion and the back surface of the member are overlapped to form a second butting portion,
    In the main joining step, friction stirring is performed by moving the rotary tool along the second butting portion in a state where the tip side pin is not in contact with the step bottom surface of the strut step portion. 5. The joining method according to item 5.
  7.  前記準備工程では、前記部材の厚さを前記支柱段差部の段差側面の高さ寸法よりも大きくなるように設定することを特徴とする請求項5又は請求項6に記載の接合方法。 The joining method according to claim 5 or 6, wherein in the preparing step, the thickness of the member is set to be larger than the height dimension of the step side surface of the strut step portion.
  8.  前記本接合工程では、前記回転ツールのアドバンシング側が前記支柱側となるように前記回転ツールの進行方向及び回転方向を設定することを特徴とする請求項5に記載の接合方法。 The joining method according to claim 5, wherein, in the main joining step, the advancing direction and the rotating direction of the rotating tool are set such that the advancing side of the rotating tool is the strut side.
  9.  前記本接合工程では、前記第一突合せ部に沿って前記回転ツールを移動させ前記支柱の周りを一周させて摩擦攪拌を行うことを特徴とする請求項1又は請求項5に記載の接合方法。 The joining method according to claim 1 or 5, wherein, in the main joining step, the rotary tool is moved along the first butting portion to make one round around the support column to perform frictional stirring.
PCT/JP2019/042274 2019-02-01 2019-10-29 Joining method WO2020158081A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201980088861.0A CN113302014B (en) 2019-02-01 2019-10-29 Bonding method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019016671A JP2020124715A (en) 2019-02-01 2019-02-01 Joining method
JP2019-016671 2019-02-01

Publications (1)

Publication Number Publication Date
WO2020158081A1 true WO2020158081A1 (en) 2020-08-06

Family

ID=71841291

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/042274 WO2020158081A1 (en) 2019-02-01 2019-10-29 Joining method

Country Status (3)

Country Link
JP (1) JP2020124715A (en)
CN (1) CN113302014B (en)
WO (1) WO2020158081A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200324365A1 (en) * 2018-04-02 2020-10-15 Nippon Light Metal Company, Ltd. Method for manufacturing liquid-cooling jacket
US11654507B2 (en) 2017-12-18 2023-05-23 Nippon Light Metal Company, Ltd. Method for manufacturing liquid-cooling jacket
US11654508B2 (en) 2017-09-27 2023-05-23 Nippon Light Metal Company, Ltd. Method for producing liquid-cooled jacket
US11707798B2 (en) 2018-04-02 2023-07-25 Nippon Light Metal Company, Ltd. Method for manufacturing liquid-cooled jacket
US11707799B2 (en) 2018-12-19 2023-07-25 Nippon Light Metal Company, Ltd. Joining method
US11712748B2 (en) 2017-09-27 2023-08-01 Nippon Light Metal Company, Ltd. Method for producing liquid-cooled jacket

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010036230A (en) * 2008-08-06 2010-02-18 Toshiba Corp Friction stir treating method of dissimilar material joining part, and friction stir welding method of dissimilar material
JP2010201484A (en) * 2009-03-05 2010-09-16 Honda Motor Co Ltd Friction stir welding method
JP2012086267A (en) * 2010-09-24 2012-05-10 Furukawa-Sky Aluminum Corp Rotary joint tool for friction stir welding and method for friction stir welding using the same
JP2016215264A (en) * 2015-05-26 2016-12-22 株式会社東芝 Frictional stir welding tool, and frictional stir welding device
WO2017033923A1 (en) * 2015-08-26 2017-03-02 日本軽金属株式会社 Bonding method, liquid cooling jacket production method, and liquid cooling jacket
WO2018193639A1 (en) * 2017-04-18 2018-10-25 日本軽金属株式会社 Method for manufacturing liquid-cooled jacket
WO2019008785A1 (en) * 2017-07-03 2019-01-10 日本軽金属株式会社 Rotary tool and joining method
WO2019193779A1 (en) * 2018-04-02 2019-10-10 日本軽金属株式会社 Method for manufacturing liquid-cooled jacket

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103949769A (en) * 2014-05-05 2014-07-30 西北工业大学 Stirring head for friction stir welding used for welding parts with different thicknesses and welding method
CN107000114B (en) * 2014-11-05 2020-08-25 日本轻金属株式会社 Method for manufacturing liquid cooling sleeve and liquid cooling sleeve
JP6350334B2 (en) * 2015-02-19 2018-07-04 日本軽金属株式会社 Joining method and composite rolled material manufacturing method
JP2018176207A (en) * 2017-04-10 2018-11-15 日本軽金属株式会社 Manufacturing method for liquid-cooling jacket

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010036230A (en) * 2008-08-06 2010-02-18 Toshiba Corp Friction stir treating method of dissimilar material joining part, and friction stir welding method of dissimilar material
JP2010201484A (en) * 2009-03-05 2010-09-16 Honda Motor Co Ltd Friction stir welding method
JP2012086267A (en) * 2010-09-24 2012-05-10 Furukawa-Sky Aluminum Corp Rotary joint tool for friction stir welding and method for friction stir welding using the same
JP2016215264A (en) * 2015-05-26 2016-12-22 株式会社東芝 Frictional stir welding tool, and frictional stir welding device
WO2017033923A1 (en) * 2015-08-26 2017-03-02 日本軽金属株式会社 Bonding method, liquid cooling jacket production method, and liquid cooling jacket
WO2018193639A1 (en) * 2017-04-18 2018-10-25 日本軽金属株式会社 Method for manufacturing liquid-cooled jacket
WO2019008785A1 (en) * 2017-07-03 2019-01-10 日本軽金属株式会社 Rotary tool and joining method
WO2019193779A1 (en) * 2018-04-02 2019-10-10 日本軽金属株式会社 Method for manufacturing liquid-cooled jacket

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11654508B2 (en) 2017-09-27 2023-05-23 Nippon Light Metal Company, Ltd. Method for producing liquid-cooled jacket
US11712748B2 (en) 2017-09-27 2023-08-01 Nippon Light Metal Company, Ltd. Method for producing liquid-cooled jacket
US11654507B2 (en) 2017-12-18 2023-05-23 Nippon Light Metal Company, Ltd. Method for manufacturing liquid-cooling jacket
US20200324365A1 (en) * 2018-04-02 2020-10-15 Nippon Light Metal Company, Ltd. Method for manufacturing liquid-cooling jacket
US11707798B2 (en) 2018-04-02 2023-07-25 Nippon Light Metal Company, Ltd. Method for manufacturing liquid-cooled jacket
US11707799B2 (en) 2018-12-19 2023-07-25 Nippon Light Metal Company, Ltd. Joining method

Also Published As

Publication number Publication date
CN113302014B (en) 2022-09-20
JP2020124715A (en) 2020-08-20
CN113302014A (en) 2021-08-24

Similar Documents

Publication Publication Date Title
WO2020158081A1 (en) Joining method
WO2018193639A1 (en) Method for manufacturing liquid-cooled jacket
WO2019193779A1 (en) Method for manufacturing liquid-cooled jacket
JP6885263B2 (en) How to manufacture a liquid-cooled jacket
WO2019193778A1 (en) Method for manufacturing liquid-cooled jacket
WO2020095483A1 (en) Liquid-cooled jacket manufacturing method and friction stir welding method
JP6885262B2 (en) How to manufacture a liquid-cooled jacket
JP2020011271A (en) Liquid-cooled jacket manufacturing method
JP2019111548A (en) Manufacturing method for liquid-cooled jacket
JP2019195825A (en) Joining method
JP7347234B2 (en) Liquid cooling jacket manufacturing method and friction stir welding method
WO2021144999A1 (en) Joining method
JP2020075256A (en) Joint method
JP7020562B2 (en) How to manufacture a liquid-cooled jacket
JP2021112753A (en) Joining method
JP6943139B2 (en) How to manufacture a liquid-cooled jacket
WO2020017094A1 (en) Method for manufacturing liquid-cooled jacket
JP6943140B2 (en) How to manufacture a liquid-cooled jacket
JP7226241B2 (en) Liquid cooling jacket manufacturing method
JP2021112751A (en) Joining method
JP7140061B2 (en) Heat exchanger manufacturing method
JP7226254B2 (en) Liquid cooling jacket manufacturing method
JP7226242B2 (en) Liquid cooling jacket manufacturing method
JP2020151753A (en) Manufacturing method of liquid-cooled jacket
JP2019155414A (en) Manufacturing method for liquid-cooled jacket

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19913942

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19913942

Country of ref document: EP

Kind code of ref document: A1