JP2021133386A - Method for manufacturing composite structure - Google Patents

Method for manufacturing composite structure Download PDF

Info

Publication number
JP2021133386A
JP2021133386A JP2020030244A JP2020030244A JP2021133386A JP 2021133386 A JP2021133386 A JP 2021133386A JP 2020030244 A JP2020030244 A JP 2020030244A JP 2020030244 A JP2020030244 A JP 2020030244A JP 2021133386 A JP2021133386 A JP 2021133386A
Authority
JP
Japan
Prior art keywords
metal member
composite structure
molding
friction
butt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020030244A
Other languages
Japanese (ja)
Other versions
JP7322748B2 (en
Inventor
久司 堀
Hisashi Hori
久司 堀
知広 河本
Tomohiro Kawamoto
知広 河本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Light Metal Co Ltd
Original Assignee
Nippon Light Metal Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Light Metal Co Ltd filed Critical Nippon Light Metal Co Ltd
Priority to JP2020030244A priority Critical patent/JP7322748B2/en
Publication of JP2021133386A publication Critical patent/JP2021133386A/en
Application granted granted Critical
Publication of JP7322748B2 publication Critical patent/JP7322748B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T30/00Transportation of goods or passengers via railways, e.g. energy recovery or reducing air resistance

Abstract

To easily make an angle formed by a bottom part and a peripheral wall part of a first metal member constituting a composite structure, a right angle or an acute angle.SOLUTION: A method for manufacturing a composite structure includes: a preparation step for preparing a first metal member 2, and a second metal member 3 to be arranged in a recess 13 of the first metal member 2; a placement step for placing the second metal member 3 in the recess 13 of the first metal member 2 and forming a first butting part J1; a first butting part joining step for joining the first butting part J1 by using a rotating rotary tool; and a friction molding step in which a third rotary tool H rotating from a surface 3a of the second metal member 3 is relatively moved along the first butting part J1 while inserting the third rotary tool H, and in which a peripheral wall part 11 of the first metal member 2 is pressed and shaped against a molding surface 31 of a molding die 30 arranged on a rear side of the first metal member 2. In the friction molding step, an angle formed by a bottom part 31a and an inner peripheral surface 31b of the molding surface 31 of the molding die 30 is formed to be a right angle or an acute angle.SELECTED DRAWING: Figure 14

Description

本発明は、複合構造体の製造方法に関する。 The present invention relates to a method for producing a composite structure.

特許文献1には、複合スラブ(複合構造体)の製造方法が開示されている。当該複合構造体の製造方法では、箱型の第一金属部材の凹部に第二金属部材を配置して、両者を摩擦攪拌接合することで複合構造体を形成している。 Patent Document 1 discloses a method for producing a composite slab (composite structure). In the method for manufacturing the composite structure, the composite structure is formed by arranging the second metal member in the recess of the box-shaped first metal member and friction stir welding the two.

特開2019−214193号公報Japanese Unexamined Patent Publication No. 2019-214193

板厚が数ミリ程度の第一金属部材を用いて比較的薄い複合構造体を形成する場合がある。このような場合には、成形性を考慮すると金属板をプレス成形して箱型の第一金属部材を成形することが好ましい。しかし、プレス成形であるとスプリングバックが発生するため、第一金属部材ひいては複合構造体を所望の形状に形成することが困難となっている。 A relatively thin composite structure may be formed by using a first metal member having a plate thickness of about several millimeters. In such a case, in consideration of moldability, it is preferable to press-mold the metal plate to form the box-shaped first metal member. However, in the case of press molding, springback occurs, which makes it difficult to form the first metal member and thus the composite structure into a desired shape.

例えば、複合構造体を構成する第一金属部材の底部と周壁部とのなす角度を直角にしたい場合、プレス成形後にスプリングバックによって周壁部が外側に傾倒してしまう。また、摩擦攪拌接合中の摩擦熱による軟化や回転ツールの押圧力に起因して、周壁部が外側に傾倒することも起こり得る。特に、プレス成形であると、底部と周壁部との角部は厳密には丸く屈曲するため、第一金属部材の底部の裏面と周壁部の外周面との角部を面同士で直角にすることは極めて難しい。 For example, when it is desired to make the angle between the bottom portion of the first metal member constituting the composite structure and the peripheral wall portion at a right angle, the peripheral wall portion is tilted outward by springback after press forming. In addition, the peripheral wall portion may tilt outward due to softening due to frictional heat during friction stir welding or pressing force of the rotating tool. In particular, in the case of press molding, the corners between the bottom and the peripheral wall are bent strictly in a round shape, so that the corners between the back surface of the bottom of the first metal member and the outer peripheral surface of the peripheral wall are at right angles to each other. That is extremely difficult.

また、例えば、複合構造体を構成する第一金属部材の底部と周壁部とのなす角度を鋭角にしたい場合、型抜きの関係上プレス成形で第一金属部材を成形することができない。これにより、第一金属部材の底部と周壁部とのなす角度が鋭角(アンダーカット)となる複合構造体を形成することは困難となっている。 Further, for example, when it is desired to make an acute angle between the bottom portion and the peripheral wall portion of the first metal member constituting the composite structure, the first metal member cannot be formed by press molding due to die cutting. This makes it difficult to form a composite structure in which the angle formed by the bottom portion of the first metal member and the peripheral wall portion is an acute angle (undercut).

このような観点から、本発明は複合構造体を構成する第一金属部材の底部と周壁部とのなす角度を容易に直角又は鋭角にすることができる複合構造体の製造方法を提供することを課題とする。 From such a viewpoint, the present invention provides a method for manufacturing a composite structure in which the angle formed by the bottom portion and the peripheral wall portion of the first metal member constituting the composite structure can be easily made a right angle or an acute angle. Make it an issue.

このような課題を解決するために本発明は、摩擦攪拌を行って複合構造体を製造する複合構造体の製造方法であって、底部と前記底部の周縁部から立ち上がる枠状の周壁部とで構成される凹部を有し、前記周壁部の端部から外側に張り出すフランジ部を備える第一金属部材と、前記第一金属部材の前記凹部に配置される第二金属部材と、を準備する準備工程と、前記第一金属部材の凹部に前記第二金属部材を載置して前記第一金属部材の周壁部の内周面と、前記第二金属部材の外周面とを突き合わせて第一突合せ部を形成する載置工程と、回転する回転ツールを用いて前記第一突合せ部を摩擦攪拌接合する第一突合せ部接合工程と、前記第二金属部材の表面から回転する回転ツールを挿入しつつ前記第一突合せ部に沿って当該回転ツールを相対移動させ、前記第一金属部材の裏側に配置された成形型の成形面に前記第一金属部材の周壁部を押し付けて賦形する摩擦成形工程と、を含み、前記摩擦成形工程では、前記成形型の成形面の底面と内周面とのなす角度を直角又は鋭角に形成することを特徴とする。 In order to solve such a problem, the present invention is a method for manufacturing a composite structure in which a composite structure is manufactured by performing frictional stirring, in which a bottom portion and a frame-shaped peripheral wall portion rising from a peripheral portion of the bottom portion are used. A first metal member having a recess to be formed and having a flange portion protruding outward from an end portion of the peripheral wall portion and a second metal member arranged in the recess of the first metal member are prepared. In the preparatory step, the second metal member is placed in the recess of the first metal member, and the inner peripheral surface of the peripheral wall portion of the first metal member is abutted against the outer peripheral surface of the second metal member. A mounting step of forming a butt portion, a first butt portion joining step of frictionally stirring and joining the first butt portion using a rotating rotation tool, and a rotating tool that rotates from the surface of the second metal member are inserted. While moving the rotating tool relative to the first butt portion, the peripheral wall portion of the first metal member is pressed against the molding surface of the molding mold arranged on the back side of the first metal member to form a friction molding. The friction molding step includes a step, and is characterized in that the angle formed by the bottom surface and the inner peripheral surface of the molding surface of the molding die is formed at a right angle or a sharp angle.

かかる製造方法によれば、直角又は鋭角となっている成形型の成形面に第一金属部材の周壁部を押し付けて賦形する摩擦成形工程を行うことで、複合構造体を構成する第一金属部材の底部と周壁部とのなす角度を容易に直角又は鋭角にすることができる。また、摩擦攪拌の摩擦熱によって第一金属部材及び第二金属部材が軟化するため、容易に賦形することができる。 According to such a manufacturing method, the first metal constituting the composite structure is formed by performing a friction molding step of pressing the peripheral wall portion of the first metal member against the molding surface of the molding mold having a right angle or an acute angle. The angle formed by the bottom portion of the member and the peripheral wall portion can be easily made a right angle or an acute angle. Further, since the first metal member and the second metal member are softened by the frictional heat of friction stir welding, the shape can be easily formed.

また、前記摩擦成形工程では、回転ツールの攪拌ピンの外周面を前記成形面の前記内周面と平行にすることが好ましい。 Further, in the friction molding step, it is preferable that the outer peripheral surface of the stirring pin of the rotary tool is parallel to the inner peripheral surface of the molding surface.

かかる製造方法によれば、成形面の内周面に周壁部を高さ方向に均一に押圧することができるため、より的確に賦形することができる。 According to such a manufacturing method, the peripheral wall portion can be uniformly pressed against the inner peripheral surface of the molded surface in the height direction, so that the shaping can be performed more accurately.

また、前記準備工程では、前記第一金属部材の硬度を、前記第二金属部材の硬度よりも高く設定し、前記第一突合せ部接合工程では、第二金属部材の表面から回転する回転ツールを挿入し、当該回転ツールの攪拌ピンを前記第一金属部材にわずかに接触させた状態で摩擦攪拌を行うことが好ましい。 Further, in the preparatory step, the hardness of the first metal member is set higher than the hardness of the second metal member, and in the first butt stir welding step, a rotation tool that rotates from the surface of the second metal member is used. It is preferable to perform friction stir welding with the stirring pin of the rotating tool inserted and slightly in contact with the first metal member.

かかる製造方法によれば、主として第二金属部材と回転ツールとの摩擦攪拌によって第一突合せ部を接合することができる。これにより、硬度の大きい第一金属部材の金属が、第二金属部材に混入し難くなるため、材種の異なる金属同士の摩擦攪拌に起因する接合不良を防ぐことができる。 According to such a manufacturing method, the first butt portion can be joined mainly by friction stir welding between the second metal member and the rotating tool. As a result, the metal of the first metal member having a high hardness is less likely to be mixed into the second metal member, so that it is possible to prevent poor joining due to frictional agitation between metals of different grades.

また、前記載置工程では、前記第一金属部材の底部の表面と、前記第二金属部材の裏面とを重ね合わせて重合部を形成し、前記第一突合せ部接合工程を行う前に、前記第二金属部材の表面から回転する回転ツールを挿入し、当該回転ツールの攪拌ピンのみを前記第二金属部材のみ、又は前記第一金属部材及び前記第二金属部材に接触させた状態で摩擦攪拌によって前記重合部を接合する重合部接合工程を含むことが好ましい。 Further, in the above-described step, the surface of the bottom portion of the first metal member and the back surface of the second metal member are overlapped to form a polymerized portion, and the first butt portion joining step is performed before the step is performed. A rotating tool that rotates from the surface of the second metal member is inserted, and friction stir welding is performed with only the stirring pin of the rotating tool in contact with only the second metal member or the first metal member and the second metal member. It is preferable to include a polymerized part joining step of joining the polymerized parts by means of.

かかる製造方法によれば、重合部を接合することができるため複合構造体の強度を高めることができる。また、第一突合せ部接合工程において、第一金属部材と第二金属部材の位置ずれを防ぐことができる。 According to such a production method, since the polymerized portions can be joined, the strength of the composite structure can be increased. Further, in the first butt joint joining step, it is possible to prevent the position shift between the first metal member and the second metal member.

また、前記重合部接合工程では、前記第二金属部材の表面の中央部に回転ツールを挿入し、前記中央部から外側に向けて平面視で螺旋状の連続的な軌跡を描くように相対移動させて前記重合部の全体を摩擦攪拌することが好ましい。 Further, in the polymerization portion joining step, a rotation tool is inserted into the central portion of the surface of the second metal member, and the rotary tool is relatively moved from the central portion to the outside so as to draw a spiral continuous locus in a plan view. It is preferable to stir the entire polymerized portion by friction.

かかる製造方法によれば、重合部の全体を容易に接合することができる。また、中央部から外側に回転ツールを螺旋状に移動させることで、第一金属部材及び第二金属部材にシワが発生するのを防ぐことができる。 According to such a production method, the entire polymerized portion can be easily bonded. Further, by moving the rotating tool spirally from the central portion to the outside, it is possible to prevent wrinkles from being generated in the first metal member and the second metal member.

また、前記重合部接合工程及び前記第一突合せ部接合工程は、一の回転ツールを用いて連続して行うことが好ましい。 Further, it is preferable that the polymerization part joining step and the first butt part joining step are continuously performed by using one rotation tool.

かかる製造方法によれば、回転ツールを工程ごとに交換する必要がなくなるため、接合サイクルを早くすることができる。 According to such a manufacturing method, it is not necessary to replace the rotating tool for each process, so that the joining cycle can be shortened.

また、前記第一突合せ部接合工程では、基端側ピンと、先端側ピンとを備え、前記基端側ピンのテーパー角度を前記先端側ピンのテーパー角度よりも大きく設定するとともに、前記基端側ピンの外周面に階段状の段差部を形成した回転ツールを使用し、前記基端側ピンの外周面を前記第二金属部材の表面に接触させた状態で摩擦攪拌を行うことが好ましい。 Further, in the first butt joint joining step, the proximal end side pin and the distal end side pin are provided, the taper angle of the proximal end side pin is set to be larger than the taper angle of the distal end side pin, and the proximal end side pin is set. It is preferable to perform friction stir welding in a state where the outer peripheral surface of the base end side pin is in contact with the surface of the second metal member by using a rotating tool having a stepped step portion formed on the outer peripheral surface of the metal member.

かかる製造方法によれば、第一突合せ部接合工程において基端側ピンの外周面で塑性流動材を押さえることができるため、バリの発生を抑制することができる。 According to such a manufacturing method, since the plastic fluid material can be pressed on the outer peripheral surface of the base end side pin in the first butt joint joining step, the generation of burrs can be suppressed.

また、前記第一突合せ部接合工程では、ショルダ部と前記ショルダ部の底面から垂下する攪拌ピンとを備えた回転ツールを使用し、前記ショルダ部の底面を前記第二金属部材の表面に接触させた状態で摩擦攪拌を行うことが好ましい。 Further, in the first butt portion joining step, a rotating tool provided with a shoulder portion and a stirring pin hanging from the bottom surface of the shoulder portion was used to bring the bottom surface of the shoulder portion into contact with the surface of the second metal member. It is preferable to perform friction stir welding in this state.

かかる製造方法によれば、第一突合せ部接合工程においてショルダ部の底面で塑性流動材を押さえることができるため、バリの発生を抑制することができる。 According to such a manufacturing method, since the plastic fluid material can be pressed on the bottom surface of the shoulder portion in the first butt portion joining step, the generation of burrs can be suppressed.

また、前記載置工程では、前記第一金属部材に前記第二金属部材を載置した際に、前記第二金属部材の表面が、前記第一金属部材の前記フランジ部の表面と同一か、若しくは前記フランジ部の表面よりも高い位置となるように前記第二金属部材の厚みを設定することが好ましい。 Further, in the above-described step, when the second metal member is placed on the first metal member, is the surface of the second metal member the same as the surface of the flange portion of the first metal member? Alternatively, it is preferable to set the thickness of the second metal member so that the position is higher than the surface of the flange portion.

かかる製造方法によれば、第一突合せ部の接合部が金属不足となるのを防ぐことができる。 According to such a manufacturing method, it is possible to prevent the joint portion of the first butt portion from becoming short of metal.

また、前記第一突合せ部接合工程及び前記摩擦成形工程は、一の回転ツールで同時に行うことが好ましい。 Further, it is preferable that the first butt joint joining step and the friction forming step are simultaneously performed by one rotating tool.

かかる製造方法によれば、各工程を同時に行うことができるため、接合サイクルを早くすることができる。また、回転ツールを工程ごとに交換する必要がなくなるため、接合サイクルを早くすることができる。 According to such a manufacturing method, since each step can be performed at the same time, the joining cycle can be shortened. In addition, since it is not necessary to replace the rotation tool for each process, the joining cycle can be shortened.

本発明に係る複合構造体の製造方法によれば、第一金属部材の底部と周壁部とのなす角度を容易に直角又は鋭角にすることができる。 According to the method for manufacturing a composite structure according to the present invention, the angle formed by the bottom portion and the peripheral wall portion of the first metal member can be easily made a right angle or an acute angle.

本発明の実施形態に係る第一回転ツールを示す側面図である。It is a side view which shows the 1st rotation tool which concerns on embodiment of this invention. 第一回転ツールの拡大断面図である。It is an enlarged sectional view of the 1st rotation tool. 第一回転ツールの第一変形例を示す断面図である。It is sectional drawing which shows the 1st modification of the 1st rotation tool. 第一回転ツールの第二変形例を示す断面図である。It is sectional drawing which shows the 2nd modification of the 1st rotation tool. 第一回転ツールの第三変形例を示す断面図である。It is sectional drawing which shows the 3rd modification of the 1st rotation tool. 本発明の第一実施形態に係る複合構造体を示す斜視図である。It is a perspective view which shows the composite structure which concerns on 1st Embodiment of this invention. 第一実施形態に係る複合構造体を示す断面図である。It is sectional drawing which shows the composite structure which concerns on 1st Embodiment. 第一実施形態に係る複合構造体の製造方法の準備工程及び載置工程を示す断面図である。It is sectional drawing which shows the preparation process and the placement process of the manufacturing method of the composite structure which concerns on 1st Embodiment. 第一実施形態に係る複合構造体の製造方法の重合部接合工程を示す平面図である。It is a top view which shows the polymerization part joining process of the manufacturing method of the composite structure which concerns on 1st Embodiment. 第一実施形態に係る複合構造体の製造方法の重合部接合工程を示す断面図である。It is sectional drawing which shows the polymer part joining process of the manufacturing method of the composite structure which concerns on 1st Embodiment. 第一実施形態に係る複合構造体の製造方法の第一突合せ部接合工程を示す平面図である。It is a top view which shows the 1st butt part joining process of the manufacturing method of the composite structure which concerns on 1st Embodiment. 第一実施形態に係る複合構造体の製造方法の第一突合せ部接合工程を示す断面図である。It is sectional drawing which shows the 1st butt part joining process of the manufacturing method of the composite structure which concerns on 1st Embodiment. 第一実施形態に係る複合構造体の製造方法の摩擦成形工程を示す平面図である。It is a top view which shows the friction molding process of the manufacturing method of the composite structure which concerns on 1st Embodiment. 第一実施形態に係る複合構造体の製造方法の摩擦成形工程を示す断面図である。It is sectional drawing which shows the friction molding process of the manufacturing method of the composite structure which concerns on 1st Embodiment. 本発明の第二実施形態に係る複合構造体の製造方法の準備工程及び載置工程を示す断面図である。It is sectional drawing which shows the preparation process and the placement process of the manufacturing method of the composite structure which concerns on 2nd Embodiment of this invention. 第二実施形態に係る複合構造体の製造方法の重合部接合工程を示す平面図である。It is a top view which shows the polymerization part joining process of the manufacturing method of the composite structure which concerns on 2nd Embodiment. 第二実施形態に係る複合構造体の製造方法の重合部接合工程を示す断面図である。It is sectional drawing which shows the polymer part joining process of the manufacturing method of the composite structure which concerns on 2nd Embodiment. 第二実施形態に係る複合構造体の製造方法の第一突合せ部接合工程を示す平面図である。It is a top view which shows the 1st butt part joining process of the manufacturing method of the composite structure which concerns on 2nd Embodiment. 第二実施形態に係る複合構造体の製造方法の第一突合せ部接合工程を示す断面図である。It is sectional drawing which shows the 1st butt part joining process of the manufacturing method of the composite structure which concerns on 2nd Embodiment. 第二実施形態に係る複合構造体の製造方法の摩擦成形工程を示す平面図である。It is a top view which shows the friction molding process of the manufacturing method of the composite structure which concerns on 2nd Embodiment. 第二実施形態に係る複合構造体の製造方法の摩擦成形工程を示す断面図である。It is sectional drawing which shows the friction molding process of the manufacturing method of the composite structure which concerns on 2nd Embodiment. 変形例1に係る複合構造体の製造方法の準備工程及び載置工程を示す断面図である。It is sectional drawing which shows the preparation process and the placement process of the manufacturing method of the composite structure which concerns on modification 1. FIG. 変形例1に係る複合構造体の製造方法の重合部接合工程を示す断面図である。It is sectional drawing which shows the polymer part joining process of the manufacturing method of the composite structure which concerns on modification 1. FIG. 変形例1に係る複合構造体の製造方法の第一突合せ部接合工程を示す断面図である。It is sectional drawing which shows the 1st butt part joining process of the manufacturing method of the composite structure which concerns on modification 1. FIG. 変形例2に係る複合構造体の製造方法の摩擦成形工程を示す断面図である。It is sectional drawing which shows the friction molding process of the manufacturing method of the composite structure which concerns on modification 2. FIG. 変形例2に係る複合構造体の製造方法の摩擦成形工程後を示す断面図である。It is sectional drawing which shows after the friction molding process of the manufacturing method of the composite structure which concerns on modification 2. 本発明の第三実施形態に係る複合構造体を示す断面図である。It is sectional drawing which shows the composite structure which concerns on 3rd Embodiment of this invention. 第三実施形態に係る複合構造体の製造方法の準備工程及び載置工程を示す断面図である。It is sectional drawing which shows the preparation process and the placement process of the manufacturing method of the composite structure which concerns on 3rd Embodiment. 第三実施形態に係る複合構造体の製造方法の重合部接合工程を示す断面図である。It is sectional drawing which shows the polymer part joining process of the manufacturing method of the composite structure which concerns on 3rd Embodiment. 第三実施形態に係る複合構造体の製造方法の第一突合せ部接合工程を示す断面図である。It is sectional drawing which shows the 1st butt part joining process of the manufacturing method of the composite structure which concerns on 3rd Embodiment. 第三実施形態に係る複合構造体の製造方法の摩擦成形工程を示す断面図である。It is sectional drawing which shows the friction molding process of the manufacturing method of the composite structure which concerns on 3rd Embodiment. 本発明の第四実施形態に係る複合構造体の製造方法の準備工程及び載置工程を示す断面図である。It is sectional drawing which shows the preparation process and the placement process of the manufacturing method of the composite structure which concerns on 4th Embodiment of this invention. 第四実施形態に係る複合構造体の製造方法の重合部接合工程を示す断面図である。It is sectional drawing which shows the polymer part joining process of the manufacturing method of the composite structure which concerns on 4th Embodiment. 第四実施形態に係る複合構造体の製造方法の第一突合せ部接合工程を示す断面図である。It is sectional drawing which shows the 1st butt part joining process of the manufacturing method of the composite structure which concerns on 4th Embodiment. 第四実施形態に係る複合構造体の製造方法の摩擦成形工程を示す断面図である。It is sectional drawing which shows the friction molding process of the manufacturing method of the composite structure which concerns on 4th Embodiment.

本発明の実施形態について、適宜図面を参照しながら説明する。本発明は以下の実施形態及び変形例のみに限定されるものではない。また、実施形態及び変形例における各構成要素は、一部又は全部を他の実施形態、変形例と適宜組み合わせることができる。 Embodiments of the present invention will be described with reference to the drawings as appropriate. The present invention is not limited to the following embodiments and modifications. In addition, each component in the embodiment and the modified example can be partially or wholly combined with other embodiments and the modified example as appropriate.

まずは、本実施形態に係る複合構造体の製造方法で用いる第一回転ツールについて説明する。図1に示すように、第一回転ツールFは、例えば工具鋼で形成されており、基軸部F1と、基端側ピンF2と、先端側ピンF3とを備えている。基端側ピンF2及び先端側ピンF3で「攪拌ピン」を構成している。基軸部F1は、円柱状を呈し、摩擦攪拌装置の主軸に接続される部位である。 First, the first rotation tool used in the method for manufacturing the composite structure according to the present embodiment will be described. As shown in FIG. 1, the first rotation tool F is made of, for example, tool steel, and includes a base shaft portion F1, a base end side pin F2, and a tip end side pin F3. The base end side pin F2 and the tip end side pin F3 form a "stirring pin". The base shaft portion F1 has a columnar shape and is a portion connected to the main shaft of the friction stir welder.

基端側ピンF2は、基軸部F1に連続し、先端に向けて先細りになっている。基端側ピンF2は、円錐台形状を呈する。基端側ピンF2のテーパー角度Aは適宜設定すればよいが、例えば、135〜160°になっている。テーパー角度Aが135°未満であるか、又は、160°を超えると摩擦攪拌後の接合表面粗さが大きくなる。テーパー角度Aは、後記する先端側ピンF3のテーパー角度Bよりも大きくなっている。図2に示すように、基端側ピンF2の外周面F5には、階段状のピン段差部F21が高さ方向の全体に亘って形成されている。ピン段差部F21は、右回り又は左回りで螺旋状に形成されている。つまり、ピン段差部F21は、平面視して螺旋状であり、側面視すると階段状になっている。例えば、第一回転ツールFを右回転させる場合、ピン段差部F21は基端側から先端側に向けて左回りに設定する。 The base end side pin F2 is continuous with the base shaft portion F1 and is tapered toward the tip end. The proximal end side pin F2 has a truncated cone shape. The taper angle A of the base end side pin F2 may be appropriately set, and is, for example, 135 to 160 °. If the taper angle A is less than 135 ° or exceeds 160 °, the joint surface roughness after friction stir welding becomes large. The taper angle A is larger than the taper angle B of the tip side pin F3, which will be described later. As shown in FIG. 2, a stepped pin step portion F21 is formed on the outer peripheral surface F5 of the base end side pin F2 over the entire height direction. The pin step portion F21 is formed in a spiral shape in a clockwise or counterclockwise direction. That is, the pin step portion F21 has a spiral shape when viewed in a plane and a step shape when viewed from a side surface. For example, when the first rotation tool F is rotated clockwise, the pin step portion F21 is set counterclockwise from the base end side to the tip end side.

なお、第一回転ツールFを左回転させる場合は、ピン段差部F21を基端側から先端側に向けて右回りに設定することが好ましい。これにより、ピン段差部F21によって塑性流動材が先端側に導かれるため、被接合金属部材の外部に溢れ出る金属を低減することができる。ピン段差部F21は、段差底面F21aと、段差側面F21bとで構成されている。隣り合うピン段差部F21の各頂点F21c,F21cの距離X1(水平方向距離)は、後記する段差角度C及び段差側面F21bの高さY1に応じて適宜設定される。 When the first rotation tool F is rotated counterclockwise, it is preferable to set the pin step portion F21 clockwise from the base end side to the tip end side. As a result, the plastic fluid material is guided to the tip side by the pin step portion F21, so that the metal overflowing to the outside of the metal member to be joined can be reduced. The pin step portion F21 is composed of a step bottom surface F21a and a step side surface F21b. The distance X1 (horizontal distance) between the vertices F21c and F21c of the adjacent pin step portions F21 is appropriately set according to the step angle C and the height Y1 of the step side surface F21b described later.

段差側面F21bの高さY1は適宜設定すればよいが、例えば、0.1〜0.4mmで設定されている。高さY1が0.1mm未満であると接合表面粗さが大きくなる。一方、高さY1が0.4mmを超えると接合表面粗さが大きくなる傾向があるとともに、有効段差部数(被接合金属部材と接触しているピン段差部F21の数)も減少する。 The height Y1 of the step side surface F21b may be appropriately set, and is set to, for example, 0.1 to 0.4 mm. If the height Y1 is less than 0.1 mm, the joint surface roughness becomes large. On the other hand, when the height Y1 exceeds 0.4 mm, the joint surface roughness tends to increase, and the number of effective step portions (the number of pin step portions F21 in contact with the metal member to be joined) also decreases.

段差底面F21aと段差側面F21bとでなす段差角度Cは適宜設定すればよいが、例えば、85〜120°で設定されている。段差底面F21aは、本実施形態では水平面と平行になっている。段差底面F21aは、ツールの回転軸から外周方向に向かって水平面に対して−5°〜15°内の範囲で傾斜していてもよい(マイナスは水平面に対して下方、プラスは水平面に対して上方)。距離X1、段差側面F21bの高さY1、段差角度C及び水平面に対する段差底面F21aの角度は、摩擦攪拌を行う際に、塑性流動材がピン段差部F21の内部に滞留して付着することなく外部に抜けるとともに、段差底面F21aで塑性流動材を押えて接合表面粗さを小さくすることができるように適宜設定する。 The step angle C formed by the step bottom surface F21a and the step side surface F21b may be appropriately set, but is set to, for example, 85 to 120 °. The step bottom surface F21a is parallel to the horizontal plane in this embodiment. The step bottom surface F21a may be inclined in the range of -5 ° to 15 ° with respect to the horizontal plane from the rotation axis of the tool toward the outer peripheral direction (minus is downward with respect to the horizontal plane, plus is with respect to the horizontal plane). Above). The distance X1, the height Y1 of the step side surface F21b, the step angle C, and the angle of the step bottom surface F21a with respect to the horizontal plane are such that the plastic fluid does not stay inside the pin step portion F21 and adhere to the outside during friction stir welding. The surface roughness of the joint is appropriately set so that the plastic fluid material can be pressed by the step bottom surface F21a to reduce the roughness of the joint surface.

図1に示すように、先端側ピンF3は、基端側ピンF2に連続して形成されている。先端側ピンF3は円錐台形状を呈する。先端側ピンF3の先端は回転軸に対して垂直な先端面F4になっている。先端側ピンF3のテーパー角度Bは、基端側ピンF2のテーパー角度Aよりも小さくなっている。図2に示すように、先端側ピンF3の外周面F6には、螺旋溝F31が刻設されている。螺旋溝F31は、右回り、左回りのどちらでもよいが、第一回転ツールFを右回転させる場合、基端側から先端側に向けて左回りに設定する。 As shown in FIG. 1, the distal end side pin F3 is continuously formed on the proximal end side pin F2. The tip side pin F3 has a truncated cone shape. The tip of the tip side pin F3 is a tip surface F4 perpendicular to the rotation axis. The taper angle B of the tip end side pin F3 is smaller than the taper angle A of the base end side pin F2. As shown in FIG. 2, a spiral groove F31 is engraved on the outer peripheral surface F6 of the tip end side pin F3. The spiral groove F31 may be clockwise or counterclockwise, but when the first rotation tool F is rotated clockwise, it is set counterclockwise from the base end side to the tip end side.

なお、第一回転ツールFを左回転させる場合は、螺旋溝F31を基端側から先端側に向けて右回りに設定することが好ましい。これにより、螺旋溝F31によって塑性流動材が先端側に導かれるため、被接合金属部材の外部に溢れ出る金属を低減することができる。螺旋溝F31は、螺旋底面F31aと、螺旋側面F31bとで構成されている。隣り合う螺旋溝F31の頂点F31c,F31cの距離(水平方向距離)を長さX2とする。螺旋側面F31bの高さを高さY2とする。螺旋底面F31aと、螺旋側面F31bとで構成される螺旋角度Dは例えば、45〜90°で形成されている。螺旋溝F31は、被接合金属部材と接触することにより摩擦熱を上昇させるとともに、塑性流動材を先端側に導く役割を備えている。また、第一回転ツールFは、先端にスピンドルユニット等の回転駆動手段を備えたロボットアームに取り付けてもよい。 When the first rotation tool F is rotated counterclockwise, it is preferable to set the spiral groove F31 clockwise from the base end side to the tip end side. As a result, the plastic fluid material is guided to the tip side by the spiral groove F31, so that the metal overflowing to the outside of the metal member to be joined can be reduced. The spiral groove F31 is composed of a spiral bottom surface F31a and a spiral side surface F31b. The distance (horizontal distance) between the vertices F31c and F31c of the adjacent spiral grooves F31 is defined as the length X2. The height of the spiral side surface F31b is defined as the height Y2. The spiral angle D composed of the spiral bottom surface F31a and the spiral side surface F31b is formed at, for example, 45 to 90 °. The spiral groove F31 has a role of increasing frictional heat by coming into contact with the metal member to be joined and guiding the plastic fluid material to the tip side. Further, the first rotation tool F may be attached to a robot arm having a rotation driving means such as a spindle unit at the tip thereof.

第一回転ツールFは、適宜設計変更が可能である。図3は、本発明の第一回転ツールの第一変形例を示す側面図である。図3に示すように、第一変形例に係る第一回転ツールFAでは、ピン段差部F21の段差底面F21aと段差側面F21bとのなす段差角度Cが85°になっている。段差底面F21aは、水平面と平行である。このように、段差底面F21aは水平面と平行であるとともに、段差角度Cは、摩擦攪拌中にピン段差部F21内に塑性流動材が滞留して付着することなく外部に抜ける範囲で鋭角としてもよい。 The design of the first rotation tool F can be changed as appropriate. FIG. 3 is a side view showing a first modification of the first rotation tool of the present invention. As shown in FIG. 3, in the first rotation tool FA according to the first modification, the step angle C formed by the step bottom surface F21a of the pin step portion F21 and the step side surface F21b is 85 °. The step bottom surface F21a is parallel to the horizontal plane. As described above, the step bottom surface F21a is parallel to the horizontal plane, and the step angle C may be an acute angle within a range in which the plastic fluid material stays in the pin step portion F21 during friction stir welding and escapes to the outside without adhering. ..

図4は、本発明の第一回転ツールの第二変形例を示す側面図である。図4に示すように、第二変形例に係る第一回転ツールFBでは、ピン段差部F21の段差角度Cが115°になっている。段差底面F21aは水平面と平行になっている。このように、段差底面F21aは水平面と平行であるとともに、ピン段差部F21として機能する範囲で段差角度Cが鈍角となってもよい。 FIG. 4 is a side view showing a second modification of the first rotation tool of the present invention. As shown in FIG. 4, in the first rotation tool FB according to the second modification, the step angle C of the pin step portion F21 is 115 °. The step bottom surface F21a is parallel to the horizontal plane. As described above, the step bottom surface F21a may be parallel to the horizontal plane, and the step angle C may be obtuse within the range in which the step bottom surface F21a functions as the pin step portion F21.

図5は、本発明の第一回転ツールの第三変形例を示す側面図である。図5に示すように、第三変形例に係る第一回転ツールFCでは、段差底面F21aがツールの回転軸から外周方向に向かって水平面に対して10°上方に傾斜している。段差側面F21bは、鉛直面と平行になっている。このように、摩擦攪拌中に塑性流動材を押さえることができる範囲で、段差底面F21aがツールの回転軸から外周方向に向かって水平面よりも上方に傾斜するように形成されていてもよい。上記の第一回転ツールの第一〜第三変形例によっても、下記の実施形態と同等の効果を奏することができる。 FIG. 5 is a side view showing a third modification of the first rotation tool of the present invention. As shown in FIG. 5, in the first rotation tool FC according to the third modification, the step bottom surface F21a is inclined 10 ° upward with respect to the horizontal plane from the rotation axis of the tool toward the outer peripheral direction. The step side surface F21b is parallel to the vertical surface. As described above, the step bottom surface F21a may be formed so as to be inclined upward from the horizontal plane from the rotation axis of the tool toward the outer peripheral direction within a range in which the plastic fluid material can be pressed during friction stir welding. The same effect as that of the following embodiment can be obtained by the first to third modifications of the first rotation tool.

第一回転ツールFは、本実施形態では、水平方向及び上下方向に移動可能な摩擦攪拌装置に取り付けられている。なお、第一回転ツールFは、先端にスピンドルユニット等の回転駆動手段を備えたロボットアームに取り付けてもよい。 In this embodiment, the first rotation tool F is attached to a friction stir device that can move in the horizontal direction and the vertical direction. The first rotation tool F may be attached to a robot arm having a rotation driving means such as a spindle unit at its tip.

[第一実施形態]
本発明の実施形態に係る複合構造体及び複合構造体の製造方法について、図面を参照して詳細に説明する。図6に示すように、本発明の実施形態に係る複合構造体の製造方法は、第一金属部材2と第二金属部材3とを摩擦攪拌で接合して複合構造体1を製造するものである。なお、以下の説明における「表面」とは、「裏面」の反対側の面という意味である。
[First Embodiment]
The composite structure and the method for manufacturing the composite structure according to the embodiment of the present invention will be described in detail with reference to the drawings. As shown in FIG. 6, the method for manufacturing a composite structure according to an embodiment of the present invention is to manufacture a composite structure 1 by joining a first metal member 2 and a second metal member 3 by friction stir welding. be. The "front surface" in the following description means the surface opposite to the "back surface".

第一金属部材2は、図6及び図7に示すように、底部10と、周壁部11と、フランジ部12とを備え箱状を呈する。第一金属部材2の板厚は概ね一定になっており、本実施形態では数ミリ程度である。底部10は平面視矩形の板状部である。周壁部11は、底部10の周縁部から立ち上がる矩形枠状の壁である。フランジ部12は、周壁部11の先端部から外側に向けて張り出している。底部10と周壁部11とで凹部13が形成されている。底部10と周壁部11とでなす角度は垂直になっている。より詳しくは、底部10の裏面10bと周壁部11の外周面11bとでなす角度も垂直になっている。 As shown in FIGS. 6 and 7, the first metal member 2 has a bottom portion 10, a peripheral wall portion 11, and a flange portion 12, and has a box shape. The plate thickness of the first metal member 2 is substantially constant, and is about several millimeters in the present embodiment. The bottom portion 10 is a plate-shaped portion having a rectangular shape in a plan view. The peripheral wall portion 11 is a rectangular frame-shaped wall that rises from the peripheral edge portion of the bottom portion 10. The flange portion 12 projects outward from the tip end portion of the peripheral wall portion 11. A recess 13 is formed in the bottom portion 10 and the peripheral wall portion 11. The angle formed by the bottom portion 10 and the peripheral wall portion 11 is vertical. More specifically, the angle formed by the back surface 10b of the bottom portion 10 and the outer peripheral surface 11b of the peripheral wall portion 11 is also vertical.

第二金属部材3は、第一金属部材2の凹部13に配置される板状部材である。第二金属部材3は、凹部13と略同等の形状を呈する。第二金属部材3の表面3aとフランジ部12の表面12aとは面一になっている。周壁部11の内周面11aと第二金属部材3の外周面3cとが突き合わされた第一突合せ部J1は、摩擦攪拌で接合され塑性化領域W2が形成されている。塑性化領域W2は、第一突合せ部J1に沿って、周方向全体に亘って形成されている。 The second metal member 3 is a plate-shaped member arranged in the recess 13 of the first metal member 2. The second metal member 3 has substantially the same shape as the recess 13. The surface 3a of the second metal member 3 and the surface 12a of the flange portion 12 are flush with each other. The first abutting portion J1 in which the inner peripheral surface 11a of the peripheral wall portion 11 and the outer peripheral surface 3c of the second metal member 3 are butted together is joined by friction stir welding to form a plasticized region W2. The plasticized region W2 is formed along the first butt portion J1 over the entire circumferential direction.

底部10の表面10aと第二金属部材3の裏面3bとが重ね合わされた重合部J2は、摩擦攪拌で接合され塑性化領域W1が形成されている。塑性化領域W1は、重合部J2の全体に亘って形成されている。なお、塑性化領域W3は、後記する摩擦成形工程で形成された塑性化領域である。 The polymerization portion J2 in which the front surface 10a of the bottom portion 10 and the back surface 3b of the second metal member 3 are overlapped is joined by friction stir welding to form a plasticized region W1. The plasticized region W1 is formed over the entire polymerization portion J2. The plasticized region W3 is a plasticized region formed in the friction forming step described later.

第一金属部材2と第二金属部材3とは同種の金属で形成されてもよいが、本実施形態では、異なる材種で形成されている。また、第一金属部材2と第二金属部材3とは同一の硬度となるようにしてもよいが、本実施形態では第一金属部材2の硬度を第二金属部材3の硬度よりも高くしている。例えば、本実施形態では第一金属部材2をAl−Mg合金(A5052等)で形成している。また、例えば、本実施形態では第二金属部材3をAl(A1050等)で形成している。なお、本明細書において硬度はブリネル硬さをいい、JIS Z 2243に準じた方法によって測定することができる。 The first metal member 2 and the second metal member 3 may be formed of the same type of metal, but in the present embodiment, they are formed of different material types. Further, the first metal member 2 and the second metal member 3 may have the same hardness, but in the present embodiment, the hardness of the first metal member 2 is made higher than the hardness of the second metal member 3. ing. For example, in this embodiment, the first metal member 2 is made of an Al—Mg alloy (A5052 or the like). Further, for example, in the present embodiment, the second metal member 3 is made of Al (A1050 or the like). In the present specification, the hardness refers to Brinell hardness, which can be measured by a method according to JIS Z 2243.

次に、本実施形態に係る複合構造体の製造方法について説明する。複合構造体の製造方法では、準備工程と、載置工程と、重合部接合工程と、第一突合せ部接合工程と、摩擦成形工程とを行う。 Next, a method for manufacturing the composite structure according to the present embodiment will be described. In the method for manufacturing a composite structure, a preparation step, a mounting step, a polymerization section joining step, a first butt joining step, and a friction molding step are performed.

準備工程は、第一金属部材2及び第二金属部材3を準備する工程である。第一金属部材2は、板状の素形材をプレス成形で形成する。第二金属部材3は、例えば、押出成形で形成する。第一金属部材2は、図8に示すように、プレス成形によって底部10と周壁部11とは概ね垂直になっているが、角部は丸く屈曲して形成されている。 The preparation step is a step of preparing the first metal member 2 and the second metal member 3. The first metal member 2 is formed by press-molding a plate-shaped base material. The second metal member 3 is formed by, for example, extrusion molding. As shown in FIG. 8, the first metal member 2 is formed by press molding so that the bottom portion 10 and the peripheral wall portion 11 are substantially perpendicular to each other, but the corner portions are rounded and bent.

載置工程は、図8に示すように、第一金属部材2に第二金属部材3を載置する工程である。載置工程では、まず、成形型30に第二金属部材3を設置する。成形型30は、底面31aと内周面31bとで構成される凹状の成形面31を有している。内周面31bは、底面31aに対して垂直になっている。つまり、成形型30の成形面31は直方体の中空部となるように形成されている。成形型30の表面には、複数のクランプ40が設けられている。クランプ40はフランジ部12を押さえて第一金属部材2を成形型30に移動不能に拘束する部材である。 As shown in FIG. 8, the mounting step is a step of mounting the second metal member 3 on the first metal member 2. In the mounting step, first, the second metal member 3 is installed in the molding die 30. The molding die 30 has a concave molding surface 31 composed of a bottom surface 31a and an inner peripheral surface 31b. The inner peripheral surface 31b is perpendicular to the bottom surface 31a. That is, the molding surface 31 of the molding die 30 is formed so as to be a hollow portion of a rectangular parallelepiped. A plurality of clamps 40 are provided on the surface of the molding die 30. The clamp 40 is a member that presses the flange portion 12 and immobilly restrains the first metal member 2 to the molding die 30.

載置工程において、第一金属部材2を成形型30に固定したら、第一金属部材2の凹部13に第二金属部材3を嵌め込んで載置する。載置工程によって、周壁部11の内周面11aと、第二金属部材3の外周面3cとが突き合わされて第一突合せ部J1が形成される。また、底部10の表面10aと第二金属部材3の裏面3bとが重ね合されて重合部J2が形成される。成形型30の角部と第二金属部材3の角部との間には空隙Pが形成されている。第二金属部材3の表面3aと、フランジ部12の表面12aとは面一になっている。なお、成形型30は、プレス成形工程及び載置工程で同じものを用いてもよい。これにより、作業手間を省くことができる。 In the mounting step, after the first metal member 2 is fixed to the molding die 30, the second metal member 3 is fitted into the recess 13 of the first metal member 2 and mounted. By the mounting step, the inner peripheral surface 11a of the peripheral wall portion 11 and the outer peripheral surface 3c of the second metal member 3 are abutted to form the first abutting portion J1. Further, the front surface 10a of the bottom portion 10 and the back surface 3b of the second metal member 3 are overlapped to form the overlapping portion J2. A gap P is formed between the corner portion of the molding die 30 and the corner portion of the second metal member 3. The surface 3a of the second metal member 3 and the surface 12a of the flange portion 12 are flush with each other. The same molding die 30 may be used in the press molding step and the mounting step. As a result, work labor can be saved.

重合部接合工程は、図9及び図10に示すように、重合部J2を摩擦攪拌接合する工程である。重合部接合工程では、図10に示すように、第二回転ツールGを使用する。第二回転ツールGは、工具鋼で形成されており、連結部G1と、攪拌ピンG2とを有する。連結部G1は、摩擦攪拌装置の回転軸に装着される部位である。攪拌ピンG2は、連結部G1から同軸で垂下しており先細りになっている。攪拌ピンG2の先端面G3は平坦であり、回転中心軸線Zに対して垂直になっている。攪拌ピンG2の外周面G4には螺旋溝が形成されている。例えば、第二回転ツールGを右回転させる場合、螺旋溝は基端側から先端側に向けて左回りに設定する。 The polymerization section joining step is a step of friction stir welding of the polymerization section J2 as shown in FIGS. 9 and 10. In the polymerization section joining step, as shown in FIG. 10, the second rotation tool G is used. The second rotating tool G is made of tool steel and has a connecting portion G1 and a stirring pin G2. The connecting portion G1 is a portion mounted on the rotating shaft of the friction stir welding device. The stirring pin G2 hangs coaxially from the connecting portion G1 and is tapered. The tip surface G3 of the stirring pin G2 is flat and perpendicular to the rotation center axis Z. A spiral groove is formed on the outer peripheral surface G4 of the stirring pin G2. For example, when the second rotation tool G is rotated clockwise, the spiral groove is set counterclockwise from the base end side to the tip end side.

なお、第二回転ツールGを左回転させる場合は、螺旋溝を基端側から先端側に向けて右回りに設定することが好ましい。これにより、攪拌ピンG2によって塑性流動材が先端側に導かれるため、被接合金属部材(第一金属部材2及び第二金属部材3)の外部に溢れ出る金属を低減することができる。 When the second rotation tool G is rotated counterclockwise, it is preferable to set the spiral groove clockwise from the base end side to the tip end side. As a result, the plastic fluid material is guided to the tip side by the stirring pin G2, so that the metal that overflows to the outside of the metal member to be joined (first metal member 2 and second metal member 3) can be reduced.

重合部接合工程では、図9に示すように、右回転する第二回転ツールGの攪拌ピンG2を表面3aに対して垂直にし、第二金属部材3の表面3aの中央部に設定した開始位置SP1に挿入する。そして、中央部から外側に向けて連続的に第二回転ツールGを相対移動させて重合部J2を摩擦攪拌接合する。第二回転ツールGの移動軌跡には塑性化領域W1が形成される。重合部接合工程では、塑性化領域W1の幅方向の端部を重複させつつ、中央部から外側に向けて螺旋状の移動軌跡となるように第二回転ツールGを相対移動させる。 In the polymerization section joining step, as shown in FIG. 9, the stirring pin G2 of the second rotating tool G that rotates clockwise is made perpendicular to the surface 3a, and the start position is set at the center of the surface 3a of the second metal member 3. Insert into SP1. Then, the second rotation tool G is continuously moved relative to the outside from the central portion to friction stir weld the polymerized portion J2. A plasticized region W1 is formed in the movement locus of the second rotation tool G. In the polymerization portion joining step, the second rotation tool G is relatively moved so as to form a spiral movement locus from the central portion to the outside while overlapping the end portions in the width direction of the plasticized region W1.

図10に示すように、重合部接合工程では、攪拌ピンG2の先端面G3が第一金属部材2の底部10にわずかに接触するように挿入深さを設定している。また、重合部接合工程では、攪拌ピンG2のみが第一金属部材2及び第二金属部材3に接触するようにしている。つまり、攪拌ピンG2の基端側は露出させた状態で摩擦攪拌を行っている。攪拌ピンG2を、第二金属部材3のみに接触させて重合部接合工程を行ってもよい。この場合は、攪拌ピンG2と第二金属部材3との摩擦熱によって塑性流動化され重合部J2が接合される。 As shown in FIG. 10, in the polymerization section joining step, the insertion depth is set so that the tip surface G3 of the stirring pin G2 slightly contacts the bottom portion 10 of the first metal member 2. Further, in the polymerization section joining step, only the stirring pin G2 is brought into contact with the first metal member 2 and the second metal member 3. That is, friction stir welding is performed with the base end side of the stirring pin G2 exposed. The stirring pin G2 may be brought into contact with only the second metal member 3 to perform the polymerization section joining step. In this case, the stirring pin G2 is plastically fluidized by the frictional heat of the second metal member 3, and the polymerization portion J2 is joined.

重合部接合工程では、図10に示すように、第二金属部材3の外周縁においては周壁部11と第二回転ツールGとが接触しないようにすることが好ましい。これにより、重合部接合工程において、第一金属部材2の金属が第二金属部材3に混入するのを防ぐことができる。第二金属部材3の角部に設定した終了位置EP1に達したら、第二金属部材3から第二回転ツールGを離脱させる。 In the polymerization section joining step, as shown in FIG. 10, it is preferable that the peripheral wall portion 11 and the second rotating tool G do not come into contact with each other on the outer peripheral edge of the second metal member 3. This makes it possible to prevent the metal of the first metal member 2 from being mixed into the second metal member 3 in the step of joining the polymerized portion. When the end position EP1 set at the corner of the second metal member 3 is reached, the second rotation tool G is separated from the second metal member 3.

なお、本実施形態では、重合部接合工程を第二回転ツールGで行ったが、第一回転ツールF、後記する第三回転ツールH又は第四回転ツールK、若しくは他の回転ツールを用いてもよい。また、重合部接合工程では、他の移動軌跡となるように回転ツールのルートを設定してもよい。 In the present embodiment, the polymerization part joining step is performed by the second rotation tool G, but the first rotation tool F, the third rotation tool H or the fourth rotation tool K described later, or another rotation tool is used. May be good. Further, in the polymerization section joining step, the route of the rotation tool may be set so as to have another movement locus.

第一突合せ部接合工程は、図11及び図12に示すように、第一突合せ部J1を摩擦攪拌接合する工程である。第一突合せ部接合工程では、第一回転ツールFを用いる。第一突合せ部接合工程では、第二金属部材3の表面3aにおいて第一突合せ部J1の近傍に設定された開始位置SP2に先端側ピンF3を表面3aに対して垂直に挿入する。そして、第一回転ツールFを第一突合せ部J1に沿って相対移動させ、第一突合せ部J1を摩擦攪拌接合する。 The first butt portion joining step is a step of friction stir welding the first butt portion J1 as shown in FIGS. 11 and 12. In the first butt joint joining step, the first rotation tool F is used. In the first butt joint joining step, the tip end side pin F3 is inserted perpendicularly to the surface 3a at the start position SP2 set in the vicinity of the first butt portion J1 on the surface 3a of the second metal member 3. Then, the first rotation tool F is relatively moved along the first butt portion J1 to perform friction stir welding of the first butt portion J1.

図12に示すように、第一突合せ部接合工程では、基端側ピンF2を第一金属部材2にわずかに接触させて摩擦攪拌接合を行う。また、第一突合せ部接合工程では、第一回転ツールFの基端側ピンF2の外周面F5を第二金属部材3の表面3a及びフランジ部12の表面12aに接触させた状態で摩擦攪拌接合を行う。第一回転ツールFの移動軌跡には塑性化領域W2が形成される。第一回転ツールFを第一突合せ部J1に沿って一周させて、塑性化領域W2をオーバーラップさせたら、終了位置EP2で第二金属部材3の表面3aから第一回転ツールFを離脱させる。なお、本実施形態では第一突合せ部接合工程を第一回転ツールFで行ったが、第二回転ツールG、後記する第三回転ツールH又は第四回転ツールK、若しくは他の回転ツールを用いてもよい。 As shown in FIG. 12, in the first butt joint joining step, the base end side pin F2 is slightly brought into contact with the first metal member 2 to perform friction stir welding. Further, in the first butt joint joining step, friction stir welding is performed in a state where the outer peripheral surface F5 of the base end side pin F2 of the first rotation tool F is in contact with the surface 3a of the second metal member 3 and the surface 12a of the flange portion 12. I do. A plasticized region W2 is formed in the movement locus of the first rotation tool F. After the first rotation tool F is made to go around along the first butt portion J1 and the plasticized region W2 is overlapped, the first rotation tool F is separated from the surface 3a of the second metal member 3 at the end position EP2. In the present embodiment, the first butt joint joining step is performed by the first rotation tool F, but the second rotation tool G, the third rotation tool H or the fourth rotation tool K described later, or another rotation tool is used. You may.

摩擦成形工程は、図13及び図14に示すように、第三回転ツールHを用いて成形型30に第一金属部材2を押し付けて第一金属部材2を賦形する工程である。第三回転ツールHは、工具鋼で形成されており、連結部H1と攪拌ピンH2とを有する。 As shown in FIGS. 13 and 14, the friction molding step is a step of pressing the first metal member 2 against the molding die 30 using the third rotation tool H to shape the first metal member 2. The third rotating tool H is made of tool steel and has a connecting portion H1 and a stirring pin H2.

連結部H1は、摩擦攪拌装置の回転軸に装着される部位である。攪拌ピンH2は、連結部H1から同軸で垂下しており円柱状を呈する。つまり、攪拌ピンH2の外径は一定になっている。攪拌ピンH2の先端面H3は平坦であり、回転中心軸線Zに対して垂直になっている。攪拌ピンH2の外周面H4には螺旋溝が形成されている。例えば、第三回転ツールHを右回転させる場合、螺旋溝は基端側から先端側に向けて左回りに設定する。 The connecting portion H1 is a portion mounted on the rotating shaft of the friction stir welding device. The stirring pin H2 hangs coaxially from the connecting portion H1 and exhibits a columnar shape. That is, the outer diameter of the stirring pin H2 is constant. The tip surface H3 of the stirring pin H2 is flat and perpendicular to the rotation center axis Z. A spiral groove is formed on the outer peripheral surface H4 of the stirring pin H2. For example, when the third rotation tool H is rotated clockwise, the spiral groove is set counterclockwise from the base end side to the tip end side.

なお、第三回転ツールHを左回転させる場合は、螺旋溝を基端側から先端側に向けて右回りに設定することが好ましい。これにより、攪拌ピンH2によって塑性流動材が先端側に導かれるため、第二金属部材3の外部に溢れ出る金属を低減することができる。 When the third rotation tool H is rotated counterclockwise, it is preferable to set the spiral groove clockwise from the base end side to the tip end side. As a result, the plastic fluid material is guided to the tip side by the stirring pin H2, so that the metal overflowing to the outside of the second metal member 3 can be reduced.

摩擦成形工程では、第二金属部材3の表面3aにおいて第一突合せ部J1の近傍に設定された開始位置SP3に攪拌ピンH2を表面3aに対して垂直に挿入する。そして、第三回転ツールHを第一突合せ部J1に沿って相対移動させる。 In the friction forming step, the stirring pin H2 is inserted perpendicularly to the surface 3a at the start position SP3 set in the vicinity of the first butt portion J1 on the surface 3a of the second metal member 3. Then, the third rotation tool H is relatively moved along the first butt portion J1.

図14に示すように、摩擦成形工程では、第三回転ツールHの攪拌ピンH2を底部10及び周壁部11からわずかに離間させた状態で摩擦攪拌を行い、攪拌ピンH2及び摩擦攪拌された塑性流動材で底部10及び周壁部11を成形面31の底面31a及び内周面31bにそれぞれ押し付けて第一金属部材2を賦形する。攪拌ピンH2の外周面H4と成形面31の内周面31bとは平行又は概ね平行になっている。また、攪拌ピンH2の先端面H3と成形面31の底面31aとは平行又は概ね平行になっている。摩擦成形工程では、隙間P(図12参照)が無くなるように、成形面31に第一金属部材2を押し付けることが好ましい。第三回転ツールHの移動軌跡には、塑性化領域W3が形成される。第三回転ツールHを第一突合せ部J1に沿って一周させて、塑性化領域W3をオーバーラップさせたら、終了位置EP3で第二金属部材3の表面3aから第三回転ツールHを離脱させる。以上の工程によって複合構造体1(図6参照)が形成される。 As shown in FIG. 14, in the friction molding step, friction stirring is performed with the stirring pin H2 of the third rotation tool H slightly separated from the bottom portion 10 and the peripheral wall portion 11, and the stirring pin H2 and the frictionally agitated plasticity are performed. The first metal member 2 is formed by pressing the bottom portion 10 and the peripheral wall portion 11 against the bottom surface 31a and the inner peripheral surface 31b of the molding surface 31 with a fluid material, respectively. The outer peripheral surface H4 of the stirring pin H2 and the inner peripheral surface 31b of the molding surface 31 are parallel or substantially parallel to each other. Further, the tip surface H3 of the stirring pin H2 and the bottom surface 31a of the molding surface 31 are parallel or substantially parallel to each other. In the friction molding step, it is preferable to press the first metal member 2 against the molding surface 31 so that the gap P (see FIG. 12) is eliminated. A plasticized region W3 is formed in the movement locus of the third rotation tool H. After the third rotation tool H is made to go around along the first butt portion J1 and the plasticized region W3 is overlapped, the third rotation tool H is separated from the surface 3a of the second metal member 3 at the end position EP3. The composite structure 1 (see FIG. 6) is formed by the above steps.

なお、本実施形態では摩擦成形工程を第三回転ツールHで行ったが、第一回転ツールF、第二回転ツールG、後記する第四回転ツールK、若しくは他の回転ツールを用いてもよい。
この際、各回転ツールの回転中心軸を適宜傾斜させて、各回転ツールの攪拌ピンと成形面の内周面とを平行にしてもよい。また、摩擦成形工程では、回転ツールの攪拌ピンと周壁部11とは離間していることが好ましいが、わずかであれば接触させてもよい。
In the present embodiment, the friction forming step is performed by the third rotation tool H, but the first rotation tool F, the second rotation tool G, the fourth rotation tool K described later, or another rotation tool may be used. ..
At this time, the rotation center axis of each rotation tool may be appropriately tilted so that the stirring pin of each rotation tool and the inner peripheral surface of the molding surface are parallel to each other. Further, in the friction forming step, it is preferable that the stirring pin of the rotary tool and the peripheral wall portion 11 are separated from each other, but if the amount is small, they may be brought into contact with each other.

本実施形態に係る複合構造体の製造方法によれば、直角となっている成形型30の成形面31(底面31a及び内周面31b)に第一金属部材2の底部10及び周壁部11をそれぞれ押し付けて賦形する摩擦成形工程を行うことで、複合構造体1を構成する第一金属部材2の底部10と周壁部11とのなす角度を容易に直角にすることができる。また、摩擦成形工程では、摩擦攪拌の摩擦熱によって第一金属部材2及び第二金属部材3が軟化するため、容易に賦形することができる。 According to the method for manufacturing a composite structure according to the present embodiment, the bottom portion 10 and the peripheral wall portion 11 of the first metal member 2 are formed on the molding surfaces 31 (bottom surface 31a and inner peripheral surface 31b) of the molding die 30 which are at right angles. By performing the friction forming step of pressing and shaping each of them, the angle formed by the bottom portion 10 and the peripheral wall portion 11 of the first metal member 2 constituting the composite structure 1 can be easily made a right angle. Further, in the friction molding step, the first metal member 2 and the second metal member 3 are softened by the frictional heat of friction stir welding, so that the shape can be easily formed.

特に、図12に示すように、プレス成形では第一金属部材2の底部10と周壁部11とで構成される角部の外側は丸く屈曲してしまう。これにより、底部10の裏面10bと周壁部11の外周面11bとの角部を直角にする(平面同士で角部を形成する)ことは困難であった。しかし、本実施形態によれば、摩擦成形工程を行うことで第一金属部材2の角部の外側を直角にする(平面同士で角部を形成する)、若しくは限りなく直角に近づけることができる。 In particular, as shown in FIG. 12, in press molding, the outside of the corner portion composed of the bottom portion 10 and the peripheral wall portion 11 of the first metal member 2 is bent round. As a result, it is difficult to make the corners of the back surface 10b of the bottom portion 10 and the outer peripheral surface 11b of the peripheral wall portion 11 at right angles (form the corner portions between the planes). However, according to the present embodiment, by performing the friction forming step, the outside of the corner portion of the first metal member 2 can be made a right angle (the corner portion is formed by the planes), or the corner portion can be made as close to a right angle as possible. ..

また、本実施形態に係る摩擦成形工程では、第三回転ツールHの攪拌ピンH2の外周面H4を成形面31の内周面31bに沿う形状(平行)にすることで、攪拌ピンH2と周壁部11とを離間させた状態で、周壁部11に攪拌ピンH2を極力近接させることができる。これにより、成形型30の成形面31の内周面31bに周壁部11を高さ方向に均一に押圧することができるため、より的確に賦形することができる。 Further, in the friction molding step according to the present embodiment, the stirring pin H2 and the peripheral wall are formed by forming the outer peripheral surface H4 of the stirring pin H2 of the third rotation tool H along the inner peripheral surface 31b of the molding surface 31 (parallel). The stirring pin H2 can be brought as close as possible to the peripheral wall portion 11 in a state where the portion 11 is separated from the portion 11. As a result, the peripheral wall portion 11 can be uniformly pressed against the inner peripheral surface 31b of the molding surface 31 of the molding die 30 in the height direction, so that the shaping can be performed more accurately.

特に、本実施形態では、攪拌ピンH2の外周面H4を成形面31の内周面31bに沿う形状にするとともに、先端面H3を成形面31の底面31aに沿う形状(平行)にしているため、攪拌ピンH2と底部10及び周壁部11とを離間させた状態で、底部10及び周壁部11に極力近接させることができる。これにより、さらにより的確に賦形することができる。 In particular, in the present embodiment, the outer peripheral surface H4 of the stirring pin H2 has a shape along the inner peripheral surface 31b of the molding surface 31, and the tip surface H3 has a shape (parallel) along the bottom surface 31a of the molding surface 31. With the stirring pin H2 separated from the bottom portion 10 and the peripheral wall portion 11, the stirring pin H2 can be brought as close as possible to the bottom portion 10 and the peripheral wall portion 11. As a result, it is possible to shape the shape even more accurately.

また、本実施形態では、準備工程では、第一金属部材2の硬度を、第二金属部材3の硬度よりも高く設定し、第一突合せ部接合工程では、第二金属部材3の表面3aから回転する第一回転ツールFを挿入し、第一回転ツールFの攪拌ピン(基端側ピンF2)を第一金属部材2にわずかに接触させた状態で摩擦攪拌を行う。これにより、主として第二金属部材3と第一回転ツールFとの摩擦攪拌によって第一突合せ部J1を接合することができる。よって、硬度の大きい第一金属部材2の金属が、第二金属部材3に混入し難くなるため、材種の異なる金属同士の摩擦攪拌に起因する接合不良を防ぐことができる。また、第一回転ツールFの攪拌ピンと第一金属部材2とをわずかに接触させることで接合部の接合強度を高めることができる。また、第一金属部材2の硬度を高くすることで、複合構造体1の強度を高めることができる。 Further, in the present embodiment, the hardness of the first metal member 2 is set higher than the hardness of the second metal member 3 in the preparatory step, and from the surface 3a of the second metal member 3 in the first butt stir welding step. The rotating first rotation tool F is inserted, and friction stirring is performed in a state where the stirring pin (base end side pin F2) of the first rotation tool F is slightly in contact with the first metal member 2. As a result, the first butt portion J1 can be joined mainly by friction stir welding between the second metal member 3 and the first rotating tool F. Therefore, since the metal of the first metal member 2 having a high hardness is less likely to be mixed into the second metal member 3, it is possible to prevent poor joining due to frictional agitation between metals of different grades. Further, the joint strength of the joint portion can be increased by slightly contacting the stirring pin of the first rotation tool F with the first metal member 2. Further, by increasing the hardness of the first metal member 2, the strength of the composite structure 1 can be increased.

また、本実施形態に係る第一突合せ部接合工程では、第一回転ツールFを用い、基端側ピンF2の外周面F5を第二金属部材3の表面3a及びフランジ部12の表面12aに接触させた状態で摩擦攪拌接合を行うため、バリの発生を抑制することができる。また、第一回転ツールFによれば、基端側ピンF2の階段状のピン段差部F21は浅く、かつ、出口が広いため、塑性流動材を段差底面F21aで押えつつ塑性流動材がピン段差部F21の外部に抜けやすくなっている。そのため、基端側ピンF2で塑性流動材を押えても基端側ピンF2の外周面F5に塑性流動材が付着し難い。よって、接合表面粗さを小さくすることができるとともに、接合品質を好適に安定させることができる。 Further, in the first butt portion joining step according to the present embodiment, the first rotation tool F is used to bring the outer peripheral surface F5 of the base end side pin F2 into contact with the surface 3a of the second metal member 3 and the surface 12a of the flange portion 12. Since friction stir welding is performed in this state, the generation of burrs can be suppressed. Further, according to the first rotation tool F, the stepped pin step portion F21 of the base end side pin F2 is shallow and the outlet is wide, so that the plastic fluid material is pressed by the step bottom surface F21a and the plastic fluid material is pin stepped. It is easy to pull out to the outside of the part F21. Therefore, even if the plastic fluid material is pressed by the base end side pin F2, the plastic fluid material is unlikely to adhere to the outer peripheral surface F5 of the base end side pin F2. Therefore, the roughness of the joint surface can be reduced, and the joint quality can be suitably stabilized.

また、重合部接合工程を行うことにより、重合部J2を接合することができるため複合構造体1の強度を高めることができる。また、第一突合せ部接合工程の前に重合部接合工程を行うことにより、第一突合せ部接合工程において、第一金属部材2と第二金属部材3の位置ずれを防ぐことができる。 Further, by performing the polymerization section joining step, the polymerization section J2 can be joined, so that the strength of the composite structure 1 can be increased. Further, by performing the polymerization part joining step before the first butt part joining step, it is possible to prevent the position shift between the first metal member 2 and the second metal member 3 in the first butt part joining step.

また、本実施形態に係る重合部接合工程では、第二金属部材3の中央部から外側に向けて平面視で螺旋状の連続的な軌跡を描くように相対移動させて重合部J2の全体を摩擦攪拌するため、重合部J2の全体を容易に接合することができる。また、重合部接合工程では第二回転ツールGをどのように移動させてもよいが、中央部から外側に第二回転ツールGを螺旋状に移動させることで、第一金属部材2及び第二金属部材3にシワが発生するのを防ぐことができる。 Further, in the polymerization section joining step according to the present embodiment, the entire polymerization section J2 is moved relative to the outside from the central portion of the second metal member 3 so as to draw a continuous spiral locus in a plan view. Since friction stir welding is performed, the entire polymerization section J2 can be easily joined. Further, in the polymerization section joining step, the second rotation tool G may be moved in any way, but by moving the second rotation tool G spirally from the central portion to the outside, the first metal member 2 and the second rotation tool G are moved. It is possible to prevent wrinkles from being generated on the metal member 3.

また、重合部接合工程では、攪拌ピンG2のみを第一金属部材2、又は、第一金属部材2及び第二金属部材3に接触させた状態で摩擦攪拌接合を行うため摩擦攪拌装置に作用する荷重を低減することができる。 Further, in the bonding part joining step, the friction stir welding is performed in a state where only the stirring pin G2 is in contact with the first metal member 2, or the first metal member 2 and the second metal member 3, so that the friction stir welding device is acted on. The load can be reduced.

以上本発明の実施形態について説明したが、適宜設計変更が可能である。例えば、本実施形態では、第一突合せ部接合工程と摩擦成形工程とを別の回転ツールを用いて別々に行ったが、同一の回転ツールを用いて同時に行ってもよい。これにより、接合サイクルを早めることができる。また、回転ツールを交換する手間を省くことができる。また、重合部接合工程及び第一突合せ部接合工程は、一の回転ツールを用いて連続して行ってもよい。これにより、回転ツールを交換する手間が省けるため、接合サイクルを早めることができる。 Although the embodiment of the present invention has been described above, the design can be changed as appropriate. For example, in the present embodiment, the first butt joint joining step and the friction forming step are performed separately by using different rotation tools, but they may be performed simultaneously by using the same rotation tool. As a result, the joining cycle can be accelerated. Moreover, the trouble of exchanging the rotation tool can be saved. Further, the polymerization part joining step and the first butt part joining step may be continuously performed by using one rotation tool. This saves the trouble of exchanging the rotation tool, so that the joining cycle can be accelerated.

[第二実施形態]
次に、本発明の第二実施形態に係る複合構造体の製造方法について説明する。本実施形態に係る複合構造体の製造方法では、図15に示すように、第一金属部材2Aの周壁部11が成形段階で外側に傾倒している点で第一実施形態と相違する。本実施形態では、相違する部分を重点的に説明する。
[Second Embodiment]
Next, a method for producing the composite structure according to the second embodiment of the present invention will be described. As shown in FIG. 15, the method for manufacturing a composite structure according to the present embodiment is different from the first embodiment in that the peripheral wall portion 11 of the first metal member 2A is tilted outward at the molding stage. In this embodiment, the differences will be mainly described.

本実施形態に係る複合構造体の製造方法では、準備工程と、載置工程と、重合部接合工程と、第一突合せ部接合工程と、摩擦成形工程とを行う。 In the method for manufacturing a composite structure according to the present embodiment, a preparatory step, a mounting step, a overlapping section joining step, a first butt joining step, and a friction molding step are performed.

準備工程では、第一金属部材2A及び第二金属部材3Aを準備する工程である。第一金属部材2Aは、板状の素形材をプレス成形で形成する。第二金属部材3Aは、例えば、押出成形で形成する。図15に示すように、第一金属部材2Aは、底部10に対して周壁部11がスプリングバック等によって外側に傾倒している。また、底部10の裏面10bと周壁部11の外周面11bとで構成される角部は丸く屈曲している。 The preparatory step is a step of preparing the first metal member 2A and the second metal member 3A. The first metal member 2A forms a plate-shaped base material by press molding. The second metal member 3A is formed by, for example, extrusion molding. As shown in FIG. 15, in the first metal member 2A, the peripheral wall portion 11 of the first metal member 2A is tilted outward by a springback or the like with respect to the bottom portion 10. Further, the corner portion composed of the back surface 10b of the bottom portion 10 and the outer peripheral surface 11b of the peripheral wall portion 11 is curved in a round shape.

載置工程では、第一金属部材2Aを成形型30に固定しつつ、第一金属部材2Aの凹部13に第二金属部材3Aを載置する。第二金属部材3Aは、直方体を呈する。第二金属部材3Aの板厚寸法は、周壁部11の高さ寸法よりも大きくなっている。つまり、第一金属部材2Aの凹部13に第二金属部材3Aを載置すると、第二金属部材3Aの表面3aは、フランジ部12の表面12aよりも高い位置となる。 In the mounting step, the second metal member 3A is mounted in the recess 13 of the first metal member 2A while fixing the first metal member 2A to the molding die 30. The second metal member 3A exhibits a rectangular parallelepiped. The plate thickness dimension of the second metal member 3A is larger than the height dimension of the peripheral wall portion 11. That is, when the second metal member 3A is placed in the recess 13 of the first metal member 2A, the surface 3a of the second metal member 3A is located higher than the surface 12a of the flange portion 12.

図15に示すように、載置工程によって第一突合せ部J1及び重合部J2が形成される。第一突合せ部J1は、本実施形態のように第二金属部材3Aの外周面3cと周壁部11の内周面11aとの間に断面V字状の隙間がある場合も含み得る。また、成形面31の角部と第一金属部材2Aの角部との間には隙間Qが形成されている。 As shown in FIG. 15, the first butt portion J1 and the polymerization portion J2 are formed by the mounting step. The first butt portion J1 may include a case where there is a gap having a V-shaped cross section between the outer peripheral surface 3c of the second metal member 3A and the inner peripheral surface 11a of the peripheral wall portion 11 as in the present embodiment. Further, a gap Q is formed between the corner portion of the molding surface 31 and the corner portion of the first metal member 2A.

重合部接合工程では、図16及び図17に示すように、第一実施形態と同じ要領で重合部J2を摩擦攪拌接合する。図17に示すように、重合部接合工程では、第二金属部材3Aの外周縁においては塑性流動材が第二金属部材3Aの外側に流出しないように摩擦攪拌接合を行う。 In the polymerization section joining step, as shown in FIGS. 16 and 17, the polymerization section J2 is friction-stir welded in the same manner as in the first embodiment. As shown in FIG. 17, in the polymerization section joining step, friction stir welding is performed on the outer peripheral edge of the second metal member 3A so that the plastic fluid material does not flow out to the outside of the second metal member 3A.

第一突合せ部接合工程では、図18及び図19に示すように、第一実施形態と同じ要領で第一突合せ部J1を摩擦攪拌接合する。図19に示すように、第一突合せ部接合工程では、第一回転ツールFを用い、攪拌ピン(基端側ピンF2及び先端側ピンF3)を第一金属部材2にわずかに接触させつつ、基端側ピンF2の外周面F5を第二金属部材3Aの表面3a及びフランジ部12の表面12aに接触させた状態で第一突合せ部J1に沿って相対移動させる。第一突合せ部接合工程では、第一突合せ部J1に形成された隙間に塑性流動材を流入させながら摩擦攪拌接合を行う。 In the first butt portion joining step, as shown in FIGS. 18 and 19, the first butt portion J1 is friction-stir welded in the same manner as in the first embodiment. As shown in FIG. 19, in the first butt joint joining step, the first rotation tool F is used, and the stirring pin (base end side pin F2 and tip end side pin F3) is slightly brought into contact with the first metal member 2 while being slightly contacted. The outer peripheral surface F5 of the base end side pin F2 is relatively moved along the first butt portion J1 in a state of being in contact with the surface 3a of the second metal member 3A and the surface 12a of the flange portion 12. In the first butt portion joining step, friction stir welding is performed while the plastic fluid material is allowed to flow into the gap formed in the first butt portion J1.

摩擦成形工程では、図20及び図21に示すように、第一実施形態と同じ要領で第三回転ツールHを用いて成形型30に第一金属部材2Aを押し付けて第一金属部材2Aを賦形する。図21に示すように、摩擦成形工程では、第三回転ツールHを底部10及び周壁部11からわずかに離間させた状態で摩擦攪拌を行い、攪拌ピンH2及び摩擦攪拌された塑性流動材で底部10及び周壁部11を成形面31の底面31a及び内周面31bにそれぞれ押し付けて第一金属部材2を賦形する。つまり、攪拌ピンH2の外周面H4と周壁部11の内周面11aとは平行又は概ね平行になっている。また、攪拌ピンH2の先端面H3と底部10の表面10aとは平行又は概ね平行になっている。摩擦成形工程では、隙間Q(図19参照)が無くなるように、成形面31に第一金属部材2Aを押し付けることが好ましい。第三回転ツールHの移動軌跡には、塑性化領域W3が形成される。第三回転ツールHを第一突合せ部J1に沿って一周させて、塑性化領域W3をオーバーラップさせたら、終了位置EP3で第二金属部材3Aの表面3aから第三回転ツールHを離脱させる。以上の工程によって複合構造体が形成される。 In the friction forming step, as shown in FIGS. 20 and 21, the first metal member 2A is pressed against the forming die 30 by using the third rotation tool H in the same manner as in the first embodiment to apply the first metal member 2A. Shape. As shown in FIG. 21, in the friction forming step, friction stirring is performed with the third rotation tool H slightly separated from the bottom portion 10 and the peripheral wall portion 11, and the bottom portion is formed by the stirring pin H2 and the frictionally agitated plastic fluid material. The first metal member 2 is formed by pressing the 10 and the peripheral wall portion 11 against the bottom surface 31a and the inner peripheral surface 31b of the molding surface 31, respectively. That is, the outer peripheral surface H4 of the stirring pin H2 and the inner peripheral surface 11a of the peripheral wall portion 11 are parallel or substantially parallel. Further, the tip surface H3 of the stirring pin H2 and the surface 10a of the bottom 10 are parallel or substantially parallel. In the friction forming step, it is preferable to press the first metal member 2A against the forming surface 31 so that the gap Q (see FIG. 19) is eliminated. A plasticized region W3 is formed in the movement locus of the third rotation tool H. After the third rotation tool H is made to go around along the first butt portion J1 and the plasticized region W3 is overlapped, the third rotation tool H is separated from the surface 3a of the second metal member 3A at the end position EP3. The composite structure is formed by the above steps.

以上説明した本実施形態に係る複合構造体の製造方法によっても、第一実施形態と略同等の効果を得ることができる。図19に示すように、第一金属部材2Aをプレス成形した後、第一金属部材2Aにスプリングバックが発生するため、載置工程を行うと成形型30と第一金属部材2Aとの間に隙間Qが形成されてしまう場合がある。このような場合であっても、摩擦成形工程を行うことで、第三回転ツールHで第一金属部材2Aを賦形することができるため、複合構造体を構成する第一金属部材2Aの底部10と周壁部11とのなす角度を容易に直角にすることができる。特に、本実施形態に係る摩擦成形工程を行うことで第一金属部材2Aの角部の外側を直角にする(平面同士で角部を形成する)、若しくは限りなく直角に近づけることができる。 The method for producing the composite structure according to the present embodiment described above can also obtain substantially the same effect as that of the first embodiment. As shown in FIG. 19, after the first metal member 2A is press-molded, springback occurs in the first metal member 2A. Therefore, when the mounting process is performed, the first metal member 2A is between the molding die 30 and the first metal member 2A. A gap Q may be formed. Even in such a case, the first metal member 2A can be shaped by the third rotation tool H by performing the friction forming step, so that the bottom portion of the first metal member 2A constituting the composite structure can be formed. The angle formed by the peripheral wall portion 11 and the peripheral wall portion 11 can be easily made a right angle. In particular, by performing the friction forming step according to the present embodiment, the outside of the corner portion of the first metal member 2A can be made a right angle (the corner portion is formed by the planes), or the corner portion can be made as close to a right angle as possible.

また、本実施形態のように、第二金属部材3Aの形状は第一金属部材2Aの凹部13と必ずしも同一である必要はない。つまり、第一突合せ部J1に隙間があってもよい。これにより、第二金属部材3Aを簡易に成形することができる。また、第二金属部材3Aの高さ寸法を、周壁部11の高さ寸法よりも大きくすることで接合部の金属不足を防ぐことができる。 Further, as in the present embodiment, the shape of the second metal member 3A does not necessarily have to be the same as the recess 13 of the first metal member 2A. That is, there may be a gap in the first butt portion J1. As a result, the second metal member 3A can be easily molded. Further, by making the height dimension of the second metal member 3A larger than the height dimension of the peripheral wall portion 11, it is possible to prevent the metal shortage of the joint portion.

[変形例1]
次に、本発明の変形例1について説明する。変形例1では、成形型30及び成形型35を使い分ける点で前記した実施形態と相違する。
[Modification 1]
Next, a modification 1 of the present invention will be described. Modification 1 is different from the above-described embodiment in that the molding die 30 and the molding die 35 are used properly.

成形型35は、図22に示すように、逆推台形状の中空部を有する成形面36が形成されている。成形面36は、底面36aと、底面36aから外側に斜めに立ち上がる内周面36bとで構成されている。底面36aと内周面36bとでなす角度は鈍角になっている。 As shown in FIG. 22, the molding die 35 is formed with a molding surface 36 having a hollow portion having an inverted trapezoidal shape. The molding surface 36 is composed of a bottom surface 36a and an inner peripheral surface 36b that obliquely rises outward from the bottom surface 36a. The angle formed by the bottom surface 36a and the inner peripheral surface 36b is an obtuse angle.

第一金属部材2Aを成形型35に固定すると、底部10の裏面10bと、成形面36の底面36aとが面接触する。また、周壁部11の外周面11bと成形面36の内周面36bとが面接触する。また、成形面36の角部と第一金属部材2Aの角部との間には隙間Qが形成されている。 When the first metal member 2A is fixed to the molding die 35, the back surface 10b of the bottom portion 10 and the bottom surface 36a of the molding surface 36 come into surface contact with each other. Further, the outer peripheral surface 11b of the peripheral wall portion 11 and the inner peripheral surface 36b of the molding surface 36 come into surface contact with each other. Further, a gap Q is formed between the corner portion of the molding surface 36 and the corner portion of the first metal member 2A.

重合部接合工程では、図23に示すように、第二実施形態と同じ要領で重合部J2を摩擦攪拌接合する。 In the polymerization section joining step, as shown in FIG. 23, the polymerization section J2 is friction-stir welded in the same manner as in the second embodiment.

第一突合せ部接合工程では、図24に示すように、第四回転ツールKを用いて第一実施形態と概ね同じ要領で第一突合せ部J1に対して摩擦攪拌接合を行う。第四回転ツールKは、工具鋼からなり、円柱状のショルダ部K1と、ショルダ部K1の底面から垂下する攪拌ピンK2とで構成されている。攪拌ピンK2の外周面K3には螺旋溝が形成されている。例えば、第四回転ツールKを右回転させる場合、螺旋溝は基端側から先端側に向けて左回りに設定する。 In the first butt portion joining step, as shown in FIG. 24, friction stir welding is performed on the first butt portion J1 using the fourth rotation tool K in substantially the same manner as in the first embodiment. The fourth rotating tool K is made of tool steel and is composed of a columnar shoulder portion K1 and a stirring pin K2 hanging from the bottom surface of the shoulder portion K1. A spiral groove is formed on the outer peripheral surface K3 of the stirring pin K2. For example, when the fourth rotation tool K is rotated clockwise, the spiral groove is set counterclockwise from the base end side to the tip end side.

なお、第四回転ツールKを左回転させる場合は、螺旋溝を基端側から先端側に向けて右回りに設定することが好ましい。これにより、攪拌ピンK2によって塑性流動材が先端側に導かれるため、被接合金属部材(第一金属部材2A及び第二金属部材3A)の外部に溢れ出る金属を低減することができる。 When the fourth rotation tool K is rotated counterclockwise, it is preferable to set the spiral groove clockwise from the base end side to the tip end side. As a result, the plastic fluid material is guided to the tip side by the stirring pin K2, so that the metal that overflows to the outside of the metal member to be joined (first metal member 2A and second metal member 3A) can be reduced.

第一突合せ部接合工程では、ショルダ部K1の底面を第二金属部材3Aの表面3aに接触させた状態で第一突合せ部J1に沿って第四回転ツールKを相対移動させる。また、第一突合せ部接合工程では、第一突合せ部J1の隙間に塑性流動材を流入させつつ摩擦攪拌接合を行う。第一突合せ部接合工程を終えたら、成形型35から第一金属部材2Aを取り外し、第一金属部材2Aを成形型30に固定する。 In the first butt portion joining step, the fourth rotation tool K is relatively moved along the first butt portion J1 in a state where the bottom surface of the shoulder portion K1 is in contact with the surface 3a of the second metal member 3A. Further, in the first butt portion joining step, friction stir welding is performed while the plastic fluid material is allowed to flow into the gap of the first butt portion J1. After completing the first butt joint joining step, the first metal member 2A is removed from the molding die 35, and the first metal member 2A is fixed to the molding die 30.

摩擦成形工程では、具体的な図示は省略するが、図21を参照するように、第二実施形態と同じ要領で摩擦成形を行う。つまり、当該摩擦成形工程では、外側に傾倒している第一金属部材2Aの周壁部11を成形面31に押し付けて第一金属部材2Aを賦形する。これにより、第一金属部材2Aの底部10と周壁部11とのなす角度を垂直にすることができる。 In the friction molding step, although specific illustration is omitted, as shown in FIG. 21, friction molding is performed in the same manner as in the second embodiment. That is, in the friction forming step, the peripheral wall portion 11 of the first metal member 2A tilted outward is pressed against the forming surface 31 to shape the first metal member 2A. As a result, the angle formed by the bottom portion 10 of the first metal member 2A and the peripheral wall portion 11 can be made vertical.

以上説明した変形例1に係る複合構造体の製造方法によっても、第一実施形態と略同等の効果を得ることができる。また、成形型30,35を工程毎に使い分けて使用してもよい。また、変形例1では、図22に示すように、成形型35の成形面36の内周面36bが傾斜しているため、周壁部11が外側に傾倒した第一金属部材2Aを安定して固定することができる。また、図24に示すように、第一突合せ部接合工程において、周壁部11の外周面11bを成形面36の内周面36bに面接触させることができるため、安定して摩擦攪拌接合を行うことができる。 The method for producing the composite structure according to the first modification described above can also obtain substantially the same effect as that of the first embodiment. Further, the molding dies 30 and 35 may be used properly for each process. Further, in the first modification, as shown in FIG. 22, since the inner peripheral surface 36b of the molding surface 36 of the molding mold 35 is inclined, the first metal member 2A in which the peripheral wall portion 11 is inclined outward is stably stabilized. Can be fixed. Further, as shown in FIG. 24, in the first butt joint joining step, the outer peripheral surface 11b of the peripheral wall portion 11 can be brought into surface contact with the inner peripheral surface 36b of the molding surface 36, so that friction stir welding is stably performed. be able to.

[変形例2]
次に、本発明の変形例2について説明する。変形例2では、成形型37を用いて第一金属部材2の底部10と周壁部11とで構成される角部を鋭角(アンダーカット)にする点で他の実施形態及び変形例と相違する。変形例2では、他の実施形態及び変形例1と相違する部分を中心に説明する。
[Modification 2]
Next, a modification 2 of the present invention will be described. The modified example 2 is different from other embodiments and modified examples in that the corner portion formed by the bottom portion 10 and the peripheral wall portion 11 of the first metal member 2 is made an acute angle (undercut) by using the molding die 37. .. In the second modification, the parts different from the other embodiments and the first modification will be mainly described.

変形例に係る複合構造体の製造方法では、第一実施形態と同じ要領で準備工程、載置工程、第一突合せ部接合工程を行う。図25に示すように、変形例2の摩擦成形工程では、成形型37を用いる。成形型37は、推台形状の中空部を有する成形面38が形成されている。成形面38は、底面38aと、底面38aから内側に斜めに立ち上がる内周面38bとで構成されている。底面38aと内周面38bとでなす角度は鋭角になっている。 In the method for manufacturing the composite structure according to the modified example, the preparation step, the mounting step, and the first butt joint joining step are performed in the same manner as in the first embodiment. As shown in FIG. 25, the molding die 37 is used in the friction molding step of the modification 2. The molding die 37 is formed with a molding surface 38 having a trapezoidal hollow portion. The molding surface 38 is composed of a bottom surface 38a and an inner peripheral surface 38b that obliquely rises inward from the bottom surface 38a. The angle formed by the bottom surface 38a and the inner peripheral surface 38b is an acute angle.

摩擦成形工程では、第二金属部材3の表面3aにおいて第一突合せ部J1の近傍に回転する第三回転ツールHを挿入し、第一突合せ部J1に沿って相対移動させる。摩擦成形工程では、第三回転ツールHの攪拌ピンH2を底部10及び周壁部11からわずかに離間させた状態で摩擦攪拌を行い、攪拌ピンH2及び摩擦攪拌された塑性流動材で底部10及び周壁部11を成形面38の底面38a及び内周面38bにそれぞれ押し付けて第一金属部材2を賦形する。攪拌ピンH2の外周面H4と周壁部11の内周面11aとは平行又は概ね平行になっている。また、攪拌ピンH2の先端面H3と底部10の表面10aとは平行又は概ね平行になっている。図25及び図26に示すように、摩擦成形工程では、隙間Qが無くなるように、成形面38に第一金属部材2を押し付けて賦形することが好ましい。 In the friction forming step, the third rotating tool H, which rotates in the vicinity of the first butt portion J1 on the surface 3a of the second metal member 3, is inserted and relatively moved along the first butt portion J1. In the friction forming step, friction stirring is performed with the stirring pin H2 of the third rotation tool H slightly separated from the bottom portion 10 and the peripheral wall portion 11, and the bottom portion 10 and the peripheral wall are used with the stirring pin H2 and the frictionally agitated plastic fluid material. The first metal member 2 is shaped by pressing the portion 11 against the bottom surface 38a and the inner peripheral surface 38b of the molding surface 38, respectively. The outer peripheral surface H4 of the stirring pin H2 and the inner peripheral surface 11a of the peripheral wall portion 11 are parallel or substantially parallel to each other. Further, the tip surface H3 of the stirring pin H2 and the surface 10a of the bottom 10 are parallel or substantially parallel. As shown in FIGS. 25 and 26, in the friction molding step, it is preferable to press the first metal member 2 against the molding surface 38 so as to eliminate the gap Q.

以上説明したように変形例2に係る複合構造体の製造方法によっても、第一実施形態と略同等の効果を得ることができる。ここで、第一金属部材2の底部10と周壁部11とでなす角度を鋭角にすることは困難である。第一金属部材2をプレス成形する場合、型抜きの関係上、第一金属部材2の底部10と周壁部11とを鋭角にすることができない。 As described above, the effect of substantially the same as that of the first embodiment can be obtained by the method for producing the composite structure according to the modified example 2. Here, it is difficult to make the angle formed by the bottom portion 10 of the first metal member 2 and the peripheral wall portion 11 an acute angle. When the first metal member 2 is press-molded, the bottom portion 10 and the peripheral wall portion 11 of the first metal member 2 cannot have an acute angle due to die cutting.

しかし、本実施形態によれば、鋭角となっている成形面38の内周面38bに第一金属部材2の周壁部11を押し付けて賦形する摩擦成形工程を行うことで、複合構造体を構成する第一金属部材2の底部10と周壁部11とのなす角度を容易に鋭角にすることができる。つまり、アンダーカットを備えた複合構造体を形成することができる。また、摩擦攪拌の摩擦熱によって第一金属部材2及び第二金属部材3が軟化するため、容易に賦形することができる。 However, according to the present embodiment, the composite structure is formed by performing a friction molding step of pressing the peripheral wall portion 11 of the first metal member 2 against the inner peripheral surface 38b of the molded surface 38 having an acute angle to shape the composite structure. The angle formed by the bottom portion 10 of the first metal member 2 and the peripheral wall portion 11 can be easily made an acute angle. That is, it is possible to form a composite structure having an undercut. Further, since the first metal member 2 and the second metal member 3 are softened by the frictional heat of friction stir welding, the shape can be easily formed.

[第三実施形態]
次に、本発明の第三実施形態について説明する。図27に示すように、第三実施形態に係る複合構造体1Bは、底部10と周壁部11とのなす角度が鈍角になっている点で、第一実施形態と相違する。第三実施形態では、第一実施形態と相違する部分を中心に説明する。
[Third Embodiment]
Next, a third embodiment of the present invention will be described. As shown in FIG. 27, the composite structure 1B according to the third embodiment is different from the first embodiment in that the angle formed by the bottom portion 10 and the peripheral wall portion 11 is an obtuse angle. In the third embodiment, the parts different from the first embodiment will be mainly described.

第三実施形態に係る複合構造体1Bは、第一金属部材2Bと第二金属部材3Bとで構成されている。第一金属部材2Bは、底部10と、底部10の周縁部から外側に斜めに立ち上がる周壁部11と、周壁部11の端部から外側に張り出すフランジ部12とを備えている。底部10と周壁部11とのなす角度は鈍角になっている。より詳しくは、底部10の裏面10bと周壁部11の外周面11bとのなす角度も鈍角になっている。 The composite structure 1B according to the third embodiment is composed of a first metal member 2B and a second metal member 3B. The first metal member 2B includes a bottom portion 10, a peripheral wall portion 11 that obliquely rises outward from the peripheral edge portion of the bottom portion 10, and a flange portion 12 that projects outward from the end portion of the peripheral wall portion 11. The angle formed by the bottom portion 10 and the peripheral wall portion 11 is an obtuse angle. More specifically, the angle formed by the back surface 10b of the bottom portion 10 and the outer peripheral surface 11b of the peripheral wall portion 11 is also an obtuse angle.

第二金属部材3Bは、第一金属部材2Bの凹部13に配置される板状部材である。第二金属部材3Bは凹部13と略同等の形状を呈する。第二金属部材3Bの表面3aと、フランジ部12の表面12aとは面一になっている。 The second metal member 3B is a plate-shaped member arranged in the recess 13 of the first metal member 2B. The second metal member 3B has substantially the same shape as the recess 13. The surface 3a of the second metal member 3B and the surface 12a of the flange portion 12 are flush with each other.

周壁部11の内周面11aと第二金属部材3の外周面3cとが突き合わされた第一突合せ部J1は、摩擦攪拌で接合され塑性化領域W2が形成されている。塑性化領域W2は、第一突合せ部J1に沿って、周方向全体に亘って形成されている。 The first abutting portion J1 in which the inner peripheral surface 11a of the peripheral wall portion 11 and the outer peripheral surface 3c of the second metal member 3 are butted together is joined by friction stir welding to form a plasticized region W2. The plasticized region W2 is formed along the first butt portion J1 over the entire circumferential direction.

底部10の表面10aと第二金属部材3の裏面3bとが突き合わされた重合部J2は、摩擦攪拌で接合され塑性化領域W1が形成されている。塑性化領域W1は、重合部J2の全体に亘って形成されている。なお、塑性化領域W3は、後記する摩擦成形工程で形成された塑性化領域である。 The polymerization portion J2 in which the front surface 10a of the bottom portion 10 and the back surface 3b of the second metal member 3 are butted together is joined by friction stir welding to form a plasticized region W1. The plasticized region W1 is formed over the entire polymerization portion J2. The plasticized region W3 is a plasticized region formed in the friction forming step described later.

第一金属部材2Bと第二金属部材3Bとは同種の金属で形成してもよいが、本実施形態では、異なる材種で形成されている。また、第一金属部材2Bと第二金属部材3Bとは同一の硬度となるようにしてもよいが、本実施形態では第一金属部材2Bの硬度を第二金属部材3Bの硬度よりも高くしている。例えば、本実施形態では第一金属部材2BをAl−Mg合金(A5052等)で形成している。また、例えば、本実施形態では第二金属部材3BをAl(A1050等)で形成している。 The first metal member 2B and the second metal member 3B may be formed of the same type of metal, but in the present embodiment, they are formed of different material types. Further, the first metal member 2B and the second metal member 3B may have the same hardness, but in the present embodiment, the hardness of the first metal member 2B is made higher than the hardness of the second metal member 3B. ing. For example, in this embodiment, the first metal member 2B is made of an Al—Mg alloy (A5052 or the like). Further, for example, in the present embodiment, the second metal member 3B is formed of Al (A1050 or the like).

次に、本実施形態に係る複合構造体の製造方法について説明する。複合構造体の製造方法では、準備工程と、載置工程と、重合部接合工程と、第一突合せ部接合工程と、摩擦成形工程とを行う。 Next, a method for manufacturing the composite structure according to the present embodiment will be described. In the method for manufacturing a composite structure, a preparation step, a mounting step, a polymerization section joining step, a first butt joining step, and a friction molding step are performed.

準備工程は、第一金属部材2B及び第二金属部材3Bを準備する工程である。第一金属部材2Bは、板状の素形材をプレス成形で形成する。第二金属部材3Bは、例えば、押出成形で形成する。図28に示すように、第一金属部材2Bは、プレス成形によって底部10と周壁部11とのなす角度は鈍角になっているが、角部は丸く湾曲して形成されている。 The preparation step is a step of preparing the first metal member 2B and the second metal member 3B. The first metal member 2B forms a plate-shaped base material by press molding. The second metal member 3B is formed by, for example, extrusion molding. As shown in FIG. 28, in the first metal member 2B, the angle formed by the bottom portion 10 and the peripheral wall portion 11 is obtuse by press molding, but the corner portion is formed to be round and curved.

載置工程は、図28に示すように、第一金属部材2Bに第二金属部材3Bを載置する工程である。載置工程では、まず、成形型35に第二金属部材3Bを設置する。成形型35は、変形例1で用いたものと同じである。 As shown in FIG. 28, the mounting step is a step of mounting the second metal member 3B on the first metal member 2B. In the mounting step, first, the second metal member 3B is installed on the molding die 35. The mold 35 is the same as that used in the first modification.

載置工程では、第一金属部材2Bを成形型35に固定したら、第一金属部材2Bの凹部13に第二金属部材3Bを嵌め込んで載置する。載置工程によって、周壁部11の内周面11aと、第二金属部材3Bの外周面3cとが突き合わされて第一突合せ部J1が形成される。また、底部10の表面10aと第二金属部材3の裏面3bとが重ね合されて重合部J2が形成される。成形型35の角部と第二金属部材3Bの角部との間には隙間Pが形成されている。第二金属部材3Bの表面3aと、フランジ部12の表面12aとは面一になっている。なお、成形型35は、プレス成形工程及び載置工程で同じものを用いてもよい。これにより、作業手間を省くことができる。 In the mounting step, after the first metal member 2B is fixed to the molding die 35, the second metal member 3B is fitted into the recess 13 of the first metal member 2B and mounted. By the mounting step, the inner peripheral surface 11a of the peripheral wall portion 11 and the outer peripheral surface 3c of the second metal member 3B are abutted to form the first abutting portion J1. Further, the front surface 10a of the bottom portion 10 and the back surface 3b of the second metal member 3 are overlapped to form the overlapping portion J2. A gap P is formed between the corner portion of the molding die 35 and the corner portion of the second metal member 3B. The surface 3a of the second metal member 3B and the surface 12a of the flange portion 12 are flush with each other. The same molding die 35 may be used in the press molding step and the mounting step. As a result, work labor can be saved.

重合部接合工程では、図29に示すように、第一実施形態と同じ要領で重合部J2を摩擦攪拌接合する。重合部接合工程では、第二金属部材3Bの外周縁においては第二回転ツールGと周壁部11とが接触しないように摩擦攪拌接合を行う。 In the polymerization section joining step, as shown in FIG. 29, the polymerization section J2 is friction-stir welded in the same manner as in the first embodiment. In the polymerization section joining step, friction stir welding is performed so that the second rotating tool G and the peripheral wall portion 11 do not come into contact with each other on the outer peripheral edge of the second metal member 3B.

第一突合せ部接合工程では、図30に示すように、第一実施形態と同じ要領で第一突合せ部J1を摩擦攪拌接合する。第一突合せ部接合工程では、第一回転ツールFを用い、攪拌ピン(基端側ピンF2及び先端側ピンF3)を第一金属部材2Bにわずかに接触させつつ、基端側ピンF2の外周面F5を第二金属部材3Bの表面3a及びフランジ部12の表面12aに接触させた状態で第一突合せ部J1に沿って相対移動させる。 In the first butt portion joining step, as shown in FIG. 30, the first butt portion J1 is friction-stir welded in the same manner as in the first embodiment. In the first butt joint joining step, the outer circumference of the base end side pin F2 is used while the stirring pin (base end side pin F2 and tip end side pin F3) is slightly brought into contact with the first metal member 2B by using the first rotation tool F. The surface F5 is relatively moved along the first butt portion J1 in a state where the surface F5 is in contact with the surface 3a of the second metal member 3B and the surface 12a of the flange portion 12.

摩擦成形工程では、図31に示すように、第一実施形態と同じ要領で第二回転ツールGを用いて成形型35に第一金属部材2Bを押し付けて第一金属部材2Bを賦形する。摩擦成形工程では、第二回転ツールGを用いる。第二回転ツールGの攪拌ピンG2の外周面G4の傾斜角度は、成形面36の内周面36bの傾斜角度と同じになっている。 In the friction molding step, as shown in FIG. 31, the first metal member 2B is pressed against the molding die 35 by using the second rotation tool G in the same manner as in the first embodiment to shape the first metal member 2B. In the friction forming step, the second rotation tool G is used. The inclination angle of the outer peripheral surface G4 of the stirring pin G2 of the second rotation tool G is the same as the inclination angle of the inner peripheral surface 36b of the molding surface 36.

摩擦成形工程では、第二回転ツールGを底部10及び周壁部11からわずかに離間させた状態で摩擦攪拌を行い、攪拌ピンG2及び摩擦攪拌された塑性流動材で底部10及び周壁部11を成形面36の底面36a及び内周面36bにそれぞれ押し付けて第一金属部材2Bを賦形する。攪拌ピンG2の外周面G4と周壁部11の内周面11aとは平行又は概ね平行になっている。また、攪拌ピンG2の先端面G3と底部10の表面10aとは平行又は概ね平行になっている。摩擦成形工程では、隙間P(図30参照)が無くなるように、成形面36に第一金属部材2Bを押し付けることが好ましい。第二回転ツールGの移動軌跡には、塑性化領域W3が形成される。第二回転ツールGを第一突合せ部J1に沿って一周させて、塑性化領域W3をオーバーラップさせたら、終了位置EP3で第二金属部材3Bの表面3aから第二回転ツールGを離脱させる。以上の工程によって複合構造体1B(図27参照)が形成される。 In the friction forming step, friction stirring is performed with the second rotating tool G slightly separated from the bottom portion 10 and the peripheral wall portion 11, and the bottom portion 10 and the peripheral wall portion 11 are formed by the stirring pin G2 and the frictionally agitated plastic fluid material. The first metal member 2B is formed by pressing against the bottom surface 36a and the inner peripheral surface 36b of the surface 36, respectively. The outer peripheral surface G4 of the stirring pin G2 and the inner peripheral surface 11a of the peripheral wall portion 11 are parallel or substantially parallel to each other. Further, the front end surface G3 of the stirring pin G2 and the surface 10a of the bottom portion 10 are parallel or substantially parallel to each other. In the friction molding step, it is preferable to press the first metal member 2B against the molding surface 36 so that the gap P (see FIG. 30) is eliminated. A plasticized region W3 is formed in the movement locus of the second rotation tool G. After the second rotation tool G is made to go around along the first butt portion J1 and the plasticized region W3 is overlapped, the second rotation tool G is separated from the surface 3a of the second metal member 3B at the end position EP3. The composite structure 1B (see FIG. 27) is formed by the above steps.

以上説明した本実施形態に係る複合構造体の製造方法によっても、第一実施形態と略同等の効果を得ることができる。ここで、第一金属部材2Bの底部10と周壁部11とのなす角度を鈍角にして複合構造体を形成したい場合がある。しかし、プレス成形によって第一金属部材2Bを形成してもスプリングバック等が発生するため、所望の角度よりも周壁部11が外側に倒れてしまうおそれがある。 The method for producing the composite structure according to the present embodiment described above can also obtain substantially the same effect as that of the first embodiment. Here, there is a case where it is desired to form a composite structure by making the angle formed by the bottom portion 10 of the first metal member 2B and the peripheral wall portion 11 obtuse. However, even if the first metal member 2B is formed by press molding, springback or the like occurs, so that the peripheral wall portion 11 may fall outward from a desired angle.

しかし、本実施形態によれば、摩擦成形工程を行うことで、第二回転ツールGで第一金属部材2Bを賦形することができるため、複合構造体1Bを構成する第一金属部材2Bの底部10と周壁部11とのなす角度を容易に鈍角(所望の角度)にすることができる。特に、本実施形態に係る摩擦成形工程を行うことで第一金属部材2Bの角部の外側を構成する裏面10bと外周面11bとを所望の鈍角にする(平面同士で鈍角の角部を形成する)ことができる。 However, according to the present embodiment, since the first metal member 2B can be shaped by the second rotation tool G by performing the friction forming step, the first metal member 2B constituting the composite structure 1B can be formed. The angle formed by the bottom portion 10 and the peripheral wall portion 11 can be easily set to an obtuse angle (desired angle). In particular, by performing the friction molding step according to the present embodiment, the back surface 10b and the outer peripheral surface 11b forming the outer side of the corner portion of the first metal member 2B are made into a desired obtuse angle (the corner portions of the obtuse angle are formed between the planes). can do.

また、摩擦成形工程では、攪拌ピンG2の外周面G4と成形型35の内周面36bとを平行にすることで、より的確に賦形することができる。 Further, in the friction molding step, by making the outer peripheral surface G4 of the stirring pin G2 parallel to the inner peripheral surface 36b of the molding die 35, more accurate shaping can be performed.

[第四実施形態]
次に、本発明の第四実施形態に係る複合構造体の製造方法について説明する。本実施形態に係る複合構造体は底部10と周壁部11とのなす角度が鈍角である点で第三実施形態と同一である。一方、載置工程を行った際に周壁部11と第二金属部材3Cとの間に隙間が形成される点で第三実施形態と相違する。本実施形態では、第三実施形態と相違する部分を中心に説明する。
[Fourth Embodiment]
Next, a method for producing the composite structure according to the fourth embodiment of the present invention will be described. The composite structure according to the present embodiment is the same as the third embodiment in that the angle formed by the bottom portion 10 and the peripheral wall portion 11 is an obtuse angle. On the other hand, it differs from the third embodiment in that a gap is formed between the peripheral wall portion 11 and the second metal member 3C when the mounting step is performed. In this embodiment, the parts different from the third embodiment will be mainly described.

複合構造体の製造方法では、準備工程と、載置工程と、重合部接合工程と、第一突合せ部接合工程と、摩擦成形工程とを行う。準備工程では、第一金属部材2C及び第二金属部材3Cを準備する。第二金属部材3Cは、板状を呈する。第二金属部材3Cの板厚寸法は、周壁部11の高さ寸法よりも大きくなっている。 In the method for manufacturing a composite structure, a preparation step, a mounting step, a polymerization section joining step, a first butt joining step, and a friction molding step are performed. In the preparation step, the first metal member 2C and the second metal member 3C are prepared. The second metal member 3C has a plate shape. The plate thickness dimension of the second metal member 3C is larger than the height dimension of the peripheral wall portion 11.

載置工程では、図32に示すように、第一金属部材2Cに第二金属部材3Cを載置する。第一金属部材2Cの周壁部11の内周面11aと第二金属部材3Cの外周面3cとが突き合わされて第一突合せ部J1が形成される。第一突合せ部J1には断面V字状の隙間が形成される。また、成形型35の角部と第一金属部材2Cの角部との間には隙間Pが形成される。 In the mounting step, as shown in FIG. 32, the second metal member 3C is mounted on the first metal member 2C. The inner peripheral surface 11a of the peripheral wall portion 11 of the first metal member 2C and the outer peripheral surface 3c of the second metal member 3C are abutted to form the first abutting portion J1. A gap having a V-shaped cross section is formed in the first butt portion J1. Further, a gap P is formed between the corner portion of the molding die 35 and the corner portion of the first metal member 2C.

重合部接合工程では、図33に示すように、第一実施形態と同じ要領で重合部J2を摩擦攪拌接合する。重合部接合工程では、第二金属部材3Cの外周縁においては塑性流動材が第二金属部材3Cの外側に流出しないように摩擦攪拌接合を行う。 In the polymerization section joining step, as shown in FIG. 33, the polymerization section J2 is friction-stir welded in the same manner as in the first embodiment. In the polymerization part joining step, friction stir welding is performed on the outer peripheral edge of the second metal member 3C so that the plastic fluid does not flow out to the outside of the second metal member 3C.

第一突合せ部接合工程では、図34に示すように、第一実施形態と同じ要領で第一突合せ部J1を摩擦攪拌接合する。第一突合せ部接合工程では、第一回転ツールFを用い、攪拌ピン(基端側ピンF2及び先端側ピンF3)を第一金属部材2Bにわずかに接触させつつ、基端側ピンF2の外周面F5を第二金属部材3Cの表面3a及びフランジ部12の表面12aに接触させた状態で第一突合せ部J1に沿って相対移動させる。 In the first butt portion joining step, as shown in FIG. 34, the first butt portion J1 is friction-stir welded in the same manner as in the first embodiment. In the first butt joint joining step, the outer circumference of the base end side pin F2 is used while the stirring pin (base end side pin F2 and tip end side pin F3) is slightly brought into contact with the first metal member 2B by using the first rotation tool F. The surface F5 is relatively moved along the first butt portion J1 in a state where the surface F5 is in contact with the surface 3a of the second metal member 3C and the surface 12a of the flange portion 12.

摩擦成形工程では、図35に示すように、第三実施形態と同じ要領で第二回転ツールGを用いて成形型35に第一金属部材2Cを押し付けて第一金属部材2Cを賦形する。摩擦成形工程では、第二回転ツールGを用いる。第二回転ツールGの攪拌ピンG2の外周面G4の傾斜角度は、成形面36の内周面36bの傾斜角度と同じになっている。 In the friction forming step, as shown in FIG. 35, the first metal member 2C is pressed against the forming die 35 by using the second rotation tool G in the same manner as in the third embodiment to shape the first metal member 2C. In the friction forming step, the second rotation tool G is used. The inclination angle of the outer peripheral surface G4 of the stirring pin G2 of the second rotation tool G is the same as the inclination angle of the inner peripheral surface 36b of the molding surface 36.

以上説明した本実施形態に係る複合構造体の製造方法によっても、第三実施形態と略同等の効果を得ることができる。また、図32に示すように、載置工程の段階で第一突合せ部J1に隙間があったとしても、第一突合せ部接合工程において、当該隙間に塑性流動材を流入させながら第一突合せ部J1を摩擦攪拌接合することができる。また、第二金属部材3Cの板厚寸法を周壁部11の高さ寸法よりも大きくしているため、接合部が金属不足になるのを防ぐことができる。 The method for producing the composite structure according to the present embodiment described above can also obtain substantially the same effect as that of the third embodiment. Further, as shown in FIG. 32, even if there is a gap in the first butt portion J1 at the stage of the mounting process, in the first butt portion joining step, the first butt portion is made to flow the plastic fluid material into the gap. J1 can be friction stir welded. Further, since the plate thickness dimension of the second metal member 3C is larger than the height dimension of the peripheral wall portion 11, it is possible to prevent the joint portion from becoming short of metal.

以上本発明の実施形態及び変形例について説明したが、本発明の趣旨に反しない範囲で適宜設計変更が可能である。例えば、重合部接合工程は省略してもよい。また、摩擦成形工程では、回転ツールの攪拌ピンの外周面及び先端面が、成形型の底面及び内周面とそれぞれ平行又は概ね平行になるようにしたが、回転ツールの外周面と成形型の内周面とのみを平行又は概ね平行となるようにしてもよい。 Although the embodiments and modifications of the present invention have been described above, the design can be appropriately changed within a range not contrary to the gist of the present invention. For example, the step of joining the polymerized portion may be omitted. Further, in the friction molding step, the outer peripheral surface and the tip surface of the stirring pin of the rotary tool are made parallel to or substantially parallel to the bottom surface and the inner peripheral surface of the molding die, respectively. Only the inner peripheral surface may be parallel or substantially parallel.

1 複合構造体
2 第一金属部材
3 第二金属部材
F 回転ツール(第一回転ツール)
F1 基軸部
F2 基端側ピン
F3 先端側ピン
F4 先端面
F5 外周面
G 回転ツール(第二回転ツール)
G2 攪拌ピン
G3 先端面
G4 外周面
H 回転ツール(第三回転ツール)
H2 攪拌ピン
H3 先端面
H4 外周面
K 回転ツール(第四回転ツール)
K1 ショルダ部
K2 攪拌ピン
K3 先端面
J1 第一突合せ部
J2 重合部
1 Composite structure 2 First metal member 3 Second metal member F Rotation tool (first rotation tool)
F1 Base shaft F2 Base end side pin F3 Tip side pin F4 Tip surface F5 Peripheral surface G Rotation tool (second rotation tool)
G2 Stirring pin G3 Tip surface G4 Peripheral surface H Rotation tool (3rd rotation tool)
H2 Stirring pin H3 Tip surface H4 Peripheral surface K Rotation tool (4th rotation tool)
K1 Shoulder part K2 Stirring pin K3 Tip surface J1 First butt part J2 Polymerization part

Claims (10)

摩擦攪拌を行って複合構造体を製造する複合構造体の製造方法であって、
底部と前記底部の周縁部から立ち上がる枠状の周壁部とで構成される凹部を有し、前記周壁部の端部から外側に張り出すフランジ部を備える第一金属部材と、前記第一金属部材の前記凹部に配置される第二金属部材と、を準備する準備工程と、
前記第一金属部材の凹部に前記第二金属部材を載置して前記第一金属部材の周壁部の内周面と、前記第二金属部材の外周面とを突き合わせて第一突合せ部を形成する載置工程と、
回転する回転ツールを用いて前記第一突合せ部を摩擦攪拌接合する第一突合せ部接合工程と、
前記第二金属部材の表面から回転する回転ツールを挿入しつつ前記第一突合せ部に沿って当該回転ツールを相対移動させ、前記第一金属部材の裏側に配置された成形型の成形面に前記第一金属部材の周壁部を押し付けて賦形する摩擦成形工程と、を含み、
前記摩擦成形工程では、前記成形型の成形面の底面と内周面とのなす角度を直角又は鋭角に形成することを特徴とする複合構造体の製造方法。
A method for manufacturing a composite structure in which a composite structure is manufactured by friction stir welding.
A first metal member having a recess formed by a bottom portion and a frame-shaped peripheral wall portion rising from the peripheral edge portion of the bottom portion, and having a flange portion protruding outward from the end portion of the peripheral wall portion, and the first metal member. A preparatory step for preparing the second metal member arranged in the recess of
The second metal member is placed in the recess of the first metal member, and the inner peripheral surface of the peripheral wall portion of the first metal member and the outer peripheral surface of the second metal member are abutted to form the first butt portion. Placement process and
The first butt joint joining step of friction stir welding the first butt portion using a rotating rotary tool,
While inserting the rotating tool that rotates from the surface of the second metal member, the rotating tool is relatively moved along the first butt portion, and the rotating tool is moved to the molding surface of the molding die arranged on the back side of the first metal member. Including a friction molding step of pressing the peripheral wall portion of the first metal member to shape it,
In the friction molding step, a method for producing a composite structure, characterized in that the angle formed by the bottom surface and the inner peripheral surface of the molding surface of the molding mold is formed at a right angle or an acute angle.
前記摩擦成形工程では、回転ツールの攪拌ピンの外周面を前記成形面の前記内周面と平行にすることを特徴とする請求項1に記載の複合構造体の製造方法。 The method for manufacturing a composite structure according to claim 1, wherein in the friction molding step, the outer peripheral surface of the stirring pin of the rotary tool is made parallel to the inner peripheral surface of the molding surface. 前記準備工程では、前記第一金属部材の硬度を、前記第二金属部材の硬度よりも高く設定し、
前記第一突合せ部接合工程では、前記第二金属部材の表面から回転する回転ツールを挿入し、当該回転ツールの攪拌ピンを前記第一金属部材にわずかに接触させた状態で摩擦攪拌を行うことを特徴とする請求項1又は請求項2に記載の複合構造体の製造方法。
In the preparatory step, the hardness of the first metal member is set higher than the hardness of the second metal member.
In the first butt joint joining step, a rotating tool that rotates from the surface of the second metal member is inserted, and friction stir welding is performed with the stirring pin of the rotating tool slightly in contact with the first metal member. The method for producing a composite structure according to claim 1 or 2, wherein the composite structure is characterized.
前記載置工程では、前記第一金属部材の底部の表面と、前記第二金属部材の裏面とを重ね合わせて重合部を形成し、
前記第一突合せ部接合工程を行う前に、前記第二金属部材の表面から回転する回転ツールを挿入し、当該回転ツールの攪拌ピンのみを前記第二金属部材のみ、又は前記第一金属部材及び前記第二金属部材に接触させた状態で摩擦攪拌によって前記重合部を接合する重合部接合工程を含むことを特徴とする請求項1乃至請求項3のいずれか一項に記載の複合構造体の製造方法。
In the above-described step, the front surface of the bottom portion of the first metal member and the back surface of the second metal member are overlapped to form a superposition portion.
Before performing the first butt joint joining step, a rotating tool that rotates from the surface of the second metal member is inserted, and only the stirring pin of the rotating tool is used only for the second metal member, or the first metal member and the first metal member. The composite structure according to any one of claims 1 to 3, further comprising a polymerized part joining step of joining the polymerized parts by friction stir welding in contact with the second metal member. Production method.
前記重合部接合工程では、前記第二金属部材の表面の中央部に回転ツールを挿入し、前記中央部から外側に向けて平面視で螺旋状の連続的な軌跡を描くように相対移動させて前記重合部の全体を摩擦攪拌することを特徴とする請求項4に記載の複合構造体の製造方法。 In the polymerization section joining step, a rotation tool is inserted into the central portion of the surface of the second metal member, and the rotary tool is relatively moved from the central portion to the outside so as to draw a continuous spiral locus in a plan view. The method for producing a composite structure according to claim 4, wherein the entire polymerized portion is agitated by friction. 前記重合部接合工程及び前記第一突合せ部接合工程は、一の回転ツールを用いて連続して行うことを特徴とする請求項4又は請求項5に記載の複合構造体の製造方法。 The method for producing a composite structure according to claim 4 or 5, wherein the polymerization section joining step and the first butt joining step are continuously performed using one rotating tool. 前記第一突合せ部接合工程では、基端側ピンと、先端側ピンとを備え、前記基端側ピンのテーパー角度を前記先端側ピンのテーパー角度よりも大きく設定するとともに、前記基端側ピンの外周面に階段状の段差部を形成した回転ツールを使用し、前記基端側ピンの外周面を前記第二金属部材の表面に接触させた状態で摩擦攪拌を行うことを特徴とする請求項1乃至請求項5のいずれか一項に記載の複合構造体の製造方法。 In the first butt joint joining step, the proximal end side pin and the distal end side pin are provided, the taper angle of the proximal end side pin is set to be larger than the taper angle of the distal end side pin, and the outer circumference of the proximal end side pin is set. 1. The method for producing a composite structure according to any one of claims 5. 前記第一突合せ部接合工程では、ショルダ部と前記ショルダ部の底面から垂下する攪拌ピンとを備えた回転ツールを使用し、前記ショルダ部の底面を前記第二金属部材の表面に接触させた状態で摩擦攪拌を行うことを特徴とする請求項1乃至請求項5のいずれか一項に記載の複合構造体の製造方法。 In the first butt joint joining step, a rotating tool provided with a shoulder portion and a stirring pin hanging from the bottom surface of the shoulder portion is used, and the bottom surface of the shoulder portion is in contact with the surface of the second metal member. The method for producing a composite structure according to any one of claims 1 to 5, wherein friction stir welding is performed. 前記載置工程では、前記第一金属部材に前記第二金属部材を載置した際に、前記第二金属部材の表面が、前記第一金属部材の前記フランジ部の表面と同一か、若しくは前記フランジ部の表面よりも高い位置となるように前記第二金属部材の厚みを設定することを特徴とする請求項1乃至請求項8のいずれか一項に記載の複合構造体の製造方法。 In the above-described step, when the second metal member is placed on the first metal member, the surface of the second metal member is the same as the surface of the flange portion of the first metal member, or the surface of the flange portion is the same. The method for manufacturing a composite structure according to any one of claims 1 to 8, wherein the thickness of the second metal member is set so as to be higher than the surface of the flange portion. 前記第一突合せ部接合工程及び前記摩擦成形工程は、一の回転ツールで同時に行うことを特徴とする請求項1に記載の複合構造体の製造方法。
The method for manufacturing a composite structure according to claim 1, wherein the first butt joint joining step and the friction molding step are simultaneously performed by one rotating tool.
JP2020030244A 2020-02-26 2020-02-26 Composite structure manufacturing method Active JP7322748B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020030244A JP7322748B2 (en) 2020-02-26 2020-02-26 Composite structure manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020030244A JP7322748B2 (en) 2020-02-26 2020-02-26 Composite structure manufacturing method

Publications (2)

Publication Number Publication Date
JP2021133386A true JP2021133386A (en) 2021-09-13
JP7322748B2 JP7322748B2 (en) 2023-08-08

Family

ID=77659645

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020030244A Active JP7322748B2 (en) 2020-02-26 2020-02-26 Composite structure manufacturing method

Country Status (1)

Country Link
JP (1) JP7322748B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4413677B2 (en) 2004-04-02 2010-02-10 住友軽金属工業株式会社 Point joining method for dissimilar metal parts
JP2008188654A (en) 2007-02-06 2008-08-21 Musashi Seimitsu Ind Co Ltd Metal joining member and its joining method
JP4962423B2 (en) 2008-06-16 2012-06-27 日本軽金属株式会社 Manufacturing method of heat transfer plate
JP5234777B2 (en) 2008-12-15 2013-07-10 カルソニックカンセイ株式会社 Friction stir welding method

Also Published As

Publication number Publication date
JP7322748B2 (en) 2023-08-08

Similar Documents

Publication Publication Date Title
WO2019193779A1 (en) Method for manufacturing liquid-cooled jacket
JP7003589B2 (en) Joining method
WO2018193639A1 (en) Method for manufacturing liquid-cooled jacket
WO2019193778A1 (en) Method for manufacturing liquid-cooled jacket
WO2019150620A1 (en) Method for manufacturing liquid cooling jacket
WO2020044663A1 (en) Method for manufacturing heat transfer plate
JP2019037987A (en) Manufacturing method of liquid-cooled jacket
WO2019064849A1 (en) Method for producing liquid-cooled jacket
JP2002257490A (en) Heat plate and manufacturing method thereof
WO2020158081A1 (en) Joining method
WO2015060007A1 (en) Method for manufacturing heat transfer plate and joining method
JP7140036B2 (en) Joining method
WO2021100222A1 (en) Method for manufacturing liquid cooling jacket
JP2021133386A (en) Method for manufacturing composite structure
JP2021133387A (en) Method for manufacturing composite structure
JP5177059B2 (en) Manufacturing method of heat transfer plate
WO2021144997A1 (en) Method for manufacturing liquid-cooled jacket
JP2012232342A (en) Joining method
JP2020097046A (en) Joining method
JP7272153B2 (en) Joining method and manufacturing method of composite rolled material
JP7127425B2 (en) Joining method and liquid cooling jacket manufacturing method
JP2020171958A (en) Method for manufacturing liquid-cooling jacket
JP2021133408A (en) Liquid-cooled jacket manufacturing method
JP6662094B2 (en) Joining method
JP2021186870A (en) Liquid-cooled jacket manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220929

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230622

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230627

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230710

R150 Certificate of patent or registration of utility model

Ref document number: 7322748

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150