WO2021100222A1 - Method for manufacturing liquid cooling jacket - Google Patents

Method for manufacturing liquid cooling jacket Download PDF

Info

Publication number
WO2021100222A1
WO2021100222A1 PCT/JP2020/013824 JP2020013824W WO2021100222A1 WO 2021100222 A1 WO2021100222 A1 WO 2021100222A1 JP 2020013824 W JP2020013824 W JP 2020013824W WO 2021100222 A1 WO2021100222 A1 WO 2021100222A1
Authority
WO
WIPO (PCT)
Prior art keywords
jacket
side pin
end side
sealing body
sealing
Prior art date
Application number
PCT/JP2020/013824
Other languages
French (fr)
Japanese (ja)
Inventor
堀 久司
伸城 瀬尾
宏介 山中
Original Assignee
日本軽金属株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本軽金属株式会社 filed Critical 日本軽金属株式会社
Priority to CN202080080506.1A priority Critical patent/CN114728368A/en
Publication of WO2021100222A1 publication Critical patent/WO2021100222A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/12Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding

Definitions

  • the present invention relates to a method for manufacturing a liquid-cooled jacket.
  • Patent Document 1 discloses a method for manufacturing a liquid-cooled jacket in which a jacket body and a sealing body that seals an opening of the jacket body are joined by friction stir welding.
  • a rotating tool is inserted vertically from the side surface of the jacket body and the sealing body, and friction stir welding is performed by rotating the jacket body around the jacket body.
  • a rotation tool in order to rotate the rotation tool around the jacket body with the rotation tool and the side surface of the jacket body perpendicular to each other, a rotation tool is provided, for example, a rotation driving means such as a spindle unit at the tip. It is necessary to change / adjust the angle and insertion position of the rotation center axis of the rotation tool by attaching it to the arm robot. For this reason, there is a problem that ancillary equipment such as a device for driving the rotary tool is costly, and as a result, the manufacturing cost is high.
  • the present invention comprises a jacket body having a bottom, a peripheral wall portion rising from the peripheral edge of the bottom, and a support column rising from the bottom, and a sealing body for sealing the opening of the jacket body.
  • the rotary tool used in frictional stirring includes a proximal end side pin and a distal end side pin, and the proximal end side is provided.
  • the taper angle of the pin is larger than the taper angle of the tip end side pin, a stepped step portion is formed on the outer peripheral surface of the base end side pin, and the sealing body is attached to the jacket body.
  • the end surface of the peripheral wall portion and the back surface of the sealing body are overlapped to form the first butt portion, and the end surface of the support column and the back surface of the sealing body are overlapped to form the second butt matching portion.
  • the mounting step of forming the portion, the tip-side pin of the rotating tool is inserted from the surface of the sealant, and the tip-side pin is inserted into the sealant, or the peripheral wall portion and the sealant.
  • the peripheral surface of the base end side pin is made to go around the peripheral wall portion at a predetermined depth along the first abutting portion.
  • the bottom portion of the jacket body and the surface of the sealing body are held by a pair of holding portions from both outer sides. It is characterized in that the jacket body and the sealing body are rotated or moved in parallel using the holding portion while being pressed and held by the above, and the jacket body and the sealing body are frictionally agitated.
  • the present invention includes a jacket body having a bottom portion, a peripheral wall portion rising from the peripheral edge of the bottom portion, and a support column rising from the bottom portion, and a hole into which the tip of the support column is inserted, and seals the opening of the jacket body.
  • a method for manufacturing a liquid-cooled jacket which is composed of a sealing body and joins the jacket body and the sealing body by frictional stirring.
  • the rotary tool used for frictional stirring includes a base end side pin and a tip end side pin.
  • the taper angle of the base end side pin is larger than the taper angle of the tip end side pin, and a stepped step portion is formed on the outer peripheral surface of the base end side pin.
  • a strut step portion having a step bottom surface and a step side surface rising from the step bottom surface is formed at the tip of the strut, and the step bottom surface of the strut is formed at the same height position as the end surface of the peripheral wall portion.
  • the end surface of the peripheral wall portion and the back surface of the sealing body are overlapped to form the first butt portion.
  • the step side surface of the support column and the hole wall of the hole portion are abutted to form a step side surface butt portion, and the step bottom surface of the support column and the back surface of the sealing body are overlapped to form the step bottom surface butt portion.
  • the tip side pin of the rotating tool is inserted into the surface of the sealing body, and the tip side pin is brought into contact with the sealing body, or the peripheral wall portion and the sealing body.
  • the peripheral surface is relatively made to go around the peripheral wall portion at a predetermined depth along the first abutting portion.
  • the first joining step which includes a first joining step of rubbing and stirring the first butt portion
  • the bottom portion of the jacket body and the surface of the sealing body are pressed from both outer sides by a pair of holding portions.
  • the jacket body and the sealing body are rotated or moved in parallel using the holding portion to frictionally stir the jacket body and the sealing body.
  • the jacket body and the sealing body are rotated or translated while the bottom of the jacket body and the surface of the sealing body are held by the pair of holding portions, so that the jacket body and the sealing body are held during the first joining step.
  • the part and the rotation tool do not interfere. That is, the jig for positioning the jacket body and the sealing body does not hinder the movement of the rotating tool.
  • the liquid-cooled jacket can be manufactured at low cost without costing ancillary equipment such as a device for driving the rotary tool.
  • the plastic fluid material can be pressed on the outer peripheral surface of the base end side pin, the occurrence of burrs can be suppressed.
  • the tip side pin of the rotating tool is inserted from the surface of the seal body, and the tip end side pin is brought into contact with only the seal body or the seal body and the support column on the base end side. It is preferable to further include a second joining step in which the rotating tool is relatively moved while the outer peripheral surface of the pin is in contact with the surface of the sealing body to frictionally stir the second butt portion. Further, the tip end side pin of the rotating tool is inserted from the surface of the sealing body, and the outer peripheral surface of the base end side pin is at least sealed while the tip end side pin is in contact with the sealing body and the support column. It is preferable to further include a second joining step of relatively moving the rotating tool in contact with the surface of the stop body to frictionally stir the step side surface abutting portion.
  • the joint strength can be increased.
  • the rotation tool is rotated at a predetermined rotation speed to perform friction stir welding, and when the tip end side pin is separated in the first main joining step, the rotation speed is higher than the predetermined rotation speed. It is preferable to move it to the end position while gradually increasing the rotation speed.
  • the rotation tool is rotated at a predetermined rotation speed to perform frictional stirring, and when the tip end side pin is inserted in the first main joining step, the rotation speed is higher than the predetermined rotation speed. It is preferable that the tip end side pin is inserted in a rotated state at a high speed and then moved to the first butt portion while gradually reducing the rotation speed. According to such a manufacturing method, friction stir welding can be preferably performed.
  • the liquid-cooled jacket can be manufactured at low cost.
  • the rotary tool F is made of, for example, tool steel, and is mainly composed of a base shaft portion F1, a base end side pin F2, and a tip end side pin F3.
  • the base shaft portion F1 has a columnar shape and is a portion connected to the main shaft of the friction stir welder.
  • the base end side pin F2 is continuous with the base shaft portion F1 and is tapered toward the tip end.
  • the proximal end side pin F2 has a truncated cone shape.
  • the taper angle A of the base end side pin F2 may be appropriately set, but is, for example, 135 to 160 °. If the taper angle A is less than 135 ° or exceeds 160 °, the joint surface roughness after friction stir welding becomes large. The taper angle A is larger than the taper angle B of the tip side pin F3, which will be described later.
  • a stepped pin step portion F21 is formed on the outer peripheral surface of the base end side pin F2 over the entire height direction.
  • the pin step portion F21 is formed in a clockwise or counterclockwise spiral shape. That is, the pin step portion F21 has a spiral shape when viewed in a plane and a step shape when viewed from a side surface.
  • the pin step portion F21 in order to rotate the rotation tool F clockwise, is set counterclockwise from the base end side to the tip end side. When rotating the rotation tool F counterclockwise, it is preferable to set the pin step portion F21 clockwise from the base end side to the tip end side.
  • the pin step portion F21 is composed of a step bottom surface F21a and a step side surface F21b.
  • the distance X1 (horizontal distance) between the vertices F21c and F21c of the adjacent pin step portions F21 is appropriately set according to the step angle C and the height Y1 of the step side surface F21b described later.
  • the height Y1 of the step side surface F21b may be appropriately set, but is set to, for example, 0.1 to 0.4 mm. If the height Y1 is less than 0.1 mm, the joint surface roughness becomes large. On the other hand, when the height Y1 exceeds 0.4 mm, the joint surface roughness tends to increase, and the number of effective step portions (the number of pin step portions F21 in contact with the metal member to be joined) also decreases.
  • the step angle C formed by the step bottom surface F21a and the step side surface F21b may be appropriately set, but is set to, for example, 85 to 120 °.
  • the step bottom surface F21a is parallel to the horizontal plane in this embodiment.
  • the step bottom surface F21a may be inclined in the range of -5 ° to 15 ° with respect to the horizontal plane from the rotation center axis of the tool toward the outer peripheral direction (minus is downward with respect to the horizontal plane, plus is with respect to the horizontal plane).
  • the distance X1, the height Y1 of the step side surface F21b, the step angle C, and the angle of the step bottom surface F21a with respect to the horizontal plane are such that the plastic fluid does not stay inside the pin step portion F21 and adhere to the outside during friction stir welding.
  • the surface roughness of the joint is appropriately set so that the plastic fluid material can be pressed by the step bottom surface F21a to reduce the roughness of the joint surface.
  • the distal end side pin F3 is continuously formed on the proximal end side pin F2.
  • the tip side pin F3 has a truncated cone shape.
  • the tip of the tip side pin F3 is a flat surface F4 perpendicular to the rotation center axis.
  • the taper angle B of the tip end side pin F3 is smaller than the taper angle A of the base end side pin F2.
  • a spiral groove F31 is engraved on the outer peripheral surface of the tip end side pin F3.
  • the spiral groove F31 may be clockwise or counterclockwise, but in the first embodiment, the spiral groove F31 is carved counterclockwise from the base end side to the tip end side in order to rotate the rotation tool F clockwise.
  • the spiral groove F31 is composed of a spiral bottom surface F31a and a spiral side surface F31b.
  • the distance (horizontal distance) between the vertices F31c and F31c of the adjacent spiral grooves F31 is defined as the length X2.
  • the height of the spiral side surface F31b is defined as the height Y2.
  • the spiral angle D composed of the spiral bottom surface F31a and the spiral side surface F31b is formed at, for example, 45 to 90 °.
  • the spiral groove F31 has a role of increasing frictional heat by coming into contact with the metal member to be joined and guiding the plastic fluid material to the tip side.
  • FIG. 3 is a side view showing a first modification of the rotation tool of the present invention.
  • the step angle C formed by the step bottom surface F21a of the pin step portion F21 and the step side surface F21b is 85 °.
  • the step bottom surface F21a is parallel to the horizontal plane.
  • the step bottom surface F21a is parallel to the horizontal plane, and the step angle C may be an acute angle within a range in which the plastic fluid material stays in the pin step portion F21 during friction stir welding and escapes to the outside without adhering. ..
  • FIG. 4 is a side view showing a second modification of the rotation tool of the present invention.
  • the step angle C of the pin step portion F21 is 115 °.
  • the step bottom surface F21a is parallel to the horizontal plane.
  • the step bottom surface F21a may be parallel to the horizontal plane, and the step angle C may be obtuse within the range in which the step bottom surface F21a functions as the pin step portion F21.
  • FIG. 5 is a side view showing a third modification of the rotation tool of the present invention.
  • the step bottom surface F21a is inclined 10 ° upward with respect to the horizontal plane from the rotation center axis of the tool toward the outer peripheral direction.
  • the step side surface F21b is parallel to the vertical surface.
  • the step bottom surface F21a may be formed so as to be inclined upward from the horizontal plane from the rotation center axis of the tool toward the outer peripheral direction within a range in which the plastic fluid material can be pressed during friction stir welding. The same effect as that of the following embodiment can be obtained by the first to third modifications of the rotation tool.
  • the liquid-cooled jacket 1 is composed of a jacket body 2 and a sealing body 3.
  • the liquid-cooled jacket 1 is a device that circulates a fluid inside to cool an arranged heating element.
  • the jacket body 2 and the sealing body 3 are integrated by friction stir welding.
  • the "front surface” means the surface opposite to the "back surface”.
  • the jacket body 2 is mainly composed of a bottom portion 10 and a peripheral wall portion 11.
  • the jacket body 2 may be any metal (aluminum, aluminum alloy, magnesium, magnesium alloy, copper, copper alloy, titanium, titanium alloy, etc.) that can be agitated by friction, but in the present embodiment, it is made of an aluminum alloy.
  • the bottom portion 10 is a plate-shaped member having a rectangular shape.
  • the peripheral wall portion 11 is a wall portion that rises in a rectangular frame shape from the peripheral edge portion of the bottom portion 10.
  • the corner of the peripheral wall portion 11 may be a right angle, but in the present embodiment, a round chamfering process is performed.
  • a support column 12 stands up at the bottom 10.
  • the number of columns 12 is not particularly limited, but is two in this embodiment.
  • the end surface 12a of the support column 12 has the same height as the end surface 11a of the peripheral wall portion 11.
  • a recess 13 is formed in the bottom portion 10 and the peripheral wall portion 11.
  • the jacket body 2 of the present embodiment is integrally formed, for example, the peripheral wall portion 11 may be divided and joined by a seal member to be integrated.
  • the sealing body 3 is a plate-shaped member that seals the opening of the jacket body 2.
  • the corners of the sealing body 3 may be right angles, but in the present embodiment, round chamfering is performed.
  • the sealing body 3 is not particularly limited as long as it is a metal capable of friction stir welding, but in the present embodiment, it is formed mainly containing an aluminum alloy.
  • the preparation step is a step of preparing the jacket body 2 and the sealing body 3.
  • the jacket body 2 and the sealing body 3 are not particularly limited in terms of manufacturing method, but the jacket body 2 is molded by die casting, for example.
  • the sealing body 3 is formed by, for example, extrusion molding.
  • the mounting step is a step of mounting the sealing body 3 on the jacket body 2. By the mounting step, the end surface 11a of the peripheral wall portion 11 and the back surface 3b of the sealing body 3 are abutted to form the first abutting portion J1.
  • the first butt portion J1 is formed in a rectangular shape in a plan view along the periphery of the sealing body 3.
  • the end surface 12a of the support column 12 and the back surface 3b of the sealing body 3 are abutted to form the second abutting portion J2.
  • the side surface 11c of the peripheral wall portion 11 and the side surface 3c of the sealing body 3 are flush with each other.
  • the jacket body 2 and the sealing body 3 may be temporarily joined by welding, friction stir welding, or the like.
  • the first main joining step is a step of friction stir welding of the first butt portion J1 using the rotary tool F.
  • a holding step and a friction stir welding step are performed.
  • the jacket body 2 and the sealing body 3 are pressed from both outer sides by a holding device (jig) provided with a pair of holding portions 22 to hold the jacket body 2.
  • a holding device jig
  • an intermediate plate 21 is interposed between the holding portion 22 and the bottom portion 10 and between the holding portion 22 and the sealing body 3, respectively.
  • the holding portion 22 has a columnar shape, and its end faces come into surface contact with the intermediate plates 21 and 21, respectively.
  • the holding portion 22 of the holding device, the jacket body 2 and the sealing body 3 rotate or move in parallel in synchronization with each other. That is, the sandwiching device rotates the jacket body 2 and the sealing body 3 in the circumferential direction while the bottom portion 10 of the jacket body 2 and the surface 3a of the sealing body 3 are pressed and sandwiched by the holding portions 22 and 22, respectively. At the same time, it can be linearly moved up and down, left and right, and front and back.
  • the rotation tool F is attached to a friction stir device that can move in the horizontal direction and the vertical direction.
  • the rotation tool F may be attached to a robot arm having a rotation driving means such as a spindle unit at its tip.
  • the rotary tool F attached to the friction stir welder is rotated clockwise.
  • the position of the rotation tool F is fixed so as not to move relative to the friction stir device. That is, the rotating tool F is not displaced with respect to the friction stir welding device, but the jacket body 2 and the sealing body 3 side are moved with respect to the rotating tool F to perform friction stir welding.
  • a holding step of holding the jacket body 2 and the sealing body 3 is performed, and the jacket body 2 and the sealing body 3 are held by using a holding device (jig).
  • the holding device is operated to insert the rotary tool F into the start position SP1 set on the surface 3a of the sealing body 3 to perform the friction stir welding step.
  • the press-in section, the main section, and the detachment section are continuously subjected to friction stir welding.
  • the closet section is a section from the start position SP1 set on the surface 3a of the sealing body 3 to the intermediate point S1 set on the surface 3a of the sealing body 3.
  • This section is a section from the intermediate point S1 to the intermediate point S2 set on the surface 3a of the sealing body 3 after passing through the intermediate point S1 around the outer peripheral portion of the surface 3a of the sealing body 3. ..
  • the detachment section is a section from the intermediate point S2 to the end position EP1 set on the surface 3a of the sealing body 3.
  • the intermediate points S1 and S2 are set at positions corresponding to the first butt portion J1 on the surface 3a of the sealing body 3 so as to be separated from each other. Further, the start position SP1 and the end position EP1 are set inside the surface 3a of the sealing body 3 from the positions corresponding to the first butt portion J1.
  • the rotation center axis Z of the rotation tool F is arranged so as to be perpendicular to the start position SP1, and the tip side pin F3 is gradually pushed in until it reaches a predetermined depth while moving relative to the intermediate point S1.
  • the section shifts to this section as it is.
  • a plasticized region W1 is formed in the movement locus of the rotation tool F.
  • the outer peripheral surface of the base end side pin F2 is brought into the surface 3a of the sealing body 3.
  • the rotating tool F is relatively moved along the outer peripheral edge of the surface 3a of the sealing body 3.
  • the rotation tool F is used to make a round around the peripheral wall portion 11.
  • the "predetermined depth” refers to the depth at which the tip end side pin F3 of the rotation tool F is inserted from the intermediate point S1 to the intermediate point S2 in this section.
  • the flat surface F4 of the tip side pin F3 of the rotation tool F is set to reach the end surface 11a of the peripheral wall portion 11.
  • the rotating tool F is relatively moved while rotating the holding portions 22 and 22.
  • the rotation tool F reaches the intermediate point S2 (see FIG. 9) by overlapping the start end and the end end of the plasticized region W1, the process shifts to the detachment section as it is.
  • the rotation tool F is moved in a linear or arcuate shape in a plan view so that the rotation tool F does not stop or the movement speed decreases in the middle. Is preferable.
  • the tip end side pin F3 is gradually pulled out from the sealing body 3 and detached at the end position EP1.
  • the holding device is detached from the jacket body 2 and the sealing body 3.
  • the flat surface F4 at the tip of the tip side pin F3 reaches the end face 11a, but friction stir welding is performed with the tip side pin F3 in contact with only the sealing body 3. You may go.
  • the first butt portion J1 is plastically fluidized and joined by the frictional heat between the tip end side pin F3 and the sealing body 3.
  • the second main joining step is a step of friction stir welding the sealing body 3 and the support column 12 using the rotary tool F.
  • the rotating tool F is inserted vertically from the surface 3a of the sealing body 3, is relatively moved along the second butt portion J2 by one or more turns, and then the rotating tool F is separated from the sealing body 3.
  • the tip end side pin F3 is brought into contact with the support column 12 of the jacket body 2 and the sealing body 3, and the outer peripheral surface of the base end side pin F2 is brought into contact with the surface 3a of the sealing body 3. Friction stir is performed.
  • the flat surface F4 of the tip side pin F3 reaches the end face 11a, but friction stir welding may be performed in a state where only the tip side pin F3 and the sealing body 3 are in contact with each other.
  • the second butt portion J2 is plastically fluidized and joined by the frictional heat between the tip end side pin F3 and the sealing body 3.
  • the second joining step may be omitted.
  • the jacket main body is held in a state where the bottom portion 10 of the jacket main body 2 and the surface 3a of the sealing body 3 are held from both outer sides by a pair of holding portions 22.
  • the holding portion 22 and the rotating tool F do not interfere with each other during the first main joining process. That is, since the jig for positioning the jacket body 2 and the sealing body 3 is not on the movement route of the rotation tool F, the movement of the rotation tool F is not hindered. As a result, the liquid-cooled jacket can be manufactured at low cost without costing ancillary equipment such as a device for driving the rotary tool F.
  • the joining strength can be increased by performing the second joining step.
  • the second main joining step if the tip end side pin F3 is brought into contact with the support column 12, the second butt portion J2 can be joined more reliably.
  • the outer peripheral surface of the base end side pin F2 is brought into contact with the surface 3a of the sealing body 3, and friction stirring is performed while pressing the plastic fluid material, so that burrs are generated. Can be suppressed.
  • the outer peripheral surface of the base end side pin F2 and the surface 3a of the sealing body 3 are brought into contact with each other, and friction stirring is performed while pressing the plastic fluid material, so that the generation of burrs can be suppressed. it can.
  • the plastic fluid material can be pressed on the outer peripheral surface of the base end side pin F2, the stepped concave groove formed on the joint surface (surface 3a of the sealing body 3) can be reduced, and the stepped concave groove can be reduced.
  • the bulge formed on the side of the can be eliminated or reduced.
  • the stepped pin step portion F21 of the base end side pin F2 is shallow and the outlet is wide, the plastic fluid material can be easily pulled out to the outside of the pin step portion F21 while pressing the plastic fluid material with the step bottom surface F21a. There is. Therefore, even if the plastic fluid material is pressed by the base end side pin F2, the plastic fluid material is unlikely to adhere to the outer peripheral surface of the base end side pin F2. Therefore, the roughness of the joint surface can be reduced, and the joint quality can be suitably stabilized.
  • the airtightness and watertightness can be improved.
  • the first main joining step may be performed after the second main joining step.
  • the movement route may be set so that the movement locus of the rotation tool F has an arc shape.
  • the position of the rotating tool F is set so as not to be displaced with respect to the friction stir welding device, but the rotating tool F, the jacket body 2 and the sealing body 3 (holding device) are used. May be moved to perform friction stir welding.
  • the robot arm, the jacket body 2 and the sealing body 3 (holding device) may both be moved to perform friction stir welding.
  • the rotation speed of the rotation tool F may be constant, but may be variable.
  • V1 the rotation speed of the rotation tool F at the start position SP1
  • V2 the rotation speed of the rotation tool F in this section
  • V1> V2 may be satisfied.
  • the rotation speed V2 is a preset constant rotation speed in the set movement route L1. That is, at the start position SP1, the rotation speed may be set high, and the rotation speed may be gradually reduced in the closet section to shift to the main section.
  • the rotation speed of the rotation tool F in this section is V2 and the rotation speed of the rotation tool F when detached at the end position EP1 is V3, V3> V2 may be satisfied. That is, after shifting to the detachment section, the rotation tool F may be detached from the sealing body 3 while gradually increasing the rotation speed toward the end position EP1.
  • the rotary tool F is pushed into the sealing body 3 or separated from the sealing body 3, by setting as described above, it is possible to supplement the small pressing force in the pushing-in section or the separating section with the rotation speed. Therefore, friction stir welding can be preferably performed.
  • the second embodiment is mainly different from the first embodiment in that the support column 12 is provided with the support column step portion 14.
  • the jacket body 2A is composed of a bottom portion 10, a peripheral wall portion 11, and a support column 12.
  • the bottom portion 10 and the peripheral wall portion 11 are the same as those in the first embodiment.
  • a protrusion 15 is formed on the tip end side of the support column 12.
  • the shape of the protruding portion 15 is not particularly limited, but in the present embodiment, it has a columnar shape.
  • a strut step portion 14 is formed at the tip of the strut 12.
  • the strut step portion 14 is formed with a step bottom surface 14a and a step side surface 14b rising from the step bottom surface 14a.
  • the step bottom surface 14a is formed at the same height as the end surface 11a of the peripheral wall portion 11.
  • a hole 4 is formed in the sealing body 3A.
  • the hole 4 is formed at a position corresponding to the protrusion 15 of the support column 12.
  • the hole 4 is formed in a size such that the protrusion 15 can be inserted.
  • a preparation step, a mounting step, a first main joining step, and a second main joining step are performed.
  • the preparation step is a step of preparing the jacket body 2A and the sealing body 3A.
  • the mounting step is a step of mounting the sealing body 3A on the jacket body 2A.
  • the protruding portion 15 of the support column 12 is inserted into the hole portion 4 while the sealing body 3A is mounted on the end surface 11a of the peripheral wall portion 11.
  • the end surface 11a of the peripheral wall portion 11 and the back surface 3b of the sealing body 3 are abutted to form the first abutting portion J1.
  • the step side surface 14b and the hole wall 4a of the hole portion 4 are abutted to form the step side surface abutting portion J12.
  • the step bottom surface 14a and the back surface 3b of the sealing body 3 are abutted to form the step bottom surface abutting portion J13.
  • the thickness of the sealing body 3 may be appropriately set, but in the present embodiment, it is larger than the height dimension of the step side surface 14b.
  • the first main joining process is the same as that of the first embodiment.
  • the tip side pin F3 of the rotation tool F is inserted into the step side surface butt portion J12 and the step bottom surface butt portion J13, and the rotation tool F is relatively moved one or more turns along the step side surface butt portion J12. Further, friction stir welding is performed in a state where the outer peripheral surface of the base end side pin F2 is in contact with the surface 3a of the sealing body 3A.
  • the insertion depth is set so that the flat surface F4 of the tip end side pin F3 reaches the step bottom surface 14a.
  • a plasticized region W2 is formed in the movement locus of the rotation tool F.
  • the flat surface F4 of the rotary tool F may be set so as not to come into contact with the step bottom surface 14a.
  • the jacket body 2A and the sealing body 3A can be positioned by inserting the hole 4 of the sealing body 3A into the protruding portion 15 of the support column 12. It can be done easily. Further, since the plate thickness of the sealing body 3A is set to be larger than that of the step side surface 14b, it is possible to prevent the joint portion from becoming short of metal. Further, since the plastic fluid material can be pressed on the outer peripheral surface of the base end side pin F2, the stepped concave groove formed on the joint surface (surface 3a of the sealing body 3A) can be reduced, and the stepped concave groove can be reduced. The bulge formed on the side of the can be eliminated or reduced.
  • the plastic fluid material can be easily pulled out to the outside of the pin step portion F21 while pressing the plastic fluid material with the step bottom surface F21a. There is. Therefore, even if the plastic fluid material is pressed by the base end side pin F2, the plastic fluid material is unlikely to adhere to the outer peripheral surface of the base end side pin F2. Therefore, the roughness of the joint surface can be reduced, and the joint quality can be suitably stabilized.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)

Abstract

The present invention is a method for manufacturing a liquid cooling jacket configured by a jacket body (2) and a sealing body (3) that seals an opening of the jacket body (2), the jacket body (2) and the sealing body (3) being joined by friction stirring, the method being characterized in that, in a first main joining step, while a bottom section (10) of the jacket body (2) and an outer surface (3a) of the sealing body (3) are pressed and held by a pair of holding parts (22) from both outer sides, the holding parts (22) are used to cause the jacket body (2) and the sealing body (3) to rotate or move in parallel and friction stirring is performed on the jacket body (2) and the sealing body (3).

Description

液冷ジャケットの製造方法How to manufacture a liquid-cooled jacket
 本発明は、液冷ジャケットの製造方法に関する。 The present invention relates to a method for manufacturing a liquid-cooled jacket.
 例えば、特許文献1には、ジャケット本体と、ジャケット本体の開口部を封止する封止体とを摩擦攪拌で接合する液冷ジャケットの製造方法が開示されている。当該液冷ジャケットの製造方法では、ジャケット本体及び封止体の側面から垂直に回転ツールを挿入し、ジャケット本体の廻りに一周させて摩擦攪拌を行っている。 For example, Patent Document 1 discloses a method for manufacturing a liquid-cooled jacket in which a jacket body and a sealing body that seals an opening of the jacket body are joined by friction stir welding. In the method for manufacturing the liquid-cooled jacket, a rotating tool is inserted vertically from the side surface of the jacket body and the sealing body, and friction stir welding is performed by rotating the jacket body around the jacket body.
特開2018-69322号公報JP-A-2018-69322
 特許文献1に係る発明では、回転ツールとジャケット本体の側面とを垂直にした状態で回転ツールをジャケット本体廻りに一周させるため、回転ツールを、例えば、先端にスピンドルユニット等の回転駆動手段を備えたアームロボットに取り付けるなどして、回転ツールの回転中心軸の角度や挿入位置を変更・調整する必要がある。このため回転ツールを駆動させるための装置等の付帯設備に費用がかかり、結果的に製造コストが高くなるという問題がある。 In the invention according to Patent Document 1, in order to rotate the rotation tool around the jacket body with the rotation tool and the side surface of the jacket body perpendicular to each other, a rotation tool is provided, for example, a rotation driving means such as a spindle unit at the tip. It is necessary to change / adjust the angle and insertion position of the rotation center axis of the rotation tool by attaching it to the arm robot. For this reason, there is a problem that ancillary equipment such as a device for driving the rotary tool is costly, and as a result, the manufacturing cost is high.
 このような観点から、本発明は、液冷ジャケットを低コストで製造することができる液冷ジャケットの製造方法を提供することを課題とする。 From this point of view, it is an object of the present invention to provide a method for manufacturing a liquid-cooled jacket capable of manufacturing the liquid-cooled jacket at low cost.
 前記課題を解決するために、本発明は、底部、前記底部の周縁から立ち上がる周壁部及び前記底部から立ち上がる支柱を有するジャケット本体と、前記ジャケット本体の開口部を封止する封止体とで構成され、前記ジャケット本体と前記封止体とを摩擦攪拌で接合する液冷ジャケットの製造方法であって、摩擦攪拌で用いる回転ツールは、基端側ピンと、先端側ピンとを備え、前記基端側ピンのテーパー角度は、前記先端側ピンのテーパー角度よりも大きくなっており、前記基端側ピンの外周面には階段状の段差部が形成されており、前記ジャケット本体に前記封止体を載置することにより前記周壁部の端面と前記封止体の裏面とを重ね合わせて第一突合せ部を形成するとともに、前記支柱の端面と前記封止体の裏面とを重ね合わせて第二突合せ部を形成する載置工程と、回転する前記回転ツールの前記先端側ピンを前記封止体の表面から挿入し、前記先端側ピンを前記前記封止体、又は前記周壁部及び前記封止体に接触させつつ、前記基端側ピンの外周面を前記封止体の表面に接触させた状態で前記第一突合せ部に沿って所定の深さで前記周壁部の廻りに相対的に一周させて前記第一突合せ部を摩擦攪拌する第一本接合工程と、を含み、前記第一本接合工程において、前記ジャケット本体の前記底部と前記封止体の表面とを両外側から一対の保持部で押圧して保持しつつ、前記保持部を用いて前記ジャケット本体及び前記封止体を回転又は平行移動させて前記ジャケット本体と前記封止体とを摩擦攪拌することを特徴とする。 In order to solve the above problems, the present invention comprises a jacket body having a bottom, a peripheral wall portion rising from the peripheral edge of the bottom, and a support column rising from the bottom, and a sealing body for sealing the opening of the jacket body. A method for manufacturing a liquid-cooled jacket in which the jacket body and the sealing body are joined by frictional stirring. The rotary tool used in frictional stirring includes a proximal end side pin and a distal end side pin, and the proximal end side is provided. The taper angle of the pin is larger than the taper angle of the tip end side pin, a stepped step portion is formed on the outer peripheral surface of the base end side pin, and the sealing body is attached to the jacket body. By mounting, the end surface of the peripheral wall portion and the back surface of the sealing body are overlapped to form the first butt portion, and the end surface of the support column and the back surface of the sealing body are overlapped to form the second butt matching portion. The mounting step of forming the portion, the tip-side pin of the rotating tool is inserted from the surface of the sealant, and the tip-side pin is inserted into the sealant, or the peripheral wall portion and the sealant. In a state where the outer peripheral surface of the base end side pin is in contact with the surface of the sealing body, the peripheral surface of the base end side pin is made to go around the peripheral wall portion at a predetermined depth along the first abutting portion. In the first joining step, the bottom portion of the jacket body and the surface of the sealing body are held by a pair of holding portions from both outer sides. It is characterized in that the jacket body and the sealing body are rotated or moved in parallel using the holding portion while being pressed and held by the above, and the jacket body and the sealing body are frictionally agitated.
 また、本発明は、底部、前記底部の周縁から立ち上がる周壁部及び前記底部から立ち上がる支柱を有するジャケット本体と、前記支柱の先端が挿入される孔部を備えるとともに前記ジャケット本体の開口部を封止する封止体とで構成され、前記ジャケット本体と前記封止体とを摩擦攪拌で接合する液冷ジャケットの製造方法であって、摩擦攪拌で用いる回転ツールは、基端側ピンと、先端側ピンとを備え、前記基端側ピンのテーパー角度は、前記先端側ピンのテーパー角度よりも大きくなっており、前記基端側ピンの外周面には階段状の段差部が形成されており、前記支柱の先端に段差底面と当該段差底面から立ち上がる段差側面とを有する支柱段差部を形成するとともに、前記支柱の段差底面を前記周壁部の端面と同一の高さ位置に形成し、前記封止体の厚みを前記段差側面よりも大きく形成する準備工程と、前記ジャケット本体に前記封止体を載置することにより前記周壁部の端面と前記封止体の裏面とを重ね合わせて第一突合せ部を形成するとともに、前記支柱の段差側面と前記孔部の孔壁とを突き合せて段差側面突合せ部を形成し、前記支柱の段差底面と前記封止体の裏面とを重ね合わせて段差底面突合せ部を形成する載置工程と、回転する前記回転ツールの前記先端側ピンを前記封止体の表面に挿入し、前記先端側ピンを前記封止体、又は前記周壁部及び前記封止体に接触させつつ、前記基端側ピンの外周面を前記封止体の表面に接触させた状態で前記第一突合せ部に沿って所定の深さで前記周壁部の廻りに相対的に一周させて前記第一突合せ部を摩擦攪拌する第一本接合工程と、を含み、前記第一本接合工程において、前記ジャケット本体の前記底部と前記封止体の表面とを両外側から一対の保持部で押圧して保持しつつ、前記保持部を用いて前記ジャケット本体及び前記封止体を回転又は平行移動させて前記ジャケット本体と前記封止体とを摩擦攪拌することを特徴とする。 Further, the present invention includes a jacket body having a bottom portion, a peripheral wall portion rising from the peripheral edge of the bottom portion, and a support column rising from the bottom portion, and a hole into which the tip of the support column is inserted, and seals the opening of the jacket body. A method for manufacturing a liquid-cooled jacket, which is composed of a sealing body and joins the jacket body and the sealing body by frictional stirring. The rotary tool used for frictional stirring includes a base end side pin and a tip end side pin. The taper angle of the base end side pin is larger than the taper angle of the tip end side pin, and a stepped step portion is formed on the outer peripheral surface of the base end side pin. A strut step portion having a step bottom surface and a step side surface rising from the step bottom surface is formed at the tip of the strut, and the step bottom surface of the strut is formed at the same height position as the end surface of the peripheral wall portion. In the preparatory step of forming the thickness larger than the side surface of the step, and by placing the sealing body on the jacket body, the end surface of the peripheral wall portion and the back surface of the sealing body are overlapped to form the first butt portion. At the same time, the step side surface of the support column and the hole wall of the hole portion are abutted to form a step side surface butt portion, and the step bottom surface of the support column and the back surface of the sealing body are overlapped to form the step bottom surface butt portion. The tip side pin of the rotating tool is inserted into the surface of the sealing body, and the tip side pin is brought into contact with the sealing body, or the peripheral wall portion and the sealing body. In a state where the outer peripheral surface of the base end side pin is in contact with the surface of the sealing body, the peripheral surface is relatively made to go around the peripheral wall portion at a predetermined depth along the first abutting portion. In the first joining step, which includes a first joining step of rubbing and stirring the first butt portion, the bottom portion of the jacket body and the surface of the sealing body are pressed from both outer sides by a pair of holding portions. The jacket body and the sealing body are rotated or moved in parallel using the holding portion to frictionally stir the jacket body and the sealing body.
 かかる製造方法によれば、ジャケット本体の底部と封止体の表面とを一対の保持部で保持した状態でジャケット本体及び封止体を回転又は平行移動させるため、第一本接合工程中に保持部と回転ツールとが干渉しない。つまり、ジャケット本体と封止体とを位置決めするための治具が回転ツールの移動の妨げにならない。これにより、回転ツールを駆動させるための装置等の付帯設備に費用を要せず、液冷ジャケットを低コストで製造することができる。また、基端側ピンの外周面で塑性流動材を押さえることができるため、バリの発生を抑制することができる。 According to such a manufacturing method, the jacket body and the sealing body are rotated or translated while the bottom of the jacket body and the surface of the sealing body are held by the pair of holding portions, so that the jacket body and the sealing body are held during the first joining step. The part and the rotation tool do not interfere. That is, the jig for positioning the jacket body and the sealing body does not hinder the movement of the rotating tool. As a result, the liquid-cooled jacket can be manufactured at low cost without costing ancillary equipment such as a device for driving the rotary tool. Further, since the plastic fluid material can be pressed on the outer peripheral surface of the base end side pin, the occurrence of burrs can be suppressed.
 また、回転する前記回転ツールの前記先端側ピンを前記封止体の表面から挿入し、前記先端側ピンを前記封止体のみ、又は前記封止体及び前記支柱に接触させつつ前記基端側ピンの外周面を前記封止体の表面に接触させた状態で前記回転ツールを相対的に移動させて前記第二突合せ部を摩擦攪拌する第二本接合工程と、をさらに含むことが好ましい。
 また、回転する前記回転ツールの前記先端側ピンを封止体の表面から挿入し、前記先端側ピンを前記封止体及び前記支柱に接触させつつ前記基端側ピンの外周面を少なくとも前記封止体の表面に接触させた状態で前記回転ツールを相対移動させて前記段差側面突合せ部を摩擦攪拌する第二本接合工程と、をさらに含むことが好ましい。
Further, the tip side pin of the rotating tool is inserted from the surface of the seal body, and the tip end side pin is brought into contact with only the seal body or the seal body and the support column on the base end side. It is preferable to further include a second joining step in which the rotating tool is relatively moved while the outer peripheral surface of the pin is in contact with the surface of the sealing body to frictionally stir the second butt portion.
Further, the tip end side pin of the rotating tool is inserted from the surface of the sealing body, and the outer peripheral surface of the base end side pin is at least sealed while the tip end side pin is in contact with the sealing body and the support column. It is preferable to further include a second joining step of relatively moving the rotating tool in contact with the surface of the stop body to frictionally stir the step side surface abutting portion.
 かかる製造方法によれば、接合強度を高めることができる。 According to such a manufacturing method, the joint strength can be increased.
 また、前記第一本接合工程後に前記第二本接合工程を行うことが好ましい。
 また、前記第二本接合工程後に前記第一本接合工程を行うことが好ましい。
Further, it is preferable to perform the second main joining step after the first main joining step.
Further, it is preferable to perform the first main joining step after the second main joining step.
 また、前記第一本接合工程では、所定の回転速度で前記回転ツールを回転させて摩擦攪拌を行い、前記第一本接合工程において前記先端側ピンを離脱させるとき、前記所定の回転速度よりも徐々に回転速度を上げながら終了位置まで移動させることが好ましい。 Further, in the first main joining step, the rotation tool is rotated at a predetermined rotation speed to perform friction stir welding, and when the tip end side pin is separated in the first main joining step, the rotation speed is higher than the predetermined rotation speed. It is preferable to move it to the end position while gradually increasing the rotation speed.
 また、前記第一本接合工程では、所定の回転速度で前記回転ツールを回転させて摩擦攪拌を行い、前記第一本接合工程において前記先端側ピンを挿入するとき、前記所定の回転速度よりも高い速度で前記先端側ピンを回転させた状態で挿入し、徐々に回転速度を下げながら前記第一突合せ部まで移動させることが好ましい。
 かかる製造方法によれば、摩擦攪拌を好適に行うことができる。
Further, in the first main joining step, the rotation tool is rotated at a predetermined rotation speed to perform frictional stirring, and when the tip end side pin is inserted in the first main joining step, the rotation speed is higher than the predetermined rotation speed. It is preferable that the tip end side pin is inserted in a rotated state at a high speed and then moved to the first butt portion while gradually reducing the rotation speed.
According to such a manufacturing method, friction stir welding can be preferably performed.
 本発明に係る液冷ジャケットの製造方法によれば、液冷ジャケットを低コストで製造することができる。 According to the method for manufacturing a liquid-cooled jacket according to the present invention, the liquid-cooled jacket can be manufactured at low cost.
本発明の実施形態に係る回転ツールを示す側面図である。It is a side view which shows the rotation tool which concerns on embodiment of this invention. 回転ツールの拡大断面図である。It is an enlarged sectional view of the rotation tool. 回転ツールの第一変形例を示す断面図である。It is sectional drawing which shows the 1st modification of a rotation tool. 回転ツールの第二変形例を示す断面図である。It is sectional drawing which shows the 2nd modification of the rotation tool. 回転ツールの第三変形例を示す断面図である。It is sectional drawing which shows the 3rd modification of the rotation tool. 本発明の第一実施形態に係る液冷ジャケットの分解斜視図である。It is an exploded perspective view of the liquid-cooled jacket which concerns on 1st Embodiment of this invention. 第一実施形態に係る液冷ジャケットの製造方法の載置工程を示す断面図である。It is sectional drawing which shows the mounting process of the manufacturing method of the liquid-cooled jacket which concerns on 1st Embodiment. 第一実施形態に係る液冷ジャケットの製造方法の第一本接合工程を示す斜視図である。It is a perspective view which shows the 1st main joining process of the manufacturing method of the liquid-cooled jacket which concerns on 1st Embodiment. 第一実施形態に係る液冷ジャケットの製造方法の第一本接合工程を示す斜視図である。It is a perspective view which shows the 1st main joining process of the manufacturing method of the liquid-cooled jacket which concerns on 1st Embodiment. 第一実施形態に係る液冷ジャケットの製造方法の第一本接合工程を示す断面図である。It is sectional drawing which shows the 1st main joining process of the manufacturing method of the liquid-cooled jacket which concerns on 1st Embodiment. 第一実施形態に係る液冷ジャケットの製造方法の第一本接合工程を示す斜視図である。It is a perspective view which shows the 1st main joining process of the manufacturing method of the liquid-cooled jacket which concerns on 1st Embodiment. 第一実施形態に係る液冷ジャケットの製造方法の第二本接合工程を示す断面図である。It is sectional drawing which shows the 2nd joining process of the manufacturing method of the liquid-cooled jacket which concerns on 1st Embodiment. 本発明の第二実施形態に係る液冷ジャケットの製造方法の第二本接合工程を示す断面図である。It is sectional drawing which shows the 2nd main joining process of the manufacturing method of the liquid-cooled jacket which concerns on 2nd Embodiment of this invention.
 本発明の実施形態について、適宜図面を参照しながら説明する。まずは、本実施形態に係る接合方法で用いる回転ツールについて説明する。図1に示すように、回転ツールFは、例えば工具鋼で形成されており、基軸部F1と、基端側ピンF2と、先端側ピンF3とで主に構成されている。基軸部F1は、円柱状を呈し、摩擦攪拌装置の主軸に接続される部位である。
 基端側ピンF2は、基軸部F1に連続し、先端に向けて先細りになっている。基端側ピンF2は、円錐台形状を呈する。基端側ピンF2のテーパー角度Aは適宜設定すればよいが、例えば、135~160°になっている。テーパー角度Aが135°未満であるか、又は、160°を超えると摩擦攪拌後の接合表面粗さが大きくなる。テーパー角度Aは、後記する先端側ピンF3のテーパー角度Bよりも大きくなっている。
Embodiments of the present invention will be described with reference to the drawings as appropriate. First, the rotation tool used in the joining method according to the present embodiment will be described. As shown in FIG. 1, the rotary tool F is made of, for example, tool steel, and is mainly composed of a base shaft portion F1, a base end side pin F2, and a tip end side pin F3. The base shaft portion F1 has a columnar shape and is a portion connected to the main shaft of the friction stir welder.
The base end side pin F2 is continuous with the base shaft portion F1 and is tapered toward the tip end. The proximal end side pin F2 has a truncated cone shape. The taper angle A of the base end side pin F2 may be appropriately set, but is, for example, 135 to 160 °. If the taper angle A is less than 135 ° or exceeds 160 °, the joint surface roughness after friction stir welding becomes large. The taper angle A is larger than the taper angle B of the tip side pin F3, which will be described later.
 図2に示すように、基端側ピンF2の外周面には、階段状のピン段差部F21が高さ方向の全体に亘って形成されている。ピン段差部F21は、右回り又は左回りで螺旋状に形成されている。つまり、ピン段差部F21は、平面視して螺旋状であり、側面視すると階段状になっている。本第一実施形態では、回転ツールFを右回転させるため、ピン段差部F21は基端側から先端側に向けて左回りに設定している。
 なお、回転ツールFを左回転させる場合は、ピン段差部F21を基端側から先端側に向けて右回りに設定することが好ましい。これにより、ピン段差部F21によって塑性流動材が先端側に導かれるため、被接合金属部材の外部に溢れ出る金属を低減することができる。ピン段差部F21は、段差底面F21aと、段差側面F21bとで構成されている。隣り合うピン段差部F21の各頂点F21c,F21cの距離X1(水平方向距離)は、後記する段差角度C及び段差側面F21bの高さY1に応じて適宜設定される。
As shown in FIG. 2, a stepped pin step portion F21 is formed on the outer peripheral surface of the base end side pin F2 over the entire height direction. The pin step portion F21 is formed in a clockwise or counterclockwise spiral shape. That is, the pin step portion F21 has a spiral shape when viewed in a plane and a step shape when viewed from a side surface. In the first embodiment, in order to rotate the rotation tool F clockwise, the pin step portion F21 is set counterclockwise from the base end side to the tip end side.
When rotating the rotation tool F counterclockwise, it is preferable to set the pin step portion F21 clockwise from the base end side to the tip end side. As a result, the plastic fluid material is guided to the tip side by the pin step portion F21, so that the metal overflowing to the outside of the metal member to be joined can be reduced. The pin step portion F21 is composed of a step bottom surface F21a and a step side surface F21b. The distance X1 (horizontal distance) between the vertices F21c and F21c of the adjacent pin step portions F21 is appropriately set according to the step angle C and the height Y1 of the step side surface F21b described later.
 段差側面F21bの高さY1は適宜設定すればよいが、例えば、0.1~0.4mmで設定されている。高さY1が0.1mm未満であると接合表面粗さが大きくなる。一方、高さY1が0.4mmを超えると接合表面粗さが大きくなる傾向があるとともに、有効段差部数(被接合金属部材と接触しているピン段差部F21の数)も減少する。
 段差底面F21aと段差側面F21bとでなす段差角度Cは適宜設定すればよいが、例えば、85~120°で設定されている。段差底面F21aは、本実施形態では水平面と平行になっている。段差底面F21aは、ツールの回転中心軸から外周方向に向かって水平面に対して-5°~15°内の範囲で傾斜していてもよい(マイナスは水平面に対して下方、プラスは水平面に対して上方)。距離X1、段差側面F21bの高さY1、段差角度C及び水平面に対する段差底面F21aの角度は、摩擦攪拌を行う際に、塑性流動材がピン段差部F21の内部に滞留して付着することなく外部に抜けるとともに、段差底面F21aで塑性流動材を押えて接合表面粗さを小さくすることができるように適宜設定する。
The height Y1 of the step side surface F21b may be appropriately set, but is set to, for example, 0.1 to 0.4 mm. If the height Y1 is less than 0.1 mm, the joint surface roughness becomes large. On the other hand, when the height Y1 exceeds 0.4 mm, the joint surface roughness tends to increase, and the number of effective step portions (the number of pin step portions F21 in contact with the metal member to be joined) also decreases.
The step angle C formed by the step bottom surface F21a and the step side surface F21b may be appropriately set, but is set to, for example, 85 to 120 °. The step bottom surface F21a is parallel to the horizontal plane in this embodiment. The step bottom surface F21a may be inclined in the range of -5 ° to 15 ° with respect to the horizontal plane from the rotation center axis of the tool toward the outer peripheral direction (minus is downward with respect to the horizontal plane, plus is with respect to the horizontal plane). Above). The distance X1, the height Y1 of the step side surface F21b, the step angle C, and the angle of the step bottom surface F21a with respect to the horizontal plane are such that the plastic fluid does not stay inside the pin step portion F21 and adhere to the outside during friction stir welding. The surface roughness of the joint is appropriately set so that the plastic fluid material can be pressed by the step bottom surface F21a to reduce the roughness of the joint surface.
 図1に示すように、先端側ピンF3は、基端側ピンF2に連続して形成されている。先端側ピンF3は円錐台形状を呈する。先端側ピンF3の先端は回転中心軸に対して垂直な平坦面F4になっている。先端側ピンF3のテーパー角度Bは、基端側ピンF2のテーパー角度Aよりも小さくなっている。図2に示すように、先端側ピンF3の外周面には、螺旋溝F31が刻設されている。螺旋溝F31は、右回り、左回りのどちらでもよいが、本第一実施形態では回転ツールFを右回転させるため、基端側から先端側に向けて左回りに刻設されている。 As shown in FIG. 1, the distal end side pin F3 is continuously formed on the proximal end side pin F2. The tip side pin F3 has a truncated cone shape. The tip of the tip side pin F3 is a flat surface F4 perpendicular to the rotation center axis. The taper angle B of the tip end side pin F3 is smaller than the taper angle A of the base end side pin F2. As shown in FIG. 2, a spiral groove F31 is engraved on the outer peripheral surface of the tip end side pin F3. The spiral groove F31 may be clockwise or counterclockwise, but in the first embodiment, the spiral groove F31 is carved counterclockwise from the base end side to the tip end side in order to rotate the rotation tool F clockwise.
 なお、回転ツールFを左回転させる場合は、螺旋溝F31を基端側から先端側に向けて右回りに設定することが好ましい。これにより、螺旋溝F31によって塑性流動材が先端側に導かれるため、被接合金属部材の外部に溢れ出る金属を低減することができる。螺旋溝F31は、螺旋底面F31aと、螺旋側面F31bとで構成されている。隣り合う螺旋溝F31の頂点F31c,F31cの距離(水平方向距離)を長さX2とする。螺旋側面F31bの高さを高さY2とする。螺旋底面F31aと、螺旋側面F31bとで構成される螺旋角度Dは例えば、45~90°で形成されている。螺旋溝F31は、被接合金属部材と接触することにより摩擦熱を上昇させるとともに、塑性流動材を先端側に導く役割を備えている。 When rotating the rotation tool F counterclockwise, it is preferable to set the spiral groove F31 clockwise from the base end side to the tip end side. As a result, the plastic fluid material is guided to the tip side by the spiral groove F31, so that the metal overflowing to the outside of the metal member to be joined can be reduced. The spiral groove F31 is composed of a spiral bottom surface F31a and a spiral side surface F31b. The distance (horizontal distance) between the vertices F31c and F31c of the adjacent spiral grooves F31 is defined as the length X2. The height of the spiral side surface F31b is defined as the height Y2. The spiral angle D composed of the spiral bottom surface F31a and the spiral side surface F31b is formed at, for example, 45 to 90 °. The spiral groove F31 has a role of increasing frictional heat by coming into contact with the metal member to be joined and guiding the plastic fluid material to the tip side.
 回転ツールFは、適宜設計変更が可能である。図3は、本発明の回転ツールの第一変形例を示す側面図である。図3に示すように、第一変形例に係る回転ツールFAでは、ピン段差部F21の段差底面F21aと段差側面F21bとのなす段差角度Cが85°になっている。段差底面F21aは、水平面と平行である。このように、段差底面F21aは水平面と平行であるとともに、段差角度Cは、摩擦攪拌中にピン段差部F21内に塑性流動材が滞留して付着することなく外部に抜ける範囲で鋭角としてもよい。 The design of the rotation tool F can be changed as appropriate. FIG. 3 is a side view showing a first modification of the rotation tool of the present invention. As shown in FIG. 3, in the rotation tool FA according to the first modification, the step angle C formed by the step bottom surface F21a of the pin step portion F21 and the step side surface F21b is 85 °. The step bottom surface F21a is parallel to the horizontal plane. As described above, the step bottom surface F21a is parallel to the horizontal plane, and the step angle C may be an acute angle within a range in which the plastic fluid material stays in the pin step portion F21 during friction stir welding and escapes to the outside without adhering. ..
 図4は、本発明の回転ツールの第二変形例を示す側面図である。図4に示すように、第二変形例に係る回転ツールFBでは、ピン段差部F21の段差角度Cが115°になっている。段差底面F21aは水平面と平行になっている。このように、段差底面F21aは水平面と平行であるとともに、ピン段差部F21として機能する範囲で段差角度Cが鈍角となってもよい。 FIG. 4 is a side view showing a second modification of the rotation tool of the present invention. As shown in FIG. 4, in the rotation tool FB according to the second modification, the step angle C of the pin step portion F21 is 115 °. The step bottom surface F21a is parallel to the horizontal plane. As described above, the step bottom surface F21a may be parallel to the horizontal plane, and the step angle C may be obtuse within the range in which the step bottom surface F21a functions as the pin step portion F21.
 図5は、本発明の回転ツールの第三変形例を示す側面図である。図5に示すように、第三変形例に係る回転ツールFCでは、段差底面F21aがツールの回転中心軸から外周方向に向かって水平面に対して10°上方に傾斜している。段差側面F21bは、鉛直面と平行になっている。このように、摩擦攪拌中に塑性流動材を押さえることができる範囲で、段差底面F21aがツールの回転中心軸から外周方向に向かって水平面よりも上方に傾斜するように形成されていてもよい。上記の回転ツールの第一~第三変形例によっても、下記の実施形態と同等の効果を奏することができる。 FIG. 5 is a side view showing a third modification of the rotation tool of the present invention. As shown in FIG. 5, in the rotation tool FC according to the third modification, the step bottom surface F21a is inclined 10 ° upward with respect to the horizontal plane from the rotation center axis of the tool toward the outer peripheral direction. The step side surface F21b is parallel to the vertical surface. As described above, the step bottom surface F21a may be formed so as to be inclined upward from the horizontal plane from the rotation center axis of the tool toward the outer peripheral direction within a range in which the plastic fluid material can be pressed during friction stir welding. The same effect as that of the following embodiment can be obtained by the first to third modifications of the rotation tool.
[第一実施形態]
 本発明の実施形態について、適宜図面を参照しながら説明する。第一実施形態に係る液冷ジャケット1は、図6に示すように、ジャケット本体2と封止体3とで構成されている。液冷ジャケット1は、内部に流体を流通させて、配置される発熱体を冷却する機器である。ジャケット本体2と封止体3とは摩擦攪拌接合で一体化される。以下の説明における「表面」とは、「裏面」の反対側の面を意味する。
[First Embodiment]
Embodiments of the present invention will be described with reference to the drawings as appropriate. As shown in FIG. 6, the liquid-cooled jacket 1 according to the first embodiment is composed of a jacket body 2 and a sealing body 3. The liquid-cooled jacket 1 is a device that circulates a fluid inside to cool an arranged heating element. The jacket body 2 and the sealing body 3 are integrated by friction stir welding. In the following description, the "front surface" means the surface opposite to the "back surface".
 ジャケット本体2は、底部10及び周壁部11で主に構成されている。ジャケット本体2は、摩擦攪拌可能な金属(アルミニウム、アルミニウム合金、マグネシウム、マグネシウム合金、銅、銅合金、チタン、チタン合金等)であればよいが、本実施形態ではアルミニウム合金で形成されている。
 底部10は、矩形を呈する板状部材である。周壁部11は、底部10の周縁部から矩形枠状に立ち上がる壁部である。周壁部11の角は直角でもよいが、本実施形態では丸面取り加工が施されている。底部10には、支柱12が立ち上がっている。支柱12の本数は特に制限されないが、本実施形態では2本になっている。支柱12の端面12aは、周壁部11の端面11aと同じ高さになっている。底部10及び周壁部11で凹部13が形成されている。なお、本実施形態のジャケット本体2は一体形成されているが、例えば、周壁部11を分割構成としてシール部材で接合して一体化してもよい。
The jacket body 2 is mainly composed of a bottom portion 10 and a peripheral wall portion 11. The jacket body 2 may be any metal (aluminum, aluminum alloy, magnesium, magnesium alloy, copper, copper alloy, titanium, titanium alloy, etc.) that can be agitated by friction, but in the present embodiment, it is made of an aluminum alloy.
The bottom portion 10 is a plate-shaped member having a rectangular shape. The peripheral wall portion 11 is a wall portion that rises in a rectangular frame shape from the peripheral edge portion of the bottom portion 10. The corner of the peripheral wall portion 11 may be a right angle, but in the present embodiment, a round chamfering process is performed. A support column 12 stands up at the bottom 10. The number of columns 12 is not particularly limited, but is two in this embodiment. The end surface 12a of the support column 12 has the same height as the end surface 11a of the peripheral wall portion 11. A recess 13 is formed in the bottom portion 10 and the peripheral wall portion 11. Although the jacket body 2 of the present embodiment is integrally formed, for example, the peripheral wall portion 11 may be divided and joined by a seal member to be integrated.
 封止体3は、ジャケット本体2の開口部を封止する板状部材である。封止体3の角は直角でもよいが、本実施形態では丸面取り加工が施されている。封止体3は、摩擦攪拌可能な金属であれば特に制限されないが、本実施形態ではアルミニウム合金を主に含んで形成されている。
 次に、本実施形態に係る液冷ジャケットの製造方法について説明する。本実施形態に係る液冷ジャケットの製造方法では、準備工程と、載置工程と、第一本接合工程と、第二本接合工程と、を行う。
The sealing body 3 is a plate-shaped member that seals the opening of the jacket body 2. The corners of the sealing body 3 may be right angles, but in the present embodiment, round chamfering is performed. The sealing body 3 is not particularly limited as long as it is a metal capable of friction stir welding, but in the present embodiment, it is formed mainly containing an aluminum alloy.
Next, a method for manufacturing the liquid-cooled jacket according to the present embodiment will be described. In the method for manufacturing a liquid-cooled jacket according to the present embodiment, a preparation step, a mounting step, a first main joining step, and a second main joining step are performed.
 準備工程は、ジャケット本体2及び封止体3を準備する工程である。ジャケット本体2及び封止体3は、製造方法については特に制限されないが、ジャケット本体2は、例えば、ダイキャストで成形する。封止体3は、例えば押出成形により成形する。
 載置工程は、図7に示すように、ジャケット本体2に封止体3を載置する工程である。載置工程によって、周壁部11の端面11aと、封止体3の裏面3bとが突き合わされて第一突合せ部J1が形成される。第一突合せ部J1は、封止体3の周囲に沿って平面視矩形状に形成される。また、支柱12の端面12aと、封止体3の裏面3bとが突き合わされて第二突合せ部J2が形成される。周壁部11の側面11cと、封止体3の側面3cとは面一になる。なお、ジャケット本体2と封止体3とは溶接又は摩擦攪拌等により仮接合してもよい。
The preparation step is a step of preparing the jacket body 2 and the sealing body 3. The jacket body 2 and the sealing body 3 are not particularly limited in terms of manufacturing method, but the jacket body 2 is molded by die casting, for example. The sealing body 3 is formed by, for example, extrusion molding.
As shown in FIG. 7, the mounting step is a step of mounting the sealing body 3 on the jacket body 2. By the mounting step, the end surface 11a of the peripheral wall portion 11 and the back surface 3b of the sealing body 3 are abutted to form the first abutting portion J1. The first butt portion J1 is formed in a rectangular shape in a plan view along the periphery of the sealing body 3. Further, the end surface 12a of the support column 12 and the back surface 3b of the sealing body 3 are abutted to form the second abutting portion J2. The side surface 11c of the peripheral wall portion 11 and the side surface 3c of the sealing body 3 are flush with each other. The jacket body 2 and the sealing body 3 may be temporarily joined by welding, friction stir welding, or the like.
 第一本接合工程は、図8及び図9に示すように、回転ツールFを用いて第一突合せ部J1を摩擦攪拌接合する工程である。第一本接合工程では、保持工程と、摩擦攪拌工程とを行う。保持工程は、一対の保持部22を備える挟持装置(治具)でジャケット本体2と封止体3とを両外側から押圧して挟持する。本実施形態では、保持部22と底部10との間、保持部22と封止体3との間にそれぞれ中間プレート21を介設している。保持部22は円柱状を呈し、その端面が中間プレート21,21にそれぞれ面接触する。中間プレート21を設けることで、保持部22の押圧力を分散させて、ジャケット本体2及び封止体3を確実に保持することができる。なお、中間プレート21は省略してもよい。 As shown in FIGS. 8 and 9, the first main joining step is a step of friction stir welding of the first butt portion J1 using the rotary tool F. In the first main joining step, a holding step and a friction stir welding step are performed. In the holding step, the jacket body 2 and the sealing body 3 are pressed from both outer sides by a holding device (jig) provided with a pair of holding portions 22 to hold the jacket body 2. In the present embodiment, an intermediate plate 21 is interposed between the holding portion 22 and the bottom portion 10 and between the holding portion 22 and the sealing body 3, respectively. The holding portion 22 has a columnar shape, and its end faces come into surface contact with the intermediate plates 21 and 21, respectively. By providing the intermediate plate 21, the pressing force of the holding portion 22 can be dispersed, and the jacket body 2 and the sealing body 3 can be reliably held. The intermediate plate 21 may be omitted.
 挟持装置の保持部22とジャケット本体2及び封止体3とは同期して回転又は平行移動する。つまり、当該挟持装置は、ジャケット本体2の底部10及び封止体3の表面3aを保持部22,22でそれぞれ押圧し挟持した状態で、ジャケット本体2及び封止体3を周方向に回転させるとともに、上下、左右及び前後方向に直線移動させることができる。
 回転ツールFは、本実施形態では、水平方向及び上下方向に移動可能な摩擦攪拌装置に取り付けられている。なお、回転ツールFは、先端にスピンドルユニット等の回転駆動手段を備えたロボットアームに取り付けてもよい。
The holding portion 22 of the holding device, the jacket body 2 and the sealing body 3 rotate or move in parallel in synchronization with each other. That is, the sandwiching device rotates the jacket body 2 and the sealing body 3 in the circumferential direction while the bottom portion 10 of the jacket body 2 and the surface 3a of the sealing body 3 are pressed and sandwiched by the holding portions 22 and 22, respectively. At the same time, it can be linearly moved up and down, left and right, and front and back.
In this embodiment, the rotation tool F is attached to a friction stir device that can move in the horizontal direction and the vertical direction. The rotation tool F may be attached to a robot arm having a rotation driving means such as a spindle unit at its tip.
 第一本接合工程では、まず、摩擦攪拌装置に取り付けられた回転ツールFを右回転させる。回転ツールFの位置は、本実施形態では摩擦攪拌装置に対して相対移動しないように固定されている。つまり、回転ツールFは摩擦攪拌装置に対して変位させず、回転ツールFに対してジャケット本体2及び封止体3側を移動させて摩擦攪拌を行う。
 次に、図8及び図9に示すように、ジャケット本体2及び封止体3を保持する保持工程を行い、挟持装置(治具)を用いてジャケット本体2及び封止体3を保持する。そして、挟持装置を操作して、封止体3の表面3a上に設定された開始位置SP1に回転ツールFを挿入して摩擦攪拌工程を行う。摩擦攪拌工程では、押入区間と、本区間と、離脱区間とを連続して摩擦攪拌を行う。
In the first main joining step, first, the rotary tool F attached to the friction stir welder is rotated clockwise. In this embodiment, the position of the rotation tool F is fixed so as not to move relative to the friction stir device. That is, the rotating tool F is not displaced with respect to the friction stir welding device, but the jacket body 2 and the sealing body 3 side are moved with respect to the rotating tool F to perform friction stir welding.
Next, as shown in FIGS. 8 and 9, a holding step of holding the jacket body 2 and the sealing body 3 is performed, and the jacket body 2 and the sealing body 3 are held by using a holding device (jig). Then, the holding device is operated to insert the rotary tool F into the start position SP1 set on the surface 3a of the sealing body 3 to perform the friction stir welding step. In the friction stir welding step, the press-in section, the main section, and the detachment section are continuously subjected to friction stir welding.
 押入区間は、封止体3の表面3a上に設定された開始位置SP1から封止体3の表面3a上に設定された中間点S1までの区間である。本区間は、中間点S1から封止体3の表面3aの外周部を一周して中間点S1を通過した後、封止体3の表面3a上に設定された中間点S2までの区間である。離脱区間は、中間点S2から封止体3の表面3a上に設定された終了位置EP1までの区間である。中間点S1,S2は、封止体3の表面3aのうち、第一突合せ部J1に対応する位置に互いに離間して設定されている。また、開始位置SP1及び終了位置EP1は、封止体3の表面3aのうち、第一突合せ部J1に対応する位置よりも内側に設定されている。 The closet section is a section from the start position SP1 set on the surface 3a of the sealing body 3 to the intermediate point S1 set on the surface 3a of the sealing body 3. This section is a section from the intermediate point S1 to the intermediate point S2 set on the surface 3a of the sealing body 3 after passing through the intermediate point S1 around the outer peripheral portion of the surface 3a of the sealing body 3. .. The detachment section is a section from the intermediate point S2 to the end position EP1 set on the surface 3a of the sealing body 3. The intermediate points S1 and S2 are set at positions corresponding to the first butt portion J1 on the surface 3a of the sealing body 3 so as to be separated from each other. Further, the start position SP1 and the end position EP1 are set inside the surface 3a of the sealing body 3 from the positions corresponding to the first butt portion J1.
 押入区間では、開始位置SP1に回転ツールFの回転中心軸Zが垂直となるように配置し、中間点S1に向けて相対移動させながら所定の深さとなるまで先端側ピンF3を徐々に押入していく。回転ツールFが中間点S1に達したら、そのまま本区間に移行する。回転ツールFの移動軌跡には塑性化領域W1が形成される。押入区間から本区間に回転ツールFを移行させる際には、途中で回転ツールFが停止したり、移動速度が低下したりしないように、平面視直線状又は円弧状に回転ツールFを移動させることが好ましい。 In the closet section, the rotation center axis Z of the rotation tool F is arranged so as to be perpendicular to the start position SP1, and the tip side pin F3 is gradually pushed in until it reaches a predetermined depth while moving relative to the intermediate point S1. To go. When the rotation tool F reaches the intermediate point S1, the section shifts to this section as it is. A plasticized region W1 is formed in the movement locus of the rotation tool F. When shifting the rotation tool F from the closet section to this section, move the rotation tool F in a straight line or arc shape in a plan view so that the rotation tool F does not stop or the movement speed decreases in the middle. Is preferable.
 本区間では、図10に示すように、回転ツールFの先端側ピンF3を封止体3及びジャケット本体2に接触させつつ、基端側ピンF2の外周面を封止体3の表面3aに接触させた状態で、回転ツールFを封止体3の表面3aの外周縁に沿って相対移動させる。本区間では、回転ツールFで周壁部11廻りを一周させる。ここで、「所定の深さ」とは、本区間において中間点S1から一周させて中間点S2に達するまでの回転ツールFの先端側ピンF3を差し込む深さを言う。本実施形態では、回転ツールFの先端側ピンF3の平坦面F4が、周壁部11の端面11aに達するように設定している。ジャケット本体2及び封止体3の角部においては、保持部22,22を回転させながら回転ツールFを相対移動させる。塑性化領域W1の始端と終端とをオーバーラップさせて回転ツールFが中間点S2(図9参照)に達したら、そのまま離脱区間に移行する。本区間から離脱区間に回転ツールFを移行させる際には、途中で回転ツールFが停止したり、移動速度が低下したりしないように、平面視直線状又は円弧状に回転ツールFを移動させることが好ましい。 In this section, as shown in FIG. 10, while the tip end side pin F3 of the rotation tool F is in contact with the sealing body 3 and the jacket body 2, the outer peripheral surface of the base end side pin F2 is brought into the surface 3a of the sealing body 3. In the contacted state, the rotating tool F is relatively moved along the outer peripheral edge of the surface 3a of the sealing body 3. In this section, the rotation tool F is used to make a round around the peripheral wall portion 11. Here, the "predetermined depth" refers to the depth at which the tip end side pin F3 of the rotation tool F is inserted from the intermediate point S1 to the intermediate point S2 in this section. In the present embodiment, the flat surface F4 of the tip side pin F3 of the rotation tool F is set to reach the end surface 11a of the peripheral wall portion 11. At the corners of the jacket body 2 and the sealing body 3, the rotating tool F is relatively moved while rotating the holding portions 22 and 22. When the rotation tool F reaches the intermediate point S2 (see FIG. 9) by overlapping the start end and the end end of the plasticized region W1, the process shifts to the detachment section as it is. When shifting the rotation tool F from this section to the departure section, the rotation tool F is moved in a linear or arcuate shape in a plan view so that the rotation tool F does not stop or the movement speed decreases in the middle. Is preferable.
 離脱区間では、図11に示すように、中間点S2から終了位置EP1に相対移動させながら、先端側ピンF3を封止体3から徐々に引き抜いて終了位置EP1で離脱させる。第一本接合工程が終了したら、ジャケット本体2及び封止体3から挟持装置を離脱させる。
 本実施形態では、本区間において、先端側ピンF3の先端の平坦面F4が端面11aに達するようにしているが、先端側ピンF3を封止体3のみと接触させた状態で摩擦攪拌接合を行ってもよい。この場合は、先端側ピンF3と封止体3との摩擦熱によって第一突合せ部J1が塑性流動化して接合される。
In the detachment section, as shown in FIG. 11, while moving relative to the end position EP1 from the intermediate point S2, the tip end side pin F3 is gradually pulled out from the sealing body 3 and detached at the end position EP1. When the first main joining step is completed, the holding device is detached from the jacket body 2 and the sealing body 3.
In the present embodiment, in this section, the flat surface F4 at the tip of the tip side pin F3 reaches the end face 11a, but friction stir welding is performed with the tip side pin F3 in contact with only the sealing body 3. You may go. In this case, the first butt portion J1 is plastically fluidized and joined by the frictional heat between the tip end side pin F3 and the sealing body 3.
 第二本接合工程は、図12に示すように、回転ツールFを用いて封止体3と支柱12とを摩擦攪拌接合する工程である。第二本接合工程では、回転ツールFを封止体3の表面3aから垂直に挿入し、第二突合せ部J2に沿って一周以上相対移動させた後、封止体3から回転ツールFを離脱させる。第二本接合工程では、先端側ピンF3をジャケット本体2の支柱12及び封止体3に接触させるとともに、基端側ピンF2の外周面を封止体3の表面3aに接触させた状態で摩擦攪拌を行う。 As shown in FIG. 12, the second main joining step is a step of friction stir welding the sealing body 3 and the support column 12 using the rotary tool F. In the second main joining step, the rotating tool F is inserted vertically from the surface 3a of the sealing body 3, is relatively moved along the second butt portion J2 by one or more turns, and then the rotating tool F is separated from the sealing body 3. Let me. In the second main joining step, the tip end side pin F3 is brought into contact with the support column 12 of the jacket body 2 and the sealing body 3, and the outer peripheral surface of the base end side pin F2 is brought into contact with the surface 3a of the sealing body 3. Friction stir is performed.
 本実施形態では、先端側ピンF3の平坦面F4が端面11a達するようにしているが、先端側ピンF3と封止体3のみとが接触させた状態で摩擦攪拌接合を行ってもよい。この場合は、先端側ピンF3と封止体3との摩擦熱によって第二突合せ部J2が塑性流動化して接合される。なお、第二本接合工程は省略してもよい。
 以上説明した第一実施形態に係る液冷ジャケットの製造方法によれば、ジャケット本体2の底部10と封止体3の表面3aとを一対の保持部22で両外側から保持した状態でジャケット本体2及び封止体3を回転又は移動させるため、第一本接合工程中に保持部22と回転ツールFとが干渉しない。つまり、ジャケット本体2と封止体3とを位置決めするための治具が、回転ツールFの移動ルート上に無いため回転ツールFの移動の妨げにならない。これにより、回転ツールFを駆動させるための装置等の付帯設備に費用を要せず、液冷ジャケットを低コストで製造することができる。
In the present embodiment, the flat surface F4 of the tip side pin F3 reaches the end face 11a, but friction stir welding may be performed in a state where only the tip side pin F3 and the sealing body 3 are in contact with each other. In this case, the second butt portion J2 is plastically fluidized and joined by the frictional heat between the tip end side pin F3 and the sealing body 3. The second joining step may be omitted.
According to the method for manufacturing a liquid-cooled jacket according to the first embodiment described above, the jacket main body is held in a state where the bottom portion 10 of the jacket main body 2 and the surface 3a of the sealing body 3 are held from both outer sides by a pair of holding portions 22. Since the 2 and the sealing body 3 are rotated or moved, the holding portion 22 and the rotating tool F do not interfere with each other during the first main joining process. That is, since the jig for positioning the jacket body 2 and the sealing body 3 is not on the movement route of the rotation tool F, the movement of the rotation tool F is not hindered. As a result, the liquid-cooled jacket can be manufactured at low cost without costing ancillary equipment such as a device for driving the rotary tool F.
 また、第二本接合工程を行うことで、接合強度を高めることができる。第二本接合工程において、先端側ピンF3を支柱12に接触させれば、第二突合せ部J2をより確実に接合することができる。
 また、本実施形態では、第一本接合工程において、基端側ピンF2の外周面と封止体3の表面3aとを接触させ、塑性流動材を押さえながら摩擦攪拌を行うため、バリの発生を抑制することができる。また、第二本接合工程において、基端側ピンF2の外周面と封止体3の表面3aとを接触させ、塑性流動材を押さえながら摩擦攪拌を行うため、バリの発生を抑制することができる。
Further, the joining strength can be increased by performing the second joining step. In the second main joining step, if the tip end side pin F3 is brought into contact with the support column 12, the second butt portion J2 can be joined more reliably.
Further, in the present embodiment, in the first main joining step, the outer peripheral surface of the base end side pin F2 is brought into contact with the surface 3a of the sealing body 3, and friction stirring is performed while pressing the plastic fluid material, so that burrs are generated. Can be suppressed. Further, in the second joining step, the outer peripheral surface of the base end side pin F2 and the surface 3a of the sealing body 3 are brought into contact with each other, and friction stirring is performed while pressing the plastic fluid material, so that the generation of burrs can be suppressed. it can.
 また、基端側ピンF2の外周面で塑性流動材を押えることができるため、接合表面(封止体3の表面3a)に形成される段差凹溝を小さくすることができるとともに、段差凹溝の脇に形成される膨出部を無くすか若しくは小さくすることができる。また、基端側ピンF2の階段状のピン段差部F21は浅く、かつ、出口が広いため、塑性流動材を段差底面F21aで押えつつ塑性流動材がピン段差部F21の外部に抜けやすくなっている。そのため、基端側ピンF2で塑性流動材を押えても基端側ピンF2の外周面に塑性流動材が付着し難い。よって、接合表面粗さを小さくすることができるとともに、接合品質を好適に安定させることができる。 Further, since the plastic fluid material can be pressed on the outer peripheral surface of the base end side pin F2, the stepped concave groove formed on the joint surface (surface 3a of the sealing body 3) can be reduced, and the stepped concave groove can be reduced. The bulge formed on the side of the can be eliminated or reduced. Further, since the stepped pin step portion F21 of the base end side pin F2 is shallow and the outlet is wide, the plastic fluid material can be easily pulled out to the outside of the pin step portion F21 while pressing the plastic fluid material with the step bottom surface F21a. There is. Therefore, even if the plastic fluid material is pressed by the base end side pin F2, the plastic fluid material is unlikely to adhere to the outer peripheral surface of the base end side pin F2. Therefore, the roughness of the joint surface can be reduced, and the joint quality can be suitably stabilized.
 また、第一本接合工程では、第一突合せ部J1上での塑性化領域W1の始端と終端とをオーバーラップさせているため、気密性及び水密性を高めることができる。
 なお、第一本接合工程は、第二本接合工程の後に行ってもよい。また、押入区間及び離脱区間では、回転ツールFの移動軌跡が円弧状となるように移動ルートを設定してもよい。また、本実施形態の第一本接合工程では、回転ツールFの位置を摩擦攪拌装置に対して変位させないように設定したが、回転ツールFとジャケット本体2及び封止体3(挟持装置)とを両者とも移動させて摩擦攪拌接合を行ってもよい。回転ツールFをロボットアームに取り付けた場合は、当該ロボットアームとジャケット本体2及び封止体3(挟持装置)とを両者とも移動させて摩擦攪拌接合を行ってもよい。
Further, in the first main joining step, since the start end and the end end of the plasticized region W1 on the first butt portion J1 are overlapped, the airtightness and watertightness can be improved.
The first main joining step may be performed after the second main joining step. Further, in the closet section and the withdrawal section, the movement route may be set so that the movement locus of the rotation tool F has an arc shape. Further, in the first joining step of the present embodiment, the position of the rotating tool F is set so as not to be displaced with respect to the friction stir welding device, but the rotating tool F, the jacket body 2 and the sealing body 3 (holding device) are used. May be moved to perform friction stir welding. When the rotary tool F is attached to the robot arm, the robot arm, the jacket body 2 and the sealing body 3 (holding device) may both be moved to perform friction stir welding.
 また、第一本接合工程では、回転ツールFの回転速度を一定としてもよいが、可変させてもよい。第一本接合工程の押入区間において、開始位置SP1における回転ツールFの回転速度をV1とし、本区間における回転ツールFの回転速度をV2とすると、V1>V2としてもよい。回転速度のV2は、設定移動ルートL1における予め設定された一定の回転速度である。つまり、開始位置SP1では、回転速度を高く設定しておき、押入区間内で徐々に回転速度を低減させながら本区間に移行してもよい。 Further, in the first main joining process, the rotation speed of the rotation tool F may be constant, but may be variable. In the indentation section of the first main joining step, if the rotation speed of the rotation tool F at the start position SP1 is V1 and the rotation speed of the rotation tool F in this section is V2, V1> V2 may be satisfied. The rotation speed V2 is a preset constant rotation speed in the set movement route L1. That is, at the start position SP1, the rotation speed may be set high, and the rotation speed may be gradually reduced in the closet section to shift to the main section.
 また、第一本接合工程の離脱区間において、本区間における回転ツールFの回転速度をV2、終了位置EP1において離脱させるときの回転ツールFの回転速度をV3とすると、V3>V2としてもよい。つまり、離脱区間に移行したら、終了位置EP1に向けて徐々に回転速度を上げながら封止体3から回転ツールFを離脱させてもよい。回転ツールFを封止体3に押し入れる際又は封止体3から離脱させる際に、前記のように設定することで、押入区間又は離脱区間時における少ない押圧力を、回転速度で補うことができるため、摩擦攪拌を好適に行うことができる。 Further, in the detachment section of the first main joining process, if the rotation speed of the rotation tool F in this section is V2 and the rotation speed of the rotation tool F when detached at the end position EP1 is V3, V3> V2 may be satisfied. That is, after shifting to the detachment section, the rotation tool F may be detached from the sealing body 3 while gradually increasing the rotation speed toward the end position EP1. When the rotary tool F is pushed into the sealing body 3 or separated from the sealing body 3, by setting as described above, it is possible to supplement the small pressing force in the pushing-in section or the separating section with the rotation speed. Therefore, friction stir welding can be preferably performed.
[第二実施形態]
 次に、本発明の第二実施形態に係る液冷ジャケットの製造方法ついて説明する。図13に示すように、第二実施形態では、支柱12に支柱段差部14が設けられている点で第一実施形態と主に相違する。第二実施形態では、第一実施形態と異なる部分を中心に説明する。
 ジャケット本体2Aは、底部10と、周壁部11と、支柱12とで構成されている。底部10及び周壁部11は第一実施形態と同一である。支柱12の先端側には突出部15が形成されている。突出部15の形状は特に制限されないが、本実施形態では円柱状になっている。突出部15が形成されることにより、支柱12の先端には支柱段差部14が形成されている。支柱段差部14は、段差底面14aと、段差底面14aから立ち上がる段差側面14bが形成されている。段差底面14aは、周壁部11の端面11aと同じ高さ位置に形成されている。
[Second Embodiment]
Next, a method for manufacturing the liquid-cooled jacket according to the second embodiment of the present invention will be described. As shown in FIG. 13, the second embodiment is mainly different from the first embodiment in that the support column 12 is provided with the support column step portion 14. In the second embodiment, the parts different from the first embodiment will be mainly described.
The jacket body 2A is composed of a bottom portion 10, a peripheral wall portion 11, and a support column 12. The bottom portion 10 and the peripheral wall portion 11 are the same as those in the first embodiment. A protrusion 15 is formed on the tip end side of the support column 12. The shape of the protruding portion 15 is not particularly limited, but in the present embodiment, it has a columnar shape. By forming the projecting portion 15, a strut step portion 14 is formed at the tip of the strut 12. The strut step portion 14 is formed with a step bottom surface 14a and a step side surface 14b rising from the step bottom surface 14a. The step bottom surface 14a is formed at the same height as the end surface 11a of the peripheral wall portion 11.
 封止体3Aには、孔部4が形成されている。孔部4は、支柱12の突出部15に対応する位置に形成されている。孔部4は、突出部15が挿入可能な大きさで形成されている。
 第二実施形態に係る液冷ジャケットの製造方法では、準備工程と、載置工程と、第一本接合工程と、第二本接合工程とを行う。準備工程は、ジャケット本体2A及び封止体3Aを準備する工程である。
 載置工程は、図13に示すように、ジャケット本体2Aに封止体3Aを載置する工程である。載置工程では、周壁部11の端面11aに封止体3Aを載置しつつ、支柱12の突出部15を孔部4に挿入する。これにより、周壁部11の端面11aと封止体3の裏面3bとが突き合わされて第一突合せ部J1が形成される。また、段差側面14bと孔部4の孔壁4aとが突き合わされて段差側面突合せ部J12が形成される。また、段差底面14aと封止体3の裏面3bとが突き合わされて段差底面突合せ部J13が形成される。封止体3の厚さは適宜設定すればよいが、本実施形態では、段差側面14bの高さ寸法よりも大きくなっている。
A hole 4 is formed in the sealing body 3A. The hole 4 is formed at a position corresponding to the protrusion 15 of the support column 12. The hole 4 is formed in a size such that the protrusion 15 can be inserted.
In the method for manufacturing a liquid-cooled jacket according to the second embodiment, a preparation step, a mounting step, a first main joining step, and a second main joining step are performed. The preparation step is a step of preparing the jacket body 2A and the sealing body 3A.
As shown in FIG. 13, the mounting step is a step of mounting the sealing body 3A on the jacket body 2A. In the mounting step, the protruding portion 15 of the support column 12 is inserted into the hole portion 4 while the sealing body 3A is mounted on the end surface 11a of the peripheral wall portion 11. As a result, the end surface 11a of the peripheral wall portion 11 and the back surface 3b of the sealing body 3 are abutted to form the first abutting portion J1. Further, the step side surface 14b and the hole wall 4a of the hole portion 4 are abutted to form the step side surface abutting portion J12. Further, the step bottom surface 14a and the back surface 3b of the sealing body 3 are abutted to form the step bottom surface abutting portion J13. The thickness of the sealing body 3 may be appropriately set, but in the present embodiment, it is larger than the height dimension of the step side surface 14b.
 第一本接合工程は、第一実施形態と同じである。第二本接合工程では、回転ツールFの先端側ピンF3を段差側面突合せ部J12及び段差底面突合せ部J13に挿入し、段差側面突合せ部J12に沿って一周以上回転ツールFを相対移動させる。また、基端側ピンF2の外周面を封止体3Aの表面3aに接触させた状態で摩擦攪拌を行う。本実施形態では、先端側ピンF3の平坦面F4が段差底面14aに達するように挿入深さを設定している。回転ツールFの移動軌跡には塑性化領域W2が形成される。なお、第二本接合工程では、回転ツールFの平坦面F4を段差底面14aに接触しないように設定してもよい。 The first main joining process is the same as that of the first embodiment. In the second main joining step, the tip side pin F3 of the rotation tool F is inserted into the step side surface butt portion J12 and the step bottom surface butt portion J13, and the rotation tool F is relatively moved one or more turns along the step side surface butt portion J12. Further, friction stir welding is performed in a state where the outer peripheral surface of the base end side pin F2 is in contact with the surface 3a of the sealing body 3A. In the present embodiment, the insertion depth is set so that the flat surface F4 of the tip end side pin F3 reaches the step bottom surface 14a. A plasticized region W2 is formed in the movement locus of the rotation tool F. In the second joining step, the flat surface F4 of the rotary tool F may be set so as not to come into contact with the step bottom surface 14a.
 以上説明した本実施形態に係る第二本接合工程によれば、支柱12の突出部15に封止体3Aの孔部4を挿入することで、ジャケット本体2Aと封止体3Aとの位置決めを容易に行うことができる。また、封止体3Aの板厚を、段差側面14bよりも大きく設定しているため、接合部が金属不足になるのを防ぐことができる。
 また、基端側ピンF2の外周面で塑性流動材を押えることができるため、接合表面(封止体3Aの表面3a)に形成される段差凹溝を小さくすることができるとともに、段差凹溝の脇に形成される膨出部を無くすか若しくは小さくすることができる。また、基端側ピンF2の階段状のピン段差部F21は浅く、かつ、出口が広いため、塑性流動材を段差底面F21aで押えつつ塑性流動材がピン段差部F21の外部に抜けやすくなっている。そのため、基端側ピンF2で塑性流動材を押えても基端側ピンF2の外周面に塑性流動材が付着し難い。よって、接合表面粗さを小さくすることができるとともに、接合品質を好適に安定させることができる。
According to the second joining step according to the present embodiment described above, the jacket body 2A and the sealing body 3A can be positioned by inserting the hole 4 of the sealing body 3A into the protruding portion 15 of the support column 12. It can be done easily. Further, since the plate thickness of the sealing body 3A is set to be larger than that of the step side surface 14b, it is possible to prevent the joint portion from becoming short of metal.
Further, since the plastic fluid material can be pressed on the outer peripheral surface of the base end side pin F2, the stepped concave groove formed on the joint surface (surface 3a of the sealing body 3A) can be reduced, and the stepped concave groove can be reduced. The bulge formed on the side of the can be eliminated or reduced. Further, since the stepped pin step portion F21 of the base end side pin F2 is shallow and the outlet is wide, the plastic fluid material can be easily pulled out to the outside of the pin step portion F21 while pressing the plastic fluid material with the step bottom surface F21a. There is. Therefore, even if the plastic fluid material is pressed by the base end side pin F2, the plastic fluid material is unlikely to adhere to the outer peripheral surface of the base end side pin F2. Therefore, the roughness of the joint surface can be reduced, and the joint quality can be suitably stabilized.
 以上本発明の実施形態について説明したが、本発明の趣旨に反しない範囲において適宜設計変更が可能である。 Although the embodiments of the present invention have been described above, the design can be appropriately changed within a range not contrary to the gist of the present invention.
 1    液冷ジャケット
 2    ジャケット本体
 3    封止体
 3a   表面
 11a  端面
 22   保持部
 F    回転ツール
 F2   基端側ピン
 F3   先端側ピン
 J1   第一突合せ部
 J2   第二突合せ部
 J12  段差側面突合せ部
 J13  段差底面突合せ部
 SP1  開始位置
 EP1  終了位置
 W1   塑性化領域
1 Liquid-cooled jacket 2 Jacket body 3 Encapsulant 3a Surface 11a End face 22 Holding part F Rotating tool F2 Base end side pin F3 Tip side pin J1 First butt part J2 Second butt part J12 Step side butt part J13 Step bottom butt part SP1 start position EP1 end position W1 plasticization region

Claims (8)

  1.  底部、前記底部の周縁から立ち上がる周壁部及び前記底部から立ち上がる支柱を有するジャケット本体と、前記ジャケット本体の開口部を封止する封止体とで構成され、前記ジャケット本体と前記封止体とを摩擦攪拌で接合する液冷ジャケットの製造方法であって、
     摩擦攪拌で用いる回転ツールは、基端側ピンと、先端側ピンとを備え、
     前記基端側ピンのテーパー角度は、前記先端側ピンのテーパー角度よりも大きくなっており、前記基端側ピンの外周面には階段状の段差部が形成されており、
     前記ジャケット本体に前記封止体を載置することにより前記周壁部の端面と前記封止体の裏面とを重ね合わせて第一突合せ部を形成するとともに、前記支柱の端面と前記封止体の裏面とを重ね合わせて第二突合せ部を形成する載置工程と、
     回転する前記回転ツールの前記先端側ピンを前記封止体の表面から挿入し、前記先端側ピンを前記封止体、又は前記周壁部及び前記封止体に接触させつつ、前記基端側ピンの外周面を前記封止体の表面に接触させた状態で前記第一突合せ部に沿って所定の深さで前記周壁部の廻りに相対的に一周させて前記第一突合せ部を摩擦攪拌する第一本接合工程と、を含み、
     前記第一本接合工程において、前記ジャケット本体の前記底部と前記封止体の表面とを両外側から一対の保持部で押圧して保持しつつ、前記保持部を用いて前記ジャケット本体及び前記封止体を回転又は平行移動させて前記ジャケット本体と前記封止体とを摩擦攪拌することを特徴とする液冷ジャケットの製造方法。
    The jacket body is composed of a bottom portion, a peripheral wall portion rising from the peripheral edge of the bottom portion, a jacket main body having a support column rising from the bottom portion, and a sealing body for sealing an opening of the jacket main body. A method for manufacturing a liquid-cooled jacket that is joined by friction stir welding.
    The rotary tool used for friction stir welding has a base end side pin and a tip end side pin.
    The taper angle of the base end side pin is larger than the taper angle of the tip end side pin, and a stepped step portion is formed on the outer peripheral surface of the base end side pin.
    By placing the sealing body on the jacket body, the end surface of the peripheral wall portion and the back surface of the sealing body are overlapped to form the first butt portion, and the end face of the support column and the sealing body are formed. A mounting process in which the back surface is overlapped to form a second butt portion,
    The tip side pin of the rotating tool is inserted from the surface of the seal body, and the base end side pin is brought into contact with the seal body or the peripheral wall portion and the seal body. With the outer peripheral surface of the seal in contact with the surface of the sealing body, the first butt portion is frictionally agitated by making a relative circumference around the peripheral wall portion at a predetermined depth along the first butt portion. Including the first main joining process
    In the first main joining step, the bottom of the jacket body and the surface of the sealing body are pressed and held by a pair of holding portions from both outer sides, and the jacket body and the sealing are used by using the holding portions. A method for producing a liquid-cooled jacket, which comprises rotating or translating a stop body to frictionally stir the jacket body and the sealing body.
  2.  回転する前記回転ツールの前記先端側ピンを前記封止体の表面から挿入し、前記先端側ピンを前記封止体のみ、又は前記封止体及び前記支柱に接触させつつ前記基端側ピンの外周面を前記封止体の表面に接触させた状態で前記回転ツールを相対的に移動させて前記第二突合せ部を摩擦攪拌する第二本接合工程と、をさらに含むことを特徴とする請求項1に記載の液冷ジャケットの製造方法。 The tip side pin of the rotating tool is inserted from the surface of the seal body, and the tip end side pin of the base end side pin is brought into contact with only the seal body or the seal body and the support column. A claim further comprising a second joining step of relatively moving the rotating tool with the outer peripheral surface in contact with the surface of the sealing body to frictionally stir the second butt portion. Item 2. The method for manufacturing a liquid-cooled jacket according to item 1.
  3.  底部、前記底部の周縁から立ち上がる周壁部及び前記底部から立ち上がる支柱を有するジャケット本体と、前記支柱の先端が挿入される孔部を備えるとともに前記ジャケット本体の開口部を封止する封止体とで構成され、前記ジャケット本体と前記封止体とを摩擦攪拌で接合する液冷ジャケットの製造方法であって、
     摩擦攪拌で用いる回転ツールは、基端側ピンと、先端側ピンとを備え、
     前記基端側ピンのテーパー角度は、前記先端側ピンのテーパー角度よりも大きくなっており、前記基端側ピンの外周面には階段状の段差部が形成されており、
     前記支柱の先端に段差底面と当該段差底面から立ち上がる段差側面とを有する支柱段差部を形成するとともに、前記支柱の段差底面を前記周壁部の端面と同一の高さ位置に形成し、前記封止体の厚みを前記段差側面よりも大きく形成する準備工程と、
     前記ジャケット本体に前記封止体を載置することにより前記周壁部の端面と前記封止体の裏面とを重ね合わせて第一突合せ部を形成するとともに、前記支柱の段差側面と前記孔部の孔壁とを突き合せて段差側面突合せ部を形成し、前記支柱の段差底面と前記封止体の裏面とを重ね合わせて段差底面突合せ部を形成する載置工程と、
     回転する前記回転ツールの前記先端側ピンを前記封止体の表面に挿入し、前記先端側ピンを前記封止体、又は前記周壁部及び前記封止体に接触させつつ、前記基端側ピンの外周面を前記封止体の表面に接触させた状態で前記第一突合せ部に沿って所定の深さで前記周壁部の廻りに相対的に一周させて前記第一突合せ部を摩擦攪拌する第一本接合工程と、を含み、
     前記第一本接合工程において、前記ジャケット本体の前記底部と前記封止体の表面とを両外側から一対の保持部で押圧して保持しつつ、前記保持部を用いて前記ジャケット本体及び前記封止体を回転又は平行移動させて前記ジャケット本体と前記封止体とを摩擦攪拌することを特徴とする液冷ジャケットの製造方法。
    A jacket body having a bottom portion, a peripheral wall portion rising from the peripheral edge of the bottom portion, and a support column rising from the bottom portion, and a sealing body provided with a hole into which the tip of the support column is inserted and sealing an opening of the jacket body. It is a method for manufacturing a liquid-cooled jacket, which is configured and joins the jacket body and the sealing body by friction stir welding.
    The rotary tool used for friction stir welding has a base end side pin and a tip end side pin.
    The taper angle of the base end side pin is larger than the taper angle of the tip end side pin, and a stepped step portion is formed on the outer peripheral surface of the base end side pin.
    A strut step portion having a step bottom surface and a step side surface rising from the step bottom surface is formed at the tip of the strut, and the step bottom surface of the strut is formed at the same height position as the end surface of the peripheral wall portion, and the sealing is performed. The preparatory step of forming the body thickness larger than the step side surface, and
    By placing the sealing body on the jacket body, the end surface of the peripheral wall portion and the back surface of the sealing body are overlapped to form the first abutting portion, and the stepped side surface of the support column and the hole portion are formed. A mounting step of forming a step side surface abutting portion by abutting the hole wall and superimposing the step bottom surface of the support column and the back surface of the sealing body to form a step bottom surface abutting portion.
    The tip end side pin of the rotating tool is inserted into the surface of the seal body, and the base end side pin is brought into contact with the seal body or the peripheral wall portion and the seal body. With the outer peripheral surface of the seal in contact with the surface of the sealing body, the first butt portion is frictionally agitated by making a relative circumference around the peripheral wall portion at a predetermined depth along the first butt portion. Including the first main joining process
    In the first main joining step, the bottom of the jacket body and the surface of the sealing body are pressed and held by a pair of holding portions from both outer sides, and the jacket body and the sealing are used by using the holding portions. A method for producing a liquid-cooled jacket, which comprises rotating or translating a stop body to frictionally stir the jacket body and the sealing body.
  4.  回転する前記回転ツールの前記先端側ピンを封止体の表面から挿入し、前記先端側ピンを前記封止体及び前記支柱に接触させつつ前記基端側ピンの外周面を少なくとも前記封止体の表面に接触させた状態で前記回転ツールを相対移動させて前記段差側面突合せ部を摩擦攪拌する第二本接合工程と、をさらに含むことを特徴とする請求項3に記載の液冷ジャケットの製造方法。 The tip end side pin of the rotating tool is inserted from the surface of the sealing body, and the outer peripheral surface of the base end side pin is at least the sealing body while the tip end side pin is in contact with the sealing body and the support column. The liquid-cooled jacket according to claim 3, further comprising a second joining step of frictionally agitating the step side surface abutting portion by relatively moving the rotating tool in contact with the surface of the jacket. Production method.
  5.  前記第一本接合工程後に前記第二本接合工程を行うことを特徴とする請求項2又は請求項4に記載の液冷ジャケットの製造方法。 The method for manufacturing a liquid-cooled jacket according to claim 2 or 4, wherein the second main joining step is performed after the first main joining step.
  6.  前記第二本接合工程後に前記第一本接合工程を行うことを特徴とする請求項2又は請求項4に記載の液冷ジャケットの製造方法。 The method for manufacturing a liquid-cooled jacket according to claim 2 or 4, wherein the first main joining step is performed after the second main joining step.
  7.  前記第一本接合工程では、所定の回転速度で前記回転ツールを回転させて摩擦攪拌を行い、
     前記第一本接合工程において前記先端側ピンを離脱させるとき、前記所定の回転速度よりも徐々に回転速度を上げながら終了位置まで移動させることを特徴とする請求項1又は請求項3に記載の液冷ジャケットの製造方法。
    In the first main joining step, the rotary tool is rotated at a predetermined rotation speed to perform friction stir welding.
    When disengaging the distal end side pin at the first present bonding process, according to claim 1 or claim 3, characterized in that moving to the end position while gradually increased rotational speed than the predetermined rotational speed How to manufacture a liquid-cooled jacket.
  8.  前記第一本接合工程では、所定の回転速度で前記回転ツールを回転させて摩擦攪拌を行い、
     前記第一本接合工程において前記先端側ピンを挿入するとき、前記所定の回転速度よりも高い速度で前記先端側ピンを回転させた状態で挿入し、徐々に回転速度を下げながら前記第一突合せ部まで移動させることを特徴とする請求項1又は請求項3に記載の液冷ジャケットの製造方法。
    In the first main joining step, the rotary tool is rotated at a predetermined rotation speed to perform friction stir welding.
    When the tip side pin is inserted in the first main joining step, the tip side pin is inserted in a state of being rotated at a speed higher than the predetermined rotation speed, and the first butting is performed while gradually reducing the rotation speed. The method for manufacturing a liquid-cooled jacket according to claim 1 or 3, wherein the liquid-cooled jacket is moved to a portion.
PCT/JP2020/013824 2019-11-21 2020-03-26 Method for manufacturing liquid cooling jacket WO2021100222A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202080080506.1A CN114728368A (en) 2019-11-21 2020-03-26 Method for manufacturing liquid cooling jacket

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019210695A JP2021079422A (en) 2019-11-21 2019-11-21 Method of manufacturing liquid-cooled jacket
JP2019-210695 2019-11-21

Publications (1)

Publication Number Publication Date
WO2021100222A1 true WO2021100222A1 (en) 2021-05-27

Family

ID=75963679

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/013824 WO2021100222A1 (en) 2019-11-21 2020-03-26 Method for manufacturing liquid cooling jacket

Country Status (3)

Country Link
JP (1) JP2021079422A (en)
CN (1) CN114728368A (en)
WO (1) WO2021100222A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210324889A1 (en) * 2018-10-25 2021-10-21 Nhk Spring Co., Ltd. Joined body

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019017777A (en) * 2017-07-19 2019-02-07 株式会社ユニバーサルエンターテインメント Game machine

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008041380A1 (en) * 2006-10-02 2008-04-10 Nippon Light Metal Company, Ltd. Method of welding and method of friction stir
WO2019193779A1 (en) * 2018-04-02 2019-10-10 日本軽金属株式会社 Method for manufacturing liquid-cooled jacket
WO2019193778A1 (en) * 2018-04-02 2019-10-10 日本軽金属株式会社 Method for manufacturing liquid-cooled jacket
JP2019188433A (en) * 2018-04-24 2019-10-31 アイシン精機株式会社 Friction agitation joining method

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5381344B2 (en) * 2009-06-01 2014-01-08 日本軽金属株式会社 Joining method
WO2016072211A1 (en) * 2014-11-05 2016-05-12 日本軽金属株式会社 Method of manufacturing liquid-cooled jacket and liquid-cooled jacket
JP6766956B2 (en) * 2017-04-18 2020-10-14 日本軽金属株式会社 How to manufacture a liquid-cooled jacket
CN108213829B (en) * 2018-03-26 2023-11-14 辽宁工业大学 Staggered spoke type telescopic tool for friction stir welding and adjusting method thereof
CN208409046U (en) * 2018-03-26 2019-01-22 辽宁工业大学 A kind of staggeredly scalable tooling of spoke type for agitating friction weldering

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008041380A1 (en) * 2006-10-02 2008-04-10 Nippon Light Metal Company, Ltd. Method of welding and method of friction stir
WO2019193779A1 (en) * 2018-04-02 2019-10-10 日本軽金属株式会社 Method for manufacturing liquid-cooled jacket
WO2019193778A1 (en) * 2018-04-02 2019-10-10 日本軽金属株式会社 Method for manufacturing liquid-cooled jacket
JP2019188433A (en) * 2018-04-24 2019-10-31 アイシン精機株式会社 Friction agitation joining method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210324889A1 (en) * 2018-10-25 2021-10-21 Nhk Spring Co., Ltd. Joined body

Also Published As

Publication number Publication date
CN114728368A (en) 2022-07-08
JP2021079422A (en) 2021-05-27

Similar Documents

Publication Publication Date Title
JP6927068B2 (en) How to manufacture a liquid-cooled jacket
WO2019193779A1 (en) Method for manufacturing liquid-cooled jacket
WO2019150620A1 (en) Method for manufacturing liquid cooling jacket
WO2019064849A1 (en) Method for producing liquid-cooled jacket
JP6769427B2 (en) How to manufacture a liquid-cooled jacket
WO2021100222A1 (en) Method for manufacturing liquid cooling jacket
WO2021144997A1 (en) Method for manufacturing liquid-cooled jacket
WO2021149271A1 (en) Method for manufacturing liquid cooling jacket
WO2021100221A1 (en) Method for manufacturing liquid-cooled jacket
JP2018065164A (en) Method of manufacturing hollow vessel
WO2020213197A1 (en) Method for manufacturing liquid-cooled jacket
JP2020175396A (en) Manufacturing method for liquid-cooled jacket
JP2021133408A (en) Liquid-cooled jacket manufacturing method
JP2020171958A (en) Method for manufacturing liquid-cooling jacket
JP2021133404A (en) Liquid-cooled jacket manufacturing method
WO2020213195A1 (en) Method for manufacturing liquid-cooled jacket
JP2021133403A (en) Liquid-cooled jacket manufacturing method
JP2021094574A (en) Method of manufacturing liquid-cooled jacket
JP2021133407A (en) Liquid-cooled jacket manufacturing method
JP2021186870A (en) Liquid-cooled jacket manufacturing method
JP2021154293A (en) Method of manufacturing liquid-cooled jacket
JP2021186857A (en) Liquid-cooled jacket manufacturing method
JP2021154301A (en) Method of manufacturing liquid-cooled jacket
JP2020171957A (en) Method for manufacturing liquid-cooling jacket
JP2021115587A (en) Method of manufacturing liquid-cooled jacket

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20890140

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20890140

Country of ref document: EP

Kind code of ref document: A1