JP4325260B2 - Manufacturing method of heat transfer element - Google Patents

Manufacturing method of heat transfer element Download PDF

Info

Publication number
JP4325260B2
JP4325260B2 JP2003110413A JP2003110413A JP4325260B2 JP 4325260 B2 JP4325260 B2 JP 4325260B2 JP 2003110413 A JP2003110413 A JP 2003110413A JP 2003110413 A JP2003110413 A JP 2003110413A JP 4325260 B2 JP4325260 B2 JP 4325260B2
Authority
JP
Japan
Prior art keywords
groove
pipe
base member
lid
heat transfer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003110413A
Other languages
Japanese (ja)
Other versions
JP2004314115A (en
Inventor
久司 堀
慎也 牧田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Light Metal Co Ltd
Original Assignee
Nippon Light Metal Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Light Metal Co Ltd filed Critical Nippon Light Metal Co Ltd
Priority to JP2003110413A priority Critical patent/JP4325260B2/en
Publication of JP2004314115A publication Critical patent/JP2004314115A/en
Application granted granted Critical
Publication of JP4325260B2 publication Critical patent/JP4325260B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/14Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending longitudinally
    • F28F1/22Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending longitudinally the means having portions engaging further tubular elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/14Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending longitudinally
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2220/00Closure means, e.g. end caps on header boxes or plugs on conduits

Description

【0001】
【発明の属する技術分野】
本発明は、例えば熱交換機や加熱機器あるいは冷却機器などに用いられる伝熱素子の製造方法に関する。
【0002】
【従来の技術】
熱交換、加熱、あるいは冷却すべき対象物に接触または近接して配置される伝熱素子は、その本体であるベース部材に例えば冷却水などの熱媒体を循環させるパイプを密着させて内蔵することが求められている。
係る伝熱素子の製造方法としては、例えばステンレス鋼からなるパイプを鋳型に内設した所定のキャビティ中に貫通させて配置し、係るキャビティ内に例えばアルミニウム合金の溶湯を鋳込んで一体化させる鋳包み方法がある。
しかしながら、上記鋳包み方法では、鋳造の後でベース部材となるアルミニウム合金が凝固する際に収縮するため、得られるベース部材と上記パイプとの間に隙間が生じる。この結果、上記パイプ中を循環する熱媒体からベース部材への熱伝達性が低下する、という問題があった。しかも、鋳型の制作費が高いため、比較的大型の伝熱素子を少量製造する際には、コスト高になる問題もあった。
【0003】
一方、異なる伝熱素子の製造方法としては、アルミニウム合金からなるベース部材の表面に形成した溝内に、例えばステンレス鋼からなるパイプ、または周囲にステンレス鋼の箔を巻き付けたヒータを挿入し且つ上記溝の開口部を覆うようにベース部材の表面に蓋板をロウ付けする方法がある。
しかしながら、上記ロウ付けを用いる方法では、例えば上記溝にヒータを挿入した場合、その発熱によりロウ材の接合強度が低下したり、係る事態に伴って蓋板が緩んでヒータとベース部材間の熱伝達性が低下する、という問題があった。
しかも、ベース部材となるアルミニウム合金のうち、高温強度が高い2000系あるいは5000系の合金では、ロウ付けができない、という問題もあった。
【0004】
【発明が解決すべき課題】
本発明は、以上に説明した従来の技術における問題点を解決し、熱媒体用のパイプまたはヒータとこれを内蔵するベース部材とが密着した熱伝達性に優れた伝熱素子の製造方法を提供する、ことを課題とする。
【0005】
【課題を解決するための手段および発明の効果】
本発明は、上記課題を解決するため、ベース部材に形成した蓋溝の底面に開口する凹溝などに熱媒体用のパイプなどを密着可能に挿入し、且つ上記蓋溝にほぼ同一断面の蓋板を嵌合すると共に、係る蓋板とベース部材とを固相状態で一体化する摩擦攪拌接合する、ことに着想して成されたものである。
即ち、本発明による伝熱素子の製造方法(請求項1)は、ベース部材の表面に開口する断面が矩形の蓋溝の底面に設けられ、且つ少なくとも下半部が断面半円形のアール面である凹溝に、熱媒体用で断面が円形のパイプまたはヒータを挿入する挿入工程と、上記ベース部材の蓋溝に断面がほぼ同じ蓋板を嵌合する閉塞工程と、上記ベース材の蓋溝における両側壁と上記蓋板の両側面との各突き合わせ面に沿って、摩擦攪拌接合を施す接合工程と、を含み、上記ベース板の凹溝の少なくとも下半部の断面形状は、上記パイプまたはヒータの下半部の断面形状と同じか、あるいはほぼ相似形であり、上記ベース板の凹溝の深さは、上記パイプまたはヒータの外径ないし係る外径の1.2倍未満の範囲にあり、上記凹溝の幅は、上記パイプまたはヒータの外径ないし係る外径の1.1倍の範囲にある、ことを特徴とする。
【0006】
これによれば、ベース部材および蓋板を、両者の金属材料を固相状態で一体化する摩擦攪拌接合による接合部を介して強固に接合できるしかも、ベース部材および蓋板を加圧しつつ接合するため、当該蓋板の底面がパイプまたはヒータに接触ないし押圧し、当該パイプなどとベース部材の凹溝とを広い面接触により密着させることができるこの際、パイプまたはヒータとベース板の凹溝の内壁や蓋板との接触面積を、係るパイプの全周面またはその50%以上にして密着させることができる。
従って、熱伝達性に優れると共に、パイプやヒータなどからの熱エネルギによっても高い強度を維持できる接合部を有する伝熱素子を効率良く確実に製造することが可能となる
【0007】
尚、ベース部材および蓋板の材質は、特に限定されないが、特に高い熱伝導率で且つ加工性に優れたアルミニウム合金が推奨される。また、ベース部材および蓋板がアルミニウム合金からなる場合、前記パイプは、アルミニウム合金よりも高融点で且つ剛性の高いステンレス鋼管が望ましく、前記ヒータは、公知の電熱線の周囲にステンレス鋼の箔を巻き付けた形態が推奨される。更に、ベース部材は、蓋溝と凹溝を一体に成形できるアルミニウム合金の押出形材としても良い。
また、ベース部材および蓋板の材質は、摩擦攪拌接合が異種金属間にも適用可能であるため、両者が同種のアルミニウム合金同士からなる場合のほか、異種のアルミニウム合金の組み合わせからなる場合も含まれる。また、ベース部材および蓋板がアルミニウム合金同士からなる場合、前記摩擦攪拌接合する際の接合温度が500℃以下の温度域であるため、予め前記ベース部材や蓋板の凹溝に挿入したヒータの特性が劣化することも防止できる。
【0008】
更に、パイプやヒータの断面が円形で且つ蓋板の底面が平坦な場合、ベース板の凹溝の下半部は、半円形の断面となり、パイプなどの断面が六角形以上の正多角形で且つ蓋板の底面が平坦な場合、凹溝の下半部は、長方形または台形などになり、断面の下半部で凹溝の内壁と面接触する。また、パイプなどの断面が正方形の場合、これとほぼ同じ正方形を呈する断面ベース部材の凹溝に挿入することで、当該パイプの全周面で係る凹溝および蓋板における凹溝のない底面と面接触が可能となる。一方、蓋板の底面に凹溝が位置する形態では、係る蓋板の凹溝とベース板の凹溝とは、対称で且つ同じ半円形または長方形の断面となる。
【0009】
また、ベース板の凹溝の深さがパイプなどの外径よりも小さいと、パイプなどの全断面が凹溝内に挿入できなくなる。一方、上記凹溝の深さがパイプなどの外径の1.2倍以上になると、蓋板による押さえ込みがなくなり、パイプなどと上記凹溝の内壁との間に隙間を生じる。このため、係る範囲を除外したものである。
【0010】
加えて、ベース部材や蓋板の凹溝の幅がパイプなどの外径よりも小さいと、係る凹溝にパイプなどが挿入できなくなり、凹溝の幅がパイプなどの外径の1.1倍を越えると、パイプなどと凹溝の内壁との間に隙間を生じる。このため、係る範囲を除外したものである。尚また、以上の凹溝の深さおよび幅の範囲は、前記ベース部材や蓋板がアルミニウム合金からなり、パイプなどが高い剛性のステンレス鋼管からなる場合に特に好適である。
【0011】
更に、前記製造方法によって得られた伝熱素子では、ベース部材と蓋板とは、両者の金属材料が固相状態で一体化される摩擦攪拌接合による接合部を介して接合されているため、蓋溝の底面に開口する凹溝に、挿入したパイプまたはヒータからの熱による上記接合部における強度の低下をなくすことができる。しかも、摩擦攪拌接合の際に後述する接合シールにより蓋板とベース部材とが加圧されているため、係る蓋板の底面に接触ないし押圧されるパイプなどは、当該ベース部材の凹溝と面接触しつつ密着する。従って、上記パイプ中などを循環する熱媒体やヒータからの熱エネルギを効率良くベース部材を介して、伝熱すべき対象物に熱伝達することが可能となる
【0012】
また、本発明には、前記接合工程における摩擦攪拌接合に用いる接合ツールは、ツール本体とその底面の中心部から同軸心で垂下する摩擦攪拌ピンとを含み、上記摩擦攪拌ピンの軸方向の長さは、前記突き合わせ面の深さの60〜100%の範囲にある、伝熱素子の製造方法(請求項)も含まれる。
これによれば、ベース部材と蓋板との突き合わせ面付近の表面を高速回転する接合ツールのツール本体で押さえ込みつつ、係るツール本体と共に高速回転して突き合わせ面付近に進入する摩擦攪拌ピンにより、ベース部材および蓋板を形成する金属材料を摩擦熱にて固相状態で流動化させて攪拌することができる。このため、蓋板をベース部材の蓋溝内に嵌合した状態で強固に接合できる。しかも、凹溝のない蓋板の底面に接近するパイプなどを、ベース部材の凹溝内に押し込んだり、ベース部材の凹溝と蓋板の凹溝との全周面で面接触させることができる。従って、パイプなどの周面と凹溝の内壁とを面接触により確実に密着できる。
尚、摩擦攪拌ピンの軸方向の長さが突き合わせ面の深さの60%未満になると、該突き合わせ面に沿って形成される接合部の深さが上記深さの約半分近くになり、接合強度が不足する事態になり得る。また、摩擦攪拌ピンの軸方向の長さが突き合わせ面の深さよりも長いと、流動化した金属材料が蓋溝と蓋板との間に進入して接合部の強度が不足するため、係る範囲を除外した。更に、突き合わせ面の深さは、接合ツールの軸方向に沿った押し込み量を差し引いた距離である。
【0013】
【発明の実施の形態】
以下において、本発明の実施に好適な形態を図面と共に説明する。
図1(A)は、本発明により製造される伝熱素子の1形態である伝熱素子1を示す斜視図であり、図1(B)は、係る伝熱素子1の垂直断面図である。
伝熱素子1は、図1(A),(B)に示すように、表面3および裏面4を有する厚板形状のベース部材2と、係るベース部材2の表面3に開口し且つ断面が長方形(矩形)の蓋溝6に嵌合される蓋板10と、前記蓋溝6の底面に開口する凹溝8に挿入される熱媒体用のパイプ16と、を備えている。上記ベース部材2は、例えばアルミニウム合金(JIS:A6061)からなり、図1(A)に示すように、図示の前後(長手)方向に沿って蓋溝6と、その底面の中央に凹溝8とが形成されている。係る凹溝8は、その下半部が断面半円形のアール面(凹溝)7であり、且つ蓋溝6寄りの上半部の断面は、上記アール面7の直径と同じ幅の長方形である。
【0014】
また、蓋板10も上記同様のアルミニウム合金からなり、図1(A),(B)に示すように、ベース部材2の蓋溝6の断面とほぼ同じ長方形(矩形)断面を形成する上面11、底面12、および左右の各側面13,14を有する。
更に、パイプ16は、例えばステンレス鋼(JIS:SUS304)からなり、図1(B)に示すように、その断面のほぼ下半分は、ベース部材2における凹溝8のアール面7とほぼ同じ相似形の半円形を呈する。因みに、係るパイプ16は、外径が3mmで且つ肉厚が0.5mmのサイズであり、断面円形の中空部18を内設している。係る中空部18には、例えば冷却水、冷却ガス、高温液、あるいは高温ガスなど熱媒体が循環して流される。
【0015】
後述するように、前記ベース部材2の凹溝8の深さは、パイプ16の外径と同じ深さ乃至係る外径の1.2倍未満の深さの範囲にあると共に、係る凹溝8のアール面7を除いたほぼ上半部の幅は、パイプ16の外径と同じ幅乃至係る外径の1.1倍以下の深さの範囲にある。従って、パイプ16の下半部の周面は、凹溝8のアール面7と面接触している。
図1(A),(B)に示すように、ベース部材2の蓋溝6の両側壁5,5と、係る蓋溝6に嵌合した蓋板10の両側面13,14との突き合わせ面に沿って、摩擦攪拌接合による接合部W1,W2が個別に形成されている。係る接合部W1,W2は、ベース部材2および蓋板10の金属材料を、後述する接合ツールを用いて摩擦熱により固相状態で流動化しつつ攪拌して一体化させたものである。因みに、接合部W1,W2の深さは、上記突き合わせ面の深さの約80%である。
【0016】
以上のような伝熱素子1によれば、ベース部材2と蓋板10とは、両者の金属材料が固相状態で一体化される摩擦攪拌接合による接合部W1,W2を介して接合されている。このため、蓋溝6の底面に開口する凹溝8に挿入したパイプ16からの熱による接合部W1,W2の強度の低下をなくすことができる。しかも、摩擦攪拌接合の際に蓋板10とベース部材2とが、後述する接合ツールのツール本体の底面(ショルダ)に加圧されているため、蓋板10の底面12に接触ないし押圧されるパイプ16は、凹溝8のアール面7と面接触しつつ密着する。従って、上記パイプ16中を循環する熱媒体からの熱エネルギを効率良くベース部材2を介して、その付近に位置する対象物に熱伝達することができる。
特に、凹溝8の深さおよび幅が、パイプ16の外径と同じか、これよりも極く僅かに小さい場合には、パイプ16と凹溝8の内壁との良好な密着が得られる。
【0017】
次に、本発明による前記伝熱素子1の製造方法について、図2〜図3に基づき説明する。
図2(A)は、表面3および裏面4を有し且つ前記同様のアルミニウム合金からなる厚板2aの断面を示す。係る厚板2aは、平面視で図示の前後方向が長手方向である長方形を呈する。係る厚板2aの表面3における長手方向の中央付近に沿って、エンドミルカッタなどを用いて公知の座ぐり加工を施す。その結果、図2(B)に示すように、表面3に開口し断面が長方形で且つ左右の側壁5,5を備えた蓋溝6を有する厚板2bが形成される。
上記厚板2bの蓋溝6における底面の中央部に対し、長手方向に沿って所定の幅で座ぐり加工した後、更にその下側を切削加工により半円形断面に切除する。その結果、図2(C)に示すように、上記蓋溝6およびその底面の中央部に開口する凹溝8を長手方向に沿って有するベース部材2が形成される。係る凹溝8は、上半部の断面が長方形であり、且つ下半部が断面半円形のアール面7である。
【0018】
尚、ベース部材2には、上記蓋溝6および凹溝8を長手方向に沿って予め一体に形成されているアルミニウム合金の押出形材を用いても良い。
図2(C)に示すように、凹溝8の深さ(最深部の深さ)Yは、次述する熱媒体用のパイプ16の外径と同じ乃至その1.2倍未満の範囲にあると共に、凹溝8の幅Xは、パイプ16の外径と同じ乃至その1.1倍以下の範囲にある。
次に、図2(D)に示すように、凹溝8に前記同様のステンレス鋼からなる熱媒体用のパイプ16を挿入する(挿入工程)。中空部18を内設する当該パイプ16の下半部の周面は、その全長において凹溝8の下半部を形成するアール面7と面接触する。また、係るパイプ16の上端部は、凹溝8の開口部付近で且つ蓋溝6の底面と同じレベルか、あるいは係る底面よりも僅かに低い位置となる。
【0019】
更に、図3(A)に示すように、凹溝8にパイプ16が挿入されたベース部材2の蓋溝6内に、前記同様のアルミニウム合金からなり、上面11、下面12、左右の側面13,14に囲まれた蓋溝6の断面とほぼ同じ長方形断面の蓋板10を嵌合する(閉塞工程)。この際、蓋板10の底面12の中央付近に、パイプ16の上端部が線接触または接近すると共に、当該蓋板10の上面11は、ベース部材2における左右の表面3,3と面一となる。
次いで、図3(B),(C)に示すように、ベース部材2の蓋溝6の両側壁5,5と蓋板10の両側面13,14との2列の突き合わせ面に沿って、摩擦攪拌接合を施す(接合工程)。係る接合には、図示の接合ツール20を用いる。
【0020】
即ち、接合ツール20は、例えば工具鋼からなり、図3(B),(C)に示すように、円柱形のツール本体22と、その底面24の中心部から同軸心で垂下する摩擦攪拌ピン26とを含む。尚、攪拌ピン26の周面には、その軸方向に沿って図示しない複数の小溝や径方向に沿ったネジ溝が形成されていても良い。
因みに、上記ツール本体22の直径は6〜20mm、摩擦攪拌ピン26の長さは3〜10mmで且つその直径は2〜8mmである。また、摩擦攪拌ツール20の回転数は500〜15000rpm、送り速度は0.05〜2m/分であり、当該ツール20の軸方向に加える押し込み力は1kN〜20kN程度である。
【0021】
図3(B),(C)に示すように、ベース材2および蓋板10を図示しない治具により拘束した状態で、蓋溝6における左側の側壁5と蓋板10の側面13との突き合わせ面に沿って、高速回転する接合ツール20を押し込む。この際、ツール本体22の底面24は、ベース部材2の表面3および蓋板10の上面11と平行となる。尚、上記摩擦攪拌ピン26の軸方向の長さは、図3(B)に示すように、上記突き合わせ面の深さH以下で且つその60%以上の範囲とされる。
図3(B),(C)に示すように、摩擦攪拌ツール20における摩擦攪拌ピン26の底面は、前記突き合わせ面のやや下方に達する。係る状態で高速回転する摩擦攪拌ピン26により、その周囲に位置するベース部材2および蓋板10のアルミニウム合金材料は、摩擦熱によって加熱され、半固相状態で塑性化し且つ流動化(物質移動)する。尚、摩擦攪拌ピン26の周面に軸方向に沿った小溝や径方向に沿ったネジ溝があると、上記アルミニウム合金材料の攪拌を一層活発化できる。
【0022】
係る摩擦攪拌ツール20が回転しつつ通過した跡には、図3(B),(C)に示すように、蓋溝6の側壁5と蓋板10の側面13との突き合わせ面に沿って、上記塑性・流動化したアルミニウム合金材料が固化した接合部W1が形成される。係る接合部W1の内部は、上記合金材料が十分に塑性流動している場合、多数の空孔である微細なトンネル欠陥などが皆無となる。尚、接合部W1の表面waは、前記ツール本体22の底面24の周縁に倣った細かなさざ波形の凹凸を有し、且つツール本体22の押し込み量によって、表面3などよりも僅かに凹んでいる。
引き続いて、蓋溝6における右側の側壁5と蓋板10の側面14との突き合わせ面に沿っても、接合ツール20を用いて上記と同様の摩擦攪拌接合を施す。
【0023】
その結果、図3(D)に示すように、蓋溝6の両側壁5,5と蓋板10の両側面13,14との各突き合わせ面に沿って接合部W1,W2が形成され、これにより蓋板10がベース部材2の蓋溝6内に密嵌され且つ係る蓋板10の底面12が予め凹溝8中に挿入され且つ下半部で面接触しているパイプ16の上端部に当接または著しく近接した伝熱素子1が得られる。
以上のような伝熱素子1の製造方法によれば、熱伝達性に優れると共に、パイプ16からの熱エネルギによっても高い強度を維持できる接合部W1,W2を有する伝熱素子1を効率良く確実に製造することが可能となる。尚、パイプ16に替えて、例えば電熱線などの周囲にステンレス鋼の箔を巻き付けた断面円形のヒータをベース部材2の凹溝8に挿入しても良い。
【0024】
図4は、異なる形態の伝熱素子1aおよびその製造方法に関する。
先ず、前記同様のアルミニウム合金製の厚板の表面3を座ぐり加工や切削加工することにより、図4(A)に示すように、表面3に開口する断面長方形(矩形)の蓋溝6と、その底面中央に開口し且つ断面が正方形の凹溝9とを有するベース部材2cを形成する。尚、ベース部材2cには、上記蓋溝6および凹溝9を長手方向に沿って予め一体に有するアルミニウム合金の押出形材を用いても良い。
次に、上記凹溝9内に、その深さと幅とに縦・横寸法がほぼ同じ正方形断面である熱媒体用のパイプ17を挿入する(挿入工程)。係るパイプ17は、前記同様のステンレス鋼からなり、外形と相似形断面の中空部19を内設していると共に、上記凹溝9の底面および左右の両側壁に面接触する。
【0025】
次いで、図4(B)に示すように、凹溝9にパイプ17が挿入されたベース部材2cの蓋溝6内に、前記同様のアルミニウム合金からなり、蓋溝6の断面とほぼ同じ長方形断面の蓋板10を嵌合する(閉塞工程)。この際、蓋板10の底面12の中央付近に、上記パイプ17の上面が面接触または極く接近し、且つ当該蓋板10の上面11は、ベース部材2cの表面3,3と面一となる。
そして、蓋溝6における左右の側壁5,5と蓋板10の側面13,14との一対の突き合わせ面に沿って、それぞれ前記同様の接合ツール20を用いて前記同様の摩擦攪拌接合を個別に施す(接合工程)。
【0026】
その結果、図4(C)に示すように、一対の突き合わせ面に沿って接合部W1,W2が形成され、これにより蓋板10がベース部材2cの蓋溝6内に密嵌されると共に、係る蓋板10の底面12が予め凹溝9中に挿入され且つ面接触しているパイプ17の上面に面接触または近接して対向する伝熱素子1aが得られる。
係る伝熱素子1aは、図4(C)に示すように、断面正方形(角形)のパイプ17をほぼ同じか相似形断面の凹溝9に面接触により挿入され且つ係るパイプ17の上面に蓋板10の底面12が面接触または近接しているため、熱伝達特性が一層向上する。また、以上の伝熱素子1aの製造方法によれば、パイプ17からの熱エネルギによっても、ベース部材2cと蓋板10との間で高い強度を維持できる接合部W1,W2を有する伝熱素子1aを効率良く確実に製造可能となる。
【0027】
【実施例】
ここで、本発明による伝熱素子1の製造方法の実施例について説明する。
アルミニウム合金(JIS:A6061)からなり、前記図1(A),(B)および図4(C)における長手方向が300mm、表面3と裏面4の幅が30mm、厚みが20mmであると共に、蓋溝6は深さ5mm×幅10mmである2つのベース部材2,2cを用意した。ベース部材2の凹溝8は、深さ(最深部)Y:3mm×幅X:3mmで且つ断面の下半部は半円形の前記アール面7である。また、ベース部材2cの凹溝9は、深さY:3mm×幅X:3mmの正方形断面である。
【0028】
上記ベース部材2の凹溝8にステンレス鋼(JIS:SUS304)製で、全長:340mm×外径:3mm×肉厚:0.5mmの熱媒体用のパイプ16を、その両端を突出させて挿入した。一方、ベース部材2cの凹溝9に同じ素材で、全長:340mm×縦:3mm×横:3mm×肉厚:0.5mmの断面正方形のパイプ17を、その両端を突出させて挿入した。係るベース部材2,2cの蓋溝6に、前記と同じアルミニウム合金からなり、全長300mm×幅9.8mm×厚み5mmの蓋板10を個別に嵌合した。係る蓋板10を含む上記ベース部材2,2cを拘束した状態で、蓋溝6の両側壁5,5と蓋板10の両側面13,14との一対の突き合わせ面に沿って、摩擦攪拌接合を接合を個別に行った。
【0029】
これに用いた接合ツール20は、工具鋼(SKD61)からなり、そのツール本体22の直径が15mmで、摩擦攪拌ピン26は、直径5mm×長さ3.8mmである。係る接合ツール20を、上記突き合わせ面に沿って、回転数:1400rpm、移動速度:300mm/分、軸方向の押し込み深さ(距離):0.2mmの同じ条件で、回転しつつ移動させて接合部W1,W2を個別に形成した。
ベース部材2を用いた伝熱素子1を実施例1、ベース部材2cを用いた伝熱素子1aを実施例2とした。これらを長手方向の4箇所で切断して目視し、接合部W1,W2におけるトンネル欠陥などの有無、パイプ16と凹溝8,9および蓋板10との隙間の有無を調べた。その結果を表1に示す。
【0030】
【表1】

Figure 0004325260
【0031】
表1によれば、実施例1,2により得られた伝熱素子1,1aの接合部W1,W2には、トンネル欠陥などは全く見当たらなかった。また、実施例1の凹溝8とパイプ16との下半部間には、隙間がなく、実施例2の蓋板10の底面12を含む凹溝9とパイプ17との間では、全周にて隙間のない密着性を有することが判明した。
次に、前記実施例1に用いたものと同じベース部材2を10個用意し、表2に示すように、凹溝8の深さ(最深部)Yと幅Xを変化させ、前記と同じ熱媒体用のパイプ16を個別に挿入した。これらの蓋溝6の両側壁5,5と蓋板10の両側面13,14との各突き合わせ面に沿って、前記と同じ接合ツール20を用い且つ前記と同じ同じ条件により摩擦攪拌接合を個別に行った。
得られた10の伝熱素子(1)について、前記同様に切断して目視し、接合部W1,W2における欠陥などの有無や、パイプ16と凹溝8および蓋板10との隙間の有無を調べた。その結果も表2に示す。
【0032】
【表2】
Figure 0004325260
【0033】
表2によれば、パイプ16の外径よりも凹溝8の深さYが小さい(浅い)比較例1では、蓋板10の浮き上がりにより、接合部W1,W2にトンネル欠陥が生じ、且つパイプ16と凹溝8のアール面との間に隙間が生じた。また、凹溝8の深さYがパイプ16の外径の1.2倍である比較例2では、接合ツール20の加圧で蓋板10の中央部が凹み且つ側面13,14が浮き上がったため、接合部W1,W2にアルミニウム合金材料不足による欠陥が生じ且つ上記隙間も生じた。
更に、凹溝8の幅Xがパイプ16の外径の1.1倍を越えた比較例3〜5では、蓋板10が上記同様の撓み変形をしたため、接合部W1,W2にアルミニウム合金材料不足による欠陥が生じ且つ上記隙間も生じた。
一方、凹溝8の深さYがパイプ16の外径と同じかその1.2倍未満であり、凹溝8の幅Xがパイプ16の外径と同じかその1.1倍以下である実施例3〜7では、接合部W1,W2にトンネル欠陥などがなく、且つ凹溝8のアール面7とパイプ16の下半部とに隙間のない良好な密着状態となっていた。
【0034】
更に、前記実施例1によるものと同じベース部材2、蓋板10、および熱媒体用のパイプ16を7組用意し、これらについて前記同様に挿入および嵌合して組立てた。
表3に示すように、前記接合ツール20における摩擦攪拌ピン26の軸方向の長さを変化させ、前記ツール本体22の押し込み量(距離)を一定とし、上記7組の蓋溝6の両側壁5,5と蓋板10の両側面13,14との突き合わせ面に沿って、上記押し込み量を含め前記と同じ条件により摩擦攪拌接合を個別に行った。
得られた7個の伝熱素子(1)について、前記同様に切断して目視し、接合部W1,W2における欠陥の有無、および凹溝8とパイプ16との隙間の有無を調べた。その結果も表3に示す。
【0035】
【表3】
Figure 0004325260
【0036】
表3によれば、摩擦攪拌ピン26の長さが前記突き合わせ面の深さH(押し込み量を除いた蓋溝6の深さ)よりも長い比較例6では、塑性流動化したアルミニウム合金材料が蓋溝6と蓋板10との間に差し込むため、ベース部材2およびパイプ16と蓋板10との間に隙間が生じていた。
また、摩擦攪拌ピン26の長さが前記突き合わせ面の深さHの60%未満である比較例7では、上記材料の組成流動および接合ツール20による加圧およびアルミニウム合金材料の塑性流動が不足し、接合部W1,W2の接合強度が低くなっため、パイプ16と蓋板10の底面12との間に隙間が生じていた。
一方、摩擦攪拌ピン26の長さが前記突き合わせ面の深さHと同じかその60%以上であった実施例8〜12では、接合部W1,W2に欠陥がなく、且つパイプ16と凹溝8との下半部およびパイプ16の上端部と蓋板10の底面12との間には、隙間がなく良好な密着状態となっていた。
以上の実施例1〜12によって得られた伝熱素子1により、本発明の効果が裏付けられた。
【0037】
図5(A)は、複数の前記伝熱素子1(伝熱素子1aも含む、以下同じ)を用いた伝熱ユニットU1の概略を示す。係る伝熱ユニットU1は、図5(A)に示すように、複数の伝熱素子1,1,…をそれらのベース部材2(ベース部材2cも含む、以下同じ)を離間して平行に配置すると共に、各ベース部材2の長手方向の両端から突出する熱媒体用のパイプ16(パイプ17も含む、以下同じ)に、ヘッダーパイプ27を直角に接続している。
また、図5(B)は、複数の前記伝熱素子1を用いた異なる形態の伝熱ユニットU2の概略を示す。係る伝熱ユニットU2は、図5(B)に示すように、複数の伝熱素子1,1,…をそれらのベース部材2を隣接させて平行に配置し、各ベース部材2の長手方向の両端から突出し且つ隣接する熱媒体用のパイプ16,16間をほぼU字形の連絡パイプ28を介して接続したものである。
以上のような伝熱ユニットU1,U2によれば、複数の前記伝熱素子1(1a)におけるパイプ16(17)に熱媒体を流通させることにより、これに密着したベース部材2(2c)および蓋板10を介して、これらに接触または近接する図示しない対象物を迅速に冷却または加熱することが可能となる。
【0038】
図6(A),(B)は、前記伝熱素子1の応用形態である伝熱素子1bおよびその製造方法を示す。図6(A)に示すように、予め、前記同様のアルミニウム合金からなり、表面3に開口する断面矩形の蓋溝6と、係る蓋溝6の底面に開口し且つ互いに平行な一対の凹溝8,8とを有するベース部材2dを形成する。
次に、上記ベース部材2dの凹溝8,8に、前記同様のパイプ16,16を個別に挿入し(挿入工程)した後、上記蓋溝6にこれとほぼ同じ断面の蓋板10を嵌合する(閉塞工程)。そして、上記蓋溝6の両側壁5,5と蓋板10の両側面13,14との突き合わせ面に沿って、前記接合ツール20を用いて摩擦攪拌接合前述した条件に沿ってを施す(接合工程)。その結果、図6(B)に示すように、上記突き合わせ面に沿って接合部W1,W2が形成され、これらにより各凹溝8のアール面7にパイプ16の下半部を面接触で密着させ、且つ各パイプ16の上端部に蓋板10の底面12が当接する伝熱素子1bを得ることができる。
【0039】
図6(C),(D)は、前記伝熱素子1aの応用形態である伝熱素子1cおよびその製造方法を示す。図6(C)に示すように、予め、前記同様のアルミニウム合金からなり、表面3に開口する断面矩形の蓋溝6と、係る蓋溝6の底面に開口し且つ互いに平行な一対の凹溝9,9とを有するベース部材2eを形成する。
次に、上記ベース部材2eの凹溝9,9に、前記同様のパイプ17,17を個別に挿入し(挿入工程)した後、上記蓋溝6にこれとほぼ同じ断面の蓋板10を嵌合する(閉塞工程)。そして、上記蓋溝6の両側壁5,5と蓋板10の両側面13,14との突き合わせ面に沿って、前記接合ツール20を用いて摩擦攪拌接合前述した条件に沿ってを施す(接合工程)。その結果、図6(D)に示すように、上記突き合わせ面に沿って接合部W1,W2が個別に形成され、これらにより各凹溝9内にパイプ16を面接触により密着させ、且つ各パイプ17の上面に蓋板10の底面12が面接触する伝熱素子1cを得ることができる。
尚、ベース部材2d,2eには、前記蓋溝6および凹溝8,9を長手方向に沿って一体に有するアルミニウム合金の押出形材を用いても良い。
【0040】
図7(A),(B)は、参考形態の製造方法とこれにより得られた伝熱素子1dを示す。
図7(A)に示すように、前記同様のアルミニウム合金からなり、表面3に開口する断面矩形の蓋溝6と、係る蓋溝6の底面に開口する断面半円形の凹溝7とを有するベース部材2fを予め用意する。また、断面が上記蓋溝6と同じ長方形で且つ底面12の中央に開口する断面半円形の凹溝15を有する蓋板10aを用意する。上記凹溝7と凹溝15とは、互いに同じ断面で且つ対向している。尚、ベース部材2fおよび蓋板10aには、押出形材を用いても良い。
【0041】
図7(A)中の矢印で示すように、ベース部材2fの凹溝7に、パイプ16の下半部を挿入した後、ベース部材2fの蓋溝6に蓋板10aを嵌合すると同時に、その凹溝15内に上記パイプ16の上半部を挿入する(挿入・閉塞工程)。
次いで、ベース部材2fの蓋溝6の両側壁5,5と蓋板10aの両側面13,14との突き合わせ面に沿って、前記接合ツール20を用いて摩擦攪拌接合前述した条件に沿ってを施す(接合工程)。その結果、図7(B)に示すように、上記突き合わせ面に沿って接合部W1,W2が形成されると共に、丸パイプ16がその全周面でベース部材2fの凹溝7と蓋板10aの凹溝15との内周面と密着した熱伝達性に優れた伝熱素子1dを、得ることができる。
【0042】
図7(C)は、前記伝熱素子1dの応用形態である参考形態の伝熱素子1eを示す。
図7(C)に示すように、ベース部材2gは、前記同様のアルミニウム合金からなり、表面3に開口する断面矩形の蓋溝6と、係る蓋溝6の底面に開口し且つ互いに平行な一対の凹溝7とを有し、蓋板10bは、断面が上記蓋溝6と同じ長方形で且つ底面12に開口する一対の凹溝15を有する。上記凹溝7と凹溝15も、互いに同じ断面で且つ対向している。尚、ベース部材2gおよび蓋板10bにも、押出形材を用いても良い。
前記同様に、ベース部材2gの凹溝7,7に、パイプ16の下半部を個別に挿入した後、ベース部材2gの蓋溝6に蓋板10bを嵌合し、且つその凹溝15,15内に上記パイプ16の上半部を個別に挿入する(挿入・閉塞工程)。
次いで、ベース部材2gの蓋溝6の両側壁5,5と蓋板10bの両側面13,14との突き合わせ面に沿って、前記接合ツール20を用いて摩擦攪拌接合前述した条件に沿ってを施す(接合工程)。その結果、図7(C)に示すように、上記突き合わせ面に沿って接合部W1,W2が形成されると共に、一対の丸パイプ16がそれぞれの全周面でベース部材2gの凹溝7と蓋板10bの凹溝15との内周面と密着した熱伝達性に優れた伝熱素子1eを、得ることができる。
【0043】
図8(A),(B)は、異なる参考形態の伝熱素子1fとその製造方法を示す。
図8(A)に示すように、前記同様のアルミニウム合金からなり、表面3に開口する断面矩形の蓋溝6と、係る蓋溝6の底面に開口する断面長方形の凹溝9aとを有するベース部材2hを予め用意する。また、断面が上記蓋溝6と同じ長方形で且つ底面12の中央に開口し且つ断面長方形の凹溝15aを有する蓋板10cを用意する。上記凹溝9aと凹溝15aとは、互いに同じ断面で且つ対向している。尚、ベース部材2hおよび蓋板10cには、押出形材を用いても良い。
【0044】
図8(A)中の矢印で示すように、ベース部材2hの凹溝9aに、断面が正方形のパイプ17の下半部を挿入した後、ベース部材2hの蓋溝6に蓋板10cを嵌合すると同時に、その凹溝15a内に上記パイプ17の上半部を挿入する(挿入・閉塞工程)。次いで、ベース部材2hの蓋溝6の両側壁5,5と蓋板10cの両側面13,14との突き合わせ面に沿って、前記接合ツール20を用いた摩擦攪拌接合を前述した条件によって施す(接合工程)。
その結果、図8(B)に示すように、上記突き合わせ面に沿よって接合部W1,W2が形成されると共に、パイプ17がそのほぼ全周面でベース部材2hの凹溝9aと蓋板10aの凹溝15との内壁面と密着した熱伝達性に優れた伝熱素子1fを、得ることができる。
【0045】
図8(C)は、前記伝熱素子1fの応用形態である参考形態の伝熱素子1gを示す。
図8(C)に示すように、ベース部材2jは、前記同様のアルミニウム合金からなり、表面3に開口する断面矩形の蓋溝6と、係る蓋溝6の底面に開口し且つ互いに平行な一対の凹溝9aとを有し、蓋板10dは、断面が上記蓋溝6と同じ長方形で且つ底面12に開口する一対の凹溝15aを有する。上記凹溝9aと凹溝15aも、互いに同じ断面で且つ対向している。尚、ベース部材2jおよび蓋板10dにも、押出形材を用いても良い。
前記同様に、ベース部材2jの各凹溝9aに、パイプ17の下半部を個別に挿入した後、ベース部材2jの蓋溝6に蓋板10dを嵌合し、且つその凹溝15a内に上記パイプ17の上半部を個別に挿入する(挿入・閉塞工程)。
【0046】
次いで、ベース部材2jの蓋溝6の両側壁5,5と蓋板10dの両側面13,14との突き合わせ面に沿って、前記接合ツール20を用いて摩擦攪拌接合前述した条件に沿ってを施す(接合工程)。その結果、図8(C)に示すように、上記突き合わせ面に沿って接合部W1,W2が形成されると共に、一対の角パイプ17がそれぞれの全周面でベース部材2jの凹溝9aと蓋板10bの凹溝15aとの内壁面と密着した熱伝達性に優れた伝熱素子1gを、得ることができる。
尚、上記凹溝9aと凹溝15aとは、互いに同じ断面でなく、幅のみが共通して、高さ(深さ)の相違する形態にしても良い。
【0047】
本発明は、以上に説明した各形態や実施例に限定されるものではない。
例えば、前記熱媒体用のパイプは、断面が6角形や8角形の正多角形の形態とし、蓋板が平板の形態であって、上記パイプを挿入するベース部材の凹溝の下半部の断面を当該パイプの下半部の断面とほぼ同じ台形などにしても良い。
また、前記熱媒体用のパイプは、熱伝導率の高い銅または銅合金、あるいは比較的軽量で所要の強度を有するチタン合金などからなるものであっても良い。
更に、前記ベース部材の材質は、熱伝導率の高い銅または銅合金などからなるものとしても良い。
また、前記ベース部材2などの表面3および裏面4の少なくとも一方や、前記蓋板10の上面11であって、前記接合ツール20の移動に支障のない位置に、熱交換促進用の凸条やフィンなどを突設しても良い。特に、ベース部材2などに、蓋溝6、凹溝8,9を押出成形により形成するアルミニウム合金の押出形材を用いる場合には、上記凸条やフィンなどを一体に突設できるため好適である。
【図面の簡単な説明】
【図1】(A)は本発明により得られる第1の伝熱素子における1形態の斜視図、(B)は(A)中のB−B線に沿った矢視における断面図。
【図2】(A)〜(D)は上記伝熱素子の製造工程を示す概略図。
【図3】(A),(B),(D)は図2(D)に続く上記伝熱素子の製造工程を示す概略図、(C)は(B)中のC−Cに沿った矢視における断面図。
【図4】(A)〜(C)は異なる形態の第1の伝熱素子またはその製造工程を示す概略図。
【図5】(A),(B)は上記伝熱素子を複数用いた伝熱ユニットを示す概略図。
【図6】(A),(B)は図1の伝熱素子の応用形態の製造工程を示す概略図、(C),(D)は図4の伝熱素子の応用形態の製造工程を示す概略図。
【図7】(A),(B)は参考形態の伝熱素子の製造工程を示す概略図、(C)は係る伝熱素子の応用形態を示す概略図。
【図8】(A),(B)は異なる参考形態の伝熱素子の製造工程を示す概略図、(C)は上記伝熱素子の応用形態を示す概略図。
【符号の説明】
1,1a〜1c…伝熱素子、 2,2c〜2e…ベース部材、
3…………………表面、 5…………………側壁、
6…………………蓋溝、 7,8,9,9a…ベース部材の凹溝、
10………………蓋板、 13,14………側面、
16,17………パイプ、 20………………接合ツール、
22………………ツール本体、 24………………ツール本体の底面、
26………………摩擦攪拌ピン、
W1,W2………接合部、 X…………………凹溝の幅、
Y…………………凹溝の深さ、 H…………………突き合わせ面の深さ[0001]
BACKGROUND OF THE INVENTION
  The present invention relates to a heat transfer element used in, for example, a heat exchanger, a heating device, or a cooling device.Of childIt relates to a manufacturing method.
[0002]
[Prior art]
  A heat transfer element arranged in contact with or close to an object to be heat exchanged, heated, or cooled should have a pipe that circulates a heat medium such as cooling water in close contact with a base member that is a main body of the heat transfer element. Is required.
  As a method of manufacturing such a heat transfer element, for example, a pipe made of stainless steel is disposed so as to penetrate a predetermined cavity provided in a mold, and a molten aluminum alloy, for example, is cast into the cavity and integrated. There is a method of wrapping.
  However, in the cast-in method, the aluminum alloy that becomes the base member after casting is shrunk when solidified, so that a gap is formed between the obtained base member and the pipe. As a result, there is a problem that heat transfer from the heat medium circulating in the pipe to the base member is lowered. Moreover, since the production cost of the mold is high, there is a problem that the cost is high when a small amount of a relatively large heat transfer element is manufactured.
[0003]
  On the other hand, as a method for manufacturing a different heat transfer element, for example, a pipe made of stainless steel or a heater around which a stainless steel foil is wound is inserted into a groove formed on the surface of a base member made of an aluminum alloy, and the above There is a method of brazing a cover plate on the surface of the base member so as to cover the opening of the groove.
  However, in the method using brazing, for example, when a heater is inserted into the groove, the joining strength of the brazing material is reduced due to the heat generation, or the cover plate is loosened with such a situation and the heat between the heater and the base member is increased. There was a problem that transmission was reduced.
  Moreover, among the aluminum alloys that serve as the base member, there is a problem that brazing cannot be performed with a 2000 series or 5000 series alloy having a high high-temperature strength.
[0004]
[Problems to be Solved by the Invention]
  The present invention solves the problems in the prior art described above, and is excellent in heat transfer properties in which a heat medium pipe or heater and a base member incorporating the heat medium are in close contact with each other.LegendIt is an object to provide a method for manufacturing a thermal element.
[0005]
[Means for Solving the Problems and Effects of the Invention]
  In order to solve the above-described problems, the present invention inserts a heat medium pipe or the like into a recessed groove or the like opened in the bottom surface of the lid groove formed in the base member so as to be in close contact with the lid groove and has a substantially identical cross section. It is conceived that the plate is fitted and friction stir welding is performed in which the lid plate and the base member are integrated in a solid phase.
  That is, the method for manufacturing a heat transfer element according to the present invention (Claim 1) is provided on the bottom surface of the lid groove having a rectangular cross section opening on the surface of the base member.And at least the lower half part is a round surface with a semicircular cross section.In the groove, for heat mediumWith a circular cross sectionThe cross-section is almost the same as the insertion step of inserting the pipe or heater and the lid groove of the base member.LidA closing step of fitting the plate, and a joining step of performing friction stir welding along each abutting surface between both side walls of the lid groove of the base material and both side surfaces of the lid plate, The cross-sectional shape of at least the lower half of the concave groove is the same as or substantially similar to the cross-sectional shape of the lower half of the pipe or heater, and the depth of the concave groove of the base plate is the same as that of the pipe or heater. The outer diameter or the outer diameter is in a range less than 1.2 times, and the width of the concave groove is in the range of the outer diameter of the pipe or the heater or 1.1 times the outer diameter. .
[0006]
  According to this, the base member and the cover plate can be firmly joined via a joint portion by friction stir welding in which both metal materials are integrated in a solid phase state..In addition, since the base member and the cover plate are joined while being pressed, the bottom surface of the cover plate contacts or presses the pipe or the heater, and the pipe and the concave groove of the base member can be brought into close contact with each other by wide surface contact..At this time, the contact area between the pipe or heater and the inner wall of the concave groove of the base plate or the cover plate can be brought into close contact with the entire peripheral surface of the pipe or 50% or more thereof.
  Accordingly, it is possible to efficiently and surely manufacture a heat transfer element having a joint portion that has excellent heat transferability and can maintain high strength even by heat energy from a pipe or a heater..
[0007]
  The material of the base member and the cover plate is not particularly limited, but an aluminum alloy having a particularly high thermal conductivity and excellent workability is recommended. When the base member and the cover plate are made of an aluminum alloy, the pipe is preferably a stainless steel pipe having a higher melting point and higher rigidity than the aluminum alloy, and the heater is made of stainless steel foil around a known heating wire. Wrapped form is recommended. Furthermore, the base member is an extruded shape of an aluminum alloy that can form the lid groove and the concave groove integrally.do itAlso good.
  AlsoThe material of the base member and the cover plate is applicable to friction stir welding between dissimilar metals, and therefore includes cases in which both are made of the same kind of aluminum alloy or a combination of different kinds of aluminum alloy. . Further, when the base member and the cover plate are made of an aluminum alloy, since the joining temperature at the time of the friction stir welding is a temperature range of 500 ° C. or lower, the heater previously inserted in the groove of the base member or the cover plate It is possible to prevent the characteristics from deteriorating.
[0008]
  MoreWhen the pipe or heater has a circular cross section and the bottom surface of the cover plate is flat, the lower half of the groove in the base plate has a semicircular cross section, and the cross section of the pipe or the like is a regular polygon of hexagon or more and When the bottom surface of the cover plate is flat, the lower half of the groove is rectangular or trapezoidal, and is in surface contact with the inner wall of the groove at the lower half of the cross section. In addition, when the cross section of the pipe or the like is a square, by inserting it into the concave groove of the cross-section base member exhibiting substantially the same square as this, the bottom surface without the concave groove on the entire circumferential surface of the pipe and the concave groove on the lid plate Surface contact is possible. On the other hand, in the form in which the concave groove is located on the bottom surface of the lid plate, the concave groove of the lid plate and the concave groove of the base plate are symmetrical and have the same semicircular or rectangular cross section.
[0009]
  AlsoIf the depth of the groove of the base plate is smaller than the outer diameter of the pipe or the like, the entire cross section of the pipe or the like cannot be inserted into the groove. On the other hand, when the depth of the concave groove is 1.2 times or more the outer diameter of the pipe or the like, the cover plate is not pressed down, and a gap is formed between the pipe and the inner wall of the concave groove. For this reason, this range is excluded.
[0010]
  in additionIf the groove width of the base member or the cover plate is smaller than the outer diameter of the pipe, the pipe cannot be inserted into the groove, and the width of the groove exceeds 1.1 times the outer diameter of the pipe. And a gap is formed between the pipe and the inner wall of the groove. For this reason, this range is excluded. The depth and width ranges of the concave grooves described above are particularly suitable when the base member and the cover plate are made of an aluminum alloy and the pipe is made of a highly rigid stainless steel pipe.
[0011]
  Furthermore, in the heat transfer element obtained by the manufacturing method, the base member and the cover plate are joined via a joint portion by friction stir welding in which both metal materials are integrated in a solid phase state. It is possible to eliminate a decrease in strength at the joint due to heat from the pipe or the heater inserted into the concave groove opened on the bottom surface of the lid groove. In addition, since the lid plate and the base member are pressurized by the joint seal described later during the friction stir welding, the pipes that are in contact with or pressed against the bottom surface of the lid plate are not formed in the groove and surface of the base member. It adheres while touching. Accordingly, it is possible to efficiently transfer heat energy from the heat medium circulating in the pipe or the like or the heat energy from the heater to the object to be transferred through the base member..
[0012]
  AlsoIn the present invention, a welding tool used for friction stir welding in the joining step includes a tool main body and a friction stir pin that hangs coaxially from the center of the bottom surface thereof, and the axial length of the friction stir pin is , Depth of the butt surface60-100% ofIn the range of the heat transfer element manufacturing method (claims)2) Is also included.
  According to this, the surface of the base member and the lid plate near the abutting surface is pressed by the tool body of the joining tool that rotates at high speed, and the friction stirrer pin that rotates at a high speed together with the tool body and enters the vicinity of the abutting surface The metal material forming the member and the cover plate can be fluidized in a solid phase with frictional heat and stirred. For this reason, it can join firmly in the state which fitted the cover plate in the cover groove | channel of the base member. In addition, a pipe or the like approaching the bottom surface of the cover plate without the groove can be pushed into the groove of the base member or brought into surface contact with the entire circumferential surface of the groove of the base member and the groove of the cover plate. . Accordingly, the peripheral surface of the pipe or the like and the inner wall of the concave groove can be securely adhered by surface contact.
  When the length of the friction stir pin in the axial direction is less than 60% of the depth of the abutting surface, the depth of the joint formed along the abutting surface becomes approximately half of the above depth. It can be a situation where strength is insufficient. Also, if the axial length of the friction stir pin is longer than the depth of the abutting surface, the fluidized metal material enters between the lid groove and the lid plate and the strength of the joint is insufficient. Was excluded. Furthermore, the depth of the abutting surface is a distance obtained by subtracting the amount of pushing along the axial direction of the welding tool.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
  In the following, preferred embodiments of the present invention will be described with reference to the drawings.
  FIG. 1A shows the present invention.Manufactured byFIG. 1 is a perspective view showing a heat transfer element 1 which is one form of the heat transfer element, and FIG. 1B is a vertical sectional view of the heat transfer element 1.
  As shown in FIGS. 1 (A) and 1 (B), the heat transfer element 1 has a thick plate-shaped base member 2 having a front surface 3 and a back surface 4, and an opening in the front surface 3 of the base member 2 and a rectangular cross section. A lid plate 10 fitted in the (rectangular) lid groove 6 and a heat medium pipe 16 inserted in the concave groove 8 opened in the bottom surface of the lid groove 6 are provided. The base member 2 is made of, for example, an aluminum alloy (JIS: A6061). As shown in FIG. 1A, the base member 2 has a cover groove 6 along the front and rear (longitudinal) direction shown in the figure, and a concave groove 8 at the center of the bottom surface. And are formed. The lower half of the concave groove 8 is a round surface (concave groove) 7 having a semicircular cross section, and the upper half of the groove near the lid groove 6 is a rectangle having the same width as the diameter of the round surface 7. is there.
[0014]
  The lid plate 10 is also made of the same aluminum alloy as described above, and as shown in FIGS. 1A and 1B, the upper surface 11 forms a rectangular (rectangular) cross section substantially the same as the cross section of the lid groove 6 of the base member 2. , A bottom surface 12, and left and right side surfaces 13 and 14.
  Further, the pipe 16 is made of, for example, stainless steel (JIS: SUS304), and as shown in FIG. 1 (B), the substantially lower half of the cross section is substantially the same as the rounded surface 7 of the groove 8 in the base member 2. Presents a semicircular shape. Incidentally, the pipe 16 has a size of an outer diameter of 3 mm and a wall thickness of 0.5 mm, and has a hollow section 18 having a circular cross section. A heat medium such as cooling water, cooling gas, high-temperature liquid, or high-temperature gas is circulated through the hollow portion 18.
[0015]
  As will be described later, the depth of the concave groove 8 of the base member 2 is in the range of the same depth as the outer diameter of the pipe 16 or less than 1.2 times the outer diameter. The width of the substantially upper half excluding the rounded surface 7 is in the range of the same width as the outer diameter of the pipe 16 or a depth not more than 1.1 times the outer diameter. Accordingly, the peripheral surface of the lower half of the pipe 16 is in surface contact with the rounded surface 7 of the groove 8.
  As shown in FIGS. 1A and 1B, the abutting surfaces of both side walls 5, 5 of the lid groove 6 of the base member 2 and both side surfaces 13, 14 of the lid plate 10 fitted in the lid groove 6. In addition, joints W1 and W2 by friction stir welding are individually formed. The joint portions W1 and W2 are obtained by stirring and integrating the metal materials of the base member 2 and the cover plate 10 while fluidizing them in a solid phase state by frictional heat using a joining tool described later. Incidentally, the depth of the joints W1, W2 is about 80% of the depth of the butted surface.
[0016]
  According to the heat transfer element 1 as described above, the base member 2 and the cover plate 10 are joined via the joint portions W1 and W2 by friction stir welding in which both metal materials are integrated in a solid phase state. Yes. For this reason, it is possible to eliminate a decrease in the strength of the joints W1 and W2 due to heat from the pipe 16 inserted into the concave groove 8 opened in the bottom surface of the lid groove 6. In addition, the lid plate 10 and the base member 2 are pressed against the bottom surface (shoulder) of the tool body of the welding tool, which will be described later, during the friction stir welding, and thus contact or press against the bottom surface 12 of the lid plate 10. The pipe 16 is in close contact with the rounded surface 7 of the concave groove 8 while being in surface contact. Therefore, the pipe16Heat energy from the heat medium circulating inside can be efficiently transferred to the object located in the vicinity thereof via the base member 2.
  In particular, when the depth and width of the groove 8 are the same as or slightly smaller than the outer diameter of the pipe 16, good adhesion between the pipe 16 and the inner wall of the groove 8 can be obtained.
[0017]
  next,According to the inventionA method for manufacturing the heat transfer element 1 will be described with reference to FIGS.
  FIG. 2A shows a cross section of a thick plate 2a having a front surface 3 and a back surface 4 and made of the same aluminum alloy as described above. The thick plate 2a has a rectangular shape whose longitudinal direction is the longitudinal direction in plan view. A known spot facing process is performed using an end mill cutter or the like along the vicinity of the center in the longitudinal direction on the surface 3 of the thick plate 2a. As a result, as shown in FIG. 2 (B), a thick plate 2b having a lid groove 6 having an opening on the surface 3, a rectangular cross section, and left and right side walls 5 and 5 is formed.
  The center portion of the bottom surface of the lid groove 6 of the thick plate 2b is countersunk with a predetermined width along the longitudinal direction, and then the lower side is cut into a semicircular cross section by cutting. As a result, as shown in FIG. 2 (C), the base member 2 having the lid groove 6 and the concave groove 8 opened in the central portion of the bottom surface along the longitudinal direction is formed. The concave groove 8 is a round surface 7 whose upper half is rectangular in cross section and whose lower half is semicircular in cross section.
[0018]
  The base member 2 may be an aluminum alloy extruded shape in which the lid groove 6 and the concave groove 8 are integrally formed in advance along the longitudinal direction.
  As shown in FIG. 2C, the depth (depth of the deepest portion) Y of the concave groove 8 is the same as or less than 1.2 times the outer diameter of the heat medium pipe 16 described below. In addition, the width X of the concave groove 8 is in the same range as the outer diameter of the pipe 16 or 1.1 times or less.
  Next, as shown in FIG. 2D, a heat medium pipe 16 made of stainless steel similar to the above is inserted into the groove 8 (insertion step). The peripheral surface of the lower half portion of the pipe 16 in which the hollow portion 18 is provided is in surface contact with the rounded surface 7 that forms the lower half portion of the recessed groove 8 in its entire length. Further, the upper end portion of the pipe 16 is in the vicinity of the opening of the concave groove 8 and at the same level as the bottom surface of the lid groove 6 or slightly lower than the bottom surface.
[0019]
  Further, as shown in FIG. 3A, the lid groove 6 of the base member 2 in which the pipe 16 is inserted into the concave groove 8 is made of the same aluminum alloy as described above, and has an upper surface 11, a lower surface 12, and left and right side surfaces 13. , 14 is fitted with a lid plate 10 having a rectangular section substantially the same as the section of the lid groove 6 (blocking step). At this time, the upper end portion of the pipe 16 comes into line contact or approaches near the center of the bottom surface 12 of the cover plate 10, and the upper surface 11 of the cover plate 10 is flush with the left and right surfaces 3 and 3 of the base member 2. Become.
  Next, as shown in FIGS. 3B and 3C, along the two rows of butted surfaces of the side walls 5, 5 of the lid groove 6 of the base member 2 and the side surfaces 13, 14 of the lid plate 10, Friction stir welding is performed (joining process). The joining tool 20 shown in the figure is used for such joining.
[0020]
  That is, the welding tool 20 is made of, for example, tool steel, and as shown in FIGS. 3 (B) and 3 (C), a frictional stirring pin that hangs coaxially from the center of the cylindrical tool body 22 and its bottom surface 24. 26. A plurality of small grooves (not shown) and screw grooves along the radial direction may be formed on the peripheral surface of the stirring pin 26 along the axial direction.
  Incidentally, the diameter of the tool main body 22 is 6 to 20 mm, the length of the friction stir pin 26 is 3 to 10 mm, and the diameter is 2 to 8 mm. The rotational speed of the friction stir tool 20 is 500 to 15000 rpm, the feed speed is 0.05 to 2 m / min, and the pushing force applied in the axial direction of the tool 20 is about 1 kN to 20 kN.
[0021]
  As shown in FIGS. 3 (B) and 3 (C), the base material 2 and the cover plate 10 are constrained by a jig (not shown), and the left side wall 5 and the side surface 13 of the cover plate 10 are in contact with each other. A joining tool 20 that rotates at a high speed is pushed in along the surface. At this time, the bottom surface 24 of the tool body 22 is parallel to the surface 3 of the base member 2 and the top surface 11 of the lid plate 10. In addition, the axial length of the friction stir pin 26 is set to be not more than the depth H of the butted surface and not less than 60% as shown in FIG.
  As shown in FIGS. 3B and 3C, the bottom surface of the friction stir pin 26 in the friction stir tool 20 reaches slightly below the butted surface. With the friction stir pin 26 rotating at a high speed in such a state, the base member 2 and the aluminum alloy material of the cover plate 10 positioned around the pin are heated by frictional heat, plasticized and fluidized (mass transfer) in a semi-solid state. To do. In addition, if there is a small groove along the axial direction or a screw groove along the radial direction on the peripheral surface of the friction stir pin 26, the stirring of the aluminum alloy material can be further activated.
[0022]
  As shown in FIGS. 3 (B) and 3 (C), the trace of the friction stirrer tool 20 passing while rotating is along the abutting surface of the side wall 5 of the lid groove 6 and the side surface 13 of the lid plate 10, as shown in FIGS. The joint W1 is formed by solidifying the plastic / fluidized aluminum alloy material. When the alloy material is sufficiently plastically flowed, the inside of the joint portion W1 is free of fine tunnel defects such as a large number of holes. It should be noted that the surface wa of the joint W1 has fine undulating irregularities following the periphery of the bottom surface 24 of the tool body 22, and is slightly recessed from the surface 3 or the like due to the amount of pressing of the tool body 22. Yes.
  Subsequently, the friction stir welding similar to the above is performed using the welding tool 20 also along the abutting surface between the right side wall 5 and the side surface 14 of the lid plate 10 in the lid groove 6.
[0023]
  As a result, as shown in FIG. 3D, joints W1, W2 are formed along the abutting surfaces of the side walls 5, 5 of the lid groove 6 and the side surfaces 13, 14 of the lid plate 10. The cover plate 10 is tightly fitted in the cover groove 6 of the base member 2 and the bottom surface 12 of the cover plate 10 is inserted in the recessed groove 8 in advance and is in surface contact with the lower half of the pipe 16. A heat transfer element 1 that is in contact with or in close proximity is obtained.
  According to the manufacturing method of the heat transfer element 1 as described above, the heat transfer element 1 having the joint portions W1 and W2 that are excellent in heat transferability and can maintain high strength even by the heat energy from the pipe 16 can be efficiently and reliably obtained. Can be manufactured. Instead of the pipe 16, for example, a heater having a circular cross section in which a stainless steel foil is wound around a heating wire or the like may be inserted into the concave groove 8 of the base member 2.
[0024]
  FIG. 4 relates to a heat transfer element 1a of a different form and a manufacturing method thereof.
  First, as shown in FIG. 4 (A), the surface 3 of the same thick plate made of aluminum alloy as described above is counterbored or cut, and as shown in FIG. Then, a base member 2c having a concave groove 9 opened at the center of the bottom surface and having a square cross section is formed. The base member 2c may be an aluminum alloy extruded shape having the lid groove 6 and the concave groove 9 integrally in advance along the longitudinal direction.
  Next, the heat medium pipe 17 having a square cross section having substantially the same vertical and horizontal dimensions in the depth and width is inserted into the concave groove 9 (insertion step). The pipe 17 is made of the same stainless steel as described above, and has a hollow portion 19 having a cross section similar to the outer shape, and is in surface contact with the bottom surface of the concave groove 9 and the left and right side walls.
[0025]
  Next, as shown in FIG. 4 (B), the lid groove 6 of the base member 2c in which the pipe 17 is inserted into the concave groove 9 is made of the same aluminum alloy as described above, and has the same rectangular cross section as that of the lid groove 6. The lid plate 10 is fitted (blocking step). At this time, near the center of the bottom surface 12 of the cover plate 10, the upper surface of the pipe 17 is in surface contact or very close, and the upper surface 11 of the cover plate 10 is flush with the surfaces 3 and 3 of the base member 2 c. Become.
  Then, the same friction stir welding is individually performed along the pair of butted surfaces of the left and right side walls 5, 5 in the lid groove 6 and the side surfaces 13, 14 of the lid plate 10 using the same welding tool 20. Apply (joining process).
[0026]
  As a result, as shown in FIG. 4C, joints W1 and W2 are formed along the pair of butting surfaces, whereby the lid plate 10 is tightly fitted in the lid groove 6 of the base member 2c, The heat transfer element 1a is obtained in which the bottom surface 12 of the cover plate 10 is inserted into the concave groove 9 in advance and faces the upper surface of the pipe 17 that is in surface contact or is in surface contact or close proximity.
  As shown in FIG. 4C, the heat transfer element 1a includes a pipe 17 having a square cross section (square shape) inserted into a groove 9 having substantially the same or similar cross section by surface contact, and a lid on the upper surface of the pipe 17 Since the bottom surface 12 of the plate 10 is in surface contact or close proximity, the heat transfer characteristics are further improved. Moreover, according to the manufacturing method of the above heat-transfer element 1a, the heat-transfer element which has joining part W1, W2 which can maintain high intensity | strength between the base member 2c and the cover board 10 with the heat energy from the pipe 17 is also possible. 1a can be manufactured efficiently and reliably.
[0027]
【Example】
  Here, the present inventionbyHeat transfer element 1Manufacturing methodExamples will be described.
  It is made of an aluminum alloy (JIS: A6061), the longitudinal direction in FIGS. 1A, 1B and 4C is 300 mm, the width of the front surface 3 and the back surface 4 is 30 mm, the thickness is 20 mm, and the lid The groove 6 prepared two base members 2 and 2c each having a depth of 5 mm and a width of 10 mm. The concave groove 8 of the base member 2 has the depth (deepest part) Y: 3 mm × width X: 3 mm, and the lower half of the cross section is the rounded round surface 7. Moreover, the concave groove 9 of the base member 2c has a square cross section of depth Y: 3 mm × width X: 3 mm.
[0028]
  The heat medium pipe 16 made of stainless steel (JIS: SUS304) and having a total length of 340 mm × outer diameter: 3 mm × thickness: 0.5 mm is inserted into the concave groove 8 of the base member 2 with both ends protruding. did. On the other hand, a pipe 17 having the same material and having a total length of 340 mm × vertical: 3 mm × horizontal: 3 mm × thickness: 0.5 mm was inserted into the concave groove 9 of the base member 2 c with both ends protruding. The lid plate 10 made of the same aluminum alloy as described above and having a total length of 300 mm, a width of 9.8 mm, and a thickness of 5 mm was individually fitted into the lid grooves 6 of the base members 2 and 2c. Friction stir welding is performed along a pair of butted surfaces of the side walls 5, 5 of the lid groove 6 and the side surfaces 13, 14 of the lid plate 10 in a state where the base members 2, 2 c including the lid plate 10 are constrained. Were joined individually.
[0029]
  The joining tool 20 used for this is made of tool steel (SKD61), the tool body 22 has a diameter of 15 mm, and the friction stir pin 26 has a diameter of 5 mm × length of 3.8 mm. The joining tool 20 is rotated and moved along the abutting surfaces under the same conditions of a rotational speed of 1400 rpm, a moving speed of 300 mm / min, and an axial indentation depth (distance) of 0.2 mm. The parts W1 and W2 were formed individually.
  The heat transfer element 1 using the base member 2 was taken as Example 1, and the heat transfer element 1a using the base member 2c was taken as Example 2. These were cut at four locations in the longitudinal direction and visually observed to check for the presence or absence of tunnel defects at the joints W1 and W2 and the presence or absence of gaps between the pipe 16 and the grooves 8 and 9 and the cover plate 10. The results are shown in Table 1.
[0030]
[Table 1]
Figure 0004325260
[0031]
  According to Table 1, Examples 1 and 2Obtained byNo tunnel defects or the like were found at the junctions W1 and W2 of the heat transfer elements 1 and 1a. In addition, there is no gap between the concave half 8 of the first embodiment and the lower half of the pipe 16, and the entire circumference is between the concave groove 9 including the bottom surface 12 of the cover plate 10 of the second embodiment and the pipe 17. It became clear that it has adhesiveness without a gap.
  Next, Example 1Used for10 base members 2 are prepared, and as shown in Table 2, the depth (the deepest part) Y and the width X of the groove 8 are changed, and the same heat medium pipes 16 are inserted individually as described above. . Friction stir welding is individually performed using the same welding tool 20 and the same conditions as described above along the abutting surfaces of the side walls 5 and 5 of the lid groove 6 and the side surfaces 13 and 14 of the lid plate 10. Went to.
  The obtained 10 heat transfer elements (1) were cut and visually observed in the same manner as described above, and the presence or absence of defects in the joints W1 and W2, and the presence or absence of gaps between the pipe 16 and the groove 8 and the cover plate 10 were confirmed. Examined. The results are also shown in Table 2.
[0032]
[Table 2]
Figure 0004325260
[0033]
  According to Table 2, in Comparative Example 1 in which the depth Y of the concave groove 8 is smaller (shallow) than the outer diameter of the pipe 16, tunnel defects occur in the joints W <b> 1 and W <b> 2 due to the rising of the cover plate 10. A gap was formed between 16 and the rounded surface of the groove 8. In Comparative Example 2 in which the depth Y of the recessed groove 8 is 1.2 times the outer diameter of the pipe 16, the center portion of the lid plate 10 is recessed and the side surfaces 13 and 14 are lifted by the pressure of the welding tool 20. In addition, defects due to the lack of aluminum alloy material occurred in the joints W1 and W2, and the gap was also generated.
  Further, in Comparative Examples 3 to 5 in which the width X of the concave groove 8 exceeds 1.1 times the outer diameter of the pipe 16, the lid plate 10 has been deformed in the same manner as described above, so that the aluminum alloy material is used for the joints W1 and W2. Defects due to shortage occurred and the gaps also formed.
  On the other hand, the depth Y of the groove 8 is equal to or less than 1.2 times the outer diameter of the pipe 16, and the width X of the groove 8 is equal to or less than 1.1 times the outer diameter of the pipe 16. In Examples 3 to 7, there was no tunnel defect or the like in the joint portions W1 and W2, and there was no good gap between the rounded surface 7 of the groove 8 and the lower half portion of the pipe 16.
[0034]
  Furthermore, the first embodimentDue toSeven sets of the same base member 2, the cover plate 10, and the heat medium pipe 16 were prepared and assembled by inserting and fitting them in the same manner as described above.
  As shown in Table 3, the axial length of the friction stir pin 26 in the welding tool 20 is changed so that the pushing amount (distance) of the tool body 22 is constant, and both side walls of the seven sets of lid grooves 6 are arranged. Friction stir welding was carried out individually under the same conditions as described above, including the push-in amount, along the abutting surfaces of 5, 5 and both side surfaces 13, 14 of the lid plate 10.
  The obtained seven heat transfer elements (1) were cut and visually observed in the same manner as described above, and the presence / absence of a defect in the joints W1 and W2 and the presence / absence of a gap between the groove 8 and the pipe 16 were examined. The results are also shown in Table 3.
[0035]
[Table 3]
Figure 0004325260
[0036]
  According to Table 3, in Comparative Example 6 in which the length of the friction stir pin 26 is longer than the depth H of the butt surface (the depth of the cover groove 6 excluding the pushing amount), the plastic fluidized aluminum alloy material is Since it was inserted between the lid groove 6 and the lid plate 10, a gap was generated between the base member 2 and the pipe 16 and the lid plate 10.
  Further, in Comparative Example 7 in which the length of the friction stir pin 26 is less than 60% of the depth H of the abutting surface, the composition flow of the material and the pressurization by the joining tool 20 and the plastic flow of the aluminum alloy material are insufficient. Since the bonding strength of the bonding portions W1 and W2 is low, a gap is generated between the pipe 16 and the bottom surface 12 of the lid plate 10.
  On the other hand, in Examples 8 to 12 in which the length of the friction stir pin 26 is equal to or more than 60% of the depth H of the abutting surface, the joints W1 and W2 have no defect, and the pipe 16 and the concave groove 8 and the upper end portion of the pipe 16 and the bottom surface 12 of the cover plate 10 had no gap and were in a good contact state.
  Examples 1 to 12 aboveObtained byThe effect of the present invention was supported by the heat transfer element 1.
[0037]
  FIG. 5A schematically shows a heat transfer unit U1 using a plurality of the heat transfer elements 1 (including the heat transfer element 1a, the same applies hereinafter). As shown in FIG. 5 (A), the heat transfer unit U1 has a plurality of heat transfer elements 1, 1,... Arranged in parallel with their base members 2 (including the base member 2c, the same applies hereinafter) spaced apart. At the same time, the header pipe 27 is connected at right angles to the heat medium pipe 16 (including the pipe 17, the same applies hereinafter) protruding from both ends of each base member 2 in the longitudinal direction.
  FIG. 5B shows an outline of a heat transfer unit U2 of a different form using a plurality of the heat transfer elements 1. As shown in FIG. 5 (B), the heat transfer unit U2 has a plurality of heat transfer elements 1, 1,... Arranged in parallel with their base members 2 adjacent to each other. The heat medium pipes 16, 16 protruding from both ends and adjacent to each other are connected via a substantially U-shaped connecting pipe 28.
  According to the heat transfer units U1 and U2 as described above, the base member 2 (2c) which is in close contact with the pipe 16 (17) in the plurality of heat transfer elements 1 (1a) by passing the heat medium therethrough, and It is possible to quickly cool or heat an object (not shown) in contact with or close to these via the cover plate 10.
[0038]
  6A and 6B show a heat transfer element 1b which is an application form of the heat transfer element 1, and a method for manufacturing the same. As shown in FIG. 6 (A), a lid groove 6 having a rectangular cross section that is made of the same aluminum alloy as described above and that opens on the surface 3, and a pair of concave grooves that open on the bottom surface of the lid groove 6 and are parallel to each other. A base member 2d having 8 and 8 is formed.
  Next, the same pipes 16 and 16 are individually inserted into the concave grooves 8 and 8 of the base member 2d (insertion step), and then the lid plate 10 having substantially the same cross section is fitted into the lid groove 6. (Blocking process). Then, along the abutting surfaces of the side walls 5 and 5 of the lid groove 6 and the side surfaces 13 and 14 of the lid plate 10, friction stir welding is performed using the welding tool 20 according to the conditions described above (joining). Process). As a result, as shown in FIG. 6B, joints W1 and W2 are formed along the abutting surfaces, and the lower half of the pipe 16 is brought into close contact with the rounded surface 7 of each concave groove 8 by surface contact. In addition, the heat transfer element 1b in which the bottom surface 12 of the cover plate 10 abuts on the upper end portion of each pipe 16 can be obtained.
[0039]
  6 (C) and 6 (D) show a heat transfer element 1c, which is an application form of the heat transfer element 1a, and a manufacturing method thereof. As shown in FIG. 6 (C), a lid groove 6 having a rectangular cross section that is made of the same aluminum alloy as described above and opens in the surface 3, and a pair of concave grooves that are opened in the bottom surface of the lid groove 6 and are parallel to each other. The base member 2e having 9, 9 is formed.
  Next, the same pipes 17 and 17 are individually inserted into the concave grooves 9 and 9 of the base member 2e (insertion step), and then the lid plate 10 having substantially the same cross section is fitted into the lid groove 6. (Blocking process). Then, along the abutting surfaces of the side walls 5 and 5 of the lid groove 6 and the side surfaces 13 and 14 of the lid plate 10, friction stir welding is performed using the welding tool 20 according to the conditions described above (joining). Process). As a result, as shown in FIG. 6 (D), joints W1 and W2 are individually formed along the abutting surfaces, whereby the pipes 16 are brought into close contact with the concave grooves 9 by surface contact, and each pipe. Thus, the heat transfer element 1c in which the bottom surface 12 of the cover plate 10 is in surface contact with the upper surface of the cover plate 10 can be obtained.
  The base members 2d and 2e may be made of an aluminum alloy extruded shape having the lid groove 6 and the concave grooves 8 and 9 integrally in the longitudinal direction.
[0040]
  7A and 7B areReference formProduction methodAnd thus obtainedThe heat transfer element 1d is shown.
  As shown in FIG. 7 (A), it is made of the same aluminum alloy as described above, and has a lid groove 6 having a rectangular cross section that opens on the surface 3, and a concave groove 7 having a semicircular cross section that opens on the bottom surface of the cover groove 6. A base member 2f is prepared in advance. Also, a lid plate 10a having a concave groove 15 having a semi-circular cross section that has the same rectangular shape as the lid groove 6 and opens at the center of the bottom surface 12 is prepared. The concave groove 7 and the concave groove 15 face each other in the same cross section. An extruded profile may be used for the base member 2f and the cover plate 10a.
[0041]
  As shown by an arrow in FIG. 7A, after inserting the lower half of the pipe 16 into the concave groove 7 of the base member 2f, and simultaneously fitting the lid plate 10a into the lid groove 6 of the base member 2f, The upper half of the pipe 16 is inserted into the concave groove 15 (insertion / closure step).
  Next, friction stir welding is performed using the welding tool 20 along the abutting surfaces of the side walls 5, 5 of the lid groove 6 of the base member 2f and the side surfaces 13, 14 of the lid plate 10a. Apply (joining process). As a result, as shown in FIG. 7B, joints W1 and W2 are formed along the abutting surfaces, and the round pipe 16 has a groove 7 and a cover plate 10a of the base member 2f on its entire peripheral surface. A heat transfer element 1d having excellent heat transfer properties in close contact with the inner peripheral surface of the groove 15 can be obtained.
[0042]
  FIG. 7C shows an application form of the heat transfer element 1d.Reference formThe heat transfer element 1e is shown.
  As shown in FIG. 7 (C), the base member 2g is made of the same aluminum alloy as described above, and has a pair of rectangular lid grooves 6 opened on the surface 3, and a pair of parallel openings opened on the bottom surface of the lid grooves 6 and parallel to each other. The lid plate 10b has a pair of concave grooves 15 that have the same rectangular shape as the lid groove 6 and open to the bottom surface 12. The concave groove 7 and the concave groove 15 are also opposed to each other in the same cross section. An extruded profile may also be used for the base member 2g and the cover plate 10b.
  Similarly to the above, after the lower half of the pipe 16 is individually inserted into the concave grooves 7, 7 of the base member 2g, the lid plate 10b is fitted into the lid groove 6 of the base member 2g, and the concave grooves 15, The upper half of the pipe 16 is individually inserted into 15 (insertion / blocking step).
  Next, friction stir welding is performed using the welding tool 20 along the abutting surfaces of the side walls 5 and 5 of the lid groove 6 of the base member 2g and the side surfaces 13 and 14 of the lid plate 10b. Apply (joining process). As a result, as shown in FIG. 7C, joints W1 and W2 are formed along the abutting surfaces, and a pair of round pipes 16 are formed on the entire circumferential surfaces of the concave grooves 7 of the base member 2g. A heat transfer element 1e having excellent heat transfer properties in close contact with the inner peripheral surface of the cover plate 10b with the concave groove 15 can be obtained.
[0043]
  8A and 8B areDifferent referenceThe heat-transfer element 1f of a form and its manufacturing method are shown.
  As shown in FIG. 8 (A), the base is made of the same aluminum alloy as described above, and has a lid groove 6 having a rectangular cross section opening on the surface 3 and a concave groove 9a having a rectangular cross section opening on the bottom surface of the lid groove 6. The member 2h is prepared in advance. Also, a cover plate 10c having a cross section of the same rectangle as the cover groove 6 and opening in the center of the bottom surface 12 and having a concave groove 15a having a rectangular cross section is prepared. The concave groove 9a and the concave groove 15a are opposed to each other in the same cross section. An extruded profile may be used for the base member 2h and the cover plate 10c.
[0044]
  As shown by the arrow in FIG. 8A, after the lower half of the pipe 17 having a square cross section is inserted into the concave groove 9a of the base member 2h, the cover plate 10c is fitted into the cover groove 6 of the base member 2h. At the same time, the upper half of the pipe 17 is inserted into the concave groove 15a (insertion / closure step). Next, friction stir welding using the welding tool 20 is performed along the abutting surfaces of the side walls 5, 5 of the lid groove 6 of the base member 2h and the side surfaces 13, 14 of the lid plate 10c according to the above-described conditions ( Joining process).
  As a result, as shown in FIG. 8B, joints W1 and W2 are formed along the abutting surfaces, and the pipe 17 is formed on the substantially entire circumferential surface of the concave groove 9a and the cover plate 10a of the base member 2h. Thus, a heat transfer element 1f having excellent heat transfer properties in close contact with the inner wall surface of the groove 15 can be obtained.
[0045]
  FIG. 8C shows an application form of the heat transfer element 1f.Reference form1g of heat transfer elements is shown.
  As shown in FIG. 8 (C), the base member 2j is made of the same aluminum alloy as described above, and has a pair of rectangular lid grooves 6 that open to the surface 3, and a pair of openings that open to the bottom surface of the lid grooves 6 and are parallel to each other. The lid plate 10d has a pair of concave grooves 15a that have the same rectangular shape as the lid groove 6 and open to the bottom surface 12. The concave groove 9a and the concave groove 15a are also opposed to each other in the same cross section. An extruded profile may also be used for the base member 2j and the cover plate 10d.
  Similarly to the above, after the lower half of the pipe 17 is individually inserted into each concave groove 9a of the base member 2j, the lid plate 10d is fitted into the lid groove 6 of the base member 2j, and the concave groove 15a is inserted into the concave groove 15a. The upper half of the pipe 17 is individually inserted (insertion / blocking step).
[0046]
  Next, friction stir welding is performed using the welding tool 20 along the abutting surfaces of the side walls 5 and 5 of the lid groove 6 of the base member 2j and the side surfaces 13 and 14 of the lid plate 10d. Apply (joining process). As a result, as shown in FIG. 8 (C), joints W1 and W2 are formed along the abutting surfaces, and a pair of square pipes 17 are formed on the respective circumferential surfaces of the concave grooves 9a of the base member 2j. A heat transfer element 1g having excellent heat transfer properties in close contact with the inner wall surface of the cover plate 10b with the concave groove 15a can be obtained.
  Note that the concave groove 9a and the concave groove 15a may have different heights (depths) but not the same cross section, but only the width.
[0047]
  The present invention is not limited to the embodiments and examples described above.
  For example, the pipe for the heat medium has a hexagonal or octagonal regular polygonal cross section, a lid plate in the form of a flat plate, and a lower half of the concave groove of the base member into which the pipe is inserted. The cross section may be a trapezoid that is substantially the same as the cross section of the lower half of the pipe.
  The pipe for the heat medium may be made of copper or a copper alloy having a high thermal conductivity, or a titanium alloy having a relatively light weight and a required strength.
  Furthermore, the material of the base member may be made of copper or a copper alloy having a high thermal conductivity.
  Further, at least one of the front surface 3 and the back surface 4 such as the base member 2 or the upper surface 11 of the lid plate 10, a protrusion for promoting heat exchange or the like at a position where the movement of the joining tool 20 is not hindered. A fin or the like may be provided. In particular, when using an extruded shape of an aluminum alloy in which the cover groove 6 and the concave grooves 8 and 9 are formed by extrusion molding on the base member 2 and the like, it is preferable because the above-mentioned convex stripes and fins can be integrally projected. is there.
[Brief description of the drawings]
FIG. 1 (A) shows the present invention.Obtained byThe perspective view of 1 form in a 1st heat-transfer element, (B) is sectional drawing in the arrow direction along the BB line in (A).
FIGS. 2A to 2D are schematic views showing a manufacturing process of the heat transfer element.
3 (A), (B), and (D) are schematic views showing the manufacturing process of the heat transfer element subsequent to FIG. 2 (D), and (C) is along CC in (B). Sectional drawing in an arrow view.
FIGS. 4A to 4C are schematic views showing a first heat transfer element having a different form or a manufacturing process thereof; FIGS.
FIGS. 5A and 5B are schematic views showing a heat transfer unit using a plurality of the heat transfer elements.
6 (A) and (B) are applied versions of the heat transfer element of FIG.Made of stateSchematic diagram showing the manufacturing process, (C) and (D) are applied versions of the heat transfer element of FIG.Made of stateSchematic which shows a manufacturing process.
[Figure 7] (A) and (B)Reference formHeat transfer elementOf childSchematic showing the manufacturing process, (C) isAffectSchematic which shows the application form of a heat-transfer element.
[Figure 8] (A) and (B) are differentreferenceHeat transfer elementOf childSchematic which shows a manufacturing process, (C) is schematic which shows the application form of the said heat-transfer element.
[Explanation of symbols]
  1,1a ~1c... Heat transfer element, 2, 2c ~2e... base member,
  3 ………………… Surface, 5 ………………… Sidewall,
  6 ............... lid groove, 7, 8, 9, 9a ... concave groove in the base member,
  10 ……………… Cover plate, 13, 14 ……… Side,
  16, 17 ... Pipe, 20 ......... Joining tool,
  22 ……………… Tool body, 24 ……………… Bottom surface of tool body,
  26 ……………… A friction stir pin,
  W1, W2 ......... Junction, X ............... Width of groove,
  Y ............... Depth of groove, H ............... Depth of butt surface

Claims (2)

ベース部材の表面に開口する断面が矩形の蓋溝の底面に設けられ、且つ少なくとも下半部が断面半円形のアール面である凹溝に、熱媒体用で断面が円形のパイプまたはヒータを挿入する挿入工程と、
上記ベース部材の蓋溝に断面がほぼ同じ蓋板を嵌合する閉塞工程と、
上記ベース材の蓋溝における両側壁と上記蓋板の両側面との各突き合わせ面に沿って、摩擦攪拌接合を施す接合工程と、を含み、
上記ベース板の凹溝の少なくとも下半部の断面形状は、上記パイプまたはヒータの下半部の断面形状と同じか、あるいはほぼ相似形であり、
上記ベース板の凹溝の深さは、上記パイプまたはヒータの外径ないし係る外径の1.2倍未満の範囲にあり、
上記凹溝の幅は、上記パイプまたはヒータの外径ないし係る外径の1.1倍の範囲にある、
ことを特徴とする伝熱素子の製造方法。
Insert a pipe or heater with a circular cross-section for the heat medium into a concave groove with a cross-section opening on the surface of the base member on the bottom surface of the rectangular lid groove and at least the lower half is a round surface with a semi-circular cross section. Inserting step to
A closing step of cross-section in the lid groove of the base member is fitted about the same cover plate,
A joining step of performing friction stir welding along each butted surface of both side walls and both side surfaces of the lid plate in the lid groove of the base material,
The cross-sectional shape of at least the lower half of the concave groove of the base plate is the same as or substantially similar to the cross-sectional shape of the lower half of the pipe or heater,
The depth of the groove of the base plate is in the range of the outer diameter of the pipe or heater or less than 1.2 times the outer diameter,
The width of the concave groove is in the range of 1.1 times the outer diameter or the outer diameter of the pipe or heater,
The manufacturing method of the heat-transfer element characterized by the above-mentioned.
前記接合工程における摩擦攪拌接合に用いる接合ツールは、ツール本体とその底面の中心部から同軸心で垂下する摩擦攪拌ピンとを含み、
上記摩擦攪拌ピンの軸方向の長さは、前記突き合わせ面の深さの60〜100%の範囲にある、
ことを特徴とする請求項1に記載の伝熱素子の製造方法。
The welding tool used for friction stir welding in the joining step includes a tool main body and a friction stir pin that hangs coaxially from the center of the bottom surface thereof,
The axial length of the friction stir pin is in the range of 60 to 100% of the depth of the butted surface,
The manufacturing method of the heat-transfer element of Claim 1 characterized by the above-mentioned.
JP2003110413A 2003-04-15 2003-04-15 Manufacturing method of heat transfer element Expired - Lifetime JP4325260B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003110413A JP4325260B2 (en) 2003-04-15 2003-04-15 Manufacturing method of heat transfer element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003110413A JP4325260B2 (en) 2003-04-15 2003-04-15 Manufacturing method of heat transfer element

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2009005371A Division JP4998481B2 (en) 2009-01-14 2009-01-14 Manufacturing method of heat transfer element

Publications (2)

Publication Number Publication Date
JP2004314115A JP2004314115A (en) 2004-11-11
JP4325260B2 true JP4325260B2 (en) 2009-09-02

Family

ID=33471277

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003110413A Expired - Lifetime JP4325260B2 (en) 2003-04-15 2003-04-15 Manufacturing method of heat transfer element

Country Status (1)

Country Link
JP (1) JP4325260B2 (en)

Families Citing this family (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070090516A1 (en) * 2005-10-18 2007-04-26 Applied Materials, Inc. Heated substrate support and method of fabricating same
JP4898217B2 (en) * 2005-12-27 2012-03-14 川崎重工業株式会社 Method for producing hollow body
JP4946079B2 (en) * 2006-02-02 2012-06-06 富士電機株式会社 Cooling body and manufacturing method thereof
JP5151036B2 (en) 2006-02-07 2013-02-27 株式会社日立製作所 Friction stir welding method
JP2008254047A (en) * 2007-04-06 2008-10-23 Mitsubishi Heavy Ind Ltd Heat exchanging plate and its manufacturing method
JP2008254046A (en) * 2007-04-06 2008-10-23 Mitsubishi Heavy Ind Ltd Heat exchanging plate
JP5071132B2 (en) * 2008-02-01 2012-11-14 日本軽金属株式会社 Manufacturing method of heat transfer plate
JP5012339B2 (en) * 2007-09-06 2012-08-29 日本軽金属株式会社 Heat transfer plate manufacturing method and heat transfer plate
US8365408B2 (en) 2007-04-16 2013-02-05 Nippon Light Metal Company, Ltd. Heat transfer plate and method of manufacturing the same
JP5045355B2 (en) * 2007-10-04 2012-10-10 日本軽金属株式会社 Method for producing shape and shape
WO2009104426A1 (en) * 2008-02-21 2009-08-27 日本軽金属株式会社 Method of manufacturing heat transfer plate
JP5262508B2 (en) * 2008-09-24 2013-08-14 日本軽金属株式会社 Manufacturing method of heat transfer plate
JP5071144B2 (en) * 2008-02-21 2012-11-14 日本軽金属株式会社 Manufacturing method of heat transfer plate
JP5125760B2 (en) * 2008-05-20 2013-01-23 日本軽金属株式会社 Heat transfer plate manufacturing method and heat transfer plate
JP5071249B2 (en) * 2008-06-03 2012-11-14 日本軽金属株式会社 Heat transfer plate manufacturing method and heat transfer plate
CN103042302B (en) * 2008-05-20 2015-01-14 日本轻金属株式会社 Heat transmit plate manufacturing method and heat transmit plate
JP4962423B2 (en) * 2008-06-16 2012-06-27 日本軽金属株式会社 Manufacturing method of heat transfer plate
JP5434251B2 (en) * 2009-05-13 2014-03-05 日本軽金属株式会社 Manufacturing method of heat transfer plate
JP5071274B2 (en) * 2008-06-27 2012-11-14 日本軽金属株式会社 Heat transfer plate manufacturing method and heat transfer plate
WO2009157519A1 (en) * 2008-06-27 2009-12-30 日本軽金属株式会社 Heat exchange plate manufacturing method and heat exchange plate
JP5195098B2 (en) * 2008-07-10 2013-05-08 日本軽金属株式会社 Manufacturing method of heat transfer plate
CN102159357B (en) * 2008-10-06 2014-04-16 日本轻金属株式会社 Method of manufacturing heat transfer plate
JP5163419B2 (en) * 2008-10-10 2013-03-13 日本軽金属株式会社 Manufacturing method of heat transfer plate
JP5401921B2 (en) * 2008-10-30 2014-01-29 日本軽金属株式会社 Manufacturing method of heat transfer plate
JP4998481B2 (en) * 2009-01-14 2012-08-15 日本軽金属株式会社 Manufacturing method of heat transfer element
JP5177017B2 (en) * 2009-03-02 2013-04-03 日本軽金属株式会社 Manufacturing method of heat transfer plate
JP5177059B2 (en) * 2009-04-02 2013-04-03 日本軽金属株式会社 Manufacturing method of heat transfer plate
JP5267381B2 (en) * 2009-08-19 2013-08-21 日本軽金属株式会社 Manufacturing method of heat transfer plate
JP5464236B2 (en) * 2012-06-29 2014-04-09 日本軽金属株式会社 Manufacturing method of heat transfer plate
JP2014094409A (en) 2012-10-10 2014-05-22 Nippon Light Metal Co Ltd Method of producing heat exchanger plate and friction agitation joining method
JP5754431B2 (en) * 2012-10-10 2015-07-29 日本軽金属株式会社 Heat sink manufacturing method and heat transfer plate manufacturing method
JP5440676B2 (en) * 2012-10-26 2014-03-12 日本軽金属株式会社 Heat transfer plate manufacturing method and heat transfer plate
TWI485023B (en) * 2012-12-11 2015-05-21 Metal Ind Res & Dev Ct Aluminum alloy oil hot plate manufacturing method
JP5573940B2 (en) * 2012-12-28 2014-08-20 日本軽金属株式会社 Manufacturing method of heat transfer plate
JP5573939B2 (en) * 2012-12-28 2014-08-20 日本軽金属株式会社 Manufacturing method of heat transfer plate
JP5590206B2 (en) * 2013-09-20 2014-09-17 日本軽金属株式会社 Manufacturing method of heat transfer plate
CN105658370B (en) * 2013-10-21 2018-05-01 日本轻金属株式会社 The manufacture method and joint method of heat transfer plate
JP6052232B2 (en) 2014-01-27 2016-12-27 日本軽金属株式会社 Joining method
JP5772920B2 (en) * 2013-10-24 2015-09-02 日本軽金属株式会社 Manufacturing method of heat transfer plate
JP2019058933A (en) 2017-09-27 2019-04-18 日本軽金属株式会社 Manufacturing method of liquid-cooled jacket
JP2019058934A (en) 2017-09-27 2019-04-18 日本軽金属株式会社 Manufacturing method of liquid-cooled jacket
JP6769427B2 (en) 2017-12-18 2020-10-14 日本軽金属株式会社 How to manufacture a liquid-cooled jacket
JP2019181473A (en) 2018-04-02 2019-10-24 日本軽金属株式会社 Liquid-cooled jacket manufacturing method
JP2020032429A (en) 2018-08-27 2020-03-05 日本軽金属株式会社 Heat exchanger plate manufacturing method
JP7070389B2 (en) 2018-12-19 2022-05-18 日本軽金属株式会社 Joining method

Also Published As

Publication number Publication date
JP2004314115A (en) 2004-11-11

Similar Documents

Publication Publication Date Title
JP4325260B2 (en) Manufacturing method of heat transfer element
KR20150034223A (en) Method for producing heat exchanger plate and method for friction stir welding
US9233438B2 (en) Heat sink and method for manufacturing
WO2019123678A1 (en) Method for manufacturing liquid cooling jacket
JP4962423B2 (en) Manufacturing method of heat transfer plate
WO2020044663A1 (en) Method for manufacturing heat transfer plate
WO2019123679A1 (en) Method for manufacturing liquid cooling jacket
EP1029627B1 (en) Friction agitation jointing method of metal workpieces
WO2019064848A1 (en) Method for producing liquid-cooled jacket
KR101665275B1 (en) Method for producing heat sink and method for producing heat exchanger plate
WO2009142070A1 (en) Method for producing heat exchanger plate, and heat exchanger plate
JP5440676B2 (en) Heat transfer plate manufacturing method and heat transfer plate
JP5195098B2 (en) Manufacturing method of heat transfer plate
JP4407113B2 (en) Joining method
JP4998481B2 (en) Manufacturing method of heat transfer element
JP4888422B2 (en) Heat transfer plate manufacturing method and heat transfer plate
JP6365752B2 (en) Heat transfer plate manufacturing method and heat transfer plate
JP4134569B2 (en) Heat dissipation member and manufacturing method thereof
JPS5870989A (en) Joining of different kind members
JP6201882B2 (en) Heat transfer plate manufacturing method and heat transfer plate
JP5071249B2 (en) Heat transfer plate manufacturing method and heat transfer plate
JP5125760B2 (en) Heat transfer plate manufacturing method and heat transfer plate
JP4597402B2 (en) Friction stir welding method
WO2021171637A1 (en) Method for manufacturing heat exchanger
JP6973212B2 (en) How to manufacture a liquid-cooled jacket

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050628

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080604

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080610

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080718

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090519

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090601

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120619

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4325260

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120619

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130619

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term