JP5434251B2 - Manufacturing method of heat transfer plate - Google Patents

Manufacturing method of heat transfer plate Download PDF

Info

Publication number
JP5434251B2
JP5434251B2 JP2009116632A JP2009116632A JP5434251B2 JP 5434251 B2 JP5434251 B2 JP 5434251B2 JP 2009116632 A JP2009116632 A JP 2009116632A JP 2009116632 A JP2009116632 A JP 2009116632A JP 5434251 B2 JP5434251 B2 JP 5434251B2
Authority
JP
Japan
Prior art keywords
base member
plate
manufacturing
rotary tool
heat transfer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009116632A
Other languages
Japanese (ja)
Other versions
JP2010264467A (en
Inventor
勇人 佐藤
久司 堀
伸城 瀬尾
知広 河本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Light Metal Co Ltd
Original Assignee
Nippon Light Metal Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Light Metal Co Ltd filed Critical Nippon Light Metal Co Ltd
Priority to JP2009116632A priority Critical patent/JP5434251B2/en
Priority to KR1020117002069A priority patent/KR101213247B1/en
Priority to PCT/JP2009/061649 priority patent/WO2009157519A1/en
Priority to CN2009801218129A priority patent/CN102056700B/en
Priority to TW098121559A priority patent/TWI402476B/en
Publication of JP2010264467A publication Critical patent/JP2010264467A/en
Application granted granted Critical
Publication of JP5434251B2 publication Critical patent/JP5434251B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/12Elements constructed in the shape of a hollow panel, e.g. with channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2275/00Fastening; Joining
    • F28F2275/02Fastening; Joining by using bonding materials; by embedding elements in particular materials

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)

Description

本発明は、例えば熱交換器や加熱機器あるいは冷却機器などに用いられる伝熱板の製造方法に関する。   The present invention relates to a method for manufacturing a heat transfer plate used in, for example, a heat exchanger, a heating device, a cooling device, or the like.

熱交換、加熱あるいは冷却すべき対象物に接触し又は近接して配置される伝熱板は、その本体であるベース部材に例えば高温液や冷却水などの熱媒体を循環させる熱媒体用管を挿通させて形成されている。   A heat transfer plate arranged in contact with or close to an object to be heat exchanged, heated or cooled is provided with a heat medium pipe for circulating a heat medium such as high-temperature liquid or cooling water through a base member as a main body. It is formed by insertion.

例えば、特許文献1には、ベース部材と、このベース部材に挿入される熱媒体用管及び蓋板とを有し、ベース部材と蓋板とを摩擦攪拌接合で一体成形した伝熱板が記載されている。図21は、従来の伝熱板を示した側面図である。従来の伝熱板100は、表面に開口する断面視矩形の蓋溝105とこの蓋溝105の底面に開口する凹溝108とを有するベース部材102と、凹溝108に挿入される熱媒体用管116と、蓋溝105に挿入される蓋板110と、を備えている。伝熱板100は、蓋溝105における両側壁106,106と蓋板110の両側面113,114とが突き合わされた突合部J,Jに沿って摩擦攪拌接合を施すことにより、塑性化領域W,Wが形成されている。   For example, Patent Document 1 describes a heat transfer plate that includes a base member, a heat medium tube and a cover plate inserted into the base member, and the base member and the cover plate are integrally formed by friction stir welding. Has been. FIG. 21 is a side view showing a conventional heat transfer plate. A conventional heat transfer plate 100 has a base member 102 having a lid groove 105 having a rectangular cross-section opening on the surface and a concave groove 108 opening on the bottom surface of the lid groove 105, and a heat medium inserted into the concave groove 108. A tube 116 and a lid plate 110 inserted into the lid groove 105 are provided. The heat transfer plate 100 is subjected to friction stir welding along the abutting portions J and J where the both side walls 106 and 106 of the lid groove 105 and the both side surfaces 113 and 114 of the lid plate 110 are abutted, thereby forming the plasticized region W. , W are formed.

特開2004−314115号公報JP 2004-314115 A

伝熱板100には、凹溝108と熱媒体用管116の外周面及び蓋板110の下面とによって空隙120,120が形成されているが、伝熱板100の内部に空隙120が存在していると、熱媒体用管116から放熱された熱が蓋板110及びベース部材102に伝わりにくくなるため、伝熱板100の熱交換効率が低下するという問題があった。また、図21に示すように、摩擦攪拌によって形成された塑性化領域W,Wに熱収縮が発生するため、伝熱板100が側面視して凹状に歪んでしまうという問題があった。   In the heat transfer plate 100, gaps 120, 120 are formed by the concave groove 108, the outer peripheral surface of the heat medium pipe 116, and the lower surface of the lid plate 110, but the gap 120 exists inside the heat transfer plate 100. In this case, the heat radiated from the heat medium pipe 116 becomes difficult to be transmitted to the cover plate 110 and the base member 102, so that the heat exchange efficiency of the heat transfer plate 100 is lowered. Further, as shown in FIG. 21, since heat shrinkage occurs in the plasticized regions W and W formed by friction stirring, there is a problem that the heat transfer plate 100 is distorted in a concave shape when viewed from the side.

このような観点から、本発明は、熱交換効率が高く、かつ、平坦性の高い伝熱板の製造方法を提供することを課題とする。   From such a viewpoint, an object of the present invention is to provide a method for manufacturing a heat transfer plate having high heat exchange efficiency and high flatness.

このような課題を解決する本発明に係る伝熱板の製造方法は、ベース部材の表面側に開口する蓋溝の底面に形成された凹溝に、熱媒体用管を挿入する挿入工程と、前記蓋溝に挿入される本体部と前記凹溝に挿入される凸部とを有する蓋板を、前記蓋溝に挿入する蓋溝閉塞工程と、前記蓋溝の側壁と前記蓋板の側面との突合部に沿って回転ツールを相対移動させて摩擦攪拌接合を行う本接合工程と、前記ベース部材の裏面に対して回転ツールを移動させて摩擦攪拌を行う矯正工程と、を含むことを特徴とする。   The manufacturing method of the heat transfer plate according to the present invention that solves such a problem includes an insertion step of inserting a heat medium pipe into a concave groove formed on the bottom surface of the lid groove that opens on the surface side of the base member, A lid groove closing step of inserting a lid plate having a main body portion inserted into the lid groove and a convex portion inserted into the concave groove into the lid groove; a side wall of the lid groove; and a side surface of the lid plate A main joining step of performing a friction stir welding by relatively moving the rotating tool along the abutting portion of the base member, and a correcting step of moving the rotating tool relative to the back surface of the base member to perform the friction stirring. And

かかる製造方法によれば、蓋板に前記凹溝に挿入される凸部を有するため、熱媒体用管の周囲に形成される空隙を小さくすることができる。これにより、伝熱板の熱交換効率を高めることができる。また、矯正工程では、ベース部材の裏面側から摩擦攪拌を行うことで、伝熱板の裏面側にも熱収縮が発生するため伝熱板の平坦性を高めることができる。   According to this manufacturing method, since the cover plate has the convex portion that is inserted into the concave groove, the gap formed around the heat medium pipe can be reduced. Thereby, the heat exchange efficiency of a heat exchanger plate can be improved. Further, in the correction process, by performing frictional stirring from the back surface side of the base member, heat shrinkage occurs also on the back surface side of the heat transfer plate, so that the flatness of the heat transfer plate can be improved.

また、前記矯正工程では、前記伝熱板の裏面に形成される塑性化領域の体積量を、前記伝熱板の表面側に形成された塑性化領域の体積量よりも小さく設定することが好ましい。かかる製造方法によれば、伝熱板の平坦性をより高めることができる。根拠については、実施例で説明する。   Moreover, in the said correction process, it is preferable to set the volume amount of the plasticization area | region formed in the back surface of the said heat exchanger plate smaller than the volume amount of the plasticization area | region formed in the surface side of the said heat exchanger plate. . According to this manufacturing method, the flatness of the heat transfer plate can be further improved. The basis will be described in the examples.

また、前記矯正工程では、この矯正工程で形成される塑性化領域の平面形状を前記伝熱板の中心に対して略点対称となるように設定することが好ましい。また、前記矯正工程では、この矯正工程で形成される塑性化領域の平面形状を前記伝熱板の外縁の形状と略相似形状となるように設定することが好ましい。また、前記矯正工程では、この矯正工程で形成される塑性化領域の平面形状を、前記伝熱板の表面側に形成された塑性化領域の平面形状と略同等形状となるように設定することが好ましい。また、前記矯正工程では、この矯正工程で形成される塑性化領域の全長を、前記伝熱板の表面側に形成された塑性化領域の全長と同等となるように設定することが好ましい。 Moreover, in the said correction process, it is preferable to set so that the planar shape of the plasticization area | region formed in this correction process may become substantially point symmetrical with respect to the center of the said heat exchanger plate. Moreover, in the said correction process, it is preferable to set the planar shape of the plasticization area | region formed in this correction process so that it may become a shape substantially similar to the shape of the outer edge of the said heat exchanger plate. In the straightening step, the planar shape of the plasticized region formed in the straightening step is set to be substantially the same shape as the planar shape of the plasticized region formed on the surface side of the heat transfer plate. Is preferred. Moreover, in the said correction process, it is preferable to set so that the full length of the plasticization area | region formed in this correction process may become equivalent to the full length of the plasticization area | region formed in the surface side of the said heat exchanger plate.

かかる製造方法によれば、伝熱板の表面側と裏面側の反りをバランスよく解消することができるので伝熱板の平坦性をより高めることができる。   According to this manufacturing method, since the warpage of the front surface side and the back surface side of the heat transfer plate can be eliminated in a balanced manner, the flatness of the heat transfer plate can be further improved.

また、前記矯正工程では、この矯正工程で形成される塑性化領域の全長を、前記伝熱板の表面側に形成された塑性化領域の全長よりも短くなるように設定することが好ましい。また、前記矯正工程で用いる回転ツールのショルダ部の外径を、前記本接合工程で用いる前記回転ツールのショルダ部の外径よりも小さく設定することが好ましい。また、前記矯正工程で用いる回転ツールの攪拌ピンの長さを、前記本接合工程で用いる前記回転ツールの攪拌ピンの長さよりも小さく設定することが好ましい。   Moreover, in the said correction process, it is preferable to set so that the full length of the plasticization area | region formed in this correction process may become shorter than the full length of the plasticization area | region formed in the surface side of the said heat exchanger plate. Moreover, it is preferable to set the outer diameter of the shoulder part of the rotary tool used in the straightening process to be smaller than the outer diameter of the shoulder part of the rotary tool used in the main joining process. Moreover, it is preferable to set the length of the stirring pin of the rotary tool used in the correction step to be smaller than the length of the stirring pin of the rotary tool used in the main joining step.

かかる製造方法によれば、矯正工程における塑性化領域の体積量を、前記接合工程の塑性化領域の体積量よりも低く設定することができるため、製造された伝熱板の平坦性をより高めることができる。   According to this manufacturing method, since the volume amount of the plasticized region in the straightening process can be set lower than the volume amount of the plasticized region in the joining step, the flatness of the manufactured heat transfer plate is further increased. be able to.

また、前記ベース部材の厚みを、前記本接合工程で用いる前記回転ツールのショルダ部の外径の1.5倍以上に設定することが好ましい。また、前記ベース部材の厚みを、前記本接合工程で用いる前記回転ツールの攪拌ピンの長さの3倍以上に設定することが好ましい。   Moreover, it is preferable to set the thickness of the base member to 1.5 times or more the outer diameter of the shoulder portion of the rotary tool used in the main joining step. Moreover, it is preferable to set the thickness of the base member to be three times or more of the length of the stirring pin of the rotating tool used in the main joining step.

かかる製造方法によれば、接合用回転ツールの各部位の大きさに対してベース部材が十分な厚みを備えているため、伝熱板の平坦性をより高めることができる。   According to such a manufacturing method, since the base member has a sufficient thickness with respect to the size of each part of the bonding rotary tool, the flatness of the heat transfer plate can be further improved.

また、前記ベース部材が平面視多角形である場合、前記矯正工程では、前記伝熱板の隅部に対して回転ツールを用いて摩擦攪拌を行う隅部摩擦攪拌工程を含むことが好ましい。かかる製造方法によれば、ベース部材の隅部において発生した反りを解消して伝熱板の平坦性を解消することができる。   Moreover, when the said base member is a planar view polygon, it is preferable that the said correction process includes the corner friction stirring process of performing friction stirring using the rotation tool with respect to the corner of the said heat exchanger plate. According to this manufacturing method, the warp generated at the corner of the base member can be eliminated and the flatness of the heat transfer plate can be eliminated.

また、前記矯正工程の後に、前記伝熱板の裏面側を面削加工する面削工程を含み、前記面削工程の深さは、前記矯正工程で用いる回転ツールの攪拌ピンの長さよりも大きいことが好ましい。かかる製造方法によれば、伝熱板の裏面を平滑に形成することができる。   Further, after the straightening step, a chamfering step of chamfering the back surface side of the heat transfer plate is included, and the depth of the chamfering step is larger than the length of the stirring pin of the rotary tool used in the straightening step. It is preferable. According to this manufacturing method, the back surface of the heat transfer plate can be formed smoothly.

本発明に係る伝熱板の製造方法によれば、熱交換効率が高く、かつ、平坦性の高い伝熱板を提供することができる。   According to the method for manufacturing a heat transfer plate according to the present invention, a heat transfer plate having high heat exchange efficiency and high flatness can be provided.

第一実施形態に係る伝熱板を示した図であって、(a)は、斜視図、(b)は、I−I断面図である。It is the figure which showed the heat exchanger plate which concerns on 1st embodiment, Comprising: (a) is a perspective view, (b) is II sectional drawing. 第一実施形態に係る伝熱板を示した図であって、(a)は、分解側面図、(b)は、側面図である。It is the figure which showed the heat exchanger plate which concerns on 1st embodiment, Comprising: (a) is a decomposition | disassembly side view, (b) is a side view. 第一実施形態に係る伝熱板の製造方法を示した側面図であって、(a)は、切削工程を示した図であり、(b)は、挿入工程を示した図であり、(c)は、蓋溝閉塞工程を示した図である。It is the side view which showed the manufacturing method of the heat exchanger plate which concerns on 1st embodiment, (a) is the figure which showed the cutting process, (b) is the figure which showed the insertion process, c) is a diagram showing a lid groove closing step. (a)は、第一実施形態に係る接合用回転ツールを示し、(b)は、第一実施形態に係る矯正用回転ツールを示した側面図である。(A) shows the rotating tool for joining which concerns on 1st embodiment, (b) is the side view which showed the rotating tool for correction which concerns on 1st embodiment. 第一実施形態に係る伝熱板の製造方法において、蓋溝閉塞工程後を示した斜視図である。In the manufacturing method of the heat exchanger plate which concerns on 1st embodiment, it is the perspective view which showed the cover groove | channel closing process. 第一実施形態に係る伝熱板の製造方法において、本接合工程を段階的に示した平面図である。In the manufacturing method of the heat exchanger plate which concerns on 1st embodiment, it is the top view which showed the main joining process in steps. 第一実施形態に係る伝熱板の製造方法において、本接合工程を示した断面図である。It is sectional drawing which showed this joining process in the manufacturing method of the heat exchanger plate which concerns on 1st embodiment. 第一実施形態に係る伝熱板の製造方法において、本接合工程後を示した図であって(a)は、斜視図、(b)は、断面図である。In the manufacturing method of the heat exchanger plate which concerns on 1st embodiment, it is the figure which showed this joining process, (a) is a perspective view, (b) is sectional drawing. 第一実施形態に係る伝熱板の製造方法において、矯正工程を示した図であって、(a)は、斜視図、(b)は、平面図である。In the manufacturing method of the heat exchanger plate which concerns on 1st embodiment, it is the figure which showed the correction process, Comprising: (a) is a perspective view, (b) is a top view. 第二実施形態に係る伝熱板を示した図であって、(a)は、斜視図、(b)は、断面図である。It is the figure which showed the heat exchanger plate which concerns on 2nd embodiment, Comprising: (a) is a perspective view, (b) is sectional drawing. 第二実施形態に係る伝熱板の製造方法において、本接合工程後を示した斜視図である。In the manufacturing method of the heat exchanger plate which concerns on 2nd embodiment, it is the perspective view which showed the main joining process after. 第二実施形態に係る伝熱板の製造方法において、矯正工程を示した平面図である。It is the top view which showed the correction process in the manufacturing method of the heat exchanger plate which concerns on 2nd embodiment. 第二実施形態に係る伝熱板の製造方法において、面削工程を示した図であって、図12の(b)のII−II断面図である。In the manufacturing method of the heat exchanger plate which concerns on 2nd embodiment, it is the figure which showed the chamfering process, Comprising: It is II-II sectional drawing of (b) of FIG. 矯正工程の第一変形例を示した平面図である。It is the top view which showed the 1st modification of the correction process. 矯正工程の他の変形例を示した平面図である。It is the top view which showed the other modification of the correction process. 第三実施形態に係る本接合工程を示した断面図である。It is sectional drawing which showed the main joining process which concerns on 3rd embodiment. 第四実施形態に係る本接合工程を示した断面図である。It is sectional drawing which showed the main joining process which concerns on 4th embodiment. 第五実施形態に係る本接合工程を示した断面図である。It is sectional drawing which showed the main joining process which concerns on 5th embodiment. 第六実施形態に係る本接合工程を段階的に示した断面図である。It is sectional drawing which showed the main joining process which concerns on 6th embodiment in steps. 実施例を示した図であって、(a)は、斜視図、(b)は平面図である。It is the figure which showed the Example, Comprising: (a) is a perspective view, (b) is a top view. 従来の伝熱板を示した側面図である。It is the side view which showed the conventional heat exchanger plate.

[第一実施形態]
本発明の実施形態について、図面を参照して詳細に説明する。第一実施形態に係る伝熱板1は、図1に示すように、厚板形状のベース部材2と、ベース部材2の内部に配置される熱媒体用管3と、ベース部材2に配置される蓋板4と、とを主に備え、摩擦攪拌接合により形成された表面塑性化領域W1,W1によって一体形成されている。ここで、「塑性化領域」とは、回転ツールの摩擦熱によって加熱されて現に塑性化している状態と、回転ツールが通り過ぎて常温に戻った状態の両方を含むこととする。
[First embodiment]
Embodiments of the present invention will be described in detail with reference to the drawings. As shown in FIG. 1, the heat transfer plate 1 according to the first embodiment is disposed on a thick plate-shaped base member 2, a heat medium pipe 3 disposed inside the base member 2, and the base member 2. The lid plate 4 is mainly formed by surface plasticization regions W1 and W1 formed by friction stir welding. Here, the “plasticization region” includes both a state heated by frictional heat of the rotary tool and actually plasticized, and a state where the rotary tool passes and returns to room temperature.

ベース部材2は、例えば、アルミニウム合金(JIS:A6061)で形成されている。ベース部材2は、熱媒体用管3に流れる熱媒体の熱を外部に伝達させる役割、あるいは、外部の熱を熱媒体用管3に流れる熱媒体に伝達させる役割を果たすものであって、に示すように、熱媒体用管3を内部に収容する。図2の(a)及び(b)に示すように、ベース部材2の表面2aには、断面視矩形の蓋溝6が凹設されており、蓋溝6の底面6cの中央には、蓋溝6よりも幅狭の凹溝7が凹設されている。蓋溝6は、熱媒体用管3を覆う蓋板4が配置される部分であって、平面視して略馬蹄状を呈する。蓋溝6は、蓋溝6の底面6cから垂直に立ち上がる側壁6a,6bを備えている。   The base member 2 is made of, for example, an aluminum alloy (JIS: A6061). The base member 2 serves to transmit the heat of the heat medium flowing through the heat medium tube 3 to the outside, or to transmit the external heat to the heat medium flowing through the heat medium tube 3. As shown, the heat medium pipe 3 is housed inside. As shown in FIGS. 2A and 2B, a lid groove 6 having a rectangular cross-sectional view is formed in the surface 2 a of the base member 2, and a lid is formed at the center of the bottom surface 6 c of the lid groove 6. A concave groove 7 narrower than the groove 6 is provided. The lid groove 6 is a portion where the lid plate 4 covering the heat medium pipe 3 is disposed, and has a substantially horseshoe shape in plan view. The lid groove 6 includes side walls 6 a and 6 b that rise vertically from the bottom surface 6 c of the lid groove 6.

凹溝7は、熱媒体用管3が挿入される部分であって、平面視して略馬蹄状を呈する。凹溝7は、上方が開口した断面視U字状の溝であって、下端には熱媒体用管3の外周と同等の曲率半径を有する半円形の底部7aが形成されている。これにより、熱媒体用管3と凹溝7の底部7aとを密接させることができる。凹溝7の開口部分は、熱媒体用管3の外径と略同等の幅で形成されている。また、凹溝7の深さは熱媒体用管3の外径と同等に形成されている。   The concave groove 7 is a portion into which the heat medium pipe 3 is inserted, and has a substantially horseshoe shape in plan view. The concave groove 7 is a U-shaped groove having an upper opening, and a semicircular bottom 7 a having a radius of curvature equivalent to the outer periphery of the heat medium pipe 3 is formed at the lower end. Thereby, the heat | fever medium pipe | tube 3 and the bottom part 7a of the ditch | groove 7 can be closely_contact | adhered. The opening of the concave groove 7 is formed with a width substantially equal to the outer diameter of the heat medium pipe 3. Further, the depth of the groove 7 is formed to be equal to the outer diameter of the heat medium pipe 3.

熱媒体用管3は、例えば、銅管にて構成されており、図2の(b)に示すように、断面視円形の中空部3aを有する円筒管である。熱媒体用管3の外径は、凹溝7の幅及び深さと略同等に形成されている。熱媒体用管3は、凹溝7に挿入される部材であるため、凹溝7と同じく平面視略馬蹄状を呈する。   The heat medium pipe 3 is formed of, for example, a copper pipe, and is a cylindrical pipe having a hollow portion 3a having a circular cross section as shown in FIG. The outer diameter of the heat medium pipe 3 is formed substantially equal to the width and depth of the groove 7. Since the heat medium pipe 3 is a member inserted into the concave groove 7, it has a substantially horseshoe shape in plan view, like the concave groove 7.

熱媒体用管3は、中空部3aに、例えば高温液や高温ガスなどの熱媒体を循環させて、ベース部材2及び蓋板4に熱を伝達させる部材、あるいは中空部3aに、例えば冷却水や冷却ガスなどの熱媒体を循環させて、ベース部材2及び蓋板4から熱を伝達される部材である。また、熱媒体用管3の中空部3aに、例えばヒーターを通して、ヒーターから発生する熱をベース部材2及び蓋板4に伝達させる部材として利用してもよい。   The heat medium pipe 3 is a member that circulates a heat medium such as a high-temperature liquid or a high-temperature gas in the hollow portion 3a and transmits heat to the base member 2 and the cover plate 4, or a cooling water that flows into the hollow portion 3a. Or a heat medium such as cooling gas is circulated and heat is transmitted from the base member 2 and the cover plate 4. Moreover, you may utilize as a member which transmits the heat which generate | occur | produces from a heater through the hollow part 3a of the pipe | tube 3 for heat media to the base member 2 and the cover board 4, for example.

蓋板4は、図2の(a)及び(b)に示すように、ベース部材2と同様のアルミニウム合金からなり、略平板状を呈する本体部11と、本体部11の下面(底面)から凸設された凸部12とを有する。蓋板4は、蓋溝6に挿入される部材であるため、蓋溝6と同じく平面視略馬蹄状を呈する。本体部11は、ベース部材2の蓋溝6の断面と略同じ矩形断面を呈し、上面(表面)13、下面(底面)14、側面15a及び側面15bを有する。   As shown in FIGS. 2A and 2B, the cover plate 4 is made of the same aluminum alloy as the base member 2, and has a substantially flat main body 11 and a lower surface (bottom surface) of the main body 11. It has the convex part 12 provided by protrusion. Since the lid plate 4 is a member inserted into the lid groove 6, the lid plate 4 has a substantially horseshoe shape in plan view like the lid groove 6. The main body 11 has a rectangular cross section substantially the same as the cross section of the lid groove 6 of the base member 2, and has an upper surface (front surface) 13, a lower surface (bottom surface) 14, a side surface 15a, and a side surface 15b.

凸部12は、本体部11の下面14の中央から、凹溝7と略同等の幅で下方に延設されており、底面12aが凹面状に形成されている。底面12aの曲率は、熱媒体用管3の外周の曲率と同等に形成されている。   The convex portion 12 extends downward from the center of the lower surface 14 of the main body portion 11 with a width substantially equal to the concave groove 7, and the bottom surface 12 a is formed in a concave shape. The curvature of the bottom surface 12 a is formed to be equal to the curvature of the outer periphery of the heat medium pipe 3.

図2の(b)に示すように、ベース部材2に、熱媒体用管3を配置すると、熱媒体用管3の下半部と凹溝7の底部7aとが面接触するか又は微細な隙間をあけて対向する。熱媒体用管3の上端は、蓋溝6の底面6cと同等の高さ位置になる。さらに、蓋溝6に蓋板4を配置すると、熱媒体用管3の周囲に、蓋板4の凸部12が挿入されるとともに、蓋板4の上面13と、ベース部材2の表面2aとが面一になる。また、蓋板4の側面15a,15bは、蓋溝6の側壁6a,6bと面接触するか又は微細な隙間をあけて対向する。側面15aと側壁6aとの突合せ部分を突合部J1とし、側面15bと側壁6bとの突合せ部分を突合部J2とする。   As shown in FIG. 2B, when the heat medium pipe 3 is arranged on the base member 2, the lower half portion of the heat medium pipe 3 and the bottom 7a of the groove 7 are in surface contact or fine. Opposite with a gap. The upper end of the heat medium pipe 3 is at the same height as the bottom surface 6 c of the lid groove 6. Further, when the cover plate 4 is arranged in the cover groove 6, the convex portion 12 of the cover plate 4 is inserted around the heat medium pipe 3, and the upper surface 13 of the cover plate 4 and the surface 2 a of the base member 2 are arranged. Becomes the same. Further, the side surfaces 15a and 15b of the cover plate 4 are in surface contact with the side walls 6a and 6b of the cover groove 6 or face each other with a fine gap. The abutting portion between the side surface 15a and the side wall 6a is a butting portion J1, and the butting portion between the side surface 15b and the side wall 6b is a butting portion J2.

なお、本実施形態においては、熱媒体用管3の外径と凹溝7の深さを同等に設定したが、凹溝7の深さを熱媒体用管3の外径よりも大きく設定してもよい。この場合、凸部12の突出高さを大きくして、蓋板4を配置した際に、熱媒体用管3の周囲に空隙ができないようにするのが好ましい。また、本実施形態では、ベース部材2及び蓋板4はアルミニウム合金で形成したが、アルミニウム、銅等他の材料であってもよい。   In the present embodiment, the outer diameter of the heat medium pipe 3 and the depth of the concave groove 7 are set to be equal, but the depth of the concave groove 7 is set to be larger than the outer diameter of the heat medium pipe 3. May be. In this case, it is preferable that when the cover plate 4 is disposed by increasing the protruding height of the convex portion 12, no gap is formed around the heat medium pipe 3. Moreover, in this embodiment, although the base member 2 and the cover plate 4 were formed with the aluminum alloy, other materials, such as aluminum and copper, may be sufficient.

次に、伝熱板1の製造方法について説明する。第一実施形態に係る伝熱板の製造方法は、ベース部材2を形成する切削工程と、ベース部材2に形成された凹溝7に熱媒体用管3を挿入する挿入工程と、蓋溝6に蓋板4を挿入する蓋溝閉塞工程と、突合部J1,J2に沿って接合用回転ツールFを移動させて摩擦攪拌接合を施す本接合工程と、ベース部材2の裏面に摩擦攪拌を行う矯正工程と、を含むものである。   Next, a method for manufacturing the heat transfer plate 1 will be described. The heat transfer plate manufacturing method according to the first embodiment includes a cutting process for forming the base member 2, an insertion process for inserting the heat medium pipe 3 into the concave groove 7 formed in the base member 2, and a lid groove 6. A lid groove closing step of inserting the lid plate 4 into the main plate, a main joining step of moving the welding rotary tool F along the abutting portions J1 and J2 to perform friction stir welding, and friction stirring on the back surface of the base member 2 And a correction process.

(切削工程)
まず、図3の(a)に示すように、公知のエンドミル加工により、厚板部材に蓋溝6を形成する。そして、蓋溝6の底面6cに、エンドミル加工により半円形断面を備えた凹溝7を形成する。これにより、蓋溝6と、蓋溝6の底面6cに開口された凹溝7を備えたベース部材2が形成される。なお、第一実施形態においてはベース部材2を切削加工により形成したが、アルミニウム合金の押出形材を用いてもよい。
(Cutting process)
First, as shown in FIG. 3A, the lid groove 6 is formed in the thick plate member by a known end mill process. Then, a concave groove 7 having a semicircular cross section is formed on the bottom surface 6c of the lid groove 6 by end milling. Thereby, the base member 2 provided with the cover groove 6 and the concave groove 7 opened in the bottom face 6c of the cover groove 6 is formed. In the first embodiment, the base member 2 is formed by cutting, but an extruded shape of an aluminum alloy may be used.

(挿入工程)
次に、図3の(b)に示すように、凹溝7に熱媒体用管3を挿入する。熱媒体用管3の下半部は、凹溝7の下半分を形成する底部7aと面接触する。
(Insertion process)
Next, as shown in FIG. 3B, the heat medium pipe 3 is inserted into the groove 7. The lower half of the heat medium pipe 3 is in surface contact with the bottom 7 a that forms the lower half of the groove 7.

(蓋溝閉塞工程)
次に、図3の(c)に示すように、ベース部材2の蓋溝6内に蓋板4を配置する。この際、蓋板4の凸部12が、凹溝7に挿入されるとともに、蓋板4の上面13が、ベース部材2の表面2aと面一になる。また、蓋溝6の側壁6a,6bと蓋板4の側面15a,15bによって突合部J1,J2が形成される。
(Cover groove closing process)
Next, as shown in FIG. 3C, the lid plate 4 is disposed in the lid groove 6 of the base member 2. At this time, the convex portion 12 of the cover plate 4 is inserted into the groove 7, and the upper surface 13 of the cover plate 4 is flush with the surface 2 a of the base member 2. Further, the abutting portions J1 and J2 are formed by the side walls 6a and 6b of the lid groove 6 and the side surfaces 15a and 15b of the lid plate 4.

(本接合工程)
本接合工程では、突合部J1,J2に沿って、接合用回転ツールFを用いて摩擦攪拌接合を行う。本接合工程は、本実施形態では、突合部J1を摩擦攪拌する第一本接合工程と、突合部J2を摩擦攪拌する第二本接合工程とを含む。
(Main joining process)
In the main joining step, friction stir welding is performed using the joining rotary tool F along the abutting portions J1 and J2. In the present embodiment, the main joining step includes a first main joining step in which the abutting portion J1 is frictionally stirred and a second main joining step in which the abutting portion J2 is frictionally stirred.

ここで、本実施形態における本接合工程の際に用いる接合用回転ツールF及び後記する矯正工程の際に用いる矯正用回転ツールGについて詳細に説明する。
接合用回転ツールFは、図4の(a)に示すように、工具鋼などベース部材2よりも硬質の金属材料からなり、円柱状を呈するショルダ部F1と、このショルダ部F1の下端面F11に突設された攪拌ピン(プローブ)F2とを備えて構成されている。接合用回転ツールFの寸法・形状は、ベース部材2の材質や厚さ等に応じて設定すればよいが、少なくとも、後記する矯正工程で用いる矯正用回転ツールG(図4の(b)参照)よりも大型にする。
Here, the rotating tool F for bonding used in the main bonding process in the present embodiment and the rotating tool G for correction used in the correcting process described later will be described in detail.
As shown in FIG. 4A, the joining rotary tool F is made of a metal material harder than the base member 2 such as tool steel and has a columnar shoulder portion F1 and a lower end surface F11 of the shoulder portion F1. And an agitating pin (probe) F2 provided in a protruding manner. The size and shape of the joining rotary tool F may be set according to the material, thickness, etc. of the base member 2, but at least the straightening rotary tool G used in the straightening process described later (see FIG. 4B). Larger than).

ショルダ部F1の下端面F11は、塑性流動化した金属を押えて周囲への飛散を防止する役割を担う部位であり、本実施形態では、凹面状に成形されている。ショルダ部F1の外径Xの大きさに特に制限はないが、本実施形態では、矯正用回転ツールGのショルダ部G1の外径Yよりも大きくなっている。 The lower end surface F11 of the shoulder portion F1 is a portion that plays a role of pressing the plastic fluidized metal and preventing scattering to the surroundings, and is formed in a concave shape in this embodiment. There is no particular limitation on the size of the outer diameter X 1 of the shoulder portion F1, in the present embodiment is larger than the outer diameter Y 1 of the shoulder portion G1 orthodontic rotary tool G.

攪拌ピンF2は、ショルダ部F1の下端面F11の中央から垂下しており、本実施形態では、先細りの円錐台状に成形されている。また、攪拌ピンF2の周面には、螺旋状に刻設された攪拌翼が形成されている。攪拌ピンF2の外径の大きさに特に制限はないが、本実施形態では、最大外径(上端径)Xが矯正用回転ツールGの攪拌ピンG2の最大外径(上端径)Yよりも大きく、かつ、最小外径(下端径)Xが攪拌ピンG2の最小外径(下端径)Yよりも大きい。攪拌ピンF2の長さLは、矯正用回転ツールGの攪拌ピンG2の長さL(図4の(b)参照)よりも大きくなっている。 The stirring pin F2 hangs down from the center of the lower end surface F11 of the shoulder portion F1, and is formed into a tapered truncated cone shape in this embodiment. In addition, a stirring blade engraved in a spiral shape is formed on the peripheral surface of the stirring pin F2. There is no particular limitation on the size of the outer diameter of the stirring pin F2, in the present embodiment, the maximum outer diameter of the stirring pin G2 of the maximum outer diameter (upper diameter) X 2 is straightening rotary tool G (upper end diameter) Y 2 more, and the minimum outer diameter (bottom diameter) X 3 is larger than the minimum outer diameter (bottom diameter) Y 3 of the stirring pin G2. The length L A of the stirring pin F2 is longer than the length L B of the stirring pin G2 of the correction rotary tool G (see FIG. 4B).

図4の(a)に示すベース部材2の厚みtは、攪拌ピンF2の長さLの3倍以上であることが好ましい。また、ベース部材2の厚みtは、ショルダ部F1の外径Xの1.5倍以上であることが好ましい。かかる設定によれば、接合用回転ツールFの大きさに対して、ベース部材2の厚みを十分に確保することができるため、摩擦攪拌を行う際に発生する反りを低減することができる。 The thickness t of the base member 2 shown in FIG. 4 (a) is preferably of a length L A of the stirring pin F2 is three times or more. The thickness t of the base member 2 is preferably at least 1.5 times the outer diameter X 1 of the shoulder portion F1. According to this setting, since the thickness of the base member 2 can be sufficiently ensured with respect to the size of the joining rotary tool F, it is possible to reduce the warpage that occurs when performing frictional stirring.

図4の(b)に示す矯正用回転ツールGは、工具鋼などベース部材2よりも硬質の金属材料からなり、円柱状を呈するショルダ部G1と、このショルダ部G1の下端面G11に突設された攪拌ピン(プローブ)G2とを備えて構成されている。   The straightening rotary tool G shown in FIG. 4B is made of a metal material harder than the base member 2 such as tool steel, and protrudes from a cylindrical shoulder portion G1 and a lower end surface G11 of the shoulder portion G1. And a stirring pin (probe) G2.

ショルダ部G1の下端面G11は、接合用回転ツールFと同様に、凹面状に成形されている。攪拌ピンG2は、ショルダ部G1の下端面G11の中央から垂下しており、本実施形態では、先細りの円錐台状に成形されている。また、攪拌ピンG2の周面には、螺旋状に刻設された攪拌翼が形成されている。   The lower end surface G11 of the shoulder portion G1 is formed in a concave shape like the joining rotary tool F. The stirring pin G2 hangs down from the center of the lower end surface G11 of the shoulder portion G1, and is formed into a tapered truncated cone shape in this embodiment. In addition, a stirring blade engraved in a spiral shape is formed on the peripheral surface of the stirring pin G2.

第一本接合工程では、図5、図6の(a)及び(b)に示すように、ベース部材2と蓋板4との突合部J1に沿って、摩擦攪拌接合を行う。
まず、ベース部材2の表面2aの任意の位置に開始位置SM1を設定し、接合用回転ツールFの攪拌ピンF2をベース部材2に押し込む(押圧する)。開始位置SM1は、本実施形態では、ベース部材2の外縁の近傍であり、かつ、突合部J1の近傍に設定する。接合用回転ツールFのショルダ部F1の一部がベース部材2の表面2aに接触したら、突合部J1の始点s1に向かって接合用回転ツールFを相対移動させる。そして、図6の(a)に示すように、始点s1に達したら、接合用回転ツールFを離脱させずに、そのまま突合部J1に沿って移動させる。本実施形態では、接合用回転ツールFを左回転させて、進行方向左側に蓋板4が位置するように摩擦攪拌接合を行う。接合用回転ツールFを左回転させた場合、進行方向右側に接合欠陥ができる可能性が高い。本実施形態によれば、接合欠陥を熱媒体用管3から遠い部分に位置させることができる。ちなみに、接合用回転ツールFを右回転させる場合は、進行方向右側に蓋板4が位置するように摩擦攪拌を行うのが好ましい。
In the first main joining step, friction stir welding is performed along the abutting portion J1 between the base member 2 and the cover plate 4 as shown in FIGS. 5 and 6 (a) and (b).
First, the start position SM1 is set at an arbitrary position on the surface 2a of the base member 2, and the agitation pin F2 of the welding rotary tool F is pushed (pressed) into the base member 2. In this embodiment, the start position S M1 is set in the vicinity of the outer edge of the base member 2 and in the vicinity of the abutting portion J1. When a part of the shoulder portion F1 of the joining rotary tool F comes into contact with the surface 2a of the base member 2, the joining rotary tool F is relatively moved toward the start point s1 of the abutting portion J1. Then, as shown in FIG. 6A, when the starting point s1 is reached, the joining rotary tool F is moved as it is along the abutting portion J1 without being detached. In this embodiment, the welding rotary tool F is rotated counterclockwise, and friction stir welding is performed so that the cover plate 4 is positioned on the left side in the traveling direction. When the rotating tool for bonding F is rotated counterclockwise, there is a high possibility that a bonding defect is formed on the right side in the traveling direction. According to the present embodiment, the bonding defect can be located in a portion far from the heat medium pipe 3. Incidentally, when rotating the welding rotary tool F to the right, it is preferable to perform friction stirring so that the cover plate 4 is positioned on the right side in the traveling direction.

接合用回転ツールFが突合部J1の終点e1に達したら、接合用回転ツールFをそのまま開始位置SM1側に移動させて、任意の位置に設定した終了位置EM1で接合用回転ツールFを離脱させる。なお、開始位置SM1、始点s1、終了位置EM1及び終点e1は、本実施形態の位置に限定するものではないが、ベース部材2の外縁の近傍であり、かつ、突合部J1の近傍であることが好ましい。 When the joining rotary tool F reaches the end point e1 of the abutting portion J1, the joining rotary tool F is moved to the start position S M1 as it is, and the joining rotary tool F is moved to the end position E M1 set at an arbitrary position. Let go. The start position S M1 , the start point s 1, the end position E M1, and the end point e 1 are not limited to the positions of the present embodiment, but are in the vicinity of the outer edge of the base member 2 and in the vicinity of the abutting portion J 1. Preferably there is.

次に、第二本接合工程では、図6の(b)及び(c)に示すように、ベース部材2と蓋板4との突合部J2に沿って接合用回転ツールFを左回転させて摩擦攪拌接合を行う。
まず、ベース部材2の表面2aの任意の地点hに開始位置SM2を設定し、接合用回転ツールFの攪拌ピンF2をベース部材2に押し込む(押圧する)。接合用回転ツールFのショルダ部F1の一部がベース部材2の表面2aに接触したら、突合部J2の始点s2に向かって接合用回転ツールFを相対移動させる。そして、始点s2に達したら、接合用回転ツールFを離脱させずに、そのまま突合部J2に沿って移動させる。
Next, in the second main joining step, as shown in FIGS. 6B and 6C, the joining rotary tool F is rotated counterclockwise along the abutting portion J <b> 2 between the base member 2 and the cover plate 4. Friction stir welding is performed.
First, the start position SM2 is set at an arbitrary point h on the surface 2a of the base member 2, and the stirring pin F2 of the welding rotary tool F is pushed into (pressed on) the base member 2. When a part of the shoulder portion F1 of the joining rotary tool F comes into contact with the surface 2a of the base member 2, the joining rotary tool F is relatively moved toward the start point s2 of the abutting portion J2. When the starting point s2 is reached, the joining rotary tool F is moved along the abutting portion J2 as it is without being detached.

接合用回転ツールFが突合部J2の終点e2に達したら、接合用回転ツールFをそのまま地点f側に移動させて、地点fに設定した終了位置EM2で接合用回転ツールFを離脱させる。
なお、開始位置SM2及び終了位置EM2は、本実施形態の位置に限定するものではないが、ベース部材2の外縁の隅部であることが好ましい。これにより、終了位置EM2に抜け穴が残存する場合は、隅部を切削加工して除去することができる。
After joining rotation tool F reaches the end point e2 of the butting portion J2, a joining rotation tool F as it is moved to the point f side, disengaging the joining rotation tool F at the end position E M2 set in point f.
The start position S M2 and the end position E M2 are not limited to the positions of the present embodiment, but are preferably corners of the outer edge of the base member 2. Thus, if a loophole in the end position E M2 remaining can be removed by cutting the corner.

図6の(c)に示すように、本接合工程によって、突合部J1及び突合部J2に沿って表面塑性化領域W1(W1a,W1b)が形成される。これにより、熱媒体用管3がベース部材2及び蓋板4によって密閉される。また、図7に示すように、本実施形態では、表面塑性化領域W1が熱媒体用管3の外周に接触する程度に接合用回転ツールFを押し込む。熱媒体用管3の周囲は、蓋板4の凸部12で塞がれるとともに、表面塑性化領域W1で密閉されるため、伝熱板1の気密性及び水密性を高めることができる。   As shown in (c) of FIG. 6, the surface plasticizing region W1 (W1a, W1b) is formed along the abutting portion J1 and the abutting portion J2 by the main joining step. Thereby, the heat medium pipe 3 is sealed by the base member 2 and the cover plate 4. Further, as shown in FIG. 7, in the present embodiment, the joining rotary tool F is pushed to such an extent that the surface plasticizing region W <b> 1 contacts the outer periphery of the heat medium pipe 3. Since the periphery of the heat medium pipe 3 is closed by the convex portion 12 of the cover plate 4 and sealed by the surface plasticization region W1, the airtightness and watertightness of the heat transfer plate 1 can be improved.

なお、表面塑性化領域W1の深さは、前記した形態に限定されるものではない。蓋板4の大きさや形状に応じて適宜設定すればよい。   Note that the depth of the surface plasticizing region W1 is not limited to the above-described form. What is necessary is just to set suitably according to the magnitude | size and shape of the cover plate 4. FIG.

ここで、図8は、第一実施形態に係る伝熱板の製造方法において、本接合工程後を示した図であって(a)は、斜視図、(b)は、断面図である。本接合工程によってベース部材2の表面2a側に表面塑性化領域W1,W1が形成される。表面塑性化領域W1は、熱収縮によって縮むため、ベース部材2の表面2a側において、ベース部材2の各隅部側から中心側に向かって圧縮応力が作用する。これにより、ベース部材2は表面2a側が凹となるように、撓んでしまう可能性がある。特に、ベース部材2の表面2aに示す地点a〜地点jのうち、ベース部材2の四隅に係る地点a,c,f,hにおいては、その反りの影響が顕著に現れる傾向がある。なお、地点jは、ベース部材2の中心地点を示す。   Here, FIGS. 8A and 8B are diagrams showing the main joining process after the heat transfer plate manufacturing method according to the first embodiment, where FIG. 8A is a perspective view and FIG. 8B is a cross-sectional view. Surface plasticization regions W1 and W1 are formed on the surface 2a side of the base member 2 by the main joining process. Since the surface plasticization region W1 shrinks due to thermal contraction, a compressive stress acts from the respective corners of the base member 2 toward the center on the surface 2a side of the base member 2. Thereby, the base member 2 may bend so that the surface 2a side becomes concave. In particular, among the points a to j shown on the surface 2a of the base member 2, at the points a, c, f, and h related to the four corners of the base member 2, the influence of the warp tends to appear remarkably. The point j indicates the center point of the base member 2.

(5)矯正工程
矯正工程では、比較的小型の矯正用回転ツールGを用いてベース部材2の裏面2bから摩擦攪拌を行う。矯正工程は、前記した本接合工程で発生した反り(撓み)を解消するために行う工程である。矯正工程は、本実施形態では、タブ材を配置するタブ材配置工程と、ベース部材2の裏面2bに対して摩擦攪拌を行う矯正摩擦攪拌工程と、を含む。
(5) Straightening Step In the straightening step, friction stirring is performed from the back surface 2b of the base member 2 using a relatively small straightening rotary tool G. The straightening process is a process performed to eliminate the warp (deflection) generated in the above-described main joining process. In the present embodiment, the straightening process includes a tab material arranging process for arranging the tab material, and a straightening friction stirring process for performing friction stirring on the back surface 2b of the base member 2.

タブ材配置工程では、図9の(a)に示すように、ベース部材2の裏面2bを上方に向けた後、後記する矯正摩擦攪拌工程の開始位置及び終了位置を設定するタブ材Tを配置する。タブ材Tは、本実施形態では直方体を呈し、ベース部材2と同等の組成からなる。タブ材Tは、ベース部材2の側面2cの一部を覆い隠すようにして、側面2cに当接されている。また、タブ材Tは、タブ材Tの両側面とベース部材2の側面2cとを溶接によって仮接合されている。タブ材Tの表面は、ベース部材2の裏面2bと面一にすることが好ましい。   In the tab material arranging step, as shown in FIG. 9 (a), after the back surface 2b of the base member 2 is directed upward, the tab material T for setting the start position and the end position of the correction friction stirring step described later is arranged. To do. In this embodiment, the tab material T has a rectangular parallelepiped shape and has a composition equivalent to that of the base member 2. The tab material T is in contact with the side surface 2c so as to cover part of the side surface 2c of the base member 2. Moreover, the tab material T is temporarily joined by welding the both side surfaces of the tab material T and the side surface 2c of the base member 2. The surface of the tab material T is preferably flush with the back surface 2 b of the base member 2.

矯正摩擦攪拌工程では、図9の(a)及び(b)に示すように、矯正用回転ツールGを用いて、ベース部材2の裏面2bに対して摩擦攪拌を行う。矯正摩擦攪拌工程のルートは、本実施形態では、中心地点j’を囲み、かつ、矯正摩擦攪拌工程によって形成される裏面塑性化領域W2が中心地点j’に対して放射状となるように設定する。なお、地点a’,地点b’・・・は、ベース部材2の表面2a側の地点a,地点b・・・(図8参照)のそれぞれ裏面2b側に対応する地点をいう。   In the correction friction agitation step, friction agitation is performed on the back surface 2b of the base member 2 by using the correction rotary tool G as shown in FIGS. 9 (a) and 9 (b). In this embodiment, the route of the straightening friction stirring step is set so as to surround the central point j ′ and the back plasticization region W2 formed by the straightening friction stirring step is radial with respect to the central point j ′. . The points a ′, b ′,... Are points corresponding to the back surface 2 b side of the points a, b,... (See FIG. 8) on the front surface 2 a side of the base member 2.

矯正摩擦攪拌工程では、図9の(a)に示すように、まず、タブ材Tの表面に開始位置SM2を設定し、矯正用回転ツールGの攪拌ピンG2をタブ材Tに押し込む(押圧する)。矯正用回転ツールGのショルダ部G1の一部がタブ材Tに接触したら、ベース部材2に向かって矯正用回転ツールGを相対移動させる。そして、ベース部材2の裏面2bにおける地点f’、地点a’、地点c’及び地点h’付近で凸状となるとともに、地点g‘、地点d’、地点b’及び地点e’付近で凹状となるように矯正用回転ツールGを相対移動させて摩擦攪拌を行う。即ち、図9の(b)に示すように、ベース部材2の中心線(一点鎖線)に対して線対称となるように裏面塑性化領域W2が形成される。本実施形態では、開始位置SM2及び終了位置EM2をタブ材Tに設け、一筆書きの要領で摩擦攪拌を行う。これにより、摩擦攪拌を効率よく行うことができる。矯正摩擦攪拌工程が終了したら、タブ材Tを切除する。 In the straightening friction stirring step, as shown in FIG. 9A, first, a start position SM2 is set on the surface of the tab material T, and the stirring pin G2 of the straightening rotary tool G is pushed into the tab material T (pressing). To do). When a part of the shoulder portion G1 of the correction rotary tool G comes into contact with the tab material T, the correction rotary tool G is relatively moved toward the base member 2. And it becomes convex in the vicinity of the point f ′, the point a ′, the point c ′ and the point h ′ on the back surface 2b of the base member 2 and is concave in the vicinity of the point g ′, the point d ′, the point b ′ and the point e ′. Friction stirring is performed by relatively moving the correction rotary tool G so that That is, as shown in FIG. 9B, the back surface plasticized region W2 is formed so as to be symmetric with respect to the center line (dashed line) of the base member 2. In the present embodiment, a start position S M2 and an end position E M2 are provided on the tab material T, and friction stirring is performed in the manner of one stroke. Thereby, friction stirring can be performed efficiently. When the straightening friction stirring step is completed, the tab material T is cut off.

なお、本実施形態では、矯正用回転ツールGの軌跡、即ち、裏面塑性化領域W2の形状が、中心地点j’を囲み、かつ、中心地点j’に対して略放射状となるように形成したが、これに限定されるものではない。矯正用回転ツールGの移動軌跡のバリエーションについては、後記する。   In the present embodiment, the trajectory of the correction rotary tool G, that is, the shape of the back surface plasticized region W2 is formed so as to surround the center point j ′ and to be substantially radial with respect to the center point j ′. However, the present invention is not limited to this. Variations of the movement trajectory of the correction rotating tool G will be described later.

また、本実施形態では、矯正用回転ツールGの軌跡の長さ(裏面塑性化領域W2の長さ)は、接合用回転ツールFの軌跡の長さ(表面塑性化領域W1の長さの和)よりも短くなるように形成している。即ち、矯正工程における矯正用回転ツールGの加工度が、本接合工程における接合用回転ツールFの加工度よりも小さくなるように設定している。これにより、伝熱板1の平坦性を高めることができる。この理由については実施例で説明する。ここで、加工度とは、摩擦攪拌によって形成された塑性化領域の体積量を示す。
また、本実施形態では矯正工程において、タブ材を配置したが、矯正摩擦攪拌工程における摩擦攪拌のルートによっては、タブ材を設けなくてもいい。
In this embodiment, the length of the trajectory of the correction rotary tool G (the length of the back surface plasticizing region W2) is the sum of the length of the trajectory of the rotating tool F for bonding (the length of the surface plasticizing region W1). ) To be shorter. That is, the processing degree of the correction rotary tool G in the correction process is set to be smaller than the processing degree of the bonding rotary tool F in the main bonding process. Thereby, the flatness of the heat exchanger plate 1 can be improved. The reason for this will be described in Examples. Here, the workability indicates the volume amount of the plasticized region formed by friction stirring.
Further, in the present embodiment, the tab material is disposed in the correction process, but the tab material may not be provided depending on the friction stirring route in the correction friction stirring process.

以上説明した本実施形態に係る製造方法によれば、蓋板4に凹溝7に挿入される凸部12を有するため、熱媒体用管3の周囲に形成される空隙を小さくすることができる。また、凸部12の底面12aを熱媒体用管3の外周と密着するように形成することにより、空隙をより小さくすることができる。これにより、伝熱板1の熱交換効率を高めることができる。   According to the manufacturing method according to the present embodiment described above, since the cover plate 4 has the convex portion 12 inserted into the concave groove 7, the gap formed around the heat medium pipe 3 can be reduced. . Further, by forming the bottom surface 12a of the convex portion 12 so as to be in close contact with the outer periphery of the heat medium pipe 3, the gap can be further reduced. Thereby, the heat exchange efficiency of the heat exchanger plate 1 can be improved.

また、本接合工程による熱収縮によって、伝熱板1が撓んでも、ベース部材2の裏面2bにも摩擦攪拌を行うことで、表面2aに発生した反りを解消して伝熱板1の平坦性を高めることができる。矯正工程によれば、ベース部材2の裏面2bに形成された裏面塑性化領域W2が、熱収縮により縮むため、伝熱板1(ベース部材2)の裏面2b側において、ベース部材2の各隅部側から中心側に向かって圧縮応力が作用する。これにより、本接合工程によって形成された反りが解消されて、伝熱板1の平坦性を高めることができる。また、矯正工程では、裏面塑性化領域W2が平面視して略点対称となるように矯正用回転ツールGの移動軌跡を設定したため、バランスよく平坦にすることができる。   Further, even if the heat transfer plate 1 is bent due to heat shrinkage in the main joining process, frictional stirring is also performed on the back surface 2b of the base member 2, thereby eliminating the warp generated on the front surface 2a and making the heat transfer plate 1 flat. Can increase the sex. According to the straightening process, the back surface plasticized region W2 formed on the back surface 2b of the base member 2 shrinks due to thermal contraction, so that each corner of the base member 2 is on the back surface 2b side of the heat transfer plate 1 (base member 2). A compressive stress acts from the part side toward the center side. Thereby, the curvature formed by this joining process is eliminated, and the flatness of the heat exchanger plate 1 can be improved. In the straightening process, the movement trajectory of the straightening rotary tool G is set so that the back surface plasticized region W2 is substantially point symmetric in plan view, and therefore can be flattened in a balanced manner.

また、本実施形態における矯正工程では、矯正用回転ツールGを一筆書きの要領で移動させるため、作業効率を高めることができる。   Moreover, in the correction process in this embodiment, since the rotation tool G for correction is moved in the way of one-stroke writing, work efficiency can be improved.

[第二実施形態]
第二実施形態に係る伝熱板31は、図10に示すように、熱媒体用管33等が平面視蛇行状を呈する点及び矯正工程における回転ツールの移動軌跡が第一実施形態と相違する。第二実施形態は、熱媒体用管33等の形状及び矯正工程を除いては第一実施形態と略同等であるため、重複する部分の詳細な説明は省略する。
[Second Embodiment]
As shown in FIG. 10, the heat transfer plate 31 according to the second embodiment is different from the first embodiment in that the heat medium pipe 33 or the like has a meandering shape in a plan view and the movement locus of the rotating tool in the correction process. . Since the second embodiment is substantially the same as the first embodiment except for the shape of the heat medium pipe 33 and the like and the correction process, detailed description of overlapping portions is omitted.

伝熱板31は、ベース部材32と、ベース部材32に挿入される熱媒体用管33と、熱媒体用管33の上に配置される蓋板34と、を有する。図10の(b)に示すように、ベース部材32には、蓋溝36と、蓋溝36の底面36cに凹設された凹溝37が形成されている。熱媒体用管33は、凹溝37に配置される。また、蓋板34は、蓋溝36に配置されるとともに、蓋板34に形成された凸部42が熱媒体用管33の周囲に挿入される。凸部42の下面に凹状に形成された底面42aは、熱媒体用管33の曲率と同等に形成されている。つまり、蓋溝36に蓋板34を配置すると、熱媒体用管33の周囲の隙間が凸部42によって塞がれる。   The heat transfer plate 31 includes a base member 32, a heat medium pipe 33 inserted into the base member 32, and a lid plate 34 disposed on the heat medium pipe 33. As shown in FIG. 10B, the base member 32 is formed with a cover groove 36 and a groove 37 that is recessed in the bottom surface 36 c of the cover groove 36. The heat medium pipe 33 is disposed in the concave groove 37. The lid plate 34 is disposed in the lid groove 36, and a convex portion 42 formed on the lid plate 34 is inserted around the heat medium pipe 33. A bottom surface 42 a formed in a concave shape on the lower surface of the convex portion 42 is formed to be equivalent to the curvature of the heat medium pipe 33. That is, when the lid plate 34 is disposed in the lid groove 36, the gap around the heat medium pipe 33 is closed by the convex portion 42.

また、蓋溝36に蓋板34を配置すると、蓋溝36の側壁36a,36bと、蓋板34の側面45a,45bとがそれぞれ対向して突合部J1,J2が形成される。   Further, when the lid plate 34 is disposed in the lid groove 36, the side walls 36a and 36b of the lid groove 36 and the side surfaces 45a and 45b of the lid plate 34 face each other to form the abutting portions J1 and J2.

第二実施形態に係る伝熱板の製造方法は、ベース部材32を形成する切削工程と、ベース部材32に形成された凹溝37に熱媒体用管33を挿入する挿入工程と、蓋溝36に蓋板34を挿入する蓋溝閉塞工程と、突合部J1,J2に沿って接合用回転ツールFを移動させて摩擦攪拌接合を施す本接合工程と、ベース部材32の裏面に摩擦攪拌を行う矯正工程と、ベース部材32の裏面32bを面削加工する面削工程と、を含むものである。切削工程、挿入工程及び蓋溝閉塞工程は、熱媒体用管33等の形状を除いては第一実施形態と同等であるため説明を省略する。   The heat transfer plate manufacturing method according to the second embodiment includes a cutting process for forming the base member 32, an insertion process for inserting the heat medium pipe 33 into the concave groove 37 formed in the base member 32, and a lid groove 36. A lid groove closing step for inserting the lid plate 34 into the main body, a main joining step for moving the joining rotary tool F along the abutting portions J1 and J2 to perform friction stir welding, and friction stirring on the back surface of the base member 32. This includes a straightening step and a chamfering step of chamfering the back surface 32b of the base member 32. Since the cutting process, the inserting process, and the lid groove closing process are the same as those in the first embodiment except for the shape of the heat medium pipe 33 and the like, the description thereof is omitted.

(本接合工程)
本接合工程では、図11に示すように、突合部J1,J2に沿って、接合用回転ツールFを移動させて摩擦攪拌接合を行う。本接合工程によって、蓋板34の両脇には表面塑性化領域W1,W1が形成される。本接合工程では、必要に応じてタブ材を用いてもよい。
(Main joining process)
In the main joining step, as shown in FIG. 11, the joining rotary tool F is moved along the abutting portions J1 and J2, and the friction stir welding is performed. By this joining process, surface plasticized regions W1 and W1 are formed on both sides of the lid plate 34. In the main joining step, a tab material may be used as necessary.

本接合工程を終えると、図11に示すように、ベース部材32の表面32aに形成された表面塑性化領域W1,W1が熱収縮によって縮むため、ベース部材32の表面32aにおいて、ベース部材32の各隅部側から中心側に向かって圧縮応力が作用する。これにより、ベース部材32は表面32a側が凹となるように、撓んでしまう可能性がある。特に、ベース部材32の表面32aに示す地点a〜地点jのうち、ベース部材32の四隅に係る地点a,c,f,hにおいては、その反りの影響が顕著に現れる傾向がある   When the main joining step is finished, as shown in FIG. 11, the surface plasticized regions W1 and W1 formed on the surface 32a of the base member 32 are contracted by heat shrinkage. A compressive stress acts from the corner side toward the center side. Thereby, the base member 32 may bend so that the surface 32a side becomes concave. In particular, among the points a to j shown on the surface 32a of the base member 32, at the points a, c, f, and h related to the four corners of the base member 32, the influence of the warp tends to appear remarkably.

(矯正工程)
矯正工程では、比較的小型回転ツールGを用いてベース部材32の裏面32bから摩擦攪拌を行う。矯正工程は、前記した本接合工程で発生した反り(撓み)を解消するために行う工程である。矯正工程は、本実施形態では、放射線状に摩擦攪拌を行う矯正摩擦攪拌工程と、ベース部材32の隅部に対して摩擦攪拌を行う隅部摩擦攪拌工程とを含むものである。
(Correction process)
In the correction process, friction stirring is performed from the back surface 32b of the base member 32 using a relatively small rotating tool G. The straightening process is a process performed to eliminate the warp (deflection) generated in the above-described main joining process. In the present embodiment, the straightening process includes a straightening friction stirring process in which frictional stirring is performed in a radial manner and a corner friction stirring process in which frictional stirring is performed on the corners of the base member 32.

矯正摩擦攪拌工程では、図12の(a)に示すように、中心地点j’を通って放射状に塑性化領域が形成されるように摩擦攪拌を行う。即ち、地点a’と地点h’とを結ぶ直線上、地点d’と地点e’とを結ぶ直線上、地点f’と地点c’とを結ぶ直線上、地点g’と地点b’とを結ぶ直線上にそれぞれ摩擦攪拌の開始位置(SM5,SM6,SM7,SM8)及び終了位置(EM5,EM6,EM7,EM8)を設定するとともに、各開始位置から中心地点j’までの距離と、中心地点j’から各終了位置までの距離とが同等となるように摩擦攪拌のルートを設定する。
矯正摩擦攪拌工程の摩擦攪拌のルートを設定したら、各開始位置に矯正用回転ツールGを押し込み、各ルート(直線)に沿って矯正用回転ツールGを移動させる。図12の(b)に示すように、矯正摩擦攪拌工程によって形成された裏面塑性化領域W41〜W44は、中心地点j’に対して八方向に放射状に広がるように形成される。
In the straightening friction stirring step, as shown in FIG. 12A, friction stirring is performed so that a plasticized region is formed radially through the central point j ′. That is, on the straight line connecting point a ′ and point h ′, on the straight line connecting point d ′ and point e ′, on the straight line connecting point f ′ and point c ′, and on point g ′ and point b ′. The friction stirring start position (S M5 , S M6 , S M7 , S M8 ) and the end position (E M5 , E M6 , E M7 , E M8 ) are set on the connecting line, and the center point from each start position. The friction stir route is set so that the distance to j ′ is equal to the distance from the center point j ′ to each end position.
After setting the friction stir route in the straightening friction stirring step, the straightening rotary tool G is pushed into each start position, and the straightening rotary tool G is moved along each route (straight line). As shown in FIG. 12B, the back surface plasticized regions W41 to W44 formed by the correction friction stirring step are formed to radially spread in eight directions with respect to the central point j ′.

隅部摩擦攪拌工程では、図12の(b)に示すように、ベース部材32の地点a’、地点c’、地点f’及び地点h’に係る各隅部において、重点的に摩擦攪拌を行う。地点a’に係る隅部を構成する一辺31a側に摩擦攪拌の開始位置SM9及び終了位置EM9を設定し、他辺31b側に折返し位置SR9を設定する。そして、開始位置SM9に矯正用回転ツールGを押し込み、折返し位置SR9に向けて移動させた後、折返し位置SR9で折り返し、終了位置EM9で矯正用回転ツールGを離脱させる。同様の工程を、地点c’、地点f’及び地点h’の各隅部にも行う。隅部摩擦攪拌工程によれば、特に反りの大きいベース部材32の隅部に重点的に矯正工程を行うことができるため、伝熱板31の平坦性をより高めることができる。 In the corner friction agitation step, as shown in FIG. 12B, friction agitation is intensively performed at the corners of the base member 32 at the points a ′, c ′, f ′ and h ′. Do. The friction stirring start position S M9 and the end position E M9 are set on the side 31a that forms the corner of the point a ′, and the turn-back position S R9 is set on the other side 31b. Then, pushing the orthodontic rotary tool G to the starting position S M9, after moving toward the folded position S R9, folded back at the folded position S R9, disengaging the orthodontic rotary tool G at the end position E M9. The same process is performed on each corner of the point c ′, the point f ′, and the point h ′. According to the corner friction stirring step, since the correction step can be performed mainly on the corner portion of the base member 32 having a large warp, the flatness of the heat transfer plate 31 can be further improved.

隅部摩擦攪拌工程は、本実施形態では、矯正用回転ツールGの軌跡が各隅部において、対角線と直交するように形成されているが、これに限定されるものではない。隅部の反りの大きさを考慮して適宜摩擦攪拌のルートを設定すればよい。なお、隅部摩擦攪拌工程で形成される裏面塑性化領域W45と裏面塑性化領域W47、裏面塑性化領域46と裏面塑性化領域W48はそれぞれ中心地点j’に対して点対称となるように形成されることが好ましい。これにより、ベース部材2の反りをバランスよく解消して平坦性を高めることができる。   In this embodiment, the corner friction stirring step is formed so that the trajectory of the correction rotary tool G is perpendicular to the diagonal line at each corner, but is not limited thereto. A route for friction stirring may be set as appropriate in consideration of the degree of warping of the corner. In addition, the back surface plasticization region W45 and the back surface plasticization region W47, and the back surface plasticization region 46 and the back surface plasticization region W48 formed in the corner friction stirring step are formed so as to be symmetric with respect to the center point j ′. It is preferred that Thereby, the curvature of the base member 2 can be eliminated in a balanced manner and the flatness can be improved.

(面削工程)
面削工程では、公知のエンドミル等を用いてベース部材32の裏面32bを面削する。図12の(b)に示すように、ベース部材32の裏面32bには、矯正用回転ツールGの抜き穴(図示省略)や、各回転ツールを押し込むことによって発生する溝(図示省略)、バリ等が発生する。したがって、面削工程を行うことにより、ベース部材32の裏面32bを平滑に形成することができる。本実施形態では、図13に示すように、面削加工の厚みMaは、裏面塑性化領域W42の厚みWaよりも大きく設定する。これにより、ベース部材32の裏面32bに形成される裏面塑性化領域W41〜W44が除去されるため、ベース部材32の性質の均一性を図ることができる。また、裏面32bに裏面塑性化領域W42が露出しないため、意匠性等にも好適である。
(Chamfering process)
In the chamfering process, the back surface 32b of the base member 32 is chamfered using a known end mill or the like. As shown in FIG. 12B, on the back surface 32b of the base member 32, a hole (not shown) of the correction rotary tool G, a groove (not shown) generated by pushing each rotary tool, a burr, Etc. occur. Therefore, the back surface 32b of the base member 32 can be formed smoothly by performing the chamfering process. In the present embodiment, as shown in FIG. 13, the thickness Ma of the chamfering process is set larger than the thickness Wa of the back surface plasticizing region W42. Thereby, since the back surface plasticization area | regions W41-W44 formed in the back surface 32b of the base member 32 are removed, the uniformity of the property of the base member 32 can be aimed at. Moreover, since the back surface plasticization area | region W42 is not exposed to the back surface 32b, it is suitable also for designability etc.

なお、本実施形態では、面削加工の厚みは、裏面塑性化領域の厚みよりも大きく設定したが、これに限定されるものではない。面削加工の厚みは、例えば、矯正用回転ツールGの攪拌ピンG2の長さよりも大きく設定してもよい。
また、本実施形態では、攪拌ピンG2を備えた矯正用回転ツールGを用いて矯正工程を行ったが、攪拌ピンG2を備えない矯正用回転ツールGを用いて矯正工程を行っても構わない。かかる回転ツールによれば、裏面塑性化領域の深さを浅くすることができるため、面削する厚みを小さくすることができる。これにより、面削部分が少ないためベース部材32のロスを小さくすることができ、コストを低減することができる。
In the present embodiment, the thickness of the chamfering process is set to be larger than the thickness of the back surface plasticizing region, but the present invention is not limited to this. The thickness of the chamfering process may be set larger than the length of the stirring pin G2 of the correction rotary tool G, for example.
Moreover, in this embodiment, although the correction process was performed using the rotation tool G for correction provided with the stirring pin G2, you may perform the correction process using the rotation tool G for correction that does not include the stirring pin G2. . According to such a rotating tool, since the depth of the back surface plasticization region can be reduced, the thickness to be chamfered can be reduced. Thereby, since there are few chamfering parts, the loss of the base member 32 can be made small and cost can be reduced.

以上説明した本実施形態によれば、蓋板34に凹溝37に挿入される凸部42を有するため、熱媒体用管33の周囲に形成される空隙を小さくすることができる。また、凸部42の底面42aを熱媒体用管33の外周と密着するように形成することにより、空隙を小さくすることができる。これにより、伝熱板31の熱交換効率を高めることができる。   According to the present embodiment described above, since the cover plate 34 has the convex portion 42 inserted into the concave groove 37, the gap formed around the heat medium pipe 33 can be reduced. Further, by forming the bottom surface 42 a of the convex portion 42 so as to be in close contact with the outer periphery of the heat medium pipe 33, the gap can be reduced. Thereby, the heat exchange efficiency of the heat exchanger plate 31 can be improved.

また、本接合工程による熱収縮によって、伝熱板31が撓んでしまったとしても、ベース部材32の裏面32bにも摩擦攪拌を行うことで、表面32aに発生した反りを解消して伝熱板31の平坦性を高めることができる。   Further, even if the heat transfer plate 31 is bent due to heat shrinkage in the main joining process, the warp generated on the surface 32a is eliminated by performing frictional stirring on the back surface 32b of the base member 32. The flatness of 31 can be improved.

また、本実施形態では、矯正用回転ツールGの軌跡の長さ(裏面塑性化領域の長さの和)は、接合用回転ツールFの軌跡の長さ(表面塑性化領域W1の長さの和)よりも短くなるように形成している。即ち、矯正工程における矯正用回転ツールGの加工度が、本接合工程における接合用回転ツールFの加工度よりも小さくなるように設定している。これにより、伝熱板31の平坦性を高めることができる。この理由については実施例で説明する。加工度とは、摩擦攪拌によって形成された塑性化領域の体積量を示す。   In this embodiment, the length of the trajectory of the correction rotary tool G (the sum of the lengths of the back surface plasticizing region) is equal to the length of the trajectory of the rotating tool F for bonding (the length of the surface plasticizing region W1). It is formed to be shorter than the sum. That is, the processing degree of the correction rotary tool G in the correction process is set to be smaller than the processing degree of the bonding rotary tool F in the main bonding process. Thereby, the flatness of the heat transfer plate 31 can be improved. The reason for this will be described in Examples. The degree of work indicates the volume of the plasticized region formed by friction stirring.

また、本実施形態では、ベース部材32の裏面32bに形成された裏面塑性化領域W41〜W44及び裏面塑性化領域W45〜W48が、中心地点jに対して点対称となるように形成されている。これにより、バランスよく伝熱板31を矯正することができる。   In the present embodiment, the back surface plasticized regions W41 to W44 and the back surface plasticized regions W45 to W48 formed on the back surface 32b of the base member 32 are formed to be point-symmetric with respect to the center point j. . Thereby, the heat exchanger plate 31 can be corrected with a good balance.

(第一変形例)
次に、矯正工程の第一変形例について説明する。図14は、矯正工程の第一変形例を示した平面図である。図14に示すように、第一変形例に係る矯正工程では、矯正用回転ツールGを用いて、ベース部材32の表面32a側に形成された表面塑性化領域W1,W1と略同等の平面形状となるように摩擦攪拌を行う。これにより、裏面32bに形成された裏面塑性化領域W2,W2の長さの和及び形状と、ベース部材32の表面32aに形成された表面塑性化領域W1,W1の長さの和及び形状は同等となる。
(First modification)
Next, a first modification of the correction process will be described. FIG. 14 is a plan view showing a first modification of the correction process. As shown in FIG. 14, in the correction process according to the first modification, a planar shape substantially equivalent to the surface plasticization regions W <b> 1 and W <b> 1 formed on the surface 32 a side of the base member 32 using the correction rotary tool G. Friction stirring is performed so that Thereby, the sum and shape of the lengths of the back surface plasticized regions W2 and W2 formed on the back surface 32b and the sum and shape of the lengths of the surface plasticized regions W1 and W1 formed on the surface 32a of the base member 32 are It becomes equivalent.

第一変形例に係る矯正工程によれば、ベース部材32の表面32aと裏面32bに形成される塑性化領域の長さ及び平面形状を同等とすることで、伝熱板31の反りをバランスよく矯正することができる。また、当該矯正工程では、接合用回転ツールFよりも小型の矯正用回転ツールGを用いて摩擦攪拌を行うため、表面32a側の加工量よりも、裏面32b側の加工量を小さくすることができる。これにより、伝熱板31の平坦性を高めることができる。   According to the straightening process according to the first modification, the warp of the heat transfer plate 31 is well balanced by equalizing the length and the planar shape of the plasticized region formed on the front surface 32a and the back surface 32b of the base member 32. It can be corrected. In the straightening process, since the friction stir is performed using the straightening rotary tool G smaller than the joining rotary tool F, the processing amount on the back surface 32b side can be made smaller than the processing amount on the front surface 32a side. it can. Thereby, the flatness of the heat transfer plate 31 can be improved.

矯正工程は、前記した摩擦攪拌のルートに限定されずに様々なルートを設定することができる。以下に、矯正工程に係る摩擦攪拌のルートの他の形態について説明する。   The correction process is not limited to the friction stir route described above, and various routes can be set. Below, the other form of the route of friction stirring which concerns on a correction process is demonstrated.

[第二変形例〜第八変形例]
矯正工程に係る摩擦攪拌のルートは、前記した形態に限定されるものではなく、以下の形態でもよい。図15は、伝熱板の裏面側の平面図であって(a)は第二変形例、(b)は第三変形例、(c)は第四変形例、(d)は第五変形例、(e)は第六変形例、(f)は第七変形例を示す。第二変形例〜第七変形例においても、伝熱板をバランスよく矯正することができる。
[Second Modification to Eighth Modification]
The route of the friction stirrer related to the correction process is not limited to the above-described form, and may be the following form. FIG. 15 is a plan view of the back side of the heat transfer plate, where (a) is a second modification, (b) is a third modification, (c) is a fourth modification, and (d) is a fifth modification. For example, (e) shows a sixth modification, and (f) shows a seventh modification. Also in the second modification to the seventh modification, the heat transfer plate can be corrected with a good balance.

図15の(a)及び(b)に示す第二変形例及び第三変形例の矯正用回転ツールの軌跡(裏面塑性化領域W2)は、いずれもベース部材32の中心地点j’を囲むように形成されていることを特徴とする。第二変形例は、ベース部材32の外縁の形状に対して相似形状となるように形成されている。また、図15の(b)に示す第三変形例のように、格子状に形成してもよい。   The trajectories (back surface plasticizing region W2) of the correction rotary tool of the second and third modifications shown in FIGS. 15A and 15B all surround the center point j ′ of the base member 32. It is characterized by being formed. The second modification is formed so as to have a similar shape to the shape of the outer edge of the base member 32. Moreover, you may form in a grid | lattice form like the 3rd modification shown in FIG.15 (b).

図15の(c)及び(d)に示す第四変形例及び第五変形例の矯正用回転ツールの軌跡(裏面塑性化領域W2)は、いずれもベース部材2の中心地点j’を通過して放射状となるように形成されていることを特徴とする。図15の(c)に示す第四変形例は、中心地点jを始点・終点とするループを複数含み、中心地点j’に対して点対称となるように形成されている。第四変形例は、一筆書きの要領で形成することができるため、作業効率を高めることができる。図15の(d)に示す第五変形例は、中心地点j’を通過するとともに、ベース部材32の対角線に対して平行となるように形成されている。   The trajectories (back surface plasticization region W2) of the correction rotary tool of the fourth and fifth modifications shown in FIGS. 15C and 15D both pass through the center point j ′ of the base member 2. It is characterized by being formed radially. The fourth modified example shown in FIG. 15C includes a plurality of loops having a center point j as a start point and an end point, and is formed so as to be point-symmetric with respect to the center point j ′. Since the fourth modified example can be formed in the manner of a single stroke, work efficiency can be improved. The fifth modified example shown in FIG. 15D is formed so as to pass through the central point j ′ and to be parallel to the diagonal line of the base member 32.

図15の(e)及び(f)に示す第六変形例及び第七変形例の矯正用回転ツールの軌跡(裏面塑性化領域W2)は、中心地点j’を通る直線で区分けした領域に、同形状の4つの軌跡がそれぞれ独立して形成されるとともに、中心地点j’を挟んで斜めに対向する軌跡が点対称となるように形成されている。4つの軌跡の形状は、同形状であれば、どのような形状であっても構わない。   The trajectory (back surface plasticization region W2) of the correction rotary tool of the sixth modification and the seventh modification shown in FIGS. 15E and 15F is an area divided by a straight line passing through the central point j ′. Four trajectories having the same shape are formed independently, and trajectories that are diagonally opposed across the central point j ′ are formed to be point-symmetric. The four trajectories may have any shape as long as they have the same shape.

以上説明したように、矯正工程における摩擦攪拌の移動軌跡は、ベース部材32の表面32a側に行われる本接合工程の摩擦攪拌の軌跡に応じて適宜摩擦攪拌のルートを設定して行えばよい。
なお、本実施形態の説明においては、ベース部材32は、平面視正方形のものを例示して説明したが、他の形状であってもよい。
As described above, the movement path of friction stirring in the correction process may be performed by appropriately setting the route of friction stirring according to the path of friction stirring in the main joining process performed on the surface 32a side of the base member 32.
In the description of the present embodiment, the base member 32 has been described as an example of a square in plan view, but may have other shapes.

[第三実施形態]
次に、本発明の第三実施形態〜第六実施形態について説明する。第三実施形態〜第六実施形態に係る伝熱板の製造方法は、ベース部材2及び蓋板4の形状及び本接工程が第一実施形態と相違する。なお、第一実施形態と重複する部分については、詳細な説明を省略する。
[Third embodiment]
Next, third to sixth embodiments of the present invention will be described. The heat transfer plate manufacturing method according to the third to sixth embodiments is different from the first embodiment in the shapes of the base member 2 and the cover plate 4 and the main contact process. Detailed description of the same parts as those in the first embodiment will be omitted.

図16は、第三実施形態に係る本接合工程を示した断面図である。第三実施形態に係る伝熱板1は、突合部J1,J2に沿って形成された表面塑性化領域W1,W1の深さ方向の先端が、蓋溝6の底面6cに接触している点で第一実施形態と相違する。第一実施形態では、表面塑性化領域W1と熱媒体用管3が接触するように摩擦攪拌を行ったが、第三実施形態のように、突合部J1,J2のみに摩擦攪拌接合を施してもよい。   FIG. 16 is a cross-sectional view showing the main joining process according to the third embodiment. In the heat transfer plate 1 according to the third embodiment, the tips in the depth direction of the surface plasticized regions W1 and W1 formed along the abutting portions J1 and J2 are in contact with the bottom surface 6c of the lid groove 6. This is different from the first embodiment. In the first embodiment, the friction stir is performed so that the surface plasticization region W1 and the heat medium pipe 3 are in contact with each other. However, as in the third embodiment, only the abutting portions J1 and J2 are subjected to the friction stir welding. Also good.

図17は、第四実施形態に係る本接合工程を示した断面図である。第四実施形態に係る伝熱板1は、第一実施形態と比較して蓋板4の幅を大きく設定した点で第一実施形態と相違する。第四実施形態に係る本接合工程では、突合部J1,J2に対して接合用回転ツールFよりも小型の回転ツールを用いて摩擦攪拌接合を行った後、蓋板4の表面13から接合用回転ツールFを用いて摩擦攪拌接合を行う。蓋板4の表面13には、表面塑性化領域W1,W1が形成される。表面塑性化領域W1は、熱媒体用管3と接触する程度に接合用回転ツールFの押込み量等を設定するのが好ましい。かかる工程によれば、蓋板4の幅が大きい場合であっても熱媒体用管3の周囲を確実に密閉することができる。   FIG. 17 is a cross-sectional view showing the main joining step according to the fourth embodiment. The heat transfer plate 1 according to the fourth embodiment is different from the first embodiment in that the width of the lid plate 4 is set larger than that in the first embodiment. In the main joining process according to the fourth embodiment, after the friction stir welding is performed on the abutting portions J1 and J2 using a rotating tool smaller than the joining rotating tool F, the joining is performed from the surface 13 of the cover plate 4. Friction stir welding is performed using the rotary tool F. Surface plasticization regions W1 and W1 are formed on the surface 13 of the cover plate 4. In the surface plasticizing region W1, it is preferable to set the pushing amount of the joining rotary tool F to such an extent that it contacts the heat medium pipe 3. According to this process, even if the width of the cover plate 4 is large, the periphery of the heat medium pipe 3 can be reliably sealed.

図18は、第五実施形態に係る本接合工程を示した断面図である。第五実施形態に係る伝熱板1は、本接合工程を行う前に仮接合を行い、仮接合で形成された塑性化領域の上から本接合工程を行う点で第一実施形態と相違する。   FIG. 18 is a cross-sectional view showing the main joining step according to the fifth embodiment. The heat transfer plate 1 according to the fifth embodiment is different from the first embodiment in that temporary bonding is performed before performing the main bonding step, and the main bonding step is performed from above the plasticized region formed by the temporary bonding. .

第五実施形態に係る伝熱板の製造方法では、接合工程に先だって、接合用回転ツールFよりも小型の回転ツールを用いて突合部J1,J2に対して仮接合を行う。突合部J1,J2には塑性化領域W3,W4が形成される。そして、塑性化領域W3,W4の上方から接合用回転ツールFを用いて、摩擦攪拌接合を行う。かかる製造方法によれば、蓋板4をベース部材2に仮付けした状態で接合用回転ツールFを用いて本格的に摩擦攪拌接合を行うことができるため、作業性を高めることができる。また、例えば、図17に示す第四実施形態では、伝熱板1に表面塑性化領域W1,W1,W3,W4と4条の塑性化領域が形成されるが、第五実施形態によれば、表面塑性化領域W1,W1と2条の塑性化領域で済む。これにより、表面塑性化領域の周囲に形成されるバリの切削工程等を軽減することができる。   In the heat transfer plate manufacturing method according to the fifth embodiment, prior to the joining step, temporary joining is performed on the abutting portions J1 and J2 using a rotating tool smaller than the joining rotating tool F. Plasticized regions W3 and W4 are formed in the abutting portions J1 and J2. Then, friction stir welding is performed using the welding rotary tool F from above the plasticized regions W3 and W4. According to this manufacturing method, since the friction stir welding can be performed in full scale using the welding rotary tool F with the cover plate 4 temporarily attached to the base member 2, workability can be improved. Further, for example, in the fourth embodiment shown in FIG. 17, surface plasticization regions W1, W1, W3, W4 and four plasticization regions are formed in the heat transfer plate 1, but according to the fifth embodiment, The surface plasticization regions W1, W1 and the two plasticization regions are sufficient. Thereby, the cutting process etc. of the burr | flash formed around the surface plasticization area | region can be reduced.

図19は、第六実施形態に係る本接合工程を示した断面図である。第六実施形態に係る伝熱板1は、ベース部材2に蓋板4を配置した際に、熱媒体用管3の周囲に空隙部P1,P2が形成される点で第一実施形態と相違する。   FIG. 19 is a cross-sectional view showing the main joining step according to the sixth embodiment. The heat transfer plate 1 according to the sixth embodiment is different from the first embodiment in that gaps P1 and P2 are formed around the heat medium pipe 3 when the cover plate 4 is disposed on the base member 2. To do.

第六実施形態に係る伝熱板1の蓋板4は、本体部11と本体部11の下面から突出した凸部12とを備えている。凸部12の下面には、凹状に形成された底面12aが形成されている。底面12aの曲率は、熱媒体用管3の曲率よりも小さく形成されている。したがって、図19の(a)に示すように、蓋溝6に蓋板4を挿入すると、凹溝7に蓋板4の凸部12が挿入されるが、熱媒体用管3の周囲には空隙部P1,P2が形成される。   The cover plate 4 of the heat transfer plate 1 according to the sixth embodiment includes a main body portion 11 and a convex portion 12 protruding from the lower surface of the main body portion 11. On the lower surface of the convex portion 12, a bottom surface 12a formed in a concave shape is formed. The curvature of the bottom surface 12 a is smaller than the curvature of the heat medium pipe 3. Accordingly, as shown in FIG. 19A, when the cover plate 4 is inserted into the cover groove 6, the convex portion 12 of the cover plate 4 is inserted into the concave groove 7. Gaps P1 and P2 are formed.

第六実施形態に係る本接合工程では、接合用回転ツールFを熱媒体用管3に近接させて摩擦攪拌接合を行う。これにより、接合用回転ツールFで攪拌され流動化された塑性流動材が、空隙部P1,P2に流入するため、空隙部P1,P2を密閉することができる。したがって、伝熱板1の気密性及び水密性を高めることができる。   In the main joining step according to the sixth embodiment, the friction stir welding is performed by bringing the joining rotary tool F close to the heat medium pipe 3. Thereby, since the plastic fluidized material stirred and fluidized by the joining rotary tool F flows into the gap portions P1 and P2, the gap portions P1 and P2 can be sealed. Therefore, the airtightness and watertightness of the heat transfer plate 1 can be improved.

以上本発明の実施形態について説明したが、本発明の趣旨に反しない範囲において適宜変更が可能である。例えば、実施形態では平面視略蛇行状、平面視略馬蹄状に熱媒体用管等を形成したが、他の形状であってもよい。また、ベース部材2の表面2aと、蓋板4の表面13とを面一にして本接合工程を行ったが、蓋溝6に蓋板4を配置した際に、ベース部材2の表面2aから蓋板4の表面13を突出させた状態で本接合工程を行ってもよい。   Although the embodiments of the present invention have been described above, modifications can be made as appropriate without departing from the spirit of the present invention. For example, in the embodiment, the heat medium pipe or the like is formed in a substantially serpentine shape in a plan view and a substantially horseshoe shape in a plan view, but may have other shapes. Further, the main joining process was performed with the surface 2 a of the base member 2 and the surface 13 of the lid plate 4 being flush with each other. However, when the lid plate 4 was disposed in the lid groove 6, the surface 2 a of the base member 2 You may perform this joining process in the state which made the surface 13 of the cover plate 4 protrude.

次に、本発明の実施例について説明する。本発明に係る実施例は、図20の(a)及び(b)に示すように平面視正方形のベース部材2の表面2a及び裏面2bにそれぞれ3つの円を描くように摩擦攪拌を行い、表面2a側で発生した反りの変形量と、裏面2b側で発生した反りの変形量を測定した。表面2a側で発生した反りの変形量の値と、裏面2b側で発生した反りの変形量の値が近いほど、ベース部材2の平坦性が高いことを示す。   Next, examples of the present invention will be described. In the embodiment according to the present invention, as shown in FIGS. 20A and 20B, friction stir is performed so as to draw three circles on the front surface 2a and the back surface 2b of the base member 2 having a square shape in plan view, The amount of warpage deformation generated on the 2a side and the amount of warpage deformation generated on the back surface 2b side were measured. It shows that the flatness of the base member 2 is high, so that the value of the deformation amount of the curvature which generate | occur | produced in the surface 2a side and the value of the deformation amount of the curvature which generate | occur | produced in the back surface 2b side are near.

ベース部材2は、平面視500mm×500mmの直方体であって、厚みが30mm、60mmの二種類の部材を用いてそれぞれ測定を行った。ベース部材2の素材は、JIS規格の5052アルミニウム合金である。   The base member 2 was a rectangular parallelepiped having a plan view of 500 mm × 500 mm, and the measurement was performed using two types of members having a thickness of 30 mm and 60 mm. The material of the base member 2 is JIS standard 5052 aluminum alloy.

摩擦攪拌の軌跡である3つの円は、ベース部材2の中心に設定した地点j又は地点j’を中心とし、表面2a及び裏面2bともに半径r1=100mm(以下、小円ともいう)、r2=150mm(以下、中円ともいう)、r3=200mm(以下、大円ともいう)に設定した。摩擦攪拌の順序は、小円、中円、大円の順番で行った。   The three circles that are the locus of frictional stirring are centered on the point j or the point j ′ set at the center of the base member 2, and both the surface 2a and the back surface 2b have a radius r1 = 100 mm (hereinafter also referred to as a small circle), It was set to 150 mm (hereinafter also referred to as middle circle) and r3 = 200 mm (hereinafter also referred to as great circle). Friction stirring was performed in the order of small circle, middle circle, and great circle.

回転ツールは、表面2a側及び裏面2b側ともに同じ大きさの回転ツールを用いた。回転ツールのサイズは、ショルダ部の外径が20mm、攪拌ピンの長さが10mm、攪拌ピンの根元の大きさ(最大径)が9mm、攪拌ピンの先端の大きさ(最小径)が6mmのものを用いた。回転ツールの回転数は、600rpm、送り速度は、300mm/minに設定した。また、表面2a側及び裏面2b側ともに回転ツールの押込み量は一定に設定した。図20に示すように、表面2a側において形成された塑性化領域を小円から大円に向けてそれぞれ塑性化領域W21乃至塑性化領域W23とする。また、裏面2b側において形成された塑性化領域を小円から大円に向けて塑性化領域W31乃至W33とする。当該実施例における各測定結果を以下の表1〜表4に示す。   As the rotating tool, the rotating tool having the same size was used on both the front surface 2a side and the back surface 2b side. The size of the rotating tool is such that the outer diameter of the shoulder portion is 20 mm, the length of the stirring pin is 10 mm, the base size (maximum diameter) of the stirring pin is 9 mm, and the tip size (minimum diameter) of the stirring pin is 6 mm. Things were used. The rotational speed of the rotary tool was set to 600 rpm, and the feed rate was set to 300 mm / min. Further, the pressing amount of the rotary tool was set constant on both the front surface 2a side and the back surface 2b side. As shown in FIG. 20, the plasticized regions formed on the surface 2a side are referred to as a plasticized region W21 to a plasticized region W23 from a small circle to a large circle, respectively. Further, the plasticized regions formed on the back surface 2b side are designated as plasticized regions W31 to W33 from the small circle to the great circle. Each measurement result in the said Example is shown in the following Tables 1-4.

表1は、ベース部材2の板厚が30mmであって、表面側から摩擦攪拌を行った場合の測定値を示した表である。「FSW前」は、摩擦攪拌を行う前において、中心地点j(基準j)と各地点(地点a〜地点h)との高低差を示している。「FSW後」は、基準jをゼロとして、3つの円の摩擦攪拌を行った後において、基準jと各地点との高低差を示している。「表面側変形量」は、各地点における(FSW後−FSW前)の値を示している。「表面側変形量」の最下欄は、地点a〜地点hの平均値を示す。「FSW前」及び「FSW後」のマイナス値は、基準jよりも下方に位置していることを意味する。   Table 1 is a table showing measured values when the thickness of the base member 2 is 30 mm and frictional stirring is performed from the surface side. “Before FSW” indicates the height difference between the central point j (reference j) and each point (point a to point h) before the friction stir. “After FSW” indicates a difference in height between the reference j and each point after performing frictional stirring of three circles with the reference j being zero. The “surface side deformation amount” indicates a value of (after FSW−before FSW) at each point. The lowermost column of “surface side deformation amount” indicates an average value of the points a to h. Negative values of “before FSW” and “after FSW” mean that they are located below the reference j.

Figure 0005434251
Figure 0005434251

表2は、ベース部材2の板厚が30mmであって、表面側から小円、中円、大円の摩擦攪拌を行った後、裏面側からも摩擦攪拌を行った場合(矯正工程)の測定値を示した表である。「FSW前」は、摩擦攪拌を行う前において、中心地点j’(基準j’)と各地点(a’〜h’)との高低差を示している。
「FSW1」は、図20を参照するように、基準j’をゼロとして、小円(半径r1)の摩擦攪拌を行った後の、基準j’と各地点との高低差を示している。「裏面側変形量1」は、各地点における(FSW1−FSW前)の値を示している。「裏面側変形量1」の最下欄は、地点a〜地点hの平均値を示す。
「FSW2」は、基準j’をゼロとして、小円(半径r1)に加えてさらに、中円(半径r2)の摩擦攪拌を行った後の、基準j’と各地点との高低差を示している。「裏面側変形量2」は、各地点における(FSW2−FSW前)の値を示している。「裏面側変形量2」の最下欄は、地点a〜地点hの平均値を示す。
「FSW3」は、基準j’をゼロとして、小円(半径r1)、中円(半径r2)に加えてさらに、大円(半径r3)の摩擦攪拌を行った後の、基準j’と各地点との高低差を示している。「裏面側変形量3」は、各地点における(FSW3−FSW前)の値を示している。「裏面側変形量3」の最下欄は、地点a〜地点hの平均値を示す。
Table 2 shows the case where the plate thickness of the base member 2 is 30 mm, and after frictional stirring of small circles, middle circles and great circles from the front side is performed, frictional stirring is also performed from the back side (correction process). It is the table | surface which showed the measured value. “Before FSW” indicates the height difference between the central point j ′ (reference j ′) and each point (a ′ to h ′) before the friction stir.
As shown in FIG. 20, “FSW1” indicates a difference in height between the reference j ′ and each point after performing frictional stirring of a small circle (radius r1) with the reference j ′ as zero. “Back side deformation amount 1” indicates a value (before FSW1−FSW) at each point. The bottom column of “back side deformation amount 1” indicates an average value of the points a to h.
“FSW2” indicates a difference in height between the reference j ′ and each point after performing frictional stirring of the middle circle (radius r2) in addition to the small circle (radius r1) with the reference j ′ set to zero. ing. “Back side deformation amount 2” indicates a value (before FSW2−FSW) at each point. The bottom column of “back side deformation amount 2” indicates an average value of the points a to h.
“FSW3” is based on the reference j ′ after the frictional stirring of the great circle (radius r3) in addition to the small circle (radius r1) and the middle circle (radius r2) with the reference j ′ set to zero. The height difference from the point is shown. "Back side deformation amount 3" indicates the value of (before FSW3-FSW) at each point. The bottom column of “back side deformation amount 3” indicates an average value of the points a to h.

Figure 0005434251
Figure 0005434251

表3は、ベース部材2の板厚が60mmであって、表面側から摩擦攪拌を行った場合の測定値を示した表である。表3の各項目は、表1の各項目と略同等の意味を示す。   Table 3 is a table showing measured values when the plate thickness of the base member 2 is 60 mm and frictional stirring is performed from the surface side. Each item in Table 3 has substantially the same meaning as each item in Table 1.

Figure 0005434251
Figure 0005434251

表4は、ベース部材2の板厚が60mmであって、表面側から小円、中円、大円の摩擦攪拌を行った後、裏面側から摩擦攪拌を行った場合の測定値を示した表である。表4の各項目は、表2の各項目と略同等の意味を示す。   Table 4 shows the measured values when the base member 2 has a plate thickness of 60 mm, and after frictional stirring of small circles, middle circles, and great circles from the front surface side and then frictional stirring from the back surface side. It is a table. Each item in Table 4 has substantially the same meaning as each item in Table 2.

Figure 0005434251
Figure 0005434251

表1の「表面側変形量」の平均値(1.61)と、表2の「裏面側変形量1」の平均値(2.04)とを比較すると、「裏面側変形量1」の値の方が大きい。同様に、「裏面側変形量2」の平均値(2.95)及び「裏面側変形量3」の平均値(3.53)も、「表面側変形量」の平均値(1.61)よりも大きな値となっている。つまり、ベース部材2の板厚が30mmの場合は、裏面側から小円の摩擦攪拌のみを行っただけでも、ベース部材2の反りが戻りすぎてしまう。したがって、ベース部材2が30mmの場合は、表面側よりも低い加工度でベース部材2の平坦性を高めることができる。   Comparing the average value (1.61) of “front side deformation” in Table 1 and the average value (2.04) of “back side deformation 1” in Table 2, the value of “back side deformation 1” is more large. Similarly, the average value (2.95) of “back side deformation 2” and the average value (3.53) of “back side deformation 3” are larger than the average value (1.61) of “front side deformation”. ing. That is, when the plate thickness of the base member 2 is 30 mm, the warp of the base member 2 is returned too much only by performing a small circle of friction stirring from the back side. Therefore, when the base member 2 is 30 mm, the flatness of the base member 2 can be enhanced with a lower degree of processing than the surface side.

表3の「表面側変形量」の平均値(0.98)と、表4の「裏面側変形量2」の平均値(0.91)とを比較すると、両者の変形量が近似している。したがって、ベース部材2の板厚が60mmの場合は、裏面側から小円及び中円の摩擦攪拌を行ったときに、ベース部材2の平坦性が高いことが確認できた。つまり、板厚が60mmの場合は、表面側に比べて裏面側の加工度を低く設定すればベース部材2の平坦性を高めることができる。   When the average value (0.98) of “front side deformation amount” in Table 3 is compared with the average value (0.91) of “back side deformation amount 2” in Table 4, the deformation amounts of both are approximated. Therefore, when the plate thickness of the base member 2 was 60 mm, it was confirmed that the flatness of the base member 2 was high when the frictional stirring of the small circle and the middle circle was performed from the back side. That is, when the plate thickness is 60 mm, the flatness of the base member 2 can be improved by setting the processing degree on the back surface side to be lower than that on the front surface side.

1 伝熱板
2 ベース部材
3 熱媒体用管
4 蓋板
6 蓋溝
6a 蓋溝の側壁
6b 蓋溝の側壁
7 凹溝
12 凸部
15a 蓋板の側面
15b 蓋板の側面
J1 突合部
J2 突合部
F 接合用回転ツール
G 矯正用回転ツール
W1 表面塑性化領域
W2 裏面塑性化領域
DESCRIPTION OF SYMBOLS 1 Heat-transfer plate 2 Base member 3 Heat medium pipe 4 Cover plate 6 Cover groove 6a Cover groove side wall 6b Cover groove side wall 7 Concave groove 12 Convex part 15a Cover plate side face 15b Cover plate side face J1 Butting part J2 Butting part F Rotating tool for bonding G Rotating tool for straightening W1 Surface plasticizing area W2 Back plasticizing area

Claims (13)

ベース部材の表面側に開口する蓋溝の底面に形成された凹溝に、熱媒体用管を挿入する挿入工程と、
前記蓋溝に挿入される本体部と前記凹溝に挿入される凸部とを有する蓋板を、前記蓋溝に挿入する蓋溝閉塞工程と、
前記蓋溝の側壁と前記蓋板の側面との突合部に沿って回転ツールを相対移動させて摩擦攪拌接合を行う本接合工程と、
前記ベース部材の裏面に対して回転ツールを移動させて摩擦攪拌を行う矯正工程と、
を含むことを特徴とする伝熱板の製造方法。
An insertion step of inserting the heat medium pipe into the concave groove formed on the bottom surface of the lid groove opening on the surface side of the base member;
A lid groove closing step of inserting a lid plate having a main body portion inserted into the lid groove and a convex portion inserted into the concave groove into the lid groove;
A main joining step of performing friction stir welding by relatively moving the rotary tool along the abutting portion between the side wall of the lid groove and the side surface of the lid plate;
A correction step of moving the rotating tool relative to the back surface of the base member to perform friction stirring;
The manufacturing method of the heat exchanger plate characterized by including.
前記矯正工程では、前記伝熱板の裏面に形成される塑性化領域の体積量を、前記伝熱板の表面側に形成された塑性化領域の体積量よりも小さく設定することを特徴とする請求項1に記載の伝熱板の製造方法。   In the correction step, the volume amount of the plasticized region formed on the back surface of the heat transfer plate is set to be smaller than the volume amount of the plasticized region formed on the surface side of the heat transfer plate. The manufacturing method of the heat exchanger plate of Claim 1. 前記矯正工程では、この矯正工程で形成される塑性化領域の平面形状を前記伝熱板の中心に対して略点対称となるように設定することを特徴とする請求項1又は請求項2に記載の伝熱板の製造方法。   In the said correction process, the planar shape of the plasticization area | region formed in this correction process is set so that it may become substantially point symmetrical with respect to the center of the said heat exchanger plate. The manufacturing method of the heat-transfer board of description. 前記矯正工程では、この矯正工程で形成される塑性化領域の平面形状を前記伝熱板の外縁の形状と略相似形状となるように設定することを特徴とする請求項1乃至請求項3のいずれか一項に記載の伝熱板の製造方法。   4. The correction process according to claim 1, wherein the planar shape of the plasticized region formed in the correction process is set to be substantially similar to the shape of the outer edge of the heat transfer plate. The manufacturing method of the heat exchanger plate as described in any one of Claims. 前記矯正工程では、この矯正工程で形成される塑性化領域の平面形状を、前記伝熱板の表面側に形成された塑性化領域の平面形状と略同等形状となるように設定することを特徴とする請求項1乃至請求項4のいずれか一項に記載の伝熱板の製造方法。   In the straightening step, the planar shape of the plasticized region formed in the straightening step is set to be substantially the same shape as the planar shape of the plasticized region formed on the surface side of the heat transfer plate. The manufacturing method of the heat exchanger plate as described in any one of Claim 1 thru | or 4. 前記矯正工程では、この矯正工程で形成される塑性化領域の全長を、前記伝熱板の表面側に形成された塑性化領域の全長と同等となるように設定することを特徴とする請求項1乃至請求項5のいずれか一項に記載の伝熱板の製造方法。 In the straightening step, the total length of the plasticized region formed in the straightening step is set to be equal to the total length of the plasticized region formed on the surface side of the heat transfer plate. The manufacturing method of the heat exchanger plate as described in any one of Claim 1 thru | or 5. 前記矯正工程では、この矯正工程で形成される塑性化領域の全長を、前記伝熱板の表面側に形成された塑性化領域の全長よりも短くなるように設定することを特徴とする請求項1乃至請求項4のいずれか一項に記載の伝熱板の製造方法。   In the straightening step, the total length of the plasticized region formed in the straightening step is set to be shorter than the total length of the plasticized region formed on the surface side of the heat transfer plate. The manufacturing method of the heat exchanger plate as described in any one of Claim 1 thru | or 4. 前記矯正工程で用いる回転ツールのショルダ部の外径を、前記本接合工程で用いる前記回転ツールのショルダ部の外径よりも小さく設定することを特徴とする請求項1乃至請求項7のいずれか一項に記載の伝熱板の製造方法。   The outer diameter of the shoulder part of the rotary tool used in the straightening process is set smaller than the outer diameter of the shoulder part of the rotary tool used in the main joining process. The manufacturing method of the heat exchanger plate as described in one term. 前記矯正工程で用いる回転ツールの攪拌ピンの長さを、前記本接合工程で用いる前記回転ツールの攪拌ピンの長さよりも小さく設定することを特徴とする請求項1乃至請求項7のいずれか一項に記載の伝熱板の製造方法。   The length of the stirring pin of the rotary tool used in the straightening process is set to be smaller than the length of the stirring pin of the rotary tool used in the main joining process. The manufacturing method of the heat exchanger plate as described in a term. 前記ベース部材の厚みを、前記本接合工程で用いる前記回転ツールのショルダ部の外径の1.5倍以上に設定することを特徴とする請求項1乃至請求項9のいずれか一項に記載の伝熱板の製造方法。   The thickness of the said base member is set to 1.5 times or more of the outer diameter of the shoulder part of the said rotary tool used at the said main joining process, The Claim 1 thru | or 9 characterized by the above-mentioned. Manufacturing method of heat transfer plate. 前記ベース部材の厚みを、前記本接合工程で用いる前記回転ツールの攪拌ピンの長さの3倍以上に設定することを特徴とする請求項1乃至請求項10のいずれか一項に記載の伝熱板の製造方法。   The thickness of the said base member is set to 3 times or more of the length of the stirring pin of the said rotation tool used at the said main joining process, The transmission as described in any one of Claim 1 thru | or 10 characterized by the above-mentioned. Manufacturing method of hot plate. 前記ベース部材が平面視多角形である場合、前記矯正工程では、前記伝熱板の隅部に対して回転ツールを用いて摩擦攪拌を行う隅部摩擦攪拌工程を含むことを特徴とする請求項1乃至請求項11のいずれか一項に記載の伝熱板の製造方法。   When the base member has a polygonal shape in plan view, the straightening step includes a corner friction stirring step of performing friction stirring on a corner portion of the heat transfer plate using a rotary tool. The manufacturing method of the heat exchanger plate as described in any one of Claim 1 thru | or 11. 前記矯正工程の後に、前記伝熱板の裏面側を面削加工する面削工程を含み、前記面削工程の深さは、前記矯正工程で用いる回転ツールの攪拌ピンの長さよりも大きいことを特徴とする請求項1乃至請求項12のいずれか一項に記載の伝熱板の製造方法。


After the straightening step, a chamfering step of chamfering the back side of the heat transfer plate is included, and the depth of the chamfering step is larger than the length of the stirring pin of the rotary tool used in the straightening step. The manufacturing method of the heat exchanger plate as described in any one of Claims 1 thru | or 12 characterized by the above-mentioned.


JP2009116632A 2008-06-27 2009-05-13 Manufacturing method of heat transfer plate Expired - Fee Related JP5434251B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2009116632A JP5434251B2 (en) 2009-05-13 2009-05-13 Manufacturing method of heat transfer plate
KR1020117002069A KR101213247B1 (en) 2008-06-27 2009-06-25 Heat exchange plate manufacturing method and heat exchange plate
PCT/JP2009/061649 WO2009157519A1 (en) 2008-06-27 2009-06-25 Heat exchange plate manufacturing method and heat exchange plate
CN2009801218129A CN102056700B (en) 2008-06-27 2009-06-25 Heat exchange plate manufacturing method and heat exchange plate
TW098121559A TWI402476B (en) 2008-06-27 2009-06-26 The method of manufacturing the heat transfer plate and the heat conducting plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009116632A JP5434251B2 (en) 2009-05-13 2009-05-13 Manufacturing method of heat transfer plate

Publications (2)

Publication Number Publication Date
JP2010264467A JP2010264467A (en) 2010-11-25
JP5434251B2 true JP5434251B2 (en) 2014-03-05

Family

ID=43361932

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009116632A Expired - Fee Related JP5434251B2 (en) 2008-06-27 2009-05-13 Manufacturing method of heat transfer plate

Country Status (1)

Country Link
JP (1) JP5434251B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5262822B2 (en) * 2009-02-23 2013-08-14 日本軽金属株式会社 Manufacturing method of liquid cooling jacket
JP2014094409A (en) * 2012-10-10 2014-05-22 Nippon Light Metal Co Ltd Method of producing heat exchanger plate and friction agitation joining method
JP6248730B2 (en) * 2014-03-19 2017-12-20 日本軽金属株式会社 Manufacturing method of heat transfer plate and manufacturing method of composite plate having no flow path inside
JP2015196180A (en) * 2014-04-01 2015-11-09 日本軽金属株式会社 Manufacturing method for heat transfer plate and friction agitation joint method

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001313357A (en) * 2000-04-27 2001-11-09 Hitachi Ltd Method for manufacturing heat sink plate, and heat sink structure
JP3818084B2 (en) * 2000-12-22 2006-09-06 日立電線株式会社 Cooling plate and manufacturing method thereof, and sputtering target and manufacturing method thereof
JP4385533B2 (en) * 2001-03-02 2009-12-16 日本軽金属株式会社 Manufacturing method of heat plate
JP4126966B2 (en) * 2002-06-10 2008-07-30 株式会社日立製作所 Bonding structure of main body and lid
JP4325260B2 (en) * 2003-04-15 2009-09-02 日本軽金属株式会社 Manufacturing method of heat transfer element
JP4888422B2 (en) * 2007-04-16 2012-02-29 日本軽金属株式会社 Heat transfer plate manufacturing method and heat transfer plate
JP5012339B2 (en) * 2007-09-06 2012-08-29 日本軽金属株式会社 Heat transfer plate manufacturing method and heat transfer plate

Also Published As

Publication number Publication date
JP2010264467A (en) 2010-11-25

Similar Documents

Publication Publication Date Title
KR101194097B1 (en) Method of manufacturing heat transfer plate
WO2009157519A1 (en) Heat exchange plate manufacturing method and heat exchange plate
JP5434251B2 (en) Manufacturing method of heat transfer plate
TWI402477B (en) Manufacture of heat transfer plates
WO2019038939A1 (en) Liquid cooling jacket manufacturing method
JP5071144B2 (en) Manufacturing method of heat transfer plate
JP5163419B2 (en) Manufacturing method of heat transfer plate
JP5267381B2 (en) Manufacturing method of heat transfer plate
JP5262508B2 (en) Manufacturing method of heat transfer plate
JP5177059B2 (en) Manufacturing method of heat transfer plate
JP5590206B2 (en) Manufacturing method of heat transfer plate
US11311963B2 (en) Method for producing liquid-cooled jacket
JP5401921B2 (en) Manufacturing method of heat transfer plate
JP2010082649A (en) Joining method
JP5071132B2 (en) Manufacturing method of heat transfer plate
JP2019155415A (en) Manufacturing method for liquid-cooled jacket
JP5464236B2 (en) Manufacturing method of heat transfer plate
JP5772920B2 (en) Manufacturing method of heat transfer plate
JP6248730B2 (en) Manufacturing method of heat transfer plate and manufacturing method of composite plate having no flow path inside
JP5422010B2 (en) Joining method
JP2013091104A (en) Method for manufacturing heat transfer plate
JP5071274B2 (en) Heat transfer plate manufacturing method and heat transfer plate
JP5326757B2 (en) Heat transfer plate and heat transfer plate manufacturing method
JP2016043368A (en) Manufacturing method of heat transfer plate
JP2017042782A (en) Method for manufacturing heat exchanger

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120307

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130625

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130802

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131112

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131125

R150 Certificate of patent or registration of utility model

Ref document number: 5434251

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees