WO2009104426A1 - Method of manufacturing heat transfer plate - Google Patents

Method of manufacturing heat transfer plate Download PDF

Info

Publication number
WO2009104426A1
WO2009104426A1 PCT/JP2009/050132 JP2009050132W WO2009104426A1 WO 2009104426 A1 WO2009104426 A1 WO 2009104426A1 JP 2009050132 W JP2009050132 W JP 2009050132W WO 2009104426 A1 WO2009104426 A1 WO 2009104426A1
Authority
WO
WIPO (PCT)
Prior art keywords
base member
manufacturing
heat transfer
correction
joining
Prior art date
Application number
PCT/JP2009/050132
Other languages
French (fr)
Japanese (ja)
Inventor
勇人 佐藤
久司 堀
伸城 瀬尾
知広 河本
Original Assignee
日本軽金属株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2008039652A external-priority patent/JP5071144B2/en
Priority claimed from JP2008244565A external-priority patent/JP5262508B2/en
Application filed by 日本軽金属株式会社 filed Critical 日本軽金属株式会社
Priority to CN200980106125.XA priority Critical patent/CN101952079B/en
Priority to KR1020107020722A priority patent/KR101194097B1/en
Publication of WO2009104426A1 publication Critical patent/WO2009104426A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/12Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding
    • B23K20/122Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding using a non-consumable tool, e.g. friction stir welding
    • B23K20/1265Non-butt welded joints, e.g. overlap-joints, T-joints or spot welds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/04Tubular or hollow articles
    • B23K2101/14Heat exchangers

Definitions

  • the present invention relates to a method of manufacturing a heat transfer plate used for, for example, a heat exchanger, a heating device, a cooling device, or the like.
  • a heat transfer plate arranged in contact with or close to an object to be heat exchanged, heated or cooled is provided with a heat medium pipe for circulating a heat medium such as high-temperature liquid or cooling water through a base member as a main body. It is formed by insertion.
  • FIG. 28 is a cross-sectional view showing a heat transfer plate formed by the method for manufacturing a heat transfer plate according to Document 1.
  • a heat transfer plate 100 according to Document 1 includes a base member 102 having a lid groove 106 having a rectangular cross-sectional view opening on the surface and a concave groove 108 opening on the bottom surface of the lid groove 106, and a heat medium inserted into the concave groove 108.
  • a working tube 116 and a lid plate 110 inserted into the lid groove 106 are provided.
  • the heat transfer plate 100 is formed by performing friction stir welding along the respective abutting portions J and J where the both side walls of the lid groove 106 and the both side surfaces of the lid plate 110 are abutted. Accordingly, plasticized regions W and W are formed in the abutting portions J and J of the heat transfer plate 100, respectively.
  • the heat transfer plate 100 formed by the method of manufacturing a heat transfer plate according to Document 1 performs frictional stirring only from the surface side of the base member 102, when the plasticized regions W and W are contracted by thermal contraction, the heat transfer plate There was a problem that distortion occurred.
  • Document 2 describes a method in which friction stir is performed after giving a predetermined downward warp to a metal member in advance in anticipation of the generated warp.
  • an object of the present invention is to provide a method of manufacturing a heat transfer plate that can easily manufacture a heat transfer plate having high flatness by eliminating distortion of a metal member.
  • a manufacturing method of a heat transfer plate according to the present invention that solves such a problem includes a lid groove closing step of arranging a lid plate in a lid groove formed around a concave groove that opens on the surface side of the base member; Friction from the back surface side of the base member using a correction rotating tool, a bonding step of relatively moving the bonding rotary tool along the abutting portion between the side wall of the lid groove and the side surface of the lid plate, and friction stir A volumetric volume of the plasticized region formed by the straightening process is smaller than a volume volume of the plasticized area formed by the joining process.
  • a heat medium tube insertion step of inserting a heat medium tube into a concave groove formed on the bottom surface of the cover groove opened on the surface side of the base member, and a cover plate is disposed in the cover groove.
  • a lid groove closing step, a joining step of relatively moving the joining rotary tool along the abutting portion between the side wall of the lid groove and the side surface of the lid plate, and friction stir, and the base using the rotation tool for correction A correction step of performing frictional stirring from the back side of the member, wherein the volume amount of the plasticized region formed by the correction step is smaller than the volume amount of the plasticization region formed by the joining step
  • the joining step it is preferable to flow a plastic fluidized material fluidized by frictional heat into a gap formed around the heat medium pipe.
  • a plastic fluidized material fluidized by frictional heat into a gap formed around the heat medium pipe.
  • the present invention also includes a lid plate inserting step of inserting a lid plate into the concave groove opened on the surface side of the base member, and a joining step of performing frictional stirring by relatively moving the welding rotary tool along the concave groove.
  • the present invention provides a heat medium tube insertion step of inserting a heat medium tube into a concave groove opened on the surface side of the base member, a lid plate insertion step of inserting a lid plate into the concave groove, and the concave portion.
  • the volume of the plasticized region formed is smaller than the volume of the plasticized region formed by the joining step.
  • the lid plate presses the upper part of the heat medium pipe by the pressing force of the joining rotary tool, and at least the upper part of the lid plate and the base member are plastically fluidized. preferable.
  • the planar shape of the locus of the straightening rotary tool is substantially point-symmetric with respect to the center of the base member.
  • the planar shape of the locus of the straightening rotary tool is substantially similar to the shape of the outer edge of the base member.
  • the planar shape of the trajectory of the straightening rotary tool is substantially the same as the planar shape of the trajectory of the joining rotary tool formed on the surface side of the base member.
  • trajectory of the said rotation tool for correction is substantially the same as the full length of the locus
  • a total length of the locus of the correction rotary tool is shorter than a total length of the locus of the bonding rotary tool formed on the surface side of the base member.
  • the outer diameter of the shoulder part of the said rotation tool for correction used at the said correction process is smaller than the outer diameter of the shoulder part of the said rotation tool for bonding used at the said joining process.
  • the length of the pin of the rotation tool for correction used in the correction step is shorter than the length of the pin of the rotation tool for bonding used in the bonding step.
  • the volume amount of the plasticized region in the straightening process can be set lower than the volume amount of the plasticized region in the joining step, the flatness of the manufactured heat transfer plate is improved. Can do.
  • the thickness of the base member is 1.5 times or more the outer diameter of the shoulder portion of the rotating tool for joining. Moreover, it is preferable that the thickness of the said base member is 3 times or more of the length of the pin of the said rotation tool for joining.
  • the base member since the base member has a sufficient thickness with respect to the size of each part of the rotating tool for joining, the flatness of the heat transfer plate can be further improved.
  • the correction step includes a corner friction stirring step of performing friction stirring with respect to the corner portion of the base member by the correction rotary tool.
  • a heater when a heater is provided inside the heat medium pipe, it is preferable to include an annealing step in which the heater is energized after the straightening step to anneal the heat transfer plate.
  • a chamfering step of chamfering the back surface side of the base member is included, and the chamfering depth is larger than the pin length of the straightening rotary tool. According to this manufacturing method, the back surface of the heat transfer plate can be formed smoothly.
  • the present invention provides a lid groove closing step of inserting a lid plate into a lid groove formed around a concave groove opened on the surface side of the base member, and a side wall of the lid groove and a side surface of the lid plate.
  • a straightening step of straightening by applying a bending moment that generates stress.
  • the present invention also includes a heat medium tube insertion step of inserting a heat medium tube into a concave groove formed on the bottom surface of the cover groove that opens to the surface side of the base member, and a cover plate is inserted into the cover groove.
  • a correction step of correcting a warp convex on the back side of the member by applying a bending moment that generates a tensile stress on the surface side of the base member.
  • a warp that protrudes on the back surface side of the base member formed by the joining step by applying a bending moment that generates a tensile stress on the surface side of the base member in the straightening step. This makes it possible to improve the flatness of the heat transfer plate and to manufacture the heat transfer plate relatively easily.
  • the joining step it is preferable to flow a plastic fluidized material fluidized by frictional heat into a gap formed around the heat medium pipe. According to this manufacturing method, since the gap formed in the heat transfer plate can be reduced, a heat transfer plate with high heat exchange efficiency can be manufactured.
  • the present invention also includes a lid plate insertion step of inserting a lid plate into a groove that opens on the surface side of the base member, a joining step of performing frictional stirring by relatively moving a welding rotary tool along the groove, A correction step of correcting a warp convex on the back surface side of the base member formed by the bonding step by applying a bending moment that generates a tensile stress on the front surface side of the base member. It is characterized by.
  • the present invention also provides a heat medium tube insertion step of inserting a heat medium tube into a groove that opens on the surface side of the base member, a lid plate insertion step of inserting a cover plate into the groove, and the groove
  • a joining step in which the rotating tool for joining is relatively moved along the stirrer, and a warp that protrudes on the back side of the base member formed by the joining step, and a tensile stress is applied to the surface side of the base member.
  • a warp that protrudes on the back surface side of the base member formed by the joining step by applying a bending moment that generates a tensile stress on the surface side of the base member in the straightening step. This makes it possible to improve the flatness of the heat transfer plate and to manufacture the heat transfer plate relatively easily.
  • the lid plate presses the upper portion of the heat medium pipe by the pressing force of the joining rotary tool, and at least the upper portion of the lid plate and the base member are frictionally stirred. .
  • the gap plate formed around the heat medium pipe can be reduced by performing frictional stirring while the cover plate presses the heat medium pipe, the heat exchange efficiency is high.
  • a heat transfer plate can be manufactured.
  • the correction step press correction for pressing the base member, hit correction for hitting the base member with a hitting tool such as a hammer, or roll correction for rotating the roll member on the base member is performed. Therefore, it is preferable to correct the warp.
  • the first auxiliary member that contacts the vicinity of the center of the back surface side of the base member is disposed, and the second auxiliary member and the third auxiliary member that contact the vicinity of the peripheral edge of the surface side of the base member.
  • the warp is preferably subjected to press correction, impact correction or roll correction in a state where the members are arranged on both sides with the first auxiliary member interposed therebetween.
  • the base member is forcibly bent to the side opposite to the warp by applying a pressing force so that the base member is convex from the back side to the convex side. Therefore, it is possible to correct the warpage. Moreover, the workability
  • each auxiliary member is made of a material having a hardness lower than that of the base member. According to this manufacturing method, when pressing by press correction, impact correction, or roll correction, the base member can be corrected without being damaged.
  • the annealing process which anneals the said heat exchanger plate after the said correction process.
  • a heat transfer plate with high flatness can be easily manufactured.
  • (A) is the side view which showed the rotation tool for joining
  • (b) is the side view which showed the rotation tool for correction
  • the manufacturing method of the heat exchanger plate which concerns on 1st embodiment it is the perspective view which showed before performing a joining process. It is the top view which showed the joining process in steps in the manufacturing method of the heat exchanger plate which concerns on 1st embodiment.
  • the manufacturing method of the heat exchanger plate which concerns on 1st embodiment it is the figure which showed after performing a joining process, Comprising: (a) is a perspective view, (b) is the line which connects the point c and the point f. It is sectional drawing.
  • (a) is the perspective view which showed the joining process
  • (b) is the II-II sectional view taken on the line of (a).
  • (a) is a perspective view
  • (b) is the line which connects the point c and the point f. It is sectional drawing.
  • (a) is the top view which showed the correction friction stirring process
  • (b) is the top view which showed the corner friction stirring process.
  • the heat transfer plate 1 includes a base member 2 having a rectangular plate thickness in plan view, a heat medium pipe 20 embedded in the base member 2, and a base. And a lid plate 10 disposed in a groove provided in the member 2.
  • the abutting portions J1 and J2 between the base member 2 and the cover plate 10 are joined by friction stirring.
  • the heat transfer plate 1 is used after being heated by a micro heater (not shown) inserted through the heat medium pipe 20.
  • the base member 2 has a role of transmitting heat of the heat medium flowing through the heat medium pipe 20 to the outside, or a role of transmitting external heat to the heat medium flowing through the heat medium pipe 20.
  • the base member 2 is a rectangular parallelepiped having a square shape in plan view, and in this embodiment, a base member having a thickness of 30 mm to 120 mm is used.
  • the base member 2 is made of a metal material that can be frictionally stirred, such as aluminum, aluminum alloy, copper, copper alloy, titanium, titanium alloy, magnesium, and magnesium alloy.
  • a cover groove 6 is formed in the surface Za of the base member 2, and a groove 8 narrower than the cover groove 6 is formed in the center of the bottom surface of the cover groove 6.
  • the lid groove 6 is a portion where the lid plate 10 is disposed, and is continuously formed in a substantially horseshoe shape in plan view with a certain width and depth.
  • the lid groove 6 has a rectangular shape in sectional view, and includes side walls 6 a and 6 b that rise vertically from the bottom surface 6 c of the lid groove 6.
  • the concave groove 8 is a portion into which the heat medium pipe 20 is inserted, and is formed over the entire length of the lid groove 6 at the central portion of the bottom surface 6 c of the lid groove 6.
  • the concave groove 8 is a U-shaped groove with an upper opening, and a semicircular bottom surface 7 is formed at the lower end.
  • the width of the opening of the groove 8 is formed with a width A substantially equal to the diameter of the bottom surface 7.
  • the lid groove 6 is formed to have a groove width E and the groove 8 has a depth C.
  • the heat medium pipe 20 is a cylindrical pipe having a hollow portion 18 having a circular cross section.
  • the heat medium pipe 20 is made of copper and has a horseshoe shape in plan view. Since the outer diameter B of the heat medium pipe 20 is formed to be substantially equal to the width A of the groove 8 and the depth C of the groove 8, if the heat medium pipe 20 is disposed in the groove 8, the heat medium The lower half of the pipe 20 and the bottom surface 7 of the concave groove 8 are in surface contact, and the upper end of the heat medium pipe 20 and the bottom surface 6c of the lid groove 6 are at the same height.
  • a microheater is inserted into the heat medium pipe 20, but for example, a heat medium such as cooling water, cooling gas, high-temperature liquid, or high-temperature gas is circulated to circulate the heat medium.
  • the heat may be transmitted to the base member 2 and the cover plate 10 or the heat of the base member 2 and the cover plate 10 to the heat medium.
  • the heat medium pipe 20 is circular in cross section, but may be square in cross section.
  • the heat medium pipe 20 uses copper in the present embodiment, but other materials may be used. Further, the heat medium pipe 20 is not necessarily provided, and the heat medium may flow directly into the concave groove 8.
  • the lid plate 10 has an upper surface 11, a lower surface 12, a side surface 13 a, and a side surface 13 b that form a rectangular section that is substantially the same as the section of the lid groove 6 of the base member 2. And it is formed in a substantially horseshoe shape in plan view.
  • the cover plate 10 is formed with the same composition as the base member 2.
  • the lid plate 10 is formed with a lid thickness H.
  • the width of the cover plate 10 is formed substantially equal to the groove width E of the cover groove 6, when the cover plate 10 is arranged in the cover groove 6, the side surfaces 13 a and 13 b of the cover plate 10 are formed on the cover groove 6.
  • the side walls 6a and 6b are in surface contact with each other or face each other with a fine gap.
  • the lower surface 12 of the cover plate 10 and the upper end of the heat medium pipe 20 are in contact with each other.
  • the groove 8 and the lower half of the heat medium pipe 20 are brought into surface contact, and the upper end of the heat medium pipe 20 and the lower surface 12 of the cover plate 10 are brought into contact. It is not limited to. Further, in the present embodiment, the lid groove 6, the concave groove 8, the lid plate 10, and the heat medium pipe 20 are formed so as to have a horseshoe shape in a plan view, but are not limited thereto. What is necessary is just to design suitably according to the use of.
  • the manufacturing method of the heat transfer plate 1 includes (1) groove forming step, (2) heat medium tube inserting step, (3) lid groove closing step, (4) joining step, and (5) straightening step. (6) An annealing process is included.
  • the cover groove 6 and the concave groove 8 are formed with a predetermined width and depth on the surface Za of the base member 2 as shown in FIG.
  • the groove forming step is performed by cutting using, for example, a known end mill.
  • the joining step friction stirring is performed using the joining rotary tool F along the abutting portions J1 and J2.
  • the joining process includes a first joining process in which the abutting portion J1 is frictionally stirred and a second joining process in which the abutting portion J2 is frictionally stirred.
  • the joining rotary tool F is made of a metal material harder than the base member 2 such as tool steel, and has a columnar shoulder portion F1 and a lower end surface F11 of the shoulder portion F1. And an agitating pin (probe) F2 provided in a protruding manner.
  • the size and shape of the joining rotary tool F may be set according to the material, thickness, etc. of the base member 2, but at least the straightening rotary tool G used in the straightening process described later (see FIG. 4B). Larger than).
  • the lower end face F11 of the shoulder portion F1 is a part that plays a role of preventing the metal fluid that has been plastically fluidized from being scattered to the surroundings, and is formed in a concave shape in the present embodiment.
  • the stirring pin F2 hangs down from the center of the lower end surface F11 of the shoulder portion F1, and is formed into a tapered truncated cone shape in this embodiment.
  • a stirring blade engraved in a spiral shape is formed on the peripheral surface of the stirring pin F2.
  • the maximum outer diameter of the stirring pin G2 of the maximum outer diameter (upper diameter) X 2 is straightening rotary tool G (upper end diameter) Y 2 more, and the minimum outer diameter (bottom diameter) X 3 is larger than the minimum outer diameter (bottom diameter) Y 3 of the stirring pin G2.
  • the length L A of the stirring pin F2 is formed to be larger than the length L B of the stirring pin G2 of the correction rotating tool G (see FIG. 4B).
  • the thickness t of the base member 2 shown in FIG. 4 (a) is preferably of a length L A of the stirring pin F2 is three times or more.
  • the thickness t of the base member 2 is preferably at least 1.5 times the outer diameter X 1 of the shoulder portion F1. According to this setting, since the thickness of the base member 2 can be sufficiently ensured with respect to the size of the joining rotary tool F, it is possible to reduce the warpage that occurs when performing frictional stirring.
  • the straightening rotary tool G shown in FIG. 4B is made of a metal material harder than the base member 2 such as tool steel, and protrudes from a shoulder portion G1 having a columnar shape and a lower end surface G11 of the shoulder portion G1. And a stirring pin (probe) G2.
  • the lower end surface G11 of the shoulder portion G1 is formed in a concave shape like the rotating tool F for joining.
  • the stirring pin G2 hangs down from the center of the lower end surface G11 of the shoulder portion G1, and in the present embodiment, the stirring pin G2 is formed in a tapered truncated cone shape.
  • a stirring blade engraved in a spiral shape is formed on the peripheral surface of the stirring pin G2.
  • the start position SM1 is set at an arbitrary position on the surface Za of the base member 2, and the agitation pin F2 of the welding rotary tool F is pushed (pressed) into the base member 2.
  • the start position S M1 is set in the vicinity of the outer edge of the base member 2 and in the vicinity of the abutting portion J1.
  • the start position S M1 , the start point s 1, the end position E M1, and the end point e 1 are not limited to the positions of the present embodiment, but are in the vicinity of the outer edge of the base member 2 and in the vicinity of the abutting portion J 1. Preferably there is.
  • a start position SM2 is set at an arbitrary point h on the surface Za of the base member 2, and the stirring pin F2 of the welding rotary tool F is pushed (pressed) into the base member 2.
  • the joining rotary tool F is relatively moved toward the start point s2 of the abutting portion J2.
  • the joining rotary tool F is moved along the abutting portion J2 as it is without being detached.
  • joining rotation tool F After joining rotation tool F reaches the end point e2 of the butting portion J2, a joining rotation tool F as it is moved to the point f side, disengaging the joining rotation tool F at the end position E M2 set in point f.
  • the start position S M2 and the end position E M2 are not limited to the positions in the present embodiment, but are preferably corners of the outer edge of the base member 2. Thus, if a loophole in the end position E M2 remaining can be removed by cutting the corner.
  • the surface plasticized region W1 (W1a, W1b) is formed along the abutting portion J1 and the abutting portion J2 by the first joining step and the second joining step.
  • the heat medium pipe 20 is sealed by the base member 2 and the cover plate 10.
  • the depth of the surface plasticizing region W1 is substantially equal to the height of the side walls 6a and 6b of the lid groove 6 (see FIG. 2B). Therefore, the entire abutting portion J1 and the abutting portion J2 in the depth direction can be frictionally stirred. Thereby, the airtightness of the heat exchanger plate 1 can be improved.
  • FIG. 7 is a perspective view of the heat transfer plate 1 after the joining process of the present embodiment.
  • a surface plasticized region W1 is formed by a joining process. Since the surface plasticization region W1 shrinks due to thermal contraction, a compressive stress acts from the respective corners of the base member 2 toward the center on the surface Za side of the heat transfer plate 1. Accordingly, the heat transfer plate 1 may be distorted (bent) so that the surface Za side is concave.
  • the points a to j shown on the surface Za of the heat transfer plate 1 the influence of the warp tends to be noticeable at the points a, c, f, and h at the four corners of the heat transfer plate 1.
  • the point j shows the center point of the heat exchanger plate 1.
  • the straightening step friction stir is performed from the back surface Zb of the base member 2 using the straightening rotary tool G.
  • the correction process is a process performed in order to eliminate the warp (distortion) generated in the joining process.
  • the straightening process includes a tab material arranging process for arranging the tab material, and a straightening friction stirring process for performing friction stirring on the back surface Zb of the base member 2.
  • a tab material 31 for setting a start position and an end position of a correction friction stirring process described later is arranged.
  • the tab material 31 has a rectangular parallelepiped shape and has the same composition as the base member 2.
  • the tab material 31 is in contact with the side surface Zc so as to cover part of the side surface Zc of the base member 2.
  • the tab material 31 is temporarily joined by welding both side surfaces of the tab material 31 and the side surface Zc of the base member 2.
  • the surface of the tab material 31 is preferably formed flush with the back surface Zb of the base member 2.
  • the correction friction agitation step friction agitation is performed on the back surface Zb of the base member 2 using the rotation tool G for correction as shown in FIGS.
  • the friction stirring is performed with a pressing amount substantially equal to that in the joining process.
  • the route of the straightening friction stirring step is set so as to surround the central point j ′ and the back plasticization region W2 formed by the straightening friction stirring step is radial with respect to the central point j ′.
  • the points a ′, b ′,... are points corresponding to the back surface Zb side of the point a, the point b,.
  • a start position SM2 is set on the surface of the tab material 31, and the stirring pin G2 of the straightening rotary tool G is pushed into the tab material 31 (pressing) To do).
  • the correction rotary tool G is relatively moved toward the base member 2. And it becomes convex in plan view near the point f ′, the point a ′, the point c ′, and the point h ′ on the back surface Zb of the base member 2, and near the point g ′, the point d ′, the point b ′, and the point e ′.
  • the rotational tool G for correction is relatively moved so as to have a concave shape in plan view, and friction stirring is performed. That is, as shown in FIG. 8B, the back surface plasticized region W2 is formed so as to be symmetric with respect to the center line (dashed line) of the base member 2.
  • the start position S M2 and the end position E M2 are provided on the tab material 31, and friction stirring is performed in the manner of one stroke. Thereby, friction stirring can be performed efficiently.
  • the tab material 31 is cut out.
  • the trajectory of the correction rotary tool G that is, the shape of the back surface plasticized region W2 is formed so as to surround the center point j ′ and to be substantially radial with respect to the center point j ′.
  • the present invention is not limited to this. Variations of the locus of the correction rotating tool G will be described later.
  • the length of the trajectory of the correction rotating tool G (the length of the back surface plasticizing region W2) is greater than the length of the trajectory of the rotating tool F for bonding (the length of the surface plasticizing region W1). Is also formed to be shorter. That is, the processing degree of the correction rotary tool G in the correction process is set to be smaller than the processing degree of the bonding rotary tool F in the bonding process. Thereby, the flatness of the heat exchanger plate 1 can be improved. The reason for this will be described in Examples.
  • the workability indicates the volume amount of the plasticized region formed by friction stirring.
  • the tab material is disposed in the correction process, but the tab material may not be provided depending on the friction stirring route in the correction friction stirring process.
  • the internal stress of the heat transfer plate 1 is removed by annealing the heat transfer plate 1.
  • the heat medium pipe 20 is annealed, for example, by energizing a micro heater. Thereby, the internal stress of the heat exchanger plate 1 can be removed, and the deformation
  • the surface Za is also obtained by performing frictional stirring on the back surface Zb of the base member 2.
  • the flatness of the heat transfer plate 1 can be easily improved. That is, the back surface plasticized region W2 formed on the back surface Zb of the base member 2 is shrunk due to thermal contraction, and therefore, on the back surface Zb side of the heat transfer plate 1, compression is performed from each corner side of the base member 2 toward the center side. Stress acts. Thereby, the curvature formed by this joining process is eliminated, and the flatness of the heat exchanger plate 1 can be improved.
  • the width of the lid groove 6 and the lid plate 10 is set to be smaller than that of the first embodiment, and the abutting portion J1 and the abutting portion J2 are located in the vicinity of the heat medium pipe 20.
  • the plastic fluidizing material can be caused to flow into the gaps Q and Q formed around the heat medium pipe 20 by pushing the joining rotary tool F at a predetermined depth and performing frictional stirring.
  • FIG. 9B since the periphery of the heat medium pipe 20 is sealed with the plasticized metal, the heat transfer plate 1 ′ having high heat transfer can be formed.
  • FIG. 10 is a cross-sectional view showing the third embodiment.
  • the heat transfer plate 1 '' according to the third embodiment is the same as the heat transfer plate 1 according to the first embodiment, except that the heat medium pipe 20 according to the first embodiment is not provided.
  • the heat medium may be directly flowed into the concave groove 8 without providing the heat medium pipe. Since the manufacturing method of the heat transfer plate 1 ′′ is the same as that of the first embodiment except that the heat medium pipe is not inserted, the description thereof is omitted.
  • the heat transfer plate 41 manufactured according to the fourth embodiment includes a base member 2 having a square thickness in plan view, and heat inserted into a groove recessed in the base member 2. It mainly includes a medium tube 21 and a lid plate 42 inserted into a groove provided in the base member 2. The upper surface of the cover plate 42 is joined by a single friction stir.
  • the surface Za of the base member 2 is formed with a concave groove 43 that is continuously formed from one side surface Zc of the base member 2 to the other side surface Zd that faces the base member 2.
  • the concave groove 43 is a portion into which the heat medium pipe 21 and the lid plate 42 are inserted.
  • the concave groove 43 is formed so as to have a U-shape in a sectional view and a meandering shape in a plan view.
  • the width A ′ between the side walls 43 a and 43 b of the concave groove 43 is formed to be approximately equal to the outer diameter of the heat medium pipe 20.
  • the width A of the groove 43 ' is formed smaller than the outer diameter X 1 of the shoulder portion F1 of the joining rotation tool F.
  • the depth of the concave groove 43 is formed with a depth C ′.
  • the heat medium pipe 21 is a pipe inserted into the concave groove 43 and is formed so as to penetrate from one side surface Zc of the base member 2 to the other side surface Zd.
  • the heat medium pipe 21 has a meandering shape in plan view, and has a shape substantially equivalent to the shape of the groove 43 in plan view.
  • the lid plate 42 is a member that has a rectangular cross-sectional view and a serpentine shape in plan view, and is a member that is inserted into the concave groove 43.
  • the lid plate 42 includes side surfaces 42a and 42b, an upper surface 42c, and a lower surface 42d.
  • the upper surface 42c and the surface Za of the base member 2 are flush with each other, and the side surfaces 42a and 42b of the cover plate 42 are in surface contact with the side walls 43a and 43b of the groove 43, respectively. Or face each other with a fine gap.
  • the manufacturing method of the heat transfer plate according to the fourth embodiment includes (1) groove forming step, (2) heat medium tube inserting step, (3) lid plate inserting step, (4) joining step, and (5) straightening step. (6) A chamfering step is included.
  • the concave groove 43 is formed on the surface Za of the base member 2 with a predetermined width and depth.
  • the groove forming step is performed using, for example, a known end mill.
  • the lid plate 42 is inserted into the concave groove 43 to close the concave groove 43.
  • a portion which is abutted by one side wall 43 a of the concave groove 43 and one side surface 42 a of the lid plate 42 is defined as an abutting portion J ⁇ b> 3.
  • a portion that is abutted between the other side wall 43b and the other side surface 42b of the lid plate 42 is referred to as an abutting portion J4.
  • the joining step friction stirring is performed using the joining rotary tool F along the lid plate 42 (concave groove 43).
  • the joining process includes a tab material arranging process for arranging the tab material, and a main joining process for performing frictional stirring.
  • a pair of tab materials 33 and 34 are arranged on one side surface Zc and the other side surface Zd of the base member 2, respectively. Both side surfaces of the tab members 33 and 34 and the base member 2 are temporarily joined by welding.
  • the present embodiment it is possible to friction stir the abutting portions J3 and J4 only by setting one route, so that it is possible to greatly reduce the work labor compared to the first embodiment. it can. Further, when the friction stir is performed, the welding rotary tool F pushes the cover plate 42, so that the heat medium pipe 21 is also pressed and deformed. Thereby, since the space
  • FIG. 15 are views showing the heat transfer plate 41 after the main joining process of the present embodiment.
  • a surface plasticized region W3 is formed by a joining process. Since the surface plasticization region W3 shrinks due to thermal contraction, the heat transfer plate 41 may be warped and distorted so as to be concave on the surface Za side.
  • the points a to j shown on the surface Za of the heat transfer plate 41 the points a, c, f, and h related to the four corners of the heat transfer plate 41 tend to be noticeably warped.
  • the point j indicates the center point of the heat transfer plate 41.
  • the straightening process is a process performed to eliminate the warp generated in the joining process.
  • the straightening process includes a straightening friction stirring process in which frictional stirring is performed in a radial manner and a corner friction stirring process in which frictional stirring is performed on the corner of the base member 2.
  • friction stirring is performed so that a plasticized region is formed radially through the central point j ′. That is, on the straight line connecting point a ′ and point h ′, on the straight line connecting point d ′ and point e ′, on the straight line connecting point f ′ and point c ′, and on point g ′ and point b ′.
  • the friction stirring start position (S M5 , S M6 , S M7 , S M8 ) and the end position (E M5 , E M6 , E M7 , E M8 ) are set on the connecting line, and the center point from each start position.
  • the friction stir route is set so that the distance to j ′ is equal to the distance from the center point j ′ to each end position.
  • the straightening rotary tool G is pushed into each start position, and the straightening rotary tool G is moved along each route (straight line).
  • the friction stirring is performed with a pressing amount substantially equal to that in the joining process. .
  • the back surface plasticized regions W41 to W44 formed by the correction friction stirring step are formed to radially spread in eight directions with respect to the central point j ′.
  • the corner friction stirring step is formed so that the trajectory of the correction rotary tool G is perpendicular to the diagonal line at each corner, but is not limited thereto.
  • a route for friction stirring may be set as appropriate in consideration of the degree of warping of the corner.
  • the back surface plasticization region W45 and the back surface plasticization region W47, and the back surface plasticization region 46 and the back surface plasticization region W48 formed in the corner friction stirring step are formed so as to be symmetric with respect to the center point j ′. It is preferred that Thereby, the curvature of the surface Za side and the back surface Zb side of the heat-transfer plate 41 can be eliminated in a balanced manner, and the flatness of the heat-transfer plate 41 can be improved.
  • the back surface Zb of the heat transfer plate 41 is chamfered using a known end mill or the like. As shown in FIG. 16 (b), on the back surface Zb of the heat transfer plate 41, a hole (not shown) of the correction rotary tool G or a groove (not shown) generated by pushing each rotary tool, Burr etc. occur. Therefore, the back surface Zb of the heat transfer plate 41 can be formed smoothly by performing the chamfering process.
  • the thickness Ma of the chamfering process is set larger than the thickness Wa of the back surface plasticizing region W42.
  • the back surface plasticized regions W41 to W44 formed on the back surface Zb of the base member 2 are removed, so that the properties of the base member 2 can be made uniform. Further, since the back surface plasticized region W42 or the like is not exposed on the back surface Zb, it is suitable for design and the like.
  • the thickness of the chamfering process is set to be larger than the thickness of the back surface plasticizing region, but the present invention is not limited to this.
  • the thickness of the chamfering process may be set larger than the length of the stirring pin G2 of the correction rotary tool G, for example.
  • the correction process may be performed using the correction rotation tool not including the stirring pin G2. According to such a rotating tool, since the depth of the back surface plasticization region can be reduced, the thickness to be chamfered can be reduced. Thereby, since there are few chamfering parts, the loss of the base member 2 can be made small and cost can be reduced.
  • the heat transfer plate 41 is distorted due to the heat shrinkage due to the joining process, it is generated on the surface Za by performing frictional stirring on the back surface Zb of the base member 2. Warpage can be eliminated and the flatness of the heat transfer plate 41 can be easily increased. That is, the back surface plasticized regions W41 to W44 formed on the back surface Zb of the base member 2 are shrunk due to thermal contraction, and therefore, on the back surface Zb side of the heat transfer plate 41, from each corner side of the base member 2 toward the center side. Compressive stress acts. Thereby, the curvature formed by this joining process is eliminated, and the flatness of the heat exchanger plate 41 can be improved.
  • the abutting portions J3 and J4 between the cover plate 42 and the concave groove 43 can be frictionally stirred by one movement of the joining rotary tool F. Therefore, compared to the first embodiment. Therefore, labor can be saved greatly.
  • the corner friction stirring step is performed on the back surface Zb of the base member 2, the flatness of the heat transfer plate 41 can be improved by mainly correcting the corner portion having a large warp. .
  • FIG. 18 is a cross-sectional view of a heat transfer plate according to the fifth embodiment.
  • the heat transfer plate 51 according to the fifth embodiment is the same as the heat transfer plate 41 according to the fourth embodiment except that the heat transfer plate 51 is not provided. As shown in the heat transfer plate 51, the heat medium may flow directly into the concave groove 43. Since the manufacturing method of the heat transfer plate 51 is the same as that of the fourth embodiment except that the heat medium pipe 21 is not inserted, the description thereof is omitted.
  • FIG. 19 is a plan view showing the surface side of the heat transfer plate according to the sixth embodiment.
  • FIG. 20 is a plan view showing the back side of the heat transfer plate according to the sixth embodiment.
  • the friction stirrer according to the correction process is performed so that the plasticized regions formed on the front surface Za side and the back surface Zb side of the heat transfer plate have substantially the same shape.
  • a route may be set.
  • the heat medium pipe 53 and the cover plate 54 are inserted into the concave groove formed on the surface of the base member 2 to form a single plasticized region W60. Are joined together.
  • the description overlapping with the fourth embodiment is omitted.
  • a heat transfer plate 61 shown in FIG. 19 includes a base member 2 having an opening 52 in the center, and a heat medium pipe 53 embedded in a groove (not shown) cut out in the surface Za of the base member 2.
  • the lid plate 54 mainly closes the groove.
  • the heat medium pipe 53 is embedded in the base member 2 so as to exhibit a cross shape with a hollow in plan view. One end and the other end of the heat medium pipe 53 are exposed to the opening 52 of the base member 2. Heat is supplied from one end of the heat medium pipe 53 that appears in the opening 52, and the heat is discharged from the other end to be transmitted to the base member 2.
  • the abutting portion between the lid plate 54 and the base member 2 is joined by friction stirring by a joining rotary tool F through a process substantially equivalent to the joining process according to the fourth embodiment.
  • the surface plasticization region W60 is formed on the surface Za of the base member 2 so as to exhibit a substantially hollow shape in plan view.
  • the back surface Zb of the heat transfer plate 61 is formed with a back surface plasticized region W61 so as to have a hollow shape in a plan view, like the front surface Za.
  • the friction stirring start position S M and the end position E M in the correction process are set at an arbitrary point on the base member 2.
  • frictional stirring is performed with a pressing amount substantially equal to that in the joining process.
  • the back surface plasticizing region W61 is friction-stirred in the manner of one-stroke writing using the correction rotating tool G.
  • the surface plasticization region W60 and the back surface plasticization region W61 respectively formed on the front surface Za and the back surface Zb of the heat transfer plate 61 are corrected so as to exhibit substantially the same shape. You may set the route of the friction stirring which concerns on a process. According to the joining step and the straightening step, the shapes of the plasticized regions formed on the front surface Za side and the back surface Zb side of the heat transfer plate 61 are substantially the same, so that the warpage of the heat transfer plate 61 is eliminated in a balanced manner. Flatness can be improved.
  • the length of the locus of friction agitation performed on the surface Za side of the base member 2 is substantially equal to the length of the locus of friction agitation performed on the back surface Zb side. Since G is formed to be smaller than the joining rotary tool F, the degree of processing in the correction process is smaller than the degree of processing in the joining process.
  • correction process is not limited to the friction stir route of the first to sixth embodiments described above, and various routes can be set. Below, the other form of the route of friction stirring which concerns on a correction process is demonstrated.
  • FIG. 21 is a plan view of the back side of the heat transfer plate, where (a) is a first modification, (b) is a second modification, (c) is a third modification, and (d) is a fourth modification. For example, (e) shows a fifth modification, and (f) shows a sixth modification.
  • the trajectories (back surface plasticization region W2) of the correction rotary tool of the first modification and the second modification shown in FIGS. 21A and 21B all surround the center point j ′ of the base member 2. It is characterized by being formed.
  • the first modification is formed so as to be similar to the outer shape of the base member 2. Moreover, you may form in a grid
  • Each of the trajectories (back surface plasticizing region W2) of the correction rotary tool of the third modification and the fourth modification shown in FIGS. 21C and 21D passes through the center point j ′ of the base member 2. It is characterized by being formed radially.
  • the third modification shown in FIG. 20C includes a plurality of loops having a center point j as a start point and an end point, and is formed so as to be point-symmetric with respect to the center point j ′. Moreover, since the 3rd modification can be formed in the way of one-stroke writing, work efficiency can be improved.
  • the fourth modification shown in FIG. 20D is formed so as to pass through the center point j ′ and to be parallel to the diagonal line of the base member 2.
  • the trajectories (back surface plasticization region W2) of the correction rotary tools of the fifth and sixth modified examples shown in FIGS. 20 (e) and (f) are divided into four regions by straight lines passing through the central point j ′.
  • the four loci of the same shape are formed independently, and the loci that are diagonally opposed across the central point j ′ are point-symmetric.
  • the four trajectories may have any shape as long as they have the same shape.
  • the correction step may be performed by appropriately setting the route of friction stirring according to the locus of friction stirring in the joining step performed on the base member 2.
  • the base member 2 has been described as an example of a square in plan view, but may have other shapes.
  • the correction of the warp was performed by performing frictional stirring on the back surface Zb of the base member 2 using the correction rotary tool G, but is not limited thereto. It is not a thing.
  • a bending moment that generates a tensile stress from the back surface Zb of the heat transfer plate 1 (base member 2) to the front surface Za side of the base member 2 is applied, and the above-described joining process.
  • the warp of the heat transfer plate 1 formed by the above is corrected.
  • any one or more methods may be selected from the following three methods: press correction, impact correction, and roll correction.
  • FIG. 22 is a perspective view illustrating a preparatory stage for press correction according to the seventh embodiment.
  • FIG. 23 is a side view showing press correction according to the seventh embodiment, where (a) shows before pressing and (b) shows during pressing.
  • FIG. 24 is a plan view showing a pressing position for press correction according to the seventh embodiment.
  • FIG. 25 is a view showing roll correction according to the seventh embodiment, where (a) is a perspective view, (b) is a side view showing before pressing, and (c) is a side view showing during pressing. It is.
  • the correction process which concerns on 7th embodiment it demonstrates using the heat exchanger plate 1 which concerns on 1st embodiment.
  • a plate-like first auxiliary member T1 is disposed at the center point j ′ (see FIG. 7B) on the back surface Zb. Furthermore, plate-like second auxiliary members T2, T2 and third auxiliary members T3, T3 are arranged at the four corners on the surface Za side of the heat transfer plate 1. That is, the second auxiliary member T2 and the third auxiliary member T3 are disposed on both sides with the first auxiliary member T1 interposed therebetween.
  • the first auxiliary member T1 to the third auxiliary member T3 are members that serve as a contact material or a base when performing press correction, and are members that prevent the heat transfer plate 1 from being damaged.
  • the first auxiliary member T1 to the third auxiliary member T3 may be any material that is softer than the heat transfer plate 1, and for example, aluminum alloy, hard rubber, plastic, and wood can be used.
  • the first auxiliary member T1 to the third auxiliary member T3 are set with a thickness sufficient to correct the warp by bending to the opposite side of the warp according to the mechanical characteristics of the heat transfer plate 1 and the curvature of the warp. do it.
  • each auxiliary member When each auxiliary member is arranged, it is pressed from the rear surface Zb of the heat transfer plate 1 using a known press device P as shown in FIGS.
  • the punch Pa of the pressing device P is pressed against the first auxiliary member T1 and pressed with a predetermined pressing force.
  • the first auxiliary member T1 pushes the heat transfer plate 1 downward
  • the second auxiliary member Since T2 and the third auxiliary member T3 push both end sides of the heat transfer plate 1 upward, a bending moment acts on the heat transfer plate 1. Since this bending moment generates a tensile stress on the surface Za side of the heat transfer plate 1, the heat transfer plate 1 is forcibly bent downwardly.
  • the pressing force of the press device may be set as appropriate depending on the thickness and material of the heat transfer plate 1, but as shown in FIG. 23 (b), the surface Za side of the heat transfer plate 1 is convex downward, It is preferable to apply a bending moment that causes tensile stress to Za.
  • the first auxiliary member T1 is disposed at positions H2 to H5 including a point b ′, a point d ′, a point e ′, and a point g ′, which are intermediate points between the sides on the back surface Zb of the heat transfer plate 1, and press Pressing is performed by the device P.
  • the heat exchanger plate 1 can be corrected with good balance, and flatness can be further improved.
  • the hit correction means correcting a warp generated in the heat transfer plate using a hitting tool such as a hammer.
  • the impact correction is substantially the same as the press correction except that the heat transfer plate 1 is impacted with an impact tool such as a hammer instead of the press device P.
  • the heat transfer plate 1 is moved from the rear surface Zb of the heat transfer plate 1 with an impact tool such as a plastic hammer as shown in FIGS. Hit it.
  • an impact tool such as a plastic hammer as shown in FIGS. Hit it.
  • a tensile stress is generated on the surface Za side of the heat transfer plate 1, so that the heat transfer plate 1 is forcibly bent downward (see FIG. 23B).
  • the curvature of the heat exchanger plate 1 can be corrected and made flat.
  • the heat transfer plate 1 can be corrected in a balanced manner by striking the positions H2 to H5 (see FIG. 24) of the back surface Zb of the heat transfer plate 1 as necessary.
  • Impact correction is easier than press correction because it eliminates the need to prepare a press device and the like. Further, the impact correction is effective when the heat transfer plate 1 is small or thin because the work is easy. In addition, it is preferable to remove the burr generated by the hit after the hit correction.
  • the hitting tool is not particularly limited as long as it can hit the heat transfer plate 1, but for example, a plastic hammer is preferable.
  • the first auxiliary member T1 having a long plate shape is arranged so as to be parallel to the vertical direction including the center point j ′ (see FIG. 7B) of the back surface Zb. Further, the long plate-shaped second auxiliary member T2 and the third auxiliary member T3 are arranged so as to be parallel to the vertical direction at the edge portion on the surface Za side of the heat transfer plate 1. That is, the second auxiliary member T2 and the third auxiliary member T3 are disposed on both sides with the first auxiliary member T1 interposed therebetween.
  • Roll R1 is arrange
  • Roll R2 is arrange
  • the first auxiliary member T1 to the third auxiliary member T3 are members for performing roll correction and are members for preventing the heat transfer plate 1 from being damaged.
  • the first auxiliary member T1 to the third auxiliary member T3 may be any material that is softer than the heat transfer plate 1, and for example, aluminum alloy, hard rubber, plastic, and wood can be used.
  • the first auxiliary member T1 lowers the heat transfer plate 1 as shown in FIGS. 25 (b) and (c). Since the second auxiliary member T2 and the third auxiliary member T3 push the both end sides of the heat transfer plate 1 upward, a bending moment acts on the heat transfer plate 1. Since this bending moment generates a tensile stress on the surface Za side of the heat transfer plate 1, the heat transfer plate 1 is forcibly bent downwardly.
  • the first auxiliary member T1 to the third auxiliary member T3 are set with a thickness sufficient to correct the warp by bending to the opposite side of the warp according to the mechanical characteristics of the heat transfer plate 1 and the curvature of the warp. do it.
  • the rolls R1 and R2 may be rotated in the horizontal direction. That is, the first auxiliary member T1 to the third auxiliary member T3 are arranged so as to be parallel to the lateral direction, and the rolls R1, R2 are arranged so as to be orthogonal to the first auxiliary member T1 to the third auxiliary member T3. To do. And roll R1, R2 is reciprocated to a horizontal direction. Thereby, the heat exchanger plate 1 can be corrected with sufficient balance.
  • tensile stress is generated on the back surface Za of the base member 2 even if the heat transfer plate 1 is distorted by heat shrinkage due to the joining process on the surface Za of the heat transfer plate 1.
  • the flatness of the heat transfer plate can be easily increased.
  • friction stirring is performed so as to draw three circles on the front surface Za and the rear surface Zb of the base member 2 having a square shape in plan view.
  • the deformation amount of the warp generated on the side and the deformation amount of the warp generated on the back surface Zb side were measured. That is, the flatness of the base member 2 is higher as the value of the amount of warpage deformation generated on the front surface Za side is closer to the value of the amount of warpage deformation generated on the rear surface Zb side.
  • the base member 2 was a rectangular parallelepiped having a plan view of 500 mm ⁇ 500 mm, and the measurement was performed using two types having a thickness of 30 mm and 60 mm.
  • the material of the base member 2 is JIS standard 5052 aluminum alloy.
  • Rotating tools having the same size were used for both the front surface Za side and the back surface Zb side.
  • the size of the rotating tool is such that the outer diameter of the shoulder portion is 20 mm, the length of the stirring pin is 10 mm, the size of the base of the stirring pin (maximum diameter) is 9 mm, and the size of the tip of the stirring pin (minimum diameter) is 6 mm. A thing was used.
  • the rotational speed of the rotary tool was set to 600 rpm, and the feed rate was set to 300 mm / min. Further, the pressing amount of the rotary tool was set constant on both the front surface Za side and the back surface Zb side. As shown in FIG.
  • the plasticized regions formed on the surface Za side are referred to as a plasticized region W21 to a plasticized region W23 from the small circle to the great circle, respectively. Further, the plasticized regions formed on the back surface Zb side are designated as plasticized regions W31 to W33 from the small circle to the great circle.
  • the respective measurement results in this example are shown in Tables 1 to 4 below.
  • Table 1 is a table showing measured values when the thickness of the base member is 30 mm and frictional stirring is performed from the surface side.
  • “Before FSW” indicates the height difference between the central point j (reference j) and each point (point a to point h) before the friction stir.
  • “After FSW” indicates a difference in height between the reference j and each point after performing frictional stirring of three circles with the reference j being zero.
  • the “surface side deformation amount” indicates a value (after FSW ⁇ before FSW) at each point.
  • the bottom column of “Surface-side deformation amount” indicates an average value of the points a to h. Negative values of “before FSW” and “after FSW” mean that they are located below the reference j.
  • Table 2 is a table showing the measured values when the plate thickness of the base member is 30 mm and frictional stirring is performed from the back side (correcting step).
  • “Before FSW” indicates the level difference between the central point j ′ (reference j ′) and each point (a ′ to h ′) before the friction stir.
  • “FSW1” indicates a difference in height between the reference j ′ and each point after the frictional stirring of the small circle (radius r1) with the reference j ′ set to zero.
  • “Back side deformation amount 1” indicates a value (before FSW1 ⁇ FSW) at each point.
  • the bottom column of “back side deformation amount 1” indicates an average value of points a to h.
  • “FSW2” indicates a difference in height between the reference j ′ and each point after performing frictional stirring of the middle circle (radius r2) in addition to the small circle (radius r1) with the reference j ′ set to zero.
  • “Back side deformation 2” indicates the value of (before FSW2 ⁇ FSW) at each point.
  • the bottom column of “back side deformation 2” shows the average value of points a to h.
  • “FSW3” is based on the reference j ′ after the frictional stirring of the great circle (radius r3) in addition to the small circle (radius r1) and the middle circle (radius r2) with the reference j ′ set to zero. The height difference from the point is shown.
  • “Back side deformation amount 3” indicates a value (before FSW3 ⁇ FSW) at each point.
  • the bottom column of “back side deformation 3” shows the average value of points a to h.
  • Table 3 is a table showing measured values when the thickness of the base member is 60 mm and frictional stirring is performed from the surface side. Each item in Table 3 has substantially the same meaning as each item in Table 1.
  • Table 4 is a table showing measured values when the thickness of the base member is 60 mm and frictional stirring is performed from the back side. Each item in Table 4 has substantially the same meaning as each item in Table 2.

Abstract

A method of manufacturing a heat transfer plate capable of easily manufacturing a heat transfer plate with high flatness by friction stirring. The method comprises a lid groove closing step of disposing lid plates at respective lid grooves formed around respective recess grooves opened in the front surface of a base member (2), a joining step of performing friction stirring by moving a rotary tool for joining along the abutting parts between the side walls of the lid grooves and the side surfaces of the lid plates, and a correction step of performing friction stirring by moving a rotary tool (G) for correction to the rear surface (Zb) side of the base member (2). The method is characterized in that the volumetric amount of the plasticized area formed by the correction step is smaller than the volumetric amount of the plasticized area formed by the joining step.

Description

伝熱板の製造方法Manufacturing method of heat transfer plate
 本発明は、例えば熱交換器や加熱機器あるいは冷却機器などに用いられる伝熱板の製造方法に関する。 The present invention relates to a method of manufacturing a heat transfer plate used for, for example, a heat exchanger, a heating device, a cooling device, or the like.
 熱交換、加熱あるいは冷却すべき対象物に接触し又は近接して配置される伝熱板は、その本体であるベース部材に例えば高温液や冷却水などの熱媒体を循環させる熱媒体用管を挿通させて形成されている。 A heat transfer plate arranged in contact with or close to an object to be heat exchanged, heated or cooled is provided with a heat medium pipe for circulating a heat medium such as high-temperature liquid or cooling water through a base member as a main body. It is formed by insertion.
 かかる伝熱板の製造方法は、例えば、文献1に記載された方法が知られている。図28は、文献1に係る伝熱板の製造方法によって形成された伝熱板を示した断面図である。文献1に係る伝熱板100は、表面に開口する断面視矩形の蓋溝106と蓋溝106の底面に開口する凹溝108とを有するベース部材102と、凹溝108に挿入される熱媒体用管116と、蓋溝106に挿入される蓋板110と、を備えている。伝熱板100は、蓋溝106における両側壁と蓋板110の両側面とが突き合わされたそれぞれの突合部J,Jに沿って摩擦攪拌接合を行って形成されている。これにより、伝熱板100の突合部J,Jには、塑性化領域W,Wがそれぞれ形成されている。 As a method for manufacturing such a heat transfer plate, for example, the method described in Document 1 is known. FIG. 28 is a cross-sectional view showing a heat transfer plate formed by the method for manufacturing a heat transfer plate according to Document 1. A heat transfer plate 100 according to Document 1 includes a base member 102 having a lid groove 106 having a rectangular cross-sectional view opening on the surface and a concave groove 108 opening on the bottom surface of the lid groove 106, and a heat medium inserted into the concave groove 108. A working tube 116 and a lid plate 110 inserted into the lid groove 106 are provided. The heat transfer plate 100 is formed by performing friction stir welding along the respective abutting portions J and J where the both side walls of the lid groove 106 and the both side surfaces of the lid plate 110 are abutted. Accordingly, plasticized regions W and W are formed in the abutting portions J and J of the heat transfer plate 100, respectively.
 文献1に係る伝熱板の製造方法によって形成された伝熱板100は、ベース部材102の表面側のみから摩擦攪拌を行うため、熱収縮によって塑性化領域W,Wが縮むと、伝熱板に歪みが発生してしまうという問題があった。 Since the heat transfer plate 100 formed by the method of manufacturing a heat transfer plate according to Document 1 performs frictional stirring only from the surface side of the base member 102, when the plasticized regions W and W are contracted by thermal contraction, the heat transfer plate There was a problem that distortion occurred.
 かかる問題を解決する方法として、文献2には、発生する上反りを見越して、予め金属部材に所定の下反りを与えた後に摩擦攪拌を行う方法が記載されている。 As a method for solving such a problem, Document 2 describes a method in which friction stir is performed after giving a predetermined downward warp to a metal member in advance in anticipation of the generated warp.
 また、かかる問題を解決する方法として、文献3には、歪みを持つ金属部材を摩擦攪拌装置に固定し、当該金属部材の歪み箇所に回転工具を押し付けて、当該押付箇所に対して塑性流動を行って歪みを除去する方法が記載されている。 Further, as a method for solving such a problem, in Document 3, a strained metal member is fixed to a friction stirrer, a rotating tool is pressed against the strained portion of the metal member, and plastic flow is applied to the pressed portion. A method is described for performing distortion removal.
  文献1.特開2004-314115号公報
  文献2.特開2001-87871号公報
  文献3.特開2006-102777号公報
Reference 1. JP, 2004-314115, A Literature 2. JP 2001-87871 A Document 3. JP 2006-102777 A
 しかし、文献2に係る方法によると、金属部材に対して予め反りを形成する作業が煩雑になるという問題があった。また、文献3に係る方法において、摩擦攪拌を行う領域を大きくすると、摩擦攪拌を行った面に熱収縮が発生し、この面に凹状となる歪みが発生してしまう可能性があり、結果として金属部材の歪みの解消に至らない場合があった。
 このような観点から、本発明は、金属部材の歪みを解消して平坦性の高い伝熱板を容易に製造することができる伝熱板の製造方法を提供することを課題とする。
However, according to the method according to Document 2, there is a problem that the work of forming a warp in advance on a metal member becomes complicated. Further, in the method according to Document 3, if the region where frictional stirring is performed is increased, heat shrinkage may occur on the surface subjected to frictional stirring, and a concave distortion may be generated on this surface. In some cases, the distortion of the metal member could not be resolved.
From such a viewpoint, an object of the present invention is to provide a method of manufacturing a heat transfer plate that can easily manufacture a heat transfer plate having high flatness by eliminating distortion of a metal member.
 このような課題を解決する本発明に係る伝熱板の製造方法は、ベース部材の表面側に開口する凹溝の周囲に形成された蓋溝に、蓋板を配置する蓋溝閉塞工程と、前記蓋溝の側壁と前記蓋板の側面との突合部に沿って接合用回転ツールを相対移動させて摩擦攪拌を行う接合工程と、矯正用回転ツールを用いて前記ベース部材の裏面側から摩擦攪拌を行う矯正工程と、を含み、前記矯正工程によって形成された塑性化領域の体積量が、前記接合工程によって形成された塑性化領域の体積量よりも少ないことを特徴とする。
 また、本発明は、ベース部材の表面側に開口する蓋溝の底面に形成された凹溝に、熱媒体用管を挿入する熱媒体用管挿入工程と、前記蓋溝に蓋板を配置する蓋溝閉塞工程と、前記蓋溝の側壁と前記蓋板の側面との突合部に沿って接合用回転ツールを相対移動させて摩擦攪拌を施す接合工程と、矯正用回転ツールを用いて前記ベース部材の裏面側から摩擦攪拌を行う矯正工程と、を含み、前記矯正工程によって形成された塑性化領域の体積量が、前記接合工程によって形成された塑性化領域の体積量よりも少ないことを特徴とする。
A manufacturing method of a heat transfer plate according to the present invention that solves such a problem includes a lid groove closing step of arranging a lid plate in a lid groove formed around a concave groove that opens on the surface side of the base member; Friction from the back surface side of the base member using a correction rotating tool, a bonding step of relatively moving the bonding rotary tool along the abutting portion between the side wall of the lid groove and the side surface of the lid plate, and friction stir A volumetric volume of the plasticized region formed by the straightening process is smaller than a volume volume of the plasticized area formed by the joining process.
According to the present invention, a heat medium tube insertion step of inserting a heat medium tube into a concave groove formed on the bottom surface of the cover groove opened on the surface side of the base member, and a cover plate is disposed in the cover groove. A lid groove closing step, a joining step of relatively moving the joining rotary tool along the abutting portion between the side wall of the lid groove and the side surface of the lid plate, and friction stir, and the base using the rotation tool for correction A correction step of performing frictional stirring from the back side of the member, wherein the volume amount of the plasticized region formed by the correction step is smaller than the volume amount of the plasticization region formed by the joining step And
 かかる製造方法によれば、ベース部材の裏面側からも摩擦攪拌を行うため、表面に行った摩擦攪拌によって発生した反りを解消し、伝熱板の平坦性を容易に高めることができる。また、前記矯正工程によって形成された塑性化領域の体積量が、前記接合工程によって形成された塑性化領域の体積量よりも少ないため、製造された伝熱板の平坦性をより高めることができる。根拠については、実施例で説明する。 According to such a manufacturing method, since frictional stirring is also performed from the back surface side of the base member, warpage generated by frictional stirring performed on the surface can be eliminated, and the flatness of the heat transfer plate can be easily improved. Moreover, since the volume amount of the plasticized region formed by the straightening step is smaller than the volume amount of the plasticized region formed by the joining step, the flatness of the manufactured heat transfer plate can be further improved. . The basis will be described in the examples.
 また、前記接合工程において、前記熱媒体用管の周囲に形成された空隙部に、摩擦熱によって流動化された塑性流動材を流入させることが好ましい。かかる製造方法によれば、空隙部に塑性流動材を流入させることで、空隙部を埋めることができるため、例えば、熱媒体用管から放熱される熱を効率よく周囲のベース部材及び蓋板に伝達することができる。これにより、熱交換効率の高い伝熱板を製造することができる。 Also, in the joining step, it is preferable to flow a plastic fluidized material fluidized by frictional heat into a gap formed around the heat medium pipe. According to this manufacturing method, since the gap can be filled by flowing the plastic fluid material into the gap, for example, the heat radiated from the heat medium pipe is efficiently transferred to the surrounding base member and the cover plate. Can communicate. Thereby, a heat exchanger plate with high heat exchange efficiency can be manufactured.
 また本発明は、ベース部材の表面側に開口する凹溝に、蓋板を挿入する蓋板挿入工程と、前記凹溝に沿って接合用回転ツールを相対移動させて摩擦攪拌を行う接合工程と、矯正用回転ツールを用いて前記ベース部材の裏面側から摩擦攪拌を行う矯正工程と、を含み、前記矯正工程によって形成された塑性化領域の体積量が、前記接合工程によって形成された塑性化領域の体積量よりも少ないことを特徴とすることを特徴とする。
 また、本発明は、ベース部材の表面側に開口する凹溝に、熱媒体用管を挿入する熱媒体用管挿入工程と、前記凹溝に蓋板を挿入する蓋板挿入工程と、前記凹溝に沿って接合用回転ツールを相対移動させて摩擦攪拌を行う接合工程と、矯正用回転ツールを用いて前記ベース部材の裏面側から摩擦攪拌を行う矯正工程と、を含み、前記矯正工程によって形成された塑性化領域の体積量が、前記接合工程によって形成された塑性化領域の体積量よりも少ないことを特徴とする。
The present invention also includes a lid plate inserting step of inserting a lid plate into the concave groove opened on the surface side of the base member, and a joining step of performing frictional stirring by relatively moving the welding rotary tool along the concave groove. A correction step of performing frictional stirring from the back side of the base member using a rotation tool for correction, and the volume of the plasticized region formed by the correction step is plasticized by the bonding step It is characterized by being smaller than the volume of the region.
Further, the present invention provides a heat medium tube insertion step of inserting a heat medium tube into a concave groove opened on the surface side of the base member, a lid plate insertion step of inserting a lid plate into the concave groove, and the concave portion. A joining step for performing friction stir by relatively moving the joining rotary tool along the groove, and a straightening step for carrying out friction stirring from the back side of the base member using the straightening rotary tool. The volume of the plasticized region formed is smaller than the volume of the plasticized region formed by the joining step.
 かかる製造方法によれば、ベース部材の裏面側からも摩擦攪拌を行うため、表面に行った摩擦攪拌によって発生した反りを解消し、伝熱板の平坦性を容易に高めることができる。また、前記矯正工程によって形成された塑性化領域の体積量が、前記接合工程によって形成された塑性化領域の体積量よりも少ないため、製造された伝熱板の平坦性をより高めることができる。根拠については、実施例で説明する。 According to such a manufacturing method, since frictional stirring is also performed from the back surface side of the base member, warpage generated by frictional stirring performed on the surface can be eliminated, and the flatness of the heat transfer plate can be easily improved. Moreover, since the volume amount of the plasticized region formed by the straightening step is smaller than the volume amount of the plasticized region formed by the joining step, the flatness of the manufactured heat transfer plate can be further improved. . The basis will be described in the examples.
 また、前記接合工程において、前記接合用回転ツールの押圧力によって前記蓋板が前記熱媒体用管の上部を押圧するとともに、前記蓋板の少なくとも上部と前記ベース部材とを塑性流動化することが好ましい。 Further, in the joining step, the lid plate presses the upper part of the heat medium pipe by the pressing force of the joining rotary tool, and at least the upper part of the lid plate and the base member are plastically fluidized. preferable.
 かかる製造方法によれば、熱媒体用管の上部を蓋部材で押し込みながら摩擦攪拌するため、熱媒体用管の周辺の空隙を減少させることができ、熱交換効率を高めることができる。 According to such a manufacturing method, since the friction stirring is performed while pushing the upper part of the heat medium pipe with the lid member, the gap around the heat medium pipe can be reduced, and the heat exchange efficiency can be improved.
 また、前記矯正工程において、前記矯正用回転ツールの軌跡の平面形状が、前記ベース部材の中心に対して略点対称であることが好ましい。また、前記矯正工程において、前記矯正用回転ツールの軌跡の平面形状が、前記ベース部材の外縁の形状と略相似形であることが好ましい。また、前記矯正工程において、前記矯正用回転ツールの軌跡の平面形状が、前記ベース部材の表面側に形成される前記接合用回転ツールの軌跡の平面形状と略同一であることが好ましい。また、前記矯正工程において、前記矯正用回転ツールの軌跡の全長が、前記ベース部材の表面側に形成される前記接合用回転ツールの軌跡の全長と略同一であることが好ましい。 In the straightening process, it is preferable that the planar shape of the locus of the straightening rotary tool is substantially point-symmetric with respect to the center of the base member. In the straightening step, it is preferable that the planar shape of the locus of the straightening rotary tool is substantially similar to the shape of the outer edge of the base member. In the straightening step, it is preferable that the planar shape of the trajectory of the straightening rotary tool is substantially the same as the planar shape of the trajectory of the joining rotary tool formed on the surface side of the base member. Moreover, in the said correction process, it is preferable that the full length of the locus | trajectory of the said rotation tool for correction is substantially the same as the full length of the locus | trajectory of the said rotation tool for joining formed in the surface side of the said base member.
 かかる製造方法によれば、伝熱板の表面側と裏面側の反りをバランスよく解消することができるので伝熱板の平坦性をより高めることができる。 According to this manufacturing method, since the warpage of the front surface side and the back surface side of the heat transfer plate can be eliminated in a balanced manner, the flatness of the heat transfer plate can be further improved.
 また、前記矯正工程において、前記矯正用回転ツールの軌跡の全長が、前記ベース部材の表面側に形成される前記接合用回転ツールの軌跡の全長よりも短いことが好ましい。また、前記矯正工程で用いる前記矯正用回転ツールのショルダー部の外径が、前記接合工程で用いる前記接合用回転ツールのショルダー部の外径よりも小さいことが好ましい。また、前記矯正工程で用いる前記矯正用回転ツールのピンの長さが、前記接合工程で用いる前記接合用回転ツールのピンの長さよりも短いことが好ましい。 In the straightening process, it is preferable that a total length of the locus of the correction rotary tool is shorter than a total length of the locus of the bonding rotary tool formed on the surface side of the base member. Moreover, it is preferable that the outer diameter of the shoulder part of the said rotation tool for correction used at the said correction process is smaller than the outer diameter of the shoulder part of the said rotation tool for bonding used at the said joining process. Moreover, it is preferable that the length of the pin of the rotation tool for correction used in the correction step is shorter than the length of the pin of the rotation tool for bonding used in the bonding step.
 かかる製造方法によれば、矯正工程における塑性化領域の体積量を、前記接合工程の塑性化領域の体積量よりも低く設定することができるため、製造された伝熱板の平坦性を高めることができる。 According to this manufacturing method, since the volume amount of the plasticized region in the straightening process can be set lower than the volume amount of the plasticized region in the joining step, the flatness of the manufactured heat transfer plate is improved. Can do.
 また、前記ベース部材の厚みが、前記接合用回転ツールのショルダー部の外径の1.5倍以上であることが好ましい。また、前記ベース部材の厚みが前記接合用回転ツールのピンの長さの3倍以上であることが好ましい。 Moreover, it is preferable that the thickness of the base member is 1.5 times or more the outer diameter of the shoulder portion of the rotating tool for joining. Moreover, it is preferable that the thickness of the said base member is 3 times or more of the length of the pin of the said rotation tool for joining.
 かかる製造方法によれば、接合用回転ツールの各部位の大きさに対してベース部材が十分な厚みを備えているため、伝熱板の平坦性をより高めることができる。 According to this manufacturing method, since the base member has a sufficient thickness with respect to the size of each part of the rotating tool for joining, the flatness of the heat transfer plate can be further improved.
 また、前記ベース部材が平面視多角形である場合、前記矯正工程において、前記ベース部材の隅部に対して前記矯正用回転ツールにより摩擦攪拌を行う隅部摩擦攪拌工程を含むことが好ましい。 Further, when the base member has a polygonal shape in plan view, it is preferable that the correction step includes a corner friction stirring step of performing friction stirring with respect to the corner portion of the base member by the correction rotary tool.
 かかる製造方法によれば、ベース部材の隅部において発生した反りを解消して伝熱板の平坦性を解消することができる。 According to this manufacturing method, it is possible to eliminate the warp generated at the corner of the base member and to eliminate the flatness of the heat transfer plate.
 また、前記熱媒体用管の内部にヒーターを備える場合、前記矯正工程後に前記ヒーターに通電して、前記伝熱板を焼鈍する焼鈍工程を含むことが好ましい。 In addition, when a heater is provided inside the heat medium pipe, it is preferable to include an annealing step in which the heater is energized after the straightening step to anneal the heat transfer plate.
 かかる製造方法によれば、塑性化領域に残留する内部応力を除去して伝熱板の反りを解消することができる。 According to such a manufacturing method, it is possible to eliminate the internal stress remaining in the plasticized region and eliminate the warp of the heat transfer plate.
 また、前記矯正工程後に、前記ベース部材の裏面側を面削加工する面削工程を含み、前記面削加工の深さは、前記矯正用回転ツールのピンの長さよりも大きいことが好ましい。かかる製造方法によれば、伝熱板の裏面を平滑に形成することができる。 Further, it is preferable that after the straightening step, a chamfering step of chamfering the back surface side of the base member is included, and the chamfering depth is larger than the pin length of the straightening rotary tool. According to this manufacturing method, the back surface of the heat transfer plate can be formed smoothly.
 また、本発明は、ベース部材の表面側に開口する凹溝の周囲に形成された蓋溝に、蓋板を挿入する蓋溝閉塞工程と、前記蓋溝の側壁と前記蓋板の側面との突合部に沿って接合用回転ツールを相対移動させて摩擦攪拌を行う接合工程と、前記接合工程により形成された前記ベース部材の裏面側に凸となる反りを、前記ベース部材の表面側に引張応力が発生するような曲げモーメントを作用させることで矯正する矯正工程と、を含むことを特徴とする。
 また、本発明は、ベース部材の表面側に開口する蓋溝の底面に形成された凹溝に、熱媒体用管を挿入する熱媒体用管挿入工程と、前記蓋溝に蓋板を挿入する蓋溝閉塞工程と、前記蓋溝の側壁と前記蓋板の側面との突合部に沿って接合用回転ツールを相対移動させて摩擦攪拌を行う接合工程と、前記接合工程により形成された前記ベース部材の裏面側に凸となる反りを、前記ベース部材の表面側に引張応力が発生するような曲げモーメントを作用させることで矯正する矯正工程と、を含むことを特徴とする。
Further, the present invention provides a lid groove closing step of inserting a lid plate into a lid groove formed around a concave groove opened on the surface side of the base member, and a side wall of the lid groove and a side surface of the lid plate. A joining process in which the rotating tool for joining is relatively moved along the abutting portion and friction stirring is performed, and a warp that protrudes on the back surface side of the base member formed by the joining process is pulled to the surface side of the base member. And a straightening step of straightening by applying a bending moment that generates stress.
The present invention also includes a heat medium tube insertion step of inserting a heat medium tube into a concave groove formed on the bottom surface of the cover groove that opens to the surface side of the base member, and a cover plate is inserted into the cover groove. A lid groove closing step, a joining step of performing friction stir by relatively moving a joining rotary tool along the abutting portion between the side wall of the lid groove and the side surface of the lid plate, and the base formed by the joining step And a correction step of correcting a warp convex on the back side of the member by applying a bending moment that generates a tensile stress on the surface side of the base member.
 かかる製造方法によれば、矯正工程において前記ベース部材の表面側に引張応力が発生するような曲げモーメントを作用させることにより、前記接合工程により形成された前記ベース部材の裏面側に凸となる反りを矯正し、伝熱板の平坦性をより高めることができるとともに、比較的容易に伝熱板を製造することができる。 According to this manufacturing method, a warp that protrudes on the back surface side of the base member formed by the joining step by applying a bending moment that generates a tensile stress on the surface side of the base member in the straightening step. This makes it possible to improve the flatness of the heat transfer plate and to manufacture the heat transfer plate relatively easily.
 また、前記接合工程において、前記熱媒体用管の周囲に形成された空隙部に、摩擦熱によって流動化された塑性流動材を流入させることが好ましい。かかる製造方法によれば、伝熱板の内部に形成される空隙部を小さくすることができるため、熱交換効率の高い伝熱板を製造することができる。 Also, in the joining step, it is preferable to flow a plastic fluidized material fluidized by frictional heat into a gap formed around the heat medium pipe. According to this manufacturing method, since the gap formed in the heat transfer plate can be reduced, a heat transfer plate with high heat exchange efficiency can be manufactured.
 また本発明は、ベース部材の表面側に開口する凹溝に蓋板を挿入する蓋板挿入工程と、前記凹溝に沿って接合用回転ツールを相対移動させて摩擦攪拌を行う接合工程と、前記接合工程により形成された前記ベース部材の裏面側に凸となる反りを、前記ベース部材の表面側に引張応力が発生するような曲げモーメントを作用させることで矯正する矯正工程と、を含むことを特徴とする。
 また本発明は、ベース部材の表面側に開口する凹溝に、熱媒体用管を挿入する熱媒体用管挿入工程と、前記凹溝に蓋板を挿入する蓋板挿入工程と、前記凹溝に沿って接合用回転ツールを相対移動させて摩擦攪拌を行う接合工程と、前記接合工程により形成された前記ベース部材の裏面側に凸となる反りを、前記ベース部材の表面側に引張応力が発生するような曲げモーメントを作用させることで矯正する矯正工程と、を含むことを特徴とする。
The present invention also includes a lid plate insertion step of inserting a lid plate into a groove that opens on the surface side of the base member, a joining step of performing frictional stirring by relatively moving a welding rotary tool along the groove, A correction step of correcting a warp convex on the back surface side of the base member formed by the bonding step by applying a bending moment that generates a tensile stress on the front surface side of the base member. It is characterized by.
The present invention also provides a heat medium tube insertion step of inserting a heat medium tube into a groove that opens on the surface side of the base member, a lid plate insertion step of inserting a cover plate into the groove, and the groove A joining step in which the rotating tool for joining is relatively moved along the stirrer, and a warp that protrudes on the back side of the base member formed by the joining step, and a tensile stress is applied to the surface side of the base member. And a correction step of correcting by applying a bending moment as generated.
 かかる製造方法によれば、矯正工程において前記ベース部材の表面側に引張応力が発生するような曲げモーメントを作用させることにより、前記接合工程により形成された前記ベース部材の裏面側に凸となる反りを矯正し、伝熱板の平坦性をより高めることができるとともに、比較的容易に伝熱板を製造することができる。 According to this manufacturing method, a warp that protrudes on the back surface side of the base member formed by the joining step by applying a bending moment that generates a tensile stress on the surface side of the base member in the straightening step. This makes it possible to improve the flatness of the heat transfer plate and to manufacture the heat transfer plate relatively easily.
 また、前記接合工程では、前記接合用回転ツールの押圧力によって前記蓋板が前記熱媒体用管の上部を押圧するとともに、前記蓋板の少なくとも上部と前記ベース部材とを摩擦攪拌することが好ましい。 In the joining step, it is preferable that the lid plate presses the upper portion of the heat medium pipe by the pressing force of the joining rotary tool, and at least the upper portion of the lid plate and the base member are frictionally stirred. .
 かかる製造方法によれば、蓋板が熱媒体用管を押圧しながら摩擦攪拌を行うことにより、熱媒体用管の周囲に形成される空隙部を小さくすることができるため、熱交換効率の高い伝熱板を製造することができる。 According to this manufacturing method, since the gap plate formed around the heat medium pipe can be reduced by performing frictional stirring while the cover plate presses the heat medium pipe, the heat exchange efficiency is high. A heat transfer plate can be manufactured.
 また、前記矯正工程では、前記ベース部材を押圧するプレス矯正、前記ベース部材をハンマーなどの衝打具で衝打する衝打矯正、又は前記ベース部材上でロール部材を回転させるロール矯正を行うことにより、前記反りを矯正することが好ましい。 Further, in the correction step, press correction for pressing the base member, hit correction for hitting the base member with a hitting tool such as a hammer, or roll correction for rotating the roll member on the base member is performed. Therefore, it is preferable to correct the warp.
 また、矯正工程を行う際に、前記ベース部材の裏面側の中央付近に当接する第一補助部材を配置するとともに、前記ベース部材の表面側の周縁付近に当接する第二補助部材及び第三補助部材を、前記第一補助部材を挟んで両側に配置した状態で、前記反りをプレス矯正、衝打矯正又はロール矯正を行うことが好ましい。 In addition, when the correction process is performed, the first auxiliary member that contacts the vicinity of the center of the back surface side of the base member is disposed, and the second auxiliary member and the third auxiliary member that contact the vicinity of the peripheral edge of the surface side of the base member. The warp is preferably subjected to press correction, impact correction or roll correction in a state where the members are arranged on both sides with the first auxiliary member interposed therebetween.
 かかる製造方法によれば、ベース部材が裏面側に凸の状態から表面側に凸の状態になるように強制的に押圧力が加わって、ベース部材が、反りとは反対側に強制的に撓ませられるため反りを矯正することができる。また、補助部材を配置することで、プレス矯正、衝打矯正又はロール矯正の作業性を高めることができる。 According to such a manufacturing method, the base member is forcibly bent to the side opposite to the warp by applying a pressing force so that the base member is convex from the back side to the convex side. Therefore, it is possible to correct the warpage. Moreover, the workability | operativity of press correction, impact correction, or roll correction can be improved by arrange | positioning an auxiliary member.
 また、前記各補助部材は、前記ベース部材よりも硬度が低い材料を用いていることが好ましい。かかる製造方法によれば、プレス矯正、衝打矯正又はロール矯正で押圧する際に、ベース部材を傷つけることなく矯正することができる。 Further, it is preferable that each auxiliary member is made of a material having a hardness lower than that of the base member. According to this manufacturing method, when pressing by press correction, impact correction, or roll correction, the base member can be corrected without being damaged.
 また、前記矯正工程後に、前記伝熱板に焼鈍を行う焼鈍工程を含むことが好ましい。
また、前記熱媒体用管の内部にヒーターを配置しておき、前記矯正工程後に前記ヒーターに通電して、前記伝熱板を焼鈍する焼鈍工程を含むことが好ましい。かかる製造方法によれば、塑性化領域に残留する内部応力を除去して伝熱板の反りをより解消することができる。
Moreover, it is preferable to include the annealing process which anneals the said heat exchanger plate after the said correction process.
Moreover, it is preferable to include the annealing process which arrange | positions the heater inside the said heat | fever medium pipe | tube, energizes the said heater after the said correction process, and anneals the said heat exchanger plate. According to this manufacturing method, the internal stress remaining in the plasticized region can be removed, and the warpage of the heat transfer plate can be further eliminated.
 本発明に係る伝熱板の製造方法によれば、平坦性の高い伝熱板を容易に製造することができる。 According to the method for manufacturing a heat transfer plate according to the present invention, a heat transfer plate with high flatness can be easily manufactured.
第一実施形態に係る伝熱板を示した図であって、(a)は、斜視図、(b)は、(a)のI-I線断面図である。It is the figure which showed the heat exchanger plate which concerns on 1st embodiment, Comprising: (a) is a perspective view, (b) is the II sectional view taken on the line of (a). 第一実施形態に係る伝熱板を示した図であって、(a)は、分解斜視図、(b)は、分解断面図である。It is the figure which showed the heat exchanger plate which concerns on 1st embodiment, Comprising: (a) is an exploded perspective view, (b) is an exploded sectional view. 第一実施形態に係る伝熱板の製造方法を示した断面図であって、(a)は、溝形成工程、(b)は、熱媒体用管挿入工程、(c)は、蓋溝閉塞工程を示す。It is sectional drawing which showed the manufacturing method of the heat exchanger plate which concerns on 1st embodiment, Comprising: (a) is a groove | channel formation process, (b) is a heat medium pipe insertion process, (c) is a cover groove obstruction | occlusion. A process is shown. (a)は、接合用回転ツールを示した側面図であり、(b)は、矯正用回転ツールを示した側面図である。(A) is the side view which showed the rotation tool for joining, (b) is the side view which showed the rotation tool for correction | amendment. 第一実施形態に係る伝熱板の製造方法において、接合工程を行う前を示した斜視図である。In the manufacturing method of the heat exchanger plate which concerns on 1st embodiment, it is the perspective view which showed before performing a joining process. 第一実施形態に係る伝熱板の製造方法において、接合工程を段階的に示した平面図である。It is the top view which showed the joining process in steps in the manufacturing method of the heat exchanger plate which concerns on 1st embodiment. 第一実施形態に係る伝熱板の製造方法において、接合工程を行った後を示した図であって、(a)は、斜視図、(b)は、地点c及び地点fを結ぶ線の断面図である。In the manufacturing method of the heat exchanger plate which concerns on 1st embodiment, it is the figure which showed after performing a joining process, Comprising: (a) is a perspective view, (b) is the line which connects the point c and the point f. It is sectional drawing. 第一実施形態に係る伝熱板の製造方法において、(a)は、矯正工程を示した斜視図、(b)は、矯正工程を示した平面図である。In the manufacturing method of the heat exchanger plate which concerns on 1st embodiment, (a) is the perspective view which showed the correction process, (b) is the top view which showed the correction process. 第二実施形態に係る伝熱板を示した断面図であって、(a)は、概略断面図、(b)は、摩擦攪拌後を示した断面図である。It is sectional drawing which showed the heat exchanger plate which concerns on 2nd embodiment, Comprising: (a) is a schematic sectional drawing, (b) is sectional drawing which showed after friction stirring. 第三実施形態に係る伝熱板を示した断面図である。It is sectional drawing which showed the heat exchanger plate which concerns on 3rd embodiment. 第四実施形態に係る伝熱板を示した斜視図である。It is the perspective view which showed the heat exchanger plate which concerns on 4th embodiment. 第四実施形態に係る伝熱板を示した分解斜視図である。It is the disassembled perspective view which showed the heat exchanger plate which concerns on 4th embodiment. 第四実施形態に係る伝熱板を示した分解断面図である。It is the exploded sectional view showing the heat exchanger plate concerning a 4th embodiment. 第四実施形態に係る伝熱板の製造方法において、(a)は、接合工程を示した斜視図、(b)は、(a)のII-II線断面図である。In the manufacturing method of the heat exchanger plate which concerns on 4th embodiment, (a) is the perspective view which showed the joining process, (b) is the II-II sectional view taken on the line of (a). 第四実施形態に係る伝熱板の製造方法において、接合工程を行った後を示した図であって、(a)は、斜視図、(b)は、地点c及び地点fを結ぶ線の断面図である。In the manufacturing method of the heat exchanger plate which concerns on 4th embodiment, it is the figure which showed after performing a joining process, Comprising: (a) is a perspective view, (b) is the line which connects the point c and the point f. It is sectional drawing. 第四実施形態に係る伝熱板の製造方法において、(a)は、矯正摩擦攪拌工程を示した平面図、(b)は、隅部摩擦攪拌工程を示した平面図である。In the manufacturing method of the heat exchanger plate which concerns on 4th embodiment, (a) is the top view which showed the correction friction stirring process, (b) is the top view which showed the corner friction stirring process. 図16のIII-III線断面において、第四実施形態に係る伝熱板の製造方法の面削工程を示した図である。It is the figure which showed the chamfering process of the manufacturing method of the heat exchanger plate which concerns on 4th embodiment in the III-III line cross section of FIG. 第五実施形態に係る伝熱板の断面図である。It is sectional drawing of the heat exchanger plate which concerns on 5th embodiment. 第六実施形態に係る伝熱板の表面側を示した平面図である。It is the top view which showed the surface side of the heat exchanger plate which concerns on 6th embodiment. 第六実施形態に係る伝熱板の裏面側を示した平面図である。It is the top view which showed the back surface side of the heat exchanger plate which concerns on 6th embodiment. 伝熱板の裏面側の平面図であって(a)は第一変形例、(b)は第二変形例、(c)は第三変形例、(d)は第四変形例、(e)は第五変形例、(f)は第六変形例を示す。It is a top view of the back surface side of a heat exchanger plate, (a) is a 1st modification, (b) is a 2nd modification, (c) is a 3rd modification, (d) is a 4th modification, (e ) Shows a fifth modification, and (f) shows a sixth modification. 第七実施形態に係るプレス矯正の準備段階を示した斜視図である。It is the perspective view which showed the preparatory stage of the press correction which concerns on 7th embodiment. 第七実施形態に係るプレス矯正を示した側面図であって、(a)はプレス前、(b)はプレス中を示した図である。It is the side view which showed the press correction which concerns on 7th embodiment, (a) is before a press, (b) is the figure which showed the press. 第七実施形態に係るプレス矯正の押圧位置を示した平面図である。It is the top view which showed the press position of the press correction which concerns on 7th embodiment. 第七実施形態に係るロール矯正を示した図であって、(a)は斜視図、(b)はプレス前を示した側面図、(c)はプレス中を示した側面図である。It is the figure which showed the roll correction which concerns on 7th embodiment, Comprising: (a) is a perspective view, (b) is the side view which showed before the press, (c) is the side view which showed the press. 実施例におけるベース部材を示した図であって、(a)は、表面側の斜視図、(b)は、裏面側の平面図である。It is the figure which showed the base member in an Example, (a) is a perspective view of the surface side, (b) is a top view of the back surface side. 実施例において、表面側を摩擦攪拌した後に、裏面側を上方に向けた場合を示した側面図である。In an Example, after carrying out friction stirring of the surface side, it is the side view which showed the case where the back surface side was turned up. 従来の伝熱板を示した断面図である。It is sectional drawing which showed the conventional heat exchanger plate.
符号の説明Explanation of symbols
 1   伝熱板
 2   ベース部材
 6   蓋溝
 8   凹溝
 10  蓋板
 20  熱媒体用管
 F   接合用回転ツール
 G   矯正用回転ツール
 J   突合部
 P   プレス装置
 Q   空隙部
 R1  ロール
 R2  ロール
 T1  第一補助部材
 T2  第二補助部材
 T3  第三補助部材
 W   塑性化領域
 Za  表面
 Zb  裏面
DESCRIPTION OF SYMBOLS 1 Heat-transfer plate 2 Base member 6 Lid groove 8 Recessed groove 10 Lid plate 20 Heat medium pipe F Joining rotary tool G Straightening rotary tool J Butt part P Press apparatus Q Cavity part R1 Roll R2 Roll T1 First auxiliary member T2 Second auxiliary member T3 Third auxiliary member W Plasticization area Za surface Zb back surface
[第一実施形態]
 本発明の最良の実施形態について、図面を参照して詳細に説明する。まず、本実施形態に係る製造方法によって製造された伝熱板1について説明する。本実施形態においては、伝熱板1をヒートプレートとして用いる場合を例にして説明する。
[First embodiment]
The best embodiment of the present invention will be described in detail with reference to the drawings. First, the heat transfer plate 1 manufactured by the manufacturing method according to the present embodiment will be described. In the present embodiment, a case where the heat transfer plate 1 is used as a heat plate will be described as an example.
 伝熱板1は、図1の(a)及び(b)に示すように、平面視矩形の板厚のベース部材2と、ベース部材2の内部に埋設される熱媒体用管20と、ベース部材2に凹設された溝に配置された蓋板10と、を主に備えている。ベース部材2と蓋板10との突合部J1,J2は、それぞれ摩擦攪拌によって接合されている。かかる伝熱板1は、熱媒体用管20に挿通された図示しないマイクロヒーター等で加熱して使用される。 As shown in FIGS. 1A and 1B, the heat transfer plate 1 includes a base member 2 having a rectangular plate thickness in plan view, a heat medium pipe 20 embedded in the base member 2, and a base. And a lid plate 10 disposed in a groove provided in the member 2. The abutting portions J1 and J2 between the base member 2 and the cover plate 10 are joined by friction stirring. The heat transfer plate 1 is used after being heated by a micro heater (not shown) inserted through the heat medium pipe 20.
 ベース部材2は、熱媒体用管20に流れる熱媒体の熱を外部に伝達させる役割、あるいは、外部の熱を熱媒体用管20に流れる熱媒体に伝達させる役割を果たすものである。ベース部材2は、図2の(a)及び(b)に示すように、平面視正方形を呈する直方体であって、本実施形態では、厚みが、30mm~120mmのものを用いる。ベース部材2は、例えば、アルミニウム、アルミニウム合金、銅、銅合金、チタン、チタン合金、マグネシウム、マグネシウム合金など摩擦攪拌可能な金属材料からなる。ベース部材2の表面Zaには、蓋溝6が凹設されており、蓋溝6の底面の中央には、蓋溝6よりも幅狭の凹溝8が凹設されている。 The base member 2 has a role of transmitting heat of the heat medium flowing through the heat medium pipe 20 to the outside, or a role of transmitting external heat to the heat medium flowing through the heat medium pipe 20. As shown in FIGS. 2A and 2B, the base member 2 is a rectangular parallelepiped having a square shape in plan view, and in this embodiment, a base member having a thickness of 30 mm to 120 mm is used. The base member 2 is made of a metal material that can be frictionally stirred, such as aluminum, aluminum alloy, copper, copper alloy, titanium, titanium alloy, magnesium, and magnesium alloy. A cover groove 6 is formed in the surface Za of the base member 2, and a groove 8 narrower than the cover groove 6 is formed in the center of the bottom surface of the cover groove 6.
 蓋溝6は、蓋板10が配置される部分であって、平面視略馬蹄状に一定の幅及び深さで連続して形成されている。蓋溝6は、断面視矩形を呈し、蓋溝6の底面6cから垂直に立ち上がる側壁6a,6bを備えている。 The lid groove 6 is a portion where the lid plate 10 is disposed, and is continuously formed in a substantially horseshoe shape in plan view with a certain width and depth. The lid groove 6 has a rectangular shape in sectional view, and includes side walls 6 a and 6 b that rise vertically from the bottom surface 6 c of the lid groove 6.
 凹溝8は、熱媒体用管20が挿入される部分であって、蓋溝6の底面6cの中央部分において、蓋溝6の全長に亘って形成されている。凹溝8は、上方が開口した断面視U字状の溝であって、下端には半円形の底面7が形成されている。凹溝8の開口部分の幅は、底面7の直径と略同等の幅Aで形成されている。また、蓋溝6の幅は、溝幅E、凹溝8の深さは、深さCで形成されている。 The concave groove 8 is a portion into which the heat medium pipe 20 is inserted, and is formed over the entire length of the lid groove 6 at the central portion of the bottom surface 6 c of the lid groove 6. The concave groove 8 is a U-shaped groove with an upper opening, and a semicircular bottom surface 7 is formed at the lower end. The width of the opening of the groove 8 is formed with a width A substantially equal to the diameter of the bottom surface 7. The lid groove 6 is formed to have a groove width E and the groove 8 has a depth C.
 熱媒体用管20は、図2の(a)及び(b)に示すように、断面視円形の中空部18を有する円筒管である。熱媒体用管20は、本実施形態では銅からなり、平面視馬蹄状を呈する。熱媒体用管20の外径Bは、凹溝8の幅A及び凹溝8の深さCと略同等に形成されているため、凹溝8に熱媒体用管20を配置すると、熱媒体用管20の下半部と凹溝8の底面7とが面接触するとともに、熱媒体用管20の上端と蓋溝6の底面6cとが同一の高さ位置になる。 As shown in FIGS. 2A and 2B, the heat medium pipe 20 is a cylindrical pipe having a hollow portion 18 having a circular cross section. In the present embodiment, the heat medium pipe 20 is made of copper and has a horseshoe shape in plan view. Since the outer diameter B of the heat medium pipe 20 is formed to be substantially equal to the width A of the groove 8 and the depth C of the groove 8, if the heat medium pipe 20 is disposed in the groove 8, the heat medium The lower half of the pipe 20 and the bottom surface 7 of the concave groove 8 are in surface contact, and the upper end of the heat medium pipe 20 and the bottom surface 6c of the lid groove 6 are at the same height.
 熱媒体用管20には、本実施形態においては、マイクロヒーターを挿通するが、他にも例えば、冷却水、冷却ガス、高温液、あるいは高温ガスなどの熱媒体を循環させて、熱媒体の熱をベース部材2及び蓋板10に、あるいは、ベース部材2及び蓋板10の熱を熱媒体に伝達させてもよい。 In the present embodiment, a microheater is inserted into the heat medium pipe 20, but for example, a heat medium such as cooling water, cooling gas, high-temperature liquid, or high-temperature gas is circulated to circulate the heat medium. The heat may be transmitted to the base member 2 and the cover plate 10 or the heat of the base member 2 and the cover plate 10 to the heat medium.
 なお、本実施形態においては、熱媒体用管20は、断面視円形としたが、断面視角形であってもよい。また、熱媒体用管20は、本実施形態においては、銅を用いているが、他の材料を用いてもよい。また、熱媒体用管20は、必ずしも設ける必要は無く、凹溝8に直接熱媒体を流入させてもよい。 In the present embodiment, the heat medium pipe 20 is circular in cross section, but may be square in cross section. The heat medium pipe 20 uses copper in the present embodiment, but other materials may be used. Further, the heat medium pipe 20 is not necessarily provided, and the heat medium may flow directly into the concave groove 8.
 蓋板10は、図2の(a)及び(b)に示すように、ベース部材2の蓋溝6の断面と略同じ矩形断面を形成する上面11、下面12、側面13a及び側面13bを有し、平面視略馬蹄状で形成されている。蓋板10は、本実施形態では、ベース部材2と同様の組成で形成されている。蓋板10の厚みは、蓋厚Hで形成されている。また、蓋板10の幅は、蓋溝6の溝幅Eと略同等に形成されているため、蓋板10を蓋溝6に配置すると、蓋板10の側面13a,13bは、蓋溝6の側壁6a,6bとそれぞれ面接触するか又は微細な隙間をあけて対向する。また、蓋板10の下面12と熱媒体用管20の上端が接触する。 As shown in FIGS. 2A and 2B, the lid plate 10 has an upper surface 11, a lower surface 12, a side surface 13 a, and a side surface 13 b that form a rectangular section that is substantially the same as the section of the lid groove 6 of the base member 2. And it is formed in a substantially horseshoe shape in plan view. In this embodiment, the cover plate 10 is formed with the same composition as the base member 2. The lid plate 10 is formed with a lid thickness H. Further, since the width of the cover plate 10 is formed substantially equal to the groove width E of the cover groove 6, when the cover plate 10 is arranged in the cover groove 6, the side surfaces 13 a and 13 b of the cover plate 10 are formed on the cover groove 6. The side walls 6a and 6b are in surface contact with each other or face each other with a fine gap. Further, the lower surface 12 of the cover plate 10 and the upper end of the heat medium pipe 20 are in contact with each other.
 また、本実施形態においては、凹溝8と熱媒体用管20の下半部を面接触させ、かつ、熱媒体用管20の上端と蓋板10の下面12とを接触させたが、これに限定されるものではない。また、蓋溝6、凹溝8、蓋板10及び熱媒体用管20は、本実施形態では、平面視馬蹄状を呈するように形成したがこれに限定されるものではなく、伝熱板1の用途に応じて適宜設計すればよい。 In the present embodiment, the groove 8 and the lower half of the heat medium pipe 20 are brought into surface contact, and the upper end of the heat medium pipe 20 and the lower surface 12 of the cover plate 10 are brought into contact. It is not limited to. Further, in the present embodiment, the lid groove 6, the concave groove 8, the lid plate 10, and the heat medium pipe 20 are formed so as to have a horseshoe shape in a plan view, but are not limited thereto. What is necessary is just to design suitably according to the use of.
 次に、伝熱板1の製造方法について説明する。
 本実施形態に係る伝熱板1の製造方法は、(1)溝形成工程、(2)熱媒体用管挿入工程、(3)蓋溝閉塞工程、(4)接合工程、(5)矯正工程、(6)焼鈍工程を含むものである。
Next, a method for manufacturing the heat transfer plate 1 will be described.
The manufacturing method of the heat transfer plate 1 according to the present embodiment includes (1) groove forming step, (2) heat medium tube inserting step, (3) lid groove closing step, (4) joining step, and (5) straightening step. (6) An annealing process is included.
(1)溝形成工程
 溝形成工程では、図3の(a)に示すように、ベース部材2の表面Zaに、所定の幅及び深さで蓋溝6及び凹溝8を形成する。溝形成工程は、例えば、公知のエンドミル等を用いて、切削加工により行う。
(1) Groove Forming Step In the groove forming step, the cover groove 6 and the concave groove 8 are formed with a predetermined width and depth on the surface Za of the base member 2 as shown in FIG. The groove forming step is performed by cutting using, for example, a known end mill.
(2)熱媒体用管挿入工程
 熱媒体用管挿入工程では、図3の(b)に示すように、溝形成工程で形成された凹溝8に熱媒体用管20を挿入する。
(2) Heat medium tube insertion step In the heat medium tube insertion step, as shown in FIG. 3B, the heat medium tube 20 is inserted into the recessed groove 8 formed in the groove formation step.
(3)蓋溝閉塞工程
 蓋溝閉塞工程では、図3の(c)に示すように、蓋溝6に蓋板10を配置して、蓋溝6を閉塞する。ここで、蓋溝6と蓋板10との突き合わせ面において、蓋溝6と蓋板10の内縁とで突き合わされた部分を突合部J1とし、蓋溝6と蓋板10の外縁とで突き合わされた部分を突合部J2とする。
(3) Lid groove closing process In the lid groove closing process, as shown in FIG. 3C, the lid plate 10 is disposed in the lid groove 6 to close the lid groove 6. Here, on the abutting surface between the lid groove 6 and the lid plate 10, the part abutted between the lid groove 6 and the inner edge of the lid plate 10 is referred to as an abutting portion J <b> 1. This portion is referred to as a butt portion J2.
(4)接合工程
 接合工程では、突合部J1,J2に沿って、接合用回転ツールFを用いて摩擦攪拌を行う。接合工程は、本実施形態では、突合部J1を摩擦攪拌する第一接合工程と、突合部J2を摩擦攪拌する第二接合工程とを含む。
(4) Joining Step In the joining step, friction stirring is performed using the joining rotary tool F along the abutting portions J1 and J2. In the present embodiment, the joining process includes a first joining process in which the abutting portion J1 is frictionally stirred and a second joining process in which the abutting portion J2 is frictionally stirred.
 ここで、本実施形態における接合工程の際に用いる接合用回転ツールF及び後記する矯正工程の際に用いる矯正用回転ツールGについて詳細に説明する。
 接合用回転ツールFは、図4の(a)に示すように、工具鋼などベース部材2よりも硬質の金属材料からなり、円柱状を呈するショルダー部F1と、このショルダー部F1の下端面F11に突設された攪拌ピン(プローブ)F2とを備えて構成されている。接合用回転ツールFの寸法・形状は、ベース部材2の材質や厚さ等に応じて設定すればよいが、少なくとも、後記する矯正工程で用いる矯正用回転ツールG(図4の(b)参照)よりも大型にする。
Here, the rotating tool F for bonding used in the bonding process in the present embodiment and the rotating tool G for correction used in the correcting process described later will be described in detail.
As shown in FIG. 4A, the joining rotary tool F is made of a metal material harder than the base member 2 such as tool steel, and has a columnar shoulder portion F1 and a lower end surface F11 of the shoulder portion F1. And an agitating pin (probe) F2 provided in a protruding manner. The size and shape of the joining rotary tool F may be set according to the material, thickness, etc. of the base member 2, but at least the straightening rotary tool G used in the straightening process described later (see FIG. 4B). Larger than).
 ショルダー部F1の下端面F11は、塑性流動化した金属を押えて周囲への飛散を防止する役割を担う部位であり、本実施形態では、凹面状に成形されている。ショルダー部F1の外径Xの大きさに特に制限はないが、本実施形態では、矯正用回転ツールGのショルダー部G1の外径Yよりも大きくなっている。 The lower end face F11 of the shoulder portion F1 is a part that plays a role of preventing the metal fluid that has been plastically fluidized from being scattered to the surroundings, and is formed in a concave shape in the present embodiment. There is no particular limitation on the size of the outer diameter X 1 of the shoulder portion F1, in the present embodiment is larger than the outer diameter Y 1 of the shoulder portion G1 orthodontic rotary tool G.
 攪拌ピンF2は、ショルダー部F1の下端面F11の中央から垂下しており、本実施形態では、先細りの円錐台状に成形されている。また、攪拌ピンF2の周面には、螺旋状に刻設された攪拌翼が形成されている。攪拌ピンF2の外径の大きさに特に制限はないが、本実施形態では、最大外径(上端径)Xが矯正用回転ツールGの攪拌ピンG2の最大外径(上端径)Yよりも大きく、かつ、最小外径(下端径)Xが攪拌ピンG2の最小外径(下端径)Yよりも大きい。攪拌ピンF2の長さLは、矯正用回転ツールGの攪拌ピンG2の長さL(図4の(b)参照)よりも大きく成形されている。 The stirring pin F2 hangs down from the center of the lower end surface F11 of the shoulder portion F1, and is formed into a tapered truncated cone shape in this embodiment. In addition, a stirring blade engraved in a spiral shape is formed on the peripheral surface of the stirring pin F2. There is no particular limitation on the size of the outer diameter of the stirring pin F2, in the present embodiment, the maximum outer diameter of the stirring pin G2 of the maximum outer diameter (upper diameter) X 2 is straightening rotary tool G (upper end diameter) Y 2 more, and the minimum outer diameter (bottom diameter) X 3 is larger than the minimum outer diameter (bottom diameter) Y 3 of the stirring pin G2. The length L A of the stirring pin F2 is formed to be larger than the length L B of the stirring pin G2 of the correction rotating tool G (see FIG. 4B).
 ここで、図4の(a)に示すベース部材2の厚みtは、攪拌ピンF2の長さLの3倍以上であることが好ましい。また、ベース部材2の厚みtは、ショルダー部F1の外径Xの1.5倍以上であることが好ましい。かかる設定によれば、接合用回転ツールFの大きさに対して、ベース部材2の厚みを十分に確保することができるため、摩擦攪拌を行う際に発生する反りを低減することができる。 Here, the thickness t of the base member 2 shown in FIG. 4 (a) is preferably of a length L A of the stirring pin F2 is three times or more. The thickness t of the base member 2 is preferably at least 1.5 times the outer diameter X 1 of the shoulder portion F1. According to this setting, since the thickness of the base member 2 can be sufficiently ensured with respect to the size of the joining rotary tool F, it is possible to reduce the warpage that occurs when performing frictional stirring.
 図4の(b)に示す矯正用回転ツールGは、工具鋼などベース部材2よりも硬質の金属材料からなり、円柱状を呈するショルダー部G1と、このショルダー部G1の下端面G11に突設された攪拌ピン(プローブ)G2とを備えて構成されている。 The straightening rotary tool G shown in FIG. 4B is made of a metal material harder than the base member 2 such as tool steel, and protrudes from a shoulder portion G1 having a columnar shape and a lower end surface G11 of the shoulder portion G1. And a stirring pin (probe) G2.
 ショルダー部G1の下端面G11は、接合用回転ツールFと同様に、凹面状に成形されている。攪拌ピンG2は、ショルダー部G1の下端面G11の中央から垂下しており、本実施形態では、先細りの円錐台状に成形されている。また、攪拌ピンG2の周面には、螺旋状に刻設された攪拌翼が形成されている。 The lower end surface G11 of the shoulder portion G1 is formed in a concave shape like the rotating tool F for joining. The stirring pin G2 hangs down from the center of the lower end surface G11 of the shoulder portion G1, and in the present embodiment, the stirring pin G2 is formed in a tapered truncated cone shape. In addition, a stirring blade engraved in a spiral shape is formed on the peripheral surface of the stirring pin G2.
 第一接合工程では、図5、図6の(a)及び(b)に示すように、ベース部材2と蓋板10との突合部J1に沿って、摩擦攪拌を行う。
 まず、ベース部材2の表面Zaの任意の位置に開始位置SM1を設定し、接合用回転ツールFの攪拌ピンF2をベース部材2に押し込む(押圧する)。開始位置SM1は、本実施形態では、ベース部材2の外縁の近傍であり、かつ、突合部J1の近傍に設定する。接合用回転ツールFのショルダー部F1の一部がベース部材2の表面Zaに接触したら、突合部J1の始点s1に向かって接合用回転ツールFを相対移動させる。そして、図6の(a)に示すように、始点s1に達したら、接合用回転ツールFを離脱させずに、そのまま突合部J1に沿って移動させる。
In the first joining step, friction agitation is performed along the abutting portion J1 between the base member 2 and the cover plate 10 as shown in FIGS.
First, the start position SM1 is set at an arbitrary position on the surface Za of the base member 2, and the agitation pin F2 of the welding rotary tool F is pushed (pressed) into the base member 2. In this embodiment, the start position S M1 is set in the vicinity of the outer edge of the base member 2 and in the vicinity of the abutting portion J1. When a part of the shoulder portion F1 of the joining rotary tool F comes into contact with the surface Za of the base member 2, the joining rotary tool F is relatively moved toward the start point s1 of the abutting portion J1. Then, as shown in FIG. 6A, when the starting point s1 is reached, the joining rotary tool F is moved as it is along the abutting portion J1 without being detached.
 接合用回転ツールFが突合部J1の終点e1に達したら、接合用回転ツールFをそのまま開始位置SM1側に移動させて、任意の位置に設定した終了位置EM1で接合用回転ツールFを離脱させる。
 なお、開始位置SM1、始点s1、終了位置EM1及び終点e1は、本実施形態の位置に限定するものではないが、ベース部材2の外縁の近傍であり、かつ、突合部J1の近傍であることが好ましい。
When the joining rotary tool F reaches the end point e1 of the abutting portion J1, the joining rotary tool F is moved to the start position S M1 as it is, and the joining rotary tool F is moved to the end position E M1 set at an arbitrary position. Let go.
The start position S M1 , the start point s 1, the end position E M1, and the end point e 1 are not limited to the positions of the present embodiment, but are in the vicinity of the outer edge of the base member 2 and in the vicinity of the abutting portion J 1. Preferably there is.
 次に、第二接合工程では、図6の(b)及び(c)に示すように、ベース部材2と蓋板10との突合部J2に沿って、摩擦攪拌を行う。
 まず、ベース部材2の表面Zaの任意の地点hに開始位置SM2を設定し、接合用回転ツールFの攪拌ピンF2をベース部材2に押し込む(押圧する)。接合用回転ツールFのショルダー部F1の一部がベース部材2の表面Zaに接触したら、突合部J2の始点s2に向かって接合用回転ツールFを相対移動させる。そして、始点s2に達したら、接合用回転ツールFを離脱させずに、そのまま突合部J2に沿って移動させる。
Next, in the second joining step, friction agitation is performed along the abutting portion J2 between the base member 2 and the cover plate 10 as shown in FIGS.
First, a start position SM2 is set at an arbitrary point h on the surface Za of the base member 2, and the stirring pin F2 of the welding rotary tool F is pushed (pressed) into the base member 2. When a part of the shoulder portion F1 of the joining rotary tool F comes into contact with the surface Za of the base member 2, the joining rotary tool F is relatively moved toward the start point s2 of the abutting portion J2. When the starting point s2 is reached, the joining rotary tool F is moved along the abutting portion J2 as it is without being detached.
 接合用回転ツールFが突合部J2の終点e2に達したら、接合用回転ツールFをそのまま地点f側に移動させて、地点fに設定した終了位置EM2で接合用回転ツールFを離脱させる。
 なお、開始位置SM2、及び終了位置EM2は、本実施形態の位置に限定するものではないが、ベース部材2の外縁の隅部であることが好ましい。これにより、終了位置EM2に抜け穴が残存する場合は、隅部を切削加工して除去することができる。
After joining rotation tool F reaches the end point e2 of the butting portion J2, a joining rotation tool F as it is moved to the point f side, disengaging the joining rotation tool F at the end position E M2 set in point f.
The start position S M2 and the end position E M2 are not limited to the positions in the present embodiment, but are preferably corners of the outer edge of the base member 2. Thus, if a loophole in the end position E M2 remaining can be removed by cutting the corner.
 図6の(c)に示すように、第一接合工程及び第二接合工程によって、突合部J1及び突合部J2に沿って表面塑性化領域W1(W1a,W1b)が形成される。これにより、熱媒体用管20がベース部材2及び蓋板10によって密閉される。また、図1の(b)に示すように、本実施形態では、表面塑性化領域W1の深さが、蓋溝6の側壁6a,6b(図2の(b)参照)の高さと略同等に形成されているため、突合部J1及び突合部J2の深さ方向の全体を摩擦攪拌することができる。これにより、伝熱板1の気密性を高めることができる。 As shown in FIG. 6C, the surface plasticized region W1 (W1a, W1b) is formed along the abutting portion J1 and the abutting portion J2 by the first joining step and the second joining step. As a result, the heat medium pipe 20 is sealed by the base member 2 and the cover plate 10. Further, as shown in FIG. 1B, in the present embodiment, the depth of the surface plasticizing region W1 is substantially equal to the height of the side walls 6a and 6b of the lid groove 6 (see FIG. 2B). Therefore, the entire abutting portion J1 and the abutting portion J2 in the depth direction can be frictionally stirred. Thereby, the airtightness of the heat exchanger plate 1 can be improved.
 ここで、図7は、本実施形態の接合工程後を示した伝熱板1の斜視図である。伝熱板1は、接合工程によって表面塑性化領域W1が形成される。表面塑性化領域W1は、熱収縮によって縮むため、伝熱板1の表面Za側において、ベース部材2の各隅部側から中心側に向かって圧縮応力が作用する。これにより、伝熱板1は表面Za側が凹となるように、歪んで(撓んで)しまう可能性がある。特に、伝熱板1の表面Zaに示す地点a~地点jのうち、伝熱板1の四隅に係る地点a,c,f,hにおいては、その反りの影響が顕著に現れる傾向がある。なお、地点jは、伝熱板1の中心地点を示す。 Here, FIG. 7 is a perspective view of the heat transfer plate 1 after the joining process of the present embodiment. In the heat transfer plate 1, a surface plasticized region W1 is formed by a joining process. Since the surface plasticization region W1 shrinks due to thermal contraction, a compressive stress acts from the respective corners of the base member 2 toward the center on the surface Za side of the heat transfer plate 1. Accordingly, the heat transfer plate 1 may be distorted (bent) so that the surface Za side is concave. In particular, among the points a to j shown on the surface Za of the heat transfer plate 1, the influence of the warp tends to be noticeable at the points a, c, f, and h at the four corners of the heat transfer plate 1. In addition, the point j shows the center point of the heat exchanger plate 1.
(5)矯正工程
 矯正工程では、矯正用回転ツールGを用いてベース部材2の裏面Zbから摩擦攪拌を行う。矯正工程は、前記した接合工程で発生した反り(歪み)を解消するために行う工程である。矯正工程は、本実施形態では、タブ材を配置するタブ材配置工程と、ベース部材2の裏面Zbに対して摩擦攪拌を行う矯正摩擦攪拌工程と、を含む。
(5) Straightening Step In the straightening step, friction stir is performed from the back surface Zb of the base member 2 using the straightening rotary tool G. The correction process is a process performed in order to eliminate the warp (distortion) generated in the joining process. In the present embodiment, the straightening process includes a tab material arranging process for arranging the tab material, and a straightening friction stirring process for performing friction stirring on the back surface Zb of the base member 2.
 タブ材配置工程では、図8に示すように、後記する矯正摩擦攪拌工程の開始位置及び終了位置を設定するタブ材31を配置する。タブ材31は、本実施形態では直方体を呈し、ベース部材2と同等の組成からなる。タブ材31は、ベース部材2の側面Zcの一部を覆い隠すようにして、側面Zcに当接されている。また、タブ材31は、タブ材31の両側面とベース部材2の側面Zcとを溶接によって仮接合されている。タブ材31の表面は、ベース部材2の裏面Zbと面一に形成することが好ましい。 In the tab material arrangement process, as shown in FIG. 8, a tab material 31 for setting a start position and an end position of a correction friction stirring process described later is arranged. In the present embodiment, the tab material 31 has a rectangular parallelepiped shape and has the same composition as the base member 2. The tab material 31 is in contact with the side surface Zc so as to cover part of the side surface Zc of the base member 2. Moreover, the tab material 31 is temporarily joined by welding both side surfaces of the tab material 31 and the side surface Zc of the base member 2. The surface of the tab material 31 is preferably formed flush with the back surface Zb of the base member 2.
 矯正摩擦攪拌工程では、図8の(a)及び(b)に示すように、矯正用回転ツールGを用いて、ベース部材2の裏面Zbに対して摩擦攪拌を行う。矯正摩擦攪拌工程では、接合工程と略同等の押込み量で摩擦攪拌を行う。矯正摩擦攪拌工程のルートは、本実施形態では、中心地点j’を囲み、かつ、矯正摩擦攪拌工程によって形成される裏面塑性化領域W2が中心地点j’に対して放射状となるように設定する。なお、地点a’,地点b’・・・は、ベース部材2の表面Za側の地点a,地点b・・・(図7参照)のそれぞれ裏面Zb側に対応する地点をいう。 In the correction friction agitation step, friction agitation is performed on the back surface Zb of the base member 2 using the rotation tool G for correction as shown in FIGS. In the straightening friction stirring process, the friction stirring is performed with a pressing amount substantially equal to that in the joining process. In this embodiment, the route of the straightening friction stirring step is set so as to surround the central point j ′ and the back plasticization region W2 formed by the straightening friction stirring step is radial with respect to the central point j ′. . Here, the points a ′, b ′,... Are points corresponding to the back surface Zb side of the point a, the point b,.
 矯正摩擦攪拌工程では、図8の(a)に示すように、まず、タブ材31の表面に開始位置SM2を設定し、矯正用回転ツールGの攪拌ピンG2をタブ材31に押し込む(押圧する)。矯正用回転ツールGのショルダー部G1の一部がタブ材31に接触したら、ベース部材2に向かって矯正用回転ツールGを相対移動させる。そして、ベース部材2の裏面Zbにおける地点f’、地点a’、地点c’及び地点h’付近で平面視凸状となるとともに、地点g‘、地点d’、地点b’及び地点e’付近で平面視凹状となるように矯正用回転ツールGを相対移動させて摩擦攪拌を行う。即ち、図8の(b)に示すように、ベース部材2の中心線(一点鎖線)に対して線対称となるように裏面塑性化領域W2が形成される。本実施形態では、開始位置SM2と終了位置EM2とをタブ材31に設け、一筆書きの要領で摩擦攪拌を行う。これにより、摩擦攪拌を効率よく行うことができる。矯正摩擦攪拌工程が終了したら、タブ材31を切除する。 In the straightening friction stirring step, as shown in FIG. 8A, first, a start position SM2 is set on the surface of the tab material 31, and the stirring pin G2 of the straightening rotary tool G is pushed into the tab material 31 (pressing) To do). When a part of the shoulder portion G1 of the correction rotary tool G comes into contact with the tab member 31, the correction rotary tool G is relatively moved toward the base member 2. And it becomes convex in plan view near the point f ′, the point a ′, the point c ′, and the point h ′ on the back surface Zb of the base member 2, and near the point g ′, the point d ′, the point b ′, and the point e ′. Then, the rotational tool G for correction is relatively moved so as to have a concave shape in plan view, and friction stirring is performed. That is, as shown in FIG. 8B, the back surface plasticized region W2 is formed so as to be symmetric with respect to the center line (dashed line) of the base member 2. In the present embodiment, the start position S M2 and the end position E M2 are provided on the tab material 31, and friction stirring is performed in the manner of one stroke. Thereby, friction stirring can be performed efficiently. When the straightening friction stirring step is completed, the tab material 31 is cut out.
 なお、本実施形態では、矯正用回転ツールGの軌跡、即ち、裏面塑性化領域W2の形状が、中心地点j’を囲み、かつ、中心地点j’に対して略放射状となるように形成したが、これに限定されるものではない。矯正用回転ツールGの軌跡のバリエーションについては後記する。 In the present embodiment, the trajectory of the correction rotary tool G, that is, the shape of the back surface plasticized region W2 is formed so as to surround the center point j ′ and to be substantially radial with respect to the center point j ′. However, the present invention is not limited to this. Variations of the locus of the correction rotating tool G will be described later.
 また、本実施形態では、矯正用回転ツールGの軌跡の長さ(裏面塑性化領域W2の長さ)は、接合用回転ツールFの軌跡の長さ(表面塑性化領域W1の長さ)よりも短くなるように形成している。即ち、矯正工程における矯正用回転ツールGの加工度が、接合工程における接合用回転ツールFの加工度よりも小さくなるように設定している。これにより、伝熱板1の平坦性を高めることができる。この理由については実施例で説明する。ここで、加工度とは、摩擦攪拌によって形成された塑性化領域の体積量を示す。
 また、本実施形態では矯正工程において、タブ材を配置したが、矯正摩擦攪拌工程における摩擦攪拌のルートによっては、タブ材を設けなくてもいい。
Further, in the present embodiment, the length of the trajectory of the correction rotating tool G (the length of the back surface plasticizing region W2) is greater than the length of the trajectory of the rotating tool F for bonding (the length of the surface plasticizing region W1). Is also formed to be shorter. That is, the processing degree of the correction rotary tool G in the correction process is set to be smaller than the processing degree of the bonding rotary tool F in the bonding process. Thereby, the flatness of the heat exchanger plate 1 can be improved. The reason for this will be described in Examples. Here, the workability indicates the volume amount of the plasticized region formed by friction stirring.
Further, in the present embodiment, the tab material is disposed in the correction process, but the tab material may not be provided depending on the friction stirring route in the correction friction stirring process.
(6)焼鈍工程
 焼鈍工程では、伝熱板1を焼鈍することにより、伝熱板1の内部応力を除去する。本実施形態では、熱媒体用管20に、例えば、マイクロヒーターを通電させて焼鈍を行う。これにより、伝熱板1の内部応力を除去することができ、伝熱板1の使用時の変形を防止することができる。
(6) Annealing Step In the annealing step, the internal stress of the heat transfer plate 1 is removed by annealing the heat transfer plate 1. In the present embodiment, the heat medium pipe 20 is annealed, for example, by energizing a micro heater. Thereby, the internal stress of the heat exchanger plate 1 can be removed, and the deformation | transformation at the time of use of the heat exchanger plate 1 can be prevented.
 以上説明した本実施形態に係る製造方法によれば、接合工程による熱収縮によって、伝熱板1が歪んでしまったとしても、ベース部材2の裏面Zbにも摩擦攪拌を行うことで、表面Zaに発生した反りを解消して伝熱板1の平坦性を容易に高めることができる。即ち、ベース部材2の裏面Zbに形成された裏面塑性化領域W2が、熱収縮により縮むため、伝熱板1の裏面Zb側において、ベース部材2の各隅部側から中心側に向かって圧縮応力が作用する。これにより、本接合工程によって形成された反りが解消されて、伝熱板1の平坦性を高めることができる。 According to the manufacturing method according to the present embodiment described above, even if the heat transfer plate 1 is distorted due to heat shrinkage due to the joining process, the surface Za is also obtained by performing frictional stirring on the back surface Zb of the base member 2. Thus, the flatness of the heat transfer plate 1 can be easily improved. That is, the back surface plasticized region W2 formed on the back surface Zb of the base member 2 is shrunk due to thermal contraction, and therefore, on the back surface Zb side of the heat transfer plate 1, compression is performed from each corner side of the base member 2 toward the center side. Stress acts. Thereby, the curvature formed by this joining process is eliminated, and the flatness of the heat exchanger plate 1 can be improved.
 また、本実施形態における矯正工程は、矯正用回転ツールGを一筆書きの要領で移動させるため、作業効率を高めることができる。 Moreover, since the correction process in this embodiment moves the rotation tool G for correction in the way of one-stroke writing, work efficiency can be improved.
[第二実施形態]
 前記した第一実施形態においては、接合工程で摩擦攪拌を行ったとしても、熱媒体用管20の周囲に空隙が形成されてしまう(図1参照)。そこで、図9の(a)及び(b)に示す第二実施形態のように、熱媒体用管20の周囲に形成された空隙部に塑性流動材を流入させて、当該空隙部を埋めてもよい。
[Second Embodiment]
In the first embodiment described above, even if friction stirring is performed in the joining step, a gap is formed around the heat medium pipe 20 (see FIG. 1). Therefore, as in the second embodiment shown in FIGS. 9A and 9B, the plastic fluidizing material is caused to flow into the gap formed around the heat medium pipe 20 to fill the gap. Also good.
 即ち、図9に示すように、蓋溝6及び蓋板10の幅を前記した第一実施形態よりも小さく設定して、熱媒体用管20の近傍に突合部J1及び突合部J2が位置するように形成する。そして、接合用回転ツールFを所定の深さで押し込んで摩擦攪拌を行うことにより、熱媒体用管20の周囲に形成された空隙部Q,Qに塑性流動材を流入させることができる。これにより、図9の(b)に示すように、熱媒体用管20の周囲が塑性化された金属で密閉されるため、伝熱性の高い伝熱板1’を形成することができる。
 なお、空隙部Qに塑性流動材をどの程度流動させるかは、接合用回転ツールFの大きさや押込み量、蓋溝6及び蓋板10の形状に応じて適宜設定すればよい。他の製造工程については、第一実施形態と略同等であるため、詳細な説明は省略する。
That is, as shown in FIG. 9, the width of the lid groove 6 and the lid plate 10 is set to be smaller than that of the first embodiment, and the abutting portion J1 and the abutting portion J2 are located in the vicinity of the heat medium pipe 20. To form. Then, the plastic fluidizing material can be caused to flow into the gaps Q and Q formed around the heat medium pipe 20 by pushing the joining rotary tool F at a predetermined depth and performing frictional stirring. As a result, as shown in FIG. 9B, since the periphery of the heat medium pipe 20 is sealed with the plasticized metal, the heat transfer plate 1 ′ having high heat transfer can be formed.
In addition, what is necessary is just to set suitably how much a plastic fluid material is made to flow into the space | gap part Q according to the magnitude | size of the rotation tool F for joining, the pushing amount, and the shape of the cover groove | channel 6 and the cover board 10. FIG. Since other manufacturing steps are substantially the same as those in the first embodiment, detailed description thereof is omitted.
[第三実施形態]
 図10は、第三実施形態を示した断面図である。第三実施形態に係る伝熱板1’’は、第一実施形態に係る熱媒体用管20を備えていない点以外は、第一実施形態に係る伝熱板1と同様である。伝熱板1’’のように、熱媒体用管を設けずに凹溝8に直接熱媒体を流入させてもよい。伝熱板1’’の製造方法は、熱媒体用管を挿入しない点を除いては、第一実施形態と同様であるため説明を省略する。
[Third embodiment]
FIG. 10 is a cross-sectional view showing the third embodiment. The heat transfer plate 1 '' according to the third embodiment is the same as the heat transfer plate 1 according to the first embodiment, except that the heat medium pipe 20 according to the first embodiment is not provided. As in the heat transfer plate 1 ″, the heat medium may be directly flowed into the concave groove 8 without providing the heat medium pipe. Since the manufacturing method of the heat transfer plate 1 ″ is the same as that of the first embodiment except that the heat medium pipe is not inserted, the description thereof is omitted.
[第四実施形態]
 次に、本発明の第四実施形態について説明する。第四実施形態の説明においては、第一実施形態と重複する点は、簡単に説明する。前記した第一実施形態においては、蓋板10の両側面に沿ってそれぞれ摩擦攪拌を行うことで、表面塑性化領域W1,W1のように、二条の塑性化領域が形成されるようにして伝熱板を形成したが、第四実施形態のように、蓋板の幅を小さく設定して、一条の塑性化領域のみが形成されるようにして伝熱板を形成してもよい。
[Fourth embodiment]
Next, a fourth embodiment of the present invention will be described. In the description of the fourth embodiment, the points overlapping with the first embodiment will be briefly described. In the first embodiment described above, by conducting frictional stirring along both side surfaces of the cover plate 10, transmission is performed so that two plasticized regions are formed like the surface plasticized regions W1 and W1. Although the heat plate is formed, as in the fourth embodiment, the heat transfer plate may be formed by setting the width of the cover plate to be small and forming only one line of plasticized region.
 第四実施形態によって製造された伝熱板41は、図11及び図12に示すように、平面視正方形の板厚のベース部材2と、ベース部材2に凹設された溝に挿入された熱媒体用管21と、ベース部材2に凹設された溝に挿入された蓋板42と、を主に備えている。蓋板42の上面は、一条の摩擦攪拌によって接合されている。 As shown in FIGS. 11 and 12, the heat transfer plate 41 manufactured according to the fourth embodiment includes a base member 2 having a square thickness in plan view, and heat inserted into a groove recessed in the base member 2. It mainly includes a medium tube 21 and a lid plate 42 inserted into a groove provided in the base member 2. The upper surface of the cover plate 42 is joined by a single friction stir.
 図12及び図13に示すように、ベース部材2の表面Zaには、ベース部材2の一方の側面Zcから対向する他方の側面Zdまで連続して形成された凹溝43が形成されている。凹溝43は、熱媒体用管21及び蓋板42が挿入される部分である。凹溝43は、断面視U字状、平面視蛇行状を呈するように形成されている。図13に示すように、凹溝43の側壁43a,43b間の幅A’は、熱媒体用管20の外径と略同等に形成されている。また、凹溝43の幅A’は、接合用回転ツールFのショルダー部F1の外径Xよりも小さく形成されている。凹溝43の深さは、深さC’で形成されている。 As shown in FIGS. 12 and 13, the surface Za of the base member 2 is formed with a concave groove 43 that is continuously formed from one side surface Zc of the base member 2 to the other side surface Zd that faces the base member 2. The concave groove 43 is a portion into which the heat medium pipe 21 and the lid plate 42 are inserted. The concave groove 43 is formed so as to have a U-shape in a sectional view and a meandering shape in a plan view. As shown in FIG. 13, the width A ′ between the side walls 43 a and 43 b of the concave groove 43 is formed to be approximately equal to the outer diameter of the heat medium pipe 20. The width A of the groove 43 'is formed smaller than the outer diameter X 1 of the shoulder portion F1 of the joining rotation tool F. The depth of the concave groove 43 is formed with a depth C ′.
 熱媒体用管21は、凹溝43に挿入される管であって、ベース部材2の一方の側面Zcから他方の側面Zdまで貫通して形成されている。熱媒体用管21は、平面視蛇行状を呈し、凹溝43の平面視形状と略同等の形状を呈する。 The heat medium pipe 21 is a pipe inserted into the concave groove 43 and is formed so as to penetrate from one side surface Zc of the base member 2 to the other side surface Zd. The heat medium pipe 21 has a meandering shape in plan view, and has a shape substantially equivalent to the shape of the groove 43 in plan view.
 蓋板42は、断面視矩形、平面視蛇行状を呈する部材であって凹溝43に挿入される部材である。蓋板42は、側面42a,42b及び上面42c、下面42dを備えている。蓋板42を凹溝43に挿入すると、上面42cとベース部材2の表面Zaとが面一になるとともに、蓋板42の側面42a,42bは、凹溝43の側壁43a,43bとそれぞれ面接触するか又は微細な隙間をあけて対向する。 The lid plate 42 is a member that has a rectangular cross-sectional view and a serpentine shape in plan view, and is a member that is inserted into the concave groove 43. The lid plate 42 includes side surfaces 42a and 42b, an upper surface 42c, and a lower surface 42d. When the cover plate 42 is inserted into the groove 43, the upper surface 42c and the surface Za of the base member 2 are flush with each other, and the side surfaces 42a and 42b of the cover plate 42 are in surface contact with the side walls 43a and 43b of the groove 43, respectively. Or face each other with a fine gap.
 次に、第四実施形態に係る製造方法について説明する。
 第四実施形態に係る伝熱板の製造方法は、(1)溝形成工程、(2)熱媒体用管挿入工程、(3)蓋板挿入工程、(4)接合工程、(5)矯正工程、(6)面削工程を含むものである。
Next, a manufacturing method according to the fourth embodiment will be described.
The manufacturing method of the heat transfer plate according to the fourth embodiment includes (1) groove forming step, (2) heat medium tube inserting step, (3) lid plate inserting step, (4) joining step, and (5) straightening step. (6) A chamfering step is included.
(1)溝形成工程
 溝形成工程では、図12及び図13に示すように、ベース部材2の表面Zaに所定の幅及び深さで凹溝43を形成する。溝形成工程は、例えば、公知のエンドミル等を用いて行う。
(1) Groove Forming Step In the groove forming step, as shown in FIGS. 12 and 13, the concave groove 43 is formed on the surface Za of the base member 2 with a predetermined width and depth. The groove forming step is performed using, for example, a known end mill.
(2)熱媒体用管挿入工程
 熱媒体用管挿入工程では、図12及び図13に示すように、溝形成工程で形成された凹溝43に熱媒体用管21を挿入する。
(2) Heat medium tube insertion step In the heat medium tube insertion step, as shown in FIGS. 12 and 13, the heat medium tube 21 is inserted into the groove 43 formed in the groove formation step.
(3)蓋板挿入工程
 蓋板挿入工程は、図12及び図13に示すように、凹溝43に蓋板42を挿入して凹溝43を閉塞する。ここで、凹溝43と蓋板42との突き合わせ面において、凹溝43の一方の側壁43aと、蓋板42の一方の側面42aとで突き合わされた部分を突合部J3とし、凹溝43の他方の側壁43bと、蓋板42の他方の側面42bとで突き合わされた部分を突合部J4とする。
(3) Lid Plate Inserting Step In the lid plate inserting step, as shown in FIGS. 12 and 13, the lid plate 42 is inserted into the concave groove 43 to close the concave groove 43. Here, in the abutting surface between the concave groove 43 and the lid plate 42, a portion which is abutted by one side wall 43 a of the concave groove 43 and one side surface 42 a of the lid plate 42 is defined as an abutting portion J <b> 3. A portion that is abutted between the other side wall 43b and the other side surface 42b of the lid plate 42 is referred to as an abutting portion J4.
(4)接合工程
 接合工程では、蓋板42(凹溝43)に沿って接合用回転ツールFを用いて摩擦攪拌を行う。接合工程は、本実施形態ではタブ材を配置するタブ材配置工程と、摩擦攪拌を行う本接合工程とを含む。
(4) Joining Step In the joining step, friction stirring is performed using the joining rotary tool F along the lid plate 42 (concave groove 43). In the present embodiment, the joining process includes a tab material arranging process for arranging the tab material, and a main joining process for performing frictional stirring.
 タブ材配置工程では、図14の(a)に示すように、ベース部材2の一方の側面Zc及び他方の側面Zdに一対のタブ材33,34をそれぞれ配置する。タブ材33,34の両側面とベース部材2とは溶接によって仮接合する。 In the tab material arranging step, as shown in FIG. 14A, a pair of tab materials 33 and 34 are arranged on one side surface Zc and the other side surface Zd of the base member 2, respectively. Both side surfaces of the tab members 33 and 34 and the base member 2 are temporarily joined by welding.
 本接合工程では、図14の(a)及び(b)に示すように、蓋板42(凹溝43)に沿って摩擦攪拌を行う。タブ材33に設定した開始位置SM4に接合用回転ツールFを押し込んで、ショルダー部F1がベース部材2に接触したら、蓋板42に沿って接合用回転ツールFを相対移動させ、タブ材34に設定した終了位置EM4まで連続して摩擦攪拌を行う。図14の(b)に示すように、接合用回転ツールFのショルダー部F1の外径Xは、凹溝43の幅A’よりも大きく設定しているため、蓋板42の幅方向の中心に沿って接合用回転ツールFを移動させると、突合部J3,J4が塑性化される。このように、本実施形態によれば、一のルートを設定するだけで、突合部J3,J4を摩擦攪拌することができるため、第一実施形態に比べて作業手間を大幅に省略することができる。また、摩擦攪拌を行う際に、接合用回転ツールFが蓋板42を押し込むため、熱媒体用管21も押圧されて変形する。これにより、熱媒体用管21の周囲に形成されている空隙部Qを低減することができるため、伝熱板41の熱交換効率を高めることができる。
 なお、本接合工程が終了したら、ベース部材2からタブ材を切除する。
In the main joining step, as shown in FIGS. 14A and 14B, friction stirring is performed along the cover plate 42 (concave groove 43). When the joining rotary tool F is pushed into the start position SM4 set on the tab member 33 and the shoulder portion F1 comes into contact with the base member 2, the joining rotary tool F is relatively moved along the cover plate 42, and the tab member 34 is moved. Friction stir is continuously performed up to the end position E M4 set to. As shown in (b) of FIG. 14, the outer diameter X 1 of the shoulder portion F1 of the joining rotation tool F is, since the set larger than the width A 'of the groove 43, the width direction of the cover plate 42 When the joining rotary tool F is moved along the center, the abutting portions J3 and J4 are plasticized. As described above, according to the present embodiment, it is possible to friction stir the abutting portions J3 and J4 only by setting one route, so that it is possible to greatly reduce the work labor compared to the first embodiment. it can. Further, when the friction stir is performed, the welding rotary tool F pushes the cover plate 42, so that the heat medium pipe 21 is also pressed and deformed. Thereby, since the space | gap part Q formed in the circumference | surroundings of the pipe | tube 21 for heat media can be reduced, the heat exchange efficiency of the heat exchanger plate 41 can be improved.
When the main joining process is completed, the tab material is cut out from the base member 2.
 ここで図15の(a)及び(b)は、本実施形態の本接合工程後を示した伝熱板41を示した図である。伝熱板41は、接合工程によって、表面塑性化領域W3が形成される。表面塑性化領域W3は、熱収縮によって縮むため、伝熱板41が表面Za側に凹状となるように反って歪んでしまう可能性がある。特に、伝熱板41の表面Zaに示す地点a~地点jのうち、伝熱板41の四隅に係る地点a,c,f,hに関しては、その反りが顕著に見られる傾向がある。なお、地点jは、伝熱板41の中心地点を示す。 Here, (a) and (b) of FIG. 15 are views showing the heat transfer plate 41 after the main joining process of the present embodiment. In the heat transfer plate 41, a surface plasticized region W3 is formed by a joining process. Since the surface plasticization region W3 shrinks due to thermal contraction, the heat transfer plate 41 may be warped and distorted so as to be concave on the surface Za side. In particular, among the points a to j shown on the surface Za of the heat transfer plate 41, the points a, c, f, and h related to the four corners of the heat transfer plate 41 tend to be noticeably warped. Note that the point j indicates the center point of the heat transfer plate 41.
(5)矯正工程
 矯正工程では、矯正用回転ツールGを用いてベース部材2の裏面Zbから摩擦攪拌を行う。矯正工程は、前記した接合工程で発生した反りを解消するために行う工程である。矯正工程は、本実施形態では、放射線状に摩擦攪拌を行う矯正摩擦攪拌工程と、ベース部材2の隅部に対して摩擦攪拌を行う隅部摩擦攪拌工程とを含むものである。
(5) Straightening Step In the straightening step, friction stir is performed from the back surface Zb of the base member 2 using the straightening rotary tool G. The straightening process is a process performed to eliminate the warp generated in the joining process. In the present embodiment, the straightening process includes a straightening friction stirring process in which frictional stirring is performed in a radial manner and a corner friction stirring process in which frictional stirring is performed on the corner of the base member 2.
 矯正摩擦攪拌工程では、図16の(a)に示すように、中心地点j’を通って放射状に塑性化領域が形成されるように摩擦攪拌を行う。即ち、地点a’と地点h’とを結ぶ直線上、地点d’と地点e’とを結ぶ直線上、地点f’と地点c’とを結ぶ直線上、地点g’と地点b’とを結ぶ直線上にそれぞれ摩擦攪拌の開始位置(SM5,SM6,SM7,SM8)及び終了位置(EM5,EM6,EM7,EM8)を設定するとともに、各開始位置から中心地点j’までの距離と、中心地点j’から各終了位置までの距離とが同等となるように摩擦攪拌のルートを設定する。
 矯正摩擦攪拌工程の摩擦攪拌のルートを設定したら、各開始位置に矯正用回転ツールGを押し込み、各ルート(直線)に沿って矯正用回転ツールGを移動させる。矯正摩擦攪拌工程では、接合工程と略同等の押込み量で摩擦攪拌を行う。。図16の(b)に示すように、矯正摩擦攪拌工程によって形成された裏面塑性化領域W41~W44は、中心地点j’に対して八方向に放射状に広がるように形成される。
In the straightening friction stirring step, as shown in FIG. 16A, friction stirring is performed so that a plasticized region is formed radially through the central point j ′. That is, on the straight line connecting point a ′ and point h ′, on the straight line connecting point d ′ and point e ′, on the straight line connecting point f ′ and point c ′, and on point g ′ and point b ′. The friction stirring start position (S M5 , S M6 , S M7 , S M8 ) and the end position (E M5 , E M6 , E M7 , E M8 ) are set on the connecting line, and the center point from each start position. The friction stir route is set so that the distance to j ′ is equal to the distance from the center point j ′ to each end position.
After setting the friction stir route in the straightening friction stirring step, the straightening rotary tool G is pushed into each start position, and the straightening rotary tool G is moved along each route (straight line). In the straightening friction stirring process, the friction stirring is performed with a pressing amount substantially equal to that in the joining process. . As shown in FIG. 16 (b), the back surface plasticized regions W41 to W44 formed by the correction friction stirring step are formed to radially spread in eight directions with respect to the central point j ′.
 隅部摩擦攪拌工程では、図16の(b)に示すように、ベース部材2の地点a’、地点c’、地点f’及び地点h’に係る各隅部において、重点的に摩擦攪拌を行う。即ち、地点a’に係る隅部を構成する一辺2a側に摩擦攪拌の開始位置SM9及び終了位置EM9を設定し、他辺2b側に折返し位置SR9を設定する。そして、開始位置SM9に矯正用回転ツールGを押し込み、折返し位置SR9に向けて移動させた後、折返し位置SR9で折り返し、終了位置EM9で矯正用回転ツールGを離脱させる。同様の工程を、地点c’、地点f’及び地点h’の各隅部にも行う。隅部摩擦攪拌工程によれば、特に反りの大きいベース部材2の隅部に重点的に矯正工程を行うことができるため、より伝熱板41の平坦性をより高めることができる。 In the corner friction agitation step, as shown in FIG. 16B, friction agitation is intensively performed at the corners of the base member 2 at the points a ′, c ′, f ′ and h ′. Do. That is, the friction stirring start position S M9 and the end position E M9 are set on the one side 2a side that forms the corner of the point a ′, and the turn-back position S R9 is set on the other side 2b side. Then, pushing the orthodontic rotary tool G to the starting position S M9, after moving toward the folded position S R9, folded back at the folded position S R9, disengaging the orthodontic rotary tool G at the end position E M9. The same process is performed on each corner of the point c ′, the point f ′, and the point h ′. According to the corner friction stirring step, since the correction step can be performed mainly on the corner portion of the base member 2 having a large warp, the flatness of the heat transfer plate 41 can be further improved.
 隅部摩擦攪拌工程は、本実施形態では、矯正用回転ツールGの軌跡が各隅部において、対角線と直交するように形成されているが、これに限定されるものではない。隅部の反りの大きさを考慮して適宜摩擦攪拌のルートを設定すればよい。なお、隅部摩擦攪拌工程で形成される裏面塑性化領域W45と裏面塑性化領域W47、裏面塑性化領域46と裏面塑性化領域W48はそれぞれ中心地点j’に対して点対称となるように形成されることが好ましい。これにより、伝熱板41の表面Za側と裏面Zb側の反りをバランスよく解消して伝熱板41の平坦性を高めることができる。 In the present embodiment, the corner friction stirring step is formed so that the trajectory of the correction rotary tool G is perpendicular to the diagonal line at each corner, but is not limited thereto. A route for friction stirring may be set as appropriate in consideration of the degree of warping of the corner. In addition, the back surface plasticization region W45 and the back surface plasticization region W47, and the back surface plasticization region 46 and the back surface plasticization region W48 formed in the corner friction stirring step are formed so as to be symmetric with respect to the center point j ′. It is preferred that Thereby, the curvature of the surface Za side and the back surface Zb side of the heat-transfer plate 41 can be eliminated in a balanced manner, and the flatness of the heat-transfer plate 41 can be improved.
(6)面削工程
 面削工程では、公知のエンドミル等を用いて伝熱板41の裏面Zbを面削する。図16の(b)に示すように、伝熱板41の裏面Zbには、矯正用回転ツールGの抜き穴(図示省略)や、各回転ツールを押し込むことによって発生する溝(図示省略)、バリ等が発生する。したがって、面削工程を行うことにより、伝熱板41の裏面Zbを平滑に形成することができる。本実施形態では、図17に示すように、面削加工の厚みMaは、裏面塑性化領域W42の厚みWaよりも大きく設定する。これにより、ベース部材2の裏面Zbに形成される裏面塑性化領域W41~W44が除去されるため、ベース部材2の性質の均一性を図ることができる。また、裏面Zbに裏面塑性化領域W42等が露出しないため、意匠性等にも好適である。
(6) Chamfering step In the chamfering step, the back surface Zb of the heat transfer plate 41 is chamfered using a known end mill or the like. As shown in FIG. 16 (b), on the back surface Zb of the heat transfer plate 41, a hole (not shown) of the correction rotary tool G or a groove (not shown) generated by pushing each rotary tool, Burr etc. occur. Therefore, the back surface Zb of the heat transfer plate 41 can be formed smoothly by performing the chamfering process. In the present embodiment, as shown in FIG. 17, the thickness Ma of the chamfering process is set larger than the thickness Wa of the back surface plasticizing region W42. Thereby, the back surface plasticized regions W41 to W44 formed on the back surface Zb of the base member 2 are removed, so that the properties of the base member 2 can be made uniform. Further, since the back surface plasticized region W42 or the like is not exposed on the back surface Zb, it is suitable for design and the like.
 なお、本実施形態では、面削加工の厚みは、裏面塑性化領域の厚みよりも大きく設定したが、これに限定されるものではない。面削加工の厚みは、例えば、矯正用回転ツールGの攪拌ピンG2の長さよりも大きく設定してもよい。
 また、本実施形態では、攪拌ピンG2を備えた矯正用回転ツールGを用いて矯正工程を行ったが、攪拌ピンG2を備えない矯正用回転ツールを用いて矯正工程を行っても構わない。かかる回転ツールによれば、裏面塑性化領域の深さを浅くすることができるため、面削する厚みを小さくすることができる。これにより、面削部分が少ないためベース部材2のロスを小さくすることができ、コストを低減することができる。
In the present embodiment, the thickness of the chamfering process is set to be larger than the thickness of the back surface plasticizing region, but the present invention is not limited to this. The thickness of the chamfering process may be set larger than the length of the stirring pin G2 of the correction rotary tool G, for example.
Moreover, in this embodiment, although the correction process was performed using the correction rotary tool G provided with the stirring pin G2, the correction process may be performed using the correction rotation tool not including the stirring pin G2. According to such a rotating tool, since the depth of the back surface plasticization region can be reduced, the thickness to be chamfered can be reduced. Thereby, since there are few chamfering parts, the loss of the base member 2 can be made small and cost can be reduced.
 以上説明した第四実施形態によれば、接合工程による熱収縮によって、伝熱板41が歪んでしまったとしても、ベース部材2の裏面Zbにも摩擦攪拌を行うことで、表面Zaに発生した反りを解消して伝熱板41の平坦性を容易に高めることができる。即ち、ベース部材2の裏面Zbに形成された裏面塑性化領域W41乃至W44が、熱収縮により縮むため、伝熱板41の裏面Zb側において、ベース部材2の各隅部側から中心側に向かって圧縮応力が作用する。これにより、本接合工程によって形成された反りが解消されて、伝熱板41の平坦性を高めることができる。 According to the fourth embodiment described above, even if the heat transfer plate 41 is distorted due to the heat shrinkage due to the joining process, it is generated on the surface Za by performing frictional stirring on the back surface Zb of the base member 2. Warpage can be eliminated and the flatness of the heat transfer plate 41 can be easily increased. That is, the back surface plasticized regions W41 to W44 formed on the back surface Zb of the base member 2 are shrunk due to thermal contraction, and therefore, on the back surface Zb side of the heat transfer plate 41, from each corner side of the base member 2 toward the center side. Compressive stress acts. Thereby, the curvature formed by this joining process is eliminated, and the flatness of the heat exchanger plate 41 can be improved.
 また、第四実施形態によれば、蓋板42と凹溝43との突合部J3,J4を接合用回転ツールFの一回の移動で摩擦攪拌することができるため、第一実施形態に比べて作業手間を大幅に省略することができる。また、ベース部材2の裏面Zbに対して、隅部摩擦攪拌工程を行うため、特に反りの大きい隅部に対して重点的に矯正を行って、伝熱板41の平坦性を高めることができる。 In addition, according to the fourth embodiment, the abutting portions J3 and J4 between the cover plate 42 and the concave groove 43 can be frictionally stirred by one movement of the joining rotary tool F. Therefore, compared to the first embodiment. Therefore, labor can be saved greatly. In addition, since the corner friction stirring step is performed on the back surface Zb of the base member 2, the flatness of the heat transfer plate 41 can be improved by mainly correcting the corner portion having a large warp. .
[第五実施形態]
 図18は、第五実施形態に係る伝熱板の断面図である。第五実施形態に係る伝熱板51は、熱媒体用管を備えていない点以外は、第四実施形態に係る伝熱板41と同様である。伝熱板51に示すように、凹溝43に直接熱媒体を流入させてもよい。伝熱板51の製造方法は、熱媒体用管21を挿入しない点を除いては、第四実施形態と同様であるため説明を省略する。
[Fifth embodiment]
FIG. 18 is a cross-sectional view of a heat transfer plate according to the fifth embodiment. The heat transfer plate 51 according to the fifth embodiment is the same as the heat transfer plate 41 according to the fourth embodiment except that the heat transfer plate 51 is not provided. As shown in the heat transfer plate 51, the heat medium may flow directly into the concave groove 43. Since the manufacturing method of the heat transfer plate 51 is the same as that of the fourth embodiment except that the heat medium pipe 21 is not inserted, the description thereof is omitted.
[第六実施形態]
 図19は、第六実施形態に係る伝熱板の表面側を示した平面図である。図20は、第六実施形態に係る伝熱板の裏面側を示した平面図である。図19及び図20に示す第六実施形態のように、伝熱板の表面Za側及び裏面Zb側に形成される塑性化領域が、略同等の形状を呈するように矯正工程に係る摩擦攪拌のルートを設定してもよい。第六実施形態は、第四実施形態と同様に、ベース部材2の表面に形成された凹溝に熱媒体用管53と、蓋板54を挿入し、一条の塑性化領域W60が形成されるように接合されている。第六実施形態においては、第四実施形態と重複する点は説明を省略する。
[Sixth embodiment]
FIG. 19 is a plan view showing the surface side of the heat transfer plate according to the sixth embodiment. FIG. 20 is a plan view showing the back side of the heat transfer plate according to the sixth embodiment. As in the sixth embodiment shown in FIGS. 19 and 20, the friction stirrer according to the correction process is performed so that the plasticized regions formed on the front surface Za side and the back surface Zb side of the heat transfer plate have substantially the same shape. A route may be set. In the sixth embodiment, similarly to the fourth embodiment, the heat medium pipe 53 and the cover plate 54 are inserted into the concave groove formed on the surface of the base member 2 to form a single plasticized region W60. Are joined together. In the sixth embodiment, the description overlapping with the fourth embodiment is omitted.
 図19に示す伝熱板61は、中央に開口部52を備えたベース部材2と、ベース部材2の表面Zaに切り欠かれた凹溝(図示省略)に埋設された熱媒体用管53と、凹溝を塞ぐ蓋板54とを主に有している。 A heat transfer plate 61 shown in FIG. 19 includes a base member 2 having an opening 52 in the center, and a heat medium pipe 53 embedded in a groove (not shown) cut out in the surface Za of the base member 2. The lid plate 54 mainly closes the groove.
 熱媒体用管53は、平面視中抜きの十字状を呈するように、ベース部材2の内部に埋設されている。熱媒体用管53の一端と他端は、ベース部材2の開口部52に露出している。開口部52に現れる熱媒体用管53の一端から熱を供給し、他端から熱を排出してベース部材2に熱が伝達される。 The heat medium pipe 53 is embedded in the base member 2 so as to exhibit a cross shape with a hollow in plan view. One end and the other end of the heat medium pipe 53 are exposed to the opening 52 of the base member 2. Heat is supplied from one end of the heat medium pipe 53 that appears in the opening 52, and the heat is discharged from the other end to be transmitted to the base member 2.
 蓋板54とベース部材2との突合部は、接合用回転ツールFによって第四実施形態にかかる接合工程と略同等の工程によって、摩擦攪拌により接合されている。これにより、ベース部材2の表面Zaには、平面視略中抜き十字状を呈するように、表面塑性化領域W60が形成されている。 The abutting portion between the lid plate 54 and the base member 2 is joined by friction stirring by a joining rotary tool F through a process substantially equivalent to the joining process according to the fourth embodiment. Thereby, the surface plasticization region W60 is formed on the surface Za of the base member 2 so as to exhibit a substantially hollow shape in plan view.
 一方、図20に示すように、伝熱板61の裏面Zbは、表面Zaと同様に、平面視中抜き十字状を呈するように裏面塑性化領域W61が形成されている。当該矯正工程における摩擦攪拌の開始位置S及び終了位置Eは、ベース部材2の任意の一点に設定されている。矯正工程では、接合工程と略同等の押込み量で摩擦攪拌を行う。また、裏面塑性化領域W61は、矯正用回転ツールGを用いて一筆書きの要領で摩擦攪拌されている。 On the other hand, as shown in FIG. 20, the back surface Zb of the heat transfer plate 61 is formed with a back surface plasticized region W61 so as to have a hollow shape in a plan view, like the front surface Za. The friction stirring start position S M and the end position E M in the correction process are set at an arbitrary point on the base member 2. In the correction process, frictional stirring is performed with a pressing amount substantially equal to that in the joining process. In addition, the back surface plasticizing region W61 is friction-stirred in the manner of one-stroke writing using the correction rotating tool G.
 第六実施形態に係る伝熱板61のように、伝熱板61の表面Za及び裏面Zbにそれぞれ形成された表面塑性化領域W60及び裏面塑性化領域W61が略同等の形状を呈するように矯正工程に係る摩擦攪拌のルートを設定してもよい。かかる接合工程及び矯正工程によれば、伝熱板61の表面Za側及び裏面Zb側に形成される塑性化領域の形状が略同等となるため、伝熱板61の反りをバランスよく解消して平坦性を高めることができる。
 なお、第六実施形態によれば、ベース部材2の表面Za側に行う摩擦攪拌の軌跡の長さと、裏面Zb側に行う摩擦攪拌の軌跡の長さが略同等となるが、矯正用回転ツールGは、接合用回転ツールFよりも小さく形成されているため、矯正工程における加工度は、接合用工程における加工度に比べて小さくなる。
Like the heat transfer plate 61 according to the sixth embodiment, the surface plasticization region W60 and the back surface plasticization region W61 respectively formed on the front surface Za and the back surface Zb of the heat transfer plate 61 are corrected so as to exhibit substantially the same shape. You may set the route of the friction stirring which concerns on a process. According to the joining step and the straightening step, the shapes of the plasticized regions formed on the front surface Za side and the back surface Zb side of the heat transfer plate 61 are substantially the same, so that the warpage of the heat transfer plate 61 is eliminated in a balanced manner. Flatness can be improved.
According to the sixth embodiment, the length of the locus of friction agitation performed on the surface Za side of the base member 2 is substantially equal to the length of the locus of friction agitation performed on the back surface Zb side. Since G is formed to be smaller than the joining rotary tool F, the degree of processing in the correction process is smaller than the degree of processing in the joining process.
 なお、矯正工程は、前記した第一実施形態乃至第六実施形態の摩擦攪拌のルートに限定されずに様々なルートを設定することができる。以下に、矯正工程に係る摩擦攪拌のルートの他の形態について説明する。 Note that the correction process is not limited to the friction stir route of the first to sixth embodiments described above, and various routes can be set. Below, the other form of the route of friction stirring which concerns on a correction process is demonstrated.
[第一変形例~第六変形例]
 矯正工程に係る摩擦攪拌のルートは、前記した形態に限定されるものではなく、以下の形態でもよい。図21は、伝熱板の裏面側の平面図であって(a)は第一変形例、(b)は第二変形例、(c)は第三変形例、(d)は第四変形例、(e)は第五変形例、(f)は第六変形例を示す。
[First Modification to Sixth Modification]
The route of the friction stirrer related to the correction process is not limited to the above-described form, and may be the following form. FIG. 21 is a plan view of the back side of the heat transfer plate, where (a) is a first modification, (b) is a second modification, (c) is a third modification, and (d) is a fourth modification. For example, (e) shows a fifth modification, and (f) shows a sixth modification.
 図21の(a)及び(b)に示す第一変形例及び第二変形例の矯正用回転ツールの軌跡(裏面塑性化領域W2)は、いずれもベース部材2の中心地点j’を囲むように形成されていることを特徴とする。また、第一変形例は、ベース部材2の外形形状に対して相似になるように形成されている。また、図21の(b)に示す第二変形例のように、格子状に形成してもよい。 The trajectories (back surface plasticization region W2) of the correction rotary tool of the first modification and the second modification shown in FIGS. 21A and 21B all surround the center point j ′ of the base member 2. It is characterized by being formed. The first modification is formed so as to be similar to the outer shape of the base member 2. Moreover, you may form in a grid | lattice form like the 2nd modification shown in FIG.21 (b).
 図21の(c)及び(d)に示す第三変形例及び第四変形例の矯正用回転ツールの軌跡(裏面塑性化領域W2)は、いずれもベース部材2の中心地点j’を通過して放射状となるように形成されていることを特徴とする。図20の(c)に示す第三変形例は、中心地点jを始点・終点とするループを複数含み、中心地点j’に対して点対称となるように形成されている。また、第三変形例は、一筆書きの要領で形成することができるため、作業効率を高めることができる。図20の(d)に示す第四変形例は、中心地点j’を通過するとともに、ベース部材2の対角線に対して平行となるように形成されている。 Each of the trajectories (back surface plasticizing region W2) of the correction rotary tool of the third modification and the fourth modification shown in FIGS. 21C and 21D passes through the center point j ′ of the base member 2. It is characterized by being formed radially. The third modification shown in FIG. 20C includes a plurality of loops having a center point j as a start point and an end point, and is formed so as to be point-symmetric with respect to the center point j ′. Moreover, since the 3rd modification can be formed in the way of one-stroke writing, work efficiency can be improved. The fourth modification shown in FIG. 20D is formed so as to pass through the center point j ′ and to be parallel to the diagonal line of the base member 2.
 図20の(e)及び(f)に示す第五変形例及び第六変形例の矯正用回転ツールの軌跡(裏面塑性化領域W2)は、中心地点j’を通る直線で四分割した領域に、同形状の4つの軌跡がそれぞれ独立して形成されるとともに、中心地点j’を挟んで斜めに対向する軌跡が点対称となるように形成されている。4つの軌跡の形状は、同形状であれば、どのような形状であっても構わない。 The trajectories (back surface plasticization region W2) of the correction rotary tools of the fifth and sixth modified examples shown in FIGS. 20 (e) and (f) are divided into four regions by straight lines passing through the central point j ′. The four loci of the same shape are formed independently, and the loci that are diagonally opposed across the central point j ′ are point-symmetric. The four trajectories may have any shape as long as they have the same shape.
 以上説明したように、矯正工程は、ベース部材2に行われる接合工程の摩擦攪拌の軌跡に応じて適宜摩擦攪拌のルートを設定して行えばよい。
 なお、本実施形態の説明においては、ベース部材2は、平面視正方形のものを例示して説明したが、他の形状であってもよい。
As described above, the correction step may be performed by appropriately setting the route of friction stirring according to the locus of friction stirring in the joining step performed on the base member 2.
In the description of the present embodiment, the base member 2 has been described as an example of a square in plan view, but may have other shapes.
[第七実施形態]
 前記した第一実施形態乃至第六実施形態に係る矯正工程では、矯正用回転ツールGを用いてベース部材2の裏面Zbに摩擦攪拌を行って反りの矯正を行ったが、これに限定されるものではない。第七実施形態に係る矯正工程では、伝熱板1(ベース部材2)の裏面Zbから、ベース部材2の表面Za側に引張応力が発生するような曲げモーメントを作用させて、前記した接合工程により形成された伝熱板1の反りを矯正する。本実施形態に係る矯正工程では、以下に記すプレス矯正、衝打矯正及びロール矯正の三種類の方法からいずれか一以上の方法を選択して行えばよい。
[Seventh embodiment]
In the correction process according to the first to sixth embodiments described above, the correction of the warp was performed by performing frictional stirring on the back surface Zb of the base member 2 using the correction rotary tool G, but is not limited thereto. It is not a thing. In the straightening process according to the seventh embodiment, a bending moment that generates a tensile stress from the back surface Zb of the heat transfer plate 1 (base member 2) to the front surface Za side of the base member 2 is applied, and the above-described joining process. The warp of the heat transfer plate 1 formed by the above is corrected. In the correction process according to the present embodiment, any one or more methods may be selected from the following three methods: press correction, impact correction, and roll correction.
 図22は、第七実施形態に係るプレス矯正の準備段階を示した斜視図である。図23は、第七実施形態に係るプレス矯正を示した側面図であって、(a)はプレス前、(b)はプレス中を示した図である。図24は、第七実施形態に係るプレス矯正の押圧位置を示した平面図である。図25は、第七実施形態に係るロール矯正を示した図であって、(a)は斜視図、(b)はプレス前を示した側面図、(c)はプレス中を示した側面図である。
なお、第七実施形態に係る矯正工程では、第一実施形態に係る伝熱板1を用いて説明する。
FIG. 22 is a perspective view illustrating a preparatory stage for press correction according to the seventh embodiment. FIG. 23 is a side view showing press correction according to the seventh embodiment, where (a) shows before pressing and (b) shows during pressing. FIG. 24 is a plan view showing a pressing position for press correction according to the seventh embodiment. FIG. 25 is a view showing roll correction according to the seventh embodiment, where (a) is a perspective view, (b) is a side view showing before pressing, and (c) is a side view showing during pressing. It is.
In addition, in the correction process which concerns on 7th embodiment, it demonstrates using the heat exchanger plate 1 which concerns on 1st embodiment.
(プレス矯正)
 前記した第一実施形態と同じ要領で接合工程を行なった後、摩擦攪拌で発生したバリを除去するとともに、図22に示すように、伝熱板1の裏面Zbが上方を向くように裏返し、裏面Zbの中心地点j’(図7の(b)参照)に板状の第一補助部材T1を配置する。さらに、伝熱板1の表面Za側の四隅に、板状の第二補助部材T2,T2及び第三補助部材T3,T3を配置する。即ち、第二補助部材T2、第三補助部材T3は、第一補助部材T1を挟んで両側に配置される。第一補助部材T1乃至第三補助部材T3は、プレス矯正を行う際の当て材又は台座となる部材であるとともに、伝熱板1が傷つかないようにするための部材である。第一補助部材T1乃至第三補助部材T3は、伝熱板1よりも軟質の材料であればよく、例えば、アルミニウム合金、硬質ゴム、プラスチック、木材を用いることができる。なお、第一補助部材T1乃至第三補助部材T3は、伝熱板1の力学特性や反りの曲率に応じて、反りとは反対側に撓ませて反りを矯正するのに十分な厚みで設定すればよい。
(Press correction)
After performing the joining step in the same manner as in the first embodiment described above, while removing burrs generated by friction stirring, as shown in FIG. 22, turn over so that the back surface Zb of the heat transfer plate 1 faces upward, A plate-like first auxiliary member T1 is disposed at the center point j ′ (see FIG. 7B) on the back surface Zb. Furthermore, plate-like second auxiliary members T2, T2 and third auxiliary members T3, T3 are arranged at the four corners on the surface Za side of the heat transfer plate 1. That is, the second auxiliary member T2 and the third auxiliary member T3 are disposed on both sides with the first auxiliary member T1 interposed therebetween. The first auxiliary member T1 to the third auxiliary member T3 are members that serve as a contact material or a base when performing press correction, and are members that prevent the heat transfer plate 1 from being damaged. The first auxiliary member T1 to the third auxiliary member T3 may be any material that is softer than the heat transfer plate 1, and for example, aluminum alloy, hard rubber, plastic, and wood can be used. The first auxiliary member T1 to the third auxiliary member T3 are set with a thickness sufficient to correct the warp by bending to the opposite side of the warp according to the mechanical characteristics of the heat transfer plate 1 and the curvature of the warp. do it.
 各補助部材を配置したら、図23の(a)及び(b)に示すように、公知のプレス装置Pを用いて、伝熱板1の裏面Zbから押圧する。第一補助部材T1にプレス装置PのポンチPaを押し当て、所定の押圧力で押圧する。プレス装置Pによって伝熱板1に圧力が加えられると、図23の(a)及び(b)に示すように、第一補助部材T1が伝熱板1を下側に押し、第二補助部材T2及び第三補助部材T3が伝熱板1の両端側を上側に押すため、伝熱板1には曲げモーメントが作用する。この曲げモーメントは伝熱板1の表面Za側に引張応力を発生させるため、伝熱板1が強制的に下側に凸に撓ませられる。 When each auxiliary member is arranged, it is pressed from the rear surface Zb of the heat transfer plate 1 using a known press device P as shown in FIGS. The punch Pa of the pressing device P is pressed against the first auxiliary member T1 and pressed with a predetermined pressing force. When pressure is applied to the heat transfer plate 1 by the press device P, as shown in FIGS. 23A and 23B, the first auxiliary member T1 pushes the heat transfer plate 1 downward, and the second auxiliary member Since T2 and the third auxiliary member T3 push both end sides of the heat transfer plate 1 upward, a bending moment acts on the heat transfer plate 1. Since this bending moment generates a tensile stress on the surface Za side of the heat transfer plate 1, the heat transfer plate 1 is forcibly bent downwardly.
 プレス装置の押圧力は、伝熱板1の厚みや材料によって適宜設定すればよいが、図23の(b)に示すように、伝熱板1の表面Za側が下に凸となって、表面Zaに引張応力が発生するような曲げモーメントを作用させることが好ましい。 The pressing force of the press device may be set as appropriate depending on the thickness and material of the heat transfer plate 1, but as shown in FIG. 23 (b), the surface Za side of the heat transfer plate 1 is convex downward, It is preferable to apply a bending moment that causes tensile stress to Za.
 また、本実施形態では、図24に示すように、中心地点j’だけでなく伝熱板1の裏面Zbの地点b’、地点d’、地点e’及び地点g’付近に対しても押圧を行う。伝熱板1の裏面Zbにかかる各辺の中間地点である地点b’、地点d’、地点e’及び地点g’を含んだ位置H2~H5に第一補助部材T1を配置して、プレス装置Pによって押圧を行う。これにより、伝熱板1をバランスよく矯正でき、平坦性をより高めることができる。 Further, in the present embodiment, as shown in FIG. 24, not only the central point j ′ but also the points b ′, d ′, e ′ and g ′ of the back surface Zb of the heat transfer plate 1 are pressed. I do. The first auxiliary member T1 is disposed at positions H2 to H5 including a point b ′, a point d ′, a point e ′, and a point g ′, which are intermediate points between the sides on the back surface Zb of the heat transfer plate 1, and press Pressing is performed by the device P. Thereby, the heat exchanger plate 1 can be corrected with good balance, and flatness can be further improved.
 なお、プレスする位置は、本実施形態では5箇所に設定したが、これに限定されるものではなく、接合工程によって生じる伝熱板1の反りに応じて適宜設定すればよい。 In addition, although the position to press was set to five places in this embodiment, it is not limited to this, What is necessary is just to set suitably according to the curvature of the heat exchanger plate 1 produced by a joining process.
(衝打矯正)
 次に、衝打矯正について説明する。衝打矯正については、プレス矯正と近似するため、
具体的な図示は省略する。衝打矯正とは、例えばハンマーなどの衝打具を用いて伝熱板に発生した反りを矯正することをいう。衝打矯正は、プレス装置Pに替えてハンマーなどの衝打具で伝熱板1を衝打する点を除いては、プレス矯正と略同等である。
(Shock correction)
Next, hit correction will be described. For impact correction, it approximates press correction.
Specific illustration is omitted. The hit correction means correcting a warp generated in the heat transfer plate using a hitting tool such as a hammer. The impact correction is substantially the same as the press correction except that the heat transfer plate 1 is impacted with an impact tool such as a hammer instead of the press device P.
 衝打矯正では、プレス矯正と同様に補助部材を配置した後、図23及び図24を参照するように、伝熱板1の裏面Zbから例えばプラスチックハンマー等の衝打具で伝熱板1を衝打する。伝熱板1を衝打すると、伝熱板1の表面Za側に引張応力を発生させるため、伝熱板1が強制的に下側に凸に撓ませられる(図23の(b)参照)。これにより、伝熱板1の反りを矯正して平坦にすることができる。また、プレス矯正と同様に、必要に応じて伝熱板1の裏面Zbの位置H2~H5(図24参照)を衝打することで、伝熱板1をバランスよく矯正することができる。 In the impact correction, after the auxiliary members are arranged in the same manner as the press correction, the heat transfer plate 1 is moved from the rear surface Zb of the heat transfer plate 1 with an impact tool such as a plastic hammer as shown in FIGS. Hit it. When the heat transfer plate 1 is struck, a tensile stress is generated on the surface Za side of the heat transfer plate 1, so that the heat transfer plate 1 is forcibly bent downward (see FIG. 23B). . Thereby, the curvature of the heat exchanger plate 1 can be corrected and made flat. Similarly to the press correction, the heat transfer plate 1 can be corrected in a balanced manner by striking the positions H2 to H5 (see FIG. 24) of the back surface Zb of the heat transfer plate 1 as necessary.
 衝打矯正は、プレス矯正と比べると、プレス装置等を準備する手間が省けるため、作業を容易に行うことができる。また、衝打矯正は、作業が容易であるため伝熱板1が小さい場合や薄い場合に有効である。なお、衝打矯正を終了した後は、衝打により発生したバリを除去することが好ましい。また、衝打具は、伝熱板1を衝打可能なものであれば、特に種類を問わないが、例えばプラスチックハンマーが好ましい。 Impact correction is easier than press correction because it eliminates the need to prepare a press device and the like. Further, the impact correction is effective when the heat transfer plate 1 is small or thin because the work is easy. In addition, it is preferable to remove the burr generated by the hit after the hit correction. The hitting tool is not particularly limited as long as it can hit the heat transfer plate 1, but for example, a plastic hammer is preferable.
(ロール矯正)
 次に、ロール矯正について説明する。第一実施形態と同等の要領で接合工程を行った後、摩擦攪拌で発生したバリを除去するとともに、図25の(a)に示すように、伝熱板1の裏面Zbが上方を向くように裏返し、裏面Zbの中心地点j’ (図7の(b)参照)を含んで縦方向と平行になるように長板形状の第一補助部材T1を配置する。さらに、伝熱板1の表面Za側の縁部において縦方向と平行になるように、長板形状の第二補助部材T2及び第三補助部材T3を配置する。即ち、第二補助部材T2、第三補助部材T3は、第一補助部材T1を挟んで両側に配置される。
(Roll straightening)
Next, roll correction will be described. After performing the joining process in the same manner as in the first embodiment, burrs generated by friction stirring are removed, and the back surface Zb of the heat transfer plate 1 faces upward as shown in FIG. The first auxiliary member T1 having a long plate shape is arranged so as to be parallel to the vertical direction including the center point j ′ (see FIG. 7B) of the back surface Zb. Further, the long plate-shaped second auxiliary member T2 and the third auxiliary member T3 are arranged so as to be parallel to the vertical direction at the edge portion on the surface Za side of the heat transfer plate 1. That is, the second auxiliary member T2 and the third auxiliary member T3 are disposed on both sides with the first auxiliary member T1 interposed therebetween.
 そして、第一補助部材T1の上側に、第一補助部材T1と直交するようにロールR1を配置し、第二補助部材T2,T3の下側に第二補助部材T2及び第三補助部材T3と直交するようにロールR2を配置する。つまり、伝熱板1は、図25の(b)に示すように、上側に凸の状態でロールR1,R2の間に配置され、第一補助部材T1乃至第三補助部材T3を介してロールR1,R2に狭持される。 And roll R1 is arrange | positioned so that it may orthogonally cross with 1st auxiliary member T1 above 1st auxiliary member T1, 2nd auxiliary member T2 and 3rd auxiliary member T3 below 2nd auxiliary member T2, T3, Roll R2 is arrange | positioned so that it may orthogonally cross. That is, as shown in FIG. 25 (b), the heat transfer plate 1 is disposed between the rolls R1 and R2 so as to protrude upward, and is rolled via the first auxiliary member T1 to the third auxiliary member T3. It is held between R1 and R2.
 第一補助部材T1乃至第三補助部材T3は、ロール矯正を行う際の当て材であるとともに、伝熱板1が傷つかないようにするための部材である。第一補助部材T1乃至第三補助部材T3は、伝熱板1よりも軟質の材料であればよく、例えば、アルミニウム合金、硬質ゴム、プラスチック、木材を用いることができる。 The first auxiliary member T1 to the third auxiliary member T3 are members for performing roll correction and are members for preventing the heat transfer plate 1 from being damaged. The first auxiliary member T1 to the third auxiliary member T3 may be any material that is softer than the heat transfer plate 1, and for example, aluminum alloy, hard rubber, plastic, and wood can be used.
 ここで、ロールR1,R2が互いに近づいて伝熱板1に圧力を加えると、図25の(b)及び(c)に示すように、第一補助部材T1が伝熱板1を下側に押し、第二補助部材T2及び第三補助部材T3が伝熱板1の両端側を上側に押すため、伝熱板1には曲げモーメントが作用する。この曲げモーメントは伝熱板1の表面Za側に引張応力を発生させるため、伝熱板1が強制的に下側に凸に撓ませられる。 Here, when the rolls R1 and R2 approach each other and apply pressure to the heat transfer plate 1, the first auxiliary member T1 lowers the heat transfer plate 1 as shown in FIGS. 25 (b) and (c). Since the second auxiliary member T2 and the third auxiliary member T3 push the both end sides of the heat transfer plate 1 upward, a bending moment acts on the heat transfer plate 1. Since this bending moment generates a tensile stress on the surface Za side of the heat transfer plate 1, the heat transfer plate 1 is forcibly bent downwardly.
 また、図25の(a)に示すように、ロールR1が矢印α方向に回転するとともに、ロールR2が矢印β方向に回転すると、ロールR1,R2は伝熱板1に対して矢印γ方向(ロール送り方向)に相対的に移動する。また、ロールR1が矢印β方向に回転するとともにロールR2が矢印α方向に回転すると、ロールR1,R2は伝熱板1に対して矢印δ方向(ロール送り方向)に相対的に移動する。 Further, as shown in FIG. 25A, when the roll R1 rotates in the arrow α direction and the roll R2 rotates in the arrow β direction, the rolls R1 and R2 are moved in the arrow γ direction ( Moves relatively in the roll feed direction). When the roll R1 rotates in the arrow β direction and the roll R2 rotates in the arrow α direction, the rolls R1 and R2 move relative to the heat transfer plate 1 in the arrow δ direction (roll feed direction).
 したがって、伝熱板1に作用する曲げモーメントの位置が、その相対的な移動に伴って遷移していくため、伝熱板1の全体が強制的に下側に凸に撓む。そのため、この相対的な移動を繰り返して往復動させることによって、反りを矯正していくことが可能になる。なお、第一補助部材T1乃至第三補助部材T3は、伝熱板1の力学特性や反りの曲率に応じて、反りとは反対側に撓ませて反りを矯正するのに十分な厚みで設定すればよい。 Therefore, since the position of the bending moment acting on the heat transfer plate 1 transitions with the relative movement, the entire heat transfer plate 1 is forcibly bent downward. Therefore, it is possible to correct the warp by repeatedly reciprocating this relative movement. The first auxiliary member T1 to the third auxiliary member T3 are set with a thickness sufficient to correct the warp by bending to the opposite side of the warp according to the mechanical characteristics of the heat transfer plate 1 and the curvature of the warp. do it.
 また、伝熱板1の縦方向にロールR1,R2を回転させて矯正工程を行なった後、横方向にロールR1,R2を回転させてもよい。即ち、第一補助部材T1乃至第三補助部材T3を横方向と平行になるように配置するとともに、第一補助部材T1乃至第三補助部材T3に対して直交するようにロールR1,R2を配置する。そして、ロールR1,R2を横方向に往復動させる。これにより、伝熱板1をバランスよく矯正することができる。 Further, after the rolls R1 and R2 are rotated in the vertical direction of the heat transfer plate 1 and the correction process is performed, the rolls R1 and R2 may be rotated in the horizontal direction. That is, the first auxiliary member T1 to the third auxiliary member T3 are arranged so as to be parallel to the lateral direction, and the rolls R1, R2 are arranged so as to be orthogonal to the first auxiliary member T1 to the third auxiliary member T3. To do. And roll R1, R2 is reciprocated to a horizontal direction. Thereby, the heat exchanger plate 1 can be corrected with sufficient balance.
 また、ここでは、伝熱板1の裏面Zbを上にして、歪矯正工程を行うものとして説明したが、裏返さずに表面Zaを上にして歪矯正工程を行うようにしてもよい。この場合、前記した各構成部品は、表裏対称に表れるため、説明を省略する。 In addition, here, the description has been made on the assumption that the back surface Zb of the heat transfer plate 1 is up and the distortion correction process is performed, but the distortion correction process may be performed with the surface Za up without turning over. In this case, since each component described above appears symmetrically, description thereof is omitted.
 以上説明した第七実施形態によれば、伝熱板1の表面Zaに接合工程による熱収縮によって、伝熱板1が歪んでしまったとしても、ベース部材2の裏面Zaに引張応力が発生するような曲げモーメントを作用させることにより、容易に伝熱板の平坦性を高めることができる。 According to the seventh embodiment described above, tensile stress is generated on the back surface Za of the base member 2 even if the heat transfer plate 1 is distorted by heat shrinkage due to the joining process on the surface Za of the heat transfer plate 1. By applying such a bending moment, the flatness of the heat transfer plate can be easily increased.
 次に、本発明の実施例について説明する。本発明に係る実施例は、図26(a)及び(b)に示すように平面視正方形のベース部材2の表面Za及び裏面Zbにそれぞれ3つの円を描くように摩擦攪拌を行い、表面Za側で発生した反りの変形量と、裏面Zb側で発生した反りの変形量を測定した。即ち、表面Za側で発生した反りの変形量の値と、裏面Zb側で発生した反りの変形量の値とが近いほど、ベース部材2の平坦性が高いことを示す。 Next, examples of the present invention will be described. In the embodiment according to the present invention, as shown in FIGS. 26 (a) and 26 (b), friction stirring is performed so as to draw three circles on the front surface Za and the rear surface Zb of the base member 2 having a square shape in plan view. The deformation amount of the warp generated on the side and the deformation amount of the warp generated on the back surface Zb side were measured. That is, the flatness of the base member 2 is higher as the value of the amount of warpage deformation generated on the front surface Za side is closer to the value of the amount of warpage deformation generated on the rear surface Zb side.
 ベース部材2は、平面視500mm×500mmの直方体であって、厚みが30mm、60mmの二種類ものを用いてそれぞれ測定を行った。ベース部材2の素材は、JIS規格の5052アルミニウム合金である。 The base member 2 was a rectangular parallelepiped having a plan view of 500 mm × 500 mm, and the measurement was performed using two types having a thickness of 30 mm and 60 mm. The material of the base member 2 is JIS standard 5052 aluminum alloy.
 摩擦攪拌の軌跡である3つの円は、ベース部材2の中心に設定した地点j又は地点j’を中心とし、表面Za及び裏面Zbともに半径r1=100mm(以下、小円ともいう)、r2=150mm(以下、中円ともいう)、r3=200mm(以下、大円ともいう)に設定した。摩擦攪拌の順序は、小円、中円、大円の順番で行った。 The three circles that are the locus of frictional stirring are centered on the point j or the point j ′ set at the center of the base member 2, the radius r1 = 100 mm (hereinafter also referred to as a small circle) for both the front surface Za and the rear surface Zb, and r2 = It was set to 150 mm (hereinafter also referred to as middle circle) and r3 = 200 mm (hereinafter also referred to as great circle). Friction stirring was performed in the order of small circle, middle circle, and great circle.
 回転ツールは、表面Za側及び裏面Zb側ともに同じ大きさの回転ツールを用いた。回転ツールのサイズは、ショルダー部の外径が20mm、攪拌ピンの長さが10mm、攪拌ピンの根元の大きさ(最大径)が9mm、攪拌ピンの先端の大きさ(最小径)が6mmのものを用いた。回転ツールの回転数は、600rpm、送り速度は、300mm/minに設定した。また、表面Za側及び裏面Zb側ともに回転ツールの押込み量は一定に設定した。図26に示すように、表面Za側において形成された塑性化領域を小円から大円に向けてそれぞれ塑性化領域W21乃至塑性化領域W23とする。また、裏面Zb側において形成された塑性化領域を小円から大円に向けて塑性化領域W31乃至W33とする。当該実施例における各測定結果を以下の表1~表4に示す。 Rotating tools having the same size were used for both the front surface Za side and the back surface Zb side. The size of the rotating tool is such that the outer diameter of the shoulder portion is 20 mm, the length of the stirring pin is 10 mm, the size of the base of the stirring pin (maximum diameter) is 9 mm, and the size of the tip of the stirring pin (minimum diameter) is 6 mm. A thing was used. The rotational speed of the rotary tool was set to 600 rpm, and the feed rate was set to 300 mm / min. Further, the pressing amount of the rotary tool was set constant on both the front surface Za side and the back surface Zb side. As shown in FIG. 26, the plasticized regions formed on the surface Za side are referred to as a plasticized region W21 to a plasticized region W23 from the small circle to the great circle, respectively. Further, the plasticized regions formed on the back surface Zb side are designated as plasticized regions W31 to W33 from the small circle to the great circle. The respective measurement results in this example are shown in Tables 1 to 4 below.
 表1は、ベース部材の板厚が30mmであって、表面側から摩擦攪拌を行った場合の測定値を示した表である。「FSW前」は、摩擦攪拌を行う前において、中心地点j(基準j)と各地点(地点a~地点h)との高低差を示している。「FSW後」は、基準jをゼロとして、3つの円の摩擦攪拌を行った後において、基準jと各地点との高低差を示している。「表面側変形量」は、各地点における(FSW後-FSW前)の値を示している。「表面側変形量」の最下欄は、地点a~地点hの平均値を示す。「FSW前」及び「FSW後」のマイナス値は、基準jよりも下方に位置していることを意味する。 Table 1 is a table showing measured values when the thickness of the base member is 30 mm and frictional stirring is performed from the surface side. “Before FSW” indicates the height difference between the central point j (reference j) and each point (point a to point h) before the friction stir. “After FSW” indicates a difference in height between the reference j and each point after performing frictional stirring of three circles with the reference j being zero. The “surface side deformation amount” indicates a value (after FSW−before FSW) at each point. The bottom column of “Surface-side deformation amount” indicates an average value of the points a to h. Negative values of “before FSW” and “after FSW” mean that they are located below the reference j.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表2は、ベース部材の板厚が30mmであって、裏面側から摩擦攪拌を行った場合(矯正工程)の測定値を示した表である。「FSW前」は、摩擦攪拌を行う前において、中心地点j’(基準j’)と各地点(a’~h’)との高低差を示している。
 「FSW1」は、図27を参照するように、基準j’をゼロとして、小円(半径r1)の摩擦攪拌を行った後の、基準j’と各地点との高低差を示している。「裏面側変形量1」は、各地点における(FSW1-FSW前)の値を示している。「裏面側変形量1」の最下欄は、地点a~地点hの平均値を示す。
 「FSW2」は、基準j’をゼロとして、小円(半径r1)に加えてさらに、中円(半径r2)の摩擦攪拌を行った後の、基準j’と各地点との高低差を示している。「裏面側変形量2」は、各地点における(FSW2-FSW前)の値を示している。「裏面側変形量2」の最下欄は、地点a~地点hの平均値を示す。
 「FSW3」は、基準j’をゼロとして、小円(半径r1)、中円(半径r2)に加えてさらに、大円(半径r3)の摩擦攪拌を行った後の、基準j’と各地点との高低差を示している。「裏面側変形量3」は、各地点における(FSW3-FSW前)の値を示している。「裏面側変形量3」の最下欄は、地点a~地点hの平均値を示す。
Table 2 is a table showing the measured values when the plate thickness of the base member is 30 mm and frictional stirring is performed from the back side (correcting step). “Before FSW” indicates the level difference between the central point j ′ (reference j ′) and each point (a ′ to h ′) before the friction stir.
As shown in FIG. 27, “FSW1” indicates a difference in height between the reference j ′ and each point after the frictional stirring of the small circle (radius r1) with the reference j ′ set to zero. “Back side deformation amount 1” indicates a value (before FSW1−FSW) at each point. The bottom column of “back side deformation amount 1” indicates an average value of points a to h.
“FSW2” indicates a difference in height between the reference j ′ and each point after performing frictional stirring of the middle circle (radius r2) in addition to the small circle (radius r1) with the reference j ′ set to zero. ing. “Back side deformation 2” indicates the value of (before FSW2−FSW) at each point. The bottom column of “back side deformation 2” shows the average value of points a to h.
“FSW3” is based on the reference j ′ after the frictional stirring of the great circle (radius r3) in addition to the small circle (radius r1) and the middle circle (radius r2) with the reference j ′ set to zero. The height difference from the point is shown. “Back side deformation amount 3” indicates a value (before FSW3−FSW) at each point. The bottom column of “back side deformation 3” shows the average value of points a to h.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表3は、ベース部材の板厚が60mmであって、表面側から摩擦攪拌を行った場合の測定値を示した表である。表3の各項目は、表1の各項目と略同等の意味を示す。 Table 3 is a table showing measured values when the thickness of the base member is 60 mm and frictional stirring is performed from the surface side. Each item in Table 3 has substantially the same meaning as each item in Table 1.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表4は、ベース部材の板厚が60mmであって、裏面側から摩擦攪拌を行った場合の測定値を示した表である。表4の各項目は、表2の各項目と略同等の意味を示す。 Table 4 is a table showing measured values when the thickness of the base member is 60 mm and frictional stirring is performed from the back side. Each item in Table 4 has substantially the same meaning as each item in Table 2.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 表1の「表面側変形量」の平均値(1.61)と、表2の「裏面側変形量1」の平均値(2.04)とを比較すると、「裏面側変形量1」の値の方が大きい。同様に、「裏面側変形量2」の平均値(2.95)及び「裏面側変形量3」の平均値(3.53)も、「表面側変形量」の平均値(1.61)よりも大きな値となっている。つまり、ベース部材の板厚が30mmの場合は、裏面側から小円の摩擦攪拌のみを行っただけでも、ベース部材の反りが戻りすぎてしまう。したがって、ベース部材30mmの場合は、表面側よりも低い加工度でベース部材2の平坦性を高めることができる。 Comparing the average value (1.61) of “front side deformation” in Table 1 and the average value (2.04) of “back side deformation 1” in Table 2, the value of “back side deformation 1” is more large. Similarly, the average value (2.95) of “back side deformation 2” and the average value (3.53) of “back side deformation 3” are larger than the average value (1.61) of “front side deformation”. ing. That is, when the plate thickness of the base member is 30 mm, the warping of the base member will return too much even if only a small circle of friction stirring is performed from the back side. Therefore, in the case of the base member 30 mm, the flatness of the base member 2 can be improved with a lower processing degree than the surface side.
 表3の「表面側変形量」の平均値(0.98)と、表4の「裏面側変形量2」の平均値(0.91)とを比較すると、両者の変形量が近似している。したがって、ベース部材2の板厚が60mmの場合は、裏面側から小円及び中円の摩擦攪拌を行ったときに、ベース部材2の平坦性が高いことが確認できた。つまり、板厚が60mmの場合は、表面側に比べて裏面側の加工度を低く設定すればベース部材2の平坦性を高めることができる。 Comparing the average value (0.98) of “front side deformation amount” in Table 3 with the average value (0.91) of “back side deformation amount 2” in Table 4, the deformation amounts of both are approximated. Therefore, when the plate thickness of the base member 2 was 60 mm, it was confirmed that the flatness of the base member 2 was high when the frictional stirring of the small circle and the middle circle was performed from the back side. That is, when the plate thickness is 60 mm, the flatness of the base member 2 can be improved by setting the processing degree on the back surface side to be lower than that on the front surface side.

Claims (35)

  1.  ベース部材の表面側に開口する凹溝の周囲に形成された蓋溝に、蓋板を配置する蓋溝閉塞工程と、
     前記蓋溝の側壁と前記蓋板の側面との突合部に沿って接合用回転ツールを相対移動させて摩擦攪拌を行う接合工程と、
     矯正用回転ツールを用いて前記ベース部材の裏面側から摩擦攪拌を行う矯正工程と、を含み、
     前記矯正工程によって形成された塑性化領域の体積量が、前記接合工程によって形成された塑性化領域の体積量よりも少ないことを特徴とする伝熱板の製造方法。
    A lid groove closing step of disposing a lid plate in the lid groove formed around the concave groove opening on the surface side of the base member;
    A joining step in which friction stir is performed by relatively moving the joining rotary tool along the abutting portion between the side wall of the lid groove and the side surface of the lid plate;
    A correction step of performing frictional stirring from the back side of the base member using a correction rotating tool,
    The method for manufacturing a heat transfer plate, wherein a volume amount of the plasticized region formed by the straightening step is smaller than a volume amount of the plasticized region formed by the joining step.
  2.  ベース部材の表面側に開口する蓋溝の底面に形成された凹溝に、熱媒体用管を挿入する熱媒体用管挿入工程と、
     前記蓋溝に蓋板を配置する蓋溝閉塞工程と、
     前記蓋溝の側壁と前記蓋板の側面との突合部に沿って接合用回転ツールを相対移動させて摩擦攪拌を施す接合工程と、
     矯正用回転ツールを用いて前記ベース部材の裏面側から摩擦攪拌を行う矯正工程と、を含み、
     前記矯正工程によって形成された塑性化領域の体積量が、前記接合工程によって形成された塑性化領域の体積量よりも少ないことを特徴とする伝熱板の製造方法。
    A heat medium tube insertion step of inserting the heat medium tube into the concave groove formed in the bottom surface of the lid groove opening on the surface side of the base member;
    A lid groove closing step of disposing a lid plate in the lid groove;
    A joining step in which friction stir is performed by relatively moving the joining rotary tool along the abutting portion between the side wall of the lid groove and the side surface of the lid plate;
    A correction step of performing frictional stirring from the back side of the base member using a correction rotating tool,
    The method for manufacturing a heat transfer plate, wherein a volume amount of the plasticized region formed by the straightening step is smaller than a volume amount of the plasticized region formed by the joining step.
  3.  前記接合工程において、前記熱媒体用管の周囲に形成された空隙部に、摩擦熱によって流動化された塑性流動材を流入させることを特徴とする請求の範囲第2項に記載の伝熱板の製造方法。 3. The heat transfer plate according to claim 2, wherein in the joining step, a plastic fluidized material fluidized by frictional heat is caused to flow into a gap formed around the heat medium pipe. Manufacturing method.
  4.  ベース部材の表面側に開口する凹溝に、蓋板を挿入する蓋板挿入工程と、
     前記凹溝に沿って接合用回転ツールを相対移動させて摩擦攪拌を行う接合工程と、
     矯正用回転ツールを用いて前記ベース部材の裏面側から摩擦攪拌を行う矯正工程と、を含み、
     前記矯正工程によって形成された塑性化領域の体積量が、前記接合工程によって形成された塑性化領域の体積量よりも少ないことを特徴とすることを特徴とする伝熱板の製造方法。
    A lid plate insertion step of inserting a lid plate into the concave groove opened on the surface side of the base member;
    A joining step of performing frictional stirring by relatively moving the joining rotary tool along the concave groove;
    A correction step of performing frictional stirring from the back side of the base member using a correction rotating tool,
    The method for manufacturing a heat transfer plate, wherein a volume amount of the plasticized region formed by the straightening step is smaller than a volume amount of the plasticized region formed by the joining step.
  5.  ベース部材の表面側に開口する凹溝に、熱媒体用管を挿入する熱媒体用管挿入工程と、
     前記凹溝に蓋板を挿入する蓋板挿入工程と、
     前記凹溝に沿って接合用回転ツールを相対移動させて摩擦攪拌を行う接合工程と、
     矯正用回転ツールを用いて前記ベース部材の裏面側から摩擦攪拌を行う矯正工程と、を含み、
     前記矯正工程によって形成された塑性化領域の体積量が、前記接合工程によって形成された塑性化領域の体積量よりも少ないことを特徴とする伝熱板の製造方法。
    A heat medium pipe insertion step of inserting the heat medium pipe into the concave groove opened on the surface side of the base member;
    A lid plate insertion step of inserting a lid plate into the concave groove;
    A joining step of performing frictional stirring by relatively moving the joining rotary tool along the concave groove;
    A correction step of performing frictional stirring from the back side of the base member using a correction rotating tool,
    The method for manufacturing a heat transfer plate, wherein a volume amount of the plasticized region formed by the straightening step is smaller than a volume amount of the plasticized region formed by the joining step.
  6.  前記接合工程において、前記接合用回転ツールの押圧力によって前記蓋板が前記熱媒体用管の上部を押圧するとともに、前記蓋板の少なくとも上部と前記ベース部材とを塑性流動化することを特徴とする請求の範囲第5項に記載の伝熱板の製造方法。 In the joining step, the lid plate presses an upper portion of the heat medium pipe by a pressing force of the joining rotary tool, and at least the upper portion of the lid plate and the base member are plastically fluidized. The manufacturing method of the heat exchanger plate of Claim 5 to do.
  7.  前記矯正工程において、前記矯正用回転ツールの軌跡の平面形状が、前記ベース部材の中心に対して略点対称であることを特徴とする請求の範囲第1項、第2項、第4項及び第5項のいずれか一項に記載の伝熱板の製造方法。 In the straightening step, the planar shape of the locus of the straightening rotary tool is substantially point-symmetric with respect to the center of the base member. The manufacturing method of the heat exchanger plate as described in any one of Claim 5.
  8.  前記矯正工程において、前記矯正用回転ツールの軌跡の平面形状が、前記ベース部材の外縁の形状と略相似形であることを特徴とする請求の範囲第1項、第2項、第4項及び第5項のいずれか一項に記載の伝熱板の製造方法。 The said correction | amendment process WHEREIN: The planar shape of the locus | trajectory of the said correction | amendment rotary tool is substantially similar to the shape of the outer edge of the said base member, The range 1st, 2nd, 4th, and The manufacturing method of the heat exchanger plate as described in any one of Claim 5.
  9.  前記矯正工程において、前記矯正用回転ツールの軌跡の平面形状が、前記ベース部材の表面側に形成される前記接合用回転ツールの軌跡の平面形状と略同一であることを特徴とする請求の範囲第1項、第2項、第4項及び第5項のいずれか一項に記載の伝熱板の製造方法。 The planar shape of the locus of the straightening rotary tool in the straightening step is substantially the same as the planar shape of the locus of the joining rotary tool formed on the surface side of the base member. The manufacturing method of the heat exchanger plate as described in any one of 1st term, 2nd term, 4th term, and 5th term.
  10.  前記矯正工程において、前記矯正用回転ツールの軌跡の全長が、前記ベース部材の表面側に形成される前記接合用回転ツールの軌跡の全長と略同一であることを特徴とする請求の範囲第1項、第2項、第4項及び第5項のいずれか一項に記載の伝熱板の製造方法。 The length of the trajectory of the straightening rotary tool in the straightening step is substantially the same as the total length of the trajectory of the joining rotary tool formed on the surface side of the base member. The manufacturing method of the heat exchanger plate as described in any one of claim | item 2, 2nd term, 4th term | claim, and 5th term | claim.
  11.  前記矯正工程において、前記矯正用回転ツールの軌跡の全長が、前記ベース部材の表面側に形成される前記接合用回転ツールの軌跡の全長よりも短いことを特徴とする請求の範囲第1項、第2項、第4項及び第5項のいずれか一項に記載の伝熱板の製造方法。 In the straightening step, the total length of the trajectory of the correction rotary tool is shorter than the total length of the trajectory of the bonding rotary tool formed on the surface side of the base member. The manufacturing method of the heat exchanger plate as described in any one of 2nd term, 4th term, and 5th term.
  12.  前記矯正工程で用いる前記矯正用回転ツールのショルダー部の外径が、前記接合工程で用いる前記接合用回転ツールのショルダー部の外径よりも小さいことを特徴とする請求の範囲第1項、第2項、第4項及び第5項のいずれか一項に記載の伝熱板の製造方法。 An outer diameter of a shoulder portion of the correction rotary tool used in the straightening step is smaller than an outer diameter of a shoulder portion of the bonding rotary tool used in the bonding step. The manufacturing method of the heat exchanger plate as described in any one of Claim 2, 4th, and 5th.
  13.  前記矯正工程で用いる前記矯正用回転ツールのピンの長さが、前記接合工程で用いる前記接合用回転ツールのピンの長さよりも短いことを特徴とする請求の範囲第1項、第2項、第4項及び第5項のいずれか一項に記載の伝熱板の製造方法。 The length of the pin of the said rotation tool for correction used in the said correction process is shorter than the length of the pin of the said rotation tool for bonding used in the said joining process, Claims 1 and 2 characterized by the above-mentioned. The manufacturing method of the heat exchanger plate as described in any one of 4th term | claim and 5th term | claim.
  14.  前記ベース部材の厚みが、前記接合用回転ツールのショルダー部の外径の1.5倍以上であることを特徴とする請求の範囲第1項、第2項、第4項及び第5項のいずれか一項に記載の伝熱板の製造方法。 The thickness of the said base member is 1.5 times or more of the outer diameter of the shoulder part of the said rotary tool for joining, The range of Claims 1, 2, 4, and 5 characterized by the above-mentioned The manufacturing method of the heat exchanger plate as described in any one of Claims.
  15.  前記ベース部材の厚みが、前記接合用回転ツールのピンの長さの3倍以上であることを特徴とする請求の範囲第1項、第2項、第4項及び第5項のいずれか一項に記載の伝熱板の製造方法。 The thickness of the said base member is 3 times or more of the length of the pin of the said rotary tool for joining, The one of the Claims 1st, 2nd, 4th, and 5th Claim characterized by the above-mentioned. The manufacturing method of the heat exchanger plate as described in a term.
  16.  前記ベース部材が平面視多角形である場合、前記矯正工程において、前記ベース部材の隅部に対して前記矯正用回転ツールにより摩擦攪拌を行う隅部摩擦攪拌工程を含むことを特徴とする請求の範囲第1項、第2項、第4項及び第5項のいずれか一項に記載の伝熱板の製造方法。 When the base member has a polygonal shape in plan view, the correction step includes a corner friction stirring step of performing friction stirring on the corner portion of the base member by the correction rotary tool. The method for manufacturing a heat transfer plate according to any one of the first, second, fourth, and fifth ranges.
  17.  前記熱媒体用管の内部にヒーターを備える場合、前記矯正工程後に前記ヒーターに通電して、前記伝熱板を焼鈍する焼鈍工程を含むことを特徴とする請求の範囲第2項又は第5項に記載の伝熱板の製造方法。 6. The method according to claim 2, further comprising an annealing step of annealing the heat transfer plate by energizing the heater after the straightening step when a heater is provided in the heat medium pipe. The manufacturing method of the heat exchanger plate as described in 2.
  18.  前記矯正工程後に、前記ベース部材の裏面側を面削加工する面削工程を含み、前記面削加工の深さは、前記矯正用回転ツールのピンの長さよりも大きいことを特徴とする請求の範囲第1項、第2項、第4項及び第5項のいずれか一項に記載の伝熱板の製造方法。 The chamfering step of chamfering the back side of the base member after the straightening step, wherein the depth of the chamfering is larger than the length of the pin of the straightening rotary tool. The method for manufacturing a heat transfer plate according to any one of the first, second, fourth, and fifth ranges.
  19.  ベース部材の表面側に開口する凹溝の周囲に形成された蓋溝に、蓋板を挿入する蓋溝閉塞工程と、
     前記蓋溝の側壁と前記蓋板の側面との突合部に沿って接合用回転ツールを相対移動させて摩擦攪拌を行う接合工程と、
     前記接合工程により形成された前記ベース部材の裏面側に凸となる反りを、前記ベース部材の表面側に引張応力が発生するような曲げモーメントを作用させることで矯正する矯正工程と、を含むことを特徴とする伝熱板の製造方法。
    A lid groove closing step of inserting a lid plate into the lid groove formed around the concave groove opening on the surface side of the base member;
    A joining step in which friction stir is performed by relatively moving the joining rotary tool along the abutting portion between the side wall of the lid groove and the side surface of the lid plate;
    A correction step of correcting a warp convex on the back surface side of the base member formed by the bonding step by applying a bending moment that generates a tensile stress on the front surface side of the base member. The manufacturing method of the heat exchanger plate characterized by these.
  20.  ベース部材の表面側に開口する蓋溝の底面に形成された凹溝に、熱媒体用管を挿入する熱媒体用管挿入工程と、
     前記蓋溝に蓋板を挿入する蓋溝閉塞工程と、
     前記蓋溝の側壁と前記蓋板の側面との突合部に沿って接合用回転ツールを相対移動させて摩擦攪拌を行う接合工程と、
     前記接合工程により形成された前記ベース部材の裏面側に凸となる反りを、前記ベース部材の表面側に引張応力が発生するような曲げモーメントを作用させることで矯正する矯正工程と、を含むことを特徴とする伝熱板の製造方法。
    A heat medium tube insertion step of inserting the heat medium tube into the concave groove formed in the bottom surface of the lid groove opening on the surface side of the base member;
    A lid groove closing step of inserting a lid plate into the lid groove;
    A joining step in which friction stir is performed by relatively moving the joining rotary tool along the abutting portion between the side wall of the lid groove and the side surface of the lid plate;
    A correction step of correcting a warp convex on the back surface side of the base member formed by the bonding step by applying a bending moment that generates a tensile stress on the front surface side of the base member. The manufacturing method of the heat exchanger plate characterized by these.
  21.  前記接合工程において、前記熱媒体用管の周囲に形成された空隙部に、摩擦熱によって流動化された塑性流動材を流入させることを特徴とする請求の範囲第20項に記載の伝熱板の製造方法。 21. The heat transfer plate according to claim 20, wherein in the joining step, a plastic fluidized material fluidized by frictional heat is caused to flow into a gap formed around the heat medium pipe. Manufacturing method.
  22.  ベース部材の表面側に開口する凹溝に蓋板を挿入する蓋板挿入工程と、
     前記凹溝に沿って接合用回転ツールを相対移動させて摩擦攪拌を行う接合工程と、
     前記接合工程により形成された前記ベース部材の裏面側に凸となる反りを、前記ベース部材の表面側に引張応力が発生するような曲げモーメントを作用させることで矯正する矯正工程と、を含むことを特徴とする伝熱板の製造方法。
    A lid plate insertion step of inserting the lid plate into the concave groove opened on the surface side of the base member;
    A joining step of performing frictional stirring by relatively moving the joining rotary tool along the concave groove;
    A correction step of correcting a warp convex on the back surface side of the base member formed by the bonding step by applying a bending moment that generates a tensile stress on the front surface side of the base member. The manufacturing method of the heat exchanger plate characterized by these.
  23.  ベース部材の表面側に開口する凹溝に、熱媒体用管を挿入する熱媒体用管挿入工程と、
     前記凹溝に蓋板を挿入する蓋板挿入工程と、
     前記凹溝に沿って接合用回転ツールを相対移動させて摩擦攪拌を行う接合工程と、
     前記接合工程により形成された前記ベース部材の裏面側に凸となる反りを、前記ベース部材の表面側に引張応力が発生するような曲げモーメントを作用させることで矯正する矯正工程と、を含むことを特徴とする伝熱板の製造方法。
    A heat medium pipe insertion step of inserting the heat medium pipe into the concave groove opened on the surface side of the base member;
    A lid plate insertion step of inserting a lid plate into the concave groove;
    A joining step of performing frictional stirring by relatively moving the joining rotary tool along the concave groove;
    A correction step of correcting a warp convex on the back surface side of the base member formed by the bonding step by applying a bending moment that generates a tensile stress on the front surface side of the base member. The manufacturing method of the heat exchanger plate characterized by these.
  24.  前記接合工程では、前記接合用回転ツールの押圧力によって前記蓋板が前記熱媒体用管の上部を押圧するとともに、前記蓋板の少なくとも上部と前記ベース部材とを摩擦攪拌することを特徴とする請求の範囲第23項に記載の伝熱板の製造方法。 In the joining step, the lid plate presses the upper part of the heat medium pipe by the pressing force of the joining rotary tool, and at least the upper part of the lid plate and the base member are frictionally stirred. A method for manufacturing a heat transfer plate according to claim 23.
  25.  前記矯正工程では、前記ベース部材をプレス矯正することにより、前記反りを矯正することを特徴とする請求の範囲第19項、第20項、第22項及び第23項のいずれか一項に記載の伝熱板の製造方法。 24. The correction according to any one of claims 19, 20, 22, and 23, wherein the warping is corrected by press-correcting the base member in the correction step. Manufacturing method of heat transfer plate.
  26.  前記矯正工程では、前記ベース部材の裏面側の中央付近に当接する第一補助部材を配置するとともに、前記ベース部材の表面側の周縁付近に当接する第二補助部材及び第三補助部材を、前記第一補助部材を挟んで両側に配置した状態で、前記反りをプレス矯正することを特徴とする請求の範囲第25項に記載の伝熱板の製造方法。 In the correction step, the first auxiliary member that contacts the vicinity of the center of the back surface side of the base member is disposed, and the second auxiliary member and the third auxiliary member that contact the vicinity of the peripheral edge of the surface side of the base member are 26. The method for manufacturing a heat transfer plate according to claim 25, wherein the warp is press-corrected in a state where the warp is disposed on both sides of the first auxiliary member.
  27.  前記各補助部材は、前記ベース部材よりも硬度が低い材料であることを特徴とする請求の範囲第26項に記載の伝熱板の製造方法。 The method for manufacturing a heat transfer plate according to claim 26, wherein each auxiliary member is made of a material having a hardness lower than that of the base member.
  28.  前記矯正工程では、前記ベース部材をロール矯正することにより、前記反りを矯正することを特徴とする請求の範囲第19項、第20項、第22項及び第23項のいずれか一項に記載の伝熱板の製造方法。 The said correction process WHEREIN: The said curvature is correct | amended by roll-correcting the said base member, The Claim 19, The 20th, 22nd, and 23rd Claim characterized by the above-mentioned. Manufacturing method of heat transfer plate.
  29.  前記矯正工程では、前記ベース部材の裏面側の中央付近に当接する第一補助部材を配置するとともに、前記ベース部材の表面側の周縁付近に当接する第二補助部材及び第三補助部材を、前記第一補助部材を挟んで両側に配置した状態で、前記反りをロール矯正することを特徴とする請求の範囲第28項に記載の伝熱板の製造方法。 In the correction step, the first auxiliary member that contacts the vicinity of the center of the back surface side of the base member is disposed, and the second auxiliary member and the third auxiliary member that contact the vicinity of the peripheral edge of the surface side of the base member are The method for manufacturing a heat transfer plate according to claim 28, wherein the warp is roll-corrected in a state in which the first auxiliary member is disposed on both sides of the first auxiliary member.
  30.  前記各補助部材は、前記ベース部材よりも硬度が低い材料であることを特徴とする請求の範囲第29項に記載の伝熱板の製造方法。 The method for manufacturing a heat transfer plate according to claim 29, wherein each auxiliary member is made of a material having a hardness lower than that of the base member.
  31.  前記矯正工程では、前記ベース部材を衝打具で衝打することにより、前記反りを矯正することを特徴とする請求の範囲第19項、第20項、第22項及び第23項のいずれか一項に記載の伝熱板の製造方法。 24. Any one of claims 19, 20, 22, and 23, wherein, in the correction step, the warp is corrected by hitting the base member with a hitting tool. The manufacturing method of the heat exchanger plate as described in one term.
  32.  前記矯正工程では、前記ベース部材の裏面側の中央付近に当接する第一補助部材を配置するとともに、前記ベース部材の表面側の周縁付近に当接する第二補助部材及び第三補助部材を、前記第一補助部材を挟んで両側に配置した状態で、前記反りを矯正することを特徴とする請求の範囲第31項に記載の伝熱板の製造方法。 In the correction step, the first auxiliary member that contacts the vicinity of the center of the back surface side of the base member is disposed, and the second auxiliary member and the third auxiliary member that contact the vicinity of the peripheral edge of the surface side of the base member are 32. The method for manufacturing a heat transfer plate according to claim 31, wherein the warp is corrected in a state where the first auxiliary member is disposed on both sides of the first auxiliary member.
  33.  前記各補助部材は、前記ベース部材よりも硬度が低い材料であることを特徴とする請求の範囲第32項に記載の伝熱板の製造方法。 The method for manufacturing a heat transfer plate according to claim 32, wherein each auxiliary member is made of a material having a hardness lower than that of the base member.
  34.  前記矯正工程後に、前記伝熱板に焼鈍を行う焼鈍工程を含むことを特徴とする請求の範囲第19項、第20項、第22項及び第23項のいずれか一項に記載の伝熱板の製造方法。 The heat transfer according to any one of claims 19, 20, 22, and 23, further comprising an annealing step of annealing the heat transfer plate after the straightening step. A manufacturing method of a board.
  35.  前記熱媒体用管の内部にヒーターを配置しておき、前記矯正工程後に前記ヒーターに通電して、前記伝熱板を焼鈍する焼鈍工程を含むことを特徴とする請求の範囲第20項又は第23項に記載の伝熱板の製造方法。 21. The method according to claim 20, further comprising an annealing step in which a heater is disposed inside the heat medium pipe, and the heater is energized after the straightening step to anneal the heat transfer plate. 24. A method for producing a heat transfer plate according to item 23.
PCT/JP2009/050132 2008-02-21 2009-01-08 Method of manufacturing heat transfer plate WO2009104426A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN200980106125.XA CN101952079B (en) 2008-02-21 2009-01-08 Method of manufacturing heat transfer plate
KR1020107020722A KR101194097B1 (en) 2008-02-21 2009-01-08 Method of manufacturing heat transfer plate

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2008039652A JP5071144B2 (en) 2008-02-21 2008-02-21 Manufacturing method of heat transfer plate
JP2008-039652 2008-02-21
JP2008244565A JP5262508B2 (en) 2008-09-24 2008-09-24 Manufacturing method of heat transfer plate
JP2008-244565 2008-09-24

Publications (1)

Publication Number Publication Date
WO2009104426A1 true WO2009104426A1 (en) 2009-08-27

Family

ID=40985313

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/050132 WO2009104426A1 (en) 2008-02-21 2009-01-08 Method of manufacturing heat transfer plate

Country Status (4)

Country Link
KR (1) KR101194097B1 (en)
CN (4) CN103551799B (en)
TW (1) TWI389755B (en)
WO (1) WO2009104426A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104718049A (en) * 2012-10-10 2015-06-17 日本轻金属株式会社 Method for producing heat sink and method for producing heat exchanger plate
US20150273637A1 (en) * 2012-10-10 2015-10-01 Nippon Light Metal Company, Ltd. Method for manufacturing heat exchanger plate and method for friction stir welding
WO2020044663A1 (en) * 2018-08-27 2020-03-05 日本軽金属株式会社 Method for manufacturing heat transfer plate
US11654508B2 (en) 2017-09-27 2023-05-23 Nippon Light Metal Company, Ltd. Method for producing liquid-cooled jacket
US11654507B2 (en) 2017-12-18 2023-05-23 Nippon Light Metal Company, Ltd. Method for manufacturing liquid-cooling jacket
US11707798B2 (en) 2018-04-02 2023-07-25 Nippon Light Metal Company, Ltd. Method for manufacturing liquid-cooled jacket
US11707799B2 (en) 2018-12-19 2023-07-25 Nippon Light Metal Company, Ltd. Joining method
US11712748B2 (en) 2017-09-27 2023-08-01 Nippon Light Metal Company, Ltd. Method for producing liquid-cooled jacket
EP4102944A4 (en) * 2020-02-03 2024-03-06 Ls Electric Co Ltd Cooling plate and manufacturing method therefor

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI400421B (en) * 2010-01-14 2013-07-01 Asia Vital Components Co Ltd Heat exchanger structure
JP5843547B2 (en) * 2010-12-24 2016-01-13 本田技研工業株式会社 Method of manufacturing friction stir welding material
CN103747914B (en) * 2011-08-19 2017-05-03 日本轻金属株式会社 Friction stir welding method
TWI485023B (en) * 2012-12-11 2015-05-21 Metal Ind Res & Dev Ct Aluminum alloy oil hot plate manufacturing method
CN105658370B (en) * 2013-10-21 2018-05-01 日本轻金属株式会社 The manufacture method and joint method of heat transfer plate
JP6052232B2 (en) 2014-01-27 2016-12-27 日本軽金属株式会社 Joining method
WO2016063754A1 (en) * 2014-10-21 2016-04-28 日立オートモティブシステムズ株式会社 Method for manufacturing piston for internal combustion engine and frictional hole sealing device for piston for internal combustion engine
CN104741771A (en) * 2015-04-03 2015-07-01 北京赛福斯特技术有限公司 Method and tool for forming tunnel type hole
WO2019116399A1 (en) * 2017-12-16 2019-06-20 National Institute of Technology Tiruchirappalli Friction welding of tube to tube using a guide tool
KR20210092207A (en) * 2018-11-21 2021-07-23 스미또모 가가꾸 가부시키가이샤 Backing plate, sputtering target and manufacturing method thereof
JP2021087961A (en) * 2019-12-02 2021-06-10 日本軽金属株式会社 Method of manufacturing heat exchanger plate

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004314115A (en) * 2003-04-15 2004-11-11 Nippon Light Metal Co Ltd Heat transfer element, and method for manufacturing the same
JP2005177844A (en) * 2003-12-22 2005-07-07 Kawasaki Heavy Ind Ltd Friction stirring and joining method
JP2006150454A (en) * 2000-12-22 2006-06-15 Hitachi Cable Ltd Cooling plate, manufacturing method thereof, sputtering target and manufacturing method thereof

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5765284A (en) * 1996-12-23 1998-06-16 Carrier Corporation Method for constructing heat exchangers using fluidic expansion
JP3895498B2 (en) * 1999-04-28 2007-03-22 古河スカイ株式会社 Heat plate joined with metal member and method for manufacturing the same
JP3641422B2 (en) * 2000-11-17 2005-04-20 株式会社 正和 Manufacturing method of cooling plate
JP4385533B2 (en) * 2001-03-02 2009-12-16 日本軽金属株式会社 Manufacturing method of heat plate
JP3795824B2 (en) * 2002-04-16 2006-07-12 株式会社日立製作所 Friction stir welding method
JP4305273B2 (en) * 2004-05-11 2009-07-29 日本軽金属株式会社 Manufacturing method of heat exchange plate and manufacturing method of heat exchanger
JP4808949B2 (en) * 2004-10-12 2011-11-02 助川電気工業株式会社 Method for manufacturing a heating element having an embedded heater
US8365408B2 (en) * 2007-04-16 2013-02-05 Nippon Light Metal Company, Ltd. Heat transfer plate and method of manufacturing the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006150454A (en) * 2000-12-22 2006-06-15 Hitachi Cable Ltd Cooling plate, manufacturing method thereof, sputtering target and manufacturing method thereof
JP2004314115A (en) * 2003-04-15 2004-11-11 Nippon Light Metal Co Ltd Heat transfer element, and method for manufacturing the same
JP2005177844A (en) * 2003-12-22 2005-07-07 Kawasaki Heavy Ind Ltd Friction stirring and joining method

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104718049A (en) * 2012-10-10 2015-06-17 日本轻金属株式会社 Method for producing heat sink and method for producing heat exchanger plate
US20150273637A1 (en) * 2012-10-10 2015-10-01 Nippon Light Metal Company, Ltd. Method for manufacturing heat exchanger plate and method for friction stir welding
US9821419B2 (en) * 2012-10-10 2017-11-21 Nippon Light Metal Company, Ltd. Method for manufacturing heat exchanger plate and method for friction stir welding
US10518369B2 (en) 2012-10-10 2019-12-31 Nippon Light Metal Company, Ltd. Method for manufacturing heat exchanger plate and method for friction stir welding
US11654508B2 (en) 2017-09-27 2023-05-23 Nippon Light Metal Company, Ltd. Method for producing liquid-cooled jacket
US11712748B2 (en) 2017-09-27 2023-08-01 Nippon Light Metal Company, Ltd. Method for producing liquid-cooled jacket
US11654507B2 (en) 2017-12-18 2023-05-23 Nippon Light Metal Company, Ltd. Method for manufacturing liquid-cooling jacket
US11707798B2 (en) 2018-04-02 2023-07-25 Nippon Light Metal Company, Ltd. Method for manufacturing liquid-cooled jacket
WO2020044663A1 (en) * 2018-08-27 2020-03-05 日本軽金属株式会社 Method for manufacturing heat transfer plate
US11413700B2 (en) 2018-08-27 2022-08-16 Nippon Light Metal Company, Ltd. Method for manufacturing heat transfer plate
US11707799B2 (en) 2018-12-19 2023-07-25 Nippon Light Metal Company, Ltd. Joining method
EP4102944A4 (en) * 2020-02-03 2024-03-06 Ls Electric Co Ltd Cooling plate and manufacturing method therefor

Also Published As

Publication number Publication date
KR101194097B1 (en) 2012-10-24
CN101952079A (en) 2011-01-19
TW200936283A (en) 2009-09-01
CN101952079B (en) 2014-04-02
CN103551723B (en) 2016-08-31
CN103551722A (en) 2014-02-05
TWI389755B (en) 2013-03-21
KR20100117117A (en) 2010-11-02
CN103551723A (en) 2014-02-05
CN103551799B (en) 2016-05-25
CN103551799A (en) 2014-02-05

Similar Documents

Publication Publication Date Title
WO2009104426A1 (en) Method of manufacturing heat transfer plate
JP5262508B2 (en) Manufacturing method of heat transfer plate
US8365408B2 (en) Heat transfer plate and method of manufacturing the same
JP5177017B2 (en) Manufacturing method of heat transfer plate
JP2010125495A (en) Joining method
JP5071144B2 (en) Manufacturing method of heat transfer plate
WO2015122093A1 (en) Welding method
WO2009157519A1 (en) Heat exchange plate manufacturing method and heat exchange plate
JP5401921B2 (en) Manufacturing method of heat transfer plate
JP5590206B2 (en) Manufacturing method of heat transfer plate
JP5267381B2 (en) Manufacturing method of heat transfer plate
JP5177061B2 (en) Manufacturing method of heat transfer plate
JP5434251B2 (en) Manufacturing method of heat transfer plate
JP5573940B2 (en) Manufacturing method of heat transfer plate
JP5177059B2 (en) Manufacturing method of heat transfer plate
JP5459386B2 (en) Manufacturing method of heat transfer plate
JP5573939B2 (en) Manufacturing method of heat transfer plate
JP4618327B2 (en) Metal member joining method and radiator manufacturing method
JP5772920B2 (en) Manufacturing method of heat transfer plate
JP5464236B2 (en) Manufacturing method of heat transfer plate
JP2016043368A (en) Manufacturing method of heat transfer plate
JP2017213604A (en) Heat exchanger plate manufacturing method, and heat exchanger plate
JP2015196180A (en) Manufacturing method for heat transfer plate and friction agitation joint method
JP6248730B2 (en) Manufacturing method of heat transfer plate and manufacturing method of composite plate having no flow path inside
JP2020011273A (en) Manufacturing method of heat transfer plate and friction agitation joining method

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980106125.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09713236

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20107020722

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 09713236

Country of ref document: EP

Kind code of ref document: A1