JP3895498B2 - Heat plate joined with metal member and method for manufacturing the same - Google Patents
Heat plate joined with metal member and method for manufacturing the same Download PDFInfo
- Publication number
- JP3895498B2 JP3895498B2 JP12107299A JP12107299A JP3895498B2 JP 3895498 B2 JP3895498 B2 JP 3895498B2 JP 12107299 A JP12107299 A JP 12107299A JP 12107299 A JP12107299 A JP 12107299A JP 3895498 B2 JP3895498 B2 JP 3895498B2
- Authority
- JP
- Japan
- Prior art keywords
- flow path
- metal
- heat medium
- medium flow
- annular groove
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、金属部材を接合したもので内部に熱媒体流路が形成されているヒートプレート及びその製造方法に関する。
【0002】
【従来の技術】
ヒートプレートは内部に熱媒体流路が形成されているもので、例えば熱媒体として冷却媒体を流して冷却板として、半導体製造装置の真空容器(真空チャンバー)内で用いられるものである。従来、内部に熱媒体流路が形成されているヒートプレートとして、アルミニウム又はアルミニウム合金部材を接合したものが知られている。
【0003】
従来技術について図25、図27で説明する。図25は、溶接あるいはロウ付けにより接合したヒートプレートの断面を示した斜視図で、ヒートプレート(71)はアルミニウム合金部材(73)の接合面に熱媒体流路(72)となる溝を成形し、これをアルミニウム合金部材(74)と組み合わせ、その外周部(75)をTIG溶接、MIG溶接あるいはEBW溶接(電子ビーム溶接)により接合したものである。或るいはロウ付けにより接合したものである。
図27は、ボルト締めにより接合したヒートプレートの断面を示した斜視図で、ヒートプレート(71)はアルミニウム合金部材(73)の接合面に熱媒体流路(72)となる溝を成形し、またその外周の溝にシール用Oリング(79)を入れてアルミニウム合金部材(74)と組み合わせ、ボルト(78)で締めつけて接合したものである。
【0004】
【発明が解決しようとする課題】
上記従来の図25に示すTIG溶接、MIG溶接により接合したヒートプレートは、その溶接時にピンホールが生じたり、ガスを巻き込むことがあり、また溶接により接合部は端面からの深いものではなく、その溶接接合部の信頼性に問題があった。特に半導体製造装置等の真空容器(真空チャンバー)内等の高真空下での使用において、ヒートプレートの溶接接合部のピンホールからの漏れや巻き込まれたガスによる影響で真空容器内の真空度が低下し、そこで製造された半導体は信頼性が低下したり、歩留まりが悪くなるという問題があった。またヒートプレートはその接合部の全周を溶接しなければならないもので、コスト的に割高になるとい問題もある。またEBW溶接(電子ビーム溶接)による場合は、溶接作業を真空中で行うためによりコストが高くなるという問題があり、また精度の高い溶接位置決めが必要となるため、高価溶接位置決め治具が必要なものである。
【0005】
また、ロウ付けにより接合したヒートプレートは、接合面にそのロウ付け時に生じるピンホールやガスの巻き込みによりその接合部の信頼性に問題があった。
図27に示すシールパッキンとボルト締めによる場合は、シールパッキン用溝及びボルトホールを設けるスペースが必要であり、コンパクトにできないという問題があり、また高真空での使用にはその気密性に限界がある。またシールパッキンの耐熱性能に影響され、ヒートプレートの使用温度が300℃を越える温度域では使用できないという問題がある。
【0006】
また、上記の従来方法は、いずれの場合も熱媒体の流入圧に上げる場合、内圧により合わせた部材の中膨らみを生じてしまうため、この防止策として、部材中央部に中膨らみ防止の処理を行う必要があった。例えば、図26(a)に示すように、ヒートプレート(71)はアルミニウム合金部材(73)に貫通孔を設け、部材(74)の凸部を貫通させ、表面(76)を溶接して、合わせ部の中膨らみを防止していた。また図26(b)に示すように、ヒートプレート(71)はアルミニウム合金部材(73)に貫通孔を設け、部材(74)との隅部(77)を溶接して、合わせ部の中膨らみを防止していた。しかしこの防止策は精度の高い溶接を行わなければならず、コスト的に割高なものである。
【0007】
【課題を解決するための手段】
本発明は、複数の金属部材を接合したもので、その内部に熱媒体流路が形成されているヒートプレートにおいて、前記熱媒体流路は、複数の金属部材の一方および/またはもう一方の接合面に熱媒体流路となる溝を形成し、その接合面を組み合わせて鍛圧して形成したものであり、かつ前記金属部材の各々の接合面の対向位置に、熱媒体流路を囲むように全周に、一方の接合面には環状溝を設け、もう一方の接合面には環状突出部を設け、前記環状溝に前記環状突出部を挿入し、金属接合可能な温度にて鍛圧圧縮して金属接合した高度のシール性を有する締結部を熱媒体流路を囲むように形成したもので、前記締結部は、鍛圧圧縮により変形し、環状溝と環状突出部の体積差により環状溝内に環状突出部が充満していることを特徴とする複数の金属部材を接合したヒートプレートである。
また、本発明は、複数の金属部材を接合したもので、その内部に熱媒体流路が形成されているヒートプレートにおいて、前記熱媒体流路は、複数の金属部材の一方および/またはもう一方の接合面に熱媒体流路となる溝を形成し、その接合面を組み合わせて鍛圧して形成したものであり、かつ前記金属部材の各々の接合面の対向位置に、熱媒体流路を囲むように全周に、一方の接合面には環状溝を設け、もう一方の接合面にも環状溝を設け、各々の前記環状溝に金属の中間部材を挿入し、金属接合可能な温度にて鍛圧圧縮して金属接合した高度のシール性を有する締結部を熱媒体流路を囲むように形成したもので、前記締結部は、鍛圧圧縮により変形し、環状溝と中間部材の体積差により環状溝内に金属の中間部材が充満していることを特徴とする複数の金属部材を接合したヒートプレートである。 また、本発明は、複数の金属部材を接合したもので、その内部に熱媒体流路が形成されているヒートプレートにおいて、
前記熱媒体流路は、複数の金属部材の一方および/またはもう一方の接合面に熱媒体流路となる溝を形成し、その接合面を組み合わせて鍛圧して形成したものであり、かつ前記金属部材の各々の接合面の対向位置に、熱媒体流路を囲むように全周に、一方の接合面には環状突出部を設け、もう一方の接合面にも環状突出部を設け、接合面の環状突出部を合わせ、金属接合可能な温度にて鍛圧圧縮して金属接合した高度のシール性を有する締結部を熱媒体流路を囲むように形成したことを特徴とする複数の金属部材を接合したヒートプレートである。
また、本発明の上記ヒートプレートは、前記締結部が、環状で多重に設けられていることを特徴とするものである。
また、本発明の上記ヒートプレートは、前記締結部が熱媒体流路を囲むように形成され、さらに一方又は両方の接合面に前記締結部の外側全周に、前記締結部を形成する環状溝または環状突出部より低い環状凸部を設け、前記低い環状凸部が加熱して鍛圧圧縮されて金属接合させることを特徴とするものである。
【0008】
また、本発明の上記ヒートプレートは、前記締結部が熱媒体流路を囲むように形成され、さらに接合面の熱媒体流路に沿ってその近傍に高いシール性を確保するため、複数の金属部材の各々の接合面の対向位置に、一方の接合面には溝、もう一方の接合面には突出部を設け、これを組み合わせ鍛圧圧縮して締結したことを特徴とするものである。
また、本発明の上記ヒートプレートは、前記締結部が、熱媒体流路を囲むように形成され、さらに接合面の対向位置に凹部と凸部が設け、鍛圧圧縮により前記凹部と前記凸部を締結して、接合面の剥離を防止していることを特徴とするものである。
また、本発明の上記ヒートプレートは、前記熱媒体流路が、複数の金属部材の一方および/またはもう一方の接合面に熱媒体流路となる溝を形成し、前記溝に流通管を密着して形成したものであることを特徴とするものである。
また、本発明の上記ヒートプレートは、複数の金属部材のそれぞれが、アルミニウム又はアルミニウム合金部材であることを特徴とするものである。
また、本発明の上記ヒートプレートは、複数の金属部材のそれぞれが、アルミニウム又はアルミニウム合金部材であり、300〜500℃で鍛圧圧縮して金属接合させることを特徴とするものである。
また、本発明の上記ヒートプレートは、複数の金属部材のそれぞれが、銅又は銅合金部材であることを特徴とするものである。
また、本発明の上記ヒートプレートは、複数の金属部材のそれぞれが、銅又は銅合金部材であり、700〜900℃で鍛圧圧縮して金属接合させることを特徴とするものである。
【0009】
また、本発明は、複数の金属部材を接合し、内部に熱媒体流路が形成されているヒートプレートの製造方法において、金属部材の一方または両方に接合面の熱媒体流路となる溝を形成し、一方の金属部材の接合面には熱媒体流路を囲むように全周に環状溝をを成形し、もう一方の金属部材の接合面には熱媒体流路を囲むように全周に環状突出部を成形し、前記環状溝と環状突出部は対向位置に設けられており、前記接合面を組み合わせて前記環状溝に前記環状突出部挿入して、金属接合可能な温度にて鍛圧圧縮を行い、内部に熱媒体流路を形成し、かつ熱媒体流路を囲むように高度のシール性を有する金属接合した締結部を形成し、前記締結部は、鍛圧圧縮により変形し、環状溝と環状突出部の体積差により環状溝内
に環状突出部が充満しているもので、高真空中でも使用可能な締結部を形成したことを特徴とする複数の金属部材を接合したヒートプレートの製造方法である。 また、本発明は、複数の金属部材を接合し、内部に熱媒体流路が形成されているヒートプレートの製造方法において、金属部材の一方または両方に接合面の熱媒体流路となる溝を形成し、一方の金属部材の接合面には熱媒体流路を囲むように全周に環状溝をを成形し、もう一方の金属部材の接合面には熱媒体流路を囲むように全周に環状溝を成形し、各々の環状溝は対向位置に設けられており、前記接合面を組み合わせて、各々の前記環状溝に金属の中間部材を挿入して、金属接合可能な温度にて鍛圧圧縮を行い、内部に熱媒体流路を形成し、かつ熱媒体流路を囲むように高度のシール性を有する金属接合した締結部を形成し、前記締結部は、鍛圧圧縮により変形し、環状溝と中間部材の体積差により環状溝内に金属の中間部材が充満しているもので、高真空中でも使用可能な締結部を形成したことを特徴とする複数の金属部材を接合したヒートプレートの製造方法である。
また、本発明は、複数の金属部材を接合し、内部に熱媒体流路が形成されているヒートプレートの製造方法において、金属部材の一方または両方に接合面の熱媒体流路となる溝を形成し、一方の金属部材の接合面には熱媒体流路を囲むように全周に環状突出部を成形し、もう一方の金属部材の接合面には熱媒体流路を囲むように全周に環状突出部を成形し、各々の環状突出部は対向位置に設けられており、前記接合面を組み合わせて、接合面の環状突出部を合わせて、金属接合可能な温度にて鍛圧圧縮を行い、内部に熱媒体流路を形成し、かつ熱媒体流路を囲むように高度のシール性を有する金属接合した締結部を形成し、高真空中でも使用可能な締結部を形成したことを特徴とする複数の金属部材を接合したヒートプレートの製造方法である。
【0010】
また、本発明は、複数のアルミニウム又はアルミニウム合金部材を接合し、内部に熱媒体流路が形成されているヒートプレートの製造方法において、アルミニウム又はアルミニウム合金部材の一方または両方に接合面の熱媒体流路となる溝を形成し、一方の部材の接合面には熱媒体流路を囲むように全周に環状溝をを成形し、もう一方の部材の接合面には熱媒体流路を囲むように全周に環状突出部を成形し、前記環状溝と環状突出部は対向位置に設けられており、前記接合面を組み合わせて前記環状溝に前記環状突出部挿入して、300〜500℃で鍛圧圧縮を行い、内部に熱媒体流路を形成し、かつ熱媒体流路を囲むように高度のシール性を有する金属接合した締結部を形成し、前記締結部は、鍛圧圧縮により変形し、環状溝と環状突出部の体積差により環状溝内に環状突出部が充満しているもので、高真空中でも使用可能な締結部を形成したことを特徴とする複数の金属部材を接合したヒートプレートの製造方法である。
また、本発明の上記のヒートプレートの製造方法は、一方の部材の接合面に成形した環状溝と、もう一方の部材の接合面に成形した環状突出部は、環状溝の巾をa、環状溝の深さをbとし、環状突出部の巾をc、環状突出部の高さをdとしたとき、
a×b≦c×d
b/d≦1.0
d/c≦6
の関係であり
環状溝内に環状突出部を充満させて金属接合した高度のシール性を有する締結部を形成ていることを特徴とするものである。
【0011】
また、本発明は、複数のアルミニウム又はアルミニウム合金部材を接合し、内部に熱媒体流路が形成されているヒートプレートの製造方法において、アルミニウム又はアルミニウム合金部材の一方または両方に接合面の熱媒体流路となる溝を形成し、一方の部材の接合面には熱媒体流路を囲むように全周に環状溝を成
形し、もう一方の部材の接合面には熱媒体流路を囲むように全周に環状溝を成形し、各々の環状溝は対向位置に設けられており、前記接合面を組み合わせて、各々の前記環状溝にアルミニウム又はアルミニウム合金の中間部材を挿入し、300〜500℃で鍛圧圧縮を行い、内部に熱媒体流路を形成し、かつ環状溝内に中間部材を充満させて金属接合した高度のシール性を有する締結部を形成し、
前記締結部は、鍛圧圧縮により変形し、環状溝と中間部材の体積差により環状溝内にアルミニウム又はアルミニウム合金の中間部材が充満しているもので、高真空中でも使用可能な締結部を形成したことを特徴とする複数の金属部材を接合したヒートプレートの製造方法である。
また、本発明の上記のヒートプレートの製造方法は、一方の部材の接合面に成形した環状溝と、もう一方の部材の接合面に成形した環状溝と、環状溝に挿入される中間部材が、一方の部材の環状溝の深さA、環状溝の幅B、もう一方の部材の環状溝の深さC、環状溝の幅D、及び中間部材の長さE、中間部材の幅Fのとき、
(A+C)≦E、
(A×B+C×D)≦E×F、
(A+C)/E≦1、
B≧F、D≧F
の関係であり、
環状溝内に中間部材を充満させて金属接合した高度のシール性を有する締結部を形成ていることを特徴とするものである。
また、本発明は、複数のアルミニウム又はアルミニウム合金部材を接合し、内部に熱媒体流路が形成されているヒートプレートの製造方法において、アルミニウム又はアルミニウム合金部材の一方または両方に接合面の熱媒体流路となる溝を形成し、一方の部材の接合面には熱媒体流路を囲むように全周に環状突出部を成形し、もう一方の金属部材の接合面には熱媒体流路を囲むように全周に環状突出部を成形し、各々の環状突出部は対向位置に設けられており、前記接合面を組み合わせて、接合面の環状突出部を合わせ、300〜500℃で鍛圧圧縮を行い、内部に熱媒体流路を形成し、かつ熱媒体流路を囲むように環状突出部の金属接合した高度のシール性を有する締結部を形成し、高真空中でも使用可能な締結部を形成したことを特徴とする複数の金属部材を接合したヒートプレートの製造方法である。
さらに、本発明の上記ヒートプレートの製造方法は、複数の金属部材が、銅又は銅合金部材であり、鍛圧圧縮を700〜900℃で行い金属接合させて高度のシール性を有する締結部を形成したことを特徴とするものである。
【0012】
【作用】
本発明のヒートプレートは、金属部材例えばアルミニウム又はアルミニウム合金部材の各々の接合面の対向位置に、熱媒体流路を囲むように全周に環状段部を設け、各々の接合面の環状段部を組み合わせて鍛圧圧縮して形成した締結部により、接合面は高度に密閉され、内部の熱媒体流路との高度な密閉度が確保するものである。
また、金属部材例えばアルミニウム又はアルミニウム合金部材の各々の接合面の対向位置に熱媒体流路を囲むように設けられた環状段部が、環状で多重に設けられていることにより、その高度な密閉度をより確実なものとしたものである。
【0013】
また本発明のヒートプレートは、その金属部材例えばアルミニウム又はアルミニウム合金部材の各々の接合面の対向位置に熱媒体流路を囲むように設けられた環状段部が、一方の接合面は環状溝であり、もう一方の接合面は環状突出部であることにより、環状溝に環状突出部に挿入し、これに鍛圧圧縮して環状突出部を環状溝に充満させ締結させて、環状溝部と環状突出部の体積差により環状溝に環状突出部が圧入して高密度のシール性を有する締結部が形成され、高度な密閉度を確保するものである。またより鍛圧圧縮して金属接合させることでよりヒートプレートの高度な密閉度を確保するものである。
【0014】
また本発明のヒートプレートは、その金属部材例えばアルミニウム又はアルミニウム合金部材の各々の接合面の対向位置に熱媒体流路を囲むように設けられた環状段部が、一方の接合面は環状突出部(凸部)であり、もう一方の接合面も環状突出部(凸部)であり、これらの環状突出部(凸部)を鍛圧圧縮することにより、またより鍛圧圧縮して金属接合することにより高密度のシール性を有する締結部が形成され、高い密閉度を確保することができるものである。
【0015】
また本発明のヒートプレートは、その金属部材例えばアルミニウム又はアルミニウム合金部材の各々の接合面の対向位置に熱媒体流路を囲むように設けられた環状段部が、一方の接合面は環状溝であり、もう一方の接合面も環状溝であり、各々の環状溝に挿入充満させる金属部材例えばアルミニウム又はアルミニウム合金の中間部材とからなり、これらを鍛圧圧縮して環状溝に中間部材を圧入、充満させることにより高密度のシール性を有する締結部が形成され、高度な密閉度を確保するものである。またより鍛圧圧縮して金属接合させることでよりヒートプレートの高度な密閉度を確保するものである。
【0016】
また本発明のヒートプレートは、金属部材例えばアルミニウム又はアルミニウム合金部材の各々の接合面の対向位置に熱媒体流路を囲むよう環状段部が設けられ、さらに一方又は両方の接合面の前記環状段部の外側全周に環状突出部を設け、環状段部を組み合わせるとともに、その外側の環状突出部も組み合わせて、これらを鍛圧圧縮することにより、ヒートプレートの外周部のより密な接合を確保することができるものであり、外周端部の接合部からの浸透を防止することができるものである。
【0017】
また本発明のヒートプレートは、熱媒体流路に沿ってその対向位置に段部、たとえば一方の接合面は溝、もう一方の接合面は突出部を設けて鍛圧圧縮により締結することにより熱媒体流路が高いシール性を有するものとなり、熱媒体の流入圧に上げても中膨らみ起こすことがなく、また熱媒体の漏れを生ずることがないものである。
また、本発明のヒートプレートは、金属部材例えばアルミニウム又はアルミニウム合金部材の接合面の対向位置に段部、たとえば一方の接合面は凹部、もう一方の接合面は凸部を設けて鍛圧圧縮により締結することにより接合面の剥離を防止することができ、熱媒体の流入圧に上げても中膨らみ剥離を起こすことがないものである。
【0018】
【発明の実施の形態】
本発明の実施の形態について詳細に説明する。
本発明のヒートプレートは、内部に熱媒体流路が形成されているもので、熱媒体としては液体、気体(ガス)等であり、熱媒体として冷却媒体を流路に流すことにより冷却板として、また熱媒体として加熱媒体媒体を流路に流すことにより加熱板として用いられるものである。例えば、半導体製造装置の真空容器(真空チャンバー)内で冷却板、熱板、高シール性を利用したガス流路プレートとして用いられるものである。また強度、剛性、熱伝導性を必要とされる用途に適したものである。
本発明のヒートプレートは、それを構成する複数の金属部材がアルミニウム又はアルミニウム合金部材、また金属部材が銅又は銅合金部材が適しているものである。
【0019】
ヒートプレートを構成する複数の金属部材、例えば2個の部材は、その接合面を組み合わせて鍛圧して内部に熱媒体流路を形成し、かつ組み合わされた環状段部である環状溝と環状突出部、環状突出部と環状突出部、あるいは環状溝と中間部材は、鍛圧圧縮されて金属接合され高密度のシール性を有する締結部を形成するものであり、この締結部の密閉度は、10−8〜10−10Torrの高真空でも、その内部の熱媒体流路からのリークが生ずることがないものである。これは半導体製造装置で求められる高真空に対応できるものである。
本発明のヒートプレートにおいて、金属部材の各々の接合面の対向位置に、環状段部を熱媒体流路を囲むように全周に設けるものであるが、熱媒体流路の開放端(熱媒体の出入口)がヒートプレートの板端面まで連続しているときは、その開放端(熱媒体の出入口)が環状段部を迂回するように超えて設けられている場合もあり、ここでいう熱媒体流路を囲むように全周に環状段部を設けるにあたり、ヒートプレートの熱媒体流路の主要な部分、例えば熱媒体流路を蛇行するように形成されている部分を囲むように環状段部を設けていることを意味しているものである。
【0020】
本発明において、ヒートプレートの熱媒体流路は、金属部材、例えばアルミニウム又はアルミニウム合金部材、あるいは銅又は銅合金部材の内部に蛇行させて形成することが好ましい。
熱媒体流路は、接合する部材の一方の部材の接合面に熱媒体流路となる溝、例えば、凹溝、U字型溝、丸型溝を形成し、もう一方の部材の平らな接合面と組み合わせて鍛圧して形成する。
また、一方の部材の接合面に熱媒体流路となる溝、例えば、凹溝、U字型溝、半円溝を形成し、もう一方の部材の接合面の対向位置にも熱媒体流路となる溝、例えば、凹溝、U字型溝、半円溝を形成し、これらを組み合わせて鍛圧して形成する。
また、凹溝、U字型溝、半円溝に媒体の流通管を密着して設けて熱媒体流路を形成するものである。このように管を埋め込むことにより、シール性をより一層高めることができ、また熱媒体として腐食性の媒体を流通させる場合には腐食性の熱媒体に対して防食効果のある流通管を埋め込むことにより、ヒートプレートを構成する金属部材、例えばアルミニウム又はアルミニウム合金部材、また銅又は銅合金部材を防食することができるものである。
【0021】
また、熱媒体流路の高いシール性を確保するため、熱媒体流路の近傍に、それに沿って対向位置に設ける段部、たとえば一方の接合面は溝、もう一方の接合面は突出部を設けものであるが、これらは熱媒体流路を囲むように全周に設けられている環状段部と同様の形状のものである。
また、接合面の剥離を防止するために、アルミニウム又はアルミニウム合金部材の接合面の対向位置に設ける段部、例えば、一方の接合面には凹部、もう一方の接合面には凸部を設けるもので、凹部、凸部の断面は、丸形、角形のいずれでもよい。また段部は、ヒートプレートの大きさ、熱媒体流路の状態に応じて適宜の位置に、適宜の数を設け接合面の剥離を防止するものである。
【0022】
本発明のヒートプレートを構成するアルミニウム又はアルミニウム合金部材は部材の材質、部材の製法については特定するものではないが、耐リーク性を考慮すると、内部欠陥の少ない圧延板、鍛造品を用いることが望ましい。
例えば、ヒートプレートを構成するアルミニウム又はアルミニウム合金部材の材質としては、純度99.5%以上のJIS1050を用られる。またJIS1100(SiとFe:1.0%以下、Cu:0.05〜0.20%、Mn:0.05%以下、Zn:0.10%以下、残部Al)、JIS3003(Si:0.6%以下、Fe:0.7%以下、Cu:0.05〜0.20%、Mn:1.0〜1.5%、Zn:0.10%以下、残部Al)、JIS6063(Si:0.20〜0.6%、Fe:0.35%以下、Cu:0.10%以下、Mn:1.0%以下、Mg:0.45〜0.9%、Cr:0.10%以下、Zn:0.10%以下、Ti:0.10%以下、残部Al)、JIS6061(Si:0.40〜0.8%、Fe:0.7%以下、Cu:0.15〜0.40%、Mn:0.15%以下、Mg:0.8〜1.2%、Cr:0.04〜0.35%、Zn:0.25%以下、Ti:0.15%以下、残部Al)、JIS3004(Si:0.30%以下、Fe:0.7%以下、Cu:0.25%以下、Mn:1.0〜1.5%、Mg:0.8〜1.3%、Zn:0.25%以下、残部Al)、JIS5052(Si:0.25%以下、Fe:0.40%以下、Cu:0.10%以下、Mn:0.10%以下、Mg:2.2〜2.8%、Cr0.15〜0.35%、Zn:0.10%以下、残部Al)等を用いることができる。その他、低Mg含有量のAl−Mg合金等も圧接性を満足し金属接合が確保できる範囲においては用いることができる。
例えば、ヒートプレートを半導体製造装置に用いる場合、洗浄ガスに対する耐食性の観点から、アルミニウムの材質は純度99.5%以上のJIS1050が望ましものもある。
【0023】
また、本発明のヒートプレートを構成する金属部材の接合面の全周に設けられる環状段部は、例えば機械加工により成形する。例えばアルミニウム又はアルミニウム合金部材の接合面に形成された環状段部は、鍛圧の前処理として、表面を洗浄することが望ましい。例えば、▲1▼硝酸で表面の油とり、▲2▼水洗、▲3▼化性処理(アルカリ溶液によるエッチング)、▲4▼水洗、▲5▼硝酸での洗浄、▲6▼水洗、▲7▼湯洗等の適宜の工程を組みて表面を洗清浄する。
【0024】
本発明のヒートプレートを構成するアルミニウム又はアルミニウム合金部材の鍛圧圧縮による締結は、その材質が、純度99.5%以上の純アルミニウムが最も圧着しやすいが、純度99.0%以上のJIS1100、Al−Mn系のJIS3003やJIS3004、またはJIS6063、JIS6061、JIS5052等の合金の場合でも鍛圧圧縮により圧着させることができる。
また本発明のヒートプレートを構成するアルミニウム又はアルミニウム合金部材は、同一材料であると、鍛圧圧縮時の変形により複数部材同志が圧着し物理的に金属接合し易い。また異種の材料であっても、鍛圧圧縮時の変形により2個の部材同志が圧着し物理的に金属接合するものであり、例えば、異種の材料としてJIS1000系のアルミニウム材とJIS3000系のアルミニウム材は鍛圧圧縮時の変形により部材同志が圧着し物理的に金属接合する。
このような同一または異種の複数部材の金属接合は、300〜500℃の温度範囲で金属接合されるが、鍛圧圧接温度としては350〜500℃の範囲が好ましい。
また本発明のヒートプレートを構成する金属部材が、銅又は銅合金部材の場合には、700〜900℃の温度で鍛圧圧縮することが好ましい。
【0025】
また本発明のヒートプレートは、アルミニウム又はアルミニウム合金部材、あるいは銅又は銅合金部材の接合面を組み合わせて鍛圧して内部に熱媒体流路を形成し、かつ組み合わされた環状段部である環状溝と環状突出部、環状突出部と環状突出部、あるいは環状溝と中間部材は、鍛圧圧縮されて高密度のシール性を有する締結部を形成し、さらに鍛圧圧縮部の外周端部をTIG溶接、MIG溶接あるいは電子ビーム溶接等の溶接により接合し、外周部のより密な接合を確保することができるものである。
また本発明の複数のアルミニウム又はアルミニウム合金部材を接合し内部に熱媒体流路が形成されているヒートプレートは、耐食性向上のための表面処理、例えばアルマイト処理を行うものである。
【0026】
【実施例1】
本発明の実施例1について、図1〜図4を参照して説明する。
図1は本発明実施例1のヒートプレートの断面を示した斜視図である。
図2(a)は図1の接合面を示した図であり、図2(b)は、その一部の断面を示した図である。図3(a)(b)、図4(a)(b)(c)は、本発明実施例1のヒートプレートの製造工程を示す図である。
実施例1のヒートプレートは、アルミニウム又はアルミニウム合金部材の接合面に設ける環状段部として、一方の部材の接合面は環状溝、もう一方の部材の接合面は環状突出部としてこれを組み合わせ鍛圧圧縮して締結したものである。
【0027】
図1に示すように、ヒートプレート(1)は、一方のアルミニウム部材(3)の接合面にU字型溝を成形し、これをもう一方のアルミニウム部材(4)の平らな接合面と組み合わせて熱媒体流路(2)を形成したものである。また一方のアルミニウム部材(3)の接合面に熱媒体流路(2)を囲むように全周に環状溝(6)を設け、またもう一方のアルミニウム部材(4)の接合面に環状突出部(7)を設けられている。この環状突出部(7)と環状溝環(6)は対向位置に設けられており、環状溝環(6)に環状突出部(7)を組み合わせ、アルミニウム部材(3)とアルミニウム部材(4)の接合面を鍛圧して内部に熱媒体流路(2)を形成するとともに、環状溝(6)に環状突出部(7)を鍛圧圧縮して接合し、熱媒体流路(2)を囲むように高密度のシール性を有する締結部(5)を形成したものである。
【0028】
図2(a)に示すように、熱媒体流路(2)はヒートプレート(1)の内部に蛇行して成形されており、それを囲むように全周に設けられた環状溝と環状突出部で締結部(5)が形成されているものある。
図2(b)は、図2(a)のA−Aの断面を示したもので、熱媒体流路の出入口(8)は、内部の熱媒体流路を囲むように全周に設けられている環状溝(6)と環状突出部(7)で形成される締結部に影響を与えないように、アルミニウム部材(3)の環状溝(6)を跨ぐように設けることが好ましい。
【0029】
図3(a)(b)、図4(a)(b)(c)で、本発明実施例1のヒートプレートの製造工程を説明する。
図3(a)に示すように、一方のアルミニウム部材(3)の接合面にU字型溝(2´)を成形し、これを囲むように全周に環状溝(6)を設ける。もう一方のアルミニウム部材(4)は、平坦面と全周に環状突出部(7)が設けられている。アルミニウム部材(3)の環状溝(6)とアルミニウム部材(4)の環状突出部(7)は対向位置に設けられている。図3(b)は環状溝(6)及び環状突出部(7)を拡大して示した図で、環状溝(6)の巾をa、深さをbとし、環状突出部(7)の巾をc、高さをdとした。
【0030】
次いで、図4(a)に示すように、アルミニウム部材(3)の接合面のU字型溝はアルミニウム部材(4)の平坦な接合面と組み合わせ、またアルミニウム部材(3)の環状溝(6)にアルミニウム部材(4)の環状突出部(7)を組み合わせ、矢印のように鍛圧する。アルミニウム部材(3)のU字型溝とアルミニウム部材(4)の平坦面とで内部に熱媒体流路(2)が形成され、環状溝(6)に環状突出部(7)が鍛圧圧縮されて締結部(5)が形成される。
【0031】
図4(b)に環状溝(6)と環状突出部(7)の組み合わせを拡大して示し説明する。
巾aの環状溝(6)の巾aは、環状突出部(7)の巾cより大きく、また環状溝(6)の深さbより、環状突出部(7)の高さdが長くなっている。
このような環状溝(6)に環状突出部(7)を挿入して組み合わせ、図4(a)の矢印のように鍛圧することにより、図4(c)に示すように変形し、鍛圧による変形後にa´=c´、b´=d´になり、環状溝(6)内に環状突出部(7)は圧縮されて充満する。それにより締結部(5)は密閉される。
また鍛圧では、板厚全体をより圧縮することでより効果的に締結部は物理的に圧着(金属接合)した密閉状態が得られるものである。
【0032】
環状溝(6)と環状突出部(7)の関係について、その具体例を図4(b)に示した図で説明すると、環状溝(6)の巾をa、深さをbとし、環状突出部(7)の巾をc、高さをdとしたとき、つぎのような関係が好ましい。
a×b≦c×d
b/d≦1.0
d/c≦6(より好ましくは、d/c≦4)
【0033】
a×b≦c×d、b/d≦1.0の関係は、鍛圧により環状溝(6)内に環状突出部(7)を圧入し締結部を密閉されるものである。
環状溝(6)と環状突出部(7)の周長は同じであるから、環状溝(6)のa×bの面積が、環状突出部(7)のc×dの面積より広いことは環状溝(6)内体積に対し、環状突出部(7)の体積が少なく結果として、環状溝(6)に環状突出部(7)が充満されないことになる。シールを十分なものにするには、a×b≦c×dの関係にすることが好ましい。
なお、環状突出部(7)の巾cが環状溝(6)の巾aに比べて小さすぎると、鍛圧したときに、環状溝(6)に環状突出部(7)を密閉させることができず、シールが不十分となることがある。
【0034】
具体的に、アルミニウム部材(3)、(4)として純度99.5%以上の純アルミニウムを用い、環状溝(6)の巾a 7.0mm、深さb 7.0mm、環状突出部(7)の巾c 6.9mm、、高さd9.0mm、のものを鍛圧し環状突出部(7)を圧縮し環状溝(6)に充満された。得られたヒートプレートは、その内部の熱媒体流路(2)から、10−8〜10−10Torrの高真空でもリークが生じなかった。
【0035】
【実施例2】
本発明の実施例2について、図5を参照して説明する。
実施例2のヒートプレートは、アルミニウム又はアルミニウム合金部材の接合面に設ける環状段部として、一方の部材の接合面には環状溝、もう一方の部材の接合面には環状突出部が設けられたもので、これら環状溝と環状突出部が2重に設けたものである。
図5(a)に示すように、一方のアルミニウム部材(3)の接合面にU字型溝(2´)を成形し、これを囲むように全周に環状溝(6)を2重に設ける。もう一方のアルミニウム部材(4)は、平坦面と全周に環状突出部(7)を2重に設けられている。アルミニウム部材(3)の2重の環状溝(6)とアルミニウム部材(4)の2重の環状突出部(7)は対向位置に設けられている。
【0036】
図5(b)に示すように、アルミニウム部材(3)の接合面のU字型溝はアルミニウム部材(4)の平坦な接合面と組み合わせ、またアルミニウム部材(3)の2重の環状溝(6)に、アルミニウム部材(4)の2重の環状突出部(7)を組み合わせ、矢印のように鍛圧して、アルミニウム部材(3)のU字型溝とアルミニウム部材(4)の平坦面とで内部に熱媒体流路(2)を形成し、また環状溝(6)に環状突出部(7)が鍛圧されて2重の締結部(10)が形成される。
環状溝(6)に環状突出部(7)は鍛圧することにより、実施例1(図4(b)(c))で説明したように鍛圧圧縮されて充満し、それにより締結部は密閉される。この実施例2の締結部(10)は2重になっているので、より確実に漏れのないヒートプレートを得ることができるものである。
【0037】
【実施例3】
本発明の実施例3について、図6〜図8参照して説明する。
実施例3は、ヒートプレートの熱媒体流路の形成について示したものである。
図6(a)に示すヒートプレート(1)は、全周の環状溝に環状突出部が鍛圧圧縮されて締結部(5)が形成され、熱媒体流路はコの字型(12)に形成されている。この熱媒体流路(12)は、図6(b)に示すようにアルミニウム部材(4)の平坦な面とアルミニウム部材(3)のコの字型溝(12´)で形成されるものである。
【0038】
図7(a)に示すヒートプレート(1)は、全周の環状溝に環状突出部が鍛圧圧縮されて締結部(5)が形成され、コの字型の熱媒体流路(13)が形成されている。この熱媒体流路(13)は、図7(b)に示すようにアルミニウム部材(4)に凹部(15)が設けられており、またアルミニウム部材(3)にはコの字型溝(13´)を隔離する凸部(14)が設けられており、アルミニウム部材(4)の凹部(15)にアルミニウム部材(3)の凸部(14)を押圧して、その両側のコの字型溝(13´)で形成されるものである。
【0039】
図8(a)に示すヒートプレート(1)は、全周の環状溝に環状突出部が鍛圧されて締結部(5)が形成され、熱媒体流路は熱媒体通路用管(16)を配設したものである。熱媒体通路用管(16)は、図8(b)に示すようにアルミニウム部材(3)の半円型凹部(17)とアルミニウム部材(4)の半円型凹部(18)との間に熱媒体通路用管(16)を密着させたもので、環状溝(6)に環状突出部(7)を鍛圧圧縮して締結部(5)を形成するときに、同時に熱媒体通路用管(16)をアルミニウム部材(3)の凹部(17)とアルミニウム部材(4)の凹部(18)に密着させるものである。
【0040】
【実施例4】
本発明の実施例4について、図9〜図11を参照して説明する。
図9(a)に示すヒートプレート(1)は、熱媒体流路(65)を囲むように全周に締結部(5)が形成されたものであり、アルミニウム又はアルミニウム合金部材(3)(4)の接合面の剥離を防止のために、凹部(63)と凸部(62)で締結されている。これは図9(b)に示すように、アルミニウム又はアルミニウム合金部材(4)の接合面には熱媒体流路の半円溝(67)、環状突出部(7)及び凸部(62)が設けられ、また部材(3)の接合面には熱媒体流路の半円溝(66)、環状溝(6)及び凹部(63)が設けられており、これを組み合わせ鍛圧圧縮して締結したもので、接合面の剥離を防止することができるものである。
【0041】
図10(a)に示すヒートプレート(1)は、熱媒体流路(65)を囲むように全周に締結部(5)が形成されたものであり、また熱媒体流路(65)に沿ってその近傍に、その高いシール性を確保するため、溝(60)と突出部(61)で締結されている。これは図10(b)に示すように、アルミニウム又はアルミニウム合金部材(4)の接合面には環状突出部(7)、熱媒体流路の半円溝(67)とそれに沿って突出部(61)が設けられ、また部材(3)の接合面には環状溝(6)、熱媒体流路の半円溝(66)とそれに沿って溝(60)が設けられており、これを組み合わせ鍛圧圧縮して締結したもので、熱媒体流路の高いシール性を確保することができるものであり、接合面の剥離も防止することができるものである。
【0042】
図11(a)に示すヒートプレート(1)は、熱媒体流路(65)を囲むように全周に締結部(5)が形成されたものであり、また熱媒体流路(65)に沿ってその近傍に高いシール性を確保するため、溝(60)と突出部(61)で締結され、さらに接合面の剥離を防止のために、凹部(63)と凸部(62)で締結されているものである。
これは図11(b)に示すように、アルミニウム又はアルミニウム合金部材(4)の接合面には環状突出部(7)、熱媒体流路の半円溝(67)とそれに沿って突出部(61)及び凸部(62)が設けられ、また部材(3)の接合面には環状溝(6)、熱媒体流路の半円溝(66)とそれに沿って溝(60)及び凹部(63)が設けられており、これを組み合わせ鍛圧圧縮して締結したもので、熱媒体流路の高いシール性の確保と、接合面の剥離を防止することができるものである。
【0043】
【実施例5】
本発明の実施例5について、図12、図13を参照して説明する。
図12は、ヒートプレートの部材の接合面を示した図であり、図13(a)は図12のA−A断面、図13(b)は図12のB−B断面である。
図12、図13(a)(b)に示すように、熱媒体流路(50)はヒートプレート(1)の内部に蛇行して成形されており、それを囲むように全周に設けられた環状溝(6)と環状突出部(7)で締結部が2重に形成されているものある。
【0044】
図13(b)に示すように、部材(3)の接合面には環状突出部(7)、熱媒体流路のコ字溝(51)とそれに沿って突出部(55)及び凸部(57)が設けられており、また部材(4)の接合面には環状溝(6)、熱媒体流路のコ字溝(52)とそれに沿って溝(54)及び凹部(56)が設けられている。
このような部材(3)と(4)の接合面を組み合わせ鍛圧圧縮して締結し、
熱媒体流路(50)を囲むように全周に2重に形成されている設けられた環状溝(6)と環状突出部(7)の締結部で高度な密閉度を確実なものとし、また
熱媒体流路に沿っている突出部(55)と溝(54)の締結部、及び凸部(57)と凹部(56)の締結部により熱媒体流路(50)の高いシール性の確保と、接合面の剥離を防止することができるものである。
熱媒体流路の出入口(53)は、図13(a)に示すように部材(4)に開孔を設けて熱媒体を流通させるものである。
【0045】
【実施例6】
本発明の実施例6について、図14〜図19を参照して説明する。
実施例6は、ヒートプレートのアルミニウム又はアルミニウム合金部材の接合面に設ける環状段部の例を示すものである。
図14は、アルミニウム部材(4)に熱媒体通路用管(16)を密着させる半円型凹部(18)とその外周に環状突出部(7)が設けられ、またアルミニウム部材(3)には半円型凹部(17)その外周に環状溝(6)が設けられている。
これは環状溝(6)に空気溜まり(20)が設けられているもので、環状溝(6)に環状突出部(7)を鍛圧圧縮するときに、締結部に空気の巻き込みが起こらないようにしたものである。
【0046】
図15は、アルミニウム部材(4)に熱媒体通路用管(16)を密着させる半円型凹部(18)、環状突出部(7)が設けられ、またアルミニウム部材(3)には半円型凹部(17)、環状溝(6)が設けられている。この例は環状溝(6)に面取り部(21)を設けて、環状溝(6)に環状突出部(7)を組み合わせるときに、その挿入を容易にしたものである。
【0047】
図16は、アルミニウム部材(4)に熱媒体通路用管(16)を密着させる半円型凹部(18)、環状突出部(7)が設けられ、またアルミニウム部材(3)には半円型凹部(17)、環状溝(6)が設けられている。これは環状突出部(7)に面取り部(22)を設けて環状溝(6)に環状突出部(7)を組み合わせるときに、その挿入を容易にしたものである。
【0048】
図17は、環状溝と環状突出部の例を示すもので、アルミニウム部材(4)に熱媒体通路用管(16)を密着させる半円型凹部(18)、断面が台形の環状溝(23)が設けられ、またアルミニウム部材(3)には半円型凹部(17)と対向する断面が台形の環状突出部(24)を設けたものである。この場合も台形の環状溝(23)と台形の環状突出部(24)の大きさは環状溝に環状突出部が充満されるようする。これは環状溝、環状突出部の機械加工が容易であり、また鍛圧時の空気の巻き込みを起り難くしたものである。
【0049】
図18は、環状溝と環状突出部の変形例を示すもので、アルミニウム部材(4)には熱媒体通路用管(16)を密着させる半円型凹部(18)と断面コの字状の環状突出部(26)が設けられ、またアルミニウム部材(3)には半円型凹部(17)と断面が逆台形の環状溝(25)が設けられたものである。これは環状溝(25)の断面が逆台形で、環状突出部(26)が断面コの字状のものであるので、環状溝に環状突出部を嵌合させで充満させることにより、高い密閉度が保たれるとともに、機械的にも強い締結が得られるものである。
【0050】
図19は、環状溝と環状突出部の変形例を示すもので、アルミニウム部材(4)に熱媒体通路用管(16)を密着させる半円型凹部(18)と角取りした断面コの字状環状溝(27)が設けられ、またアルミニウム部材(3)には半円型凹部(17)、山型の環状突出部(28)が設けられたものである。これは断面コの字状環状溝(27)の角取りをし、また環状突出部(28)が山型であるので、環状溝に環状突出部を挿入する組み合わせが容易である。
【0051】
【実施例7】
本発明の実施例7について、図20、図21を参照して説明する。
実施例7は、ヒートプレートのアルミニウム又はアルミニウム合金部材の接合面に設ける環状段部の例を示すものである。
図20は、環状溝と環状突出部の外周に環状凸部を設けている例を示すものである。アルミニウム部材(4)は熱媒体通路用管(16)を密着させる半円型凹部(18)、環状突出部(7)とその外周に環状凸部(31)が設けている。またアルミニウム部材(3)には半円型凹部(17)、環状溝(6)とその外周に環状凸部(30)が設けている。環状溝(6)と環状突出部(7)は、実施例1で説明したと同様のものであり、また環状凸部(30)、(31)の高さは、環状突出部(7)より低いもので圧縮されて接合面で平坦になるものである。
【0052】
環状溝(6)に環状突出部(7)を挿入し、また環状凸部(30)と環状凸部(31)を合わせて鍛圧する。鍛圧により環状溝(6)に環状突出部(7)は圧縮されて充満し締結部を形成する。また鍛圧で板厚全体を圧縮することより環状凸部(30)と環状凸部(31)は圧着(金属接合)され、外周部も密な接合部が形成される。
具体的に、部材(3)、(4)として純度99.5%以上の純アルミニウムを用い、環状溝(6)の幅a7.0mm、深さb7.0mm、環状突出部(7)の幅c6.9mm、高さd9.0mm、のものであり、環状凸部(30)と環状凸部(31)は、高さ4mm、幅10mmで、これを鍛圧し環状突出部(7)を圧縮し環状溝(6)に充満され、また、環状凸部(31)は圧着(金属接合)され、接合面では平坦であった。
【0053】
図21は、環状溝の外周に環状凸部を設けている例を示すものである。アルミニウム部材(4)には熱媒体通路用管(16)を密着させる半円型凹部(18)と環状突出部(7)が設けられ、またアルミニウム部材(3)には半円型凹部(17)と環状溝(6)、その外周に環状凸部(30)が設けられている。環状溝(6)と環状突出部(7)は、実施例1で説明したと同様のものであり、環状凸部(30)の高さは、環状突出部(7)より低いものである。
環状溝(6)に環状突出部(7)を挿入して鍛圧することにより環状溝(6)に環状突出部(7)は圧縮されて充満して締結部が形成され、また鍛圧で板厚全体を圧縮することより環状凸部(30)は圧着(金属接合)され、外周部も密な接合部が形成される。
【0054】
【実施例8】
本発明の実施例8について、図22を参照して説明する。
実施例8のヒートプレートは、アルミニウム又はアルミニウム合金部材の接合面に設ける環状段部として、一方の接合面は環状突出部で、もう一方の接合面も環状突出部であり、これをの組み合わせ鍛圧圧縮して締結したものである。
図22に示すように、アルミニウム部材(4)には熱媒体通路用管(16)を密着させる半円型凹部(18)とその外周に環状突出部(32)が設けられ、またアルミニウム部材(3)には半円型凹部(17)とその外周に環状突出部(33)が設けられており、接合面の環状突出部(32)と環状突出部(32)とを合わせ、鍛圧により、板厚全体を圧縮する。それにより環状突出部は圧着(金属接合)されて締結部を形成し密に接合される。
【0055】
【実施例9】
本発明の実施例9について、図23(a)(b)、図24(a)(b)(c)を参照して説明する。
実施例9のヒートプレートは、アルミニウム又はアルミニウム合金部材の接合面に設ける環状段部が、一方の接合面は環状溝であり、もう一方の接合面も環状溝であり、各々の環状溝にアルミニウム又はアルミニウム合金の中間部材を挿入して鍛圧圧縮して締結したものである。
【0056】
図23(a)に示すように、アルミニウム部材(4)には熱媒体通路用管(16)を密着させる半円型凹部(18)とその外周に断面コの字状の環状溝(35)が設けられ、またアルミニウム部材(3)にも半円型凹部(17)その外周に断面コの字状の環状溝(34)が設けられている。
アルミニウム部材(4)の断面コの字状の環状溝(35)に中間部材(36)を挿入し、アルミニウム部材(3)の断面コの字状の環状溝(34)と組み合わせ、鍛圧圧縮して締結部を形成したものである。また熱媒体流路は熱媒体通路用管(16)をアルミニウム部材(3)の凹部(17)とアルミニウム部材(4)の凹部(18)に密着させるものである。
【0057】
図23(b)は、図23(a)の環状溝(34)(35)、中間部材(36)を拡大した図で、環状溝と中間部材の具体的関係を示す。環状溝(34)の深さA、幅B、環状溝(35)の深さC、幅D、及び中間部材(36)の長さE、幅Fのとき、
(A+C)≦E、
(A×B+C×D)≦E×F、
(A+C)/E≦1
B≧F、D≧F
の関係に形成して、部材(3)(4)を組み合わせ鍛圧圧縮し、接合してシール性を確保するものである。
【0058】
具体的に、部材(3)、(4)、中間部材(36)は純度99.5%以上の純アルミニウムを用い、環状溝(34)の深さA 5mm、幅B 7mm、環状溝(35)の深さC 5mm、幅D 7mm、及び中間部材(36)の長さE 12mm、幅F 6.8mm、のものを鍛圧圧縮し環状溝(34)(35)に中間部材(36)に充満された。得られたヒートプレートの締結部は、10−8〜10−10Torrの高真空でもリークが生じないもので、高密度のシール性を有するものであった。
【0059】
図24(a)(b)(c)は、アルミニウム又はアルミニウム合金部材(3)(4)の接合面の対向位置に設けられた環状溝の形状、及び中間部材のもう1つの例を示す図である。
図24(a)では、部材(3)の環状溝(31)は断面コの字状で窪みを設けたものであり、部材(4)の環状溝(42)は断面コの字状で幅広のものである。中間部材(43)は凸型で、環状溝(42)に対応した幅広部と環状溝(41)対応した幅狭部のものでその先端は隅取りしているものである。
この例では、幅広の環状溝(42)は機械加工が容易であり、また環状溝(41)対応した幅狭部を先端隅取りしているので、中間部材(43)に容易に環状溝(41)を挿入し組み合わせることができ、また環状溝(41)に窪みを設けているので鍛圧圧縮して締結部を形成するときに、空気の巻き込みは起らないものである。
【0060】
図24(b)は、部材(3)の環状溝(38)は断面台形のものであり、部材(4)の環状溝(39)も断面台形のものである。また中間部材(40)は環状溝(38)(39)に対応した台形のものである。これは、環状溝(38)(39)が台形であるので、その機械加工が容易であり、環状溝に中間部材を組み合わせるときに、その挿入が容易なものである。
図24(c)は、部材(3)の環状溝(44)は断面コの字状、部材(4)の環状溝(45)も断面コの字状のものであり、中間部材(37)は長円のものである。この例では、中間部材(37)の先端が丸くなっているので、環状溝に中間部材を組み合わせるときに、その挿入が容易なものであり、角隅に内在した空気を溜めることができる。
【0061】
【発明の効果】
以上説明したように、本発明によれば、ヒートプレートは金属部材、例えばアルミニウム又はアルミニウム合金部材、銅又は銅合金部材の各々の接合面の対向位置に熱媒体流路を囲むように全周に環状段部を設け、これらの環状段部を組み合わせて鍛圧圧縮して形成した締結部により、接合面は高度に密閉され、内部の熱媒体流路との高度な密閉度が確保するという効果を有する。即ち、締結部のシールは鍛接され、接合部が物理的に圧着することで、従来の熔接時に生ずるようなピンホール等の欠陥を防止でき、高い気密性を保つことができる。また両者が金属接合しているため使用温度を500℃前後の高温でも高度な密閉度が保たれる。また機械加工により環状段部を設け、これらを鍛圧することで、締結部が金属接合した圧漏れのないヒートプレートが得られるので、低コストでの製造が可能であるという効果を奏するものである。
【図面の簡単な説明】
【図1】本発明の実施例1のヒートプレートを示す図
【図2】本発明の実施例1のヒートプレートを示す図
【図3】本発明の実施例1のヒートプレートの製造工程を示す図
【図4】本発明の実施例1のヒートプレートの製造工程を示す図
【図5】本発明の実施例2を説明する図
【図6】本発明の実施例3を説明する図
【図7】本発明の実施例3を説明する図
【図8】本発明の実施例3を説明する図
【図9】本発明の実施例4を説明する図
【図10】本発明の実施例4を説明する図
【図11】本発明の実施例4を説明する図
【図12】本発明の実施例5を説明する図
【図13】本発明の実施例5を説明する図
【図14】本発明の実施例6を説明する図
【図15】本発明の実施例6を説明する図
【図16】本発明の実施例6を説明する図
【図17】本発明の実施例6を説明する図
【図18】本発明の実施例6を説明する図
【図19】本発明の実施例6を説明する図
【図20】本発明の実施例7を説明する図
【図21】本発明の実施例7を説明する図
【図22】本発明の実施例8を説明する図
【図23】本発明の実施例9を説明する図
【図24】本発明の実施例9を説明する図
【図25】従来例を示す図
【図26】従来例を示す図
【図27】従来例を示す図
【符号の説明】
1 ヒートプレート
2 熱媒体流路
3、4 アルミニウム部材
5 締結部
6 環状溝
7 環状突出部[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a heat plate in which a metal member is joined and in which a heat medium flow path is formed, and a manufacturing method thereof.
[0002]
[Prior art]
The heat plate has a heat medium flow path formed therein. For example, a heat medium flows as a heat medium and is used as a cooling plate in a vacuum vessel (vacuum chamber) of a semiconductor manufacturing apparatus. 2. Description of the Related Art Conventionally, a heat plate in which an aluminum or aluminum alloy member is joined is known as a heat plate in which a heat medium flow path is formed.
[0003]
The prior art will be described with reference to FIGS. FIG. 25 is a perspective view showing a cross section of the heat plate joined by welding or brazing. The heat plate (71) forms a groove to be a heat medium flow path (72) on the joining surface of the aluminum alloy member (73). Then, this is combined with an aluminum alloy member (74), and the outer peripheral portion (75) is joined by TIG welding, MIG welding or EBW welding (electron beam welding). Some are joined by brazing.
FIG. 27 is a perspective view showing a cross section of the heat plate joined by bolting, in which the heat plate (71) forms a groove that becomes the heat medium flow path (72) on the joining surface of the aluminum alloy member (73), Further, an O-ring for sealing (79) is put in the outer peripheral groove, combined with the aluminum alloy member (74), and fastened with a bolt (78) to be joined.
[0004]
[Problems to be solved by the invention]
The heat plate joined by TIG welding or MIG welding shown in FIG. 25 above may cause pinholes or entrain gas at the time of welding, and the welded part is not deep from the end face. There was a problem with the reliability of the welded joint. Especially when used under high vacuum such as in a vacuum vessel (vacuum chamber) of semiconductor manufacturing equipment etc., the degree of vacuum inside the vacuum vessel is affected by leakage from pinholes at the welded joints of the heat plate and the influence of entrained gas. The semiconductor manufactured there has a problem that the reliability is lowered and the yield is deteriorated. In addition, the heat plate has to be welded on the entire circumference of the joint, and there is a problem that it is expensive. Further, in the case of EBW welding (electron beam welding), there is a problem that the cost is higher because the welding operation is performed in a vacuum, and high-precision welding positioning is required, so an expensive welding positioning jig is required. Is.
[0005]
Moreover, the heat plate joined by brazing has a problem in the reliability of the joined portion due to pinholes and gas entrainment generated during brazing on the joining surface.
In the case of the seal packing and bolt tightening shown in FIG. 27, a space for providing a seal packing groove and a bolt hole is required, and there is a problem that it cannot be made compact, and there is a limit to its airtightness for use in high vacuum. is there. In addition, there is a problem that it cannot be used in a temperature range in which the operating temperature of the heat plate exceeds 300 ° C. due to the heat resistance performance of the seal packing.
[0006]
In addition, in any of the above conventional methods, when the heat medium inflow pressure is increased, the member swelled by the internal pressure may cause a swelling of the member. There was a need to do. For example, as shown in FIG. 26 (a), the heat plate (71) is provided with a through hole in the aluminum alloy member (73), the convex portion of the member (74) is penetrated, and the surface (76) is welded, It prevented the swelling of the mating part. Further, as shown in FIG. 26 (b), the heat plate (71) has a through hole in the aluminum alloy member (73), welds a corner (77) with the member (74), and swells in the mating portion. Was preventing. However, this preventive measure requires high-precision welding, and is expensive.
[0007]
[Means for Solving the Problems]
The present invention is a heat plate in which a plurality of metal members are joined, and a heat medium flow path is formed therein. The heat medium flow path is formed by joining one of the plurality of metal members and / or the other. A groove to be a heat medium flow path is formed on the surface, the joint surfaces are combined and forged and formed, and the heat medium flow path is surrounded at a position facing each joint surface of the metal member. An annular groove is provided on one joint surface around the entire circumference, an annular protrusion is provided on the other joint surface, the annular protrusion is inserted into the annular groove, and subjected to forging pressure compression at a temperature at which metal bonding is possible. A fastening portion having a high degree of sealing performance, which is metal-bonded, is formed so as to surround the heat medium flow path. A plurality of annular protrusions A heat plate formed by joining metal members.
Further, the present invention is a heat plate in which a plurality of metal members are joined and a heat medium flow path is formed therein, and the heat medium flow path is one of the plurality of metal members and / or the other. A groove serving as a heat medium flow path is formed on the joint surface of the metal member, the joint surfaces are combined and forged and formed, and the heat medium flow path is surrounded at a position opposite to each joint surface of the metal member. As described above, an annular groove is provided on one joint surface, an annular groove is provided on the other joint surface, and a metal intermediate member is inserted into each of the annular grooves. A fastening part having a high degree of sealing performance, which is metal-bonded by forging pressure compression, is formed so as to surround the heat medium flow path, and the fastening part is deformed by forging pressure compression, and is annular due to a volume difference between the annular groove and the intermediate member. Characterized by the filling of metal intermediate members in the groove A heat plate formed by joining a plurality of metal members. Further, the present invention is a heat plate in which a plurality of metal members are joined, and a heat medium flow path is formed therein,
The heat medium flow path is formed by forming a groove to be a heat medium flow path on one and / or the other joint surface of the plurality of metal members, and forging by combining the joint surfaces, and At the position facing each joint surface of the metal member, an annular protrusion is provided on one joint surface and an annular protrusion is provided on the other joint surface so as to surround the heat medium flow path. A plurality of metal members characterized by forming a fastening portion having a high degree of sealing performance, in which the annular protrusions of the surfaces are combined and subjected to forging pressure compression at a temperature capable of metal bonding so as to surround the heat medium flow path. It is the heat plate which joined.
Further, the heat plate of the present invention is characterized in that the fastening portion is provided in an annular shape in a multiple manner.
In the heat plate of the present invention, the fastening portion is formed so as to surround the heat medium flow path, and further, the annular groove that forms the fastening portion on one or both joint surfaces on the entire outer periphery of the fastening portion. Alternatively, an annular protrusion lower than the annular protrusion is provided, and the low annular protrusion is heated and forge-compressed to be metal-bonded.
[0008]
In addition, the heat plate of the present invention is Said The fastening portion is formed so as to surround the heat medium flow path, and further, in order to ensure high sealing performance in the vicinity along the heat medium flow path of the joint surface, at a position facing each joint surface of the plurality of metal members, One joining surface is provided with a groove, and the other joining surface is provided with a protruding portion, which is combined and forged and compressed and fastened.
In the heat plate of the present invention, the fastening portion is formed so as to surround the heat medium flow path, and further, a concave portion and a convex portion are provided at positions facing the joint surface, and the concave portion and the convex portion are formed by forging compression. Fastening is performed to prevent peeling of the joint surface.
Further, in the heat plate of the present invention, the heat medium flow path forms a groove serving as a heat medium flow path on one and / or the other joining surface of the plurality of metal members, and a flow pipe is closely attached to the groove. It is characterized by being formed.
In the heat plate of the present invention, each of the plurality of metal members is aluminum or an aluminum alloy member.
In the heat plate of the present invention, each of the plurality of metal members is an aluminum or aluminum alloy member, and is metal-bonded by forge compression at 300 to 500 ° C.
In the heat plate of the present invention, each of the plurality of metal members is a copper or copper alloy member.
In the heat plate of the present invention, each of the plurality of metal members is a copper or copper alloy member, and is metal-bonded by forge compression at 700 to 900 ° C.
[0009]
Further, the present invention provides a heat plate manufacturing method in which a plurality of metal members are joined and a heat medium flow path is formed therein, and a groove serving as a heat medium flow path on the joint surface is formed on one or both of the metal members. An annular groove is formed on the entire circumference of the joint surface of one metal member so as to surround the heat medium flow path, and the entire circumference of the joint surface of the other metal member is surrounded by the heat medium flow path. The annular groove and the annular protrusion are formed at opposing positions, and the annular protrusion is inserted into the annular groove by combining the joint surfaces, and forging is performed at a temperature at which metal bonding is possible. Compression is performed, a heat medium flow path is formed inside, and a metal-bonded fastening part having a high degree of sealing is formed so as to surround the heat medium flow path. Inside the annular groove due to the volume difference between the groove and the annular protrusion
This is a method for producing a heat plate in which a plurality of metal members are joined, wherein a fastening portion that can be used even in a high vacuum is formed. Further, the present invention provides a heat plate manufacturing method in which a plurality of metal members are joined and a heat medium flow path is formed therein, and a groove serving as a heat medium flow path on the joint surface is formed on one or both of the metal members. An annular groove is formed on the entire circumference of the joint surface of one metal member so as to surround the heat medium flow path, and the entire circumference of the joint surface of the other metal member is surrounded by the heat medium flow path. Annular grooves are formed in each, and each annular groove is provided at an opposing position, and a metal intermediate member is inserted into each of the annular grooves by combining the joint surfaces, and forging pressure is performed at a temperature at which metal bonding is possible. Compression is performed, a heat medium flow path is formed inside, and a metal-bonded fastening part having a high degree of sealing is formed so as to surround the heat medium flow path. Due to the volume difference between the groove and the intermediate member, the metal intermediate member is filled in the annular groove. Those in a method for producing a heat plate formed by joining a plurality of metal members, characterized in that the formation of the fastening portion can be used even in a high vacuum.
Further, the present invention provides a heat plate manufacturing method in which a plurality of metal members are joined and a heat medium flow path is formed therein, and a groove serving as a heat medium flow path on the joint surface is formed on one or both of the metal members. An annular protrusion is formed on the entire circumference of the joint surface of one metal member so as to surround the heat medium flow path, and the entire circumference of the joint surface of the other metal member is surrounded by the heat medium flow path. The annular protrusions are formed in opposite positions, and the annular protrusions are provided at opposing positions. The joint surfaces are combined, the annular protrusions of the joint surfaces are combined, and forging pressure compression is performed at a temperature at which metal joining is possible. The heat medium flow path is formed inside, and a metal-bonded fastening part having high sealing properties is formed so as to surround the heat medium flow path, and a fastening part that can be used even in a high vacuum is formed. A heat plate manufacturing method in which a plurality of metal members are joined together .
[0010]
Further, the present invention provides a heat plate manufacturing method in which a plurality of aluminum or aluminum alloy members are joined and a heat medium flow path is formed therein, and a heat medium having a joining surface on one or both of the aluminum or aluminum alloy members. A groove to be a flow path is formed, an annular groove is formed on the entire surface of the joint surface of one member so as to surround the heat medium flow path, and a heat medium flow path is surrounded on the joint surface of the other member. An annular protrusion is formed around the entire circumference, the annular groove and the annular protrusion are provided at opposing positions, and the annular protrusion is inserted into the annular groove by combining the joint surfaces, 300 to 500 ° C. Forging pressure compression, forming a heat medium flow path inside, and forming a metal bonded fastening part having a high degree of sealing so as to surround the heat medium flow path, and the fastening part is deformed by the forging pressure compression. , Annular groove and annular protrusion One that is filled annular protrusion into the annular groove by the volume difference is the production method of the heat plate by joining a plurality of metal members, characterized in that the formation of the fastening portion can be used even in a high vacuum.
In addition, in the method of manufacturing the heat plate according to the present invention, the annular groove formed on the joining surface of one member and the annular protrusion formed on the joining surface of the other member have the annular groove width a When the depth of the groove is b, the width of the annular protrusion is c, and the height of the annular protrusion is d,
a × b ≦ c × d
b / d ≦ 1.0
d / c ≦ 6
Is the relationship
An annular groove is filled with an annular protrusion to form a metal-joined fastening portion having a high sealing property.
[0011]
Further, the present invention provides a heat plate manufacturing method in which a plurality of aluminum or aluminum alloy members are joined and a heat medium flow path is formed therein, and a heat medium having a joining surface on one or both of the aluminum or aluminum alloy members. A groove to be a flow path is formed, and an annular groove is formed on the entire circumference of the joining surface of one member so as to surround the heat medium flow path.
The annular groove is formed on the entire circumference so as to surround the heat medium flow path on the joining surface of the other member, and each annular groove is provided at an opposing position. An intermediate member made of aluminum or aluminum alloy is inserted into the annular groove, forged and compressed at 300 to 500 ° C., a heat medium flow path is formed inside, and the intermediate member is filled in the annular groove and metal bonded. Form a fastening part with a high degree of sealing,
The fastening portion is deformed by forging compression, and the annular groove is filled with an intermediate member of aluminum or aluminum alloy due to a volume difference between the annular groove and the intermediate member, and a fastening portion that can be used even in a high vacuum is formed. This is a method of manufacturing a heat plate in which a plurality of metal members are joined.
In addition, the method of manufacturing the heat plate according to the present invention includes an annular groove formed on the joint surface of one member, an annular groove formed on the joint surface of the other member, and an intermediate member inserted into the annular groove. The depth A of the annular groove of one member, the width B of the annular groove, the depth C of the annular groove of the other member, the width D of the annular groove, the length E of the intermediate member, and the width F of the intermediate member. When
(A + C) ≦ E,
(A × B + C × D) ≦ E × F,
(A + C) / E ≦ 1,
B ≧ F, D ≧ F
Relationship
An annular groove is filled with an intermediate member to form a metal-joined fastening portion having a high sealing property.
Further, the present invention provides a heat plate manufacturing method in which a plurality of aluminum or aluminum alloy members are joined and a heat medium flow path is formed therein, and a heat medium having a joining surface on one or both of the aluminum or aluminum alloy members. A groove to be a flow path is formed, an annular protrusion is formed on the entire circumference of the joint surface of one member so as to surround the heat medium flow path, and a heat medium flow path is formed on the joint surface of the other metal member. An annular protrusion is formed on the entire circumference so as to surround, and each annular protrusion is provided at an opposing position. The joint surfaces are combined, the annular protrusions of the joint surfaces are combined, and forging compression is performed at 300 to 500 ° C. And forming a fastening portion that can be used even in a high vacuum by forming a heat medium passage inside and forming a fastening portion having a high degree of sealing performance in which an annular protrusion is metal-joined so as to surround the heat medium passage. Characteristic that formed It is a manufacturing method of the heat plate by joining a plurality of metal members.
Furthermore, in the method for manufacturing the heat plate according to the present invention, the plurality of metal members are copper or copper alloy members, and forging pressure compression is performed at 700 to 900 ° C. to form a fastening portion having high sealing properties. It is characterized by that.
[0012]
[Action]
The heat plate of the present invention is provided with an annular step on the entire circumference so as to surround the heat medium flow path at a position opposite to each joining surface of a metal member such as an aluminum or aluminum alloy member. The joint surface is highly sealed by a fastening portion formed by forging pressure compression in combination, and a high degree of sealing with the internal heat medium flow path is ensured.
In addition, since the annular step portion provided so as to surround the heat medium flow path is provided in a position opposite to the joint surface of each of the metal members, for example, aluminum or aluminum alloy member, a high degree of sealing is achieved. The degree is more certain.
[0013]
Further, the heat plate of the present invention has an annular step provided so as to surround the heat medium flow path at a position opposite to each joining surface of the metal member such as aluminum or aluminum alloy member, and one joining surface is an annular groove. Yes, the other joint surface is an annular protrusion, so that the annular groove is inserted into the annular protrusion, forged and compressed into this, the annular protrusion is filled into the annular groove, and fastened. Due to the volume difference of the part, the annular protrusion is press-fitted into the annular groove to form a fastening part having a high density sealing property, and a high degree of sealing is ensured. Moreover, the high sealing degree of a heat plate is ensured by making it forge pressure compress and metal joining.
[0014]
Further, the heat plate of the present invention has an annular step provided so as to surround the heat medium flow path at a position opposite to each joining surface of the metal member such as aluminum or aluminum alloy member, and one joining surface is an annular projecting portion. (Protrusions), and the other joint surface is also an annular protrusion (convex part). By forging and compressing these annular protrusions (convex parts), and by forging and compressing the metal, Fastening portions having high density sealing properties are formed, and a high degree of sealing can be ensured.
[0015]
Further, the heat plate of the present invention has an annular step provided so as to surround the heat medium flow path at a position opposite to each joining surface of the metal member such as aluminum or aluminum alloy member, and one joining surface is an annular groove. Yes, the other joint surface is also an annular groove, which consists of a metal member that is inserted and filled in each annular groove, for example, an intermediate member of aluminum or aluminum alloy, and these are forged and compressed to press the intermediate member into the annular groove and fill it By doing so, a fastening portion having a high-density sealing property is formed, and a high degree of sealing is ensured. Moreover, the high sealing degree of a heat plate is ensured by making it forge pressure compress and metal joining.
[0016]
In the heat plate of the present invention, an annular step portion is provided so as to surround the heat medium flow path at a position opposite to each joining surface of a metal member such as an aluminum or aluminum alloy member, and the annular step on one or both joining surfaces is provided. An annular protrusion is provided on the entire outer periphery of the part, and an annular stepped part is combined, and an outer annular protrusion is also combined, and these are forged and compressed to ensure a tighter joint of the outer peripheral part of the heat plate. It is possible to prevent permeation from the joint portion at the outer peripheral end.
[0017]
Further, the heat plate of the present invention is provided with a step portion at the opposite position along the heat medium flow path, such as a groove on one joining surface and a protrusion on the other joining surface, and fastened by forging compression. The flow path has a high sealing property, and even if it is increased to the inflow pressure of the heat medium, it does not bulge in the middle, and the heat medium does not leak.
Further, the heat plate of the present invention is provided with a stepped portion at a position opposite to the joining surface of a metal member such as an aluminum or aluminum alloy member, for example, one joining surface is provided with a recess, and the other joining surface is provided with a projecting portion and fastened by forging compression. By doing so, peeling of the joint surface can be prevented, and even if the inflow pressure of the heat medium is raised, it does not swell and cause peeling.
[0018]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described in detail.
The heat plate of the present invention has a heat medium flow path formed therein, and the heat medium is liquid, gas (gas), etc., and the cooling medium is flowed through the flow path as a heat medium to serve as a cooling plate. In addition, the heating medium can be used as a heating plate by flowing a heating medium as a heat medium through a flow path. For example, it is used as a cooling plate, a hot plate, and a gas flow path plate utilizing high sealing properties in a vacuum vessel (vacuum chamber) of a semiconductor manufacturing apparatus. It is also suitable for applications that require strength, rigidity, and thermal conductivity.
In the heat plate of the present invention, an aluminum or aluminum alloy member is suitable as the plurality of metal members constituting the heat plate, and a copper or copper alloy member is suitable as the metal member.
[0019]
A plurality of metal members constituting the heat plate, for example, two members, are formed by combining the joint surfaces and forging to form a heat medium flow path therein, and an annular groove and an annular protrusion which are combined annular step portions Part, the annular protrusion and the annular protrusion, or the annular groove and the intermediate member are forged and compressed to form a fastening part having a high density sealing property by metal bonding. The sealing degree of this fastening part is 10 -8 -10 -10 Even in a high vacuum of Torr, there is no leakage from the heat medium flow path inside. This can cope with the high vacuum required in semiconductor manufacturing equipment.
In the heat plate of the present invention, an annular step portion is provided on the entire circumference so as to surround the heat medium flow path at a position opposite to each joint surface of the metal member, but the open end of the heat medium flow path (heat medium) In this case, the open end (heat medium entrance / exit) may be provided so as to bypass the annular step portion. In providing an annular step on the entire circumference so as to surround the flow path, the annular step is formed so as to surround a main part of the heat medium flow path of the heat plate, for example, a part formed to meander the heat medium flow path. It means that it is provided.
[0020]
In the present invention, the heat medium flow path of the heat plate is preferably formed by meandering inside a metal member, for example, an aluminum or aluminum alloy member, or a copper or copper alloy member.
In the heat medium flow path, a groove to be a heat medium flow path, for example, a concave groove, a U-shaped groove, or a round groove, is formed on the joint surface of one member to be joined, and the other member is flatly joined. Formed by forging in combination with the surface.
Also, a groove serving as a heat medium flow path, for example, a concave groove, a U-shaped groove, a semicircular groove, is formed on the joint surface of one member, and the heat medium flow path is also provided at a position opposite to the joint surface of the other member. For example, a concave groove, a U-shaped groove, and a semicircular groove are formed, and these are combined and formed by forging pressure.
In addition, a medium flow pipe is provided in close contact with the concave groove, U-shaped groove, and semicircular groove to form a heat medium flow path. By embedding the pipe in this way, the sealing performance can be further improved, and when a corrosive medium is circulated as a heat medium, a flow pipe having an anticorrosive effect against the corrosive heat medium is embedded. Thus, a metal member constituting the heat plate, for example, aluminum or an aluminum alloy member, or copper or a copper alloy member can be prevented from being corroded.
[0021]
Also, in order to ensure a high sealing performance of the heat medium flow path, a step portion provided near the heat medium flow path at an opposite position along the heat medium flow path, for example, one bonding surface is a groove, and the other bonding surface is a protrusion. Although these are provided, they have the same shape as the annular step provided around the entire circumference of the heat medium flow path.
Also, in order to prevent peeling of the joining surface, a step provided at a position opposite to the joining surface of the aluminum or aluminum alloy member, for example, one of the joining surfaces is provided with a recess and the other joining surface is provided with a projection. And the cross section of a recessed part and a convex part may be round or square. Further, the step portion is provided with an appropriate number at an appropriate position in accordance with the size of the heat plate and the state of the heat medium flow path to prevent peeling of the joint surface.
[0022]
The aluminum or aluminum alloy member constituting the heat plate of the present invention does not specify the material of the member and the manufacturing method of the member, but considering leakage resistance, it is necessary to use a rolled plate or a forged product with few internal defects. desirable.
For example, JIS 1050 having a purity of 99.5% or more can be used as the material of the aluminum or aluminum alloy member constituting the heat plate. Further, JIS1100 (Si and Fe: 1.0% or less, Cu: 0.05 to 0.20%, Mn: 0.05% or less, Zn: 0.10% or less, balance Al), JIS3003 (Si: 0. 0%). 6% or less, Fe: 0.7% or less, Cu: 0.05-0.20%, Mn: 1.0-1.5%, Zn: 0.10% or less, balance Al), JIS6063 (Si: 0.20 to 0.6%, Fe: 0.35% or less, Cu: 0.10% or less, Mn: 1.0% or less, Mg: 0.45 to 0.9%, Cr: 0.10% Zn: 0.10% or less, Ti: 0.10% or less, balance Al), JIS6061 (Si: 0.40 to 0.8%, Fe: 0.7% or less, Cu: 0.15 to 0) .40%, Mn: 0.15% or less, Mg: 0.8-1.2%, Cr: 0.04-0.35%, Zn: 0.25% or less Ti: 0.15% or less, balance Al), JIS3004 (Si: 0.30% or less, Fe: 0.7% or less, Cu: 0.25% or less, Mn: 1.0 to 1.5%, Mg : 0.8 to 1.3%, Zn: 0.25% or less, balance Al), JIS 5052 (Si: 0.25% or less, Fe: 0.40% or less, Cu: 0.10% or less, Mn: 0.10% or less, Mg: 2.2 to 2.8%, Cr 0.15 to 0.35%, Zn: 0.10% or less, balance Al) and the like can be used. In addition, a low Mg content Al—Mg alloy or the like can also be used as long as it satisfies the press-contacting property and ensures metal bonding.
For example, when a heat plate is used in a semiconductor manufacturing apparatus, JIS 1050 having a purity of 99.5% or more is desirable as the material of aluminum from the viewpoint of corrosion resistance against cleaning gas.
[0023]
Moreover, the annular step part provided in the perimeter of the joining surface of the metal member which comprises the heat plate of this invention is shape | molded, for example by machining. For example, it is desirable to clean the surface of an annular step formed on the joining surface of an aluminum or aluminum alloy member as a pretreatment for forging pressure. For example, (1) oil removal of the surface with nitric acid, (2) water washing, (3) chemical conversion treatment (etching with alkaline solution), (4) water washing, (5) nitric acid washing, (6) water washing, (7) ▼ Wash and clean the surface using appropriate processes such as hot water washing.
[0024]
The fastening of aluminum or aluminum alloy members constituting the heat plate of the present invention by forging pressure compression is most easily bonded to pure aluminum having a purity of 99.5% or more, but JIS1100, Al having a purity of 99.0% or more, Al -Mn-based JIS3003, JIS3004, or alloys such as JIS6063, JIS6061 and JIS5052 can be pressure-bonded by forging compression.
Further, if the aluminum or aluminum alloy member constituting the heat plate of the present invention is made of the same material, a plurality of members are pressure-bonded due to deformation at the time of forging pressure compression, and physical metal joining is easy. In addition, even when different materials are used, two members are pressed and physically joined to each other by deformation during forging compression. For example, JIS1000 series aluminum material and JIS3000 series aluminum material are used as different materials. The members are pressure-bonded by physical deformation due to deformation during forging compression and are physically metal-bonded.
Such metal bonding of the same or different members is performed in a temperature range of 300 to 500 ° C., and the forging pressure temperature is preferably in the range of 350 to 500 ° C.
Moreover, when the metal member which comprises the heat plate of this invention is a copper or copper alloy member, it is preferable to perform forge pressure compression at the temperature of 700-900 degreeC.
[0025]
The heat plate of the present invention is an annular groove which is an annular step portion formed by combining forging pressure by combining aluminum or aluminum alloy members, or joint surfaces of copper or copper alloy members, and forming a heat medium flow path therein. And the annular protrusion, the annular protrusion and the annular protrusion, or the annular groove and the intermediate member form a fastening portion which is forged and compressed and has a high density sealing property, and further, the outer peripheral end of the forged and compressed portion is TIG welded, It can be joined by welding such as MIG welding or electron beam welding to ensure a tighter joint at the outer periphery.
Moreover, the heat plate which joined the some aluminum or aluminum alloy member of this invention, and the heat-medium flow path is formed in the inside performs the surface treatment for a corrosion resistance improvement, for example, an alumite process.
[0026]
[Example 1]
A first embodiment of the present invention will be described with reference to FIGS.
FIG. 1 is a perspective view showing a cross section of a heat plate according to
FIG. 2A is a view showing the joint surface of FIG. 1, and FIG. 2B is a view showing a partial cross section thereof. 3 (a), 3 (b), 4 (a), 4 (b), and 4 (c) are diagrams showing a manufacturing process of the heat plate of Example 1 of the present invention.
The heat plate of Example 1 is formed by combining forging pressure compression as an annular step provided on the joining surface of an aluminum or aluminum alloy member, the joining surface of one member as an annular groove, and the joining surface of the other member as an annular protrusion. And concluded.
[0027]
As shown in FIG. 1, in the heat plate (1), a U-shaped groove is formed on the joining surface of one aluminum member (3), and this is combined with the flat joining surface of the other aluminum member (4). Thus, the heat medium channel (2) is formed. An annular groove (6) is provided on the entire circumference of the joining surface of one aluminum member (3) so as to surround the heat medium flow path (2), and an annular protrusion is provided on the joining surface of the other aluminum member (4). (7) is provided. The annular protrusion (7) and the annular groove ring (6) are provided at opposing positions, and the annular protrusion (7) is combined with the annular groove ring (6) to obtain an aluminum member (3) and an aluminum member (4). The joint surface is forged to form the heat medium flow path (2) inside, and the annular protrusion (7) is forged and compressed and joined to the annular groove (6) to surround the heat medium flow path (2). Thus, the fastening part (5) which has a high-density sealing property is formed.
[0028]
As shown in FIG. 2 (a), the heat medium flow path (2) is meanderingly formed inside the heat plate (1), and an annular groove and an annular protrusion provided on the entire circumference so as to surround it. The fastening part (5) is formed by the part.
FIG. 2B shows a cross section taken along the line AA in FIG. 2A, and the inlet /
[0029]
3A, 3B, 4A, 4B, and 4C, the manufacturing process of the heat plate of Example 1 of the present invention will be described.
As shown in FIG. 3 (a), a U-shaped groove (2 ') is formed on the joining surface of one aluminum member (3), and an annular groove (6) is provided on the entire circumference so as to surround it. The other aluminum member (4) is provided with an annular protrusion (7) on the flat surface and the entire circumference. The annular groove (6) of the aluminum member (3) and the annular protrusion (7) of the aluminum member (4) are provided at opposing positions. FIG. 3 (b) is an enlarged view of the annular groove (6) and the annular protrusion (7). The width of the annular groove (6) is a, the depth is b, and the annular protrusion (7) is shown. The width was c and the height was d.
[0030]
Next, as shown in FIG. 4A, the U-shaped groove on the joining surface of the aluminum member (3) is combined with the flat joining surface of the aluminum member (4), and the annular groove (6 on the aluminum member (3)). ) Is combined with the annular protrusion (7) of the aluminum member (4) and forged as indicated by the arrow. The heat medium flow path (2) is formed inside the U-shaped groove of the aluminum member (3) and the flat surface of the aluminum member (4), and the annular protrusion (7) is forged and compressed in the annular groove (6). Thus, the fastening portion (5) is formed.
[0031]
FIG. 4B shows an enlarged description of the combination of the annular groove (6) and the annular protrusion (7).
The width a of the annular groove (6) having a width a is larger than the width c of the annular protrusion (7), and the height d of the annular protrusion (7) is longer than the depth b of the annular groove (6). ing.
By inserting and combining the annular protrusion (7) into such an annular groove (6), and forging as shown by the arrow in FIG. 4 (a), it is deformed as shown in FIG. After deformation, a ′ = c ′ and b ′ = d ′, and the annular protrusion (7) is compressed and filled in the annular groove (6). Thereby, a fastening part (5) is sealed.
Further, in the forging pressure, the whole plate thickness is further compressed to obtain a sealed state in which the fastening portion is more effectively physically pressed (metal bonded).
[0032]
A specific example of the relationship between the annular groove (6) and the annular protrusion (7) will be described with reference to the diagram shown in FIG. 4B. The width of the annular groove (6) is a and the depth is b. When the width of the protrusion (7) is c and the height is d, the following relationship is preferable.
a × b ≦ c × d
b / d ≦ 1.0
d / c ≦ 6 (more preferably, d / c ≦ 4)
[0033]
The relationship of a × b ≦ c × d and b / d ≦ 1.0 is that the annular protrusion (7) is press-fitted into the annular groove (6) by forging pressure to seal the fastening portion.
Since the circumferential lengths of the annular groove (6) and the annular protrusion (7) are the same, the a × b area of the annular groove (6) is larger than the c × d area of the annular protrusion (7). The volume of the annular protrusion (7) is smaller than the volume inside the annular groove (6). As a result, the annular protrusion (7) is not filled in the annular groove (6). In order to obtain a sufficient seal, it is preferable to satisfy a relationship of a × b ≦ c × d.
If the width c of the annular protrusion (7) is too small compared to the width a of the annular groove (6), the annular protrusion (7) can be sealed in the annular groove (6) when forged. Therefore, the seal may be insufficient.
[0034]
Specifically, pure aluminum having a purity of 99.5% or more is used as the aluminum members (3) and (4), the width a of the annular groove (6) is 7.0 mm, the depth is 7.0 mm, the annular protrusion (7 ) Having a width c of 6.9 mm and a height of d 9.0 mm, the annular protrusion (7) was compressed to fill the annular groove (6). The obtained heat plate is 10 to 10 from the heat medium flow path (2) inside. -8 -10 -10 No leak occurred even in a high vacuum at Torr.
[0035]
[Example 2]
A second embodiment of the present invention will be described with reference to FIG.
The heat plate of Example 2 was provided with an annular groove on the joining surface of one member and an annular protrusion on the joining surface of the other member as an annular step provided on the joining surface of the aluminum or aluminum alloy member. These annular grooves and annular protrusions are provided in a double manner.
As shown in FIG. 5 (a), a U-shaped groove (2 ') is formed on the joining surface of one aluminum member (3), and an annular groove (6) is doubled around the entire circumference so as to surround it. Provide. The other aluminum member (4) is provided with a double annular projection (7) on the flat surface and the entire circumference. The double annular groove (6) of the aluminum member (3) and the double annular protrusion (7) of the aluminum member (4) are provided at opposing positions.
[0036]
As shown in FIG. 5B, the U-shaped groove on the joining surface of the aluminum member (3) is combined with the flat joining surface of the aluminum member (4), and the double annular groove ( 6) is combined with the double annular protrusion (7) of the aluminum member (4) and forged as indicated by the arrows, the U-shaped groove of the aluminum member (3) and the flat surface of the aluminum member (4) Thus, the heat medium flow path (2) is formed inside, and the annular protrusion (7) is forged in the annular groove (6) to form a double fastening part (10).
By forging the annular protrusion (7) into the annular groove (6), the forging pressure is compressed and filled as described in the first embodiment (FIGS. 4B and 4C), whereby the fastening portion is sealed. The Since the fastening portion (10) of the second embodiment is doubled, a heat plate with no leakage can be obtained more reliably.
[0037]
[Example 3]
A third embodiment of the present invention will be described with reference to FIGS.
Example 3 shows the formation of the heat medium flow path of the heat plate.
In the heat plate (1) shown in FIG. 6 (a), the annular protrusion is forged and compressed in an annular groove on the entire circumference to form a fastening portion (5), and the heat medium flow path has a U-shape (12). Is formed. As shown in FIG. 6B, the heat medium flow path (12) is formed by a flat surface of the aluminum member (4) and a U-shaped groove (12 ′) of the aluminum member (3). is there.
[0038]
In the heat plate (1) shown in FIG. 7 (a), an annular protrusion is forged and compressed in an annular groove on the entire circumference to form a fastening portion (5), and a U-shaped heat medium channel (13) is formed. Is formed. As shown in FIG. 7B, the heat medium flow path (13) is provided with a recess (15) in the aluminum member (4), and the aluminum member (3) has a U-shaped groove (13). The convex part (14) which isolates ′) is provided, the convex part (14) of the aluminum member (3) is pressed into the concave part (15) of the aluminum member (4), and the U-shaped on both sides thereof. It is formed by a groove (13 ′).
[0039]
In the heat plate (1) shown in FIG. 8 (a), the annular protrusion is forged in the annular groove on the entire circumference to form the fastening portion (5), and the heat medium passage is formed of the heat medium passage pipe (16). It is arranged. As shown in FIG. 8B, the heat medium passage pipe (16) is provided between the semicircular recess (17) of the aluminum member (3) and the semicircular recess (18) of the aluminum member (4). The heat medium passage pipe (16) is in close contact, and when the annular protrusion (7) is forged and compressed in the annular groove (6) to form the fastening portion (5), the heat medium passage pipe ( 16) is closely attached to the recess (17) of the aluminum member (3) and the recess (18) of the aluminum member (4).
[0040]
[Example 4]
A fourth embodiment of the present invention will be described with reference to FIGS.
The heat plate (1) shown in FIG. 9 (a) has a fastening portion (5) formed on the entire circumference so as to surround the heat medium flow path (65), and is made of aluminum or an aluminum alloy member (3) ( In order to prevent peeling of the joint surface in 4), the joint is fastened by the concave portion (63) and the convex portion (62). As shown in FIG. 9 (b), the semicircular groove (67), the annular protrusion (7) and the protrusion (62) of the heat medium flow path are formed on the joining surface of the aluminum or aluminum alloy member (4). In addition, a semicircular groove (66), an annular groove (6), and a recess (63) of the heat medium flow path are provided on the joint surface of the member (3), and these are combined and forged and compressed and fastened. Therefore, peeling of the joint surface can be prevented.
[0041]
The heat plate (1) shown in FIG. 10 (a) has a fastening portion (5) formed around the heat medium flow path (65) so as to surround the heat medium flow path (65). In the vicinity thereof, it is fastened with a groove (60) and a protrusion (61) in order to ensure its high sealing performance. As shown in FIG. 10 (b), the annular or protruding portion (7), the semicircular groove (67) of the heat medium flow path and the protruding portion along the annular protrusion (7) are formed on the joining surface of the aluminum or aluminum alloy member (4). 61) is provided, and an annular groove (6), a semicircular groove (66) of the heat medium passage and a groove (60) are provided along the annular groove (6) on the joint surface of the member (3). It is fastened by forging and compression, can ensure high sealing performance of the heat medium flow path, and can also prevent peeling of the joint surface.
[0042]
The heat plate (1) shown in FIG. 11 (a) has a fastening portion (5) formed on the entire periphery so as to surround the heat medium flow path (65). In order to secure a high sealing performance in the vicinity thereof, it is fastened by the groove (60) and the protruding portion (61), and further fastened by the concave portion (63) and the convex portion (62) in order to prevent separation of the joint surface. It is what has been.
As shown in FIG. 11 (b), an annular protrusion (7), a semicircular groove (67) of the heat medium passage and a protrusion ( 61) and a convex portion (62) are provided, and an annular groove (6), a semicircular groove (66) of the heat medium flow path, and a groove (60) and a concave portion (61) along the annular groove (6) are formed on the joining surface of the member (3). 63), which are combined and forged and compressed and fastened to ensure high sealing performance of the heat medium flow path and prevent peeling of the joint surface.
[0043]
[Example 5]
A fifth embodiment of the present invention will be described with reference to FIGS.
12A and 12B are diagrams showing the joining surfaces of the members of the heat plate. FIG. 13A is a cross section taken along the line AA in FIG. 12, and FIG. 13B is a cross section taken along the line BB in FIG.
As shown in FIGS. 12, 13 (a) and 13 (b), the heat medium flow path (50) is meandered inside the heat plate (1), and is provided on the entire circumference so as to surround it. The fastening portion is doubled by the annular groove (6) and the annular protrusion (7).
[0044]
As shown in FIG. 13 (b), on the joint surface of the member (3), the annular protrusion (7), the U-shaped groove (51) of the heat medium flow path, and the protrusion (55) and the protrusion ( 57) and an annular groove (6), a U-shaped groove (52) of the heat medium flow path, and a groove (54) and a recess (56) are provided along the annular groove (6) on the joining surface of the member (4). It has been.
Combine the joint surfaces of such members (3) and (4) and tighten them by forging pressure,
A high degree of sealing is ensured by the fastening portion of the annular groove (6) and the annular protrusion (7) provided in a double manner around the heat medium flow path (50), Also
Ensuring high sealing performance of the heat medium flow path (50) by the fastening part of the protrusion (55) and the groove (54) along the heat medium flow path and the fastening part of the convex part (57) and the concave part (56). And the peeling of the joint surface can be prevented.
The inlet / outlet (53) of the heat medium passage is provided with an opening in the member (4) as shown in FIG.
[0045]
[Example 6]
A sixth embodiment of the present invention will be described with reference to FIGS.
Example 6 shows an example of the annular step portion provided on the joining surface of the aluminum or aluminum alloy member of the heat plate.
FIG. 14 shows a semicircular recess (18) in which the heat medium passage pipe (16) is in close contact with the aluminum member (4) and an annular protrusion (7) on the outer periphery thereof. A semicircular recess (17) is provided with an annular groove (6) on its outer periphery.
This is an air groove (20) provided in the annular groove (6), and when the annular protrusion (7) is forge-compressed in the annular groove (6), air is prevented from being caught in the fastening portion. It is a thing.
[0046]
FIG. 15 shows a semicircular recess (18) and an annular protrusion (7) for closely contacting the heat medium passage pipe (16) to the aluminum member (4), and the aluminum member (3) is semicircular. A recess (17) and an annular groove (6) are provided. In this example, a chamfered portion (21) is provided in the annular groove (6), and when the annular protrusion (7) is combined with the annular groove (6), the insertion is facilitated.
[0047]
FIG. 16 shows that a semicircular recess (18) and an annular protrusion (7) are provided for tightly attaching the heat medium passage pipe (16) to the aluminum member (4), and the aluminum member (3) is semicircular. A recess (17) and an annular groove (6) are provided. This facilitates the insertion when the chamfered portion (22) is provided in the annular protrusion (7) and the annular protrusion (7) is combined with the annular groove (6).
[0048]
FIG. 17 shows an example of an annular groove and an annular protrusion. A semicircular recess (18) for closely attaching the heat medium passage tube (16) to the aluminum member (4), and an annular groove (23 having a trapezoidal cross section). In addition, the aluminum member (3) is provided with an annular protrusion (24) having a trapezoidal cross section facing the semicircular recess (17). In this case as well, the size of the trapezoidal annular groove (23) and the trapezoidal annular protrusion (24) is such that the annular groove is filled with the annular protrusion. This facilitates machining of the annular groove and the annular protrusion, and makes it difficult to cause air entrainment during forging.
[0049]
FIG. 18 shows a modification of the annular groove and the annular protrusion. The aluminum member (4) has a semicircular recess (18) for closely attaching the heat medium passage pipe (16) and a U-shaped cross section. An annular protrusion (26) is provided, and the aluminum member (3) is provided with a semicircular recess (17) and an annular groove (25) having an inverted trapezoidal cross section. This is because the annular groove (25) has an inverted trapezoidal cross section and the annular protrusion (26) has a U-shaped cross section. The degree is maintained, and mechanically strong fastening can be obtained.
[0050]
FIG. 19 shows a modification of the annular groove and the annular protrusion, and a semicircular recess (18) for tightly attaching the heat medium passage tube (16) to the aluminum member (4) and a square U-shaped section. An annular groove (27) is provided, and the aluminum member (3) is provided with a semicircular recess (17) and a mountain-shaped annular protrusion (28). This is because the circular groove (27) having a U-shaped cross section is rounded, and the annular protrusion (28) has a mountain shape, so that the combination of inserting the annular protrusion into the annular groove is easy.
[0051]
[Example 7]
A seventh embodiment of the present invention will be described with reference to FIGS.
Example 7 shows the example of the annular step part provided in the joining surface of the aluminum or aluminum alloy member of a heat plate.
FIG. 20 shows an example in which an annular protrusion is provided on the outer periphery of the annular groove and the annular protrusion. The aluminum member (4) is provided with a semicircular recess (18) for closely contacting the heat medium passage tube (16), an annular protrusion (7), and an annular protrusion (31) on the outer periphery thereof. The aluminum member (3) is provided with a semicircular recess (17), an annular groove (6) and an annular protrusion (30) on the outer periphery thereof. The annular groove (6) and the annular protrusion (7) are the same as described in the first embodiment, and the height of the annular protrusions (30) and (31) is higher than that of the annular protrusion (7). It is compressed at a low level and flattened at the joint surface.
[0052]
The annular protrusion (7) is inserted into the annular groove (6), and the annular protrusion (30) and the annular protrusion (31) are combined and forged. The annular protrusion (7) is compressed and filled in the annular groove (6) by forging pressure to form a fastening portion. Further, by compressing the entire plate thickness by forging pressure, the annular protrusion (30) and the annular protrusion (31) are pressure-bonded (metal bonded), and a densely bonded portion is formed on the outer peripheral portion.
Specifically, pure aluminum having a purity of 99.5% or more is used as the members (3) and (4), the width a7.0 mm of the annular groove (6), the depth b7.0 mm, and the width of the annular protrusion (7). c6.9mm, height d9.0mm, annular convex part (30) and annular convex part (31) are 4mm in height and 10mm in width. The annular groove (6) was filled, and the annular protrusion (31) was crimped (metal bonded), and the bonding surface was flat.
[0053]
FIG. 21 shows an example in which an annular protrusion is provided on the outer periphery of the annular groove. The aluminum member (4) is provided with a semicircular recess (18) and an annular protrusion (7) for closely contacting the heat medium passage pipe (16), and the aluminum member (3) is provided with a semicircular recess (17). ) And an annular groove (6), and an annular protrusion (30) is provided on the outer periphery thereof. The annular groove (6) and the annular protrusion (7) are the same as described in the first embodiment, and the height of the annular protrusion (30) is lower than that of the annular protrusion (7).
By inserting the annular protrusion (7) into the annular groove (6) and forging, the annular protrusion (7) is compressed and filled in the annular groove (6) to form a fastening portion. By compressing the whole, the annular convex part (30) is pressure-bonded (metal joint), and a dense joint part is formed on the outer peripheral part.
[0054]
[Example 8]
An eighth embodiment of the present invention will be described with reference to FIG.
The heat plate of Example 8 is an annular step provided on the joining surface of aluminum or an aluminum alloy member. One joining surface is an annular projecting portion, and the other joining surface is an annular projecting portion. It is compressed and fastened.
As shown in FIG. 22, the aluminum member (4) is provided with a semicircular recess (18) for closely adhering the heat medium passage pipe (16) and an annular protrusion (32) on the outer periphery thereof. 3) is provided with a semicircular recess (17) and an annular protrusion (33) on the outer periphery thereof. The annular protrusion (32) and the annular protrusion (32) on the joint surface are combined, and by forging pressure, Compress the entire plate thickness. As a result, the annular projecting portion is pressure-bonded (metal bonded) to form a fastening portion to be closely bonded.
[0055]
[Example 9]
A ninth embodiment of the present invention will be described with reference to FIGS. 23 (a), 23 (b), 24 (a), 24 (b), and 24 (c).
In the heat plate of Example 9, the annular step provided on the joining surface of the aluminum or aluminum alloy member, one joining surface is an annular groove, the other joining surface is also an annular groove, and each annular groove is made of aluminum. Alternatively, an intermediate member made of aluminum alloy is inserted, forged and compressed, and fastened.
[0056]
As shown in FIG. 23 (a), the aluminum member (4) has a semicircular recess (18) for closely adhering the heat medium passage pipe (16), and an annular groove (35) having a U-shaped cross section on the outer periphery thereof. The aluminum member (3) is also provided with a semicircular recess (17) and an annular groove (34) having a U-shaped cross section on the outer periphery thereof.
The intermediate member (36) is inserted into the annular groove (35) having a U-shaped cross section of the aluminum member (4), combined with the annular groove (34) having a U-shaped cross section of the aluminum member (3), and subjected to forging compression. Thus, a fastening portion is formed. The heat medium flow path is for bringing the heat medium path pipe (16) into close contact with the recess (17) of the aluminum member (3) and the recess (18) of the aluminum member (4).
[0057]
FIG. 23B is an enlarged view of the annular grooves (34) and (35) and the intermediate member (36) of FIG. 23 (a), and shows a specific relationship between the annular groove and the intermediate member. When the depth A and width B of the annular groove (34), the depth C and width D of the annular groove (35), and the length E and width F of the intermediate member (36),
(A + C) ≦ E,
(A × B + C × D) ≦ E × F,
(A + C) / E ≦ 1
B ≧ F, D ≧ F
The members (3) and (4) are combined, forged and compressed, and joined to ensure a sealing property.
[0058]
Specifically, the members (3), (4), and the intermediate member (36) are made of pure aluminum having a purity of 99.5% or more, the depth A of the annular groove (34) is 5 mm, the width B is 7 mm, the annular groove (35 ) With a depth C of 5 mm, a width D of 7 mm, and a length E of 12 mm and a width of 6.8 mm of the intermediate member (36), which are forged and compressed into annular grooves (34) and (35) to the intermediate member (36). Charged. The fastening portion of the obtained heat plate is 10 -8 -10 -10 Even in a high vacuum of Torr, no leakage occurred, and it had a high-density sealing property.
[0059]
FIGS. 24A, 24B and 24C are views showing another example of the shape of the annular groove provided at the position opposite to the joining surface of the aluminum or aluminum alloy member (3) (4) and the intermediate member. It is.
In FIG. 24 (a), the annular groove (31) of the member (3) has a U-shaped cross section and is provided with a recess, and the annular groove (42) of the member (4) has a U-shaped cross section and is wide. belongs to. The intermediate member (43) has a convex shape, and has a wide portion corresponding to the annular groove (42) and a narrow portion corresponding to the annular groove (41), and its tip is chamfered.
In this example, the wide annular groove (42) is easy to machine, and the narrow portion corresponding to the annular groove (41) is chamfered at the tip, so that the intermediate member (43) can be easily 41) can be inserted and combined, and since a recess is provided in the annular groove (41), air entrainment does not occur when forming the fastening portion by forging pressure compression.
[0060]
In FIG. 24B, the annular groove (38) of the member (3) has a trapezoidal cross section, and the annular groove (39) of the member (4) also has a trapezoidal cross section. The intermediate member (40) has a trapezoidal shape corresponding to the annular grooves (38) (39). Since the annular grooves (38) and (39) are trapezoidal, the machining is easy, and when the intermediate member is combined with the annular groove, the insertion is easy.
In FIG. 24 (c), the annular groove (44) of the member (3) has a U-shaped cross section, and the annular groove (45) of the member (4) also has a U-shaped cross section. Is an ellipse. In this example, since the tip of the intermediate member (37) is rounded, when the intermediate member is combined with the annular groove, the intermediate member (37) can be easily inserted, and air existing in the corners can be stored.
[0061]
【The invention's effect】
As described above, according to the present invention, the heat plate has a metal member, for example, an aluminum or aluminum alloy member, a copper or copper alloy member, and the entire circumference of the heat plate so as to surround the heat medium flow path at a position opposite to the joint surface. An annular step portion is provided, and the joint portion is formed by forging compression by combining these annular step portions, the joint surface is highly sealed, and the high degree of sealing with the internal heat medium flow path is ensured. Have. That is, the seal of the fastening part is forged and the joint part is physically pressure-bonded, so that defects such as pinholes that occur during conventional welding can be prevented and high airtightness can be maintained. In addition, since both are metal-bonded, a high degree of sealing is maintained even at a high temperature of about 500 ° C. Further, by providing annular stepped portions by machining and forging them, a heat plate without pressure leakage in which the fastening portions are metal-bonded can be obtained, so that it is possible to produce at a low cost. .
[Brief description of the drawings]
FIG. 1 is a diagram showing a heat plate according to a first embodiment of the present invention.
FIG. 2 is a view showing a heat plate of Example 1 of the present invention.
FIG. 3 is a view showing a manufacturing process of the heat plate according to the first embodiment of the present invention.
FIG. 4 is a view showing a manufacturing process of the heat plate of Example 1 of the present invention.
FIG. 5 is a diagram for explaining a second embodiment of the present invention;
FIG. 6 is a diagram for explaining a third embodiment of the present invention.
FIG. 7 is a diagram for explaining a third embodiment of the present invention.
FIG. 8 is a diagram for explaining a third embodiment of the present invention.
FIG. 9 is a diagram for explaining a fourth embodiment of the present invention.
FIG. 10 is a diagram for explaining a fourth embodiment of the present invention.
FIG. 11 is a diagram for explaining a fourth embodiment of the present invention.
FIG. 12 is a diagram for explaining a fifth embodiment of the present invention.
FIG. 13 is a diagram for explaining a fifth embodiment of the present invention.
FIG. 14 is a diagram illustrating Example 6 of the present invention.
FIG. 15 is a view for explaining Example 6 of the invention.
FIG. 16 is a diagram illustrating Example 6 of the present invention.
FIG. 17 is a diagram illustrating Example 6 of the present invention.
FIG. 18 is a diagram illustrating Example 6 of the present invention.
FIG. 19 is a diagram for explaining a sixth embodiment of the present invention.
FIG. 20 is a diagram illustrating Example 7 of the present invention.
FIG. 21 is a diagram illustrating Example 7 of the present invention.
FIG. 22 is a diagram for explaining an eighth embodiment of the present invention.
FIG. 23 is a diagram for explaining an embodiment 9 of the present invention.
FIG. 24 is a diagram for explaining Example 9 of the present invention.
FIG. 25 shows a conventional example.
FIG. 26 shows a conventional example.
FIG. 27 shows a conventional example.
[Explanation of symbols]
1 Heat plate
2 Heat medium flow path
3, 4 Aluminum parts
5 Fastening part
6 annular groove
7 annular protrusion
Claims (21)
a×b≦c×d
b/d≦1.0
d/c≦6
の関係であり
環状溝内に環状突出部を充満させて金属接合した高度のシール性を有する締結部を形成ていることを特徴とする請求項16に記載の金属部材を接合したヒートプレートの製造方法。The annular groove formed on the joint surface of one member and the annular protrusion formed on the joint surface of the other member have a width of the annular groove, a depth of the annular groove, and a width of the annular protrusion. c, where d is the height of the annular protrusion,
a × b ≦ c × d
b / d ≦ 1.0
d / c ≦ 6
The manufacturing method of the heat plate which joined the metal member of Claim 16 which forms the fastening part which has the high sealing property which filled the annular protrusion part in the annular groove, and was metal-joined. Method.
前記締結部は、鍛圧圧縮により変形し、環状溝と中間部材の体積差により環状溝内にアルミニウム又はアルミニウム合金の中間部材が充満しているもので、高真空中でも使用可能な締結部を形成したことを特徴とする請求項2、請求項4乃至10のいずれかに記載の複数の金属部材を接合したヒートプレートの製造方法。In a method for manufacturing a heat plate in which a plurality of aluminum or aluminum alloy members are joined and a heat medium flow path is formed therein, a groove serving as a heat medium flow path on the joining surface is formed on one or both of the aluminum or aluminum alloy members. An annular groove is formed all around the joint surface of one member so as to surround the heat medium flow path, and an annular groove is formed around the heat medium flow path on the joint surface of the other member. Each annular groove is provided at an opposing position, and an intermediate member of aluminum or aluminum alloy is inserted into each annular groove by combining the joint surfaces, and forge compression is performed at 300 to 500 ° C. , Forming a heat medium flow path inside, and filling the intermediate member in the annular groove to form a metal-bonded fastening portion having a high sealing performance,
The fastening portion is deformed by forging compression, and the annular groove is filled with an intermediate member of aluminum or aluminum alloy due to a volume difference between the annular groove and the intermediate member, and a fastening portion that can be used even in a high vacuum is formed. A method for producing a heat plate in which a plurality of metal members according to any one of claims 2 and 4 to 10 are joined.
(A+C)≦E、
(A×B+C×D)≦E×F、
(A+C)/E≦1、
B≧F、D≧F
の関係であり、
環状溝内に中間部材を充満させて金属接合した高度のシール性を有する締結部を形成ていることを特徴とする請求項18に記載の複数の金属部材を接合したヒートプレートの製造方法。An annular groove formed on the joining surface of one member, an annular groove formed on the joining surface of the other member, and an intermediate member inserted into the annular groove are the depth A of the annular groove of one member, the annular groove Width B, the depth C of the annular groove of the other member, the width D of the annular groove, the length E of the intermediate member, and the width F of the intermediate member,
(A + C) ≦ E,
(A × B + C × D) ≦ E × F,
(A + C) / E ≦ 1,
B ≧ F, D ≧ F
Relationship
The manufacturing method of the heat plate which joined the some metal member of Claim 18 characterized by forming the fastening part which has the high sealing performance which filled the intermediate member in the annular groove, and was metal-joined.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12107299A JP3895498B2 (en) | 1999-04-28 | 1999-04-28 | Heat plate joined with metal member and method for manufacturing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12107299A JP3895498B2 (en) | 1999-04-28 | 1999-04-28 | Heat plate joined with metal member and method for manufacturing the same |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003323618A Division JP2004093127A (en) | 2003-09-16 | 2003-09-16 | Heat plate formed by joining metal members |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2000311932A JP2000311932A (en) | 2000-11-07 |
JP3895498B2 true JP3895498B2 (en) | 2007-03-22 |
Family
ID=14802159
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP12107299A Expired - Fee Related JP3895498B2 (en) | 1999-04-28 | 1999-04-28 | Heat plate joined with metal member and method for manufacturing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3895498B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008307553A (en) * | 2007-06-12 | 2008-12-25 | Nippon Light Metal Co Ltd | Method of manufacturing heat exchanger, and heat exchanger |
US8263908B2 (en) | 2004-10-08 | 2012-09-11 | Furukawa-Sky Aluminum Corp. | Heater plate and a method for manufacturing the heater plate |
Families Citing this family (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4750258B2 (en) * | 2000-10-24 | 2011-08-17 | 古河スカイ株式会社 | Method for manufacturing fluid circuit member |
JP4750257B2 (en) * | 2000-10-24 | 2011-08-17 | 古河スカイ株式会社 | Manufacturing method of heat plate in which metal members are joined |
JP4805466B2 (en) * | 2001-03-14 | 2011-11-02 | 古河スカイ株式会社 | Method for manufacturing a heater plate provided with a sheath heater |
US6686052B2 (en) * | 2001-06-20 | 2004-02-03 | Showa Denko, K.K. | Cooling plate and production method therefor |
KR20040012950A (en) * | 2001-06-20 | 2004-02-11 | 쇼와 덴코 가부시키가이샤 | Cooling plate and method of producing the same |
JP3843851B2 (en) * | 2002-01-30 | 2006-11-08 | 日立電線株式会社 | Roll bond panel |
JP4806179B2 (en) * | 2004-10-08 | 2011-11-02 | 古河スカイ株式会社 | Heater plate manufacturing method |
JP4868737B2 (en) * | 2004-12-17 | 2012-02-01 | 古河スカイ株式会社 | Heater plate and heater plate manufacturing method |
JP4942385B2 (en) * | 2006-04-25 | 2012-05-30 | 東芝三菱電機産業システム株式会社 | Soaking equipment |
JP2008254046A (en) * | 2007-04-06 | 2008-10-23 | Mitsubishi Heavy Ind Ltd | Heat exchanging plate |
JP2008254047A (en) * | 2007-04-06 | 2008-10-23 | Mitsubishi Heavy Ind Ltd | Heat exchanging plate and its manufacturing method |
KR101482102B1 (en) | 2007-11-15 | 2015-01-13 | 엘지전자 주식회사 | Heat dissipation structure of a controller of an air conditioner |
WO2009104426A1 (en) * | 2008-02-21 | 2009-08-27 | 日本軽金属株式会社 | Method of manufacturing heat transfer plate |
JP4998481B2 (en) * | 2009-01-14 | 2012-08-15 | 日本軽金属株式会社 | Manufacturing method of heat transfer element |
JP2011094854A (en) * | 2009-10-28 | 2011-05-12 | Hoshizaki Electric Co Ltd | Ice making chamber of ice making machine |
JP5496279B2 (en) * | 2012-07-25 | 2014-05-21 | 株式会社放熱器のオーエス | Heat exchanger and manufacturing method thereof |
JP5749786B2 (en) * | 2013-11-28 | 2015-07-15 | 株式会社前川製作所 | Heat exchanger |
JP6356562B2 (en) * | 2014-09-26 | 2018-07-11 | 京セラ株式会社 | Channel member |
WO2017179339A1 (en) * | 2016-04-11 | 2017-10-19 | 日本軽金属株式会社 | Joining method, method for manufacturing hollow container, and method for manufacturing liquid cooling jacket |
JP6670189B2 (en) | 2016-06-27 | 2020-03-18 | 新光電気工業株式会社 | Base plate structure, manufacturing method thereof, and substrate fixing device |
EP4126418A4 (en) * | 2020-03-31 | 2024-05-29 | Corning Incorporated | Methods for metal flow reactor modules and modules produced |
CN112420561B (en) * | 2020-11-11 | 2024-09-17 | 宁波江丰电子材料股份有限公司 | Semiconductor cooling and heating composite device and preparation method and application thereof |
KR102699789B1 (en) * | 2022-09-27 | 2024-08-27 | 엔지케이 인슐레이터 엘티디 | Wafer placement table |
JP2024061456A (en) * | 2022-10-21 | 2024-05-07 | 株式会社神戸製鋼所 | Manufacturing method of temperature adjustment unit, and temperature adjustment unit |
-
1999
- 1999-04-28 JP JP12107299A patent/JP3895498B2/en not_active Expired - Fee Related
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8263908B2 (en) | 2004-10-08 | 2012-09-11 | Furukawa-Sky Aluminum Corp. | Heater plate and a method for manufacturing the heater plate |
JP2008307553A (en) * | 2007-06-12 | 2008-12-25 | Nippon Light Metal Co Ltd | Method of manufacturing heat exchanger, and heat exchanger |
Also Published As
Publication number | Publication date |
---|---|
JP2000311932A (en) | 2000-11-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3895498B2 (en) | Heat plate joined with metal member and method for manufacturing the same | |
US6298910B1 (en) | Aluminum-made heat exchanger with brazed joint portion | |
JP2002008993A (en) | Fluid circuit member and manufacturing method thereof | |
US4172496A (en) | Heat exchanger assembly | |
US7954543B2 (en) | Heat exchanger header with deformations | |
US5489344A (en) | Passivation of carbon steel using encapsulated oxygen | |
JP3552154B2 (en) | Sealed body made of aluminum or aluminum alloy member, substrate holder of semiconductor manufacturing apparatus or thin display manufacturing apparatus, and method of manufacturing the same | |
JPS6179879A (en) | Compressor | |
WO1999014544A1 (en) | Tube for heat exchangers and method of manufacturing the same | |
EP0561514B1 (en) | Method of making a pipe connection | |
JP3836602B2 (en) | Manufacturing method of vacuum chamber | |
JP3892647B2 (en) | Welded structure and heat exchanger provided with the same | |
JP2001500954A (en) | Connector system used for ultra-high vacuum system | |
JP2004093127A (en) | Heat plate formed by joining metal members | |
JP3345852B2 (en) | Base holder for semiconductor manufacturing apparatus and method of manufacturing the same | |
JP4750257B2 (en) | Manufacturing method of heat plate in which metal members are joined | |
JP4805466B2 (en) | Method for manufacturing a heater plate provided with a sheath heater | |
JP2006342676A (en) | Hermetic compressor | |
EP2212054A1 (en) | A non-plain carbon steel header for a heat exchanger | |
JPH03238128A (en) | Heat exchanger and its manufacture | |
RU2282809C2 (en) | Lining apparatus for plate type heat exchanger | |
US20070034273A1 (en) | Fluid flow devices | |
KR100896560B1 (en) | Stainless steel pipe and flange fixing process | |
JPH11248377A (en) | Spiral plate heat exchanger | |
JP5131973B2 (en) | Pipe joint manufacturing method and jig |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A712 Effective date: 20040202 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20040406 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20040506 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20040604 |
|
A911 | Transfer of reconsideration by examiner before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20040609 |
|
A912 | Removal of reconsideration by examiner before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A912 Effective date: 20040723 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20061214 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 3895498 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121222 Year of fee payment: 6 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121222 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20151222 Year of fee payment: 9 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
R360 | Written notification for declining of transfer of rights |
Free format text: JAPANESE INTERMEDIATE CODE: R360 |
|
R360 | Written notification for declining of transfer of rights |
Free format text: JAPANESE INTERMEDIATE CODE: R360 |
|
R371 | Transfer withdrawn |
Free format text: JAPANESE INTERMEDIATE CODE: R371 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
S631 | Written request for registration of reclamation of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313631 |
|
S633 | Written request for registration of reclamation of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313633 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |