WO2003001136A1 - Cooling plate and method of producing the same - Google Patents

Cooling plate and method of producing the same Download PDF

Info

Publication number
WO2003001136A1
WO2003001136A1 PCT/JP2002/006143 JP0206143W WO03001136A1 WO 2003001136 A1 WO2003001136 A1 WO 2003001136A1 JP 0206143 W JP0206143 W JP 0206143W WO 03001136 A1 WO03001136 A1 WO 03001136A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal plates
cooling plate
cooling
cooling medium
medium flow
Prior art date
Application number
PCT/JP2002/006143
Other languages
French (fr)
Japanese (ja)
Inventor
Shigetoshi Jogan
Kiyoshi Tada
Original Assignee
Showa Denko K.K.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko K.K. filed Critical Showa Denko K.K.
Priority to JP2003507490A priority Critical patent/JPWO2003001136A1/en
Priority to KR10-2003-7016592A priority patent/KR20040012950A/en
Publication of WO2003001136A1 publication Critical patent/WO2003001136A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • H01L21/67109Apparatus for thermal treatment mainly by convection
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/12Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/04Anodisation of aluminium or alloys based thereon
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/12Elements constructed in the shape of a hollow panel, e.g. with channels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/04Tubular or hollow articles
    • B23K2101/14Heat exchangers

Definitions

  • the present invention relates to a cooling plate used as a backing plate, a susceptor, a cooling plate for various temperature control, and the like in, for example, a sputtering device, a semiconductor manufacturing device, and an LCD manufacturing device.
  • aluminum is used to include aluminum and its alloys.
  • a backing plate for attaching a target is used in a sputtering apparatus for manufacturing semiconductors.
  • This backing plate (101) has a target (100) attached to the surface as shown in FIG.
  • a cooling medium flow passage (102) is formed in the inside to cool the cooling medium. That is, the backing plate (101) is composed of a laminated plate in which two aluminum plates (103) and (104) are overlapped and joined, and the backing plate (101) is formed on the overlapping surface of both aluminum plates (103) and (104).
  • the cooling medium flow passage forming grooves (105) and (106) are respectively formed, and the aluminum plates (103) and (104) are joined and integrated so that the positions of these grooves correspond to each other, thereby forming the backing plate (101). Circuit inside A cooling medium flow path (102) is formed.
  • the joining and integration of the two aluminum plates (103) (104) is performed in order to prevent the leakage of the cooling medium flowing through the cooling medium flow passage (102). This was generally done by brazing the mating surfaces.
  • the surface of the groove (105) (106) is in a state where the aluminum base is exposed as it is, so that water or the like as a cooling medium is exposed to the groove (105). If (106) was allowed to flow for a certain period of time, there was a problem that these grooves would be corroded, and thus the life of the backing plate was short. At present, for example, they are replaced with new ones in one to two years due to such deterioration due to corrosion.
  • the present invention has been made in view of such technical background, and an object of the present invention is to provide a cooling plate having a cooling medium circulation channel having excellent corrosion resistance and a long life, and having excellent cooling performance. .
  • the above object is to provide a cooling plate having a cooling medium flow passage formed therein by superimposing and joining and integrating a plurality of metal plates each having a cooling medium flow passage forming groove formed on an overlapping surface.
  • An anodic oxide film is formed on at least the groove for forming the cooling medium flow passage on the superposed surface of the metal plates, and the plurality of metal plates are integrally joined by friction stir welding. Achieved by boards.
  • this cooling plate since the anodic oxide film is formed at least in the groove for forming the cooling medium flow passage, corrosion of the cooling medium flow passage is effectively prevented, and The durability is significantly improved.
  • the metal plates are joined by friction stir welding, the welded portions do not adversely affect the anodic oxide film after production, such as deterioration, and therefore the excellent corrosion prevention effect is sufficiently maintained. And a long-life cooling plate with excellent durability can be obtained.
  • the joining is performed by friction stir welding, the metal plates are joined to each other in an excellent state, whereby uniform cooling is performed as a cooling plate. ,
  • the anodized film is formed on the entire surface of the superposed surfaces of the metal plates, thereby preventing not only corrosion of the cooling medium flow passage but also corrosion of the entire superposed surface of the metal plates.
  • the durability as a plate is further improved.
  • At least the peripheral portion near the cooling medium flow passage in the gap between the overlapping surfaces of the metal plates is sealed in a liquid-tight state by a sealing material. This can prevent the coolant such as water from leaking out of the cooling medium flow passage and staying there, so that the occurrence of crevice corrosion can be reliably prevented, and the durability of the cooling plate is improved. Further improve.
  • a material made of a metal material or a material made of a water-resistant resin adhesive from the viewpoint of excellent joining (adhesion) durability.
  • an adhesive composed of one or more resins selected from the group consisting of an epoxy resin, a phenol resin and a polyolefin resin has an advantage in terms of adhesion durability. It is preferable because it is particularly excellent.
  • the method for manufacturing a cooling plate according to the present invention may further include: a first step of forming a cooling medium flow passage forming groove on each of the superposed surfaces of the plurality of metal plates; and anodizing treatment on the superposed surface of the metal plates.
  • the cooling plate of the present invention having the above-mentioned features be manufactured with high productivity, but also before the friction stir welding is performed, since the anodizing treatment is performed first, the anode An oxide film can be formed, and therefore, the reliability of preventing corrosion of the superposed surfaces of the metal plates can be enhanced, and there is an advantage that a high-quality cooling plate can be manufactured. Furthermore, since the metal plates are joined by friction stir welding, the joining can be performed without deteriorating the previously formed anodic oxide film at the time of joining, and the excellent corrosion prevention effect can be sufficiently maintained. Thus, a long-lasting cooling plate with excellent durability can be manufactured. BRIEF DESCRIPTION OF THE FIGURES
  • FIG. 1 is a perspective view showing a cooling plate according to one embodiment of the present invention.
  • FIG. 2 is a plan view of the cooling plate.
  • FIG. 3A is a sectional view taken along line AA in FIG.
  • FIG. 3B is an enlarged sectional view showing the cooling medium flow passage and its vicinity in FIG. 3A.
  • FIG. 4 is a perspective view showing the cooling plate in a separated state before joining.
  • FIG. 5 is a sectional view showing a cooling plate according to another embodiment.
  • FIG. 6 is a sectional view showing a conventional cooling plate. BEST MODE FOR CARRYING OUT THE INVENTION
  • FIGS. 1 to 3 show a cooling system according to an embodiment of the present invention.
  • the cooling plate (1) is used as a backing plate of a sputtering apparatus, and is composed of a laminated plate in which two metal plates (2) and (3) are overlapped and joined together.
  • an aluminum plate is used as the metal plate (2) (3).
  • Each of the superposed surfaces of the two metal plates (2) and (3) has a semicircular cross section.
  • the grooves (2a) and (3a) for forming the cooling medium flow passage are formed. That is, as shown in FIG. 4, in the superposed surface of the lower metal plate (3), after one groove formed from one end in the longitudinal direction is branched in three directions, these three The grooves extend parallel to the other end along the length direction, and the three grooves join at the other end to form a single groove for forming the cooling medium flow passage (3). a) is formed. In the upper metal plate (2), the cooling medium passage forming groove (2a) in exactly the same manner is formed. Then, as shown in FIG.
  • an anodized film (10) (10) is formed on the superposed surface of the two metal plates (2) and (3). That is, the anodic oxide films (10) and (10) are formed in the grooves (2a) and (3a) for forming the cooling medium flow passages, and the entire remaining surface of the superposed surface of the metal plates (2) and (3) is formed. Similarly, anodized films (10) and (10) are formed. Since the anodic oxide film is formed on the grooves (2a) and (3a) for forming the cooling medium flow passages, the corrosion of the cooling medium flow passages (4) can be effectively prevented. The durability of the cooling plate (1) can be significantly improved.
  • the cooling medium flow paths are formed.
  • the corrosion prevention of (4) it is possible to prevent the corrosion of the entire overlapping surface, and it is possible to further improve the durability of the cooling plate (1).
  • the periphery of the cooling medium flow path (4) in the gap between the overlapping surfaces of the metal plates (2) and (3) is sealed in a liquid-tight state by the sealing material (11). I have.
  • a gap is formed between the superposed surfaces of the metal plates, crevice corrosion easily occurs due to a cooling medium such as water.
  • cooling medium flow path (4) is sealed with a sealing material, so that refrigerant such as water leaks out of the cooling medium flow path (4) and stays there. As a result, the occurrence of crevice corrosion can be reliably prevented, and the durability of the cooling plate (1) is further improved. Note that the entire gap 5 between the overlapping surfaces of the metal plates may be sealed with a sealing material.
  • the joining and integration of the two metal plates (2) and (3) are performed by friction stir welding.
  • This friction stir welding is performed, for example, by inserting a rotating pin-shaped probe into a welding target portion, softening the contact portion with the probe with frictional heat, and stirring the probe while inserting the probe along the welding target portion.
  • This is a joining method of welding by moving. It is a kind of solid-state joining method, so that dissimilar metals can be joined together.
  • the metal plate (2) is friction stir welded from the upper surface side, and the position of the welded portion (20) is (2) A central portion sandwiched between the peripheral portion of (3) and the three grooves (2a), (2a), and (2a) arranged in parallel as described above.
  • any material can be used as long as it can seal the gap between the superposed surfaces of the metal plates (2) and (3) in a liquid-tight state.
  • a sealing material made of a metal material (metal fitting) or a sealing material made of a five-water-resistant resin adhesive since the bonding (adhesion) durability can be improved.
  • the metal material constituting the sealing material (11) is not particularly limited, and examples thereof include aluminum and the like.
  • the water-resistant resin adhesive constituting the sealing material (11) is not particularly limited, but is a group consisting of an epoxy-based resin, a phenol-based resin, and a polyolefin-based resin because of its particularly excellent adhesion durability. It is preferable to use an adhesive composed of one or more resins selected from among them.
  • the cooling plate (1) of the present invention is manufactured, for example, as follows. First, the overlapping surfaces of the two metal plates (2) and (3) are pressed by a molding die having a molding convex portion corresponding to the shape of the grooves (2a) and (3a). The grooves (2a) and (3a) for forming the coolant flow passage are formed on the surface (first step).
  • an anodizing treatment is performed on the superposed surfaces of the metal plates (2) and (3) to form an anodized film (second step).
  • the superposed surfaces of the metal plates (2) and (3) are overlapped so that the positions of the cooling medium flow passage forming grooves (2a) and (3a) coincide with each other, and friction stir welding is performed in this state.
  • the metal plates (2) and (3) are joined and integrated (third step).
  • the anodic oxide film (10) is formed on the superposed surface of the metal plates (2) and (3). (Rear surface).
  • this two metal plates (2) and (3) are overlapped and joined.
  • this two-piece joint integrated structure is a basic structure, and one or more sheets are added to this structure.
  • a configuration in which three or more metal plates are joined in a configuration having the same gist as that of the above-described embodiment may be adopted, and the invention described in the claims of the present application is as described above. It also includes various configurations.
  • the cross-sectional shape of the cooling medium flow path (4) is circular, but is not particularly limited to this.
  • the circuit configuration of the cooling medium flow passage (4) is not limited to the branching or merging configuration as in the above embodiment, but may be, for example, a meandering circuit.
  • the friction stir welding is performed from the upper surface side of the metal plate (2). However, for example, as shown in FIG. 5, the friction stir welding is performed from the side surface side of the metal plate (2) (3). It may be.
  • the cooling plate (1) of the present invention has been described as being used as a backing plate of a sputtering apparatus.
  • the use of the cooling plate (1) of the present invention is not particularly limited. It can be used as a packing plate, a susceptor, or a cooling plate for various temperature control in an apparatus or an LCD manufacturing apparatus.
  • the groove forming surfaces of the aluminum plates were overlapped with each other in such a manner as to match the positions of the grooves, and in this state, friction stir welding was performed to join and integrate the aluminum plates to obtain a cooling plate.
  • a cooling plate was obtained in the same manner as in Example 1 except that the vicinity of the cooling medium flow passage was sealed in a liquid-tight state with a sealing material made of aluminum.
  • Example 1 except that the peripheral portion near the cooling medium flow path in the gap between the overlapping surfaces of the aluminum plates (anodic oxide films) was sealed in a liquid-tight state with a sealing material made of an epoxy resin adhesive.
  • a cooling plate was obtained in the same manner as in 1.
  • Example 1 except that the peripheral portion near the cooling medium flow passage in the gap between the overlapping surfaces of the aluminum plates (anodized films) was sealed in a liquid-tight state with a sealing material made of an acryl resin adhesive.
  • a cooling plate was obtained in the same manner as in 1.
  • a cooling plate was obtained in the same manner as in Example 1, except that the anodic oxide film was not formed.
  • a cooling plate was obtained in the same manner as in Comparative Example 1, except that TIG welding was used instead of friction stir welding.
  • Corrosion test solution NaC 1: 234mgZL, Na 2 S0 4: 89mgZL, C uC 12 ⁇ 2 H2O: 2. 7mg / L, F e C 12 ⁇ 6H 2 0: 145mg / L
  • the cooling plates of Examples 1 to 6 of the present invention were excellent in corrosion resistance in both the cooling medium flow paths and the gaps between the overlapping surfaces.
  • the cooling plates of Comparative Examples 1 and 2 were inferior in corrosion resistance.
  • the cathodic oxide film is formed at least in the groove for forming the cooling medium flow passage, corrosion of the cooling medium flow passage can be effectively prevented, and the durability of the cooling plate can be improved.
  • the welds may have a negative effect on the anodic oxide coating over time after production, such as deterioration. Therefore, it is possible to maintain the initially excellent corrosion prevention effect over a long period of time, and a synergistic action of these can provide a durable and long-lasting cooling plate.
  • the metal plates are joined in a favorable state by friction stir welding, uniform cooling without variation at any position on the surface is possible.
  • the durability of the cooling plate can be further improved.
  • the sealing material is made of a metal material or a water-resistant resin adhesive
  • the joining durability can be further improved, and the reliability of the sealing can be improved.
  • the water-resistant resin adhesive is composed of one or more resins selected from the group consisting of epoxy resin, phenol resin and polyolefin resin, the adhesive durability is remarkable. Thus, the sealing can be reliably performed for a long time, and the durability of the cooling plate can be further improved.
  • the method for manufacturing a cooling plate according to the present invention can produce the cooling plate with high productivity and, since the anodizing treatment is first performed before performing the friction stir welding, the details of the superposed surface of the metal plate can be obtained.
  • the anodized film can be formed, and therefore, the reliability of preventing corrosion of the superposed surfaces of the metal plates can be enhanced, and a high-quality cooling plate can be manufactured.
  • the friction stir welding is used, the anodized film formed earlier during the welding does not deteriorate, and therefore, in combination with the above-described effect of improving the reliability of the corrosion prevention, a high durability with high durability can be obtained.
  • a long-lasting cooling plate can be manufactured.
  • the cooling plate of the present invention enables uniform cooling, has excellent durability, and has a long life. Therefore, for example, a backing plate, a susceptor, a variety of types in a sputtering device, a semiconductor manufacturing device, an LCD manufacturing device, etc. It is suitable as a cooling plate for temperature control.

Abstract

A cooling plate comprising two metal plates (2, 3) formed with cooling medium flow passageway forming grooves (2a, 3a) in their superposed surfaces, the metal plates being superposed and integrally joined, thereby internally forming cooling medium flow passageways (4), wherein at least the cooling medium flow passageway forming grooves (2a, 3a) in the superposed surface of the metal plates (2, 3) are preferably formed with anode oxidation films (10) throughout the superposed surfaces, and weld portions (20) are formed by friction stir joining so as to integrally join the two metal plates (2, 3). Thereby, the corrosion resistance of the cooling medium flow passageways is improved to provide high durability and long life for a cooling plate, thus making uniform cooling possible.

Description

冷却板及びその製造方法 Cooling plate and method of manufacturing the same
この出願は、 2001年 6月 20日付で出願された日本国特許出願特願 200 1 - 185859号及び 2001年 1 1月 2日付で出願された米国仮出願 60/ 330, 927号の優先権主張を伴うものであり、 その開示内容は、 そのまま本 明 This application claims priority from Japanese Patent Application No. 2001-185859 filed on June 20, 2001 and US Provisional Application No. 60 / 330,927 filed on January 2, 2001. The content of the disclosure is
願の一部を構成するものである。 It forms part of the request.
田 技術分野  Field
この発明は、 例えばスパッタリング装置、 半導体製造装置、 LCD製造装置に おけるバッキングプレート、 サセプター、 各種の温度制御用冷却板等として用い られる冷却板に関する。  The present invention relates to a cooling plate used as a backing plate, a susceptor, a cooling plate for various temperature control, and the like in, for example, a sputtering device, a semiconductor manufacturing device, and an LCD manufacturing device.
なお、 この明細書において、 「アルミニウム」 の語はアルミニウム及びその合 金を含む意味で用いる。  In this specification, the term “aluminum” is used to include aluminum and its alloys.
冃景: 技術 Landscape: Technology
例えば半導体製造用のスパッタリング装置には、 ターゲッ トを取り付けるバッ キングプレートが用いられているが、 このバッキングプレート (101) は、 第 6図に示すように、 表面に取り付けられたターゲッ ト (1 00) を冷却するため に、 その内部に冷却媒体流通路 (102) が形成されている。 即ち、 バッキング プレート (101) は、 2枚のアルミニウム板 ( 1 03) (104) が重ね合わ せ接合された合わせ板からなるものであり、 両アルミニウム板 (103) (10 4) の重ね合わせ面にそれぞれ冷却媒体流通路形成用溝 (105) (106) が 形成されてこれらの溝位置を対応させて両アルミニウム板 (103) (104) が接合一体化されることによって、 バッキングプレート (101) の内部に回路 状の冷却媒体流通路 (1 0 2 ) が形成されている。 For example, a backing plate for attaching a target is used in a sputtering apparatus for manufacturing semiconductors. This backing plate (101) has a target (100) attached to the surface as shown in FIG. A cooling medium flow passage (102) is formed in the inside to cool the cooling medium. That is, the backing plate (101) is composed of a laminated plate in which two aluminum plates (103) and (104) are overlapped and joined, and the backing plate (101) is formed on the overlapping surface of both aluminum plates (103) and (104). The cooling medium flow passage forming grooves (105) and (106) are respectively formed, and the aluminum plates (103) and (104) are joined and integrated so that the positions of these grooves correspond to each other, thereby forming the backing plate (101). Circuit inside A cooling medium flow path (102) is formed.
ところで、 従来のパッキングプレートでは、 2枚のアルミニウム板 (1 0 3 ) ( 1 0 4 ) の接合一体化は、 冷却媒体流通路 (1 0 2 ) を流れる冷却媒体の漏れ を防止するべく、 重ね合わせ面をろう付け接合することにより行われるのが一般 的であった。  By the way, in the conventional packing plate, the joining and integration of the two aluminum plates (103) (104) is performed in order to prevent the leakage of the cooling medium flowing through the cooling medium flow passage (102). This was generally done by brazing the mating surfaces.
しかしながら、 上記従来のバッキングプレートでは、 溝 (1 0 5 ) ( 1 0 6 ) の表面は、 アルミニウム素地がそのまま露出した状態であるので、 冷却媒体であ る水等がこの溝 (1 0 5 ) ( 1 0 6 ) を一定期間流通すると、 これらの溝が腐食 してしまうという問題が発生しており、 このようにバッキングプレートとしての 寿命は短いものであった。 このような腐食による劣化のために、 実際には例えば 1〜 2年で新しいものに取り替えられているのが現状である。  However, in the above-mentioned conventional backing plate, the surface of the groove (105) (106) is in a state where the aluminum base is exposed as it is, so that water or the like as a cooling medium is exposed to the groove (105). If (106) was allowed to flow for a certain period of time, there was a problem that these grooves would be corroded, and thus the life of the backing plate was short. At present, for example, they are replaced with new ones in one to two years due to such deterioration due to corrosion.
この発明は、 かかる技術的背景に鑑みてなされたものであって、 冷却媒体流通 路が耐食性に優れていて高寿命であると共に、 冷却性能に優れた冷却板を提供す ることを目的とする。  The present invention has been made in view of such technical background, and an object of the present invention is to provide a cooling plate having a cooling medium circulation channel having excellent corrosion resistance and a long life, and having excellent cooling performance. .
この発明の他の目的は、 以下に示すこの発明の実施形態により明らかにされる であろう。 発明の開示  Other objects of the present invention will be made clear by the following embodiments of the present invention. Disclosure of the invention
上記目的は、 重ね合わせ面に冷却媒体流通路形成用溝が形成された複数枚の金 属板が重ね合わされて接合一体化されることによって、 内部に冷却媒体流通路が 形成された冷却板において、 前記金属板の重ね合わせ面における少なくとも冷却 媒体流通路形成用溝に陽極酸化皮膜が形成されると共に、 前記複数枚の金属板が 摩擦撹拌接合により接合一体化されていることを特徴とする冷却板によって達成 される。  The above object is to provide a cooling plate having a cooling medium flow passage formed therein by superimposing and joining and integrating a plurality of metal plates each having a cooling medium flow passage forming groove formed on an overlapping surface. An anodic oxide film is formed on at least the groove for forming the cooling medium flow passage on the superposed surface of the metal plates, and the plurality of metal plates are integrally joined by friction stir welding. Achieved by boards.
この冷却板によれば、 少なくとも冷却媒体流通路形成用溝に陽極酸化皮膜が形 成されているから、 冷却媒体流通路の腐食が効果的に防止され、 冷却板としての 耐久性が顕著に向上する。 また、 金属板の接合が摩擦撹拌接合により行われてい るので、 製造後においてこの溶接部が陽極酸化皮膜に劣化等の悪影響を及ぼすこ ともなく、 従って優れた腐食防止効果が十分に保持されるものとなり、 耐久性に 優れた高寿命の冷却板が得られる。 更に、 摩擦撹拌接合による接合であるので金 属板同士が良好な状態で接合され、 これにより冷却板として均一な冷却が行われ るものとなる。 , According to this cooling plate, since the anodic oxide film is formed at least in the groove for forming the cooling medium flow passage, corrosion of the cooling medium flow passage is effectively prevented, and The durability is significantly improved. In addition, since the metal plates are joined by friction stir welding, the welded portions do not adversely affect the anodic oxide film after production, such as deterioration, and therefore the excellent corrosion prevention effect is sufficiently maintained. And a long-life cooling plate with excellent durability can be obtained. Furthermore, since the joining is performed by friction stir welding, the metal plates are joined to each other in an excellent state, whereby uniform cooling is performed as a cooling plate. ,
陽極酸化皮膜は金属板の重ね合わせ面の全面に形成されているのが好ましく、 これにより冷却媒体流通路の腐食防止のみならず、 金属板の重ね合わせ面全面の 腐食防止も図り得て、 冷却板としての耐久性が一層向上する。  It is preferable that the anodized film is formed on the entire surface of the superposed surfaces of the metal plates, thereby preventing not only corrosion of the cooling medium flow passage but also corrosion of the entire superposed surface of the metal plates. The durability as a plate is further improved.
金属板の重ね合わせ面同士の隙間における少なくとも冷却媒体流通路の近傍周 囲部は、 封止材によって液密状態に封止されているのが好ましい。 これにより水 等の冷媒が冷却媒体流通路以外の箇所に漏れ出て滞留等することを防止できるの で、 隙間腐食の発生を確実に防止できるものとなつて冷却板としての耐久性がよ り一層向上する。  It is preferable that at least the peripheral portion near the cooling medium flow passage in the gap between the overlapping surfaces of the metal plates is sealed in a liquid-tight state by a sealing material. This can prevent the coolant such as water from leaking out of the cooling medium flow passage and staying there, so that the occurrence of crevice corrosion can be reliably prevented, and the durability of the cooling plate is improved. Further improve.
上記封止材としては、 金属素材からなるもの、 耐水性樹脂接着剤からなるもの を用いるのが、 接合 (接着) 耐久性に優れる点で、 好ましい。  It is preferable to use a material made of a metal material or a material made of a water-resistant resin adhesive from the viewpoint of excellent joining (adhesion) durability.
上記耐水性樹脂接着剤としては、 エポキシ系樹脂、 フエノール系樹脂及びポリ ォレフィン系樹脂からなる群より選ばれる 1種または 2種以上の樹脂で構成され た接着剤を用いるのが、 接着耐久性に特に優れている点で、 好ましい。  As the above-mentioned water-resistant resin adhesive, use of an adhesive composed of one or more resins selected from the group consisting of an epoxy resin, a phenol resin and a polyolefin resin has an advantage in terms of adhesion durability. It is preferable because it is particularly excellent.
金属板としてはアルミニウム板を用いるのが好ましく、 これにより軽量化を図 ることができる。  It is preferable to use an aluminum plate as the metal plate, whereby the weight can be reduced.
また、 この発明の冷却板の製造方法は、 複数枚の金属板の重ね合わせ面のそれ それに冷却媒体流通路形成用溝を成形する第 1工程と、 前記金属板の重ね合わせ 面に陽極酸化処理を施して陽極酸化皮膜を形成する第 2工程と、 前記複数枚の金 属板の重ね合わせ面同士を重ね合わせた状態で摩擦撹拌接合を行うことによって これらを接合一体化する第 3工程とを包含することを特徴とするものである。 上 述した特長を備えたこの発明の冷却板を生産性良く製造できるのは勿論のこと、 摩擦撹拌接合を行う前に先に陽極酸化処理を施すので、 金属板の重ね合わせ面の 細部にまで陽極酸化皮膜を形成することができ、 従って金属板の重ね合わせ面の 腐食防止の確実性を高めることができ、 高品質の冷却板を製造できる利点がある 。 更に、 金属板の接合を摩擦撹拌接合により行うので、 接合時において先に形成 した陽極酸化皮膜を劣化させることなく接合することができ、 前記優れた腐食防 止効果を十分に保持させることができ、 これにより耐久性に優れた高寿命の冷却 板を製造できる。 図面の簡単な説明 The method for manufacturing a cooling plate according to the present invention may further include: a first step of forming a cooling medium flow passage forming groove on each of the superposed surfaces of the plurality of metal plates; and anodizing treatment on the superposed surface of the metal plates. A second step of forming an anodized film by performing friction stir welding in a state where the superposed surfaces of the plurality of metal plates are superimposed on each other, and a third step of joining them together. It is characterized by including. Up Not only can the cooling plate of the present invention having the above-mentioned features be manufactured with high productivity, but also before the friction stir welding is performed, since the anodizing treatment is performed first, the anode An oxide film can be formed, and therefore, the reliability of preventing corrosion of the superposed surfaces of the metal plates can be enhanced, and there is an advantage that a high-quality cooling plate can be manufactured. Furthermore, since the metal plates are joined by friction stir welding, the joining can be performed without deteriorating the previously formed anodic oxide film at the time of joining, and the excellent corrosion prevention effect can be sufficiently maintained. Thus, a long-lasting cooling plate with excellent durability can be manufactured. BRIEF DESCRIPTION OF THE FIGURES
第 1図は、 この発明の一実施形態に係る冷却板を示す斜視図である。  FIG. 1 is a perspective view showing a cooling plate according to one embodiment of the present invention.
第 2図は、 同冷却板の平面図である。  FIG. 2 is a plan view of the cooling plate.
第 3 A図は、 第 1図における A— A線の断面図である。  FIG. 3A is a sectional view taken along line AA in FIG.
第 3 B図は、 第 3 A図における冷却媒体流通路及びその近傍を拡大して示す断 面図である。  FIG. 3B is an enlarged sectional view showing the cooling medium flow passage and its vicinity in FIG. 3A.
第 4図は、 冷却板を、 接合前の分離状態で示す斜視図である。  FIG. 4 is a perspective view showing the cooling plate in a separated state before joining.
第 5図は、 他の実施形態の冷却板を示す断面図である。  FIG. 5 is a sectional view showing a cooling plate according to another embodiment.
第 6図は、 従来の冷却板を示す断面図である。 発明を実施するための最良の形態  FIG. 6 is a sectional view showing a conventional cooling plate. BEST MODE FOR CARRYING OUT THE INVENTION
この発明の一実施形態に係る冷却 «を第 1図〜第 3図に示す。 この冷却板 (1 ) は、 スパッタリング装置のバッキングプレートとして用いられるものであり、 2枚の金属板 (2 ) ( 3 ) が重ね合わされて接合一体化された合わせ板からなる ものである。 なお、 本実施形態では、 金属板 (2 ) ( 3 ) としてアルミニウム板 が用いられている。  FIGS. 1 to 3 show a cooling system according to an embodiment of the present invention. The cooling plate (1) is used as a backing plate of a sputtering apparatus, and is composed of a laminated plate in which two metal plates (2) and (3) are overlapped and joined together. In this embodiment, an aluminum plate is used as the metal plate (2) (3).
前記 2枚の金属板 (2 ) ( 3 ) の重ね合わせ面のそれぞれには、 断面半円形状 の冷却媒体流通路形成用溝 (2 a) (3 a) が形成されている。 即ち、 第 4図に 示すように、 下方の金属板 (3) の重ね合わせ面において、 その長さ方向の一端 側から形成された 1本の溝が 3方向に分岐した後、 これら 3本の溝が長さ方向に 沿って平行状に他端側に向けて延ばされ、 他端側で 3本の溝が合流されて 1本の 溝となるように冷却媒体流通路形成用溝 (3 a) が形成されている。 上方の金属 板 (2) についても全く同態様の冷却媒体流通路形成用溝 (2 a) が形成きれて いる。 しかして、 第 3 A図に示すように、 これら溝 (2 a) (3 a) の位置を合 致させる態様で^属板 (2) (3) の重ね合わせ面同士が重ね合わされて接合一 体化されることによって、 冷却板 (1) の内部に回路状の冷却媒体流通路 (4) が形成されている (第 2図参照) 。 Each of the superposed surfaces of the two metal plates (2) and (3) has a semicircular cross section. The grooves (2a) and (3a) for forming the cooling medium flow passage are formed. That is, as shown in FIG. 4, in the superposed surface of the lower metal plate (3), after one groove formed from one end in the longitudinal direction is branched in three directions, these three The grooves extend parallel to the other end along the length direction, and the three grooves join at the other end to form a single groove for forming the cooling medium flow passage (3). a) is formed. In the upper metal plate (2), the cooling medium passage forming groove (2a) in exactly the same manner is formed. Then, as shown in FIG. 3A, the overlapping surfaces of the metal plates (2) and (3) are overlapped with each other so that the positions of the grooves (2a) and (3a) are aligned. As a result, a circuit-shaped cooling medium flow passage (4) is formed inside the cooling plate (1) (see Fig. 2).
第 3 B図に拡大して示すように、 前記 2枚の金属板 (2) (3) の重ね合わせ 面には、 それぞれ陽極酸化皮膜 (10) (10) が形成されている。 即ち、 冷却 媒体流通路形成用溝 (2 a) (3 a) に陽極酸化皮膜 (10) (10) が形成さ れると共に、 金属板 (2) (3) の重ね合わせ面の残部全面にも同様に陽極酸化 皮膜 (10) (1 0) が形成されている。 このように冷却媒体流通路形成用溝 ( 2 a) (3 a) に陽極酸化皮膜が形成されているので、 冷却媒体流通路 (4) の 腐食を効果的に防止することができ、 これにより冷却板 (1) としての耐久性を 顕著に向上できる。 また、 冷却媒体流通路形成用溝 (2 a) (3 a) も含めて金 属板 (2) (3) の重ね合わせ面の全面に陽極酸化皮膜が形成されているので、 冷却媒体流通路 (4) の腐食防止のみならず、 重ね合わせ面全面の腐食防止も図 ることができ、 冷却板 (1) の耐久性を一層向上させることができるものである 更に、 第 3 B図に示すように、 金属板 (2) (3) の重ね合わせ面相互間の隙 間における冷却媒体流通路 (4) の近傍周囲部は、 封止材 (1 1) によって液密 状態に封止されている。 一般に金属板の重ね合わせ面同士の間に隙間が生じる場 合には水等の冷却媒体による隙間腐食の発生が生じ易くなるが、 このような隙間 のうち少なくとも冷却媒体流通路 (4) の近傍周囲部が封止材で封止されること で、 水等の冷媒が冷却媒体流通路 (4) 以外の箇所に漏れ出て滞留等することを 防止できるので、 前記隙間腐食の発生を確実に防止できるものとなって冷却板 ( 1) としての耐久性がより一層向上する。 なお、 金属板の重ね合わせ面同士の隙 5 間の全てを封止材で封止するものとしても良い。 As shown enlarged in FIG. 3B, an anodized film (10) (10) is formed on the superposed surface of the two metal plates (2) and (3). That is, the anodic oxide films (10) and (10) are formed in the grooves (2a) and (3a) for forming the cooling medium flow passages, and the entire remaining surface of the superposed surface of the metal plates (2) and (3) is formed. Similarly, anodized films (10) and (10) are formed. Since the anodic oxide film is formed on the grooves (2a) and (3a) for forming the cooling medium flow passages, the corrosion of the cooling medium flow passages (4) can be effectively prevented. The durability of the cooling plate (1) can be significantly improved. In addition, since the anodized film is formed on the entire surface of the metal plates (2) and (3) including the grooves (2a) and (3a) for forming the cooling medium flow paths, the cooling medium flow paths are formed. In addition to the corrosion prevention of (4), it is possible to prevent the corrosion of the entire overlapping surface, and it is possible to further improve the durability of the cooling plate (1). As described above, the periphery of the cooling medium flow path (4) in the gap between the overlapping surfaces of the metal plates (2) and (3) is sealed in a liquid-tight state by the sealing material (11). I have. Generally, when a gap is formed between the superposed surfaces of the metal plates, crevice corrosion easily occurs due to a cooling medium such as water. Of the cooling medium flow path (4) is sealed with a sealing material, so that refrigerant such as water leaks out of the cooling medium flow path (4) and stays there. As a result, the occurrence of crevice corrosion can be reliably prevented, and the durability of the cooling plate (1) is further improved. Note that the entire gap 5 between the overlapping surfaces of the metal plates may be sealed with a sealing material.
前記 2枚の金属板 (2) (3) の接合一体化は、 摩擦撹拌接合により行われて いる。 この摩擦撹拌接合とは、 例えば回転するピン状プローブを溶接対象部に揷 入し、 プローブとの接触部を摩擦熱にて軟化させ撹拌しながら、 プローブを揷入 状態で溶接対象部に沿って移動させることにより溶接接合する接合手法であり、 0 固相接合法の一種であるから、 異種金属同士でも接合することができる。 本実施 形態では、 第 1図、 第 2図、 第 3 A図に示すように、 金属板 (2) の上面側から 摩擦撹拌接合されており、 'その溶接部 (20) 位置は、 金属板 (2) (3) の周 縁部と、 前記した平行状に配置された 3本の溝 (2 a) (2 a) (2 a) に挟ま れた中央部である。  The joining and integration of the two metal plates (2) and (3) are performed by friction stir welding. This friction stir welding is performed, for example, by inserting a rotating pin-shaped probe into a welding target portion, softening the contact portion with the probe with frictional heat, and stirring the probe while inserting the probe along the welding target portion. This is a joining method of welding by moving. It is a kind of solid-state joining method, so that dissimilar metals can be joined together. In this embodiment, as shown in FIG. 1, FIG. 2, and FIG. 3A, the metal plate (2) is friction stir welded from the upper surface side, and the position of the welded portion (20) is (2) A central portion sandwiched between the peripheral portion of (3) and the three grooves (2a), (2a), and (2a) arranged in parallel as described above.
5 このように 2枚の金属板 (2) (3) の接合が摩擦撹拌接合により行われてい るので、 製造後においてこのような溶接部 (20) から陽極酸化皮膜 (1 0) に 劣化等の悪影響を及ぼすことがない。 従って優れた腐食防止効果を十分に保持さ せることができ、 耐久性に優れた高寿命の冷却板 (1) となる。 更に、 摩擦撹拌 接合による接合であるので陽極酸化皮膜が存在しても 2枚の金属板 (2) (3) 0 が良好な状態で接合され、 これにより冷却板 (1) として均一な冷却が可能とな るものである。 5 Since the two metal plates (2) and (3) are joined by friction stir welding in this way, the anodic oxide film (10) deteriorates from such welds (20) after manufacturing. It does not have any adverse effect. Therefore, the excellent corrosion prevention effect can be sufficiently maintained, and a long-life cooling plate (1) with excellent durability can be obtained. Furthermore, since the joining is performed by friction stir welding, even if an anodic oxide film is present, the two metal plates (2) and (3) 0 are joined in a good state, and as a result, uniform cooling as the cooling plate (1) is achieved. It is possible.
この発明において、 前記封止材 (1 1) としては、 金属板 (2) (3) の重ね 合わせ面同士の隙間を液密状態に封止しうるものであればどのようなものでも使 用できるが、 中でも金属素材からなる封止材 (メタルフィ ッティ ング) または耐 5 水性樹脂接着剤からなる封止材を用いるのが、 接合 (接着) 耐久性を向上できる 点で、 好ましい。 前記封止材 (1 1) を構成する金属素材としては、 特に限定されないが、 例え ばアルミニウム等を例示できる。 . 前記封止材 (1 1) を構成する耐水性樹脂接着剤としては、 特に限定されない が、 接着耐久性に特に優れている点で、 エポキシ系樹脂、 フエノール系樹脂及び ポリオレフィン系樹脂からなる群より選ばれる 1種または 2種以上の樹脂で構成 された接着剤を用いるのが好ましい。 In the present invention, as the sealing material (11), any material can be used as long as it can seal the gap between the superposed surfaces of the metal plates (2) and (3) in a liquid-tight state. Among them, it is preferable to use a sealing material made of a metal material (metal fitting) or a sealing material made of a five-water-resistant resin adhesive, since the bonding (adhesion) durability can be improved. The metal material constituting the sealing material (11) is not particularly limited, and examples thereof include aluminum and the like. The water-resistant resin adhesive constituting the sealing material (11) is not particularly limited, but is a group consisting of an epoxy-based resin, a phenol-based resin, and a polyolefin-based resin because of its particularly excellent adhesion durability. It is preferable to use an adhesive composed of one or more resins selected from among them.
この発明の冷却板 (1) は、 例えば次のようにして製造される。 まず、 2枚の 金属板 (2) (3) の重ね合わせ面を、 前記溝 (2 a) (3 a) 形状に対応した 成形凸部を有する成形金型でプレスすることにより、 この重ね合わせ面に冷却媒 体流通路形成用溝 (2 a) (3a) を成形する (第 1工程) 。  The cooling plate (1) of the present invention is manufactured, for example, as follows. First, the overlapping surfaces of the two metal plates (2) and (3) are pressed by a molding die having a molding convex portion corresponding to the shape of the grooves (2a) and (3a). The grooves (2a) and (3a) for forming the coolant flow passage are formed on the surface (first step).
次に、 金属板 (2) (3) の重ね合わせ面に陽極酸化処理を施して陽極酸化皮 膜を形成せしめる (第 2工程) 。 .  Next, an anodizing treatment is performed on the superposed surfaces of the metal plates (2) and (3) to form an anodized film (second step). .
次いで、 冷却媒体流通路形成用溝 (2 a) (3 a) の位置を合致させる態様で 金属板 (2) (3) の重ね合わせ面同士を重ね合わせ、 この状態で摩擦撹拌接合 を行って金属板 (2) (3) を接合一体化する (第 3工程) 。  Next, the superposed surfaces of the metal plates (2) and (3) are overlapped so that the positions of the cooling medium flow passage forming grooves (2a) and (3a) coincide with each other, and friction stir welding is performed in this state. The metal plates (2) and (3) are joined and integrated (third step).
本製造方法によれば、 摩擦撹拌接合を行う前に先に陽極酸化処理を施すので、 金属板 (2) (3) の重ね合わせ面の細部にまで良好状態に陽極酸化皮膜を形成 することができる。 従って、 金属板 (2) (3) の重ね合わせ面の腐食防止の確 実性を高めることができる。 また、 陽極酸化皮膜を形成した後の接合手法として 摩擦撹拌接合を採用しているので、 接合時に先に形成した陽極酸化皮膜を劣化さ せることがないという利点もある。  According to this manufacturing method, since the anodic oxidation treatment is first performed before the friction stir welding is performed, it is possible to form the anodic oxide film in a good state even to the details of the superposed surfaces of the metal plates (2) and (3). it can. Therefore, it is possible to improve the certainty of preventing the corrosion of the superposed surfaces of the metal plates (2) and (3). In addition, since friction stir welding is used as the joining method after the formation of the anodic oxide film, there is an advantage that the anodic oxide film previously formed during the joining is not deteriorated.
上記実施形態においては、 陽極酸化皮膜 (10) は、 金属板 (2) (3) の重 ね合わせ面に形成されているが、 例えば金属板 (2) (3) の外面 (重ね合わせ 面の裏面) にも形成されていても良い。  In the above embodiment, the anodic oxide film (10) is formed on the superposed surface of the metal plates (2) and (3). (Rear surface).
また、 上記実施形態では、 2枚の金属板 (2) (3) が重ね合わせ接合された 構成であるが、 勿論この 2枚接合一体化構成を基本構成としてこれにもう 1枚以' 上組み合わせて、 3枚以上の複数枚の金属板が上記実;^形態と同要旨の構成で接 合された構成を採用しても良く、 本願の特許請求の範囲に記載の発明はこのよう な構成も含むものである。 In the above-described embodiment, the two metal plates (2) and (3) are overlapped and joined. Of course, this two-piece joint integrated structure is a basic structure, and one or more sheets are added to this structure. In combination with the above, a configuration in which three or more metal plates are joined in a configuration having the same gist as that of the above-described embodiment may be adopted, and the invention described in the claims of the present application is as described above. It also includes various configurations.
また、 上記実施形態では、 冷却媒体流通路 (4 ) の断面形状は、 円形となされ ているが、 特にこのような形態のものに限定されるものではない。 また、 冷却媒 体流通路 (4 ) の回路形態は、 上記実施形態のような分岐,合流形態のものに限 定されるものではなく、 例えば蛇行状回路に構成されたものであっても良い。 また、 上記実施形態では、 摩擦撹拌接合は金属板 (2 ) の上面側から行われて いるが、 例えば第 5図に示すように金属板 (2 ) ( 3 ) の側面側から行われたも のであっても良い。  In the above embodiment, the cross-sectional shape of the cooling medium flow path (4) is circular, but is not particularly limited to this. Further, the circuit configuration of the cooling medium flow passage (4) is not limited to the branching or merging configuration as in the above embodiment, but may be, for example, a meandering circuit. . Further, in the above embodiment, the friction stir welding is performed from the upper surface side of the metal plate (2). However, for example, as shown in FIG. 5, the friction stir welding is performed from the side surface side of the metal plate (2) (3). It may be.
更に、 上記実施形態では、 スパッタリング装置のバッキングプレートとして用 いられるものを例示したが、 この発明の冷却板 (1 ) の用途は特にこのようなも のに限定されるものではなく、 例えば半導体製造装置、 L C D製造装置における パッキングプレート、 サセプター、 或いは各種の温度制御用冷却板等として用い ることができる。  Further, in the above embodiment, the cooling plate (1) of the present invention has been described as being used as a backing plate of a sputtering apparatus. However, the use of the cooling plate (1) of the present invention is not particularly limited. It can be used as a packing plate, a susceptor, or a cooling plate for various temperature control in an apparatus or an LCD manufacturing apparatus.
次に、 この発明の具体的実施例について説明する。  Next, specific examples of the present invention will be described.
実施例 1 Example 1
第 4図に示すような溝が形成されたアルミニウム板を 2枚用意し、 このアルミ ニゥム板の溝形成面 (重ね合わせ面) に、 硫酸法による陽極酸化処理 (電流密度 1 . 3 AX d m2 の交流電解により 1 5分間陽極酸化、 沸騰水封孔) を施して厚 さ 6 mの陽極酸化皮膜を形成した。 Two aluminum plates having grooves as shown in FIG. 4 were prepared, and anodizing treatment (current density: 1.3 AX dm 2 Anodization and boiling water sealing were performed by AC electrolysis for 15 minutes to form an anodized film with a thickness of 6 m.
前記溝の位置を合致させる態様でアルミニウム板の溝形成面同士を重ね合わせ 、 この状態で摩擦撹拌接合を行ってアルミニウム板を接合一体化して冷却板を得 た。  The groove forming surfaces of the aluminum plates were overlapped with each other in such a manner as to match the positions of the grooves, and in this state, friction stir welding was performed to join and integrate the aluminum plates to obtain a cooling plate.
実施例 2 Example 2
前記アルミニウム板の重ね合わせ面同士 (陽極酸化皮膜同士) の隙間における 冷却媒体流通路の近傍周囲部を、 アルミニウムからなる封止材によつて液密状態 に封止した以外は、 実施例 1と同様にして冷却板を得た。 In the gap between the superposed surfaces of the aluminum plates (anodic oxide films) A cooling plate was obtained in the same manner as in Example 1 except that the vicinity of the cooling medium flow passage was sealed in a liquid-tight state with a sealing material made of aluminum.
実施例 3 Example 3
前記アルミニウム板の重ね合わせ面同士 (陽極酸化皮膜同士) の隙間における 冷却媒体流通路の近傍周囲部を、 エポキシ系樹脂接着剤からなる封止材によって 液密状態に封止した以外は、 実施例 1と同様にして冷却板を得た。  Example 1 except that the peripheral portion near the cooling medium flow path in the gap between the overlapping surfaces of the aluminum plates (anodic oxide films) was sealed in a liquid-tight state with a sealing material made of an epoxy resin adhesive. A cooling plate was obtained in the same manner as in 1.
実施例 4 Example 4
前記アルミニウム板の重ね合わせ面同士 (陽極酸化皮膜同士) の隙間における 冷却媒体流通路の近傍周囲部を、 フエノール系樹脂接着剤からなる封止材によつ て液密状態に封止した以外は、 実施例 1と同様にして冷却板を得た。  Except that the peripheral portion near the cooling medium flow passage in the gap between the overlapping surfaces of the aluminum plates (anodic oxide films) was sealed in a liquid-tight state with a sealing material made of a phenolic resin adhesive. A cooling plate was obtained in the same manner as in Example 1.
実施例 5 Example 5
前記アルミニウム板の重ね合わせ面同士 (陽極酸化皮膜同士) の隙間における 冷却媒体流通路の近傍周囲部を、 ポリオレフィン系樹脂接着剤からなる封止材に よって液密状態に封止した以外は、 実施例 1と同様にして冷却板を得た。  Except that the peripheral portion near the cooling medium flow path in the gap between the overlapping surfaces of the aluminum plates (anodized films) was sealed in a liquid-tight state with a sealing material made of a polyolefin resin adhesive. A cooling plate was obtained in the same manner as in Example 1.
実施例 6 Example 6
前記アルミニウム板の重ね合わせ面同士 (陽極酸化皮膜同士) の隙間における 冷却媒体流通路の近傍周囲部を、 ァクリル系樹脂接着剤からなる封止材によって 液密状態に封止した以外は、 実施例 1と同様にして冷却板を得た。  Example 1 except that the peripheral portion near the cooling medium flow passage in the gap between the overlapping surfaces of the aluminum plates (anodized films) was sealed in a liquid-tight state with a sealing material made of an acryl resin adhesive. A cooling plate was obtained in the same manner as in 1.
比較例 1 Comparative Example 1
陽極酸化皮膜を形成しない構成とした以外は、 実施例 1と同様にして冷却板を 得た。  A cooling plate was obtained in the same manner as in Example 1, except that the anodic oxide film was not formed.
比較例 2 Comparative Example 2
摩擦撹拌接合に代えて T I G溶接により接合した以外は、 比較例 1と同様にし て冷却板を得た。  A cooling plate was obtained in the same manner as in Comparative Example 1, except that TIG welding was used instead of friction stir welding.
上記のようにして得られた各冷却板に対して下記試験法により耐食性 (腐食防 止性) を評価した。 耐食性 (腐食防止性) 試験法 The corrosion resistance (corrosion prevention) of each cooling plate obtained as described above was evaluated by the following test method. Corrosion resistance (corrosion prevention) test method
各冷却板の冷却媒体流通路に、 下記組成からなる腐食試験液 (水溶液) を流量 30 L Z分、 液温 90〜 95 °Cの条件で 500時間通水した後、 冷却媒体流通路 および重ね.合わせ面同士の隙間部を観察し、 腐食発生のないものを 「〇」 とし、 腐食発生が軽微な程度に抑制されているものを 「△」 とし、 腐食が顕著に発生し ているものを 「x」 とした。 なお、 表 1における 「△〜〇」 の評価は、 基本的に 腐食発生はないものの、 稀に軽微な程度の腐食発生が認められる状態を示してお り、 これに対して 「〇」 の評価は、 腐食発生が確実に抑えられている状態を示し ている。  After passing a corrosion test solution (aqueous solution) composed of the following composition through the cooling medium flow path of each cooling plate for 30 hours at a flow rate of 30 LZ and a liquid temperature of 90 to 95 ° C for 500 hours, the cooling medium flow path and stacking were performed. Observe the gaps between the mating surfaces, and mark "〇" for those without corrosion, "△" for those with minimal corrosion, and "〇" for those with significant corrosion. x ”. In addition, the evaluation of “△ to 〇” in Table 1 indicates that although there was basically no corrosion, rarely a small degree of corrosion was observed. In contrast, the evaluation of “〇” Indicates a state in which the occurrence of corrosion is reliably suppressed.
腐食試験水溶液 (NaC 1 : 234mgZL、 Na2S04: 89mgZL、 C uC 12 · 2 H2O : 2. 7mg/L、 F e C 12 · 6H20: 145mg/L) Corrosion test solution (NaC 1: 234mgZL, Na 2 S0 4: 89mgZL, C uC 12 · 2 H2O: 2. 7mg / L, F e C 12 · 6H 2 0: 145mg / L)
封止の有無 陽極酸化皮膜 耐食性 (耐腐食性) 接合手法 及び種類 形成の有無 冷却媒体流通路 *)接合隙間部 実施例 1 摩擦撹拌接合 なし 有り(6 ) 〇 Δ 実施例 2 摩擦撹拌接合 有り (A 1 ) 有り(6 ) ひ 〇 実施例 3 摩擦撹拌接合 有り(エホ"キシ系樹脂) 有り(6 m) 〇 〇 実施例 4 摩擦撹拌接合 有り(フ Xノ-ル系榭脂) 有り(6 ΐ ) 〇 〇 実施例 5 摩擦撹拌接合 有り(ホ°リオレフイン系樹脂) 有り(6 ) 〇 〇 実施例 6 摩擦撹拌接合 有り(アクリル系樹脂) 有り(6 πι) ■ 〇 △〜〇 比較例 1 摩擦撹拌接合 なし なし X △ 比較例 2 T I G溶接 なし なし X X With / without sealing Anodized film Corrosion resistance (corrosion resistance) Joining method and type With / without cooling medium flow passage *) Joining gap Example 1 Friction stir welding No Yes (6) 〇 Δ Example 2 Friction stir welding Yes ( A 1) Yes (6) 〇 実 施 Example 3 Friction stir welding Yes (Ethoxy resin) Yes (6 m) 〇 実 施 Example 4 Friction stir welding Yes (X-nor resin) Yes (6 )) 〇 〇 Example 5 With friction stir welding Yes (polyolefin resin) Yes (6) 〇 〇 Example 6 Friction stir welding Yes (acrylic resin) Yes (6 πι) ■ 〇 △ ~ 〇 Comparative Example 1 Friction Stir welding None None X △ Comparative Example 2 TIG welding None None XX
*) 接合隙間部…重ね合わせ面同士の隙間 *) Joint gap: gap between overlapping surfaces
表 1から明らかなように、 この発明の実施例 1〜6の冷却板は、 冷却媒体流通 路ぉよび重ね合わせ面同士の隙間部のいずれにおいても耐食性に優れていた。 特 に、 重ね合わせ面同士の隙間部が封止材で封止された実施例 2〜 6では腐食発生. がなく非常に耐食性に優れていた。 これに対して、 比較例 1、 2の冷却板は耐食 性に劣っていた。 As is clear from Table 1, the cooling plates of Examples 1 to 6 of the present invention were excellent in corrosion resistance in both the cooling medium flow paths and the gaps between the overlapping surfaces. In particular, in Examples 2 to 6, in which the gaps between the superposed surfaces were sealed with the sealing material, no corrosion occurred. On the other hand, the cooling plates of Comparative Examples 1 and 2 were inferior in corrosion resistance.
以上のように、 この発明の冷却板は、 少なくとも冷却媒体流通路形成用溝に陽 極酸化皮膜が形成されているから、 冷却媒体流通路の腐食を効果的に防止でき、 冷却板としての耐久性を顕著に向上させることができると共に、 金属板同士の接 合が摩擦撹拌接合により行われているので、 製造後においてこの溶接部が経時的 に陽極酸化皮膜に劣化等の悪影響を及ぼすことがなく、 従って当初の優れた腐食 防止効果を長期間にわたって保持することができ、 これらの相乗作用によって耐 久性に優れた高寿命の冷却板となし得る。 更に、 摩擦撹拌接合により金属板同士 が良好な状態で接合されるので、 表面のいずれの位置でもばらつくことのない均 一な冷却が可能となる。  As described above, in the cooling plate of the present invention, since the cathodic oxide film is formed at least in the groove for forming the cooling medium flow passage, corrosion of the cooling medium flow passage can be effectively prevented, and the durability of the cooling plate can be improved. In addition to the fact that the metal plates are joined by friction stir welding, the welds may have a negative effect on the anodic oxide coating over time after production, such as deterioration. Therefore, it is possible to maintain the initially excellent corrosion prevention effect over a long period of time, and a synergistic action of these can provide a durable and long-lasting cooling plate. Furthermore, since the metal plates are joined in a favorable state by friction stir welding, uniform cooling without variation at any position on the surface is possible.
金属板の重ね合わせ面の全面に陽極酸化皮膜が形成されている場合には、 冷却 板の耐久性を一層向上させることができる。  When the anodic oxide film is formed on the entire superposed surface of the metal plate, the durability of the cooling plate can be further improved.
金属板の重ね合わせ面同士の隙間における少なくとも冷却媒体流通路の近傍周 囲部が封止材によって液密状態に封止されている場合には、 隙間腐食の発生を確 実に防止できるので冷却板の耐久性をより一層向上させることができる。  If at least the peripheral portion of the gap between the overlapping surfaces of the metal plates near the cooling medium flow passage is sealed in a liquid-tight state with a sealing material, the occurrence of crevice corrosion can be reliably prevented. Can be further improved in durability.
封止材が金属素材又は耐水性樹脂接着剤からなる場合には、 接合耐久性をより 向上できて、 封止の確実性を向上できる。  When the sealing material is made of a metal material or a water-resistant resin adhesive, the joining durability can be further improved, and the reliability of the sealing can be improved.
耐水性樹脂接着剤が、 エポキシ系樹脂、 フヱノ一ル系樹脂及ぴポリオレフイ ン 系樹脂からなる群より選ばれる 1種または 2種以上の樹脂で構成されている場合 には、 接着耐久性を顕著に向上させることができて長期にわたり確実に封止でき るものとなり、 ひいては冷却板の耐久性を一段と向上させることができる。  When the water-resistant resin adhesive is composed of one or more resins selected from the group consisting of epoxy resin, phenol resin and polyolefin resin, the adhesive durability is remarkable. Thus, the sealing can be reliably performed for a long time, and the durability of the cooling plate can be further improved.
金属板がアルミニウム板である場合には、 軽量性に優れたものとなる。 また、 この発明の冷却板の製造方法は、 冷却板を生産性良く製造できる上に、 摩擦撹袢接合を行う前に先に陽極酸化処理を施すので、 金属板の重ね合わせ面の 細部にまで陽極酸化皮膜を形成することができ、 従って金属板の重ね合わせ面の 腐食防止の確実性を高めることができ、 高品質の冷却板を製造できる。 また、 摩 擦撹拌接合を用いているので、 接合時に先に形成した陽極酸化皮膜を劣化させる ことがなく、 従って前記腐食防止の確実性向上効果とも相俟って、 より耐久性に 優れた高寿命の冷却板を製造できる。 When the metal plate is an aluminum plate, it is excellent in lightness. In addition, the method for manufacturing a cooling plate according to the present invention can produce the cooling plate with high productivity and, since the anodizing treatment is first performed before performing the friction stir welding, the details of the superposed surface of the metal plate can be obtained. The anodized film can be formed, and therefore, the reliability of preventing corrosion of the superposed surfaces of the metal plates can be enhanced, and a high-quality cooling plate can be manufactured. In addition, since the friction stir welding is used, the anodized film formed earlier during the welding does not deteriorate, and therefore, in combination with the above-described effect of improving the reliability of the corrosion prevention, a high durability with high durability can be obtained. A long-lasting cooling plate can be manufactured.
ここで用いられた用語及び説明は、 この発明に係る実施形態を説明するために 用いられたものであって、 この発明はこれに限定されるものではない。 この発明 は請求の範囲内であれば、 その精神を逸脱するものでない限りいかなる設計的変 更をも許容するものである。 産業上の利用可能性  The terms and descriptions used herein are used to describe the embodiments according to the present invention, and the present invention is not limited to these. The present invention allows for any design changes within the scope of the claims without departing from the spirit thereof. Industrial applicability
以上のように、 この発明の冷却板は、 均一な冷却が可能になると共に、 耐久性 に優れて高寿命であるから、 例えばスパッタリング装置、 半導体製造装置、 L C D製造装置におけるバッキングプレート、 サセプター、 各種の温度制御用冷却板 等として適している。  As described above, the cooling plate of the present invention enables uniform cooling, has excellent durability, and has a long life. Therefore, for example, a backing plate, a susceptor, a variety of types in a sputtering device, a semiconductor manufacturing device, an LCD manufacturing device, etc. It is suitable as a cooling plate for temperature control.

Claims

請求の範囲 The scope of the claims
1. 重ね合わせ面に冷却媒体流通路形成用溝 (2 a) (3 a) が形成された複数 枚の金属板 (2) (3) が重ね合わされて接合一体化されることによって、 内部1. A plurality of metal plates (2) and (3) having grooves (2a) and (3a) for cooling medium flow passages formed on the superimposed surface are superimposed and joined together to form an internal structure.
5 に冷却媒体流通路 (4) が形成された冷却板において、 In the cooling plate with the cooling medium passage (4) formed in 5,
前記金属板 (2) (3) の重ね合わせ面における少なくとも冷却媒体流通路形 成用溝 (2 a) (3 a) に陽極酸化皮膜 (10) が形成されると共に、 前記複数 枚の金属板 (2) (3) が摩擦撹拌接合により接合一体化されていることを特徴 とする冷却板。  An anodic oxide film (10) is formed at least in the cooling medium flow path forming grooves (2a) and (3a) on the superposed surface of the metal plates (2) and (3), and the plurality of metal plates are formed. (2) A cooling plate characterized in that (3) is joined and integrated by friction stir welding.
0 0
2. 前記金属板 (2) (3) の重ね合わせ面の全面に陽極酸化皮膜 (10) が形 成されている請求の範囲第 1項記載の冷却板。  2. The cooling plate according to claim 1, wherein an anodic oxide film (10) is formed on the entire superposed surface of the metal plates (2) and (3).
3. 前記金属板 (2) (3) の重ね合わせ面同士の隙間における少なくとも冷却 5 媒体流通路 (4) の近傍周囲部が、 封止材 (1 1) によって液密状態に封止され ている請求の範囲第 1項記載の冷却板。 3. At least the peripheral portion near the cooling medium passage (4) in the gap between the superposed surfaces of the metal plates (2) and (3) is sealed in a liquid-tight state by the sealing material (11). 2. The cooling plate according to claim 1, wherein
4. 前記封止材 (1 1) が金属素材からなる請求の範囲第 3項記載の冷却板。 04. The cooling plate according to claim 3, wherein the sealing material (11) is made of a metal material. 0
5. 前記封止材 (1 1) が耐水性樹脂接着剤からなる請求の範囲第 3項記載の冷 却板。 5. The cooling plate according to claim 3, wherein the sealing material (11) is made of a water-resistant resin adhesive.
6. 前記耐水性樹脂接着剤が、 エポキシ系樹脂、 フ ノール系樹脂及びポリオレ フィン系樹脂からなる群より選ばれる 1種または 2種以上の樹脂で構成されてい 5 る請求の範囲第 5項記載の冷却板。 6. The water-resistant resin adhesive according to claim 5, wherein the water-resistant resin adhesive is composed of one or more resins selected from the group consisting of an epoxy resin, a phenol resin, and a polyolefin resin. Cooling plate.
7. 前記金属板 (2) (3) がアルミニウム板である請求の範囲第 1項記載の冷 却板。 7. The cooling plate according to claim 1, wherein said metal plates (2) and (3) are aluminum plates.
8. 前記金属板 (2) (3) の重ね合わせ面の全面に陽極酸化皮膜 (10) が形 成され、 さらに前記金属板 (2) (3) の重ね合わせ面同士の隙間における少な くとも冷却媒体流通路 (4) の近傍周囲部が、 封止材 (1 1) によって液密状態 に封止されると共に、 前記金属板 (2) (3) としてアルミニウム板が用いられ ている請求の範囲第 1項記載の冷却板。 8. An anodic oxide film (10) is formed on the entire surface of the superposed surfaces of the metal plates (2) and (3), and at least a gap between the superposed surfaces of the metal plates (2) and (3) is formed. The peripheral portion near the cooling medium flow passage (4) is sealed in a liquid-tight state by a sealing material (11), and an aluminum plate is used as the metal plate (2) (3). The cooling plate according to item 1 above.
9. 前記封止材 (1 1) が金属素材からなる請求の範囲第 8項記載の冷却板。 9. The cooling plate according to claim 8, wherein the sealing material (11) is made of a metal material.
10. 前記封止材 (1 1) が耐水性樹脂接着剤からなる請求の範囲第 8項記載の 冷却板。 10. The cooling plate according to claim 8, wherein the sealing material (11) is made of a water-resistant resin adhesive.
1 1. 前記耐水性樹脂接着剤が、 エポキシ系樹脂、 フヱノール系樹脂及びポリオ レフィン系樹脂からなる群より選ばれる 1種または 2種以上の樹脂で構成されて いる請求の範囲第 10項記載の冷却板。 11. The method according to claim 10, wherein the water-resistant resin adhesive is composed of one or more resins selected from the group consisting of an epoxy resin, a phenol resin, and a polyolefin resin. Cooling plate.
12. 複数枚の金属板 (2) (3) の重ね合わせ面のそれぞれに冷却媒体流通路 形成用溝 (2 a) (3 a) を成形する第 1工程と、 12. a first step of forming grooves (2a) and (3a) for forming a cooling medium flow passage in each of the superposed surfaces of the plurality of metal plates (2) and (3);
前記金属板 (2) (3) の重ね合わせ面に陽極酸化処理を施して陽極酸化皮膜 (10) を形成する第 2工程と、  A second step of subjecting the superposed surfaces of the metal plates (2) and (3) to anodizing treatment to form an anodized film (10);
前記複数枚の金属板 (2) (3) の重ね合わせ面同士を重ね合わせた状態で摩 擦撹拌接合を行うことによってこれらを接合一体化する第 3工程とを包含するこ とを特徴とする冷却板の製造方法。  And a third step of joining the metal plates (2) and (3) by friction-stir welding in a state where the overlapping surfaces of the metal plates (2) and (3) are overlapped with each other. Manufacturing method of cooling plate.
PCT/JP2002/006143 2001-06-20 2002-06-20 Cooling plate and method of producing the same WO2003001136A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2003507490A JPWO2003001136A1 (en) 2001-06-20 2002-06-20 Cooling plate and method of manufacturing the same
KR10-2003-7016592A KR20040012950A (en) 2001-06-20 2002-06-20 Cooling plate and method of producing the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2001185859 2001-06-20
JP2001-185859 2001-06-20
US33092701P 2001-11-02 2001-11-02
US60/330,927 2001-11-02

Publications (1)

Publication Number Publication Date
WO2003001136A1 true WO2003001136A1 (en) 2003-01-03

Family

ID=26617243

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/006143 WO2003001136A1 (en) 2001-06-20 2002-06-20 Cooling plate and method of producing the same

Country Status (3)

Country Link
KR (1) KR20040012950A (en)
TW (1) TW530147B (en)
WO (1) WO2003001136A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010041529A1 (en) * 2008-10-06 2010-04-15 日本軽金属株式会社 Method of manufacturing heat transfer plate
JP2010089147A (en) * 2008-10-10 2010-04-22 Nippon Light Metal Co Ltd Manufacturing method of heat transfer plate
US8128589B2 (en) 2004-01-27 2012-03-06 Ramot At Tel-Aviv University Ltd. Apparatus and methods for enzymatic debridement of skin lesions
EP2743378A1 (en) * 2011-08-09 2014-06-18 NHK Spring Co., Ltd. Member comprising flow path and method for producing same
US20150273637A1 (en) * 2012-10-10 2015-10-01 Nippon Light Metal Company, Ltd. Method for manufacturing heat exchanger plate and method for friction stir welding
US11052480B2 (en) * 2016-06-23 2021-07-06 Aalto University Foundation Sr Non-consumable tool and a process for solid-state production of a channel and a weld joint, and a structure of at least two components based on originally bulk components of similar, or dissimilar, materials
EP4166884A1 (en) * 2021-10-15 2023-04-19 Single Use Support GmbH Cooling plate and method for manufacturing a cooling plate

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100491058C (en) * 2007-01-26 2009-05-27 中国电子科技集团公司第十四研究所 Air cold plate sealing forming technology of aluminum alloy
CN112122726B (en) * 2020-09-16 2022-09-30 宁波江丰电子材料股份有限公司 Brazing method of aluminum target and aluminum back plate
CN112899627B (en) * 2021-01-16 2022-09-27 重庆电子工程职业学院 Target mounting structure, magnetron sputtering equipment and magnetron sputtering method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0116225B2 (en) * 1982-02-23 1989-03-23 Matsushita Reiki Kk
JP2000073164A (en) * 1998-08-28 2000-03-07 Showa Alum Corp Backing plate for sputtering
JP2000248399A (en) * 1999-02-26 2000-09-12 Kobe Steel Ltd Aluminum or aluminum alloy member, vacuum vessel and reaction vessel having excellent corrosion resistance
JP2000311932A (en) * 1999-04-28 2000-11-07 Furukawa Electric Co Ltd:The Jointed metal heat plate and manufacture of the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0116225B2 (en) * 1982-02-23 1989-03-23 Matsushita Reiki Kk
JP2000073164A (en) * 1998-08-28 2000-03-07 Showa Alum Corp Backing plate for sputtering
JP2000248399A (en) * 1999-02-26 2000-09-12 Kobe Steel Ltd Aluminum or aluminum alloy member, vacuum vessel and reaction vessel having excellent corrosion resistance
JP2000311932A (en) * 1999-04-28 2000-11-07 Furukawa Electric Co Ltd:The Jointed metal heat plate and manufacture of the same

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8128589B2 (en) 2004-01-27 2012-03-06 Ramot At Tel-Aviv University Ltd. Apparatus and methods for enzymatic debridement of skin lesions
US9155828B2 (en) 2004-01-27 2015-10-13 Ramot At Tel-Aviv University Ltd. Apparatus and methods for enzymatic debridement of skin lesions
WO2010041529A1 (en) * 2008-10-06 2010-04-15 日本軽金属株式会社 Method of manufacturing heat transfer plate
JP2010089147A (en) * 2008-10-10 2010-04-22 Nippon Light Metal Co Ltd Manufacturing method of heat transfer plate
EP2743378A1 (en) * 2011-08-09 2014-06-18 NHK Spring Co., Ltd. Member comprising flow path and method for producing same
EP2743378A4 (en) * 2011-08-09 2015-04-22 Nhk Spring Co Ltd Member comprising flow path and method for producing same
US9453596B2 (en) 2011-08-09 2016-09-27 Nhk Spring Co., Ltd. Member with flow passage and method for manufacturing the same
US20150273637A1 (en) * 2012-10-10 2015-10-01 Nippon Light Metal Company, Ltd. Method for manufacturing heat exchanger plate and method for friction stir welding
US9821419B2 (en) * 2012-10-10 2017-11-21 Nippon Light Metal Company, Ltd. Method for manufacturing heat exchanger plate and method for friction stir welding
US10518369B2 (en) 2012-10-10 2019-12-31 Nippon Light Metal Company, Ltd. Method for manufacturing heat exchanger plate and method for friction stir welding
US11052480B2 (en) * 2016-06-23 2021-07-06 Aalto University Foundation Sr Non-consumable tool and a process for solid-state production of a channel and a weld joint, and a structure of at least two components based on originally bulk components of similar, or dissimilar, materials
EP4166884A1 (en) * 2021-10-15 2023-04-19 Single Use Support GmbH Cooling plate and method for manufacturing a cooling plate

Also Published As

Publication number Publication date
TW530147B (en) 2003-05-01
KR20040012950A (en) 2004-02-11

Similar Documents

Publication Publication Date Title
JPWO2003001136A1 (en) Cooling plate and method of manufacturing the same
WO2003001136A1 (en) Cooling plate and method of producing the same
US20130071738A1 (en) Soft package lithium battery tab material and its method of plating and application
JP2010203727A (en) Heat exchanger
JP7441344B2 (en) Heat exchanger
KR20160058099A (en) Bonded heat exchanger matrix and corresponding bonding method
US10060687B2 (en) Connecting member and micro-channel heat exchanger
JP7441343B2 (en) Heat exchanger
TWI610488B (en) Laminate for battery packages, battery package, and battery
JP7221136B2 (en) Heat exchanger
JP2021103764A (en) Heat exchanger and inner fin thereof
JP2011179737A (en) Heat exchanger and method of manufacturing the same
JP5569261B2 (en) Lead member and lead member manufacturing method
JP2021111466A (en) Heat exchanger
JP2014046353A (en) Manufacturing method of hollow container
US20130312943A1 (en) Process for producing an integral bond
JP7410713B2 (en) Heat exchanger
JPH09184694A (en) Core of laminated type heat exchanger
JP2015233094A (en) Semiconductor module cooler
JP6640598B2 (en) Temperature control panel
JP2019114430A (en) Terminal plate for fuel cell
JP2021110471A (en) Heat exchanger and externally capsuled laminate material thereof
WO2022244568A1 (en) Cooling structure, battery unit, and manufacturing method for cooling structure
WO2021246472A1 (en) Sealing film, electrode lead wire member, and battery
JP2009030891A (en) Plate layered assembly and its manufacturing method

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG UZ VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2003507490

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 1020037016592

Country of ref document: KR

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase